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Abstract. In this paper strongly nonlinear oscillator equations will be studied. It will be
shown that the recently developed perturbation method based on integrating factors can be used
to approximate first integrals. Not only approximations of first integrals will be given, but it will
also be shown how in a rather efficient way the existence and stability of time-periodic solutions can
be obtained from these approximations. In particular the generalized Rayleigh oscillator equation

Ẍ + 9X + µX2 + λX3 = ε
(

Ẋ − Ẋ3
)

will be studied in detail, and it will be shown that at least five

limit cycles can occur.
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1. Introduction. In [13, 14, 22, 23, 24, 25] a perturbation method based on
integrating factors and vectors has been presented for regularly or singularly per-
turbed systems of ordinary differential equations (ODEs). When approximations of
integrating vectors have been obtained an approximation of a first integral can be
given. Also an error-estimate for this approximation of a first integral can be given
on a time-scale. It has also been shown in [13, 23, 24, 25] how in a rather efficient
way the existence and stability of time-periodic solutions can be obtained from these
approximations for the first integrals. In this paper it will be shown explicitly how
the perturbation method can be applied to the following strongly nonlinear oscillator
equation

Ẍ + c1X + c2X
2 + c3X

3 = εf(X, Ẋ),(1.1)

where c1, c2, c3 are parameters, where 0 < ε � 1, and where the dot represents
differentiation with respect to t. Recently equation (1.1) obtained a lot of attention.
For example in [1] Doelman and Verhulst studied (1.1) with f(X, Ẋ) =

(

1 −X2
)

Ẋ (a
Van der Pol type of perturbation) by using a Melnikov/Poincaré return map technique.
For c2 = 0 and f(X, Ẋ) = bẊ Yuste and Bejarano [15] applied a Krylov-Bogoliubov
method. Coppola and Rand [19], and Roy [11] used an averaging method which is
based on elliptic functions to study (1.1) with c2 = 0. Also for c2 = 0 Chen and
Cheung [16, 17] used a Lindstedt-Poincaré method to study (1.1) with f(X, Ẋ) =
(

a− bX2
)

Ẋ , where a and b are constants. By using Melnikov functions and a Picard-
Fuchs analysis Iliev and Perko [6] studied (1.1) with c2 = 0, c1 = ±1, c3 = ±1,
and f(X, Ẋ) = aẊ + bX2 + cXẊ + dX2Ẋ, where a, b, c, and d are parameters.
For equations like (1.1) Blows and Perko [12] wrote an interesting survey paper on
Melnikov/Poincaré techniques. Margallo and Bejarano [8, 9], and Lynch [18] studied
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(1.1) with c2 = 0 and f(X, Ẋ) = Ẋ − Ẋ3, and showed that at least one limit cycle
can occur. Waluya and Van Horssen [13] studied (1.1) with c3 = 0 and f(X, Ẋ) =
Ẋ − Ẋ3 (a Rayleigh type of perturbation) by using the perturbation method based
on integrating factors. It has been shown in [1, 13] that for (1.1) with c3 = 0 and
f(X, Ẋ) = Ẋ − Ẋ3 two limit cycles can occur. The case c3 6= 0 , c2 6= 0 and
f(X, Ẋ) = Ẋ − Ẋ3 has not yet been studied, and will be studied in this paper using
the perturbation method based on integrating factors. It will turn out in this paper
that five limit cycles can occur. Equation (1.1) with f(X, Ẋ) = Ẋ − Ẋ3 plays an
important role in applications, for instance in flow-induced vibrations of cables in a
windfield. For details of this application we refer the readers to the papers of Van der
Beek [2, 3]. Using the perturbation method based on integrating vectors and some
numerical calculations we will study (1.1) with c3 6= 0 and c2 6= 0 and f(X, Ẋ) =
Ẋ − Ẋ3 in detail, that is, the existence and stability, and the bifurcation of time-
periodic solutions will be investigated in detail. In this paper we restrict ourselves to
autonomous differential equations. The presented perturbation method, however, can
also be extended to nonautonomous equations. In relation to these nonautonomous
equations we refer the readers for instance to the work of Roy [11], Brothers and
Haberman [7], and Bosley [5], who used averaging and matching techniques to obtain
insight in the solution structure for a class of non-autonomous equations. This paper
is organized as follows. In section 2 of this paper the perturbation method based on
integrating vectors and an asymptotic theory will be given briefly. It will be shown
in section 3 of this paper how approximations of first integrals can be constructed for
the strongly nonlinear oscillator equation

Ẍ +
dU(X)

dX
= εf(X, Ẋ),(1.2)

where U(X) is the potential energy of the unperturbed (that is, ε = 0), nonlinear
oscillator, and where X = X(t), Ẋ = dX

dt
, ε is a small parameter satisfying 0 < ε� 1,

and where f is a sufficiently smooth function. Approximations of first integrals for
the oscillator equation (1.1) will be presented in section 4 of this paper. Using these
approximations it will be shown in section 5 how the existence and stability of time-
periodic solutions for the oscillator equation (1.1) can be obtained. The bifurcation(s)
of limit cycles will be studied in detail, and a complete set of topological different phase
portraits will be presented. Finally in section 6 of this paper some conclusions will be
drawn and some remarks will be made.

2. Integrating vectors and an asymptotic theory. In this section we briefly
outline the perturbation method based on integrating vectors as given in [13, 22, 23,
24]. We consider the following system of n first order ODEs

dy

dt
= f(y, t; ε),(2.1)

where ε is a small parameter, and where the function f has the form f(y, t; ε) =
f

0
(y, t) + εf

1
(y, t). An integrating vector µ = µ(y, t; ε) for system (2.1) has to satisfy











∂µi

∂yj
=

∂µj

∂yi
, 1 ≤ i < j ≤ n,

∂µ

∂t
= −∇(µ · f).

(2.2)
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Assume that µ can be expanded in a power series in ε, that is, µ(y, t; ε) = µ
0
(y, t) +

εµ
1
(y, t) + . . . + εmµ

m
(y, t) + . . . . We determine an integrating vector up to O(εm).

An approximation Fapp of F in the first integral F = constant can be obtained from:











∇Fapp = µ
0

+ εµ
1
+ . . .+ εmµ

m
,

∂Fapp

∂t
= −

[(

µ
0
+ εµ

1
+ . . .+ εmµ

m

)

· f
]

∗
,

(2.3)

where the * indicates that terms of order εm+1 and higher have been neglected. Then
we obtain Fapp(y, t; ε) = F0(y, t) + εF1(y, t) + . . .+ εmFm(y, t). It should be observed
that an approximation up to O(εm) of an integrating vector µ has been used to obtain

an exact ODE up to O(εm+1), that is,

dFapp

dt
=

[(

µ
0

+ ε · µ
1

+ . . .+ εmµ
m

)

· f
]

∗∗

= εm+1Rm+1(y, t, µ0
, . . . , µ

m
; ε),(2.4)

where the ** indicates that only terms of order εm+1 and higher are included. How
well Fapp approximates F (y, t; ε) = constant can be determined from (2.4), that is,
error estimates can be given on time-scales depending on the boundedness properties
of Rm+1.

3. Approximations of First Integrals. In this section we will show how the
perturbation method based on integrating vectors can be applied to approximate
first integrals for a strongly nonlinear oscillator equation. We consider the class of
non-linear oscillators described by the equation

Ẍ +
dU(X)

dX
= εf(X, Ẋ),(3.1)

where U(X) is a potential, X = X(t), Ẋ = dX
dt

, ε is a small parameter satisfying
0 < ε � 1, and where f is assumed to be sufficiently smooth. We assume that the
unperturbed (that is, ε = 0) solutions of (3.1) form a family of periodic orbits. This
family may cover the entire ”phase plane” (X, Ẋ), or a bounded region D of the phase
plane. Each periodic orbit corresponds to a constant energy level E = 1

2Ẋ
2 + U(X).

With each constant energy level E corresponds a phase angle ψ, which is defined to
be

ψ =

∫ X

0

dr
√

2E − 2U(r)
.(3.2)

From (3.1)-(3.2) a transformation (X, Ẋ) 7−→ (E,ψ) can then be defined with















Ė = εẊf = g1(E,ψ),

ψ̇ = 1 + ε

[

−
∫X

0
dr

(2E−2U(r))
3
2
Ẋf

]

= g2(E,ψ).
(3.3)

Multiplying the first and the second equation in (3.3) with µ1(E,ψ, t) and µ2(E,ψ, t)
respectively, it follows from (2.2) that the integrating factors µ1(E,ψ, t) and µ2(E,ψ, t)
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have to satisfy


























∂µ1

∂ψ
= ∂µ2

∂E
,

∂µ1

∂t
= − ∂

∂E
(µ1g1 + µ2g2) ,

∂µ2

∂t
= − ∂

∂ψ
(µ1g1 + µ2g2) .

(3.4)

Expanding µ1 and µ2 in formal power series in ε, that is,

µi(E,ψ, t; ε) = µi,0(E,ψ, t) + εµi,1(E,ψ, t) + . . .

for i = 1 and 2, substituting g1, g2 and the expansions for µ1 and µ2 into (3.4)
and by taking together terms of equal powers in ε, we finally obtain the following
O(εn)-problems: for n = 0



























∂µ1,0

∂ψ
=

∂µ2,0

∂E
,

∂µ1,0

∂t
= −∂µ2,0

∂E
,

∂µ2,0

∂t
= −∂µ2,0

∂ψ
,

(3.5)

and for n ≥ 1


























∂µ1,n

∂ψ
=

∂µ2,n

∂E
,

∂µ1,n

∂t
= − ∂

∂E
(µ1,n−1g1,1 + µ2,n−1g2,1 + µ2,n) ,

∂µ2,n

∂t
= − ∂

∂ψ
(µ1,n−1g1,1 + µ2,n−1g2,1 + µ2,n) ,

(3.6)

where εg1,1 = g1 , εg2,1 = g2 − 1. The O(ε0)-problem (3.5) can readily be solved,

yielding µ1,0 = h1,0(E,ψ − t) and µ2,0 = h2,0(E,ψ − t) with
∂h1,0

∂ψ
=

∂h2,0

∂E
. The

functions h1,0 and h20 are still arbitrary and will now be chosen as simple as possible.
We choose h1,0 ≡ 1 and h2,0 ≡ 0, and so (see also [13, 23])

µ1,0 = 1, µ2,0 = 0.(3.7)

Then it follows from the order ε-problem (3.6) that µ1,1 and µ2,1 have to satisfy










∂µ1,1

∂t
+

∂µ1,1

∂ψ
= − ∂

∂E
(g1,1) ,

∂µ2,1

∂t
+

∂µ2,1

∂ψ
= − ∂

∂ψ
(g1,1) .

(3.8)

By using the method of characteristics for first order PDEs we then obtain










µ1,1 = h1,1(E,ψ − t) −
∫ t

0

(

∂
∂E

(g1,1)
)

dt̄,

µ2,1 = h2,1(E,ψ − t) −
∫ t

0

(

∂
∂ψ

(g1,1)
)

dt̄,

(3.9)

where h1,1, h2,1 are arbitrary functions which have to satisfy

∂h1,1

∂ψ
− ∂

∂ψ

∫ t

0

(

∂

∂E
(g1,1)

)

dt̄ =
∂h2,1

∂E
− ∂

∂E

∫ t

0

(

∂

∂ψ
(g1,1)

)

dt̄.(3.10)
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We choose h1,1 and h2,1 as simple as possible, that is, we take h1,1 = 0, h2,1 = 0. We
then obtain for µ1,1 and µ2,1















µ1,1 = − ∂
∂E

(

∫ t

0
g1,1dt̄

)

,

µ2,1 = − ∂
∂ψ

(

∫ t

0
g1,1dt̄

)

.

(3.11)

An approximation F1 of a first integral F = constant of system (3.3) can now be
obtained from (3.7), (3.11), and (2.3), yielding

F1(E,ψ, t) = E − ε

[
∫ t

0

g1,1dt̄

]

.(3.12)

How well F1 approximates a first integral F = constant follows from (2.4). In this
case we have

dF1

dt
= [(1 + εµ1,1)g1 + εµ2,1g2]∗∗

= εµ1,1g1 + εµ2,1(g2 − 1) = ε2R1(E,ψ, t),(3.13)

where g1, g2, and µ1,1, µ2,1 are given by (3.3) and (3.11) respectively. From the
existence and uniqueness theorems for ODEs we know that initial value problems for
(3.1) (with sufficiently smooth potential U(X) and nonlinearity f(X, Ẋ)) are well-
posed on a time-scale of order 1

ε
. This implies that also an initial-value problem for

system (3.3) is well-posed on this time-scale. From (3.3) it then follows on this time-
scale that if E(0) is bounded then E(t) is bounded and ψ(t) is bounded by a constant
plus t. Since |R1| ≤ c0 + c1t on a time scale of order 1

ε
, where c0, c1 are constants, it

follows from (3.13) that

F1(E(t), ψ(t), t; ε) = constant+ ε2
∫ t

0

R1(E(s), ψ(s), s; ε)ds,

and so,

F1(E(t), ψ(t), t; ε) = constant+ O(ε2), 0 ≤ t ≤ T0 <∞,

F1(E(t), ψ(t), t; ε) = constant+ O(ε), 0 ≤ t ≤ L√
ε
,(3.14)

where T0 and L are ε-independent constants. Another (functionally independent)
approximation of a first integral can be obtained by putting in (3.6)

µ2,0 = 1, µ1,0 = 0,(3.15)

instead of (3.7). The O(ε)-problem (3.6) can now be solved, yielding










µ1,1 = k1,1(E,ψ − t) −
∫ t

0

(

∂
∂E

(g2,1)
)

dt̄,

µ2,1 = k2,1(E,ψ − t) −
∫ t

0

(

∂
∂ψ

(g2,1)
)

dt̄,

(3.16)

where the functions k1,1 and k2,1 are arbitrary functions which have to satisfy

∂k1,1

∂ψ
− ∂

∂ψ

∫ t

0

(

∂

∂E
(g2,1)

)

dt̄ =
∂k2,1

∂E
− ∂

∂E

∫ t

0

(

∂

∂ψ
(g2,1)

)

dt̄.(3.17)
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We choose these functions as simple as possible, that is k1,1 = 0, and k2,1 = 0. Then
we obtain















µ1,1 = − ∂
∂E

(

∫ t

0 g2,1dt̄
)

,

µ2,1 = − ∂
∂ψ

(

∫ t

0 g2,1dt̄
)

.

(3.18)

An approximation F2 of a first integral F = constant of system (3.3) can now be
obtained from (3.15), (3.18), and (2.3), yielding

F2(E,ψ, t) = (ψ − t) − ε

[
∫ t

0

g2,1dt̄

]

.(3.19)

How well F2 approximates a first integral F = constant follows from (2.4). In this
case we have

dF2

dt
= [εµ1,1g1 + (1 + εµ2,1)g2]∗∗

= εµ1,1g1 + εµ2,1(g2 − 1) = ε2R2(E,ψ, t),

where g1, g2, and µ1,1, µ2,1 are given by (3.3) and (3.18) respectively. In the following
section we will treat some examples to show how this perturbation method can be
applied.

4. Example of a Strongly Nonlinear Oscillator. In this section we will
consider the following strongly nonlinear oscillator equation

Ẍ +
dU(X)

dX
= εf(X, Ẋ),(4.1)

where dU(X)
dX

= 9X+µX2+λX3 with µ and λ parameters, where the function f(X, Ẋ)

is a so-called Rayleigh perturbation, that is, f(X, Ẋ) = Ẋ−Ẋ3, and where ε is a small
parameter with 0 < ε � 1. In [2] Van der Beek introduced (4.1) with µ = O(

√
ε)

and λ = 0 as a model equation to describe the vibrations of an oscillator in a uniform
windfield. This model equation is related to the phenomenon of galloping of overhead
power transmission lines on which ice has accreted. Using first order normal form
techniques it has been shown in [2] that (4.1) with µ = O(

√
ε) and λ = 0 has a unique

(stable) periodic solution. Doelman and Verhulst [1], and Waluya and Van Horssen
[13] showed that a stable and an unstable periodic solution can occur simultaneously
for (4.1) with µ = O(1) and λ = 0. For (4.1) with µ = 0 and λ > 0 Garcia-Margallo
and Bejarano [9] showed that at least one limit cycle can occur. In this section we
will construct approximations of first integrals for (4.1) with µ and λ arbitrary. To
give a complete analysis of (4.1) we have to consider two main cases: (i) µ = 0 and
λ arbitrary, and (ii) µ > 0 and λ arbitrary. It should be observed that the case
µ < 0 and λ arbitrary is included in case (ii) (just replace X by −X in (4.1)). The
constructed approximations of the first integrals will be used in section 5 to determine
the number of periodic solutions for (4.1).

4.1. The case µ = 0 and λ arbitrary. To study (4.1) with µ = 0 in detail we
have to consider three subcases: λ = 0, λ > 0, and λ < 0. These three cases will be
studied in the following three subsections.
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4.1.1. The case µ = 0 and λ = 0. By putting X(t) = X̃(τ) with t = τ
3 in (4.1)

the following weakly nonlinear Rayleigh oscillator equation is obtained

X̃ ′′ + X̃ = ε̃g(X̃ ′),(4.2)

where ε̃ = 1
3ε, X̃

′ = dX̃
dτ

, and where g(X̃ ′) = X̃ ′ − 9(X̃ ′)3. By introducing the

transformation (X̃, X̃ ′) 7−→ (E,ψ) as defined by











E = 1
2 (X̃ ′)2 + 1

2 (X̃)2,

ψ =
∫ X̃

0
dr√

2E−r2 = sin−1
(

X̃√
2E

)

,

(4.3)

(where E and ψ are the energy and the phase angle of the unperturbed oscillator
(ε = 0) respectively) we obtain the following system of ODEs















E′ = ε̃X̃ ′g = ξ1(E,ψ) = ε̃ξ1,1(E,ψ),

ψ′ = 1 + ε̃

[

−
∫ X̃

0
dr

(2E−r2)
3
2
X̃ ′g

]

= ξ2(E,ψ) = 1 + ε̃ξ2,1(E,ψ).
(4.4)

From the calculations as presented in section 3 of this paper it follows that two
functionally independent approximations of first integrals for system (4.4) are given
by

F1(E,ψ, τ) = E − ε

∫ τ

0

ξ1,1dt̄ = E − ε̃

∫ τ

0

(

(X̃ ′)2 − 9(X̃ ′)4
)

dt̄

= E − ε̃

∫ τ

0

(

2E cos(ψ)2 − 36E2 cos(ψ)4
)

dt̄

= E − ε̃

((

E − 27

2
E2

)

ψ − 9E2 sin(2ψ) − 9

8
E2 sin(4ψ)

)

,(4.5)

and

F2(E,ψ, τ) = (ψ − τ) − ε̃

∫ τ

0

ξ2,1dt̄

= (ψ − τ) +
ε̃

2E

∫ τ

0

(

2E sin(ψ) cos(ψ) − 36E2 sin(ψ) cos(ψ)3
)

dt̄

= (ψ − τ) + ε̃

(

−1

4
cos(2ψ) +

1

4
E cos(2ψ) +

1

16
E cos(4ψ)

)

.(4.6)

How well F1 and F2 approximate a first integral F = constant follows from (2.4). In
this case for j = 1, 2 we have

dFj

dτ
= ε̃µ1,1ξ1 + ε̃µ2,1(ξ2 − 1) = ε̃2Rj(E,ψ),(4.7)

where ξ1 and ξ2 are given by (4.4). It follows from (4.7) that for j = 1, 2 (see also
(3.13)-(3.14))

Fj(E(τ), ψ(τ), τ ; ε̃) = constant+ ε̃2
∫ τ

0

Rj(E(s), ψ(s), s; ε̃)ds,(4.8)
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and so,

Fj(E(τ), ψ(τ), τ ; ε̃) = constant+ O(ε̃2), 0 ≤ τ ≤ T0 <∞,

Fj(E(τ), ψ(τ), τ ; ε̃) = constant+ O(ε̃), 0 ≤ τ ≤ L√
ε̃
,(4.9)

where T0 and L are ε̃-independent constants.

4.1.2. The case µ = 0 and λ > 0. By putting X(t) = X̃(τ) with t = τ
3 in (4.1)

the following nonlinear Rayleigh oscillator equation is obtained

X̃ ′′ + X̃ + βX̃3 = ε̃g(X̃ ′),(4.10)

where ε̃ = 1
3ε, β = λ

9 , X̃ ′ = dX̃
dτ

, and where g(X̃ ′) = X̃ ′ − 9(X̃ ′)3. By introducing the

transformation (X̃, X̃ ′) 7−→ (E,ψ) as defined by











E = 1
2 (X̃ ′)2 + 1

2 (X̃)2 + 1
4β(X̃)4,

ψ =
∫ X̃

0
dr√

2E−r2− 1
2βr

4
,

(4.11)

(where E and ψ are the energy and the phase angle of the unperturbed oscillator
(that is, (4.1) with ε = 0)) we obtain the following system of ODEs















E′ = ε̃X̃ ′g = ξ3(E,ψ) = ε̃ξ3,1(E,ψ),

ψ′ = 1 + ε̃

[

−
∫ X̃

0
dr

(2E−r2− 1
2βr

4)
3
2
X̃ ′g

]

= ξ4(E,ψ) = 1 + ε̃ξ4,1(E,ψ).
(4.12)

The solution of the unperturbed equation (4.10) is X̃ = A0cn(ϑ, k) with ϑ = ω0ψ,

where ψ = τ + constant, k is a modulus given by k2 =
βA2

0

2ω2
0
, and ω2

0 = 1 + βA2
0

(see also [4, 10, 11, 16, 17, 19]). The relationship between the energy E and the
”amplitude” A0 is given by E = 1

2A
2
0 + 1

4βA
4
0. The function cn(ϑ, k) is a Jacobian

elliptic function with argument ϑ and modulus k. From the calculations as presented
in section 3 of this paper it follows that two functionally independent approximations
of first integrals for system (4.12) are given by

F3(E,ψ, τ) = E − ε̃

∫ τ

0

ξ3,1dt̄ = E − ε̃

∫ τ

0

(

(X̃ ′)2 − 9(X̃ ′)4
)

dt̄

= E − ε̃

[
∫ τ

0

(ω2
0A

2
0sn(ϑ, k)2dn(ϑ, k)2 − ηω4

0A
4
0sn(ϑ, k)4dn(ϑ, k)4)

dϑ

ω0

]

,(4.13)

and

F4(E,ψ, τ) = (ψ − τ) − ε̃

∫ τ

0

ξ4,1dt̄

= (ψ − τ) + ε̃

[
∫ τ

0

P1(ϑ, k) (ω0A0sn(ϑ, k)dn(ϑ, k)

−ηω3
0A

3
0sn(ϑ, k)3dn(ϑ, k)3

) dϑ

ω0

]

,(4.14)
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where P1(ϑ, k) = ∂A0

∂E
cn(ϑ, k) −A0ψsn(ϑ, k)dn(ϑ, k) ∂ω0

∂E
+A0

∂
∂k
cn(ϑ, k) ∂k

∂E
, in which

sn(ϑ, k), and dn(ϑ, k) are elliptic functions , and where ∂A0

∂E
, ∂ω0

∂E
, and ∂k

∂E
are given

by

∂A0

∂E
=

1

A0 + βA3
0

,
∂ω0

∂E
=

βA0

ω0 (A0 + βA3
0)
,
∂k

∂E
=

βA0

(

1 − 2k2
)

2kω2
0 (A0 + βA3

0)
.

How well F3 and F4 approximate a first integral F = constant follows from (2.4). In
this case for j = 3, 4 we have

dFj

dτ
= ε̃µ1,1ξ3 + ε̃µ2,1(ξ4 − 1) = ε̃2Rj(E,ψ),(4.15)

where ξ3 and ξ4 are given by (4.12). It follows from (4.15) that for j = 3, 4 (see also
(3.13)-(3.14))

Fj(E(τ), ψ(τ), τ ; ε̃) = constant+ ε̃2
∫ τ

0

Rj(E(s), ψ(s), s; ε̃)ds,(4.16)

and so,

Fj(E(τ), ψ(τ), τ ; ε̃) = constant+ O(ε̃2), 0 ≤ τ ≤ T0 <∞,

Fj(E(τ), ψ(τ), τ ; ε̃) = constant+ O(ε̃), 0 ≤ τ ≤ L√
ε̃
,(4.17)

where T0 and L are ε̃-independent constants.

4.1.3. The case µ = 0 and λ < 0. By putting X(t) = X̃(τ) with t = τ
3 in (4.1)

the following nonlinear oscillator equation is obtained

X̃ ′′ + X̃ − γX̃3 = ε̃g(X̃ ′),(4.18)

where γ = −λ
9 > 0, ε̃ = 1

3ε, X̃
′ = dX̃

dτ
, and where g(X̃ ′) = X̃ ′−9(X̃ ′)3. By introducing

the transformation (X,X ′) 7−→ (E,ψ) as defined by











E = 1
2 (X̃ ′)2 + 1

2 (X̃)2 − 1
4γ(X̃)4,

ψ =
∫ X̃

0
dr√

2E−r2+ 1
2 γr

4
,

(4.19)

(where E and ψ are the energy and the phase angle of the unperturbed oscillator
(that is, (4.1) with ε = 0)) we obtain the following system of ODEs















E′ = ε̃X̃ ′g = ξ5(E,ψ) = ε̃ξ5,1(E,ψ),

ψ′ = 1 + ε̃

[

−
∫ X̃

0
dr

(2E−r2+ 1
2 γr

4)
3
2
X̃ ′g

]

= ξ6(E,ψ) = 1 + ε̃ξ6,1(E,ψ).
(4.20)

The solution of the unperturbed equation (4.18) is given by X̃ = A0sn(ϑ, k) with

ϑ = ω0ψ, where ψ = t+ constant, k2 =
γA2

0

2ω2
0
, ω2

0 = 1 − 1
2γA

2
0, and E = 1

2A
2
0 − 1

4γA
4
0.

From the calculations as presented in section 3 of this paper it follows that two
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functionally independent approximations of first integrals for system (4.20) are given
by

F5(E,ψ, τ) = E − ε̃

∫ τ

0

ξ5,1dt̄ = E − ε̃

∫ τ

0

(

(X̃ ′)2 − 9(X̃ ′)4
)

dt̄

= E − ε̃

[
∫ τ

0

(ω2
0A

2
0cn(ϑ, k)2dn(ϑ, k)2 − ω4

0A
4
0cn(ϑ, k)4dn(ϑ, k)4)

dϑ

ω0

]

,(4.21)

and

F6(E,ψ, τ) = (ψ − τ) − ε̃

∫ τ

0

ξ6,1dt̄

= (ψ − τ) + ε̃

[
∫ τ

0

P2(ϑ, k) (ω0A0cn(ϑ, k)dn(ϑ, k)

−ηω3
0A

3
0cn(ϑ, k)3dn(ϑ, k)3

) dϑ

ω0

]

,(4.22)

where P2(ϑ, k) = ∂A0

∂E
sn(ϑ, k) +A0ψcn(ϑ, k)dn(ϑ, k) ∂ω0

∂E
+A0

∂
∂k
sn(ϑ, k) ∂k

∂E
in which

∂A0

∂E
=

1

A0 − γA3
0

,
∂ω0

∂E
=

−γA0

2ω0 (A0 − γA3
0)
,
∂k

∂E
=

γA0

(

1 + k2
)

2kω2
0 (A0 − γA3

0)
.

How well F5 and F6 approximate a first integral F = constant follows from (2.4). In
this case for j = 5, 6 we have

dFj

dτ
= ε̃µ1,1ξ5 + ε̃µ2,1(ξ6 − 1) = ε̃2Rj(E,ψ),(4.23)

where ξ5 and ξ6 are given by (4.20). It follows from (4.23) that for j = 5, 6 (see also
(3.13)-(3.14))

Fj(E(τ), ψ(τ), τ ; ε̃) = constant+ ε̃2
∫ τ

0

Rj(E(s), ψ(s), s; ε̃)ds,(4.24)

and so,

Fj(E(τ), ψ(τ), τ ; ε̃) = constant+ O(ε̃2), 0 ≤ τ ≤ T0 <∞,

Fj(E(τ), ψ(τ), τ ; ε̃) = constant+ O(ε̃), 0 ≤ τ ≤ L√
ε̃
,(4.25)

where T0 and L are ε̃-independent constants.

4.2. The case µ > 0 and λ arbitrary. By putting

X(t) =
9

µ
Z(τ), t =

τ

3
.(4.26)

in (4.1) the following nonlinear oscillator equation is obtained

Z ′′ + Z + Z2 + ξZ3 = ε̃g(Z ′),(4.27)
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where ξ = 9λ
µ2 , ε̃ = 1

3ε, Z
′ = dZ

dτ
, and g(Z ′) = Z ′ − η(Z ′)3 with η = 93

µ2 . By introducing

the transformation (Z,Z ′) 7−→ (E,ψ) as defined by











E = 1
2Z

′2 + 1
2Z

2 + 1
3Z

3 + 1
4ξZ

4,

ψ =
∫ Z

0
dr√

2E−r2− 2
3 r

3− 1
2 ξr

4
,

(4.28)

(where E and ψ are the energy and the phase angle of the unperturbed oscillator
(that is, (4.1) with ε = 0)) we obtain the following system of ODEs















E′ = ε̃Z ′g = ζ1(E,ψ) = ε̃ζ1,1,

ψ′ = 1 + ε̃

[

−
∫ Z

0
dr

(2E−r2− 2
3 r

3− 1
2 ξr

4)
3
2
Z ′g

]

= ζ2(E,ψ) = 1 + ε̃ζ2,1.

(4.29)

From the calculations as presented in section 3 of this paper it follows (see also section
4.1) that two functionally independent approximations of first integrals for system
(4.29) are given by

F7(E,ψ) = E − ε̃

∫ τ

0

ζ1,1dt̄

= E − ε̃

∫ τ

0

(G2
[2] − ηG4

[2])dt̄,(4.30)

and

F8(E,ψ) = (ψ − τ) − ε̃

∫ τ

0

ζ2,1dt̄

= (ψ − τ) − ε̃

∫ τ

0

F[2](G[2] − ηG3
[2])dt̄,(4.31)

where F[2] = ∂Z
∂E

and G[2] = Z ′ are elliptic functions, which are defined by (4.28).
How well F7 and F8 approximate a first integral F = constant follows from (2.4). For
j = 7, 8 we have

dFj

dτ
= ε̃µ1,1ζ1 + ε̃µ2,1(ζ2 − 1) = ε̃2Rj(E,ψ),(4.32)

where ζ1 and ζ2 are given by (4.29). It follows from (4.32) that for j = 7, 8 (see also
(3.13)-(3.14))

Fj(E(τ), ψ(τ), τ ; ε̃) = constant+ ε̃2
∫ τ

0

Rj(E(s), ψ(s), s; ε̃)ds,(4.33)

and so,

Fj(E(τ), ψ(τ), τ ; ε̃) = constant+ O(ε̃2), 0 ≤ τ ≤ T0 <∞,

Fj(E(τ), ψ(τ), τ ; ε̃) = constant+ O(ε̃), 0 ≤ τ ≤ L√
ε̃
,(4.34)

where T0 and L are ε̃-independent constants.
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5. Time-periodic solutions and a bifurcation analysis. In the previous
section it has been shown how asymptotic approximations of first integrals can be
obtained. In this section we will show how the existence of non-trivial, time-periodic
solutions can be determined from the asymptotic approximations of the first integrals.
We will also present phase portraits and a bifurcation analysis. In section 5.1 we will
show that (4.1) with µ = 0 can have (at least) two limit cycles, and in section 5.2 we
will give strong numerical evidence that (4.1) with µ 6= 0 can have (at least) five limit
cycles.

5.1. The case µ = 0 and λ arbitrary. To determine the non-trivial, time-
periodic solutions from the asymptotic approximations of the first integrals we have
to consider (as in section 4.1) three subcases: λ = 0, λ > 0, and λ < 0. These three
cases will be studied in the following three subsections.

5.1.1. The case µ = 0 and λ = 0. Let T < ∞ be the period of a periodic
solution and let c1 be a constant in the first integral F (E,ψ, τ ; ε) = constant for
which a periodic solution exists. Consider F = c1 for τ = 0 and τ = T . Approximating
F by F1 (as given by (4.5)), eliminating c1 by subtraction, we then obtain (using the
fact that E(0) = E(T ) for a periodic solution)

ε̃

(

∫ T

0

(

(X̃ ′)2 − 9(X̃ ′)4
)

dt̄

)

= O(ε̃2) ⇔ ε̃

(

∫ X̃(T )

X̃(0)

(

X̃ ′ − 9(X̃ ′)3
)

dX̃

)

= O(ε̃2).

(5.1)
Because of the symmetry of the unperturbed orbits in the phase plane (5.1) can be
rewritten as

ε̃I(E) = O(ε̃2),(5.2)

where

I(E) = 4

∫ A

0

(

X̃ ′ − 9(X̃ ′)3
)

dX̃,(5.3)

with A = X̃( 1
2T ) =

√
2E. To have a periodic solution for (4.2) we have to find an

energy E such that I(E) is equal to zero (see also [13, 20, 21]). To find this energy E
we rewrite I(E) in

I(E) = 4I1(E)

(

1 − 9
I2(E)

I1(E)

)

,(5.4)

where


















I1(E) =
∫ A

0

(

2E − X̃2
)

1
2

dX̃ = Eπ
2 ,

I2(E) =
∫ A

0

(

2E − X̃2
)

3
2

dX̃ = 3E2π
4 .

(5.5)

It now easily follows from (5.4) and (5.5) that I(E) = 0 for E = 2
27 or E = 0. Putting

Q = I2
I1

(where I1 and I2 are as defined in (5.5)) it easily follows from (5.5) that

Q = 3
2E. Since Q is strictly monotonically increasing in E we can conclude that there

exists a unique, nontrivial, stable periodic solution for (4.2). The standard arguments
leading to this conclusion can for instance be found in [[13], section 4.2 ] or in [6, 12].
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5.1.2. The case µ = 0 and λ > 0. Let T < ∞ be the period of a periodic
solution and let c2 be a constant in the first integral F (E,ψ, τ ; ε) = constant for
which a periodic solution exists. Consider F = c2 for τ = 0 and τ = T . Approximating
F by F3 (as given by (4.13)), eliminating c2 by subtraction, we then obtain (using
the fact that E(0) = E(T ) for a periodic solution)

ε̃

(

∫ T

0

(

(X̃ ′)2 − 9(X̃ ′)4
)

dt̄

)

= O(ε̃2) ⇔ ε̃

(

∫ X̃(T )

X̃(0)

(

X̃ ′ − 9(X̃ ′)3
)

dX̃

)

= O(ε̃2).

(5.6)
Because of the symmetry of the unperturbed orbits in the phase plane (5.6) can be
rewritten as

ε̃I(E, β) = O(ε̃2),(5.7)

where

I(E, β) = 4

∫ A

0

(

X̃ ′ − 9(X̃ ′)3
)

dX̃,(5.8)

with A = X̃( 1
2T ). To have a periodic solution for (4.10) we have to find an energy E

such that I(E, β) is equal to zero (see also [13, 20, 21]). To find this constant energy
E we rewrite I(E, β) in

I(E, β) = 4I1(E, β)

(

1 − 9
I2(E, β)

I1(E, β)

)

,(5.9)

where


















I1(E, β) =
∫ A

0

(

2E − X̃2 − 1
2βX̃

4
)

1
2

dX̃,

I2(E, β) =
∫ A

0

(

2E − X̃2 − 1
2βX̃

4
)

3
2

dX̃.

(5.10)

It should be observed that the unperturbed equation (4.10) with ε̃ = 0 has one
equilibrium point (0, 0) which is center point. The phase portrait of the unperturbed
equation (4.10) is given in Figure 5.1. It should be observed from (4.11) that E ≥ 0.

Putting Q(E, β) = I2(E,β)
I1(E,β) (where I1 and I2 are given by (5.10)) it can be shown

elementarily that limE↓0Q(E, β) = 0, and that ∂Q
∂E

(0, β) = 3
2 > 0. There is strong

numerical evidence (see figure 5.3 (g) and (h)) that Q is monotonically increasing. So
we can conclude that there exists a unique, nontrivial value forE such that I(E, β) = 0
or equivalently Q(E, β) = 1

9 . From these results it can be concluded (see also for
instance [[13], section 4.2 ]) that there exists a unique, nontrivial, stable time-periodic
solution for (4.10). The period T of this periodic solution is given by

T =

∫ B

A

2dX̃
√

(

2E∗ − X̃2 − 1
2βX̃

4
)

,(5.11)

where A = −
√

− 1
β

+ 1
β

√
1 + 4βE∗ and B =

√

− 1
β

+ 1
β

√
1 + 4βE∗ in which E∗ is the

energy for which the periodic solution occurs.
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X
∼

∼

Fig. 5.1. Phase portrait of the unperturbed equation (4.10) with ε̃ = 0, µ = 0, and λ > 0.

5.1.3. The case µ = 0 and λ < 0. Let T < ∞ be the period of a periodic
solution and let c3 be a constant in the first integral F (E,ψ, t ; ε) = constant for which
a periodic solution exists. Consider F = c3 for τ = 0 and τ = T . Approximating F
by F5 (as given by (4.21)), eliminating c3 by subtraction, we then obtain (using the
fact that E(0) = E(T ) for a periodic solution)

ε̃

(

∫ T

0

(

(X̃ ′)
2 − 9(X̃ ′)

4
)

dt̄

)

= O(ε̃2) ⇔ ε̃

(

∫ X̃(T )

X̃(0)

(

X̃ ′ − 9(X̃ ′)3
)

dX̃

)

= O(ε̃2).

(5.12)
Because of the symmetry of the unperturbed orbits in phase plane (5.12) can be
rewritten as

ε̃I(E, γ) = O(ε̃2),(5.13)

where

I(E, γ) = 4

∫ A

0

(

X̃ ′ − 9(X̃ ′)3
)

dX̃,(5.14)

with A = X̃( 1
2T ). To have a periodic solution for (4.18) we have to find an energy

E such that I(E, γ) is equal to zero (see also [13, 20, 21]). To find this energy E we
rewrite I(E, γ) in

I(E, γ) = 4I1(E)

(

1 − 9
I2(E, γ)

I1(E, γ)

)

,(5.15)

where


















I1(E, γ) =
∫ A

0

(

2E − X̃2 + 1
2γX̃

4
)

1
2

dX̃,

I2(E, γ) =
∫ A

0

(

2E − X̃2 + 1
2γX̃

4
)

3
2

dX̃.

(5.16)

It should be observed that the unperturbed equation (4.18) with ε̃ = 0 has three
equilibrium points: a center point in (0, 0) and two saddles in (± 1√

γ
, 0). The phase
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X
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Fig. 5.2. Phase portrait of the unperturbed equation (4.18) with ε̃ = 0, µ = 0, and λ < 0.

portrait of the unperturbed equation (4.18) is given in Figure 5.2. For the periodic
(that is, closed) orbits of the unperturbed equation (4.18) it can be deduced from

(4.19) that 0 ≤ E ≤ Emax = 1
4γ . Putting Q(E, γ) = I2(E,γ)

I1(E,γ) (where I1 and I2 are given

by (5.16)) it can be shown analytically that limE↓0Q(E, γ) = 0, limE↑ 1
4γ
Q(E, γ) =

12
35γ , ∂Q

∂E
(0, γ) = 3

2 > 0, and ∂Q
∂E

( 1
4γ , γ) = −∞. By using an adaptive Clenshaw-Curtis

quadrature scheme Q(E, γ) has been calculated numerically for different values of the
parameter γ (or λ). These numerical results can be found in figure 5.3 (a)-(e). Using
these numerical results we can try to find nontrivial values of E such that I(E, γ) = 0
or equivalently Q(E, γ) = 1

9 for a given value of γ = −λ
9 > 0. The numerical results

can be summarized as follows: for λ < −27.77434... there are no nontrivial values of
E such that Q = 1

9 , and so, there are no limit cycles; for λ = −27.77434... there are
two coinciding nontrivial values of E such that Q = 1

9 , and so, there is a semi-stable
limit cycle; for −27.77434... < λ < −27.77233... there are two different, nontrivial
values of E such that Q = 1

9 , and so, there are two limit cycles (one stable and one
unstable); for −27.77233... < λ < 0 there is exactly one nontrivial value of E such
that Q = 1

9 , and so, there is exactly one (stable) limit cycle. In Figure 5.4 a sketch
of the appearance and disappearance of limit cycles is given for decreasing values of
the parameter λ (and µ = 0).

5.2. The case µ > 0 and λ arbitrary. The case µ < 0 and λ arbitrary can
be treated similarly by simply replacing X by −X . Let T < ∞ be the period of a
periodic solution and let c4 be a constant in a first integral F = constant for which a
periodic solution exists. Consider F = c4 for τ = 0 and τ = T . Approximating F by
F7 (as given by (4.30)) and eliminating c4 by subtraction, we then obtain

ε̃

(

∫ T

0

G2
[2]

(

1 − ηG2
[2]

)

dt̄

)

= O(ε̃2),(5.17)

or equivalently

ε̃

(

∫ Z(T )

Z(0)

G[2]

(

1 − ηG2
[2]

)

dZ

)

= O(ε̃2) ⇔ ε̃I(E, ξ, η) = O(ε̃2),(5.18)
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Fig. 5.3. Plot of Q as function of E for µ = 0 and for different values of λ.

where

I(E, ξ, η) = 2

∫ B

A

G[2]

(

1 − ηG2
[2]

)

dZ,(5.19)

with A = Z(0) and B = Z( 1
2T ). To have a periodic solution for equation (4.27) we

have to find an energy E such that I(E, ξ, η) is equal to zero (see also [13, 20, 21]).
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Fig. 5.4. Sketch of the appearance and disappearance of limit cycles for µ = 0 and for decreasing
values of the parameter λ.

To find this energy E we rewrite I(E, ξ, η) in

I(E, ξ, η) = 2I1(E, ξ)

(

1 − η
I2(E, ξ)

I1(E, ξ)

)

,(5.20)

where










I1(E, ξ) =
∫ B

A

(

2E − Z2 − 2
3Z

3 − 1
2ξZ

4
)

1
2 dZ,

I2(E, ξ) =
∫ B

A

(

2E − Z2 − 2
3Z

3 − 1
2ξZ

4
)

3
2 dZ.

(5.21)

Throughout this section Q(E, ξ) is equal to I2(E,ξ)
I1(E,ξ) . The equilibrium points in the

(Z,Z ′) phase plane of the unperturbed equation (4.27) with ε̃ = 0 are listed in Table
5.1, and the corresponding phase portraits of the unperturbed equation are given in
Figure 5.5. To determine whether or not I(E, ξ, η) can be (nontrivially) equal to
zero (or equivalently Q(E, ξ) = 1

η
) we have to distinguish five cases: ξ < 0, ξ = 0,

0 < ξ < 1
4 , ξ = 1

4 , and ξ > 1
4 . These five cases will be studied in the following five

subsections.

5.2.1. The case ξ < 0. The unperturbed equation (4.27) with ε̃ = 0 and ξ < 0
has only periodic orbits surrounding the center point (0, 0). For these periodic orbits
the energy E satisfies: 0 = Emin ≤ E ≤ Emax = 1

2z
2
1 + 1

3z
3
1 + 1

4 ξz
4
1 , where z1 is

− 1
2ξ + 1

2ξ

√
1 − 4ξ. Putting Q(E, ξ) = I2(E,ξ)

I1(E,ξ) (where I1 and I2 are given by (5.21))

it can be shown elementarily that limE↓Emin
Q = 0, and that limE↑Emax

Q = P (ξ).
P as function of ξ can be calculated numerically and is given in Figure 5.6. It can
also be shown analytically that ∂Q

∂E
(Emin, ξ) = 3

2 > 0, and that ∂Q
∂E

(Emax, ξ) = −∞
(see also Figure 5.7). For several values of ξ we have calculated Q(E, ξ) numerically
by using an adaptive recursive Simpson rule. The numerical results are presented in
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ξ Type and position of Equilibrium point(s)

ξ < 0 a center in (0,0), a saddle in
(

− 1
2ξ − 1

2ξ

√
1 − 4ξ, 0

)

,

and a saddle in
(

− 1
2ξ + 1

2ξ

√
1 − 4ξ, 0

)

ξ = 0 a center in (0,0), and a saddle in (-1,0)

0 < ξ < 1
4 a center in (0,0), a center in

(

− 1
2ξ − 1

2ξ

√
1 − 4ξ, 0

)

,

and a saddle in
(

− 1
2ξ + 1

2ξ

√
1 − 4ξ, 0

)

ξ = 1
4 a center in (0, 0), and a higher order singularity in (−2, 0)

ξ > 1
4 a center in (0, 0)

Table 5.1

Type of equilibrium points of the unperturbed equation (4.27) with ε̃ = 0 in the (Z, Z ′) phase
plane.

Figure 5.7. From Figure 5.7 it is clear that there are cases for which we can find two
nontrivial values of E such that I(E, ξ, η) = 0 or equivalently Q(E, ξ) = 1

η
. So, we

can conclude that for (4.27) with ξ < 0 at least two limit cycles can occur. It should
be remarked that when two limit cycles are ”bifurcated” out of the periodic orbits
around the center point then these two limit cycles are very close each other. In fact
the energy level of the stable periodic solution is only a little bit less then the energy
level of the unstable periodic solution. The period T of the periodic solution(s) can
be determined from

dZ

dτ
= Z ′ =

√

(

2E∗ − Z2 − 2

3
Z3 − 1

2
ξZ4

)

,(5.22)

or equivalently from

T =

∫ B

A

2dZ
√

(

2E∗ − Z2 − 2
3Z

3 − 1
2ξZ

4
)

,(5.23)

where
(

− 1
2ξ + 1

2ξ

√
1 − 4ξ

)

≤ A < B ≤
(

− 1
6ξ − 1

2ξ

√
1 − 4ξ + 1

3ξ

√

1 + 3
√

1 − 4ξ
)

,

and where A and B satisfy 1
2Z

2 + 1
3Z

3 + 1
4ξZ

4 = E∗ in which E∗ is the energy for
which a periodic solution occurs.

5.2.2. The case ξ = 0. This case has already been studied in [13], and we refer
the reader to this paper for detailed calculations. It has been shown in [13] that at
most two limit cycles can bifurcated out of the periodic orbits surrounding the center
point. A sketch of the appearance and disappearance of limit cycles for ξ = 0 and
decreasing values of η is given in Figure 5.8.

5.2.3. The case 0 < ξ < 1
4 . The unperturbed equation (4.27) with ε̃ = 0 has

in this case three equilibrium points in the phase plane: a center point in σ1 =

(0, 0), a center point in σ2 =
(

− 1
2ξ − 1

2ξ

√
1 − 4ξ, 0

)

, and a saddle point in σ3 =
(

− 1
2ξ + 1

2ξ

√
1 − 4ξ, 0

)

(see also Table 5.1 and Figure 5.5). The maximum energy level

for the periodic orbit inside the saddle loop connection (around the center point in σ1,
and around the center point in σ2), and the minimum energy level for the periodic
orbits outside the saddle loop connection are equal to Eloop = 1

2z
2
1 + 1

3z
3
1 + 1

4ξz
4
1 ,
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(g) ξ > 1

4

Fig. 5.5. Phase portrait of the unperturbed equation (4.27) with ε̃ = 0 for several values of ξ.

where z1 is − 1
2ξ + 1

2ξ

√
1 − 4ξ. The minimum energy level Emin[σ

2
] for periodic orbits

surrounding the center point in σ2 is Emin[σ2]
= 1

2z
2
2 + 1

3z
3
2 + 1

4ξz
4
2 , where z2 is

− 1
2ξ − 1

2ξ

√
1 − 4ξ. Putting Q(E, ξ) = I2(E,ξ)

I1(E,ξ) (where I1 and I2 are given by (5.21)) it

can be shown analytically that:
(i) for the periodic orbits surrounding the center point in σ1:

limE↓Emin[σ
1
]
Q(E, ξ) = 0, limE↑Eloop

Q(E, ξ) = Rσ
1
(ξ), ∂Q

∂E
(Emin[σ

1
], ξ) = 3

2 ,

and ∂Q
∂E

(Eloop, ξ) = −∞,
(ii) for the periodic orbits surrounding the center point in σ2:

limE↓Emin[σ
2
]
Q(E, ξ) = 0, limE↑Eloop

Q(E, ξ) = Rσ
2
(ξ), ∂Q

∂E
(Emin[σ

2
], ξ) = 3

2 ,

and ∂Q
∂E

(Eloop, ξ) = −∞, and
(iii) for the periodic orbits outside the saddle loop connection:

limE↓Eloop
Q(E, ξ) = Rσ

3
(ξ), limE↑∞Q(E, ξ) = ∞, ∂Q

∂E
(Eloop, ξ) = −∞,
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Fig. 5.6. Plot of P as function of ξ for ξ < 0.

where Rσ
i
(ξ) for i = 1, 2, and 3 can be determined numerically and are given in

Figure 5.9. Using an adaptive recursive Simpson rule Q(E, ξ) has been calculated
numerically for several values of ξ. Plots of Q are given in Figure 5.10 for ξ = 1

9 , in
Figure 5.11 for ξ = 2

9 , and in Figure 5.12 for ξ = 17
72 . From these figures it is obvious

that there are always non-trivial E-values such that I(E, ξ, η) = 0 or equivalently
Q(E, ξ) = 1

η
. Each non-trivial E-value corresponds to a limit cycle in the phase

plane. It also follows from these numerical calculations that at most two limit cycles
can be bifurcated out of the periodic orbits surrounding σ1. The same result also
holds for the periodic orbits surrounding σ2, and for the periodic orbits outside the
saddle loop. However, out of all the periodic orbits at most five limit cycles can be
bifurcated simultaneously. Numerical calculations give the following results:

(i) for 0 < ξ < 2
9 − 569...× 10−6at most three limit cycles can be bifurcated out

of the periodic orbits,
(ii) for 2

9 − 5.69...× 10−6 < ξ < 2
9 + 5.69...× 10−6 at most five limit cycles can

be bifurcated out of the periodic orbits, and
(iii) for 2

9 + 5.69... × 10−6 < ξ < 1
4 at most three limit cycles can be bifurcated

out of the periodic orbits.
For ξ = 1

9 and decreasing values of η and for ξ = 2
9 and decreasing values of η

sketches of the appearance and disappearance of limit cycles are presented in Figure
5.13 and in Figure 5.14 respectively. The period T of a periodic solution can again
be determined as is indicated in section 5.2.1.

5.2.4. The case ξ = 1
4 . The unperturbed equation (4.27) with ε̃ = 0 has in this

case two equilibrium points in the phase plane: a center point in σ1 = (0, 0), and
a higher order singularity in σ2 = (−2, 0)(see also Table 5.1 and Figure 5.5). The
maximum energy level for the periodic orbits inside the loop connection (that is, the
orbit which starts in (−2, 0) and ends in (−2, 0)), and the minimum energy level for
the periodic orbits outside the loop connection are equal to Eloop = 1

3 . The minimum
energy level for the periodic orbits surrounding the center point in σ1 = (0, 0) is 0.

Putting Q(E, ξ) = I2(E,ξ)
I1(E,ξ) (where I1 and I2 are given by (5.21)) it can be shown

analytically that:
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Fig. 5.7. Plot of Q(E; ξ) as function of E for several values of ξ < 0.

(i) for the periodic orbits inside the loop connection: limE↓0Q(E, 1
4 ) = 0,

limE↑Eloop
Q(E, 1

4 ) = 4
9 , ∂Q

∂E
(0, 1

4 ) = 3
2 , and ∂Q

∂E
(Eloop,

1
4 ) = −∞, and

(ii) for the periodic orbits outside the loop connection: limE↓Eloop
Q(E, 1

4 ) = 4
9 ,

limE↑∞Q(E, 1
4 ) = ∞, ∂Q

∂E
(Eloop,

1
4 ) = −∞.

Again using an adaptive recursive Simpson rule Q(E, 1
4 ) has been calculated numeri-

cally. Plots of Q(E, 1
4 ) are given in Figure 5.15. From this figure it is clear that there

are always non-trivial E-values such that I(E, ξ, η) = 0 or equivalently Q(E, ξ) = 1
η
.

Each non-trivial E-value corresponds to a limit cycle in the phase plane. It also
follows from these numerical calculations that for ξ = 1

4 at most three limit cy-
cles can be bifurcated out of the periodic orbits. More explicitly in this case: for
0.4318... < 1

η
< 0.44548... three limit cycles will occur, and for 1

η
< 0.4318... or for

1
η
> 0.44548... exactly one limit cycle will occurs. A sketch of the appearance and

disappearance of limit cycles for ξ = 1
4 and for decreasing values of η is given in Figure

5.16.
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Fig. 5.8. Sketch of the appearance and disappearance of limit cycles for ξ = 0 and for decreasing
value of η.
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Fig. 5.9. Plot of R as function of ξ.

5.2.5. The case ξ > 1
4 . The unperturbed equation (4.27) with ε̃ = 0 has in this

case only one equilibrium point in the phase plane: a center in (0,0) (see also Table
5.1 and Figure 5.5). The minimum and the maximum energy level for the periodic

orbits are in this case 0 and ∞ respectively. Putting Q(E, ξ) = I2(E,ξ)
I1(E,ξ) (where I1

and I2 are given by (5.21)) it can be shown analytically that limE↓Emin
Q(E, ξ) = 0,

limE↑∞Q(E, ξ) = ∞, and ∂Q
∂E

(0, ξ) = 3
2 . Again Q(E, ξ) has been calculated numeri-

cally and plots of Q(E, ξ) are given in Figure 5.17 for different values of ξ. From this
figure it is clear that there are always non-trivial E-values such that I(E, η, ξ) = 0
or equivalently Q(E, ξ) = 1

η
. It also follows from these numerical calculations that

for 1
4 < ξ < 1

4 + 0.004488... at most three limit cycles, and for ξ > 1
4 + 0.004488...

at most one limit cycle can be bifurcated out of the periodic orbits. A sketch of the
appearance and disappearance of limit cycles for 1

4 < ξ < 1
4 + 0.004488... and for

decreasing values of η is given in Figure 5.16.
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.

6. Conclusions and remarks. In this paper it has been shown that the pertur-
bation method based on integrating factors can be used efficiently to approximate first
integrals for strongly nonlinear oscillator equations. In section 2 (and 3) of this paper
an asymptotic justification of the presented perturbation method has been given. It
has been shown how the existence and stability of time-periodic solutions can be de-
duced from the approximations of the first integrals. In section 4 it has been shown
explicitly how approximations of first integrals can be constructed for the generalized
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.

Rayleigh oscillator equation

Ẍ + 9X + µX2 + λX3 = ε(Ẋ − Ẋ3),(6.1)

where µ and λ are parameters, and where ε is a small parameter satisfying 0 < ε� 1.
In section 5 it has been shown how the existence of time-periodic solutions of (6.1)
can be determined from the approximations of first integrals. The following results for
the generalized Rayleigh oscillator equation (6.1) have been obtained in this paper:
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(partially based on strong numerical evidence)
(i) for µ = 0 and λ ≥ 0, and for µ 6= 0 and 9λ

µ2 > 1
4 + 0.004488...: exactly

one limit cycle is bifurcated out of the periodic orbits (of the unperturbed
equation (6.1) with ε = 0).

(ii) for λ < 0, and for µ 6= 0 and λ = 0: at most two limit cycles can be bifurcated
out of the periodic orbits.

(iii) for µ 6= 0 and 0 < 9λ
µ2 <

2
9−5.69...×10−6, and for µ 6= 0 and 2

9+5.69...×10−6 <



APPROXIMATIONS OF FIRST INTEGRALS FOR A NONLINEAR OSCILLATOR 26

: Saddle Point

: Center Point

: Semistable

: Unstable

: Stable

Fig. 5.13. Sketch of the appearance and disappearance of limit cycles for ξ = 1

9
and for

decreasing values of η.

: Stable
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Fig. 5.14. Sketch of the appearance and disappearance of limit cycles for ξ = 2

9
and for

decreasing values of η.

9λ
µ2 ≤ 1

4 + 0.004488...: at most three limit cycles can be bifurcated out of the
periodic orbits.

(iv) for µ 6= 0 and 2
9 − 5.69...× 10−6 < 9λ

µ2 <
2
9 + 5.69...× 10−6: at most five limit

cycles can be bifurcated out of the periodic orbits.
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