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"Evviva le navi!
Con il loro ansimare, scuotere, sospirare; con il loro gioire delle carezze delle onde, con il loro

godere nell’amplesso del mare, le navi sono a misura d’uomo. Teniamole in vita come una
prova d’amore. Usiamole per far felici gli ultimi romantici."

"Long live the ships!
With their panting, shaking, sighing; with their joy of the caresses of the waves, with their

pleasure in the embrace of the sea, the ships are on a human scale. Let’s keep them alive as a test
of love. Let’s use them to make the last romantics happy."

– Tiziano Terzani





Summary

The thesis proposes a methodology for a Surrogate Based Optimisation (SBO) study
and its application in the Naval Architecture field using the open-source software
DAKOTA. Surrogate Based Optimisation is a useful and powerful way of reducing
time and costs in hull shape optimisation. It allows the employ of exploratory data
analysis techniques and machine learning methods to get more insight, discover
hidden patterns, and detect anomalies in the design space. However, an SBO consists
of several interconnected steps, and each increases complexity and uncertainty to the
overall process.

The main goal is the investigation of the effects of different surrogate models on
ship geometry optimisation from a resistance point of view. Also, different sampling
plans, infill techniques, and optimisation algorithms are analysed and compared, as
elemental steps for an SBO. This is done by the use of test functions that emulate
the problem of ship optimisation. Furthermore, the intent is to try and list general
guidelines to follow when building up an SBO routine with CFD simulations involved,
with a focus in the marine field.

This research led to the assembly of Halton sampling sequence, Kriging meta-model,
Expected Improvement function, Genetic Algorithms, and Pattern Search tools to
implement a working SBO routine. This routine is used to demonstrate the success of
the SBO method for a Hull Vane and an aft ship optimisations. Moreover, it is used to
validate the research outcomes of this thesis and to prove that this work can be safely
used for every-day commercial work.

The two design applications provided a resistance reduction, with respect to a bench-
mark hull, of about 19% and 7%. Thus not only they were successful, but also they
were excellent examples to show how a surrogate model and its correct visualisa-
tion can give the Naval Architect the right tools to critically analyse the results, gain
more understanding on the problem, spot and correct anomalies, and provide creative
solutions to a client.
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This document is the report resulting from nine months of work at
Van Oossanen Naval Architects company. It proposes a method for a
Surrogate Based Optimisation (SBO) using the open-source software
DAKOTA. The routine was studied to suit the requirements and the
needs of Van Oossanen Naval Architects. Also, the intent is to improve
the routine that the company has used in the past ten years. However,
the procedure described can be useful for many different applications
in different engineering fields.

The Surrogate Based Optimisation method consists of constructing
a mathematical model (also known as a surrogate, response surface,
meta-model, emulator) from a limited number of observations, also
called points (CFD simulations, in our case). After building the surro-
gate, the optimisation can be performed at this level. Surrogate Based
Optimisations give a solid global understanding of the problem; They
allow the use of exploratory data analysis techniques and machine
learning methods to get more awareness, discover hidden patterns,
and detect irregularities in the design space.

1.1 Problem definition

The design and optimisation of hull shapes can be costly and challeng-
ing. The introduction of surrogate models is a useful and powerful way
of reducing the costs because only a limited amount of simulations
are necessary to build the approximate surrogate surface. However,
the use of meta-models can also introduce errors in the solution. More-
over, several other steps and algorithms are added to the optimisation
process, increasing both complexity and uncertainty. To understand
which steps are involved and how they are connected, see Figure 2.1.
This procedure has no certainty of convergence, and the result may be,
in fact, not reducing the overall hull resistance.

Therefore, the main goal of this thesis is to investigate the effects
of different meta-models on ship optimisation. Secondly, it will be
necessary to select a suitable optimisation algorithm and a design
space exploration plan (also called a sampling plan) to complete the
SBO. This second task is critical because all steps, as we can fee again
from Figure 2.1, are deeply interconnected, and misbehaviour of one
influences the performance of the others. The intention is to keep
uncertainties as low as possible to enhance the robustness, stability,
and accuracy of the procedure.

Then, it will be necessary to test the software tools and the algo-
rithms selected by implement a working routine. The starting point
is a single initial hull geometry and the definition of parameters that
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will vary the shape with specific boundaries as input. Afterwards, the
routine will allow the user to generate an optimal design with minimal
resistance. Finally, the intent is to improve and update Van Oossanen
previous routine. In particular, the new one developed in the context
of this thesis must be easier to use, cheaper to compute, and more
stable.

1.2 Resources

In order to achieve the objectives of this thesis, resources from Van
Oossanen N.A. as well as other third-party software tools will be used.
In particular, the resistance values of the points that construct the
surrogate model surface are generated via Computational Fluid Dy-
namics (CFD) simulations. The codes currently in use in the company
were already validated and verified, and they are used every day for
commercial projects. Because of this and since the main scope of this
thesis is not to focus on the simulations but rather on the analysis of
their results, we will consider no other options. Thus, for this thesis,
the following tools are used:

Rhinoceros - Python. Rhinoceros is a commercial 3D computer graph-
ics and computer-aided design (CAD) application software. In
order to automatically generate a geometry it is coupled with
the programming language Python;

Cadfix is a software solution for CAD model translation, repair, heal-
ing, defeaturing and simplification for fixing small gaps or errors
in the geometry. It is used to export a Parasolid file readable by
Hexpress;

Hexpress is a parallel unstructured hex dominant meshing tool for
complex and unclean geometries;

FINE/Marine is a CFD software for naval architects and marine engi-
neers;

Van Oossanen N.A. computer cluster: for the simulation execution.

Several options were taken into account to find the best toolkit that
will allow both the test of different meta-models and their performance,
as well as the construction of a full working routine.

Many software products are available that can perform a Surrogate
Based Optimisation. Table 1.1 lists some of them and their capabilities.
The most recent and updated analysis has been carried out by Viana et
al. (2014) [96][96]: Viana et al. (2014), ‘Metamodeling

in Multidisciplinary Design Optimiza-
tion: How Far Have We Really Come?’

, and the software products are presented in alphabetical
order. It is not a complete list of all available software products. For
example, Fine Design is not listed here but was also taken into account.
Furthermore, it does not contain the complete list of capabilities of
each tool, but rather a brief introduction to software available.

Among them, DAKOTA was selected. This choice is because it is
free; also the meta-model capabilities are higher than most of the other
tools, as shown in the table, and because the company had a strong
preference for it. The wide e variety of algorithms and options could
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Table 1.1: Commercial software meta-modelling and optimisation capabilities. Analysis performed by Viana et al. (2014)[96]

Software product Meta-model capabilities Optimisation capabilities

BOSS/Quattro
(LMS International)
https://www.nafems.org/
join/directory/vendors/
siemens-boss-quattro-lms/

Least-squares regression for polynomials and
posynomials, radial-basis functions, neural net-
works, kriging

Gradient-based optimisation, surrogate-based op-
timisation genetic algorithm, multi-objective opti-
misation, probabilistic optimisation

DAKOTA (Sandia Na-
tional laboratories) https:
//dakota.sandia.gov/

Taylor series approximation, least-squares regres-
sion for polynomials, moving least squares, neural
networks, kriging, radial-basis functions, multi-
point approximations, multi-fidelity modelling,
multivariate adaptive regression splines

Large variety of methods, including surrogate-
based optimisation, gradient-based optimisation,
evolutionary optimisation, multi-objective, proba-
bilistic optimisation

Hyperstudy (Altair
Engineering) https:
//www.altair.com/

Least-squares regression for polynomials, moving
Least-squares method for polynomials, kriging,
radial-basic functions

Surrogate-based optimisation, gradient-based op-
timisation, genetic algorithm, probabilistic optimi-
sation

iSight (Dassault Sys-
temes, formerly Engi-
neous Software) http:
//www.engineous.com

Least-squares regression for polynomials, Taylor
series approximation, radial-basis functions, neu-
ral networks, kriging, variable-complexity mod-
elling

Surrogate-based optimisation, gradient-based op-
timisation, genetic algorithm, simulated anneal-
ing, probabilistic optimisation, multi-objective op-
timisation

LS-OPT (Livermore Soft-
ware Technology Corpo-
ration) http://www.lstc.
com/products/ls-opt

Least-squares regression for polynomials Surrogate-based optimisation, gradient-based
optimisation, probabilistic optimisation, multi-
objective optimisation

modeFRONTIER (Esteco)
http://www.esteco.it

Least-squares regression for polynomials, K-
nearest interpolation, kriging, Bayesian regression,
neural networks

Surrogate-based optimisation, gradient-based op-
timisation, genetic algorithm, simulated anneal-
ing, particle swarm optimisation, evolution strate-
gies, probabilistic optimisation, multi-objective op-
timisation

OPTIMUS (Noesis So-
lutions) http://www.
noesissolutions.com

Least-squares regression for polynomials, radial-
basis functions, kriging, user-defined models, AIC
methodology to find model terms

Surrogate-based optimisation, gradient-based op-
timisation, differential evolution, self-adaptive
evolution, simulated annealing, probabilistic op-
timisation, multi-objective optimisation, user-
defined optimiser

VisualDOC (Vander-
plaats Research and
Development, Inc.)
http://www.vrand.com

Least-squares regression for polynomials Surrogate-based optimisation, gradient-based op-
timisation, genetic algorithm, particle swarm
optimisation, probabilistic optimisation, multi-
objective optimisation

be overwhelming and result in less user-friendliness. However, on the
other hand, DAKOTA also guarantees certain advantages:

I First of all, it is open source. Also, it is quite popular; this means
one can rely on community discussion forums for support;

I Then, it can be easily coupled with other software or packages,
and it is fully scriptable. Figure 1.1 represents the interface be-
tween Dakota and other simulation codes;

I Also, it has restarting capabilities and abilities to capture simula-
tion failures;

I Finally, it can run parallel computations, also from desktop to
clusters.

Design and Analysis toolKit for Optimisation and Terascale Appli-
cations (DAKOTA) is a C++ based toolkit that provides an extensible
platform for performing several tasks. The ruling classes available are
optimisation, uncertainty quantification, parameter study, design of
experiments, surrogate modelling, and sensitivity analysis on super-
computers. For more details see the Developers [2], the Reference [3],
the Theory [4], and the User [5] manuals.

https://www.nafems.org/join/directory/vendors/siemens-boss-quattro-lms/
https://www.nafems.org/join/directory/vendors/siemens-boss-quattro-lms/
https://www.nafems.org/join/directory/vendors/siemens-boss-quattro-lms/
https://dakota.sandia.gov/
https://dakota.sandia.gov/
https://www.altair.com/
https://www.altair.com/
http://www.engineous.com
http://www.engineous.com
http://www.lstc.com/products/ls-opt
http://www.lstc.com/products/ls-opt
http://www.esteco.it
http://www.noesissolutions.com
http://www.noesissolutions.com
http://www.vrand.com
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Figure 1.1: The "black box" interface be-
tween Dakota and a user-supplied simu-
lation code [5]

DAKOTA also includes several related advanced capabilities such
as nested models (layering one method over another) and parallel
computing. It uses as input only one file that contains all the problem
information, grouped in six blocks: environment, method, model, vari-
ables, interface, responses. There is a relationship that ties the boxes
together, which we can see from Figure 1.2 for a simple study: during
each iteration, a method block requests a variable-to-response map-
ping, which the model fulfils through an interface. More advanced
cases are also possible.

Figure 1.2: Relationship between the six
DAKOTA input blocks, for a simple
study [5]

1.3 Method

First, an extensive literature review was carried out on the topic and
resulted in Chapter 3. It covers the Surrogate Based Optimisation topic
in general and in naval architecture specifically. A historical overview
was performed to demonstrate the relevance and uniqueness of this
work. Also, since this thesis is completed at Van Oossanen N.A., a
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careful study of the company knowledge and project development
level on the topic of SBO was produced.

Second, the central research part can start. Before that, some time
is needed to get to know all the tools and software, in particular,
DAKOTA. Then, in order to investigate the effects of different surro-
gate models on ship optimisation, few carefully selected meta-models
will be studied and compared. The comparison will be performed both
from a literature point of view, but also with the use of test functions
that will emulate the problem of ship optimisation. These analytical
functions have the advantage that can give a fictional resistance value
in a few seconds and not in several hours, allowing multiple tests. An-
other advantage is that the exact values of the function at every point
are known. The functions will be chosen after careful study of typical
functions used for optimisations tests in literature and after an analysis
of typical surrogate responses previously generated by Van Oossanen
N.A.. Afterwards, since a Surrogate Based Optimisation is composed
of several connected steps (see Figure 2.1), other tests will have to be
performed on sampling plans, optimisation algorithms, and refine-
ment techniques. The tests will be carried out with the use of different
DAKOTA toolkit codes specially written for each application.

Third, some time will be spent in writing the DAKOTA - Python
code that will put all the pieces together to generate a working routine.
Python will be explicitly used to couple DAKOTA toolkit with all the
external software necessary for CFD simulations (User’s Simulation
Code in Figure 1.1). DAKOTA will take care of the selection of points
to test, of generating the surrogate surface and of finding the best
geometry. In the end, this routine will have to be tested with CFD
simulations representing a hull optimisation. The number of tests is
fixed to two because of time limits.

1.4 Thesis structure

This thesis is structured in various parts, each dealing with an aspect
of the work conducted during the nine months of internship at Van
Oossanen Naval Architects.

Part I is an introduction to the thesis. First, Surrogate Based Opti-
misation is presented, with its workflow, its sub-topics, and its issues
(Section 2.1). Then, a historical outline of SBO and its background is
given (Section 2.2). It follows an overview of Van Oossanen N.A., with
emphasis on the work they carried out in the field of SBO in the past
decade (Section 2.3). Finally, Chapter 3 is dedicated to showing all the
literature review conducted for this thesis. It comprises four parts: the
first deals with the topic of Surrogate Based Optimisation in Naval
Architecture (Section 3.1) and the following three deal each with one of
the SBO sub-topics. They are optimisation (Section 3.2), design space
exploration (Section 3.3), and surrogate models (Section 3.4).

Part II describes the main research part of this thesis. Chapters
Chapter 4 for optimisation, Chapter 5 for design space exploration
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(both sampling and infill sampling plans), and Chapter 6 for surrogate
models include mathematical descriptions of algorithms and meth-
ods used for the thesis. For every technique advantages, drawbacks,
limitations, frameworks, and compatibility with the optimisation of
hull shapes typically conducted at Van Oossanen N.A. are described.
The end of this part shows the analysis and comparison of the meth-
ods performed with DAKOTA toolkit on several test functions. This
Chapter 7 ends with an explanation of which settings were chosen to
conduct a successful SBO.

Part III is the description of the two design applications imple-
mented to validate the routine and demonstrate its improvements to
the previous routine the company was using. The first one is a case
of Hull Vane R© optimisation, while the second is a case of resistance
reduction obtained by modifying the aft ship geometry.

Part IV finally gives some conclusions and final considerations, as
well as possible future improvements and some critical comments.
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First, in Section 2.1, the process of Surrogate Based Optimisation is
presented with its workflow and its main issues. To understand what
it is and how it works, we have to give an introduction of every major
step involved: sampling criteria for consequent CFD or experimental
tests, surrogate models, and optimisation tools. In this section, we are
giving only an overview, for more details see subsequent parts and
chapters.

Second, in Section 2.2, a general and historical overview of ship
design optimisation is given. We will see how in the past years, from a
standard design spiral process, Naval Architects have shifted to and
optimised design process where resistance is calculated through CFD
tools.

Finally, in Section 2.3, the last section is dedicated to showing
how Van Oossanen N.A. previously dealt with the topic of SBO. We
will see the steps done in time to improve the optimisation routine.
Furthermore, we want to demonstrate that this work is unique and an
improvement compared to what the company did before.

2.1 SBO Workflow overview

The necessary steps of the optimisation process for hull shapes are
illustrated in the flowchart in Figure 2.1. Each stage is also related to
the chapter that describes it.

Firstly, the Naval Architect must choose one input geometry to
analyse and optimise, also defining how many and which parame-
ters vary in it. Furthermore, boundaries on the parameters (such as
maximum bulb length) and constraints for the geometry (like fixed
displacement in the resulting altered geometry) must be formulated,
in order to avoid non-feasible results.

Secondly, by sampling the design space, several possible candi-
dates are generated. The design space is the domain representing
the multidimensional combination and interaction of feasible input
parameters. Sampling means selecting several sets of parameter com-
binations within the boundaries of the domain and evaluate them
with an exact model (CFD). Each sample point, which represents a
new geometry that is altered to fit the new parameters, is meshed and
solved. A true resistance value for each point is calculated.

Following this, a suitable surrogate model is fitted to the available
exact resistance data resulting from the numerical simulations. The fit
represents an approximated resistance function that varies for each
selected variable. The model must be estimated through parameter
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tuning and validated by checking its accuracy. If it is not enough, one
way to improve it is to add infill points to the process and update the
surrogate model. It means solving resistance for new hull geometries.
This step is essential is because the initial design selection will almost
inevitably miss certain features of the surrogate surface to analyse
and this way areas of interest (near minimum points, for example)
can be better examined. This loop is carried out many times until the
surrogate fits its purpose or perhaps the available budget of computing
effort has been exhausted.

Figure 2.1: Surrogate based optimisation
workflow

Single input geometry
and parameter generation

Sampling plan

Shape deformation

Mesh and CFD
simulations

Construct surrogate

Validate surrogate

Optimise

Data collection
and validation

Add training data (infill)Chapter 5

Chapter 6

Chapter 3

Chapter 4

Chapter 3

Chapter 5

true

false

Then, the constructed meta-model fit can be used for optimisation
purposes. A significant advantage of using a surrogate model is that
the search for the point of lowest resistance can be done on the approx-
imate continuous surface newly generated. This way, a high number
of points can be tested by optimisation algorithms.

Finally, an essential part of the process is the possibility for the
Naval Architect to gain insight into the problem. A correct, exhaustive,
and precise data visualisation will give the user the right tools to judge
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the optimisation routine accuracy and uncertainty. Also, this is the
phase where the initial design is compared to the optimised one.

2.1.1 SBO workflow issues

As already established, the Surrogate Based Optimisation has proven
to be quite successful; however, each application is different, and
some issues arise when it comes to tuning the routine for the purpose
required in this specific thesis. Here is a list of questions and issues that
are important to pose when dealing with an SBO routine. The order in
which each topic is presented is the same as in figure 2.1. The solutions
proposed for these questions in this thesis are given in details in the
following chapters.

Sampling plan:

I How many points are sufficient and necessary to represent
the domain per variable fully? Furthermore, what is the
relation between this number and the number of variables?

I Which points to chose, i.e. spread how in the domain? What
does the decision depend on?

I Noise is inevitable in CFD results and thus in the sample
points. How does it affect the meta-model behaviour?

Meta-model:

I Which factors influence the decision to use a surrogate
model over others? Moreover, what are the factors that
characterise a common case that has to be solved in Van
Oossanen N.A.?

I How to assess model accuracy? Furthermore, which factors
play a role in the model validation?

I What is the best way to visualise the meta-model surface, in
such a way that the user can gain insight into the problem
and make informed decisions?

Infill:

I How many points should be used in the refinement phase?
Moreover, what is the ratio between this number and the
number of initial sampling points?

I Which points to chose in the domain? How to balance a
global and a local search? When to stop the search?

Optimisation:

I What method is best for the kind of surfaces that are most
commonly faced? Furthermore, what influences that choice?

2.2 Historical overview

The design of ships involves a multitude of factors, including size, cost,
speed, stability, seaworthiness, comfort, manoeuvrability, accommo-
dation space, aesthetics, and each of them is traded off against each
other. Traditionally, to satisfy multiple and conflicting objectives, naval
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architects have proceeded through a series of iterations. This process
is referred to as a design spiral and it is shown in Figure 2.2 (Evans in
1959 [20][20]: Evans (1959), ‘Basic Design

Concepts’
and its improvements by Buxton in 1976 [10] and Andrews

in 1981 [6]).

Figure 2.2: Design spiral (Evans, 1959
[20])

Designers used this process because among its advantages, we
count its simplicity and computationally efficiency, its flexibility, and
clarity in showing the iterative nature of the design. However, it is
time-consuming, and it does not guarantee to result in an optimal
design. Moreover, the possibility to be re-used for different designs is
limited. Therefore, the design process has profoundly changed over
the last decades, and the attention in recent years has shifted from
using a converged design process to an optimised one.

Figure 2.3: Relationship of design free-
dom, knowledge, and cost committed.
Analysis performed by Mavris and De-
Laurentis (2000) [59]

This new process helps in facing the three main challenges a naval
architect has to deal with during the design phases, as we can see from
Figure 2.3:

1. Design freedom is (perhaps too) high upfront in the preliminary
design stage;

2. Many costs get locked-in quite early;
3. The important decisions have to be taken when the understand-

ing of the design problem is still minimal.

Even though this new approach improves the work of naval architects,
it also gives rise to new issues. In particular, it needs new rules to
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deal with conflicting objectives and define priorities when designing a
complex item such as a boat. For simplicity, and because it is one of
the biggest parts in the design of a vessel, here we focus our attention
solely on the estimate of resistance and propulsion.

Figure 2.4: Resistance components for
four vessels (%). Analysis performed by
Larsson and Raven (2010) [53]

Total resistance is the sum of many different components, with the
wave and viscous resistance being the main ones. The former occurs
because the hull generates waves, transferring energy away, while the
latter is due to frictional forces between hull and water. We can see the
components of resistance for four different kinds of vessels in Figure
2.4. As the total resistance estimate largely depends on the shape of
the hull and its wetted surface, it also directly affects or is affected
by most of the other voices in the design spiral in Figure 2.2, namely
Principal Dimensions, Form Coefficients, Sectional Area and Waterline
Characteristics, Stability, Weights. Again, for the sake of simplicity, in
this thesis, we will deal with the optimisation of the hull shape only
taking into account the cost and time aspects of the design phase (but
not of the production). Also, some preliminary work on the hull is
considered to have been done, in particular dimensions and weights.
Stability and sea-keeping analysis are not directly treated, even though
they could be added to the routine in the future.

To get an estimated value of the total resistance, traditionally tow-
ing tank experiments (Figure 2.5) are used. The advantage is that it is
easy to test multiple velocities for one hull geometry. However, the
number of prototypes and conditions to test in the tank are limited.
Also, this method requires an in-depth knowledge of the problem to
choose which configurations to analyse. Moreover, it is subjected to
random errors; thus, it is not a deterministic process. Nowadays, the
high costs of physical experiments and field tests can be reduced by
the use of simulation software able to model complex problems.

Computational Fluid Dynamics (CFD) is a numerical way to solve
the Navier Stokes equations and deal with problems involving fluid
flows, hence also able to calculate the resistance of a vessel (Figure
2.6). It was first developed in car and plane industry in the late 1960s.
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Figure 2.5: Example of towing tank test

Afterwards, the marine industry also started making use of it firstly
thanks to sailing competitions, namely America’s Cup.

In the context of optimisation, a large number of different designs
have to be tested. Therefore, CFD methods are more efficient than
towing tank experiments because they do not involve the construction
of models to test, thus allowing an easy test of multiple geometries.
The hull is generated with the use of Computer Aided Engineering
(CAE) and Computer Aided Design (CAD); thus, any modification
can just be made on a computer. Different methods with different
assumptions have been developed. They are here described in order
of simplicity, computational cost, and accuracy:

Reynolds Averaged Navier Stokes (RANS) where the equations are
averaged and closed by using a turbulence model;

Large Eddy Simulations (LES) in which the most computationally
expensive smallest turbulence vortex lengths are ignored;

Direct Numerical Simulations (DNS) where Navier Stokes equations
are fully numerically resolved.

Figure 2.6: Example of CFD simulations
results: friction values obtained on the
front part of a hull surface. Courtesy of
Van Oossanen N.A.

In particular, in the context of this thesis, an (Unsteady) Reynolds
Averaged Navier Stokes (U)RANS equations code will be used. These
equations need a closure model for which the two-equation : − l
SST Menter turbulence model was used. Even though it gives only a
time-averaged mean value for resistance, it requires the lowest compu-
tational effort, while still giving acceptable results. Nonetheless, when
it comes to search for the optimal hull shape, and thus perform a high
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number of simulations for different hull shapes or Froude numbers,
this method is still too costly. One simulation takes around 20 hours.1

1: Data from Van Oossanen Naval Ar-
chitects regarding the simulation of one
hull.

For a two-variable optimisation problem, assuming an average of 60
computations is needed for the optimisation, the total computational
time would be around 50 days, which is not acceptable in practice for
a client.

Consequently, the idea is to compute only a limited and well-
selected number of CFD simulations and use the results to construct a
meta-model that approximates the infinite possibilities between the
few tested. This way, time and cost are reduced; moreover, new geom-
etry possibilities not previously considered are evaluated.

Finally, with the use of meta-models, the following step is to auto-
mate the process of finding the optimal shape. A routine can be built
and will be further on called Surrogate Based Optimisation (SBO).

2.3 SBO in Van Oossanen

The topic of Surrogate Based Optimisation is not new in the company;
in fact, from 2009 Van Oossanen N.A. can successfully perform SBO
routines. However, the features have changed over the years, with the
help of several students and interns. Table 2.1 summarises the main
aspects of the work done so far, and the improvements expected to
achieve during the nine months for this thesis. We can see on the left
column listed the different steps of the SBO as described in Figure
2.1. On top, there are the names of who worked on different projects
during the years. The table is filled with sampling methods names
(LHS, Halton), meta-model names (KG and CO-KG), optimisation
algorithm names (GA, BFGS, PS), and infill technique names (EI) that
will be described more in detail later on.

First, Zaaijer, in his M.Sc. thesis (2009) [101] described a routine
that involved only a 2D approach, mainly due to computation capa-
bilities. Nevertheless, all the parts described in the workflow in figure
2.1 are already in place. Secondly, Delivre in his B.Sc. thesis (2014)
[16] [16]: Delivré (2014), ‘Optimisation de

carène par modèle de substitution’
adopted a 3D approach and introduced the use of R language

to deal with the routine. Moreover, he made some small changes in
the choices of models and methods to use: Halton sequence replaces
LHS sampling method, a variant of simple Kriging method that in-
volves multi-fidelity data is adopted, and Broyden Fletcher Gordfarb
Shanno (BFGS) local search is added to the optimisation algorithm.
However, these changes were entirely based on literature review, thus
missing a rigorous test phase. Thirdly, Cointe in his internship (2016)
[13] mostly worked on multi-fidelity data. The conclusion was that no
real advantage is achieved in having less expensive and accurate CFD
results, therefore abandoning co-Kriging method. Finally, Bihan in
his internship (2018) [54] added the possibility to use a two-objective
optimisation. He also reintroduced the application of Expected Im-
provement (EI) for infill sampling.
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Table 2.1: Comparison between surrogate models. Analysis performed by Q. Delivré (2014)[16].

ZAAIJER (2009) DELIVRE (2014) COINTE (2016) LE BIHAN (2018) CASELLA (2020)

Approach 2-Dimensions 3-Dimensions 2-Objective mid-routine
checks

Main toolkit R language DAKOTA toolkit

Geometry CAD Rhino - Rhino Python -
Hexpress coupling

CFD FINE/Marine - Mesh quality FINE/Marine
RANS solver CFD iterations and

Low fidelity data OpenFOAM

Sampling LHS Samping study Number of Sampling rigorous
(HALTON) sampling study (HALTON)

points
Number of
samples rigorous
study (123 - 153)

Surrogate Kriging Surrogate study Kriging/ Kriging back Surrogate rigorous
(CO-KRIGING) Co-Kriging quality study (KG)

comparison Noise rigorous
study

Optimisation GA GA-BFGS Optimisation
rigorous study
(GA-PS)

Infill EI EI Deleted EI back Infill rigorous
study (EI)

The main change carried out in this thesis concern the switch from
R language to DAKOTA toolkit. This new solution improves user-
friendliness. Also, the most significant part of this thesis aims to do a
more detailed and rigorous study on sampling and surrogate methods,
on optimisation and infill algorithms. The more recent advances in
SBO techniques and the specific capabilities of DAKOTA are investi-
gated. Furthermore, to improve the chances of success and reduce the
possibility of non-convergence of the SBO, the routine will be split into
a few automatic steps. After each step, visualisation tools will help the
user to check the results before going to the next phase. The reason
for this choice is that it is a strict requirement of the company to avoid
unnecessary CFD simulations. Lastly, if time allows, it will be added
the possibility to use the open-source OpenFOAM CFD software. This
new feature has the aim to give Van Oossanen N.A. the possibility to
lower down the expenses incurred when optimising with CFD tools
that require a licence. However, in the context of this thesis, the sim-
ulations will be performed with FINE/Marine in order to be able to
compare new results from old ones and validate the routine.
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This chapter describes the literature review conducted for this
thesis. To start, in Section 3.1, an overview of authors that worked
on Surrogate Based Optimisation applied to different engineering
problems is given. In particular, more attention is paid on works related
to Naval Architecture, to ship resistance reduction problems, and to
DAKOTA applications. Afterwards, each sub-topic is analysed more
in detail.

First, Section 3.2 gives an overview of what is an optimisation from
a mathematical point of view, what is found in the literature to be
useful when comparing different optimisation algorithms, and also an
analysis of different methods and their classification. In the end, it is
specified which algorithms are most commonly used in literature for
similar applications as the one here presented. Also, the reader will
understand which algorithms are expected to pursue and the reasons
why they look more promising than others.

Second, in Section 3.3, both the initial sampling choice as well as the
infill sampling criteria (how to improve the accuracy of the surrogate
adding points to the initial sampling plan) are going to be analysed.
In particular, the influence of sample size and noise is going to be
discussed. Also, we need to understand what are the characteristics
that make a method or another better in selecting the point location.
Finally, it is explained which methods are most commonly used in
literature and the reasons behind the decisions made for this thesis.

Finally, in Section 3.4, a general discussion and overview of meta-
models are given. Also, it is explained which models are analysed in
the central research part of this thesis and why. Furthermore, a section
is dedicated to explaining the most common and appealing techniques
found in the literature to assess the model’s accuracy. In the end, we
will see which visualisation tools and methods were found to be more
effective in literature.

3.1 SBO in literature

SBO has been widely investigated for many marine applications.
Barthelemy and Haftka reviewed in 1993 the main approximation
concepts in applications of non-linear programming to structural op-
timisation [8]; A. Mason et al. between 2004 and 2010 investigated
the optimisation of sailing performance. The authors first focused on
the applicability of Artificial Neural Networks (ANN) to a catamaran
resistance reduction [15] [57], then worked on ANN meta-model to au-
tomate the optimisation of International America’s Cup Class (IACC)
yachts. Both resistance, with CFD, and performance, with Velocity
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Prediction Program (VPP) were considered [58] [55] [56][56]: Mason (2010), ‘Stochastic Optimisa-
tion of America’s Cup Class Yachts’

. Also, among
others, in 2013 Iuliano and Quagliarella [41], and Ulaganathan and
Asproulis [92] used surrogate models in foil shape optimisation; Vest-
ing and Bensow looked into propeller performance evaluation [94];
wave propagation was investigated by Roselli et al. [76], and sailing
dagger-boards were optimised by Guerrero et al. [27].

Examples of resistance reduction in naval architecture include a
bulb shape optimisation performed by Delivre in 2014 [16], by Cointe
in 2016 [13], and by Cominetti and Guerrero in 2017 [14] [28][28]: Guerrero et al. (2018), ‘Surrogate-

Based Optimization Using an Open-
Source Framework: The Bulbous Bow
Shape Optimization Case’

. Also,
Couser in 2004 [15] worked on reducing a catamaran resistance em-
ploying a Surrogate Based Optimisation.

Finally, several companies and institutes are currently using or
studying an SBO with DAKOTA toolkit. In particular, CINECA through
Spisso [89], Wolfdynamics with Guerrero [27] [25], and MARIN mainly
thanks to the work of Scholcz and Raven [72] [73] [81][81]: Scholcz et al. (2019), ‘Surrogate-

Based Multi-Objective Optimisation for
Powering and Seakeeping’

are developing
a routine for shape hull optimisation with DAKOTA and OpenFOAM,
or are providing consulting on it. Besides, among the universities that
investigate SBO in marine applications, we count Universitá degli
studi di Genova (UniGe), Italy, with the MSc thesis of Cominetti in
2017 [14] followed by a publication by Guerrero [28] on the same topic.
Also, Chalmers University, in Sweden, published two MSc theses of
Jareteg in 2014 [42] and Ohm in 2017 [65] on the matter.

All these papers have proven that Surrogate Based Optimisation
is indeed a topic of great interest, mainly when applied to Naval
Architecture. All authors conclude that the reduction of time and costs
are significant with respect to a traditional optimisation. Thus, it is clear
that this thesis presents a solution to the hull geometry optimisation
that is in line with current research. Also, the application of DAKOTA
toolkit in this field was proven successful and the focus of recent
studies by several institutes. However, if we would investigate more in
detail this small list of examples, see Tables 3.1 and 3.2, their choice of
surrogate model, their choice of algorithms and workflows, we could
see that all differ. It is thus clear that no method was outstanding the
others for most applications. No standard rules were ever proposed
for SBO because too many variables can affect them. Also, a wide
variety of applications are possible within the small field of Naval
Architecture. Moreover, from the table, it would also seem that there is
not one only successful way to proceed.

Therefore the gap that this thesis is trying to fill in is the investi-
gation of SBO methods and algorithms when it comes to applying it
to a specific purpose for a specific company: Hull Vane R© 33: See more information on: https://

www.hullvane.com/

, aft ship,
and bulb optimisations at Van Oossanen N.A.. Furthermore, to make
this work useful for the future researcher, the intent is to try and list
general guidelines to follow when building up an SBO routine with
CFD simulations involved.

https://www.hullvane.com/
https://www.hullvane.com/
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Table 3.1: Summary of SBO references. Part I

Work by Type of
problem

Variables Objectives Sampling Surrogate Optimisation Infill

Simpson et
al. (2000)

Structural
analysis
of a two-
member
frame

3 a 1 (Mini-
mum frame
volume)

Hammersley,
LHS, OA,
random,
UD (9, 16,
25, 32, 49,
64)

KG, RBF,
second
order re-
sponse
surface,
MARS

- -

Couser,
Mason et
al. (2004)

Catamaran
resistance
prediction

3 b 1 (Resid-
uary re-
sistance
coefficient)

Experimental
available
points (68)

ANN - -

Mason et
al. (2005)

Preliminary
prediction
of vessel
resistance

3 c 1 (Resid-
uary re-
sistance
coefficient)

Experimental
available
points (10)

ANN GA -

Mason
(2010)

IACC yacht
optimisa-
tion

5 d 2 (Resis-
tance via
CFD, per-
formance
via VPP
and RMP)

Pseudo-
Monte
Carlo (25)

ANN GA 7 random
points and
7 UD points

Iuliano
and
Quagliarella
(2013)

Foil shape
optimisa-
tion

16 1 (lift, drag
coefficients
ratio)

LHS (50) KG, polyno-
mial regres-
sion

EI

Ulaganathan
and As-
proulis
(2013)

Foil shape
optimisa-
tion

11 e 1 (lift coeffi-
cient)

Hammersley
(50)

KG GA -

Vesting
and Ben-
sow (2014)

propeller
perfor-
mance
evaluation

6 f 3 (Propeller
efficiency,
maximum
pressure
pulses,
maximum
cavity
volume)

Sobol algo-
rithm (200)

KG, ANN EA / local
tangent
search

-

a Frame width, height and wall thickness
b Slenderness, breadth - draught ratio and separation - length ratio
c Breadth - draught ratio, slenderness, volume
d Maximum beam of waterline, prismatic coefficient, midship area coefficient, non-dimensional longitudinal centre of buoyancy, flare
e Leading edge radius, upper crest point, lower crest point, position of upper crest, position of lower crest, upper crest curvature, lower

crest curvature, trailing edge thickness, trailing edge offset, trailing edge wedge angle, trailing edge direction angle
f Chord, camber, pitch, rake, skew, thickness
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Table 3.2: Summary of SBO references. Part II

Work by Type of
problem

Variables Objectives Sampling Surrogate Optimisation Infill

Delivre
(2014)

Bulb shape
optimisa-
tion

4 a 1 (Total re-
sistance)

Halton (50) Co-KG GA-BFGS EI

Guerrero
et al. (2015)

Sailing
yacht dag-
gerboard
optimisa-
tion

12 2 (Drag
and vertical
force)

GA *not speci-
fied

GA GA

Guerrero
et al. (2018)

Bulbous
bow shape
optimisa-
tion

2 b 1 (Total hull
resistance)

Full-
factorial
(25)

KG GA Manually

Raven and
Scholcz
(2017)

Bulb shape
optimisa-
tion

5 2 (Wave re-
sistance at
two differ-
ent speeds)

LHS (127) KG GA SBG

Raven and
Scholcz
(2019)

Ship stern
shape
optimisa-
tion with
DAKOTA

3 c 1 (Hull Re-
sistance)

LHS (150
low fidelity
and 32 high
fidelity)

Co-KG GA -

Ohm
(2017)

Turbine per-
formance
optimisa-
tion with
DAKOTA

5 2 (Effi-
ciency and
pressure
drop)

LHS (51) KG EGO EI (61)

Roselli et
al. (2018)

Wave prop-
agation

5 2 (Space
and time
wave char-
acteristics)

Sobol Algo-
rithm (320)

KG GA -

a Bulb length, height, angle, width
b Protusion and immersion of bulb
c Two stern buttock shape modifications and deadrise at the stern
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3.2 Optimisation

Optimisation is defined as an act, process, or methodology of mak-
ing something (such a design, system, or decision) as fully perfect,
functional, or effective as possible 4 4: Available at: Merriam-

Webster.com Dictionary, https:

//www.merriam-webster.com/

dictionary/optimization.

. An optimisation problem is math-
ematically stated as:

<8=8<8B4 5 (x) (3.1)

F8Cℎ x = (G1, G2, · · · , G=)) (3.2)

BD1 942C C> ℎ8 (x) = 0, for 8 = 1, · · · ,< (3.3)

6 9 (x) ≥ 0, for 9 = 1, · · · , ? (3.4)

G:, min ≤ G: ≤ G:, max, for : = 1, · · · , = (3.5)

having the following components:

I Equation 3.1 is the objective function, the criteria by which a
solution is assessed. For example, total hull resistance;

I Equation 3.2 represents the design variables which uniquely
describe the optimisation problem. For example, the geometry
parameters used to vary the hull geometry such as the Hull Vane
chord;

I Equations 3.3 (equality), 3.4 (inequality), and 3.5 (bound) are the
constraints that define the boundaries of the feasible regions of
the design space. For example, the hull displacement has to be
fixed, or the Hull Vane chord cannot be too small or it is not
possible to build it.

In the case of this thesis, the function 5 to minimise is too expensive
to compute. It can be called a "Black-Box" function, as no assumption
of differentiability, convexity or smoothness on the output can be made
[7]. Thus an approximate meta-model surface 5̂ is used. 5̂ emulates
the behaviour of hull resistance when varying different design vari-
ables representing a feature of the geometry such as height, width, or
position of an element. It has the great advantages of being cheap to
compute and continuous; however, it contains uncertainties. In fact
it can be that min( 5 ) ≠ min( 5̂ ). Also, at Van Oossanen N.A., simple
bound constraints such as 0 ≤ G= ≤ 1 with = the number of variables
are used to define the available domain.

More in general, it is possible that there is more than one objec-
tive function to optimise. It is the case when several criteria f (x) =
[ 51 (x), 52 (x), · · · , 5? (x)]) characterise the performance of a design
and this is called Multi-Objective Optimisation (MOO), or Multi-
Disciplinary Optimisation (MDO) if objectives are of different fields.
Examples in Naval Architecture field include the minimisation of hull
resistance for two different Froude numbers (i.e. two different boat

https://www.merriam-webster.com/dictionary/optimization
https://www.merriam-webster.com/dictionary/optimization
https://www.merriam-webster.com/dictionary/optimization
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speeds) [28][28]: Guerrero et al. (2018), ‘Surrogate-
Based Optimization Using an Open-
Source Framework: The Bulbous Bow
Shape Optimization Case’

or the optimisation of both resistance and performance
[57] [69]. It is acknowledged that a multi-objective optimisation can be
of great benefit when dealing with a multitude of factors involved in
the design of a vessel (see Figure 2.2). However, for the sake of sim-
plicity, during this thesis, we are going to focus on a single-objective
optimisation, namely resistance at one speed. Nevertheless, the routine
will be built with the possibility of adding objectives when required.

3.2.1 Comparing methods

In order to decide which method works best for our application, com-
parisons will make use of artificially generated test sets, in the form of
analytical functions. Audet and Hare (2017) [7][7]: Audet et al. (2017), ‘Derivative-Free

and Blackbox Optimization’
say that when studying

optimisation algorithms, the main goal is to compare the efficiency
and the quality of the solution. Efficiency refers to the computational
effort required to obtain a solution. Quality of the solution refers to
the precision of the algorithm’s final output. We will mainly focus on
quality because, for our application, the CPU time required to perform
an optimisation is in the range of minutes. Thus, time is negligible
compared to the CFD computation one, in the range of hours. The
closeness of the solution assesses the quality of optimisation found the
algorithm with the true one if known.

Figure 3.1: Example of a convergence
plot for a given test problem and three
different optimisation algorithms. From
Audet and Hare (2017) [7]

Furthermore, it is crucial to monitor convergence. In optimisation,
convergence is usually used to indicate that the algorithm reaches the
final solution. It is necessary to note that a convergent optimisation
process does not necessarily mean the global minimum (or minima)
has been found [64]. A way to visualise it is with the use of conver-
gence and trajectory plots. Figures 3.1 and 3.2 are example from [7].
In both of them, at this stage, it is not important to distinguish the
difference between each Algo(rithm). The first figure visualises the
performance of different optimisation methods by plotting the best
possible objective function value found against the number of function
evaluations used. The second, restricted to functions of two variables,
is created by plotting the contour plot of the objective function (when
such information is available) and then plotting the paths that connect
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the points generated by each iteration of each algorithm when applied
to the objective function.

Figure 3.2: Example of a trajectory plot
for a given test problem and three differ-
ent optimisation algorithms. From Au-
det and Hare (2017) [7] a

a Attention: in the legend G0 is the filled
point, G∗ is the asterisk, Algo 1,2, and 3
are the three thicker lines representing
the three algorithm trajectories

Finally, another essential feature to control when testing different
optimisation algorithms is the termination criteria. It must be set cor-
rectly unless the optimisation will: (i) fail to converge to a stationary
solution (too loose criteria) or (ii) result in useless evaluations, thereby
extra optimisation time (too tight criteria) [64]. The most common
options used count: maximum number of iteration, maximum time,
acceptable objective function, or objective function convergence.

3.2.2 Optimisation algorithms

The main issue about optimisation algorithms recognised for this
thesis is the selection of which one is best for our application. Mainly
because a high number of possibilities are available in the literature
and also supported by DAKOTA toolkit; furthermore, an algorithm
that is best on one problem may not be best on a different problem.
The algorithm chosen for an optimisation task will largely depend on
the type of the problem, the nature of an algorithm, the desired quality
of solutions, the available computing resource, time limit, availability
of the algorithm implementation, and the expertise of the decision-
makers [100].

Optimisation algorithms can be classified in many ways, depend-
ing on the characteristics we are trying to compare [50] [50]: Koziel et al. (2013), Surrogate-Based

Modeling and Optimization: Applications
in Engineering

. In particular:

Gradient-based and gradient-free Methods such as Genetic Algorithm
(GA) [24] are derivative-free because they only use the values of
the objective. These methods show slow convergence rates for
finding an optimum, and they usually require from thousand to
tens-of-thousands of function evaluations. However, they can
be more robust [5]. On the other hand, methods such as Quasi-
Newton [9] (that uses only first-order derivatives) and Newton
(that use also second-order derivatives), are usually highly effi-
cient in term of computational time. Nevertheless, they entirely
rely on gradient accuracy. In this sense, analytical gradients are
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ideal, but often unavailable as in our case because they are a
product of the surrogate model. Thus, with a non-smooth, dis-
continuous, or multi-modal function behaviour, inaccurate gra-
dients will lead to bad search directions [5]. In conclusion, if
gradient information is available, reliable, and obtainable at a
reasonable cost, then gradient-based methods should be used
[7].

Trajectory or population based A trajectory-based algorithm typically
uses a single agent or solution point which will trace out a path
as the iterations and optimisation process continue. However,
population-based algorithms such as Particle Swan Optimisa-
tion (PSO) use multiple agents which will interact and trace
out-multiple paths [48].

Deterministic or stochastic If an algorithm works in a mechanically
deterministic manner without any random nature, it is called
deterministic. For such an algorithm, it will reach the same final
solution if we start with the same initial point. An example is
the Nelder-Mead downhill simplex method [63]. On the other
hand, if there is some randomness in the algorithm, the algo-
rithm will usually reach a different point every time we run
the algorithm, even though we start with the same initial point.
Genetic algorithms are a good example of this category.

Local and global Local search algorithms typically converge towards
a local optimum, not necessarily (often not) the global optimum,
and such algorithms are often deterministic and cannot escape
local optima [7]. Hooke-Jeeves pattern search algorithm [38] is
amongst the best known. On the other hand, we always try to
find the global optimum for a given problem. If this global is
robust (i.e. the optimised solution is a design that works well
for certain conditions and also when the conditions fluctuate
slightly [98]

[98]: Whitfield et al. (1998), ‘A Robust
Design Methodology Suitable for
Application to One-off Products’

), it is often the best. Global Algorithms, such as
Genetic Algorithms, are also preferable when the objective func-
tion is multi-modal, meaning they have more than one global
minimum.

In the case of SBO applied to Naval Architecture, most authors
focused on the application of Genetic Algorithms (GA) and its variants.
Examples count Guerrero et al. work in 2018 [28]. However, they
clearly state that when optimisation is done on the surrogate level,
any optimisation method can be used. Also researchers at MARIN
[72] [81] used Genetic Algorithm (MOGA). However, they mainly
focus on Multi-Objective Optimisation. Another example is Mason
et al. (2005) [57] that used GA for a catamaran resistance reduction.
More interestingly, authors like Vesting and Bensow (2014) [94][94]: Vesting et al. (2014), ‘On surrogate

methods in propeller optimisation’
used a

combination of two methods: Genetic Algorithm was applied to detect
the region of global optima which was then used as the starting point
for a local tangent search algorithm [35], to find the local optimum.
At Van Oossanen N.A., also, a combination of a global gradient-free
population-based method (GA) and a local gradient-based trajectory-
based method (BFGS) is used.

To conclude, for this thesis, the feeling is that a combination of a
local and a global algorithm is the best choice. The reason is that it



3.3 Design space exploration 25

Table 3.3: Guidelines for optimisation method selection. From DAKOTA User’s Manual [5]

is not possible to know in advance if the objective function is multi-
modal or not, or if it is linear and smooth or not. This way, a higher
chance of capturing several possible optimum points is foreseen. In
particular, for the global method, it looks like from this literature
review that a Genetic Algorithm may be the best fit for this thesis.
It is also implemented in DAKOTA toolkit. However, this technique
requires some tuning that will need to be performed. As for the local
algorithm, DAKOTA has a various number of possible choices. They
are visible in Table 3.3. The two methods that look more promising,
and therefore will be analysed more in detail, are the gradient-based
optpp_q_newton, a version of the Quasi-Newton BFGS algorithm, and
the derivative-free coliny_pattern_search.

3.3 Design space exploration

When a cheap-to-evaluate surrogate model 5̂ has to be constructed to
emulate the expensive response of some black box continuous func-
tion 5 (x), an important part is the definition of a 3-vector of design
variables x ∈ � ⊂ R3 . In what follows we shall refer to � as the de-
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sign space or design domain. The discrete observations or samples
{x (8) → H (8) = 5 (x (8) ) | 8 = 1, · · · , =} are defined as part of a sampling
plan ^ = {x (1) , x (2) , · · · , x (=) } [23]. Different sampling plans may result
in the same surrogate model, but with different accuracy. Thus the goal
is to allocate points in the design space that minimise the influence
of errors on the response functions 5 , while allowing the designers to
build meta-models more efficiently [102] and make a cheap but reliable
performance prediction for any x ∈ �.

3.3.1 Sample size

Per other authors like Simpson et al. (2001) [86][86]: Simpson et al. (2001), ‘Metamodels
for Computer-based Engineering
Design: Survey and recommendations’

, we recognised that the
primary concern in the design of an experiment is its size. Intuitively,
the higher the number of sampling points, the higher the quality of
surrogate. In particular, the appropriate sample size depends on three
main factors:

I The nature of the experiment required to obtain the points part
of the sampling plan and, more specifically, the cost necessary
to make each estimation. As an example, CFD simulations are
costly;

I The complexity and (non-)linearity of the function to be approxi-
mated. It has been observed by Wang et al. that, after reaching
a certain sample size, increasing the number of sample points
does not contribute much to the approximation accuracy [97].
This characteristic is especially valid for low order functions;

I The number of design variables in the modelling problem. In
particular, Forrester et al. analysis pointed out that if a certain
level of prediction accurateness is achieved by selecting = points
for a one-variable space, in theory, to achieve the same sample
density in a 3-dimensional space, =3 observations are required
[23]. However, this exponential behaviour can become very ex-
pensive with just a small increase of design variables. Thus it is
not feasible in the case of this thesis where containing simulation
time is paramount.

The two crucial conclusions are that, firstly, a trade-off is neces-
sary between the desire to have an accurate meta-model with many
sampling points and the desire to lower down the hours necessary to
obtain those same points. The second conclusion we can draw is that
the number of design variables has a massive impact on the number
of experiments required. It is, therefore, imperative that they are min-
imised [23]. Also, because we foresee that for this thesis it will not be
possible to achieve =3 observations, it will become essential to develop
proper visualisation tools that allow the user to grasp the trend of the
objective function (resistance) over the various design variables.

As the problem of defining the sample size depends on so many
variables, no author in literature has been able to identify a fixed set
of rules. Nonetheless, we can cite here, as an example, the work of
Simpson et al. (2001) [86]. The authors tested a structural problem with
three design variables and concluded that the accuracy of several meta-
models highly increased from 9 to 25 sample points and kept (slightly)
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increasing up to 64. Also, other authors like Jones et al. (1998) [47]
[47]: Jones et al. (1998), ‘Efficient global
optimization of expensive black-box
functions’

found out that about 103 points build with a space-filling method are
needed. However, this conclusion was solely based on their experience,
and they also explained that they found it convenient sometimes to
deviate slightly from this rule. Within Van Oossanen N.A., Le Bihan
[54] worked on the definition of the sample size. His recommendation
is to work with approximately 25 points for three variables and 50
sample points when the variables are 4.

No more recent or rigorous study than the ones already presented
was found in the literature that formally analyses this question. Thus,
this thesis research has the goal to fill this gap. The quality of meta-
models will be assessed when increasing the number of samples on
analytical test functions. The range of points that will be used will
consider the 103 rule and the conclusions drawn by Le Bihan. Also,
the maximum budget expected for a project at Van Oossanen N.A. will
mostly condition this decision.

3.3.2 Sampling methods

A second important question that requires an answer is how to spread
points in the domain. A well-posed problem allows the user to explore
the domain both globally, in search for possible areas of minimal resis-
tance, and locally. Moreover, in particular, the query is what influences
the choice of which sampling method to select. Two main factors are
recognised:

I The meta-model that will use the points, and its settings;
I The nature of sample points, with particular care to the possible

presence and the kind of errors.

As for the first point, the issue is postponed to Chapter 6 with the
investigation of different meta-models and their requirements in terms
of samples. About the other matter, computer experiments, like CFD
simulations, as opposed to physical experiments that have a random
error due to measurement inaccuracies, are deterministic (i.e., the same
output is obtained each time the same input is given). The conclusion
is that the primary source of error, causing "noise" in the result, is
systematic and noise in the CFD evaluations required to produce the
sampling points is inevitable.

It is calculated by several authors, including Wilson et al. (2001)
[99], that noise in CFD simulations of hulls does not exceed 5%5 5: Data also confirmed by Van Oossanen

N.A. for the simulations in situ
. For

this reason, as Sacks et al. (1989) [79] stated, points should be chosen
to fill the design space rather than concentrate on the boundary. Jin et
al. [44] confirmed in 2001 that a consensus among researchers is that
experimental designs for deterministic computer analyses should be
space-filling.

Four types of space filling sampling methods are relatively more
often used in the literature [97]. These are orthogonal arrays [67] [34],
various Latin Hypercube designs [60] [68], Hammersley or Halton
sequences [32] [31], and uniform designs [21]. Uniform designs and
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Hammersley and Halton sequences belong to a more general group
called low discrepancy sequences [12].

Figure 3.3: LHS sampling example in R2

with ? = 25 sampling points
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In the case of SBO applied to Naval Architecture, different authors
in literature have chosen different space-filling sampling methods.
For example, Guerrero et al. (2018) [28] and Raven et al. [72] [73]
decided to use LHS method. However, the work of Simpson et al. (2001)
[86] pointed out how the Hammersley sequence gives overall better
results than LHS. At Van Oossanen N.A., instead, Halton sequence
was chosen, because it does not create small clusters in some area of
the design space, which could lead to a singular matrix in the case of
Kriging and Radial Basis Function meta-models [16].

Figure 3.4: Halton sequence example in
two dimensions with 25 sampling points
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Given this literature review, the two most promising methods are
LHS and Halton sequence. An example of these two methods for
= = 25 sampling points is given in Figure 3.3 (LHS) and 3.4 (HALTON).
Also, both are easily supported by DAKOTA toolkit. Thus, these two
methods will be analysed and compared with the use of DAKOTA
toolkit on several test functions.
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3.3.3 Infill sampling criteria

The surrogate model 5̂ is only an approximation of the true function
5 . It was constructed from an initial set of sampling points that were
selected with a space-filling technique when the user did not know the
function 5 itself. Jin et al. (2001) [44] [44]: Jin et al. (2001), ‘Comparative

Studies of Metamodeling Techniques
Under Multiple Modeling Criteria’

also stated that the goodness of a fit
obtained from an initial sampling plan solely is not sufficient to assess
the accuracy of newly predicted points. Therefore, it is prudent to
enhance the accuracy of the model using more points. This refinement
step needs new algorithms able to intelligently select new infill points
in addition to the initial sampling plan.

The first question that arises is how many points should be part
of the infill plan. According to Forrester et al. (2008) [23] [23]: Forrester et al. (2008), Engineering

Design Via Surrogate Modelling: A
Practical Guide

, the answer
differs if the wish is to find a local or a global minimum. In the former
case, only a few points should suffice for an infill plan, and the majority
should be part of the sampling plan. However, the risk is to waste
precious evaluations by selecting them upfront without regard to the
response surface. On the other hand, according to Forrester, if the
goal is the global minimum, most of the points should be positioned
using an infill criterion rather than a sampling plan. Nonetheless, in
this case, could the approximation based on a tiny sample be accurate
enough and thus not misleading? In general, studies have shown that
approximately between one-third and two-thirds of the total number
of points available should be part of the infill plan [88].

Exploration vs Exploitation

In general, the flowchart of the infill process is displayed in Figure
3.5, taken from [43] [43]: Jiang et al. (2020), ‘Surrogate

model-based engineering design and
optimization’

. It is shown how new sample points are selected
based on specific infill criteria to update the surrogate model until
the iterative process is terminated. The stopping criteria may be that
convergence is reached, or that simulation budget is ended. Following
several authors (Jones 2001 [46], Sobester et al. 2005 [88], Forrester et
al. 2008 [23], Jiang et al. 2020 [43]) we recognise three possible criteria
to select new infill points: a global exploration, local exploitation, and
a method that balances the previous two techniques.

Local exploitation gives a way to improve the accuracy in the region
of the optimum predicted by the surrogate model. The most
common criterion, in this case, is to minimise the response sur-
face [43]: for each iteration, the surrogate model will predict the
position of the best point. This point will be evaluated and given
back to the surrogate for next iteration [46]. This kind of criteria
has the advantage that it can be used with any kind of surrogate
model, and the speed of convergence is fast [43]. Also, it is usu-
ally efficient for finding a local minimum, but it can easily miss
a global minimum [46]. Especially for multi-modal functions, if
the initial meta-model does not approximate the full function
well, an infill strategy that can also search away from the current
minimum and explore other regions is required [23].
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Figure 3.5: Flowchart of the infill part
of the SBO algorithm. From Jiang et al.
(2020) [43]

Global exploration adds points in areas of limited sampling where
the uncertainty of the surrogate is high. This means increasing
the chance of not missing any minimum previously not captured
[23]. Criteria include a Mean Square Error (MSE) approach [23],
where selected points are the ones with the largest estimation
of prediction error, but it can be used only for Gaussian process-
based surrogate model. Alternatively, for example, a Maximin
Distance Approach [45], that selects points that maximise the
minimum distance between any two sample points in the sam-
ple set. These and other methods have a good space exploration
performance; however, the feeling is that sometimes the same
output could be achieved by simply using a larger sampling
plan. Also, it is not clear when should one stop adding points
[23]. Moreover, the accuracy of the final solution cannot be guar-
anteed, and the overall number of calculation is large [43].

Balanced criteria. Instead of either exploiting or exploring the model,
an infill criterion which balances both options can be used. Such
criteria try to pursue a trade-off between being ideally very ac-
curate near the global/local optimal location and acceptably
rough elsewhere [39]. Two of the most used and promising algo-
rithms are the Probability of Improvement (PoI) and Expected
Improvement (EI) [46] [23] [43]. However, both methods nec-
essarily require a Gaussian process-based meta-model, such as
Kriging. These methods provide not only the predicted response
value at any point of the domain space but also the correspond-
ing prediction error associated. Typically, the prediction error
is in the form of a standard deviation from the mean predicted
value. This way, each iteration, a point can be added where the
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improvement is statistically greater. These methods were found
to be convergent, but sensitive to the choice of initial points and
of convergence criteria. A deceptive sampling plan can cause the
surrogate model to underestimate the true error and, as a result,
converge prematurely or slowly [46].

Figure 3.6: Exploitation vs exploration,
1D example. From Iuliano and Perez
2016 [40]

Figure 3.6 provides a simple example of adding a new training
point by using, respectively, exploitation, exploration and balanced ap-
proaches. Given a set of training points (black circle points) evaluated
on the exact function (solid black line), a surrogate model (dashed black
line) is built: if a new sample has to be added, a simple exploitation
approach would place it where the global minimum of the surrogate
is detected, i.e. very close to one the training point (triangle point); a
simple exploration approach, instead, would lead to sample where
the maximum uncertainty in the model prediction is found, i.e. far
from available training points (circle point); a balanced exploration/-
exploitation approach combines the two aspects, thus providing a new
sample which significantly improves the surrogate prediction [40] [40]: Iuliano et al. (2016), Application of

Surrogate-based Global Optimization to
Aerodynamic Design

.

In the case of SBO applied to Naval Architecture, not many au-
thors have chosen to use an infill technique. For example, Scholcz
et al. (2017) [83] used the local criteria of minimising the response
surface. They conclude that the approach is promising, but mainly
when performing a Multi-Objective Optimisation. Also, Guerrero et
al. (2018) [28] demonstrated that the surrogate can be improved by
adding new points to it. However, even though they acknowledged the
possibility of using an Expected Improvement algorithm, the location
of these new points was manually selected. Iuliano and Quagliarella
in 2013 [41], for their foil shape optimisation, used the EI function.
They concluded that it is found to be proper balancing between the
need to exploit the approximated surface with the need to improve the
approximation overall. At Van Oossanen N.A. the EI function is also
used [16], but complaints have often arisen that the algorithm tends
to choose points too close to each other. Furthermore, therefore the
number of refinement points was always kept low. Thus, simulation
time is wasted because from one CFD simulation to the next, no real
new information is added to the meta-model.
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To conclude, this thesis will explore different possibilities. However,
only a proper balance of both exploration and exploitation ensures a
higher chance of convergence towards the global minimum of the func-
tion to be approximated [39]. To achieve this balance, the Expected
Improvement function will be further on analysed as it looks like
the best candidate for this work. It is also implemented in DAKOTA
toolkit. However, this technique is no longer applicable when meta-
modelling techniques other than Kriging are used [45]. In general,
in the literature of computer experiments, sequential sampling ap-
proaches with adaptation are mainly developed for the Kriging [79]
method. Therefore, also a combination of minimisation of response
surface and Maximin Distance Approach will be further analysed, both
also supported in DAKOTA. This way, we ensure a solution usable
with any meta-model.

3.4 Surrogate models

The core problem is attempting to learn a mapping H = 5 (x) that lives
in a black box. Therefore, the physics that converts the vector x into a
scalar output H are unknown. This black box could either be a physical
or computer experiment, as in this case. The generic solution method
is to gather the output values H (1) , H (2) , · · · , H (=) that originate from a
set of inputs x (1) , x (2) , · · · , x (=) and find a best guess 5̂ (x) for the black
box mapping 5 , based on these known observations. [23]

3.4.1 General overview

One of the greatest issues when dealing with meta-models is under-
standing which factors influence the choice of which one to use for a
particular optimisation task. According to Mason (2010) [56][56]: Mason (2010), ‘Stochastic Optimisa-

tion of America’s Cup Class Yachts’
some of

the aspects are:

I Quantity of data available: the choice may differ if only a small
number of data points are available, for example when the num-
ber of points is strictly linked to the computational cost, for
instance, because of CFD simulations;

I Dimensionality of the solution space and region of validity: local,
mid-range, and global optimisation [8];

I Complexity of the solution surface: not every model can capture
a highly non-linear behaviour, in comparison with a smoother
one;

I Degree of noise associated with the data: not every model is
equally influenced by noise, nor every model deals with it the
same way;

I Ease of use: a surrogate model is successfully implemented, in
the case of this thesis, but also in general within a company, when
it is easy to test and validate it. Also, it needs to be efficiently
tuned to fit various situations, and when information can be
derived from the results quality and prediction accuracy.



3.4 Surrogate models 33

1985 1990 1995 2000 2005 2010 2015 2020

0

200

400

600

years

nu
m

be
r

of
pu

bl
ic

at
io

ns

Figure 3.7: Approximate number of pub-
lications from 1985 to 2018 when search-
ing the words "surrogate based optimi-
sation" in Google Scholar

The use of the surrogate model technique raised during the years,
as shown by the increasing number of publications in Figure 3.7. How-
ever, many alternative meta-model formulations exist and may be
suitable for the case of this thesis, in particular the list include Poly-
nomial Regression (PR), Moving-Least Square (MLS), Multivariate
Adaptive Regression Splines (MARS), Kriging (KG) [28] [73], Radial
Basis Functions (RBF), Artificial Neural Networks (ANN) [56], and
Support Vector Machines (SVM). All are widely used in optimisation
routines, but no method has shown to be overwhelmingly superior
across a range of approximation tasks.

High-order Low-order Overall
Nonlinear Nonlinear

Large RBF Kriging RBF
scale

Small RBF PR RBF
scale

Overall RBF PR RBF

Table 3.4: Summary of best methods.
Analysis performed by Jin et al. (2001)
[44]

Several authors have performed comparative evaluations. Jin et al.
(2001) [44] [44]: Jin et al. (2001), ‘Comparative

Studies of Metamodeling Techniques
Under Multiple Modeling Criteria’

systematically compared four popular meta-modelling tech-
niques — Polynomial Regression, Multivariate Adaptive Regression
Splines, Radial Basis Functions, and Kriging — based on multiple per-
formance criteria. The author used fourteen test settings representing
different classes of problems and different levels of linearity (top part
of Table 3.4). Also, different tests were performed on the functions both
with limited or large sample sets (left part of Table 3.4). The models
were evaluated in accuracy and robustness, performance for differ-
ent types of problems and sample sizes, behaviour in case of noise,
efficiency, transparency, and simplicity. The summarised results are
visible in Table 3.4, where overall, the best performance was observed
in RBF. It resulted in being the most dependable method in most situa-
tions in terms of accuracy and robustness, also with a limited sample
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set.

Table 3.5: Recommendations for model
choice and use. Analysis performed by
Simpson et al. (2001) [86]

Model choice Characteristics/Appropriate uses

Neural Networks – Good for highly nonlinear or very large problems
– (∼ 10000 parameters)
– Best suited for deterministic applications
– High computational expense (often > 10000
– training data points); best for repeated applications

Kriging – Extremely flexible but complex
– Well suited for deterministic applications
– Can handle applications with < 50 factors
– Limited support is currently available for
– implementation

Simpson et al. (2001) [86][86]: Simpson et al. (2001), ‘Metamodels
for Computer-based Engineering
Design: Survey and recommendations’

reviewed several meta-models, includ-
ing Artificial Neural Network and Kriging, surveying their existing
application in engineering design. The recommendations they gave
are summed in Table 3.5. In the opinion of Simpson et al., Neural Net-
works are suited to deterministic applications which require repeated
use with a high number of training data points. In contrast, Kriging is
an interpolation method extremely flexible and can work with fewer
sample points; however, it is susceptible to noise.

Wang and Shan (2007) [97] presented the surrogate models from a
practitioner’s perspective, and Viana et al. (2014) [96] investigated how
far meta-modelling techniques have evolved in the last two decades.
The conclusion was that the future direction is to use multiple surro-
gates to better adapt to every possible situation. Readers interested in
other model comparison works, also specifically for naval architecture
applications, are referred to other articles on the topic [14] [56] [71]
[82].

Table 3.6: Comparison between surro-
gate models. Analysis performed by Q.
Delivré (2014)[16].

Criteria PR MLS MARS KG RBF ANN SVR

Lowly non linear 1 1 1 0 0 1 1
Mediumly non linear -1 1 1 1 1 1 1
Highly non linear -1 0 0 1 1 1 1
Low dimension 1 1 0 1 0 0 1
Medium dimension 0 0 1 1 1 1 1
High dimension -1 -1 1 1 1 1 1
Tuning time 1 1 1 -1 0 -1 -1

Prediction time 1 1 1 -1 0 1 0
Validation time 1 1 0 0 0 -1 -1

No prior knowledge -1 -1 -1 1 1 -1 1
Use 1 0 -1 1 0 0 0
Flexibility -1 -1 -1 1 1 1 1
Multifidelity use -1 -1 -1 1 0 1 0

Total
∫

0 2 2 7 6 5 6

Also within Van Oossanen N.A. effort has been put in analysing
the best surrogate model for applications typically encountered in the
company, such as bulb shape or Hull Vane optimisations. In particular,
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Delivré [16] [16]: Delivré (2014), ‘Optimisation de
carène par modèle de substitution’

investigated seven possible models for thirteen criteria
assigning a value of -1, 0, and 1 to respectively a bad, average, and
good performance. The results are shown in Table 3.6, where the less
intuitive criteria are described from Delivré as:

Validation time means if the methods offer (or not) a statistical crite-
rion to characterise the accuracy, and if not, an additional point
has to be sampled to evaluate the deviation between the predic-
tion and the sampling point;

No prior knowledge means that the user does not need to be experi-
enced, or to have prior knowledge about the function behaviour;

Use means that the literature is abundant (or not) on these methods;
so that results are proven, the library in programming code is
well supplied, and some improvements are proposed;

Flexibility means it can adapt to various problems, it is partially re-
dundant with the "non-linear" and "dimension" blocks, it is a
kind of bonus point since it is an important aspect;

Multi-fidelity use means that the literature is abundant (or not) on
Multi-fidelity, results are then proven, code library is well sup-
plied, and some improvements are proposed.
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Figure 3.8: Approximate number of pub-
lications from 1985 to 2018 when search-
ing the different surrogate models in
Google Scholar
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Figure 3.9: Approximate number of pub-
lications from 1985 to 2018 when search-
ing the different surrogate models and
"ship resistance" in Google Scholar

Delivre’s work was based solely on literature as well as mostly
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subjective. As a consequence of it, the Kriging method was chosen
because the sum of all the points was higher than for the other models.
Thus, a more accurate comparison is required and thus performed in
the context of this thesis. For the sake of simplicity and pragmatism,
not all seven models will be analysed. The three methods that from
this literature analysis demonstrated to have better performances for
our purposes and are also easily supported by DAKOTA are Artificial
Neural Networks (ANN), Radial Basis Functions (RBF), and Kriging
(KG).

A demonstration that the three selected method can indeed be
suitable, is given from Figures 3.8 and 3.9. They show the number
of publications from 1985 to 2018 when searching the different surro-
gate models (upper) and the different models in combination with the
words "ship resistance" (lower), in Google Scholar. Note that these re-
sults may slightly vary due to the update of the Google database. Both
figures show a steady growth of publications for all three methods,
especially with regards to ANN.

3.4.2 Assessing model accuracy

A second important question about meta-models to answer is how to
assess meta-model accuracy and what to look for when doing so. When
in the context of this thesis, the different models will be analysed and
confronted, their performance will be measured, taking into account
the following aspects [44][44]: Jin et al. (2001), ‘Comparative

Studies of Metamodeling Techniques
Under Multiple Modeling Criteria’

:

I Accuracy – the capability of predicting the system response over
the design space of interest. In particular, sensitiveness to linear-
ity and dimension of data;

I Robustness and flexibility – the capability of achieving good
accuracy for different problem types and sample sizes;

I Efficiency – the computational effort required for constructing
the meta-model and for predicting the response for a set of new
points by meta-models.

I Transparency – the capability of illustrating explicit relationships
between input variables and responses;

I Conceptual Simplicity – ease of implementation. Simple methods
should require minimum user input and tuning time and be
easily adapted to each problem.

The quality of a meta-model has a profound effect on the compu-
tational cost and convergence characteristics of the Surrogate Based
Optimisation [102]. A surrogate model that was built on a limited
number of sample points will inescapably have significant prediction
uncertainty. Applying such unreliable surrogate models in design and
optimisation may lead to misleading predictions or optimal solutions
located in unfeasible regions [70]. Therefore, verifying the accuracy of
a meta-model before working with it can ensure the reliability of the
entire design [43].
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The applications of error metrics in the design optimisation can be
generally classified into four cases [1] [1]: Acar (2015), ‘Effect of error metrics

on optimum weight factor selection for
ensemble of metamodels’

, of which only the first two are
of our interest:

1. identifying regions with relatively high uncertainty in the input
domain to determine promising areas for model refinement;

2. obtaining an overall assessment of the constructed surrogate
model to be used for prediction, uncertainty quantification or
optimisation;

3. for an ensemble of surrogate models, determining the optimal
weight factors for the individual surrogate models;

4. choosing the most appropriate model among the alternatives
when multiple surrogate models are available.

When the designers must decide whether to accept or reject the
constructed surrogate model, the overall accuracy of the surrogate
model needs to be known, and the metric value should be as close
to the true error as possible since the criterion for accepting a model
is often set in reference to the true error. There are many alternatives
available when choosing an error metric to assess the accuracy of
a surrogate model. Among others, Meckesheimer et al. (2002) [61],
Sacks et al. (1989) [79], and DAKOTA’s User manual [5] propose a
cross-validation method with the use of Root Mean Square Errors.

Metrics

To compare different meta-models, or assess their accuracy during an
SBO, DAKOTA comes with the ability to compute diagnostic metrics
based on [5] [5]: Adams et al. (2019), ‘Dakota, A

Multilevel Parallel Object-Oriented
Framework for Design Optimization,
Parameter Estimation, Uncertainty
Quantification, and Sensitivity Analysis:
Version 6.10 User’s manual’

:

I Simple prediction error for the training data;
I prediction error estimated by cross-validation (iteratively omit-

ting subsets of the training data);

All diagnostics are based on differences between >(G8) the observed
value, and ?(G8), the surrogate model prediction for training (or omit-
ted or challenge) data point G8 . In the simple error metric case, the
points G8 are those used to train the model, for cross-validation they
are points selectively omitted from the build, and for challenge data,
they are extra points provided by the user. The metrics include:

Root Mean Square Error (RMSE) can be regarded as the average ver-
tical distance of the actual observations from the fit line. In this
method, points with larger errors tend to be assigned higher
weights by penalising the variance. The formula for the RMSE
when evaluated at a set of test points = is as follows:

RMSE =

√√
1
=

=∑
8=1

(
>(G8) − ?(G8)

)2

(3.6)

Mathematically, the RMSE is also a global error metric, and a
smaller value represents a higher overall [97] accuracy [103] [84].
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Maximum Absolute Error (MaxAE) is a local [97] error metric that
measures the maximum approximation error of the surrogate
model [84]. The formula for the MaxAE for a set of test points
can be expressed as follows:

MaxAE = max
8

��� >(G8) − ?(G8) ��� 8 = 1, · · · , = (3.7)

Cross-Validation Error

Cross-Validation (CV) was originally proposed in the 1930s [52], and
it was further developed and refined in the 1970s by Stone [90][90]: Stone (1974), ‘Cross-validatory

choice and assessment of statistical
predictions’

. In the
CV method, the above metrics can be computed via a cross-validation
process. The class of :-fold cross-validation metrics is used to predict
how well a model might generalise to unseen data. The training data
is randomly divided into : partitions. Then : models are computed,
each excluding the corresponding : Cℎ partition of the data. Each model
is evaluated at the points that were excluded in its generation, and
RMSE or MaxAE are computed for the held-out data. In the end,
all metrics are averaged over the number of evaluations. A special
case, when : is equal to the number of data points, is known as leave-
one-out (LOO) cross-validation or PRediction Error Sum of Squares
(PRESS) [5]. It is worth mentioning that LOO will brake the space-
filling properties of sampling plans; however, no alternative is given
by DAKOTA toolkit.

CPU time

The time consumed in the process is a measure of efficiency. The less
time the regression process spends, the more efficient a meta-model is
[103][103]: Zhao et al. (2010), ‘A comparative

study of metamodeling methods
considering sample quality merits’

[66]. However, it is already predicted that this will not be of major
importance to this thesis. It is not because CPU time for constructing
a surrogate is in the order of seconds, while CFD simulations are in
order of hours.

3.4.3 Visualisation

As already explained, a vital part of the Surrogate Based Optimisation
is the possibility for the user to visualise the data in such a way that
it is easy to extract results and detect anomalies. Since the routine is
expected to be used for commercial projects, an informed choice on
the final optimised geometry is crucial.

There are two methods that in literature stand out for completeness
and clarity. The first is found in the work of Guerrero et al. [28][28]: Guerrero et al. (2018), ‘Surrogate-

Based Optimization Using an Open-
Source Framework: The Bulbous Bow
Shape Optimization Case’

[26] and
an example is given in Figure 3.10. This scatter matrix, in one single
illustration, shows the correlation information, the data spreading
using histograms and scatterplots, and regression investigation of the
responses of the quantity of interest. For this example, a function with
six design variables (DV1, DV2, ..., DV6 on the left and bottom) was
used, and the objective is called a Quantity of Interest (QoI).
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Figure 3.10: Scatterplot matrix of the high-dimensional Rosenbrock function space exploration study (3 = 6) . The Spearman correlation
is shown in the upper triangular part of the matrix. In the diagonal of the matrix, the histograms showing the data distribution are
displayed. In the lower triangular part of the matrix, the data distribution is shown using scatterplots. In the last row of the matrix plot,
the response of the quantity of interest (QoI) as a function of the design variables is illustrated, together with a quadratic regression
model. From Guerrero et al. (2018) [28]

By conducting a quick inspection of the figure, we can see from the
histograms and the scatterplot of the experiments (lower triangular
part of the matrix) that the distribution of the data in the design space
is uniform. If we observe regions in the design space that remain unex-
plored, we can simply add new training points to cover those areas. In
the case of outliers (anomalies), we can remove them from the dataset
with no significant inconvenience. However, we should be aware that
outliers are telling us something, so it is a good idea to investigate
the cause and effect of the outliers. In the upper triangular part of the
plot, the correlation information is shown (Spearman correlation, in
this case). This information tells us how correlated or uncorrelated
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the data are. For example, by looking at the last row of the plot that
shows the response of the QoI, if we see a strong correlation between
two variables, it is clear that this variable cannot be excluded from
the study. The opposite is also exact; that is, uncorrelated variables
can be excluded; therefore, the complexity of the problem is reduced.
Additionally, the last row of the scatter matrix plot also shows the
surrogate model (a quadratic model, in this case) and its trends.

The other visualisation tool that is going to be used in this thesis
was developed within Van Oossanen N.A.. An example is given in
Figure 3.11, where we can see some plots equal to the number of
variables (four, in this case: chord, span, G position and I position
of a Hull Vane R©). For each plot, we can see resistance over one of
the variables while keeping fixed the values of the other variables
to the ones that were found to be optimal. All sampling points (the
numbers) are depicted, as well as the refinement ones (red) and the
optimum found (in green). The lines represent the mean of the Kriging
surrogate model (black) and a confidence interval of the prediction
(red). If needed, more information can also be added to this plot, such
as the bare hull resistance (blue line).

Figure 3.11: Surrogate Based Optimisation visualisation tool. Courtesy of Van Oossanen N.A.

3.5 Conclusive remarks

SBO consists of several interconnected steps, and each increase com-
plexity and uncertainty to the overall process. During this literature
review phase, we recognised the need to investigate SBO methods and
especially the effects of different meta-models when it comes to apply-
ing them to a hull shape optimisation typical at Van Oossanen N.A..
Moreover, no standard rules were ever proposed for how to proceed.
Therefore the thesis is trying to list guidelines to follow when building
up an SBO routine in this specific marine field. The central research
part is devoted to the study and comparison of possible methods, their
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advantages and drawbacks, and their performance, for every sub-topic
identified.

Firstly, an overview of what is optimisation is given. The number
of possible algorithms that can be used is vast, but can be lowered
down analysing the nature of design variables, of objective functions,
and constraints. Also, time limit and availability of the algorithm
implementation can help in the decision process. For this application,
the most promising solution is a combination of a global gradient-free
population-based algorithm (GA) and a local one.

Item Most promising solution

Optimisation Combination of global and local algorithms
– Global: GA
– Local: PS or QN

Sampling Sample size
– investigation required on tests to select a number
– keep in mind: (a) maximum number of simulations al-
lowed at Van Oossanen N.A.. (b) 103 rule [47] and Le
Bihan’s conclusions [54]

Sample method
– LHS or Halton sequence

Infill Balanced required between exploration and exploitation
– if KG is used: EI looks promising. To investigate.
– if KG is not used: combination of two methods

Convergence criteria
– investigation required for chosen method

Percentage of initial points over the total
– investigation is necessary
– keep in mind: Sobester’s recommendations to stay be-
tween 35% and 60% [88]

Surrogate Most promising: KG, ANN, RBF
– investigation is necessary on test functions
– keep in mind: (a) KG is the most used and supports EI.
(b) noise is inevitable and affects differently the models

Table 3.7: Summary of conclusions
drawn from literature review

Secondly, the initial sampling choice is analysed. The main concerns
recognised for this sub-topic are the sample size and the sample nature.
Nature is both by the distribution of points over the design space
(sampling method) and the presence of error in the experiments that
generate the points. For the first issue, the decision is to investigate the
effect of increasing sampling points on the quality of surrogate models
with the use of test functions. About the second, as noise is inevitable
in CFD simulation, the best possible methods seem to be the Halton
sequence and Latin Hypercube.

Then, the infill sampling criteria (how to improve the accuracy of
the surrogate adding points to the initial sampling plan) is described.
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The biggest issue is how to obtain a balance between exploration and
exploitation of the design space. For this application, the right solution
could be the Expected Improvement function.

Finally, a generic discussion and overview of meta-models are
given. When choosing which one to use, some important aspects are
the quantity of data available, the dimensionality and the complexity
of the solution surface, and the ease of use. After careful investiga-
tion, it looks like the three best models to test that are also available
in DAKOTA are Artificial Neural Network, Radial Basis Functions,
and Kriging. To properly test these methods, accuracy, robustness,
efficiency, and transparency must be taken into consideration. Few
techniques were found thriving in the literature to estimate accuracy:
prediction error concerning training data (RMSE, MaxAE), and predic-
tion error estimated by Cross-Validation. In the end, visualisation tools
are recognised as extremely important for the user to extract results
and detect anomalies. Scatter plots and histograms are among the most
used, because of their ease of use and generation.
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In Section 2.1.1, when SBO workflow was presented along with its
issues, the main problem about optimisation has risen: what method
is best for the kind of surfaces that are most commonly faced? More-
over, what influences that choice? We tried to give an overview of
the answers that other authors in literature gave to these questions in
Section 3.2. We saw that the number of possible algorithms that can
be used is vast, but it can be lowered down analysing the nature of
design variables, of objective functions, and constraints. As a reminder,
Table 4.1 summarises the typical features that affect the choice of opti-
misation algorithms typically encountered during this thesis at Van
Oossanen N.A.

Item Characteristic

Design variables From 2 to 4 (they represent geometrical features)

Objective function – Single objective (Hull total resistance)
– Possibility of extending to MOO or MDO in the
future

Surrogate surface: Cheap to compute, continuous,
and always positive

"Black-box" function: No assumptions can be made
on convexity, smoothness, (non-)linearity, (multi-)
modality

Constraints Simple bound (usually 0 ≤ G= ≤ 1)

Table 4.1: Summary of optimisation char-
acteristics typical at Van Oossanen N.A.

Also, time limit and availability of the algorithm implementation
can help in the decision process. In particular, for this application, the
most promising solution that was found (see Table 3.7) is a combina-
tion of a global gradient-free population-based algorithm and a local
one. As for the former, Genetic Algorithm appeared to be the most
widely used and the most suitable. While for the latter, the gradient-
free Pattern Search algorithm and the gradient-based Quasi-Newton
algorithm are the two best options available in DAKOTA.

4.1 Global search: Genetic Algorithm

Genetic Algorithm (GA), also called evolutionary strategy, uses “survival-
of-the-fittest” to weed out poor solutions and breed new solutions to
an optimisation problem [7]. It is based on the abstraction of Darwin’s
evolution of biological systems, and J. Holland and his collaborators
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pioneered it between the 1960s and 1970s [36]. According to this the-
ory, an individual (a geometry) with favourable genetic characteristics
(design variables) is most likely to produce better offsprings (lower
resistance). Selecting them as parent increases the probability that the
individuals of the next generation will perform better than the previ-
ous one. Information within a point is encoded as chromosomes, and
biological processes such as crossover and mutation are used to create
new individuals.

A GA based search can be viewed as a trade-off between the main-
tenance of sufficient diversity in the population to permit the coverage
of the entire solution space (exploration), and the need to converge on
the optimal solution within an acceptable time (exploitation) [19].

Genetic algorithms have two main advantages over other algo-
rithms: they can deal with complex problems and parallelism. Whether
the objective function is stationary or transient, linear or non-linear,
continuous or discontinuous, it can be dealt with by genetic algorithms
[50].

4.1.1 Workflow and parameters

The basic steps of a GA are depicted in Figure 4.1. Each step depends
on several variables or algorithms that can be adjusted to improve the
performance of the GA or to manipulate the degree of exploration or
exploitation that the GA exhibits [24]. For each of them, many different
possibilities can be used, but here only the main idea of how they work
is given. For more information readers are referred to manuals on the
topic [7] [24][24]: Goldberg (1988), ‘Genetic Algo-

rithms in Search Optimization and
Machine Learning’

[29].

Initial population The first step is the selection of a random initial
population. Its main characteristics are type and size;

Fitness Then, the algorithm has to select suitable parents from the
initial population and place them into a mating pool. These
individuals are further used for mating and generating new
offspring. Since the characters of these individuals are passed
to the next generation, only the individuals who have desirable
properties are selected. This transition is achieved by assigning
fitness values to each individual to evaluate its quality;

Crossover and Mutation Given two parent individuals, crossover and
mutation aim at creating an offspring individual that acquires
attributes from the parents. Crossover is used to combine the
desirable characters of two different parents. It is an analogous
process to the recombination that occurs in sexual reproduction
within a single chromosome (haploid) organisms. And mutation
is used to maintain genetic diversity by randomly flipping bits
of an individual chromosome;

Replacement A new population is defined after all new individuals
have been evaluated. Replacement, which controls how previous
populations and newly generated individuals are combined to
create a new population, is employed;
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Start

Random initial population
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Generation of
new individuals

Function evaluations
of new individuals
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new population

Convergence

End

true

false

Figure 4.1: Genetic Algorithm workflow

Convergence and stopping criteria Finally, the algorithm returns to
the selection of parents and continues until convergence criteria
are satisfied, or iteration limits are exceeded.

4.1.2 GA in DAKOTA

Genetic algorithms available in Dakota include coliny_ea and moga

methods. The former can return as output more than one best solution,
in order of lowest response function value while the latter is specifi-
cally designed for multi-objective problems. Both of them follow the
structure seen in Figure 4.1, and the user can modify the parameters
described in Section 4.1.1.

In the context of this thesis, coliny_ea is going to be used because
the focus is not on a MOO, and because it allows us to define more
than one possible starting point for the local search. This additional
feature allows GA to pass to the local algorithm more than one starting
point, and thus chances of not missing any local solution are enhanced.
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Table 4.2 gives a summary of which parameters are going to be used
in the validation tests in Chapter 8 and Chapter 9. The methods and
numbers were selected with two main criteria: or they are default and
recommended options available in DAKOTA, or they are commonly
recognised among researcher as a guarantee of the best solution. Fur-
ther investigations could be performed in future work; however, for
the scope of this thesis, the accuracy obtained with these values is
judged to be enough.

Table 4.2: Summary of parameters used
for GA in DAKOTA

a 3: dimension of problem, number of
variables

b If 1, then the offspring will tend to look
more like the first parent. If 0, then the
offspring will tend to look more like the
second parent. A value of 0.5, provides
equal input from each parent [7].

c Recommendations for the probability
of mutation ? ∈ [0, 1] for each individ-
ual bit have been determined empiri-
cally by several researchers, including
de Jong (1975) and Schaffer et al. (1989),
and are typically in the range 0.005 –
0.01.

Item Characteristic

Initial population Size: 503 a

Type: random (with eventual possibility to read the
points from a file)

Fitness Linear scaling of probability of parent selection
based on the rank order of each individual’s objec-
tive function within the population

Crossover Size: 0.8 (DAKOTA default value) b

Mutation Size: 0.01 c

Type: mutation offset uses a normal distribution

Replacement Size: 1 (DAKOTA default)

Type: creates a new population using the
replacement_size best individuals from the current
population, and population_size - replacement_-
size individuals randomly selected from the newly
generated individuals.

Convergence Stopping criterion: if change in the objective func-
tion between successive iterations divided by the
previous objective function is less than 1.� − 4.

Maximum number of function evaluations: 1000
(DAKOTA default)

4.2 Local search: Quasi Newton

One of the most efficient and robust local trajectory gradient-based
method is the Quasi Newton Broyden Fletcher Gordfarb Shanno
(BFGS) algorithm [87][87]: Sobester et al. (2014), ‘Aircraft

aerodynamic design: geometry and
optimization’

. It is an algorithm suitable to solve non-linear
unconstrained optimisation problems. Furthermore, its basic idea is
to seek a stationary point of a (preferably twice continuously differ-
entiable) function. A necessary condition to find the minimum is that
the gradient of the function is zero. In this method, the Hessian matrix
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is not computed, but it is approximated by analysing the successive
gradient evaluations.

From an initial point G0, its evaluation 5 (G0), its gradient 60 =

∇ 5 (G0), and an approximation of the Hessian matrix H0, at each itera-
tion : the algorithm performs the following steps [11]:

1. Calculate a search direction 3: by solving

H: 3: = −6: (4.1)

2. Perform a one direction optimisation (line search) to find an
appropriate step size _: in the same direction found in the first
step.

3. Update G:+1 = G: + _:3: .
4. Evaluate 6:+1 = ∇ 5 (G: + _:3: ) and decide whether to stop. If not

continue with next step.
5. Update Hessian approximation by setting B: = G:+1 − G: and
H: = 6:+1 − 6: and calculating, before going back to step one:

H:+1 = H: −
H: B: B

)
 
H:

B)
:
H: B:

+
H: H

)
:

B)
:
H:

(4.2)

This description hides many details of the method, for example, the
calculations in the line search. Nevertheless, it is sufficient to indicate
the essential characteristics of the method. For a more detailed descrip-
tion of the BFGS algorithm, see, for example, Dennis and Schnabel
(1983) [17].

In general, the gradient information is not just useful for the al-
gorithm to converge, but also for the user to identify what is called
a robust solution. Practically, the optimised design that works well
only in a given environment and performs poorly when the conditions
fluctuate slightly is likely to be less desirable than one whose peak
performance is lower, yet performs well in a variety of conditions. The
second design is called robust. Moreover, the surface over which we
are optimising is only approximated. Thus, we would often prefer a so-
lution for which a small variation in parameters still ensures the Naval
Architect to be in a resistance reduction area safely. If this does not
happen, only a slight change in geometry due to other constraints or
to construction uncertainties will lose the advantage given by the SBO.
Nonetheless, this analysis can be done analysing the surface gradients
visually without the explicit use of a gradient-based optimiser.

4.2.1 QN in DAKOTA

DAKOTA supports the BFGS method and allows the user to select the
desired maximum step that can be taken when computing a change
in the current design point. Also, stopping criteria can be set. It can
both be a limit on the maximum number of evaluations or a conver-
gence tolerance for the objective function or its gradient. The default
DAKOTA setting sets the limit at 6:+1 < 1.� − 4 to indicate the reach
of a stationary point.
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4.3 Local search: Pattern Search

Pattern Search (PS) methods can be applied to non-linear optimisation
problems when the information of gradients is missing or difficult to
obtain. These methods are best suited for efficient navigation to a local
minimum in the vicinity of the initial point. The selection of a suitable
initial point has a great part in the success of the method.

PS algorithms generally walk through the domain according to a
defined stencil of search directions. Some algorithms however have the
possibility to control of how the search pattern is adapted. The number
of trial points at each iteration grows linearly with the number of
variables. For a =-dimensional problem, each iteration of the algorithm
explores 2= directions. Of course, the number of iterations required
to approach a local solution typically also increases with =. Given the
function 5 , a starting point G0, an initial step length X0 > 0, a stopping
tolerance nstop > 0, and a solution target 5target, at each iteration : the
algorithm will [7]:

1. Evaluate 5 (C) for some C ∈ %: = {G: ± X:48 , with 8 = 1, 2, · · · , =}
with 48 the standard basis for a =-dimensional space.

2. If 5 (C) < 5 (G: ) than set G:+1 = C and keep the step length
(X:+1 = X: ). Otherwise, if 5 (C) > 5 (G: ) than keep the starting
point (G:+1 = G: ) and set X:+1 = 2X: with 2 a contract factor often
equal to 0.5.

3. Iterate point 1 and 2 until or X:+1 < nstop, or maximum number
of iterations is reached, or 5 (G:+1) < 5target.

Figure 4.2: A successful and an unsuc-
cessful iteration of a PS algorithm. From
Audet and Hare (2017) [7].

In point 2 of the algorithm, if the improvement is found (the first
case described), the iteration is called successful. Else, an unsuccessful
iteration is one where G: is shown to be an optimiser of 5 for the
discrete set %: , called the poll set. Figure 4.2 illustrates three iterations
of a PS algorithm on a problem with = = 2 variables. The initial point
is G0 = [2, 2]) and is represented by the dark circle. The initial step
length parameter X0 is chosen to be equal to one.

At the first iteration, the poll set %0 is represented by the four open
circles. The trial point [1, 2]) has an objective function value that is
less than 5 (G0), leading to a successful iteration. Iteration 1 starts with
G1 = [1, 2]) . However, iteration 1 fails in identifying a trial point in
the poll set %1 with a lower objective function value. Thus, iteration
2 starts with G2 = G1, but the step size parameter is cut in half, so the
new poll set %2 uses closer points.
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4.3.1 PS in DAKOTA

DAKOTA supports a Pattern Search algorithm with several options
that allow the user to gain control over the process. The most useful
and important ones to determine a successful optimisation are de-
scribed in Table 4.3. These values will be used in the validation tests
performed in Chapter 8 and Chapter 9.

Item Characteristic

Initial point G0 From global optimisation or user choice

Initial step size X0 = 0.2, 20% of the domain a

Contractor factor 2 = 0.5 (DAKOTA default and recommended value)

Convergence Step length-based: nstop = 1.� − 5 (DAKOTA default
value)

Based on objective function value (solution target, set
by user)

Stopping criteria Maximum number of function evaluation allowed:
1000 (DAKOTA default value)

Maximum number of iterations allowed: 100
(DAKOTA default value)

Table 4.3: Summary of parameters used
for PS in DAKOTA

a Remember: domain for our application
is [0, 1]3 with 3 the number of vari-
ables
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In this chapter, both the description of the initial sampling algo-
rithms is given (Section 5.1), as well as the infill sampling criteria
(Section 5.2).

5.1 Sampling methods

In Section 2.1.1, when SBO workflow was presented along with its
issues, the two main problems about sampling plans have risen: (i)
How many points are sufficient and necessary to represent the domain
fully? Moreover, what is the relation between this number and the
number of variables? (ii) Which points to chose in the domain? What
does this decision depend on? We tried to give an overview of the
answers that other authors gave to these questions in Section 3.3. We
saw that for the first question, no standard rule exists on what should
be the sample size. Furthermore, for the second, the best possible
methods seem to be the Halton sequence and Latin Hypercube.

5.1.1 Latin hypercube

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

G1

G2

Figure 5.1: LHS good sampling example
in R2 with ? = 8 sampling points

Latin Hypercube Sampling (LHS) was first proposed by McKay
et al. in 1979 [60] [60]: McKay et al. (1979), ‘Comparison

of Three Methods for Selecting Values
of Input Variables in the Analysis of
Output from a Computer Code’

and it is a method that allows to explore the hyper-
rectangle [;, D] ⊂ R= partitioning the range of each variable into ?

intervals. For each variable there will be exactly one element of the
sample set randomly selected in each of these ? intervals. Let Π be a
= × ? matrix in which each of its = rows is a random permutation of
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the row vector [1, 2, · · · , ?]. Than set

G
9

8
= ;8 +

(Π8, 9 − A8, 9 )
?

(D8 − ;8) (5.1)

for each 8 = 1, 2, · · · , = and 9 = 1, 2, · · · , ? and where A8, 9 ∈ R is ran-
domly chosen in the interval [0, 1)] return {G1, G2, · · · , G?} ⊂ R= [7].

Figures 5.1 and 5.2 shows three examples of LHS, using ? = 8 and
? = 25 points in [0, 1] × [0, 1] ⊆ R2. In the figures it is visible how there
is exactly one point in each line and in each column delimited by the
lines.

Figure 5.2: LHS sampling example in R2

with ? = 25 sampling points
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1
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However, a drawback could be that the generated matrix is not
repeatable because of the randomness. Also, the space-filling aspect
of space produced by this technique is not guaranteed to be good all
the time. Wang et al. (2007) [97] found that LHS is only uniform in
1-D projection. In fact we can see figure 5.3, compared to figure 5.1,
how with the same premises and equations the space is not adequately
covered.

Figure 5.3: LHS bad sampling example
in R2 with ? = 8 sampling points
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Therefore, a further improvement for a more uniform coverage
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of the space involves maximising the Euclidean distance 3? between
points 8 and 9 . For a =-dimension sampling the distance is defined in
equation 5.2.

3? (G8 , G 9 ) =
( 0∑
1=1

|G 91 − G81 |2
)1/?

(5.2)

for ? = 1 this is the rectangular distance and ? = 2 yields the Euclidean
norm. This method provides generally good uniformity and flexibility
on the size of the sample [44].

DAKOTA reference manual [3] states that Latin Hypercube Sam-
pling is very robust and can be adjusted to any problem. It is reason-
ably effective at determining the mean of model responses and linear
correlations with a moderately small number of samples relative to
the number of variables. Moreover, it is possible to use random seed
control. This provides a mechanism for making a stochastic method
repeatable. That is, when the same seed is used in identical studies,
the results will be identical.

5.1.2 Halton sequence

Halton sequence was firstly introduced by Halton in 1960 [31] [31]: Halton (1960), ‘On the efficiency
of certain quasi-random sequences of
points in evaluating multi-dimensional
integrals’

. It
is a quasi-random low-discrepancy sequence that can be used in :

dimensions. The points in the sequence are specially designed to fill a
[0, 1): unit cube in a uniform way.

Let ' ≥ 2 be an integer, then any other integer = ≥ 0 can be written
in the radix-' notation as:

= = =0 + =1' + =2'
2 + · · · + ="'" (5.3)

with 0 ≤ '8 < = and where " = [ln =/ln '] with square brackets
denoting the integral part. By using a radical inverse function i, we
can uniquely construct a fraction lying between 0 and 1

i' (=) = =0'
−1 + =1'

−2 + · · · + ="'−"−1 (5.4)

The Halton sequence in :-dimensions {x1} is then defined as:

x= = (i'1 (=), i'2 (=), · · · , i': (=)) (5.5)

for = = 1, 2, · · · , # .

In figure 5.4 we can see the first 25 points of the Halton sequence in
the space [0, 1)2. To generate this results, for G1 the sequence was based
on ' = 2. This means that the horizontal space was firstly divided
in half, then in fourths, eights, etc., generating the fractions (without
repetitions):

1
2

,
1
4

,
3
4

,
1
8

, · · · (5.6)

On the other hand, for G2 the sequence was based on ' = 3, meaning
the vertical space was divided in thirds, ninths, twenty-sevenths, etc.
This generated:

1
3

,
2
3

,
1
9

,
4
9

, · · · (5.7)
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Figure 5.4: Halton sequence example in
two dimensions with 25 sampling points
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when pairing the fractions in 5.6 and 5.7, we obtain the coordinates of
the points. Th first four points of the sequence are numbered in Figure
5.4 and are: (

1
2

,
1
3

)
,

(
1
4

,
2
3

)
,

(
3
4

,
1
9

)
,

(
1
8

,
4
9

)
(5.8)

One of the advantages of the Halton sequence is its ease of imple-
mentation. Wang et al. (2007) [97] wrote that Hammersley, thus also
Halton, sampling is found to provide a better uniformity than Latin
Hypercube designs. However, for a low number of sampling points or
a too high number of variables : , the method does not assure adequate
space-filling.

5.2 Infill sampling criteria

In Section 2.1.1, when SBO workflow was presented along with its
issues, the two main problems about infill sampling plans were risen:
(i) How many points should be used in the refinement phase? More-
over, what is the ratio between this number and the number of initial
sampling points? (ii) Which points to chose in the domain? How to
balance a global and a local search? We tried to give an overview of
the answers that other authors gave to these questions in Section 3.3.
We saw that for the first question a common practice is to use approxi-
mately between a third and two-thirds of the total number of available
points. Furthermore, for the second, the best possible methods seem
to be the Expected Improvement. However, this can be only used with
Kriging surrogate model. Thus, also, an alternative was selected.

5.2.1 Expected improvement

As already established in Section 3.3.3, the Expected Improvement
(EI) algorithm is promising but can be applied only with a Gaussian
process-based model, such as Kriging, discussed more in detail in
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Section 6.3 or RBF, discussed in Section 6.2. Moreover, the reason
is that this surrogate model gives as output, not just the prediction
of value ( 5̂ ) for each point of the domain x, but also an estimated
error. The error is in the form of a standard deviation. We model the
uncertainty of the prediction by considering it as the realisation of
a normally distributed random variable . (x) with mean 5̂ = Ĥ(x)
(the most likely prediction) and a variance B̂ 2 (x). In Section 6.3.1, the
derivation of how to calculate it will be given.

Figure 5.5: A RBF prediction of the true
function 5 (G) = (6G − 2)2 sin (12G − 4)
with 3 initial samples and 5 refinement
points. From Forrester et a. (2008) [23].

For now, it is only important to understand that when performing
an infill strategy, the wish it to position the next point at the value
of x that will lead to an improvement of the best observed data so
far, Hmin. The Improvement is � = Hmin −. (x) and the Probability of
Improvement (PoI) is defined as:

%[� (x)] = 1

B̂
√

2c

∫ 0

−∞
exp

(
− (� − Ĥ(x))

2

2B̂ 2

)
3� (5.9)

But it is usually calculated using the error function:

%[� (x)] = 1
2

[
1 + erf

(
Hmin − Ĥ(x)

B̂
√

2

)]
(5.10)

When B̂ = 0 also %[� (x)] = 0, so there is no possibility of re-sampling.
Equation 5.10 is interpreted graphically in Figures 5.5 and 5.6, taken
from [23]. The first figure shows the Radial Basis Function prediction
of the true function 5 (G) = (6G − 2)2 sin (12G − 4) with 3 initial samples
and 5 refinement samples selected with a minimum prediction based
infill strategy (see Section 5.2.2).

The second represents the Probability of Improvement for the same
prediction. The highest probability is in the local minimum found by
RBF, but there is also a PoI in the region where points are most scarce.
This Figure 5.6 indicates where an improvement might be found, but
it does not show how big that improvement could be. To calculate
the amount of improvement that we expect, given the mean Ĥ(x) and
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variance B̂ 2 (x), we use the Expected Improvement (EI) function given
by:

Figure 5.6: The probability of improve-
ment in the prediction shown in Figure
5.5. From Forrester et al. (2008) [23].

� [� (x)] =


(
Hmin − Ĥ(x)

)
Φ

(
Hmin−Ĥ (x)
B̂ (x)

)
+B̂q

(
Hmin−Ĥ (x)
B̂ (x)

)
if B̂ > 0

0 if B̂ = 0

(5.11)

where Φ(.) and q(.) are the cumulative distribution function and the
probability density function respectively. Like %[� (x)], also � [� (x)] = 0
when B̂ = 0. This is why a maximum expected improvement infill
procedure will eventually find the global optimum [23]. Equation 5.11
can be evaluated using the error function:

� [� (x)] =
(
Hmin − Ĥ(x)

) [
1
2
+ 1

2
erf

(
Hmin − Ĥ(x)

B̂
√

2

)]
+

+ B̂ 1
√

2c
exp

[
−(Hmin − Ĥ(x))2

2B̂ 2

)]
(5.12)

Plotting the EI function for the prediction in Figure 5.5 for all values
of x yields the plot in Figure 5.7. In contrast to the PoI in Figure 5.6,
the EI is greatest in the unsampled area of the global minimum. This is
because, although there is a high probability of some improvement at
the point that maximises %[� (x)], the actual amount of improvement
is likely to be greater at the point that maximises � [� (x)].

In conclusion, for most applications maximising � [� (x)] will pro-
vide the best route to finding the global optimum. However, the
method could be tricked by a particularly weak or unlucky initial
sample and a very deceptively positioned optimum [23].
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Figure 5.7: The Expected Improvement
in the prediction shown in Figure 5.5.
From Forrester et al. (2008) [23].

EI in DAKOTA

DAKOTA implementation of the Expected Improvement function
makes use of the so-called Efficient Global Optimisation (EGO), firstly
developed by Jones, Schonlau, and Welch [47]. There are two ma-
jor differences between DAKOTA implementation and that of [47]:
DAKOTA uses a DIRECT 8 8: A DIvision of RECTangles (DIRECT)

algorithm adaptively subdivides the
space of feasible design points to guar-
antee that iterates are generated in the
neighbourhood of a global minimum in
a finite number of iterations.

algorithm to find points which maximise
the EI. Second, multi-objective optimisation and nonlinear constraints
are allowed. For more information see DAKOTA’s Theory [4] and User
[5] Manuals. The general procedure for this EGO-type method is:

1. Build an initial Gaussian process model of the objective function;
2. Find the point that maximises the EI function. If the relative

change of the new point compared to the previous is sufficiently
small, stop;

3. If the EI function value at this point is sufficiently small, stop;
4. Evaluate the true objective function at the point where the EI

function is maximised. Update the Gaussian process model using
this new point;

5. Return to the previous step.

As an example, Figure 5.8 shows the process of a search of the
test function 5 (G) = (6G − 2)2 sin (12G − 4) in the range [0, 1] using a
maximum � [� (x)] infill strategy starting from an initial sample of
three points. Kriging meta-model and DAKOTA toolkit were used.
We can see that to begin; the search isolates the local optimum to the
left of the plot. However, afterwards, there is still an expectation of
improvement to the right, and so the global optimum is found in nine
steps.

In conclusion, there are three possible stopping criteria for this
method: a x-convergence tolerance, an Expected Improvement conver-
gence tolerance, and a maximum number of iterations allowed.
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Figure 5.8: The progress of a search of the one-variable test function 5 (G) = (6G − 2)2 sin (12G − 4) in the range [0, 1] using a maximum
� [� (x) ] infill strategy
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5.2.2 Minimisation of f̂

This method is one of the most common when performing local ex-
ploitation. It works in an iterative scheme where optimisation is per-
formed on a surrogate level. Given a set of points where the true
function 5 (x) is known, each iteration:

1. The optimal solution of the surrogate model is found. Then this
solution is passed to the next iteration;

2. The optimum surrogate point is evaluated with the truth model.
This solution is added back to the set of points upon which the
next surrogate is constructed.

This way, the optimisation acts on a more accurate surrogate model
during each iteration, presumably driving to optimality. However, this
method has a high risk of missing the global minimum, especially
when the initial sampling plan was somehow deceiving or scarce.

Minimisation of f̂ in DAKOTA

This method in DAKOTA is called Surrogate Based Global (SBG).
In each iteration, the optimum is searched in the whole domain, as
opposed to Surrogate Based Local (SBL) where each iteration also a
different trust region is defined. It was originally designed for Multi-
Objective Optimisation via Genetic Algorithm. Some cautionary notes
are given in the User’s manual [5] when approaching this method:

I This approach has no guarantee of convergence;
I One might first try a single minimisation method coupled with a

surrogate model before using the surrogate-based global method.
This is essentially equivalent to setting the maximum number of
iterations to 1 and will allow one to get a sense of what surrogate
types are the most accurate to use for the problem;

I Also note that one can specify that surrogates be built for all
primary functions and constraints or only a subset of these func-
tions and constraints. This allows one to use a "truth" model
directly for some of the response functions, perhaps due to them
being much less expensive than other functions;

I We initially recommend a small number of maximum iterations,
such as 3-5, to get a sense of how the optimisation is evolving as
the surrogate gets updated. If it appears to be changing signifi-
cantly, then a larger number (used in combination with restart)
may be needed.

In conclusion, this method alone is not enough to capture a global
optimum inside the domain. Its performance could be enhanced by
adding points in areas of scarce sampling (exploration). Furthermore,
from the recommendations in the DAKOTA manual, it looks like
this implementation of the method is not suitable for an automated
routine.



62 5 Design space exploration

5.2.3 Distance approach

When performing a global exploration of the design space, one of the
most used method is the Maximin Distance Approach. This method
usually consists of four steps. Given a set of points where the true
function 5 (x) is known, each iteration:

1. A surrogate model is constructed;
2. A candidate set is created and scored based on the maximin

function;
3. The best point from the set is selected to be evaluated with the

truth model. Given the existing sample set x% of ; points, the
Maximin Distance approach is to select a new sample set x� of
< points to maximise the minimum distance between any two
sample points in the sample set x� = x� ∪ x% of (; +<) points
such that:

max
x�

[
x�8≤x�9

min
1≤8≤<, 1≤ 9≤(;+<)

(
3 (x�8 , x�9 )

)]
(5.13)

with 3 the Euclidean distance, defined in 5.2;
4. This new point is added to the set of true points and the approach

returns to step 1, unless a maximum number of evaluations is
reached.

Distance approach in DAKOTA

DAKOTA has a method available called Adaptive Sampling (AS). It
can generate one or a batch of points to add at the time based on scores
given to each candidate. A candidate’s score is the Euclidean distance
in domain space between the candidate and its nearest neighbour
in the set of points already evaluated on the exact model. Therefore,
the most undersampled area of the domain will always be selected.
Note that this is a space-filling metric. However, the adaptivity of this
method could be brought to question as it would choose the same
points regardless of the surrogate model used.

Unfortunately, by the time this thesis is written, this is an exper-
imental capability, even though a new DAKOTA version is about to
be released. Thus, another possibility to perform a global exploration
of the space is to add more points to the initial sampling plan with a
space-filling technique, like the ones described in Section 5.1.
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In Section 2.1.1, when SBO workflow was presented along with its
issues, the three main problems about surrogate models have risen: (i)
Which factors influence the choice of a meta-model over the others?
What are the factors that characterise a common case at Van Oossanen
N.A.? (ii) How to assess the model accuracy? Furthermore, which fac-
tors play a role in measuring their performance? (iii) How to properly
visualise the surrogate models? We tried to give an overview of the
answers that other authors gave to these questions in Section 3.4. The
results are summarised again in Table 6.1.

Issue Conclusion

Factors that influence the choice Quality of data available
Dimensionality of solution space
Complexity of solution surface
Degree of noice associated with data
Ease of use

Model accuracy Performance measured through:
– Accuracy
– Robustness and flexibility
– Efficiency
– Transparency
– Conceptual simplicity

Metrics
– RMSE
– MaxAE
– CV and LOO
– CPU time

Visualisation tools Histogram and scatterplots of vari-
ables G and objectives 5
Plots of approximated function 5̂

over each variable

Table 6.1: Summary of conclusions
drawn from the surrogate model liter-
ature review

The three most promising meta-models that we are going to analyse
more in detail are Artificial Neural Network, Radial Basis Functions,
and Kriging.

6.1 Artificial neural network

Artificial Neural Networks (ANN) can be described as a big parallel,
interconnected network of basic computing elements that process
information imitating the functioning of the brain. Analogous to the
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biological model, which consists of a large number of neurons, ANN
has many similarly connected computational elements referred to as
artificial neurons or nodes. A neural network is created by assembling
neurons into a network architecture [30].
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Figure 6.1: ANN diagram

The form with widest application in the area of meta-modelling is
the Feed-Forward Neural Network (FFNN), in particular Multi-Layer
Perceptron (MLP) [57] [74] [86]. It consists of a series of input nodes,
connected to output nodes via one or more intermediate layers, called
hidden layers (Figure 6.1). Also, each neuron in a layer is connected to
every neuron on the next one but neither connections between units
in the same level nor closed-loops, feedback, are allowed. The neural
network is trained by presenting it pairs of input and output data
and then iteratively adjusting weights in the connections between
computing elements so that its output matches the known output
data. Once trained, the networks can be used to replace complex and
time-consuming analysis procedures [8].

The number of hidden layers and elements in the network can
vary, and finding the optimal network architecture for fitting a given
data-set is a non-trivial problem. Having too many hidden neurons
means the system is overspecified, and incapable of generalisation, on
the other hand having too few can prevent the system from adequately
fitting the input data, and reduces its robustness [56].

The input data is used to compute the output of each unit through
an activate function. In general, it is a non-linear fixed function that
must be chosen by the user. Figure 6.2 displays its functioning and its
generic formulation is shown in equation 6.1.

Ĥ = Ψ

( :∑
8=1

F8G8 + 1
)

(6.1)
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G2 F2 Σ Ψ

Activate
function

Ĥ
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Figure 6.2: Activation function opera-
tion flow chart

where : is the number of sample points, G8 are the inputs of the neurons,
F8 are the corresponding weights of the 8th input. Ψ is the activation
function and 1 is a possible source of noise. Back-propagation is one of
the most commonly used learning algorithms to determine the weights
which minimises the global error by gradient decent [77] [77]: Rumelhart et al. (1986), ‘Learning

representations by back-propagating
errors’

.

ANNs ensure few advantages when applied to pattern recogni-
tion problems. No prior assumptions about the data distribution are
needed as ANNs adjust themselves to the particular problem con-
straints during the learning process. Also, according to Sarle (1994)
[80], they are general-purpose, flexible, non-linear models that, given
enough hidden neurons and enough data, can approximate virtually
any function to any desired degree of accuracy.

However, as ANN learn by example, it requires a large amount of
data to be trained appropriately, and the user requires some knowledge
of how to select and prepare the data [56]. Neural networks are highly
prone to the risk of over-fitting [74].

Pros Cons

– No prior assumptions about data
distribution are needed

– Very flexible for different prob-
lems

– Can deal with non-linear data
and large problems

– It requires a large amount of data
to be trained

– The user must have some knowl-
edge of how to select and prepare
the data

Table 6.2: Pros and cons of Artificial Neu-
ral Network

6.1.1 ANN in DAKOTA

The ANN surface fitting method in Dakota employs a Stochastic Lay-
ered Perceptron (SLP) artificial neural network based on the direct
training approach of Zimmerman [104]. The SLP ANN method is de-
signed to have a lower training cost than traditional back-propagation
neural networks. The form of the SLP ANN model is shown in equa-
tion 6.2. The hyperbolic tangent function is a common activation func-
tion since it has been demonstrated that it provides fast convergence
of training algorithms.

5̂ (x) ≈ tanh(tanh((xG0 + \0)G1 + \1)) (6.2)
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where G is the current point in =-dimensional parameter space, and
the terms G0, \0, G1, \1 are the matrices and vectors that correspond to
the neuron weights and offset values in the ANN model. These terms
are computed during the ANN training process and are analogous
to the polynomial coefficients in a quadratic surface fit. A singular
value decomposition method is used in the numerical methods that
are employed to solve for the weights and offsets.

The SLP ANN is a non-parametric surface fitting method. Thus, it
can be used to model data trends that have slope discontinuities as
well as multiple maxima and minima. However, the ANN surface is
not guaranteed to exactly match the response values of the data points
from which it was constructed [5].

Three non-compulsory options can be used in Dakota to modify
the characteristics of SLP ANN [3]. They are:

Correction factors, which force the surrogate models to match the true
function values and possibly true function derivatives at the cen-
tre point of each trust region. Currently, Dakota supports either
zeroth-, first-, or second-order accurate correction methods, each
of which can be applied using either an additive, multiplicative
or combined correction function. The default behaviour is that
no correction factor is applied.

Max_nodes that limits the maximum number of hidden layer nodes
in the neural network model. The default is to use one less node
than the number of available training data points yielding a fully-
determined linear least squares problem. However, reducing the
number of nodes can help reduce over-fitting and more impor-
tantly, can drastically reduce surrogate construction time when
building from a large data set.

Range that controls the range of the input layer random weights in
the neural network model. The default range is 2.0, resulting in
weights in (−1, 1).

6.2 Radial basis functions

Radial Basis Functions (RBF) have been developed for scattered multi-
variate data interpolation (Hardy, 1971 [33]; Dyn, et al., 1986 [18]). It is a
model that from the sampling plan x = {G (1) , G (2) , · · · , G (=) }) , yielding
the responses y = {H (1) , H (2) , · · · , H (=) }) , uses a linear combination of
weighted basis functions whose value only depends on the Euclidean
distance A (8) = ‖ x − c (8) ‖. Here c (8) is the sampling point position and
x is the prediction site. The formulation of this model is identical to
that of a single-layer neural network with radial coordinate neurons
[23]. The approximation to the design space 5̂ is given in equation
6.3

5̂ (x) = w)7 =
<∑
8=1

F8k

(
‖ x − c (8) ‖

)
(6.3)
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where w are the weights, one for each function, and 7 is the <-vector
containing the values of the basis functions k(A). Examples of com-
monly used basis functions, with the main feature of having a response
that decreases (or increases) monotonically with distance from the cen-
tral point, are:

I Cubic:
k(A) = A3 (6.4)

I Gaussian:
k(A) = 4−A

2/(2f2) (6.5)

I Multi-quadratic or inverse multi-quadratic:

k(A) = (A2 + f2)±1/2 (6.6)

where f2 is the variance: a constant shape parameter greater than zero
that represents the sensitivity, or spread, of the basis function over the
input domain. Usually, this value is assumed identical for all functions.
Figure 6.3 shows three examples of one-dimensional Gaussian func-
tions, with its characteristic symmetric "bell curve" shape. Each curve
has the same peak centre position (2 = 0), but different variance f2.
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Figure 6.3: Examples of Gaussian Distri-
bution functions

Whether a set of parametric basis functions or fixed ones are chosen,
the weights w are easy to estimate. The fundamental condition is that
in the = points where the responses y are known, the predictor 5̂ gives
the same values. This can be done via the interpolation condition in
equation 6.7

5̂ (x ( 9) ) =
<∑
8=1

F8k

(
‖x − c (8) ‖

)
= H ( 9) , 9 = 1, · · · , = (6.7)

Equation 6.7 is linear in terms of the basis function weights w, yet the
predictor 5̂ can express highly non-linear responses [22]. One of the
conditions of obtaining a unique solution is that the system 6.7 must
be "square", that is < = =. It also simplifies things if the bases actually
coincide with the data points (c (8) = x (8) , ∀ 8 = 1, · · · , =). This leads
to the matrix equation

	w = y (6.8)
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where 	 denotes the so-called Gram Matrix, defined as

	8, 9 = k

(
‖x (8) − x ( 9) ‖

)
, 8, 9 = 1, · · · , = (6.9)

The solution for the method is therefore the definition of weights via
the computation of w = 	−1y and the choice of which basis function to
use is important to insure a safe computation. For example, it can be
shown that, under certain assumptions, Gaussian and inverse multi-
quadratic basis functions always lead to a symmetric positive definite
Gram Matrix [93], ensuring safe computations.

Beyond determining w, another task is to estimate other parameters
introduced by the basis functions, such as f. While the correct choice
of w will make sure that the approximation can reproduce the training
data, the correct estimation of these additional parameters will enable
us to minimise the (estimated) generalisation error of the model [23].

It is also worth mentioning that very close proximity of any two
points in x can cause ill-conditioning [62]. This is a rather unlikely
event if x is a space-filling sampling plan, but can become a nuisance if
clusters of infill points (see chapter Chapter 5) are added subsequently
in specific areas of interest within the design domain.

In conclusion, Radial Basis Function models have satisfactory flexi-
bility, simple structures, relatively few calculations and high-efficiency
[43]. Another advantage of the model is its ability to fit many different
functions, because of the freedom to choose different basis functions
and different values for the weights [71]. Moreover, it has a closed-form
solution, which allows the model to be robust and cheap to compute,
and its application is relatively straightforward, as no parameters need
to be specified by a user [44].

However, a weakness of the model is that if the responses y are
corrupted by noise, the above equations may yield a model that over-
fits the data, that is it does not discriminate between the underlying
response and the noise [22]. Moreover, over-fitting 1010: Over-fitting occurs when the model

is, in some sense, too flexible and it fits
the data at a too fine-scale, that is it fits
the noise, as well as the actual underly-
ing behaviour we are seeking to model
[23]

may also occur.
The risk of over-fitting is higher when there are very few design sites
relative to the number of parameters to be tuned [74]. Finally, RBF
ability to model highly non-linear surfaces is limited when the number
of sampling points is not high enough.

Table 6.3: Pros and cons of Radial Basis
Function Pros Cons

– Ok with non-linear problems
(but with enough training points)

– Very robust

– Closed form solution

– Cheap to compute

– It requires a high number of sam-
pling points (for highly non-linear
problems)

– Sensitive to noise
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6.2.1 RBF in DAKOTA

The only basis function supported in DAKOTA is the Gaussian one
already described in equation 6.5, therefore we can write for the design
space approximation:

5̂ (x) =
=∑
8=1

F8 · exp
(
−(A (8) )2

2f2

)
(6.10)

DAKOTA implementation determines the weights via a linear least
squares solution approach. See [66] [66]: Orr (1996), ‘Introduction to radial

basis function networks’
for more details. Four optional

options can be used in Dakota to modify the characteristics of RBF [3].
They are:

Correction factors, see Section 6.1.1.
Bases that modify the initial number of radial basis functions <. The

default value is the smaller of the number of training points and
100. Thus caution is recommended when the number of training
points = is higher than 100, and this value is not accordingly
changed, as the condition of obtaining a unique solution < = =

would not be met.
Max_pts that control the maximum number of points to use in gen-

erating each RBF centre. Default value is 10 · [bases]. Reducing
this number will reduce the model building time.

Max_subset, which is the number of passes to take to identify the
best subset of basis functions to use. Defaults to the smaller of 3 ·
[bases] and 100.

6.3 Kriging

Kriging (KG) is named after the work in 1951 of Krige, a South African
mining engineer, addressing problems in geostatistics [51]. More re-
cently, Sacks et al. [79] [78], and Jones et al. [47] made it popular in the
context of the modelling, and optimisation of deterministic functions,
respectively. Starting from a set of sample data, ^ = {x (1) , x (2) , · · · , x (=) }) ,
with observed responses, y = {H (1) , H (2) , · · · , H (=) }) , the goal is to find
an expression for a predicted value at a new point x. The Kriging
prediction is based on the combination of a polynomial model and
departures of the form:

Ĥ(x) = ̂̀(x) + / (x) + Y(x) (6.11)

where Ĥ is the approximated unknown function of interest, and ̂̀ (the
circumflex denotes a maximum likelihood estimate, MLE) is a mean
base term that provides a "global" model of the design space. The
general case, where ̂̀ is not restricted, is called universal Kriging. In
many cases, however, it is simply taken to be a constant term [86] and
this is often called ordinary Kriging. Y represents the approximation
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error and / is a set of = random vectors:

/ (x) =
(
/ (x (1) ) · · · / (x (=) )

))
(6.12)

The random field is built with 1` 1111: 1 is a = × 1 column vector of ones mean. The functions have vari-
ance f2, and non-zero covariance. A = × = correlation matrix 	 is
constructed as:

	 =

©­­­«
corr[/ (x (1) ), / (x (1) )] · · · corr[/ (x (1) ), / (x (=) )]

...
. . .

...
corr[/ (x (=) ), / (x (1) )] · · · corr[/ (x (=) ), / (x (=) )]

ª®®®¬ (6.13)

A variety of correlation functions can be chosen [85], however, the
Gaussian correlation basis function proposed in Sacks, et al. in 1989
[79] is the most frequently used. Here : is the number of dimensions
in the search space.

corr[/ (x (8) ), / (x (;) )] = k (8) = exp
(
−

:∑
9=1

\ 9 ‖G (8)9 − G
(;)
9
‖ ? 9

)
(6.14)

In particular, correlation and covariance are related as reported in
equation 6.15:

cov[/ , /] = f2corr[/ , /] (6.15)

With the covariance matrix I defined as:

I = cov[/ , /] =
©­­­«
cov[/ (1) , / (1) ] · · · cov[/ (1) , / (=) ]

...
. . .

...
cov[/ (=) , / (1) ] · · · cov[/ (=) , / (=) ]

ª®®®¬ (6.16)

Covariance is a measure of the correlation between two or more sets
of random variables. This assumed correlation between sample data
reflects the expectation that an engineering function will be smooth
and continuous [23]. It is defined in general as:

cov[- ,. ] = � [(- − `- ) (. − `. )] = � [-. ] − `- `. (6.17)

where `- and `. are the means of X and Y and E is the expectation.

Looking at equation 6.14, we can see similarities with Gaussian
basis function introduced for RBF model in equation 6.5. Where a
Gaussian radial basis function has 1/f2, the Kriging basis has a vector
) = {\1, \2, · · · , \: }) , allowing the width of of the basis function to
vary from variable to variable along the :-th direction. An example
of how it works is given is figure 6.4. It shows how the choice of \ 9
affects the correlation. It is essentially a width parameter that affects
how far a simple point’s influence extends. A low \ 9 means a high
correlation, with / (G (8)

9
) being similar across the sample. Therefore

\ 9 can be considered as a measure of how active the function we are
approximating is [23].

Also, where in the Gaussian basis (Eq. 6.5) the exponent is fixed
at 2, giving a smooth function through the point x (8) , Kriging (Eq.
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6.14) allows this exponent p 9 = {?1, ?2, · · · , ?: }) to vary. Typically
? 9 ∈ [1, 2] for each dimension in x. With p fixed at ? (1,2,· · · ,:) = 2 and
with constant \ 9 for all dimensions, the Kriging basis function is in
fact the same as the Gaussian. An example of how p works is given
is figure 6.5. It shows how it affects the smoothness of the correlation
function. With ? 9 = 2.0 there is a smooth correlation with a continuous
gradient through G (8)

9
− G 9 = 0. Reducing ? 9 increases the rate at which

the correlation initially drops as |G (8)
9
− G 9 | increases. With a very low

value of ? 9 = 0.1 there is no immediate correlation between the two
points and there is a near discontinuity between / (x (8)

9
) and / (x 9 )

[23].
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The hyperparameters p and ) are estimated via the Maximum
Likelihood Estimation (MLE) of y. This has the purpose of minimising
the generalisation error of the model. The likelihood function for this
Gaussian process expressed in terms of the sample data is:

! =
1

(2cf2)=/2 |Ψ |1/2
exp

(
− (y − 1`)) 	−1 (y − 1`)

2f2

)
(6.18)

To simplify the likelihood maximisation, the natural logarithm can be
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used. Therefore equation 6.19 has to be maximised:

ln (!) = −=
2

ln (2c) − =
2

ln (f2) − 1
2

ln |Ψ| − (y − 1`)) 	−1 (y − 1`)
2f2

(6.19)
By taking the derivatives of equation 6.19 and setting to zero, we obtain
maximum likelihood estimates (i.e. best guesses) for ` and f2:

̂̀= 1) 	−1 y

1) 	−1 1
(6.20)

f̂2 =
(y − 1`)) 	−1 (y − 1`)

=
(6.21)

These MLEs can now be substituted back into equation 6.19 and con-
stant terms removed to give what is known as the concentrated ln-
likelihood function. The value of this function depends only on un-
known parameters ) and p.

ln (!) ≈ −=
2

ln (f̂2) − 1
2

ln |Ψ| (6.22)

Maximising equation 6.22, we get an estimate of the hyperparameters
and Equations 6.20 and 6.21 are used to estimate ̂̀and f̂2. Eventually,
the predicted approximated function Ĥ is given by:

Ĥ = ̂̀+ 7) 	−1 (y − 1̂̀) (6.23)

where the basis functions are contained in the vector 7. Also, the model
is constructed in such a way that the prediction goes through all the
data points. In this case 7 is the 8-th column of 	 and thus 7	−1 is the
8-th unit vector. Thus:

Ĥ(x) = ̂̀+ H (8) − ̂̀= H (8) (6.24)

6.3.1 KG uncertainty

The Mean Square Error (MSE) in a Gaussian process based prediction
such as Kriging (KG) is defined as:

B̂ 2 (x) = f2
(
1 − 7)	−17 + 1 − 1)	−17

1C	−11

)
(6.25)

The derivation of this equation can be found in Sacks et al. (1989) [79].
Equation 6.25 provides an estimate of the accuracy of the

The third term inside the parenthesis, which is due to uncertainty
in the estimate of `, is very small and is often omitted [23]. Always
in equation 6.25, the first component in the parenthesis is the gen-
eralised least square prediction at a specific point given the design
covariance matrix I, while the second component pulls the gener-
alised least square response surface through the observed points. We
have seen how the elasticity of the response surface is determined by
the correlation function k (8) [49].
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In fact, if we are calculating B̂ 2 (x) at a sample point x (8) , 7	−1 is
the 8-th unit vector. Thus

7)	−17 = 7) 1 = k (8) = exp
(
−

:∑
9=1

\ 9 ‖G (8)9 − G
(8)
9
‖ ? 9

)
= 1 (6.26)

1)	−17 = 1) 1 = 1 (6.27)

Substituting Equations 6.26 and 6.27 into Equation 6.25, yields B̂ 2 (x) =
0. This follows the intuition that if we are interpolating a point at
which we know the answer, the error in the prediction must be zero.

Furthermore, it is convenient to work with the square root of the
the mean square error B̂ =

√
B̂ 2 (x). This provides a standard error

for measuring uncertainties in our prediction [46]. This way, a 95%
Confidence Interval (CI) can be defined as (±2 B̂ ) as described by
Koehler and Owen (1996) [49].

6.3.2 KG with nugget effect

When noisy observations are considered, a diagonal matrix must be
added to the covariance matrix I:

IΔ = I + � (6.28)

where � = diag[var(Y1), var(Y2), · · · , var(Y=)] contains the variances
of the observations. Kriging method is thus only modified by using
IΔ instead of I. Figure 6.6 shows a Kriging model based on noisy
observations. Each observation has a different noise variance. CI is the
95% Confidence Interval [70].

Figure 6.6: Example of Simple Kriging model with noisy observations. The bars represent ± two times the standard deviation of the
noise. The Kriging mean does not interpolate the data, and the Kriging variance is non-null at the observation points. From Picheny,
2009 [70].
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Among the advantages of the model, we count the fact that Kriging
is the right choice for high-dimensional problems [43], and it can deal
with applications that have small sampling data available. With the
Co-KG variant, Kriging model can also deal with high and low fidelity
input data. Simpson et al. (2001) [86] underline that if the function
to be modelled is deterministic and highly non-linear in a moderate
number of factors (less than 50), then KG may be the best choice.

However, Kriging has limited applicability when the number of
design sites is large, mostly because determining the correlation pa-
rameters through the maximum likelihood estimation methodology
can become computationally demanding [74] [44]. Over-fitting may
also occur, and the risk is higher when there are very few design sites
relative to the number of parameters to be tuned [74]. Finally, the
correlation matrix can become singular if multiple sample points are
spaced close to one another or if the sample points are generated from
particular designs [44].

Table 6.4: Pros and cons of Kriging Pros Cons

– Can deal applications with small
sampling data

– Can deal with highly non-linear
problems

– Flexible for different problems
and large data

– Sensitive to noise

– Risk of ill-conditioned correlation
matrix

– High computational time

6.3.3 KG in DAKOTA

Currently, the Gaussian correlation function is the only option for the
Kriging version included in DAKOTA. The form of the Gaussian Pro-
cess is therefore the one presented in equation 6.23. The terms in the
correlation vector and matrix are computed using a Gaussian corre-
lation function and are dependent only on an :-dimensional vector
of correlation parameters, ) = {\1, \2, · · · , \: }) . By default, DAKOTA
determines the value of ) using a Maximum Likelihood Estimation
(MLE) procedure. However, the user can also opt to manually set them
by specifying a vector of correlation lengths l = {;1, ;2, · · · , ;: }) , where
\8 = 1/(2 ;2

8
) [5].

Six non-compulsory options can be used in Dakota to modify the
characteristics of KG [3]. They are:

Correction factors, see Section 6.1.1.
Trend functions, whose purpose is to capture large-scale variations.

Currently, only polynomials are supported (constant, linear, re-
duced quadratic, and quadratic). The reduced quadratic trend
function includes the main effects, but not mixed/interaction
terms.

Optimisation_method that changes the method used to find the op-
timal values of the hyper-parameters governing the trend and
correlation functions. By default, the global optimisation method
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DIRECT is used for Maximum Likelihood Estimation (MLE), but
other options for the optimisation method are available.

Max_trials that is the maximum number of likelihood function evalu-
ations.

Correlation_lengths that are usually optimised by Surfpack, how-
ever, the user can specify the lengths for the number of input
dimensions manually.

Nugget/Find_nugget where one option has to be chosen. The former
specifies a nugget to handle ill-conditioning, while the latter
have Dakota automatically compute a nugget.

6.4 Meta-models summary

Table 6.5 represent a summary of the pros and cons of the three surro-
gate models here considered. The table is the result of data gathered
through different reference sources. It will be later on compared with
results obtained with DAKOTA toolkit.

Table 6.5: Summary of pros and cons and DAKOTA capabilities for each meta-model

Model Pros Cons DAKOTA

KG – Flexible
– Good with highly non-linear
problems
– Good with high dimension prob-
lems

– Sensitive to noise
– Risk of ill-conditioned correla-
tion matrix
– High computational time

– User can specify a way to han-
dle ill-conditioning
– User can speed up process by
lowering down the number of op-
timisation iterations
– DAKOTA User’s Manual is very
exhaustive on this model

RBF – Ok with highly non-linear prob-
lems, but with enough sampling
points
– Closed form solution
– Cheap to compute

– Requires high number of sam-
pling points when dealing with
highly non-linear problems
– Sensitive to noise

– Not possible to change the basis
function
– User can modify the initial num-
ber of sampling points

ANN – Ok with highly non-linear prob-
lems
– Good with high dimension prob-
lems
– Very flexible

– Large amount of data required
to train it
– User must have knowledge of
how to select and prepare data

– SLP ANN can work with
a smaller number of sampling
points
– User can change maximum num-
ber of hidden nodes and range of
random weights
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In this chapter, the goal is to select the best combination of methods
to build a Surrogate Based Optimisation that best suits the application
required. The starting point is Table 3.7. The different methods, models,
and algorithms are going to be evaluated with the use of test functions
and the metrics described in section Section 3.4.2; in particular the Root
Mean Square Error and the use of the Leave One Out technique.

7.1 Test functions

Table 7.1: Summary of test functions

FUNCTION Variables Boundaries Objective Optimum point(s)

Branin
non-linear
multi-modal

2 −5 ≤ G ≤ 10
0 ≤ H ≤ 15

5 ∈ [0, 350] 5 (−c, 12.275) = 0.398
5 (c, 2.275) = 0.398
5 (9.425, 2.475) = 0.398

Rosenbrock
non-convex
valley-shaped

2 −2 ≤ G, H ≤ 2 5 ∈ [0, 4000] 5 (1, 1) = 0

Hartmann3
non-linear

3 0 ≤ G, H, I ≤ 1 5 ∈ [−4, 0] 5 (0.115, 0.556, 0.852) =
−3.863

1-D 1 0 ≤ G ≤ 1 5 ∈ [−7, 16] 5 (0.757) = −6.021

We already established in Chapter 3 that tests will have to be
performed to compare different methods or algorithms. General rules
when selecting a good test include [7]:

I Include many problems: the more problems that a test set con-
tains, the more reliable the results of the experiment are. Here
three functions will be used;

I Represent the application. Algorithms that perform very poorly
for certain styles of problems may perform very well for other
problems. Whenever possible, select a test set that is representa-
tive of the end application;

I Avoid biased initial conditions. All algorithms should be started
using the same information;

I Avoid hidden structures. Carefully examine test sets to ensure
that no hidden structure is helping or hindering certain algo-
rithms.

The following functions, summarised in Table 7.1, are used:
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(a) Branin function. In red the three points of minimum (b) Rosenbrock function. In red the point of minimum

Figure 7.1: Analytical functions used for testing surrogate models

Branin is a non-linear and multi-modal function. The function can be
seen in figure 7.1a and it is defined in equation 7.1.

5 (G, H) =
(
H − 5.1

4c2 G
2 + 5

c
G − 6

)2

+10
(
1 − 1

8c

)
cos (G) + 10 (7.1)

And it is subject to 
−5 ≤ G ≤ 10

0 ≤ H ≤ 15

(7.2)

The equation, with the given boundary conditions, has three
minima. They are:

5

(
(−c, 12.275), (c, 2.275), (9.425, 2.475)

)
= 0.398 (7.3)

Rosenbrock is a non-convex valley-shaped function (Rosenbrock,
1960) [75]. The function can be seen in figure 7.1b and it is defined
in equation 7.4.

5 (G, H) = (1 − G)2 + 100 (H − G2)2 (7.4)

And it is subject to
−2 ≤ G, H ≤ 2 (7.5)

The equation, with the given boundary conditions, has one mini-
mum:

5 (1, 1) = 0 (7.6)

Hartman 3 is a non linear 3 variables function. The function is defined
in equation 7.7.

5 (G=) = −
4∑
8=1

U8 exp
(
−

3∑
9=1

�8 9 (G 9 − %8 9 )2
)

(7.7)

And it is subject to

0 ≤ G= ≤ 1 for = = 1, 2, 3 (7.8)
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With

U =

(
1.0 1.2 3.0 3.2

))
(7.9)

G =

©­­­­«
3.0 10 30
0.1 10 35
3.0 10 30
0.1 10 35

ª®®®®¬
(7.10)

V = 104
©­­­­«
3689 1170 2673
4699 4387 7470
1091 8372 5547
381 5743 8828

ª®®®®¬
(7.11)

The equation, with the given boundary conditions, has four local
minima and one global maximum:

5 (0.114614, 0.555649, 0.852547) = −3.86278 (7.12)

The Branin function is chosen because it can easily represent the
output of a CFD study [28]. It is also quite common when testing
the performance of different meta-models [22] [95] [47] [70] [46] [45]
[1]. The Rosenbrock function is largely used as tests for optimisation
problems, examples can be found in [5] [16] [88] [95] [1]. Finally, the
Hartmann 3 function has been chosen because it represents a com-
monly used test with 3 variables [95] [47] [1]. In addition to these three
functions, in Section 5.2 a 1-D function 5 (G) = (6G − 2)2 sin (12G − 4)
was used to illustrate the functioning of infill plans. It is frequently
used for that purpose, as we can see from [23] [22] [73] [39] [40].

(a) Surrogate of Rt over G1 = bow width (b) Surrogate of Rt over G2 = x shoulder position(c) Surrogate of Rt over G3 = bilge radius

Figure 7.2: Example of surrogate surfaces of resistance for a bow ship optimisation performed at Van Oossanen N.A.

We report in Figure 7.2 an example of surrogate surface for a bow
ship optimisation performed at Van Oossanen N.A. to give an idea of
what can be encountered. The test functions were chosen analysing
several old optimisations such the one here presented.
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7.2 Sampling plan comparison

The first decision to make is which sampling plan to use. The two best
candidate solutions selected and described in Section 5.1 are the Halton
sequence and the Latin Hypercube algorithm. These two methods are
compared with the test functions described in Section 7.1 and the use of
DAKOTA toolkit. In order to only analyse the influence of Halton and
Latin Hypercube algorithms on the surrogate models generation, the
number of sampling points was kept fixed. Also, as LHS is a random
process, the tests for this algorithm are repeated five times, and the
numbers shown here are the mean.

Figure 7.3: Comparison of Halton and
LHS sampling plans for KG with the use
of three analytical functions Branin Rosenbrock Hartmann3
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Figure 7.4: Comparison of Halton and
LHS sampling plans for ANN with the
use of three analytical functions Branin Rosenbrock Hartmann3
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The results are plotted in terms of RMSE 1313: The RMSE errors here presented are
obtained after a Leave-One-Out analy-
sis. To understand why this numbers are
used, see Section 7.3 and [5].

(see Section 3.4.2) in
Figure 7.3 for the Kriging model, in Figure 7.4 for Artificial Neural
Network, and in Figure 7.5 for Radial Basis Function. Note that they
are in a logarithmic scale.

What the graphs show is that Halton sequence and LHS sampling
plans look quite equivalent. One does not always perform better than
the other. Therefore the choice should depend, for example, on user-
friendliness or infill sampling plan requirements. If no reasons suggest
otherwise, Halton is preferred as it is the one already used at Van
Oossanen N.A.; thus, the company members are already familiar with
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Branin Rosenbrock Hartmann3
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Figure 7.5: Comparison of Halton and
LHS sampling plans for RBF with the
use of three analytical functions

it. Also, it has no random component, so that it is easier to spot and
correct possible mistakes.

7.2.1 Number of samples

A second important question to answer is the number of total sampling
points to use. When constructing a surrogate, this factor has been seen
to have a big influence on the quality of a meta-model (Section 3.3.1
and Section 3.4.2). For this test, to avoid biased conditions, only the
Halton sequence was used. Each surrogate model was generated with
83 − 203 points. 3 is the number of design variables, 2 in the case
of Branin and Rosenbrock functions and 3 in the case of Hartmann3
function.

The results are plotted in terms of RMSE 14 14: The RMSE errors here presented are
obtained after a Leave-One-Out analy-
sis. To understand why this numbers are
used, see Section 7.3 and [5].

in Figure 7.6 for Kriging,
in Figure 7.7 for ANN, and in Figure 7.8 for RBF. Note, they are in a
logarithmic scale.
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Figure 7.6: Comparison of KG quality
when using different number of sam-
pling points

It looks like, as we predicted, that the error tends to lower down
as the number of sample points rises. In particular, at around 163,
the metrics almost stabilise for most of the cases. This would mean
that for three-dimensional analysis, a total of 48 simulations should
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Figure 7.7: Comparison of ANN qual-
ity when using different number of sam-
pling points
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Figure 7.8: Comparison of RBF quality
when using different number of sam-
pling points
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be performed. Currently, at Van Oossanen N.A., an optimisation with
three variables uses only 30 points (103). Therefore, in order to improve
the quality of the routine, the number of (total, initial and refinement)
sampling points is slightly increased. Per the company’s budget, the
number of points is defined to be in the range of 113 - 153.

7.3 Meta-model comparison

Now the three meta-models described in section Section ?? are tested.
In particular, to obtain a fair comparison between the results of dif-
ferent functions and different models, for each computation, Halton
sampling plan was used. The number of sampling points was fixed
to 163. Moreover, no corrections or tuning are applied to the meta-
models, and DAKOTA default settings are used. This has the purpose
of looking for the best fitting model as well as the easiest-friendly
one.

The results are displayed in table 7.2 and plotted in figure 7.9 in
terms of RMSE with a log scale. What we can see is that the Radial
Basis Function seems to perform best for Branin and Rosenbrock.
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Figure 7.9: Comparison of KG, ANN,
RBF metrics for three different analyti-
cal functions with no corrections

However, not for Hartmann3, where KG has a lower error. On the
other hand, Artificial Neural Network always seems the worst when
trying to emulate the surfaces of the test functions. However, as also
stated in the DAKOTA User manual [5], caution is advised when
applying and interpreting these metrics. In general, lower errors are
better, but for interpolatory models like Kriging models and Radial
Basis Function, it will almost always be zero. Leave-One-Out Cross-
Validation analysis will provide more reliable estimates of the true
model prediction error.

Model RMSE MaxAE CPU time [s]

BRANIN

KG 1.00E-10 2.36E-10 1.47

ANN 5.84E+00 1.22E+01 0.16

RBF 1.76E-13 5.58E-13 1.82

ROSENBROCK

KG 2.43E-08 5.14E-08 1.17

ANN 7.36E+00 2.65E+01 0.17

RBF 9.61E-11 1.90E-10 1.80

HARTMANN3

KG 4.84E-15 1.78E-14 2.46

ANN 6.11E-01 2.22E+00 0.49

RBF 1.18E-07 3.38E-07 5.95

Table 7.2: Summary of DAKOTA met-
rics and CPU time in seconds for each
meta-model applied to three different
functions with no corrections

Table 7.2 also shows the running time of each method in seconds.
KG is demonstrated to be the slowest for two cases out of three, exactly
what the analysis carried out in Section 6.3 pointed out. However, this
will not be an essential parameter in the choice of which meta-model
to use, because even the highest time (6 seconds) is nothing compared
to one CFD simulations (20 hours).
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7.3.1 Leave-One-Out analysis

Figure 7.10: Comparison of KG, ANN,
RBF Leave One Out metrics for three dif-
ferent analytical functions with no cor-
rection Branin Rosenbrock Hartmann3
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The same tests performed in Section 7.3 are now shown with the
same settings, but after a Leave One Out analysis is performed by
DAKOTA (see Section 3.4.2).

Table 7.3: Summary of DAKOTA Leave-
One-Out metrics for each meta-model
applied to three different functions with
no correction

Model RMSE MaxAE

BRANIN

KG-LOO 3.02E+00 1.68E+01

ANN-LOO 4.31E+01 1.72E+02

RBF-LOO 4.93E+03 2.78E+04

ROSENBROCK

KG-LOO 5.09E+00 1.94E+01

ANN-LOO 9.48E+01 2.56E+02

RBF-LOO 1.72E+01 5.00E+01

HARTMANN3

KG-LOO 1.32E-01 3.84E-01

ANN-LOO 6.93E-01 2.95E+00

RBF-LOO 1.90E+00 6.42E+00

The results are displayed in Table 7.3 and plotted in Figure 7.10 in
terms of RMSE-LOO and with a log scale. What the graph shows is
that, in contrast with what was presented in Figure 7.9, it is KG method
that overall has the best performance for every test function. It was
not possible to give a reasonable explanation for why the RBF method
performs so poorly compared to the other two. Considering what the
literature review pointed out on the matter in Section 3.4, a reason
could be that not enough sample points were selected for such highly
non-linear test functions. However, this was not further investigated,
because, in the SBO routine constructed for this thesis, the number of
points cannot be higher than the 163 used for this test.

To conclude, the desire is to implement the Kriging model. Also,
on top of this DAKOTA analytical tests, we remember the advantages
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of the method pointed out in Section 6.3. In particular, KG was found
to be suitable for highly non-linear problems, it is an interpolation
method thus the solution on true points is exact, it is flexible, and
DAKOTA’s manuals are very exhaustive on this model. Furthermore,
the choice of the Kriging method allows us also to select also the
Expected Improvement function for the infill sampling plan. How-
ever, before finalising the choice, the concern rises because among its
drawbacks KG counted a high sensitivity to noise.

7.4 Noise influence

In Section 2.1.1, the issue of noise and its effects on surrogate models
was raised. Furthermore, in Chapter 6, we saw that different methods
deal with noisy data differently.
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Figure 7.11: KG metrics with different
levels of noise on training data for four
different analytical functions
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Figure 7.12: ANN metrics with different
levels of noise on training data for four
different analytical functions

The three test functions described in Section 7.1 are now tested with
noise. However, as sample data created analytically does not have any
noise, in order to consider its influence artificial noise is added to the
response values H as:

Ĥ = 5 (x) · (1 − ; X) (7.13)
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Figure 7.13: RBF metrics with different
levels of noise on training data for four
different analytical functions
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where ; = 0% ∼ 10% is a scaling parameter and X is random number
sampled from the standard Gaussian distribution # ∼ (0, 1).

In particular, to start each model with information as similar as pos-
sible, Halton sampling plan was chosen, and the number of sampling
points was fixed to 163. Four levels of artificial noises, 0%, 2%, 5%, 10%
are added to the response values of the corresponding sample points
using equation 7.13. We remember that the expectation is to have a
noise of around 5% when performing a CFD simulation.

Figure 7.14: Comparison of KG, ANN,
RBF Leave One Out metrics with 5%
level of noise for four different analyt-
ical functions �A0=8= '>B4=1A>2: �0AC<0==3
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The results are shown in Figure 7.11 for KG, in Figure 7.12 for ANN,
and in Figure 7.13 for RBF. They show the RMSE on a logarithmic
scale for increasing level of noise. We can see that, as we predicted in
Section 6.3, KG is the most sensitive to noise. The method interpolates
between the points exactly and thus include any possible noise in the
surface fit. The error of the method rises when the noise level also
rises. Also, ANN is not influenced by noise, as the method tends to
smooth the response function. Finally, figure 9.16d shows that when
noise does not exceed 5%, KG method still gives a better solution than
ANN. To conclude, the Kriging method is chosen.
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7.5 Optimisation algorithms

The next decision to make is which optimisation algorithm to use.
In Section 3.2, the literature review pointed out how most authors
focused on Genetic Algorithm, and also this is the best derivative-free
global method supported in DAKOTA (Table 3.3). Nonetheless, we
recognised also the value in paring a global method to a local method.
In Chapter 4, two possible methods were analysed: Pattern search and
Quasi-Newton BFGS.

Figure 7.15: Trajectory plot (grey stars) for a Pattern Search local algorithm applied to a KG surrogate surface representing a Branin
function (contour lines). In red the analytical best solutions, in black the best solutions found by the global GA search, in squares the
best solutions found by PS.

Figures 7.15 and 7.16 represent the application of PS and QN, re-
spectively, on the Branin function represented by a contour plot. For
both figures, a KG meta-model was constructed using the same 32
points part of the Halton sequence. Also, the settings of GA were the
same (Table 4.2). The five best points found by GA, in black in the
plots, are used as starting points for the local algorithms. In both cases,
the three analytical optimum points are in red, while in grey we see
the trajectories followed by PS or QN, and the rectangles show the
three best solutions found by the local algorithms.

What these figures show, is that indeed the Genetic Algorithm is
already quite precise in determining the optimum points. Mainly be-
cause the case of Branin function is particularly challenging to analyse,
as it is multi-modal, moreover, all three best solutions were identified.
However, we can also see that the use of a local algorithm can improve
the prediction significantly. Furthermore, only the use of a local algo-
rithm would not be advised because the location of the starting point
greatly influences them. Thus, in conclusion, the use of two different
methods in a sequence is confirmed to be the best and most balanced
solution.

Another important conclusion that can be drawn from Figures 7.15
and 7.16, and was already anticipated in Section 3.2, is that since the
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Figure 7.16: Trajectory plot (grey stars) for a Quasi-Newton local algorithm applied to a KG surrogate surface representing a Branin
function (contour lines). In red the analytical best solutions, in black the best solutions found by the global GA search, in squares the
best solutions found by QN.

optimisation is performed on the surrogate level, it does not matter
which local algorithm is going to be used. Both PS and QN give roughly
the same results with the same initial conditions. Thus, the decision
of which one to use is not based on performance, but visualisation.
Pattern Search is more transparent for the user to inspect than gradient-
based algorithms, thanks to its fixed and straightforward pattern (see
Section 4.3). If more than one solution is returned from PS and it is still
not clear which one is best than the user can make use of the gradient
information returned by DAKOTA. This way, a more robust solution
will be preferred to a possibly unstable one.

7.6 Refinement points

Figure 7.17: Comparison of EI perfor-
mance when changing the percent ra-
tio between total and initial points for
Branin functiona

a distances are with respect to one of the
three optimum point location

30 45 60 75
0

2

4

6

8

·10−2

Percent ratio between total and initial points

n% (solution)
Δ (position)

The last decisions that are necessary to complete all the information
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necessary to build an SBO routine are about the infill sampling plan.
In Section 3.3.3, when we conducted the literature review on the topic,
and in Section 5.2 when we analysed the algorithms of different infill
techniques, appeared clear that the best one available in DAKOTA
was EI. However, this method could only be used with a Gaussian
process-based meta-model. Now that it is questionless that KG is going
to be used, we can also confirm the use of EI.
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Figure 7.18: Comparison of EI perfor-
mance when changing the percent ra-
tio between total and initial points for
Rosenbrock function.

The main issue that still needs to be solved is the ratio between
total sample points available versus the number of initial points used
to construct KG. In Section 3.2, we saw that according to Sobester
et al. (2005) [88], the infill plan should contain between one-third to
two-thirds of the total available points. Thus, the last test has the aim
to decide a fixed percentage ratio between total and initial points.
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Figure 7.19: Comparison of EI perfor-
mance when changing the percent ratio
between total and initial points for Hart-
mann3 function.

Figure 7.17 for Branin function, Figure 7.18 for Rosenbrock function,
and Figure 7.19 for Hartmann3 function show the performance of
Expected Improvement function when 30%, 45%, 60%, 75% initial
points out of the total available points are used to construct the KG
meta-model. The total number of available points are, in accordance
with analysis in Section 7.2.1, are 26 when 3 = 2 and 35 when 3 = 3
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with 3 the number of variables. This way we stay within the 123 - 153
band that was selected. The initial sampling plan points are part of the
Halton sequence.

To measure the performance of EI, we use two different values in
the plots: n% represents the percentage error of the solution found by
EI for the optimal analytical solution. Note, that for the Branin function
(Figure 7.17) this value is shown for one best solution, the one found
by EI. On the other hand, Δ represents the Euclidean distance between
the position of the solution found by EI and the location analytically
known of the best solution.

What these graphs show is that indeed Expected Improvement
function is extremely useful in refining the design space. This is be-
cause the errors n% are all below 1 per cent. However, the best overall
performance is found to be when the ratio between total and initial
points is between 45% and 55%.

One final analysis deals with the convergence of EI function. Two
examples of lousy convergence criteria are shown in Figure 7.20. To
the left, we see that the maximum number of possible evaluations is
too low, and the EI function has no possibility of exploring the design
space. Both the local and the global minimum are missed. Whereas,
to the right, we see that tolerance is too low and too many points are
added at the same location (see points 9-12 in the bottom zoom graph),
and no more useful information is added.
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Figure 7.20: Two examples of bad EI convergence criteria. To the left: maximum number of possible evaluations is too low and EI
function has no possibility of exploring the design space. Both the local and the global minimum are missed. To the right: tolerance is
too low and too many points are added at the same location (see bottom graph) and no more useful information is added.

Unfortunately, nothing can be done to avoid the first situation
(maxi iteration number too low), because the total amount of avail-
able points is fixed. Also, it is challenging to understand when this
is happening, especially without adding new points. If the routine
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should miss the global minimum, we expect to obtain a (less consid-
erable) resistance reduction. Nevertheless, for the second situation
(convergence tolerance too low), a G-convergence tolerance can be set.
In this case, the Efficient Global Optimisation method will terminate
if the relative change in the best decision variables values G is less
than the specified tolerance. For more information, see Section 5.2.1
or DAKOTA’s manuals [5] [3]. Only experience will tell what the best
value to use is, but it better a smaller value that allows more certainty
on global optimum than a higher one that kills the simulations too
early. Thus, for now, a x_con_tol = 0.05 is set.

7.7 Conclusive remarks

Item Adopted solution

Sampling Initial sample method
– Halton sequence

Total sample size
– Between 123 and 153 a

Surrogate Kriging

Optimisation Combination of global and local algorithms
– Global: GA
– Local: PS

Infill Expected Improvement

Percentage of initial points over the total
– Between 45% and 55%

Convergence criteria
– Maximum number of evaluations reached
– x-convergence = 0.05 reached

Table 7.4: Summary of conclusions
drawn from analysis and comparison of
test functions

a 3 is the number of variables

In conclusion, as one of our aims was to give some guidelines to
follow when building up an SBO routine with CFD expensive sim-
ulations, the recommendation is to start by carefully analysing the
objective functions that will have to be approximated. This analysis
should end with the selection of test functions that best and fully repre-
sent different possible scenarios. The reason for this is that most of the
decisions made were based on the results obtained on those functions.
Afterwards, the suggestion is to follow the order of Chapter 7 to make
decisions and select appropriate methods and algorithms.

Table 7.4 summarises all the conclusion drawn specifically for the
context of this thesis.
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The first test with real CFD data representing the resistance of a hull
shape is a Hull Vane optimisation case already successfully solved at
Van Oossanen N.A.. In the original case, Van Oossanen N.A. was asked
to investigate the use of energy-saving hull appendages for a ferry. A
Hull Vane was thus added to the benchmark hull. The geometry of the
hull (side, bottom, aft, and forward views) with the addition of a Hull
Vane at the stern of the ship is visible in Figure 8.1.

Figure 8.1: Geometry of the ’Valais’ ferry
with a Hull Vane

The optimisation performed by Van Oossanen N.A. showed how
the additional appendage gave a reduction in total resistance for the
benchmark geometry. Furthermore, a specific configuration of Hull
Vane parameters was found to be particularly advantageous: a reduc-
tion of 15.4% was achieved.

This test is going to be performed with the same simulation settings,
the same benchmark geometry, the same variables and boundaries,
and the same modeller for geometry modifications as the original one.
Only the SBO settings were changed. Thus the routine built with the
choices made in Chapter 7 is considered validated if the results are
comparable to (or better than) the original ones. The comparison is
based both on the coordinates of the variables representing the best
point in the design space as well as on the resistance reduction for the
benchmark hull. All the information regarding the case is a courtesy of
the company, and it is part of their official reports. Due to intellectual
property of Van Oossanen N.A. on the data, all the values in this thesis
are presented using non-dimensional numbers or percentages.
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8.1 Hull vane

Pieter Van Oossanen invented the Hull Vane R© (HV) in the early ’90s.
Its first application was on a catamaran, to reduce its excessive running
trim and increase the vessel’s top speed. Since then the Hull Vane’s
resistance and motion reduction properties have been studied and
optimised. Currently, the Hull Vane is mainly applied to monohulls
sailing at moderate to high non-planing speeds (Froude of 0.2-0.5).

According to Uithof et al. (2016) [91], the Hull Vane can reduce
the resistance up to 25.5%, or increase up to 9.5%, depending on the
hull form, speed, sea state, and running trim. Three different physical
phenomena mainly cause the calm water resistance reduction:

I Transom wave reduction: The low-pressure region created by
the Hull Vane, interacts with the wave crest created at the stern,
reducing it.

I Thrust generation: The Hull Vane uses the up-wash at the ship’s
stern to create forward thrust.

I Trim correction: It is common in ships to have excessive trim aft
due to the low-pressure region created by the rocker. In these
cases, the Hull Vane also corrects the trim, reducing the resis-
tance.

Figure 8.2: Example of Hull Vane

Figure 8.2 represents an example of a Hull Vane structure posi-
tioned at the stern of a hull.

8.2 Simulation Settings

All numerical simulations described in this thesis are performed with
the software tools illustrated in Chapter 1. The purpose of the simula-
tions is to obtain a resistance value for a particular hull geometry. The
ship motions that are calculated by 6 degrees of freedom solver were
restricted only to allow trim and heave besides the imposed velocity.
The simulation is started at zero speed after which the ship is gradually
accelerated to the final velocity, using a fourth of a sinusoidal ramp.
To achieve a stable solution, 2000 time steps are used.

A "volume of fluid" method is used to account for the free surface
(i.e. both water and air flows are solved), for which the parameters are
given in Table 8.1. The solver uses the (Unsteady) Reynolds Averaged
Navier Stokes (U)RANS equations which describe the flow. These
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equations need a closure model for which the two-equation : − l
SST Menter turbulence model was used. The freestream turbulence
quantities were initialised using the reference length and velocity. Wall
functions were used to simulate the flow in regions very close to
solid walls, reducing the mesh density requirements in the boundary
layer.

Fluid properties

Fresh water viscosity `F 0.001138 Pa s

Water density dF 1000 kg m3

Air viscosity `0 0.0000185 Pa s

Water density d0 1.2 kg m3

Table 8.1: Water and air parameters used
for ’Valais’ test case

8.2.1 Variables and constraints

Figure 8.3: Hull coordinate system
adopted in Van Oossanen simulations

The coordinate system adopted is the right-handed Cartesian co-
ordinate system. The positive G-direction is defined as the direction
from aft to forward (red arrow). The positive H-direction is defined as
the direction to the port side of the vessel (blue arrow). The positive
I-direction is defined in an upward direction(green arrow). It follows
that negative trim is bow-up and positive rise indicates a positive
vertical movement of the hull at the centre of gravity. The origin of the
coordinate system is located at the baseline at the centre line aft of the
transom (see Figure 8.3).

Figure 8.4: Boundaries in which the Hull
Vane can be placed during optimisation

For this optimisation, the Hull Vane is free to move in the horizontal
and vertical direction, within certain boundaries (see Figure 8.4). The
Hull Vane chord length represents the third variable (see Figure 8.5).
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The shape of the section does not change, and span is fixed to 0.8BWL,
with BWL the waterline beam.

Figure 8.5: Hull Vane section used for
optimisation

For a more transparent analysis and visualisation of data, the
boundaries for each variable are normalised and can vary only be-
tween 0 and 1.

8.2.2 Domain and mesh

The computational domain is aligned with the reference system and
is made up of a rectangular box in which half of the hull geometry
was placed. The domain around the hull is constructed such that the
boundaries are far enough away so as not to influence the results. In
setting up the domain, the default guidelines used by Van Oossanen
N.A. were used.

All hull surfaces had a no-slip boundary condition using wall
functions to capture the boundary layer. In the symmetry plane a
mirror boundary condition was applied, and on the top and the bottom
of the domain the pressure was prescribed. All other domain faces
have external/free-flow boundary conditions with a prescribed flow
speed of E = 0 m/s.

Figure 8.6: Example of mesh computed
on the ’Valais’ ferry

Example of the mesh on the surface of the hull is given in Figure
8.6.
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8.3 SBO settings

Item Adopted solution

Sampling Initial sample method
– Halton sequence

Total sample size
– 35 ≈ 123

Surrogate Kriging

Optimisation Global search: GA
– Random initial population: 150 = 503
– Crossover rate: 0.8
– Mutation rate: 0.01
– Replacement rate: 1
– Convergence tolerance: 1.� − 4
– Maximum number of evaluations: 1000

Local search: PS
– Initial points: 3 from GA
– Initial step size: X0 = 0.2
– Contractor factor: 2 = 0.5
– Convergence tolerance: nstop = 1.� − 5
– Maximum number of function evaluations: 1000
– Maximum number of iterations: 100

Infill Expected Improvement

Percentage of initial points over the total
– 55% (19 initial points and 16 infill points)

Convergence criteria
– Maximum number of evaluations: 35
– x-convergence = 0.05

Table 8.2: Summary of conclusions
drawn from Chapter 7 for a 3 = 3 vari-
able optimisation

Table 8.2 shows a summary of all the settings, methods, and al-
gorithms that were selected during the analysis and comparison in
Chapter 7 for the SBO.

8.4 Results

Figure 8.7 represents the summary of results of Surrogate Based Op-
timisation performed on the Hull Vane structure for the ferry. Each
sub-figure represents resistance values, relative to the benchmark,
plotted against each normalised variable. In circles, we can see the
sampling (both initial and infill) points used to construct the surro-
gate. The colour of the small x, which are part of the surrogate surface,
represents the resistance value for the point in that location. The red
diamond is the best (true) value, the output of the routine. The colour
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scale represents the resistance variation in reference to the original
geometry (where negative values indicate resistance reduction).

(a) Resistance in kN over G1 = HV chord length (b) Resistance in kN over G2 = HV G position

(c) Resistance in kN over G3 = HV I position

Figure 8.7: Results of Surrogate Based Optimisation performed on the Hull Vane structure for the ferry. In circle the sampling (both
initial and infill) points used to construct the surrogate. The colour of the small x, which are part of the surrogate surface, represents the
resistance value for the point in that location. The red diamond is the best (true) value, output of the routine.

8.4.1 Design space exploration

The first 19 points of the Halton sequence for a three variables design
space are plotted in Figure 8.8. The three histograms demonstrate the
space-filling capabilities of the method: the domain is divided into ten
equal bands of length equal to 0.1, and in each band for each variable
at least one point is present. Furthermore, the distribution is linear,
meaning all space has been adequately searched, and no big empty or
significant dense areas are present.

The three plots on the lower part of Figure 8.8 represent in two
dimensions the three variables design space of the optimisation. For
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Figure 8.8: First 19 points of the Halton sequence with three variables. Histograms (upper row) show the space-filling capabilities of
the sampling plan. Plots (lower row) show the points part of the sequence in the design space used for this optimisation.

each sub-figure one variable is plotted against the other two and the
black diamonds are the 19 starting sampling points part of the Halton
sequence. As the sequence does not change, these plots are of great
importance for the user to check when post-processing. SBO is built on
these points and relies its accuracy on the certainty that these points
cover the entire domain uniformly. Thus already at first glance, the
Naval Architect can check this feature.

A small note must be given for the I position over G position plot.
When selecting the Halton sequence, this behaviour that does not look
entirely space-filling was known. Moreover, at the time this thesis
is written, DAKOTA does not allow a way to bypass this problem.
However, if we go back to Figures 7.3, 7.4, 7.5 we can see that for a
three variables test function (Hartmann3) such as this case, the Halton
sequence was performing better than LHS for each meta-model.

Catching the trend

The first three plots in Figure 8.9 show the resistance results from
CFD simulations for the first 19 points of the Halton sequence. Again,
the values are given as a percentage reduction in resistance from the
benchmark geometry. In each graph, resistance is plotted against one
of the three design variables, chord, G position and I position of the
Hull Vane. From here, we can already catch the trend of resistance for
each variable. For example, one can already see that, for this situation,
the best value for chord will be around zero, and the best for I position
could fall between 0.2 and 0.4.

This check is crucial to have a first overview of the solution of the
optimisation. However, two things are essential to remember here: first,
in most cases, the relationship between resistance and one variable
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Figure 8.9: Resistance results from CFD simulations of the first 19 points of the Halton sequence plotted against each of the three
variables of the optimisation problem. To the right, histogram of resistance distribution for the same points.

is not as easy as linear or quadratic but can be unpredictably non-
linear. Second, resistance is influenced by all three parameters and
their combinations. Often it is not possible to linearly separate the
contribution of each variable. These are precisely the reasons why we
do not stop the search for an optimum shape here, but instead, we use
a surrogate model to fit these results and predict new possible areas of
low resistance. Also, this is why only about half of the total available
points are used: the other half will be used by EI to explore/exploit
the space in such a way a person would not.

Figure 8.9, on the right, also shows an histogram for resistance
values. It can be seen how only one point among the first 19 of the
initial sample points had a resistance reduction of over -17.3%.

Figure 8.10: Resistance results from CFD
simulations of the first 25 points of the
Halton sequence plotted against one of
the three variables of the optimisation
problem: bulb length
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Finally, one should not forget about the noise coming from CFD
simulations or errors coming from automatic shape modification. From
the analysis of these pictures, before going to the next phase of SBO,
any anomaly detected should thus be inspected. As an example, we
report here resistance results for another optimisation performed at
Van Ooossanen N.A.. For this case, the shape of the bulb of a RoRo
vessel was optimised considering the length of the bulb, the height of
the widest point of the bulb, and the entrance angle of the waterlines
at the bulb. Figure 8.10 shows the trend of normalised resistance for
the bulb length. It displays how resistance tends to decrease when de-
creasing the length of the bulb within the design boundaries. However,
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there is one point that does not follow the trend (the empty diamond)
and has a higher resistance than expected. By analysing the geometry
of this point, the Naval Architect would be able to detect an anomaly
in the geometry and gain both insights into the problem as well as
accuracy for the SBO.

8.4.2 Infill points

The next step is to check the results from the refinement runs. Figure
8.11 shows the position and the resistance values for the refinement
points (in red) with respect to the initial points (in black).
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Figure 8.11: Results of refinement runs (in red) with respect to initial results (in black). The upper row represents histograms for HV
chord, G position, and I position. The middle row shows the position of all the points in the design space. The lower row represents
resistance values plotted against the three design variables and also a histogram for resistance values.

The upper row displays histograms for each of the design variables:
HV chord, G position, I position respectively. The Expected Improve-
ment function focused on minimum chord length, as predicted from
the trend in figure 8.9. This is because all 16 refinement points are
within the 0-0.1 band. Also, it can be seen that for G position of the
Hull Vane, the algorithm had to explore the whole domain. While EI
could settle and exploit only a smaller area for I position.
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The middle row of Figure 8.11 represents in two dimensions the
position of the three variables in the design space of the optimisation.
In each sub-figure, one variable is plotted against another, and the
black diamonds are the same as the one in Figure 8.8, whereas the red
circles are the new infill points. The EI function mostly analysed the
boundaries of the domain, especially for chord and I position. Nev-
ertheless, it was also able to explore new areas of the graph we were
mostly worried about (I over G position), demonstrating how EI can
be useful if it is granted with enough points to use for refinement.

The lower row of Figure 8.11 shows the resistance values from
CFD simulations with both initial points (black diamonds) and infill
points (red circles). In each sub-figure, resistance is plotted over one
of the variables, and its value indicates the percentage reduction with
respect to the benchmark. It is visible how the EI function was able
to "complete" the trend we anticipated in Figure 8.9. Indeed, a local
minimum is close to (0, 0.5, 0.25). On the other hand, EI was also able
to find a global optimum in an unexpected area. See Table 8.3 for the
exact normalised values of this point.

Table 8.3: Best solution for the HV opti-
misation Chord x position z position Rt %

Best Hull
Vane

0.000 0.835 0.183 -19.39%

Finally, the histogram on the bottom right corner of Figure 8.11
shows the effectiveness of Expected Improvement function. Only one
infill point had a resistance reduction not better than 15.1%; while 13
points out of 16 were found to have equal or lower resistance than the
ones in the initial sampling plan.

8.4.3 Surrogate model

The surrogate model constructed with all the 35 points, both initial
and infill ones, is visible in Figure 8.12. Each subfigure represents the
percentage resistance reduction with respect to the benchmark plotted
over two of the three design variables when keeping the third one
fixed to the optimal value found by the optimisation. As an example,
for the Figure 8.12a, I position was settled to 0.183. The optimal point is
in the blue areas where resistance is the lowest. It can be seen how the
approximated function generated by the Kriging model looks smooth,
but also able to capture quick changes in curvature when needed.
Furthermore, the leave-one-out RMSE error of this prediction with all
35 building points is 1.2%, an acceptably low value.
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(a) Resistance over G1 = chord and G2 = G position (b) Resistance over G1 = chord and G3 = I position

(c) Resistance over G2 = G position and G3 = I position

Figure 8.12: Surrogate model of HV optimisation

8.5 Discussion

The results described in Section 8.4 are now discussed by taking into
account two main aspects: the general effectiveness of the SBO routine,
and the comparison with the old routine for validation purposes.

8.5.1 Effectiveness of SBO

Table 8.4 shows the percentage of resistance variations found for the
geometry with the addition of the optimal Hull Vane with respect to
the results obtained with the original geometry.

Rv Rp Rt

HV opt +5.80% -35.65% -19.39%

Table 8.4: Comparison between resis-
tance values of the Valais benchmark
hull and the ones obtained with the best
Hull Vane geometry

The optimisation was performed on total resistance (Rt) values, the
sum of viscous resistance (Rv) and pressure resistance (Rp). The total
resistance does not include corrections due to surface roughness, or
aerodynamic resistance, or allowances for sea/service conditions.
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From the table, it can be seen that the Surrogate Based Optimi-
sation achieves an overall total resistance reduction of 19.39%. For
more clarity of the reader, in the benchmark design the pressure resis-
tance is about the 61% of the total. The differences between the two
designs can be better understood by looking at the physics behind
those numbers.

Figure 8.13: Comparison of pressure and frictional resistance for the benchmark vessel and the same geometry with the addition of the
best Hull Vane found by SBO. The values are plotted over the length of the vessels, shown in the middle with the pink line representing
the free water surface.

First, Table 8.4 shows that there is an increase of 5.8% in viscous
resistance when using a Hull Vane. The reason for this is because
viscous resistance mostly depends on the wetted surface area when
velocity, geometry and fluid properties are not changed. The inclusion
of new geometry to the design, the Hull Vane, increases the total
wetted surface. In the lowest part of Figure 8.13 it is possible to see
the comparison between benchmark (continuous red line) and Hull
Vane design (dashed blue line) values of frictional resistance over the
length of the vessel. Indeed, a pick of high frictional resistance behind
the stern of the hull is present when adding an HV. However, if we
compare the viscous resistance values for the hulls only, the difference
is only 0.8%, with the benchmark being sightly higher. This difference
is because the Hull Vane also slightly modified the trim of the hull.

Second, the most significant reduction is present in pressure resis-
tance, almost -36% less than the benchmark. This loss is mainly due to
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the interaction of Hull Vane waves with transom waves. In general, the
more water the vessel moves, therefore higher waves are generated,
the more energy has to be spent to sail the vessel at the same speed.
The result of this interaction is visible in Figure 8.14. The waves behind
the vessel in the bottom part of the figure (Hull Vane) are about -58%
lower than the ones at the top of the figure (benchmark).

Figure 8.14: Comparison of wave pat-
terns around the benchmark hull and
around the new design with same hull
geometry and the best HV found by SBO

8.5.2 Validation

Adding a Hull Vane and optimising it with an SBO resulted in a sound
resistance reduction for the benchmark geometry. So the Surrogate
Based Optimisation already proved to be successful, but mainly thanks
to the addition of the Hull Vane itself. Each point calculated during
the SBO obtained a better total resistance value than the one from
the benchmark. However, to be also validated, the routine has to be
compared with the results found by an old optimisation performed
with the same simulation settings, and the same geometry. The old
results obtained by Van Oossanen N.A. can be used for this validation
because the best Hull Vane selected has been installed on the ferry.
Speed trials were performed before and after the installation of the
Hull Vane and a reduction of 19% of shaft power was experienced
when sailing at design speed.

Rv Rp Rt

Old best results +7.26% -33.80% -19.06%

New best results +5.80% -35.65% -19.39%

Table 8.5: Comparison of total, viscous,
and pressure resistance between the
benchmark geometry and the best re-
sults obtained by the old and the new
Surrogate Based Optimisations

Table 8.5 shows the comparison of the total, viscous, and pressure
resistance values obtained from CFD for the two SBO routines. The
percentages represent a resistance variation in reference to the original
geometry (where negative values indicate resistance reduction and
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positive values indicate resistance increment). The new routine man-
aged to reduce the total resistance of the benchmark (19.39%) slightly
more than the old routine (19.06%). Nevertheless, this improvement is
not decisive, because it could fall within the CFD uncertainties.

In Table 8.6 the details of the position and total resistance values
obtained with the old and the new SBO routine are shown. We can
see that the new routine was able to select the same area around
(G1, G2, G3) = (0, 0.5 − 0.6, 0.25 − 0.3) than the old optimisation. Further-
more, the resistance results for those two points varies only of a 0.1%.
However, the new SBO was also able to explore the design space better
and find another point (the new best point in the table) where total
resistance is 0.3% better than before.

Table 8.6: Comparison of position and resistance values found with the old SBO routine and the new one

Chord x position z position Rt %

Old best point 0.014 0.585 0.297 -19.06%

New best point 0.000 0.835 0.183 -19.39%

Second new best point 0.000 0.499 0.249 -18.97%

Finally, we can say that the routine is validated. It also represents
a small improvement, even though at the cost of a higher number of
simulations. Moreover, the reason for this is to be found in the fact that
the new SBO was able to pass the same point of local minimum where
the old optimisation stopped, and moved on to a global optimum with
lower resistance. The new routine allowed a better exploration of the
design space, thanks to the small increase in total number computa-
tions and to the different ratio of initial over total points.

A total of 25-30 points were usually used at Van Oossanen N.A.
for a three variables optimisation. Furthermore, the refinement points
were only 5, meaning that the ratio between initial and total points is
higher than 80%. When in Chapter 7, we demonstrated that the best
performance is found with the ratio between 45% and 55%. This can
be seen in Figure 8.15, where it is clear that the five refinement points
(in blue) exploited the area close to the optimum, but were not enough
to explore other areas.

Finally, we should remember that, as shown in Section 2.2, the
design of a ship involves a multitude of factors, and each is traded
off against each other. Therefore, the choice of which Hull Vane to
build should not be based solely on the results of this optimisation.
This SBO takes into account only resistance reduction. However, for
example, one could also consider that a Hull Vane too far away from
the transom (both in G and I direction) is not ideal. Firstly, it is more
challenging to construct the structures that attach the Hull Vane to the
hull. Secondly, if the HV protrudes too much from the hull, turning,
manoeuvring, and docking will have a higher chance of damaging the
appendage. The new routine has thus a second advantage compared
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Figure 8.15: Results of refinement runs (in blue) with respect to initial results (in black) for the old SBO. The upper row represents
histograms for HV chord, G position, and I position. The middle row shows the position of all the points in the design space. The lower
row represents resistance values plotted against the three design variables and also a histogram for resistance values.

to the old one. It shows that there is not just one point, but a whole
area where a robust optimal solution can be found (see Figure 8.12c).
This way, the Naval Architect has more freedom in considering other
objectives rather than just resistance.
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The second test with real CFD data representing the resistance of a
hull shape is an aft ship optimisation case previously studied at Van
Oossanen N.A.. In the original case, Van Oossanen N.A. was asked
to investigate the aft ship geometry of a inland vessel when sailing in
shallow waters. The geometry of the hull is visible in Figure 9.1.

Figure 9.1: Side, bottom, aft and forward
view of the geometry

For this test, the same exact simulation settings, the same bench-
mark geometry, the same variables, and the same modeller for geom-
etry modifications as the original ones are used. All the information
regarding the case is a courtesy of the company, and it is part of their
official reports. However, due to the intellectual property of Van Oos-
sanen on the data, all the values in this thesis are presented using
non-dimensional numbers or percentages.

9.1 Simulation Settings

All numerical simulations described in this thesis are performed with
the software tools illustrated in Chapter 1. The purpose of the simula-
tions is to obtain a resistance value for a particular hull geometry. The
ship motions that are calculated by 6 degrees of freedom solver were
restricted only to allow trim and heave besides the imposed velocity.
The simulation is started at zero speed after which the ship is gradually
accelerated to the final velocity, using a fourth of a sinusoidal ramp.
To achieve a stable solution, 3500 time steps are used.

A "volume of fluid" method is used to account for the free surface
(i.e. both water and air flows are solved), for which the parameters are
given in Table 9.1. The solver uses the (Unsteady) Reynolds Averaged
Navier Stokes (U)RANS equations which describe the flow. These
equations need a closure model for which the two-equation : − l
SST Menter turbulence model was used. The freestream turbulence
quantities were initialised using the reference length and velocity. Wall
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Table 9.1: Water and air parameters used
for the portliner test case Fluid properties

Fresh water viscosity `F 0.001217 Pa s

Water density dF 1000 kg m3

Air viscosity `0 0.0000185 Pa s

Water density d0 1.2 kg m3

functions were used to simulate the flow in regions very close to
solid walls, reducing the mesh density requirements in the boundary
layer.

9.1.1 Variables and constraints

Figure 9.2: Control points in Rhino to
modify the aft shape

The coordinate system adopted is the right-handed Cartesian coor-
dinate system, see Figure 8.3. The positive G-direction is defined as the
direction from aft to forward (red arrow). The positive H-direction is
defined as the direction to the port side of the vessel (blue arrow). The
positive I-direction is defined in an upward direction (green arrow).
It follows that negative trim is bow-up and positive rise indicates a
positive vertical movement of the hull at the centre of gravity. The
origin of the coordinate system is located at the baseline at the centre
line aft of the transom.

For this optimisation, the aft ship geometry is varied with the use of
four parameters. They are: transom submergence, deadrise, shoulder G-
position (see Figure 9.3), and S-curve height (see Figure 9.4). In Figure
9.2, the control points on the aft are shown. The geometry is changed
by moving the relevant control points. In particular:

Transom submergence: points of the aft side, bilge, and bottom are
moved in the I direction by the same amount.

Deadrise: the centre transom point is moved down with a factor times
the parameter. The other two control points of the transom are
then moved down relative to the start of the bilge, such that the
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Figure 9.3: Definition of transom sub-
mergence, deadrise angle, and midship
length

relative I distance between the transom centre and the bilge is
constant.

S-Curve height: the last control points of the aft bottom defining the
S shape visible in Figure 9.4 are all moved in the I direction of
the same amount.

Shoulder X: the two corner points of the bilge radius (Figure 9.2)
are moved in H and I direction. Then the points in between are
moved accordingly.

Figure 9.4: Definition of the S aft shape

Some constraints are already integrated into the morphing equa-
tions in order to avoid weird or unfeasible shapes. For instance, if the
transom submergence is very low, the deadrise angle cannot be too
large. The choice of variables, and how they can vary in the space
was made in such a way that designs with lousy geometry, impossi-
ble shapes or are known beforehand to yield poor performance are
avoided. Furthermore, constraints are set up in order not to waste
computation time for fruitless candidates.

9.1.2 Domain and mesh

The computational domain is aligned with the reference system and
is made up of a rectangular box in which half of the hull geometry
was placed. The domain around the hull is constructed such that the
boundaries are far enough away so as not to influence the results. In
setting up the domain, the default guidelines used by Van Oossanen
N.A. were used.

All hull surfaces had a no-slip boundary condition using wall
functions to capture the boundary layer. In the symmetry plane a
mirror boundary condition was applied, and on the top and the bottom
of the domain the pressure was prescribed. All other domain faces
have external/free-flow boundary conditions with a prescribed flow
speed of E = 0 m/s.
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Figure 9.5: Example of mesh computed
for the vessel hull

Example of the mesh on the surface of the hull is given in Figure
9.5.

9.2 SBO settings

Table 9.2: Summary of conclusions
drawn from Chapter 7 for a 3 = 4 vari-
able optimisation

Item Adopted solution

Sampling Initial sample method
– Halton sequence

Total sample size
– 60 = 153

Surrogate Kriging

Optimisation Global search: GA
– Random initial population: 200 = 503
– Crossover rate: 0.8
– Mutation rate: 0.01
– Replacement rate: 1
– Convergence tolerance: 1.� − 4
– Maximum number of evaluations: 1000

Local search: PS
– Initial points: 3 from GA
– Initial step size: X0 = 0.2
– Contractor factor: 2 = 0.5
– Convergence tolerance: nstop = 1.� − 5
– Maximum number of function evaluations: 1000
– Maximum number of iterations: 100

Infill Expected Improvement

Percentage of initial points over the total
– 45% (27 initial points and 33 infill points)

Convergence criteria
– Maximum number of evaluations: 60
– x-convergence = 0.05
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Table 9.2 shows a summary of all the settings, methods, and al-
gorithms that were selected during the analysis and comparison in
Chapter 7.

9.3 Results

(a) Resistance over G1 = transom submergence (b) Resistance over G2 = deadrise

(c) Resistance over G3 = S-curve height (d) Resistance over G4 = Shoulder X

Figure 9.6: Results of Surrogate Based Optimisation performed on the Aft geometry of the portliner vessel. In circle the sampling (both
initial and infill) points used to construct the surrogate. The colour of the small x, which are part of the surrogate surface, represents the
percent difference of resistance with respect to the benchmark for the point in that location. The red diamond is the best (true) value,
output of the routine.

Figure 9.6 represents the summary of results of Surrogate Based
Optimisation performed on the Aft geometry of the vessel. Each sub-
figure represents the percentage of difference to the benchmark of
total resistance plotted against each normalised variable. In circle
shape, the sampling (both initial and infill) points used to construct the
surrogate. The colour of the small x, which are part of the surrogate
surface, represents the resistance value for the point in that location.
The red diamond is the best (exact) value, the output of the routine.
The colour scale represents the resistance variation from the original
geometry (where negative values indicate resistance reduction and
positive values indicate resistance increase).
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9.3.1 Design space exploration

Figure 9.7: First 27 points of the Hal-
ton sequence with four variables. His-
tograms show the space-filling capabili-
ties of the sampling plan.
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The first 27 points of the Halton sequence for a four variables
design space are plotted in Figure 9.7 and 9.8. First, Figure 9.7 shows
four histograms that demonstrate the space-filling capabilities of the
method: the domain is divided into ten equal bands of length equal to
0.1. With only one exception, in each band for each variable, at least
two points are present. Furthermore, the distribution is mostly linear,
meaning all space has been adequately searched, and no too empty or
too dense areas are present.
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Figure 9.8: First 27 points of the Halton sequence with four variables. Plots show the points part of the sequence in the design space
used for this optimisation.
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Second, the six plots on Figure 9.8 represent in two dimensions the
four variables design space of the optimisation. For each sub-figure
one variable is plotted against another and the black diamonds are
the 27 starting sampling points. As the sequence does not change,
these plots are of great importance for the user to check when post-
processing. SBO is built on these points and relies its accuracy on the
certainty that these points cover the entire domain uniformly. Thus
already at first glance, the Naval Architect can check this feature.

A small note must be given for the curve height over deadrise
plot. When selecting the Halton sequence, this behaviour that does not
look entirely space-filling was known. It was also already noticed in
Figure 8.8. However, the analysis of Chapter 7 and the validation test
in Chapter 8 already proved that this is not necessarily an issue.

Catching the trend

The four plots in Figure 9.9 show the resistance results from CFD
simulations for the first 27 points of the Halton sequence. In each
graph, resistance is plotted against one of the four design variables,
transom submergence, deadrise, S-curve height, shoulder X. From
here, we can already catch the trend of resistance for each variable. For
example, one can already see that, for this situation, the best value for
shoulder will be around one, and the best for curve height could fall
between 0.6 and 0.8.
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Figure 9.9: Resistance results from CFD simulations of the first 27 points of the Halton sequence plotted against each of the four
variables of the optimisation problem. To the right, histogram of resistance distribution for the same points.

This check is vital to have a first overview of the solution of the
optimisation. However, two things are essential to remember here: first,
in most cases, the relationship between resistance and one variable
is not as easy as linear or quadratic but can be unpredictably non-
linear. Second, resistance is influenced by all four parameters and
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their combinations. Often it is not possible to linearly separate the
contribution of each variable. These are precisely the reasons why we
do not stop the search for an optimum shape here, but instead, we use
a surrogate model to fit these results and predict new possible areas of
low resistance. Also, this is why only about half of the total available
points are used: the other half will be used by EI to explore/exploit
the space in such a way a person would not.

Figure 9.9, on the right, also shows an histogram for resistance val-
ues. It can be seen how only one point among the first 27 of the initial
sample points had a resistance value lower than the benchmark (0%).
Finally, one should not forget about the noise coming from CFD simu-
lations or errors coming from automatic shape modification. However,
from the analysis of these pictures, no evident anomaly is detected.

9.3.2 Infill points

Figure 9.10: Results of refinement runs
(in red) with respect to initial results (in
black) in the form of histograms for sub-
mergence, deadrise, curve height, shoul-
der variables.
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The next step is to check the results from the refinement runs. Fig-
ures 9.10 displays histograms for each of the design variables: transom
submergence, deadrise, S-curve height, shoulder X. The Expected Im-
provement function focused on the maximum shoulder. As predicted
from the trend in Figure 9.9. This is because 25 refinement points out
of 33 are within the 0.9-1 band. Also, as anticipated in Figure 9.9, EI
could settle and exploit only a smaller area for curve height, between
0.6 and 0.8. On the other hand, for submergence and deadrise, the
algorithm had to explore the whole domain.

Figure 9.11 represents in two dimensions the position of the points
in the four variables design space of the optimisation. In each sub-
figure, one variable is plotted against another, and the black diamonds
are the same as the one in Figure 9.9, whereas the red circles are the
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Figure 9.11: Results of the position of all the refinement points (in red) in the design space with respect to initial results (in black).

new infill points. The EI function mostly analysed the boundaries of
the domain for the shoulder variable. Nevertheless, it also looks like
that it struggled in figure out a single area where deadrise is best,
especially when coupled with submergence.
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Figure 9.12: Results of refinement runs (in red) with respect to initial results (in black). To the left resistance values are plotted against
the four design variables and to the right in displayed a histogram for resistance values.

Figure 9.12 shows the resistance values from CFD simulations
with both initial points (black diamonds) and infill points (red circles).
In each sub-figure, resistance is plotted over one of the variables. It
is visible how the EI function was able to "complete" the trend we
anticipated in Figure 9.9 for three out of four variables. The most
problematic one is deadrise, that does not provide a clear trend for
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resistance. A local minimum is close to (0.75, 1.0, 0.7, 1.0). However, EI
was also able to find a global optimum in a different area. See Table
9.3 for the exact normalised values of this point.

Table 9.3: Best solution for the AFT optimisation

submergence deadrise curve
height

shoulder Rt %

Best
solution

0.479 0.492 0.702 1.000 -6.98%

Finally, the histogram on the right side of Figure 9.12 shows the
effectiveness of Expected Improvement function. Only three infill point
had an increase in resistance with respect to the benchmark (more than
0%). Moreover, 21 points out of 33 were found to have equal or lower
resistance than the ones in the initial sampling plan.

9.3.3 Surrogate model

(a) Resistance over G1 = submergence and G2 = deadrise (b) Resistance over G1 = submergence and G3 = curve height

(c) Resistance over G1 = submergence and G4 = shoulder (d) Resistance over G2 = deadrise and G3 = curve height

Figure 9.13: Surrogate model of AFT optimisation

The surrogate model constructed with all the 60 points, both ini-
tial and infill is visible in Figure 9.13. Each subfigure represents the
resistance plotted over two of the four design variables, when keeping
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the other two fixed to the optimal value found by the optimisation.
As an example, for Figure 9.13a, submergence and deadrise are free
to change, while curve height was settled to 0.702 and shoulder was
fixed to 1.000. The optimal point is in the blue areas where resistance
is the lowest. It can be seen how the approximated function generated
by the Kriging model looks smooth, but also able to capture quick
changes in curvature when needed. Furthermore, the leave-one-out
RMSE error of this prediction with all 60 building points is 1.7%, an
acceptably low value.

(e) Resistance over G2 = deadrise and G4 = shoulder (f) Resistance over G3 = curve height and G4 = shoulder

Figure 9.13a: (continued) Surrogate model of AFT optimisation

9.4 Discussion

The results described in Section 9.3 are now discussed by taking into
account two main aspects: the general effectiveness of the SBO routine,
and the comparison with the old routine for demonstrating it is an
improvement.

9.4.1 Effectiveness of SBO

Figure 9.14: Comparison between bench-
mark and optimised aft geometries

Figure 9.14 shows on the left the benchmark aft geometry and on
the right the one found by the Surrogate Based Optimisation. The two
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most distinguishable differences are the higher S-curve height and the
lower central transom point with respect to the bilge of the new design
compared to the benchmark one.

Table 9.4: Comparison between resis-
tance values of the portliner vessel
benchmark hull and the ones obtained
with the best Aft geometry

Rv Rp Rt

AFT opt -0.68% -11.24% -6.98%

Table 9.4 shows the values of resistance found both for the bench-
mark hull and for the optimised geometry with the aft parameters
given by SBO. The optimisation was performed on total resistance
(Rt) values, the sum of viscous resistance (Rv) and pressure resistance
(Rp). The total resistance does not include corrections due to surface
roughness, or aerodynamic resistance, or allowances for sea/service
conditions.

From the table, it can be seen that the Surrogate Based Optimisation
achieves an overall total resistance reduction of 6.98%. For more clarity
of the reader, in the benchmark design the pressure resistance is about
the 60% of the total. The differences between the two designs can be
better understood by looking at the physics behind those numbers.

Figure 9.15: Comparison of Fx contours
measured in Pa for the benchmark and
the optimised aft geometries.

(a) Benchmark

(b) Optimised AFT

First, Table 9.4 shows that there is a small reduction of 0.68% in
viscous resistance. The reason for this is because viscous resistance
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mostly depends on the wetted surface area when velocity, length and
fluid properties are not changed. The new geometry has a smaller
wetted surface than the benchmark, -0.98%. The difference is mostly
due to the different aft shapes, as the trim is almost the same.

Second, the most significant reduction is present in pressure resis-
tance, -11.24% with respect to the benchmark. This could be explained
by the big difference between the two transom wetted areas (see Figure
9.15). As stated by Holtrop and Mannen in 1982 [37], the total resis-
tance of a vessel can be subdivided into several components, of which
one is additional pressure resistance due to immersed transom stern.
In particular, for this case, the optimised aft managed to lower down
the immersed transom area of -51.15%. This is only an approximation,
and mostly useful for statistical and regression analysis, but still gives
the idea of where the most significant part of resistance reduction
comes from.

(a) Benchmark wave pattern from beneath the waterline (b) Optimal aft shape wave pattern from beneath the waterline

(c) Benchmark wave pattern from above (d) Optimal aft shape wave pattern from above

Figure 9.16: Comparison of benchmark and best AFT shape wave patterns

Finally, when post-processing and analysing CFD results for the
optimal aft shape found by SBO, it became clear that the resistance
reduction comes with the price of a worse wave pattern than the
benchmark. It can be seen in Figure 9.16, where to the left there is
the benchmark hull, and to the right the optimised one. The new aft
shape generates a second wave pattern at the transom edge, resulting
in higher waves and energy loss. This issue happened because the
geometry is automatically generated, and it is bound to the morphing
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equations. Thus, the recommendation is either to modify the mod-
eller and improve the quality of altered geometries or to correct the
optimised solution manually.

9.4.2 Displacement constraint

This case demonstrated that applying certain modifications to the aft
shape of a benchmark hull and analysing the results with a Surrogate
Based Optimisation can lead to resistance reductions. Thus, once more,
the routine build with the analysis carried out in Chapter 7 is successful
and validated. However, no constraints regarding displacement were
taken into account.

In the original case, the starting points were selected with Halton
sampling plan as well, but they did not follow the sequence. Many
geometries coming from points of the sequence were discarded be-
cause of the displacement constraint. The value had to stay within a
small bandwidth. The consequence of this choice is that the sampling
plan is not entirely space-filling within the set boundaries. See, for this,
Figure 9.17 that shows the starting points in black diamonds and the
refinement points in blue circles of the old optimisation plotted for all
four variables. Sometimes, it seems clear which areas were neglected
by the script, like the upper right angle of shoulder versus curve height
plot. Sometimes it is less evident, like in the shoulder over deadrise
plot. Consequently, it is not possible to use the entire design space,
but it is also not possible to recognise upfront which points will be
discarded and which not. Furthermore, this solution is not allowing
the Kriging model and the Expected Improvement function to know
about the additional constraint.
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Figure 9.17: Results of the position of all the refinement points (in blue) in the design space with respect to initial results (in black) for
the old optimisation routine.

The old optimisations routine did not manage to find a lower
resistance for the aft ship. The company pointed out several possible
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reasons for this. In particular, they focused on the strong non-linear
connection between the variables and in the optimisation routine in
general. In their opinion, this can be resolved only with a significant
number of other runs that were never performed because of budget
limitations. However, we have now more insight into the problem,
and we can still prove two points from here.

Firstly, this test allows us also to validate the choice of the Halton
sequence and proves that a careful choice of variables and boundaries
is crucial. This is because, if the entire domain could be used, then all
of it should be sampled. Secondly, the number of total CFD simulation
is almost the same (58 for the old and 60 for the new routine), but the
ratio between initial and refinement points is entirely different. This
thesis proves that about 45%-55% initial points over the total available
generate a balanced and successful search of the global optimum. On
the other hand, the old routine was starting with over 86% of the
total number of points. Therefore, the Expected Improvement function
could work with only 8 points, focus on one small area for each variable
and not explore any other.
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Figure 9.18: Two-objective (resistance
and displacement) analysis

Nonetheless, we acknowledge the need for a client to require a
displacement constraint, but we recommend to solve the issue in a
different way. Either the constraint should be added in the morphing
equations directly, thus changing the variables and generating only
acceptable designs with a fixed required value. This way, we do not
force the optimiser to discard points and lose the space-filling prop-
erty. Alternatively, another solution could be to have the same four
parameters but to use a fifth one (for example, draft) to adjust the draft
before sending the geometry to the simulation phase. Alternatively,
even, one can consider displacement as another objective to optimise,
to maximise in order to allow more cargo. In this last case, the best
solution would not necessarily be the one with the lowest resistance,
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but the geometry with the best trade-off between two objectives. Fig-
ure 9.18 shows the relationship of resistance over displacement for
the vessel analysed in this chapter. In diamond shape, both filled and
empty, we can see the 60 total sample points. The red area is consid-
ered non-feasible as displacement would be too low. The grey area is
where the geometry has higher resistance than the benchmark, thus
non-acceptable. Hence, the chosen geometry could be one of the empty
diamonds as they have lower resistance than the other points with
the same displacement. Which one is the best overall is not unique
and always valid; it depends on which variable between minimum
resistance and maximum displacement weights more in their trade-off
analysis.

In conclusion, also this second validation test was successful as
a new geometry with less resistance than the benchmark was found.
The new ratio of initial versus total available points proved to lead to
a proper exploration-exploitation balance. The Halton sequence and
its space-filling property are a right choice as, at a glance, the user
can already check some results. Furthermore, we proved once more
that the post-processing visualisation tools are of great importance.
Because, in the end, it does not matter how automatic the optimisation
is if the Naval Architect cannot correctly check the results, gain knowl-
edge from them, and spot anomalies. Finally, this test is proof that the
design of a vessel is complicated, and the search for lower resistance is
essential but bound to many other objectives.
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This document described the work conducted for the Ship Hy-
dromechanics Master Thesis performed at Van Oossanen Naval Ar-
chitects company for TU Delft University. The project proposes a
methodology for a Surrogate Based Optimisation (SBO) study and
its application in the Naval Architecture field using the open-source
software DAKOTA. Surrogate Based Optimisation is a useful and pow-
erful way of reducing time and costs in hull shape optimisation. It
provides a better global understanding of the problem than traditional
optimisation methods. Moreover, it allows the use of exploratory data
analysis techniques and machine learning methods to get more insight,
discover hidden patterns, and detect anomalies in the design space.
However, this procedure has no certainty of convergence, and the
result may be not reducing the overall hull resistance.

During the literature review phase, we saw that many authors
proved an SBO to be successful and useful, both in the marine field
and with the use of DAKOTA. However, no standard rules were ever
proposed for how to proceed. Therefore the thesis showed guidelines
to follow when building up an SBO routine for a specific topic (resis-
tance reduction by hull geometry modification) and a specific company
(Van Oossanen N.A.).

SBO consists of several interconnected steps, and each increase
complexity and uncertainty to the overall process. The steps were
divided into three sub-topics and further analysed. They are optimisa-
tion algorithms, design space exploration (both sampling plans and
infill techniques), and surrogate models. The central research part is
devoted to the study and comparison of possible methods, their ad-
vantages and drawbacks, and their performance, for every sub-topic
identified.

First, an overview of what is optimisation is given. The main issue
was to select a suitable algorithm, but the number of candidates is high.
The most balanced solution for this case is a combination of a global
search algorithm that selects promising points and passes them to a
local search algorithm that only looks in the vicinity of those. For the
global search, Genetic Algorithm is selected, because it is widely used
in the literature, it can be adapted to a Multi-Objective optimisation,
and it can pass multiple solutions to the next algorithm. As for the
local search, since the optimisation is performed on the (continuous)
surrogate level, it does not matter which method is chosen. Thus
the decision of which one to use was not based on performance, but
visualisation capabilities. Pattern Search algorithms, from this point of
view, are easy to inspect by the user, thanks to its fixed structure.

Second, the design space exploration is analysed and split into
two sub-categories: sampling plans and refinement runs. The two
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main problems with sampling plans are the size of the sample nature.
Nature is represented by the distribution of points over the design
space, and the best way to do it is by using a space-filling technique.
Among others, the Halton sequence is preferred as it has no random
components. For this reason, t it is easier to spot and correct possible
mistakes. Furthermore, it was already used at Van Oossanen N.A.;
thus, the company members are already familiar with it. About the
second issue, i.e. how many points to use, the higher the number of
real points constructs a surrogate, the higher the overall quality will
be. Nevertheless, this number is profoundly limited by the budget of
the company, because each point requires a long and expensive CFD
simulation. A right balance was found with the use of 113-153 total
points, with 3 being the number of variables.

Then, the infill sampling criteria (how to improve the accuracy of
the surrogate adding points to the initial sampling plan) is described.
The biggest concern is how to obtain the right balance between explo-
ration and exploitation of the design space. This balance is achieved
with the use of the Expected Improvement function. This algorithm
selects the position of a new point based on the uncertainty of the
surrogate prediction. It has proved to be able to converge to a global
optimum but also to escape a local one if enough iterations are avail-
able. Thus, the following question is what percentage of the total points
should be used for this refinement phase. The answer is between 45%
and 55%.

Third, a generic discussion and overview of surrogate models are
given. Many different models are available, but in the literature mostly
Kriging, Radial Basis Functions, and Artificial Neural Networks stood
out. Among them, Kriging was chosen thanks to its performance
measured by a leave-one-out RSME analysis. More than that, KG is
also robust, it can deal with non-linearity, and it well supported in
DAKOTA toolkit. Two more reasons lead to chose KG over the others.
Firstly, this model supports the use of EI functions. Secondly, the
expected noise level in Van Oossanen N.A. CFD simulations is low
enough not to affect the model accuracy.

Finally, this research was conducted with the extensive use of
DAKOTA toolkit. It was flexible enough to be adapted for several
different tests and applications. Moreover, it allowed an easy coupling
with an extensive list of other tools. Thanks to its restart capabilities it
also enabled secure but controlled, parallel CFD computations. Fur-
thermore, most importantly, one of its most significant advantages was
it characteristic of exporting data in very convenient formats and thus
enable extensive and automatable visualisation analysis.

10.1 Results and discussion

The routine thus constructed is tested with two design applications
from the marine field: a Hull Vane and an aft hull shape optimisa-
tion. The goal in both cases is to obtain a reliable resistance reduction
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through shape modifications, to do it automatically, and to keep time
and costs as low as possible when doing so.

In the first test, the scope was to optimise the position and the shape
of a Hull Vane installed at the stern of a ferry. Three variables were used
to describe the allowed geometries variations, namely chord length,
G and I position. The second test was slightly more complicated and
involved the optimisation of the aft shape of an inland vessel sailing in
shallow waters. Four variables were used to modify the geometry.

For both tests, CFD settings and SBO settings are described in the
design application part of this thesis. Here we only focus on the results
and their discussion. At the cost of 35 simulations for the former, and
60 for the latter, both had outstanding performances. The main reasons
for that are:

I Both found a global optimum where resistance was reduced
with respect to the benchmark. The Hull Vane test provided a
reduction of -19.39% for the benchmark. Furthermore, a local
minimum was able to reduce the resistance of -18.97%. The new
aft shape, instead, gave a reduction of almost 7%.

I 19 (and 27) points of the Halton sequence can uniformly cover
a three (and four) dimensions design space. Furthermore, their
position is a good starting point for the surrogate model.

I Useful visualisation tools and mid-routine checks were devel-
oped to catch trends of resistance and possible anomalies. This
allowed a more robust refinement phase.

I The ratio between initial and refinement points proved to ensure
a well balanced exploration-exploitation search.

I Choosing Kriging method, and therefore allowing EI function
to select new points, was a winning choice. Moreover, this meta-
model proved to be flexible but precise enough.

The Hull Vane SBO was not just successful; it was also validated
against old results on the same geometry performed by Van Oossanen.
These results are a fair comparison because the best Hull Vane has
been installed on the ferry. Speed trials were performed before and
after the installation of the Hull Vane and a reduction of 19% of shaft
power was experienced when sailing at design speed.

The aft ship SBO was an excellent example to show possible im-
provements to the routine. In particular, we explored the possibility
to add a displacement constraint to the resistance reduction problem.
We showed that a correct way to implement this feature could be the
use of a two-objective optimisation. This way, a trade-off between
resistance reduction and displacement increase can be achieved.

In conclusion, two are the reasons why this new routine is an
improvement for the old one:

I The new proportion between initial and refinement points al-
lowed a better balance between exploration and exploitation of
the design space. The new SBO found the same point of local
minimum where the old optimisation stopped, and moved on to
a global optimum with lower resistance. This allows the Naval
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Architect to have more freedom and maybe to choose between
different designs based on more constraints or objectives.

I The new proposed visualisation procedure forces the user to stop
and critically analyse the results before starting with the refine-
ment runs. This system does not diminish the automatism of the
routine. On the contrary, it provides two new advantages. First,
the user must look at the results obtained so far and, doing so, in-
evitably gains more knowledge on the problem. This awareness
will allow him/her in the future to set up an improved version
of the SBO. Second, by inspecting the initial results, any mistake,
any irregularity is spotted and thus corrected. This means that
the accuracy of the method increases exponentially.

10.2 Further improvements

Finally, we present here some topics that could represent further im-
provement and research for what is covered in this document. If we
look back at Figure 2.1, there are three steps of the Surrogate Optimi-
sation workflow that this thesis did not take into account. They are
parameter generation, shape deformation, and mesh and CFD simula-
tions. The first two are deeply related to the performance of a SBO and
could be further developed, while the third one would require much
more work and falls into a different research topic.

First, in order to obtain a successful optimisation, a major role is
occupied by the variable selection. How many variables and which
ones are sufficient and necessary to fully represent a problem? And
equally important, what kind of boundaries to set on these variables?

Furthermore, a good SBO is based on the automate generation of
parametric geometries. Which software tools are better for this? What
is the more robust way to deal with this issue?



Nomenclature

The next list describes several symbols that were used within the body of the document.

Δ Distance between analytical and approximated best solutions

X0 Initial step length in Pattern Search

n % Percent relative error

nstop Stopping tolerance (PS)

_ Step size in Quasi-Newton search

`0,F Air or water dynamic viscosity

Φ Cumulative distribution function

q Probability density function

Ψ Activation function (ANN). Gram Matrix (RBF). Correlation matrix (KG).

k Basis functions

d0,F Air or water density

f2 Variance

\, ? Hyper-parameters of KG

i Radical inverse function for Halton sequence

H Hessian matrix

I Covariance matrix

^ Sampling plan

x (8) Discrete observations or samples

` Set of random vectors for KG

̂̀ MLE mean

5̂ Surrogate (approximated) surface

Ĥ Approximated resistance for any point on the surrogate surface

2 Contractor factor for Pattern Search

2 (8) 8 sample point position for RBF

� Design space, or design domain



3 Number of design variables

3? Euclidean distance when ? = 2

48 Standard basis for a i=1,2,...,n dimensional space

> Observed value by DAKOTA for point x (8)

? Surrogate model prediction by DAKOTA for point x (8)

B2 Mean square error in a Gaussian process

F Weights for basis functions

H True resistance for a sample point

Hmin Best observed data by surrogate

5 "Black Box" function to be approximated

I� Corrected covariance matrix

A, \ Matrix and vector of neuron weights and offset values in ANN

E Expectation

E[I] Expected Improvement

Fr Froude number

I Improvement

L Likelihood function

P[I] Probability of improvement

Rp Pressure resistance

Rt Total resistance

Rt % Percentage of resistance reduction (if negative) or increase (if positive) with respect to benckmark

Rv Viscous resistance
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ANN Artificial Neural Networks. 33, 36, 63
AS Adaptive Sampling. 62

BFGS Broyden Fletcher Gordfarb Shanno. 15, 24, 48

CAD Computer Aided Design. 4, 14
CAE Computer Aided Engineering. 14
CFD Computational Fluid Dynamics. 3, 4, 13
CI Confidence Interval. 73
CV Cross-Validation. 38

DAKOTA Design and Analysis toolKit for Optimisation and Terascale Applications. 5
DIRECT DIvision of RECTangles. 59
DNS Direct Numerical Simulations. 14

EGO Efficient Global Optimisation. 59
EI Expected Improvement. 15, 30, 56, 58

FFNN Feed-Forward Neural Network. 64

GA Genetic Algorithm. 23, 45

HV Hull Vane. 96

IACC International America’s Cup Class. 17

KG Kriging. 33, 36, 69

LES Large Eddy Simulations. 14
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LOO Leave-One-Out. 38
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