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ABSTRACT

The flow in a meandering channel is complicated by its curvi-
linear characteristics. Consequently, spiral motion and superelevation
develop, and the velocity and boundary-shear distributions are modified.
Through an approximate theoretical solution and experiments in a fixed-
bed model of constant radius, central angle, and uniform cross section,
the influence of the Froude number, and the width-depth ratio of sub-
critical flow with sufficiently high Reynolds number in a relatively
wide meandering channel were determinéd. The velocity and boundary-
shear distributions, the superelevation, and the growth and decay
of the spiral motion were studied in detail through analysis of the
expérimental results. The turbulence intensity of the flow was also
measured. Experimental results are presented in generalized form.
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I. INTRODUCTION

One of the riddles of nature is the meandering of rivers. The
present study is by no means an attempt to give a comprehensive answer
to this complicated phenomenon, but to obtain information about flow in
an idealized river bend which would be helpful in many practical prob-
lems and further research work.

The flow in a curved open channel differs from that in a
straight channel because of the presence of centripetal acceleration.
As a consequence, the water surface is superelevated, spiral motion may
be set up, and the velocity and boundary-shear distributions are modi-
fied. Furthermore, the flow characteristics change from section to sec-
tion unless the bend is relatively long. The effect of the bend extends
both upstream and downstream. The bend acts as an obstacle to the flow,
causing additional energy losses and a rising backwater upstream. In
bends with large curvature, separation may also occur. In natural
rivers, the flow is further complicated by irregular channel geometry
and movable bed material.

Since the present work is an initial attempt to study the
meandering-river problem systematically, the laboratory model is ideal-
ized as a fixed-bed channel of uniform cross section of large width-
depth ratio with clear-water subcritical flow. In addition to the mean-
flow characteristics - namely, velocity, direction of flow, water-sur-
face profiles, and boundary shear stresses - the turbulence intensity
was also measured. The experimental results are compared with an approx-
imate theoretical solution for fully developed bend flow.

Because of the difficulties involved in turbulence measure-
ments in water, the possibility of using a double-image type of air
model of similar geometry for turbulence study was considered, and the
result was compared with that obtained for the water channel.



II. DIMENSIONAL ANALYSIS

In the analysis of flow in a meandering river, the parameters
involved can be classified into four groups: the channel-geometry char-
acteristics, the flow characteristics, the fluid properties, and the

sediment properties.
The channel-geometry characteristics can in turn be grouped as:

A. Cross-sectional factors, which include the depth h, the width B, and
the parameters which describe the shape of the cross section.

. Planimetric pattern factors, which describe the pattern of the meander.

- : s

Fig. 1.

These include the amplitude of the meander W, the "wave length'" of the
meander L, the angle o which the initial tangent at the nodal point
makes with the axis of the meander belt, and the radius of curvature of

the channel at any distance from the nodal point (Fig. 1).

C. Longitudinal-profile factors, which include the valley slope S, and
the channel-ved slope Sy

The flow characteristics include the magnitude and direc-
tion of the mean velocity at any point, the distribution of pressure,
the water-surface profiles, the turbulence characteristics, the flow

condition at the entrance, and the gravitational acceleration g.



Obviously, there are too many variables to be handled in a
laboratory model study at the present stage. Therefore, sediment was
eliminated from the study; clear water was used as fluid; the movable
bed was replaced by a surface of specific roughness; the channel was
built with a uniform trapezoidal cross section and with bends of con-
stant curvature and reverse directions connected by short tangents. The
entrance flow condition was no longer an independent variable, because
the flow was considered to be uniquely determined by the preceding bends
and was an inverse image of the entrance condition of the following bend.

For this simplified model (Fig. 2), the geometry of the channel
can be defined by the central angle oi the bend Oc, the centerline radius
Ty the tangent length T, the width of the channel B, the depth of flow
h,and the cross-sectional shape. By using cylindrical coordinates r, o,
and z within the bend, with z measured vertically from the bed, and Car-
tesian coordinates x, y, and z for the straight tangent, with y along
the longitudinal direction as shown in Fig. 2, any one of the local mean-

flow velocity components and pressure can be expressed as

1 VYV W - — r, 61 z,
UV W, P =F o34 CPrtyg ' T %, 8, B b,
Q, cross-section shape, roughness ) (1)

where u, v, and w, are the temporal mean velocity components at a point
along the r, ©, 2, or x, y, z directions, fespectively; and p is the
temporal mean pressure at that point. The symbol F represents a func-
tional relationship. The parameters p and m are the density and dynamic
viscosity of the fluid, respectively; and Q is the volume rate of flow,
or discharge, which is used here instead of the bed slope.

If Vo and ho are the mean velocity and the hydraulic mean
depth of uniform flow in a straight channel having the same discharge Q,



the same boundary roushness, and the same cross section as the curved

channel, then one obtains
Vo = Fs Cp, 4,9,B hy, R, Q, roughness ) (2)

where the shape factor is assumed to be sufficiently described by the
hydraulic radius R. Substitution of the functional relationship (2)
into (1) and application of dimensional considerations yield the follow-

ing dimensionless relationships:

_ s By =

g vV w. P _r (7", YoRe,

Vo' Vo' Vo PVE2 6,7 8,9 X, 4 2 /7 M
B e ho

_9\./:5, _;:C_, ec,—gf—, %,%7 roughness J (3)

Likewise, the temporal mean boundary-snear stress T is ex-

0
pressed as
=0 . Re
To _ e’ VoRP 0 T
pVOZ/Z —Flo [( _;;’%)’ p b '——-—gho‘) r_c7 eC)
¢
%» %; —S—: roughnessJ (4)

The term VORF%U is the Reynolds number R, which indicates the
relative importance of inertial effect compared to viscous effects. 7If the
value of R is sufficiently large, the influence -of the change of R on

the flow characteristics is expected to be negligivle.

The Froude number F = VO/JghO describes the relative impor-
tance of inertia compared to gravity effects. If [F is greater than
unity, the flow is supercritical and characterized by cross waves in the

bend (33, Chap. VIII, Sec. D]* [3, Sec. 16-5]. 1In most natural rivers

*Numbers in brackets refer to the numbers listed in the References.
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the flow is subcritical and F is less than unity. In alluvial channels
[ usually ranges from 0.1 to 0.4. The present study is limited to sub-
critical flow.

One of the important geometric parameters is the width-depth
ratio B/ho. The flow pattern for the case of large width-depth ratio
is different from that for a small ratio because of the difference in
relative importance of the surface resistance of the bed and that of the
banks or side walls. For the case of B/ho<<l, there may be no spiral
rmotion at all, because the side-wall resistance prevents it. However,
in river bends the width-depth ratio is much greater than unity, and the
bottom contributes the major part of the surface resistance.

For the present study, in order to have a model which would be
representative of a natural large river, the geometry of the model channel
was oased on a statistical analysis of rivers. From the navigation maps
published by the Corps of Engineers [25, 26], the planimetric character-
istics of the bends in the Mississippi River from Cairo, Illinois, to
Baton Rouge, Louisiana, and in the Missouri River from Sioux City, Iowa, -
to its mouth were measured. Cumulative freguency curves for rc/Bs, Oc,
and Tl/rc were obtained (Figsf 3, 4, and 5), where Bs was the water-sur-
face width. The maps used for this analysis were for average low-water
conditions. At higher stages, Oc and Tl/rc would change presumably lit-
tle; the values of rc/Bs, however, would decrease appreciably because of
the rapid increase of Bs at higher stage.- Because of the variation of
BS with stage, more information was needed to decide the value of rc/Bs
for the model. Leopold and Wolman gave an average value of rc/Bs of 2.3
for many rivers and canals, and an average value of 3.24 for the few
data they obtained for the Mississippi [24]. Based on all this informa-
tion, with less weight given to the Missouri River data because that
river has mostly been trained, the planimetric geometry of the model
was chosen as @ = 90°, Tl/rc = 2.5, and rc/Bb = 4.67.



III. PREVIOUS WORK ON FLOW IN BENDS

Since Thomson recorded in 1876 [39] the spiral motion in a
river bend based on his experimental observationy many investigations
have been conducted on flow in bends. However, only a few controlled
laboratory experiments have been made for the case of subcritical flow
with relatively high Reynolds numbers in open-channel bends of large
width-deptn ratios. A brief summary of important experiments on flow in
open-channel bends is given in Table 1. Most of the values in this Table
were computed from the data given in the original publications; the Rus-
sian investigations (Milovich and following) were taken from References
[19] and [35]. A more detailed description of Russian work can be found
in Reference [10].

During the late nineteenth and the early twentieth century,
studies on meandering channels were mainly based on field observations
of rivers. Fargue [9] systematically summarized his observations of the
Garonne since 1849 and proposed his empirical laws on meandering rivers
with movable bed which were widely accepted in Europe for river-training
works. Leliavsky verified Fargue's laws from field observations by means
of a specially designed device for velocity-direction measurements [21].
In 1934, Blue, Herbert, and Lancefield published results of measurements
in the Iowa River near Iowa City [1]; and in 1535, Zakin published a

study on a bend of the Mississippi [5]. The latter two investigations
showed the existence of spiral motion.

Among the analytical and experimental investigations, BYss [2]
assumed free-vortex velocity distribution in the radial direction to
evaluate analytically the transverse superelevation of the water surface
and checked it experimentally. The width-depth ratios of his experi-
ments were too low compared to those of natural rivers and only the
transverse water-surface profiles were measured. As will be shown later,
the superelevation 1s not sensitive to the lateral distribution of the

longitudinal velocity component if rc/B of the channel is greater than



unity. Thus, the study is interesting only because of its consideration

of free-vortex velocity distribution.

Yarnell and Woodward conducted extensive experiments on flow in
bends at the Iowa Institute of Hydraulic Research [42]. It was found
that the entrance condition was important for the flow in the bend. Near
the beginning of the bend, the pressure or water depth decreased and the
velocity increased near the inside boundary. The effects of the bend
persisted for a considerable distance downstream. Spiral motion was
also observed. However, the width-depth ratios for this series of exper-
iments were relatively small and the Froude numbers were high compared
to those of alluvial rivers.

Mockmore proposed a theoretical study on flow in open-channel
bends by arbitrarily assumed distributions of velocity components [27];
his study showed the streamlines to be helicoidal. He also gave the
equations for the streamlines, angular velocities, and accelerations for
the free-vortex case. However, his assumed velocity distributions could
not be verified experimentally, and hence the result of his study could '
not be accepted quantitatively.

Shukry presented the results of his experiments [37], which
coveredba wide range of central angle Oc, of Froude numbers, and of
radius-width ratios. Water-surface profiles were measured to evaluate
the resistance coefficient. In several runs he also measured the veloc-
ity in magnitude and direction and found that the spiral motion persisted
in the straight flume near the curve and that the strength of the spiral
is made to decrease by decreasing Oc, or by increasing either rc/B or R.
The last result is probably due to the relatively low Reynolds numbers
tested. It was also stated that the kinetic energy of the lateral cur-
rents in a bend is relatively small and that the tangential velocity
component and the water-surface profile at the section of maximum sur-
face depression can be predicted by free-vortex theory. The major limi-
tation of Skukry's work is the relatively small width-depth ratio. His



conclusion that the strength of the spiral motion decreases as B/h de-
creases is a consequence of this limitation and is true only for B/a of
about unity and smaller. Experimental results by Liatkher and Prudovskii
[22] show that the redistrivution of velocity, and hence the spiral flow,

is most intense when the width-depth ratio is about unity.

The main purpose of a recent experimental investigation at MIT
[17, 18] was to determine the boundary-shear distribution. It was found
that the flow patterns on a 60° bend are essentially those of free-vortex
flow. The maximum boundary shear was generally found at locations of
high velocity. The relative boundary-shear patterns were not strongly
affected by variations in depth and velocity distrioution at the entrance

section; they seemed to depend primarily on the channel geometry.

Another group of investigators, such as Raju [31], Yen and
Howe [44], Denzler [4], and Shanmugam [36], were interested mainly in
the evaluation of the loss coefficient in a bend.

Friedkin performed a series of experiments on the development
of meanders in a movable bed [11]. He also observed the trace of the
bed material. Leopold and Wolman collected field data and studied the
problem from a physiographic point of view [24].

Among Russian investigations, the work of Rozovskii is most
noteworthy [35]. With the aid of order-of-magnitude considerations and
assumptions about eddy viscosity, vertical distribution of longitudinal
velocity components, and zero net lateral discharge, he derived an
approximate solution for the radial velocity component from the Reynolds
equations of motion. Through further assumptions, he tried to solve for
the radial distribution of the longitudinal velocity component and the
growth and decay of the spiral motion. Because some of his assumptions
are very questionable and cannot be verified experimentally, as will be
discussed further in Chapters IV and VII, the results of his attempt are
not satisfactory. In order to verify his theoretical study, he per-

formed extensive experiments and field measurements. He concluded that



the solution for the vertical distribution of the radial velocity compo-
nent based on a logarithmic distribution of the longitudinal velocity
component along the vertical direction is acceptable, whereas those
based on exponential, parabolic, or elliptical velocity distributions
have their defects. It is to be noted, however, that the Reynolds num-
bers for his experiments were generally low, and that the results were
valid only for a single bend with uniform approaching flow.

It can be noted that most of the previous experimental studies
of flow in open-channel bends have certain shortcomings. Either the Rey-
nolds number is too low to be free from the change of flow pattern due
to the change of R; the width-depth ratio is too small as compared to
those of natural rivers; or the variation of depth due to a difference
between the average surface slope and the bed slope is nqt negligible.
For the few experiments done under favorable conditions, such as those
at MIT, only a limited amount of information has been obtained. There-
fore, a systematic detailed experimental investigation of flow in a mean-
dering channel having a geometry compatible with that of natural rivers,
with relatively high Reynolds numbers and various Froude numbers, is
needed and appropriate.

The flow in retangular conduit bends which is closely related to
the present subject, has been studied by Wattendorf [41], Hawthorne [12],
Eskinazi and Yeh [8], Yeh, Ross and Lien [43], Nippert (28], Richter
[32], Eichenberger (6], and Yarnell and Woodward [42]. However, all
these studies dealt with the case of smallvwidth-depth ratios.
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IV. THEORETICAL CONSIDERATIONS

1. Velocity Distribution of Fully Developed Flow in Curved Channel of
Large Width-Depth Ratio

In terms of cylindrical coordinates, the Reynolds equations of

motion are (34, p. 433]

_ — — I — -

94 , QU ,s9u , L9 _V°_ B3 B 9 (,2u g_,z]
o5t TYar* Vit W5z = ar(p+Q) ar[y(ar«rr) u
O (Y (28U _,u)_gvle 2 (vl _ gngy_ U2, V2
+rae[?(@‘ ZV) uv +aZ(VaZ UW) r +—r_—- (5)
8v  _9V,_-BV_ _9V.uv_ o p d OV Vi s
5t *Uar Vet Ve T = trap(p Q)+ o (vGE ) -

B (¥ BV oy ), B 8V —— TV
*Fe[r(ae“zu) Vot ez (Va7 — VW) - 2 r (6)
dw , _BW . _3w,_0W _ _9 B D (W W, _ —
at ~Yoar Viae t oz “52(%*9)*67["(67“‘?)‘““’J
o Aw —— 0 3w 2 uw' W
troe (Vreg VW )t 57 (Vaz — W) Wiz (1)
and the continuity equation is
r r roe 2z

where z being measured vertically from the channel bed; ﬁ, ;, ;, are the
temporal means and u', v', w' are the fluctuations of the velocity com-

ponents in the corresponding r, ©, z directions; P is the temporal mean

of the pressure, v =,u/p is the kinematic viscosity of the fluid, and Q
is the gravitational potential energy per unit mass of the fluid.

For steady, fully developed flow in a curved channel, i.e., in
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a very long continuous bend such that the flow does not change from sec=-
tion to section, all the derivatives with respect to © of the temporal
mean terms are zero, except that of the pressure and gravitational-
potential term, which is a constant since in a fully developed flow the
loss of energy is the same for equal increments of 8, or d(P + pQ)éG =K.
For the part of the flow which is away from the solid boundaries, if the
Reynolds number of the flow is sufficiently high for the viscous stresses
to be negligible as compared to the turbulent stresses, the Reynolds
equations and the continuity equation can be simplified to yield

0% v BR nZ 1 )G - G - T ()
g—,ﬁ+%+%z@=o (12)

Unfortunately, even in this simplified form there are still
ten unknowns in these four nonlinear differential equations. Hence addi-
tional conditions are necessary if the problem is to be solved at least
approximately. However, even if our present knowledge of turbulence
could provide rigorous information on the relationship between the tur-
bulent stresses and the mean velocity components, the solution of such
highly nonlinear differential equations would still be extremely diffi-

cult, if possible at all. Therefore, further approximations and simpli-
fications have to be introduced.

If the channel is assumed to be wide compared to its depth,
say B/h > 10, and the width of the channel and the radius to be of the

same order of magnitude, then from experimental observations, the ratio
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G/Y of the radial to the longitudinal velocity component would be of the
order of h/r, and the ratio W/V of the vertical to the longitudinal com-
ponent would be of the order of (h/r)(h/B) except very close to the
banks, where the order of W approaches that of W. As to the turbulent

stresses, u' , v' , and w'g are assumed to be of the same order of mag-

nitude, and u'v', v'w' and u'w' as well. From experimental observations,

2/? is of the order of (h/r)(W/¥), or h/r) ; and u'v' is of the same
order or one order less than.;—z. Therefore, the relative orders of
nmagnitude of the terms in Egs. (9) and (10) are:

off)+ o[ -0(1) = (5 2&+0)-o&] - o)
-o[@)-of@r) e

o) + o[2) + o) = (&2 B+ @) - o]
-0[2)- o[ ] (10')

From Eq. (10'), by neglecting terms of the order of (h/r , the term
[(B/p) +Q)/r is seen to be of the order of (h/r)('z/r) Thus, the rela-
tive order of magnitude of the terms in Eq. (11) is

ofi2f) -of2f] - o[ )-ofef)-oft) o]

By neglecting the small-order terms, Egs. (9), (10), and (11) can hence
be written as

_2 _ .
vy __0 (P _Quw
ro 6r(p+ﬂ) Bz (13
—,§5Z —0v uv _ D P AVv'w'
USr " %3z " r r66(5_+Q)— B3z (14)
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_ 0
0 =5 (

o |0l

+0) (15)

From Eq. (15), it is evident that the pressure distribution
along any vertical in the flow is hydrostatic and the possible relative
percentage error involved is less than h/r. Integrating Eq. (15) with
respect to z, and noting that 3(p + pR)/36 = oK and Q= gz, one obtains

+9z = $(r) + K@ (16)

o vl
+
0
Il

Dol

Since P = O on the water surface, z = h, so that

Pl _P| _m _ -
P |z Plz P‘h g(h z)
Therefore
3, P _ 9.8y _ _ ~,9h
5;_-(%-»52)— are) = f(r)=g5r
or
2 /B = (18")
ar(p +£) =095,

where 8, = 3h/dr is the slope of the water surface in the lateral direc-
tion.

Following Boussinesqg's concept of turbulent mixing and neg-
lecting viscous stresses, one can write the turbulent-shear terms in
Egs. (13) and (14) as

Ay — aW ou

~UW =€, (g5 + 52) (17)
1 !l — av aw

~VW =€,5 (3z * o5 ) HH
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where ezr and ezQ are the eddy viscosities in the corresponding planes.
Different opinions have been expressed about the mathematical nature of
the eddy viscosity. fAccordinz to Boussinesg, it is a pure scalar.
Others considered it a vector. Hinze pointed out [14, p. 20] that it is
more reasonable for € to be a tensor of second or higher even order.
Since no better information is available, and for the sake of simplicity,

€ is assumed to be a scalar at a point, i.e., Eop = €, = E.

For the present problem, the term 3W/8r in Eq. (17) is much
smaller than 8G/6z, and in Eg. (18), 8W/88 = 0. Therefore, by introduc-
ing Egs. (16'), (17), and (18), one can write Egs. (13) and (14) as

. 2 -
¥ om= 0O (¢ B4

L a5 (e 32) (1)
g9V, oV _dv__K, 3 9oV
Yar T Waz T F T r‘+5;(eaz) (20)

For solving §, ¥V, and W from Egs. (12), (19), and (20), further
assumptions are needed, because all the velocity gradients and 5. and €

are still unknown. For the steady uniform flow in a straight, two-

dimensional open channel, the velocity distribution along any vertical
is

e Vr 2
V=1V, + — Rn-;—
h K h

where Vh is the velocity at the surface z = h, V¢ = ’Tb/p is the temporal
mean shear velocity, and K is the Karman universal constant. The tempo-

ral mean shear stress at any elevation z from the ved in the flow is

T=T, [1 - (z/h)], and by definition T = pe (dv/dz). Therefore,

€=kVzz (I-+) (21)

For the fully developed flow in an open-channel bend, it is

reasonable to assume that € is not only a function of z dbut also a
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function of its relative radial position r/h., i.e.,
- r z
€=KVTF(—)Z(|——) (22)

where F(r/ho) should approach unity as r/hO approaches infinity. The
corresponding velocity distribution along a vertical, if the relation-
ship T = ?b[l - (z/h)] is still assumed to hold, becomes

Vv, + 2z (23)
K

This logarithmic velocity distribution in a bend is by no means as exact
as that of the flow in a straight channel, for it will be most likely
modified by the transverse velocity components. However, with no better
information available, Ec. (23) and the corresponding € will be sutsti-
tuted into Eq. (19) in order to solve for u.

By order-of-magnitude considerations, pe(aﬁ/az) is the only
appreciable radial component of shear stress, so that %;r = pe(du/az),
where i;r is the temporal mean shear stress acting on a surface perpen-
dicular to z along the r direction. Moreover, the shear stress is
approximately zero on the free surface, i.e., i;r =0at z = h, and
(i;r)o = ?bsin¢ at the bottom, where ¢ 1s the angle of deviation from
the tangential direction. Thus, integration of Eq. (19) from the bot-
tom to the surface, with V from Eq. (23), yields
-2

|, -2 - = _2 F? .
Sr F 2—?)-5%$m¢ (24)

) With the aid of the boundary conditions ?Zr =0at z=nhand
);’oﬁﬁz = 0 for fully developed curved-channel flow, substitution of
Egs. (22), (23), and (24) into Eq. (19) and integration twice with re-
spect to z yield

_ N z h Vh h wF _
u = F—KS|n¢<,+on)+2?k—zI| +?—;§(T2 ZI’) (25)
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where
An(z/h) Qn(z/h) z .z
L= — i ]
! [l—(z/h) f} = (z/n) I I
o (z/h)
=Pn%£n(l——f}—) + ¥ —— -
=
L = Qn (Z/h) z QHZ(Z/h) z dz
: [:—u/m /j I~ (z/h) OB O

The numerical values of Il and I2 for different z/h are plotted in Fig.
6.

In order to solve for the lateral distribution of the tangen-
tial velocity component ¥, the continuity equation (12) is multiplied by
v and added to Eq. (20) to yield

2 -
or-uv
Tor t ee T Tt a2(¢or

By expressing (dV/dz) = ’—czg/p, and with the boundary conditions
"E'zg/p = Vfrzcosdb at z=0, T

z0
z = h, integration of the above equation with respect to z from the tot-

=0Oat z=h, and W =0 at z = 0 and

tom to the surface yields

ar‘zf:Ude Kh _3 (26)
rzar = —?'—' VT COS¢

By substituting U and Vv from Egs. (23) and (25) and notinz that
f I,d(z/h) = [o I,d(z/a) = O, {O Illn(z/h) d(z/h) = 0.38, and
/O Izln( z/n) 4a( z/h) = 0.44, one obtains

[, 2 V% ( - . ¢
a_r{h r_'_rz_[ v,rrrs:nc;b + O.?é—i——(vh—v L)+044v £ ]}

K Tk

= -Khr— vz2r?2 cosg (27)
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As a first approximation, the change of pressure and gravita-
tional potential energy can be assumed equal to the rate at which work
is done by the bed shear per unit increment of @, so that Vrzcos¢> =-Kh/r.
Herewith, integration of Eq. (27) gives

2
w Bl P Fev - F o E e
, B FA_ (28)
Verh [V't'h_s’"‘p + 076 p (Vy, = V¢ ; ) + 044 v, xz] CK

where c is the integration constant.

For a steady uniform flow in a two-dimensional straight chan-
nel, one has

6

1/
( ’4q h - i (29)
V’C '

where L A is the average velocity over a vertical, f is the Weisbach re-
sistance factor, and n is the Manning coefficient. This relationship
can be assumed to hold for flow in bends if the radius-width ratio is
not too small. The value of m,which indicates the boundary-roughness
effects, increases only slightly with r, and its value is of the order
of 20.

From Eq. (23), it follows that

I
Vav=f Vd—z—=7h—"\7£ (30)
0

>

Thus, Eqs. (28), (29), and (30) can be solved to give

- ' ol -1/2

_MmKk, r €

oy = T (5 Sing + 076 m-= + 044— - (31)
outer bank

where c is given by v hdr = Q. Combining Egs. (23), (29),

inner bvank &V
and (30), one has the expression for the vertical distribution of the

relative longitudinal velocity component as

|<|

= | + —mF—K( | + ,thi) (32)

<
<
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With the aid of Egs. (29) and (30), one ottains from Eq. (25)

the solution for the relative radial velocity component

g __Ih _r sing Z m oL Fo (33)
VOV_mKr[ h F (|+Rnh)+2‘<ll kzIZJ

Rozovskii proceeded in a similar way [35], assuming a logarithmic veloc-
ity distribution along a vertical, with € given by Zq. (21), and arrived
at

3|

e [le*ﬁlz] (33')
Vav K kC

where C is the Chézy coefficient. This equation agrees formally with
Eq. (33) if the 5sin¢ term accounting for the effects of boundary shear
is neglected. However, Rozovskii assumed C to be a constant in a bend,

while in Eq. (33) m could be a function of r.

In Eo. (33), the second term inside the bracket is much larger
than either the first or the last term. Thus it can be seen that ﬁ/vav
is hardly affected by the boundary roughness, and is directly propor-
tional to h/r.

The expression for the relative vertical velocity component
corresponding to Egs. (32) and (33) can be obtained from the continuity
relationship, Eq. (12), and Eqs. (31) and (32). Since W is relatively
small except very near the banks, where the solutions for U and V are at
any rate not valid, a cumbersome and more accurate solution is not wor-
thy. If the terms in Egs. (31) and (33) containing sin¢ as well as the

terms dF/dr, dm/dr, and (ahl/e/ar) are neglected, then one has
R PG L FlLdZ) (34)
Vav rZ 2mi3 f =h 2%h

For the completion of the solution for the velocity, the func-
tion F( r/ho)' should be known. Unfortunately, only its limiting value of
unity is known for reasonably large values of r/ho. Until further
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information is available, this function is approximated by F = 1.

From Eq. (31), the longitudinal velocity variation in the rad-
ial direction is obtained approximately as proportional to 1/Jr; this
disagrees with the free-vortex velocity distritution proposed by BYss
and others. It appears to be reasonable that for fully developed turbu-
lent flow in a bend the tangential velocity should vary less with respect
to the radius than in the case of potential flow.

It is seen from Egqs. (32), (33), and (34) that, provided the
superelevation of the water surface is small compared to the depth of
flow, the dimensionless velocity components are only functions of the
geometry and boundary roughness, and not a function of the Froude number.
It also becomes evident that both U and W increase as the depth increases
or the radius decreases, and that U/V and W/¥ are of the order of h/r

and (h/r)2 or (h/r) (h/B), respectively, as assumed earlier.

2. Effects of Side Walls on Fully Developed Flow in a Bend

In the preceding section, the flow was assumed to be far away
from the side walls, so that the terms au'z/br in Eq. (9) and du'v'/or
in Eq. (10) are negligible. Near either bank, the side wall contributes
as much resistance to the flow as the bed; therefore, the aforementioned
two turbulent-stress terms are no longer negligible. The simplified
equations of motion corresponding to Egs. (13), (14), and (15) are then

- _ _

vt 2, ou 3 /. 02u

—F= 9%+ Egs(est) +gplens) {58)
=av —ov _ ov _ _K _a_[ 2V _ V), B (3

Ugr +Waz + = =~ * ar| Y5 r)]* 5z (€ 52) (36)

2z = U W
0 BB (@ B2 26
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In Eq. (37), the two turbulent-stress terms are each of the
order of h/r compared to the potential energy and can be neglected. This
implies that the pressure distribution along any vertical can still be
regarded as approximately hydrostatic. However, one should note that
the error involved in neglecting the turbulent stresses is larger near the

side walls than in the central region.

It is obvious that Egs. (35), (36), and (37), together with the
continuity equation, cannot give a solution for the velocity components.
The eddy viscosity € , which is a function of r as well as of z, is actu-
ally an unknown.

Ananyan and Rozovskii [35] both proceeded from Egs. (35) and
(37),; neglecting the €(3U/dz) term in Eq. (37); by introducing a stream
function ¥ and assuming € to be a constant everywhere, they obtained

a*w L, 0% dtw
ar4 dr2 5z2 dz4

55
= == == 38

e Oz \38)
Furthermore, Ananyan assumed the distribution of ¥V to solve for 1/, and
consequently u and W. He showed that the effect of the wall is a func-
tion of B/h; when B/h is equal to 2, this effect extends over the entire
cross section. When B/h is 5 or 10, only the central portion of l/lO or

6/10 of the total width, respectively, is practically unaffected.

Rozovskii assumed that ¥ at any radial position in Eq. (38) is
equal to Vat r = T, and solved the problem nuﬁerically. He concluded
that the wall effect is limited to only a narrow strip extending one to
two depths from either side wall.

Although both solutions are not acceptable - chiefly because
of the assumptions concerning e, the variation of V, and the neglect of
the €(dU/dz) term - their conclusions that the direct wall effect is
not important for the central portion of a relatively wide channel are
correct as verified experimentally. Therefore, the approximate solution

for mean velocity components in the preceding section can be expected
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to apply except in regions extending about twice the depth from either
wall.

Physically, it is due to the side walls that the flow is
forced to follow a curved passage. As suggested by Einstein and Harder
(7], for a fully developed flow in a bend, the flow consists of two
regions, one directly and one indirectly affected by boundary resistance.
Following the spiral motion, as the flow approached the outer bank, a
boundary layer starts to develop along the outer wall. This boundary
layer grows continuously along the bottom of the flow until it approaches
the inner wall, where the flow is forced to turn upward and thus the
boundary layer is destroyed. This boundary layer occupies only the lower
portion of the whole depth. It never extends to the water surface. The
upper portion of the cross section, where the flow is directed outward,
is only indirectly affected by the solid boundary. The transition from
the boundary-layer region to the upper region is gradual and continuous.
The boundary-layer development is quite complicated because of the three-
dimensional effect and the varying pressure gradient, particularly near
the side walls. As a more rapid change of the boundary layer - its
growth and decay - occurs near the side walls while in the central re-
gion of a section the change is gradual, especially if the channel is
relatively wide, one can expect that in the regions close to the side
walls Egs. (13), (14), and (15) are not applicable.

3. Transverse Water-Surface Profiles

The difference in transverse water-surface elevations, usually

called superelevation, is described by the equations

F
Ah =/ s,.dr' (39)
I

and
h 2

h -2 =
Sr____(jo sz_j V] dz—VT 5m¢)=C,.29r (40)
0
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the latter of which is obtained from Eq. (61).

For the fully developed flow in a bend with an assumed loga-
rithmic velocity distributioh, one obtains from Egs. (24), (29),(30), and
(31)

2
Vav (l— 3"_2

gr mZk?

sing )

m?e

w
S
|

S
h

c(m?k? - 3F2_hLK25.'n¢)

. 41
ghzrz(—E—s»nqb+o.76mﬁ+o.44f;) (£1)
» K

Since the terms containing sin¢ are relatively small, they can be re-
garded as approximately independent of r for the purpose of integration.
If F and m are also assumed to be approximately constant, then
- .
—C(mzkz—BFz—- L k2sing) .
h
Ah = (42)
9”2"( — sing +076m-— 4 044F_T)
h L} K 1 Kz rl

or
Fz

_ ly%__ - Z—EL(I—- ifi __f_s"; ) (43)
V, r mé&k h m

( av)c/Zg .

where (vav)c is the average longitudinal velocity component over the

vertical r = rc.

As it has been pointed out before [18, 37], the superelevation
is very insensitive to the radial distribution of the velocity. There-
fore, approximate formulas of simple form can be adopted. The simplest
form is obtained by assuming c = 1 in Eq. (40). Substituting c. =1
into Eq. (39), one has

2 a2
Dh = f & dpr .
- ar (39')
This equation yields
Ah r i (44)
= Qﬂ—— —Rn—
Vo729 2t —in)
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for concentric flow through the bend and uniform radial distribution of
velocity with Yoy = VO;

Ah P R CA R
(vavk?2g ~ (T') - (72) (45)

for a free-vortex type of velocity distribution with Vaul = G and

_ah o2 |
(Vav)c;'ng- r‘c) (rg) (46)

for a forced-vortex type of velocity distribution with vav = cr.

4. Momentum and Energy Equations

a. Momentum equations

If the stress components are expressed as

e - = 2
O'r_: -P +2ﬂ-g—:— - pPu

= Qv Owy o
Tez- ’u(az +m-) pVW (47)

then the Reynolds equations (9), (10), and (1l1) can be written as
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_ _ _ -2 = =
o(ad¥ . 24 , BuU _ =) = —'r—[ 0(rdr) , Olrtro)

or roé ¥ S 38
a(rTr / i aQ
oz =% } -1z (48)
— 9V -0V _8v  uv,_ | [0UrTe) 3(rgy)
P(EF + Vg + "oy + &) = [ = + 25
2z ' @ ] - Prep (49)
(0¥, ;0% K GOW, _l_[@(r?,.,_) , 2\ Te)
AT T 3z) = 7l or 96
a(ro—;)] an
T 7oz T Paz (50)

which are also the momentum equations in differential form in radial,

tangential, and vertical directions, respectively. With the aid of the

continuity equation, after multiplying Ej. (49) by r and then integrat-

ing over a control volume ¥ with surface area S, and applying the Gaus-
sian theorem

| (arX)  arY) rz or , )
L?{ ar T rare * aarz )]dv=/s(xa Yrae"‘z z)ds

one obtains

/£ (uvi v rod + VW—a—E)dS
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Equation (51) is the angular-impulse-momentum relationship for the volume
vl

With the volume ¥V from section @ = Oo to © = @ in a trapezoidal

channel of 1l:1 side slope, the boundary conditions are:
on the bottom,

z=z0

or _ rob _ 2z _
on an 0> on ala
T el o Jem vem Wit =

on the free surface,

z=h(r,6)
r .- R rof _ = 0z
W: '2=O
p=07 ?rz':;fez:O
on section @ = OO,
or _ rod _ 9z _ ¢
an‘o’ an-_I’ nsAO
on section @ = 0,
1-'=O) —rae=|r 0z .

on on 5;-w~0
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on the inner bank,

or _ o ro@ _ oz _ °
—a—n_—COS45 ) n =0 » 'éF——COSA'S
a ~— V = _\A_/ = u'z = '2 3 .2 = O
on the outer bank,
Or _ cos45°, o8 _ o, 9z _ _(0s45°
n on on

Hence from Eq. (51), by noting that 3Q/dr = 0, 3Q/rde = gs, and 3n/az =g,
the angular-momentum equation for the flow in a trapezoidal channel with

1:1 side slope can be written nondimensionally as

othe h 6
R A8 LR
% 0
Totho h 6 2 g
Ie n — % I- - r 2 ~
:/ N m_OTLdZ_dL LY B —o )ded‘—
noh fy OV o Mmoo Telo Mn jo pVo" T ¢z -0
e T 0 hm
othy A
+E[ e 6( To _ Toz )(_C) dodr| - B e(ﬁe__ _ oz (L)zdedﬁ
B o 6 onz %) fe’ . e r-h 5 P\/o2 pVoz e rc]
e : outer rc. ¢ inner
bonk bank
9r r . ¥
- s—d
v&/v T fhy
Zhm (52)

i
and ho are the water-surface heights over the bed plane at the innermost

where r, and r, are the inside and outside radii of the bottom, and hi

and the outermost points.
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b. Energy equation

The energy equation for turbulent flow in differential form
and in terms of cylindrical coordinates is

— 2 = -
e — — — u'w
+-a—z(uu'w‘+vv'w'+ww'2)+uu Tvu—v+w—-—]

—-[U A(p +ps) + v O(p+p£22) + W a(5+p9)]

or roo oz
, 9p' , Op' IE_E'
[“ oar T Vree T VB ]
—2,92 53T Ao 3
(3020 470 s wOtw - EY, 2p 00 20 O]

where



and

In Eq. (53), inside the bracket at the left of the equality sign, the
first three terms represent the convection of kinetic energy by the mean
motion; the following three terms represent the diffusion of turbulent
energy by turbulence; the last six terms are the rate at which work is
done by turbulence stresses. At the right of the equality sign, the
terms in the first and the second brackets represent the rate at which
work is done by the mean and the fluctuating pressure, respectively; the
terms in the third and the fourth brackets are the rate at which work is
done by the viscous stresses in the mean and the turbulent motion, re-
specfively.

The energy equation (53) can be divided into two parfs, one re-
lated to the mean motion and the other to the turbulence. The energy
equation for the mean motion, which can also be obtained by multiplying
the Reynolds equations by the corresponding components of the mean veloc-
ity and then by adding the resulting equations, is

N a IV a 12 a Toag! a Fial a Iy ) a l2
-f-v(—ar_uv + 36 +—asz)+ w(—ar,u +3g VW +——azw )
—Ju . UV —uw | —uv v‘2
# T2 W + — Ve - u— ]

_ [ 0p+ef2)  _3(FE+e) — dE+pV) o g P e
- [u or Ty roe v oz ] o

2 2  Tl+v? 2vOu zaav]
+vVv+WVw——rz—+rzae = 36
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The energy equation for the turbulent motion is

- (TE G T a7
» W - g—if;‘_—z N rz_ZV"g—gl - 'rz_2 u‘%} (55)

From Eq. (54), with the aid of Eqs. (47), by integrating over
a control volume of fluid ¥ and applying the Gaussian theorem one
obtains the integral form of the energy equation for the mean motion:

Vz—ar -rdf . -2z I AG
S&Z-(u—nd-v an +w-6;-)dS+,uL[2(ar)+2(r+ra )
oWy, (BU, W ¥ BV, 3G _ V¥, Bw , v\l
+2(“—?)+(’—z+—r)+(a—r+%—?)+(r581——2) \va
“RJAu . 20V T~ 20w — D c) v
_p[V_[u —r"f+ o5 * —:-t-uv a‘; ra;_%)
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e _ .ar = —= —— _rd®
=[S£(u0;. +VTFB+WTr2)a + (UTre+VO'é + WTgz ) 3n

n n on (56)

If the proper boundary conditions for the present experimental model are
substituted, Eq. (56) can pe reduced to

ot h VP ° —20u .70 7 3 ov . dd
7 _ e Ou 2_0V | v ( OV u
/ / > vdz dr p/[u ar+v rae+w 3 v(ar_+r—_§—e—
ri=h; 70 8 ¥
U\, oi(QU 3w, , T 0w BV du U owy
r)+u ( >+ r)+vw 36 az)]d"v“+/u/[2(—?) 2(r+ra—9)
ow)? (DU Pw2. BV . B _ ¥\, (0w 222]
+2(az)*(az*ar)*(ar+rae r)+(r@+ Z> i
o*ho /h 8 fo*ho /h 8
r-hi’0 B /rn-h, /0 8o

Substituting for "Erg, 6‘0, and ?Oz the correspondihg viscous and turbulent
stresses, and applying order-of-magnitude considerations as in Sec. VI-1,
one obtains in integral form the energy equation for the mean flow in a
curved channel, nondimensionally, as
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(57)

where 8. is the tangential slope along the centerline of the channel.
The terms in Eq. (57) represent: the first, the rate of convection of

mean kinetic energy by the mean motion; the second, the rate at which

energy is lost by the mean flow and gained by the turbulence; the third,

the rate at which energy of the mean motion is dissipated directly
through viscosity; the fourth, the fifth, the sixth, and the seventh,
the cumulative rate at which work is done by the mean pressure, by the

turbulent stresses, by the viscous stresses, and by the body force,

respectively.
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V. EXPERIIENTAL APPARATUS

1. Meandering Channel

In order to have a model with the geometry given in Chapter II,
6, = 90°, rC/Bb = 4.67, Tl/rb= 2.5, with a trapezoidal cross section of
1:1 oank slope, in which suocritical flow at a sufficiently high Rey-
nolds number could be obtained, the model was built with the following
dimensions: Bb = 6 ft, r, = 28 ft, and T = 14 ft. Two identical 90°
curves of reversed direction were connected by the 1l4-ft straight reach,
so that developed flow was obtained at the exit of the first bend. The
general layout of the model is shown in Fig. 7. The channel, which was
116 ft long, was composed of nine reinforced-concrete slabs: two 7-ft
straight slabs at the ends, one 14-ft straight slab at the center, and
three 30o slabs for each bend. The slabs were supported by l-l/z-in.
screw-jacks embedded in corner pedestals. By turning the screws the
slope of the channel could be adjusted. The channel bottom was a layer
of 2-in. well-finished cement mortar. The joints were carefully filled
with glazing compound. The downstream end of the channel was connected
to a tall tank. An adjustable, 6-in.-high tail gate was built at the
end of the channel so that backwater could be controlled. Two variable-
speed pumps were used to recirculate water from the tail tank through
two 10-in. pipelines to the upstream diffuser. Screens of different
mesh sizes inserted at the exit of the diffuser, and 3/4-in. steel tubes
placed with different spacing 1 ft downstream from the exit of the dif-
fuser, were used for obtaining the desired velocity distribution at the
entrance of the first bend. Downstream from the vertical tubes, a
wooden grid, 6 ft wide 2.5 ft long and made of 7/8-in bars, was floated

on the water surface to suppress the surface waves.

In each of the two 10-in. pipelines, a streamlined artificial
contraction was obtained by welding a curved plate over a 4-in. recess
cut into the pipe. This contraction, as a flow-measuring device, func-

tions in the same way as a Venturi meter.
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Atop each of the channel side walls, stainless-steel rails were

mounted to support and guide the movement of a carriage for observer and
instruments. An independently supported sensing-probe truss, moving to-
gether with the carriage, was so designed that it would always be per-

pendicular to the channel axis.

2. Instrumentation

A standard Prandtl-type Pitot tube of 3/16-in. outside diameter
was adopted for velocity-head and piezometric-head measurements. For
Runs 4 and 5, for which the velocity was so low that too much time would
have been spent for each reading with the 3/16-in. Pitot, a stainless-
steel Prandtl-type Pitot tube of 7/32-in. outside diameter was adopted.

In either case the Prandtl tube was connected to two manometers
| simultaneously. A water manometer, rigidly fixed to the sensing-probe
truss, was read to the nearest 0.001 ft and could be opeﬁed to the atmos-
phere or used as a differential manometer as desired. This manometer

was adopted for measuring piezometric head as well as velocity head.

When the local velocity head was smaller than 1 in., a more precise mano-.
meter was needed. After several attempts, a modified micromanometer with
water and n-Heptane (sp. gr. = 0.682 at 20°C) separated by a small volume
of air was adopted. With the aid of microscrews the differential head
could be read to the nearest 0.001 in. of Heptane (Fig. 9).

A Preston tube connected to the modified micromanometer was
used for boundary-shear measurements. The outside and the inside diame-
ters of the tube were 0.125 in. and 0.096 in., respectively. Since the
pressure distribution along any vertical was approximately hydrostatic,
a 1/8-in. side-hole tube located 1 in. above the Preston tube was used
for static-head measurements. The size of the Preston tube was deter-
mined from velocity measurements at several critical points of the flow
in the model channel to ensure that the tube always lay within the re-
gion of the flow where the inner law held. The tube was calibrated in
uniform flow in a straight, 3-ft-wide and 90-ft-long tilting flume of
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comparable Loundary roughness - that is, a flume with carefully finished
cement-mortar surface. The calibration curve lay between Preston's ex-
perimental curve [29] and Hsu's theoretical curve for inside-to-outside
diameter ratio 0.77 [15]; it was 5.5% off Preston's curve and 1.3% off
Hsu's.

A light-weight thread mounted on a needle at the end of a probe
was used for direction measurements. By rotating the probe, the free
end of the thread could be made to align itself with another needle
placed 1-3/4 in. away from the first needle. When alignment was ob-
tained, the imaginary line drawn between the two needles was the direc-
tion of the flow. The averaging of the fluctuation of the direction was

made by eye. The measurements were read to the nearest half degree.

For turbulence measurements, two types of hot-wire probe were
adopted (Fig. 8). The SO-degree prove was for longitudinal-velocity-
fluctuation measurements, and the 45-degree probe was for W'v' measure-
ments. The end of each probe was filled with streamlined, well-finished
Epoxy, so that it was water tight. The hot-wire was Hytemco wire 0.0007-
in. in diameter and was approximately 0.09 in. long. Signals from the
probe were sent to a single-channel constant-temperature hot-wire anemo-
meter and in turn to a root-mean-square analyzer. The circuit of the
anemometer was only slightly modified from that of Type CAW described in
Ref. [16]. The overheating ratio was changed to 7% and a reactance-
balance circuit was incorporated to compensate for the capacitor effect

of the probe when submerged in water.

One of the most severe probleﬁs in hot-wire measurements in
water is drift of the readinz as the result of foreign particles adher-
ing to the wire and changing its heat-transfer characteristics. There-
fore, during the experiments the water was kept very clean and the wire
was cleaned with a soft brush before every measurement, using clean water

or CCl4 as cleaning agent.
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The accuracy of turbulence measurements depends primarily on
the correctness of the calibrations. The calibrations were performed with
the wire placed in the potential core of a submerged water jet from a 3/4—in.
orifice. Although the water used during the calibrations was very clean,
to avoid the effect of drifting, anemometer-current readings were taken
15, 30, and 60 seconds after the probe was put into the flow to detect
any drift. The 30-second readings were used to plot the calibration
curves, the other two sets of readings serving as a check.

In order that the measurement probes could be placed at any
desired point in the flow at any orientation, a slider was mounted on
the sensing-probe truss so that it could be moved laterally across the
channel. A circular disk with scales of angles marked on it and its
axis of rotation on the plane of the truss was attached to the slider.
A Lory-type gage fixed to the disk permitted accurate vertical movement
to the nearest 0.001 ft. Any one of the probes was fixed to the Lory-
type gage. This system was so designed that turning the disk would not
change the position of the point of measurement.
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VI. EXPERIMENTAL PROCEDURES AND DATA ANALYSIS

In accordance with Eq. (3) from dimensional analysis, with the
geometry and boundary roughness adopted for the present model, one can

express any flow characteristic, say ;/Vo, as

r/re» B Bb J (58)

v z

— =F,, |( =)y Ry Fs —

Vo U /By u/ s hm) Aim
in which hm is the average of the elevation of the water surface meas-
ured from the channel bottom z = 0 at the midsection of the straight
reach. In order to investigate the effects of the width-depth ratio
and the Froude number, data were obtained from the following five
runs:

Run h h R v h_ B_/h F R ‘s
m 0 fpg Bb/ m "8 0 lo5

1 0.353 0.3% 0.320 2.68 17.0 20.1 0.82 0.86 0.00144
2 0.502 0.465 0.440 3.14 11.9 15.0 0.81 1.38 0.00144
3 0.512 0.475 0.450 2.27 11l.7 14.8 0.58 1.00 0.00072
4 0.515 0.477 0.450 1.40 11.7 14.8 0.36 0.63 0.00029
5 0.751 0.675 0.626 1.73 8.0 1ll1l.1 0.37 1.08 0.00029

where F = Vo/jéﬁb, in which ho was the hydraulic mean depth - the cross-
sectional area A divided by the water-surface width Bs - and Vo was from
the discharge divided by A, all computed at the midsection of the

straight reach. The Reynolds number was kept at the order of 105, which
is sufficiently high for the viscosity to play no role in the change of

the flow patternm.

In each of the runs, water-surface profile, direction of flow,
boundary shear, and velocity were measured, following the order men-
tioned. The measurements were performed in cross sections at every
m/16-rad increment of © in the second bend, and at the entrance, the
upper quarter, middle, and the lower quarter points of the center-
tangent reach; the sections in the bend were named by their angle in
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radians from the bend entrance, and in the tangent by SO, S1, S2, and S3.
In Runs 1, 4, and 5, no velocity and direction measurements were taken
at Sections 3m/16 and 5m/16. In Run 1 those at 7/16 and 7m/16 were also
omitted, and the water surface was measured at every 10 degress in the
second bend. In each section, flow characteristics were measured at ten
to fifteen points along each of the seven equally spaced verticals.
Moreover, measurements along additional verticals were performed when-

ever it was felt necessary.

In each of the runs, with the aid of a surveyor's level, the
channel was first adjusted to the desired slope by turning the pedestal
screws. The deviation of the channel bed from the plane surface follow-
ing the slope was within 40.005 ft and in most cases within 40.003 ft.
This deviation arose mainly from the uneveness of the cement surface.
The channel was then run with flow at a precalculated approximate depth
and discharge. The velocity distributions at the entrances of both bends
and the depths along the centerline of the channel at every m/16 rad
were measured. This procedure was repeated, by adjusting discharge,
depth of flow, and the upstream screens and the steel tubes, until the
velocity distributions at the entrances of both bends were simulated as
inverse images of each other, as well as the depth of flow at correspond-
ing points of the two curves, after taking account of the unevenness of
the bed, were the same. Thus the flow was considered to be established.
However, since the spiral motion at the entrance of the first bend could
not be simulated, the effect of the entrance condition was checked by
running a test with a laterally uniform velocity distribution at the
entrance of the first bend. It was found that the velocity distribution
at the entrance of the second bend was altered less than +5% from the
simulated flow case. Therefore, it was concluded that the first bend
with partially adjusted entrance condition was by itself sufficient to
establish developed flow at its exit.

The constancy of the flow condition during & run was checked



by readings of discharge meters and three piezometers located along the
centerline of the channel (at 0.46 rad in the first bend, at 1.34 rad in
the second bend, and at 1 ft upstream from the midsection of the tan-
gent).

Since the boundary roughness is one of the factors that may
influence the flow pattern, it is desirable that it be known. However,
the channel did not include a straight reach long enough for the evalua-
tion of the resistance coefficient f. Another possible way to compute
f is from velocity measurements near the boundary, by assuming that the
logarithmic velocity distribution holds, i.e.,

%0 = 2JF Jog(+) + c (59)
vhere c is a constant. Because of the redistribution of boundary shear
in the bend and the energy consumed by the spiral motion, this resist-
ance coefficient varies from point to point as well as with different
flow conditions. Therefore, a calculation of f for the flow in bends

“does not have significance. However, an approximate indication of the
surface roughness of the channel was obtained from the average values
of £ at the midsection of the straight reach. This average f was com-

puted as 0.017 for Run 2 and 0.014 for Run 4. The value of the Manning
n of the channel surface was 0.0103.

The water-surface profile was measuréd with the side holes of
the pitot tube. The tube was pointed upstream and set at 0.4 hm from
the channel bottom. It was found from direction measurements that at
this depth the flow is very nearly along the tangential direction and
consequently the error due to orientation of the Pitot tube is negli-
gible. The results of the water-surface measurements are represented
nondimensionally in Figs. 10 and 11.

The direction of flow measured with the thread-needle probe is
shown in Figs. 13. Only angles in the horizontal plane were recorded;
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¢ is the angle of deviation from the tangential direction, being posi-
tive outward. No device was provided to measure vertical angles, and it
will be shown in Sec. VII-1 that they are relatively negligible. The
observed angles were then plotted for each vertical, and a faired curve

was drawn to be used for velocity and boundary-shear measurements.

No separation of the flow was observed throughout the experi-
ments. In fact, Rozovskii [35] showed that no separation occurred in a
180° open-channel bend of rectangular cross section with rc/B = 1 and
B/h = 13.3, and the tendency of separation is greater as the depth in-
creases, keeping other factors unchanged. For the same bend just men-
tioned, separation appeared when B/h = 5.33. Therefore with rc/Bb = 4.67
for the present model, no separation should be expected.

The temporal-mean boundary shear was measured by means of a
Preston tube resting on the bed. The orientation of the tube was that
given by the direction measurements. With the help of the calibration
curve, the measured boundary shear was plotted nondimensionally as
ib/(%pvoz) for each cross section and, for the purpose of cross checking,
for longitudinal sections as well. The shear contours were then plotted
and integrated over the channel boundary to evaluate the average
boundary-shear stress over the whole channel (T ) In Fig. 14,
Yb/(zpv ) is plotted longitudinally along the channel and Figs. 15
show the contours of To/( 5 Yay”

For velocity measurements, the Pitot tube was set in a plane
parallel to the bed at the angle given by the direction measurements.
The local velocity V was computed through 4h = VZ/Zg, where Ah is the
difference in head between the stagnation hole and the side holes.
Since v'2/V was found to be of the order of 0.003, if u'2 and v'° are
assumed to be of the same order or smaller than.;Té, the error in neg-
lecting the effects of turbulence in the computation of V would be less
than 1%. The radial and the longitudinal velocity components were com-
puted by u = V cosp and v = V sing. Since v was generally not much
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different from V for the present study, only V was plotted nondimension-
ally in Figs. 16. The experimental results of E/Vo were plotted in
Figs. 17 for different verticals.

In Runs 2 and 3, the root-mean-square values of the longitudi-
nal velocity fluctuationm were measured by means of the 90° hot-wire
device described earlier. For Run 2, u'v' was also measured by rotating
the 45° hot-wire probe through 180° and taking the +45° and -45° read-
ings separately.

With the temporal-mean velocity at a point known from the
Pitot-tube measurements, the corresponding mean current through the wire
was obtained from the calibration curve. This mean current was main-
tained during the measurement of turbulence at this point by increasing
the sensitivity of the anemometer circuit as the output drifted. It was
found that the root-mean-square analyzer gave reliable turbulence read-
ings with this procedure, provided the sensitivity adjustment was within
a small range. The values of Y v'“ and u'v' were computed by following
the procedures described in Ref. [16].

Since the Hytemco wire adopted was approximately 0.09 in. long
and 0.0007 in. in diameter, it was desirable to determine whether this
size of wire gave correct turbulence readings. A Wollaston wire (plati-
num alloy, silver plated) of 0.000197-in. diameter approximately 0.04 in.
long with & resistance of 2882 Ohm/ft was adopted for this checking
purpose. The Wollaston wire was too thin to be cleaned by brushing;
therefore, the water in the channel was specially cleaned for this test
run. These two wires of different lengths gave good agreement at all
points tested, and thus it was concluded that the Hytemco wire was
satisfactory.

As a further check of the sensitivity of both the probe and
the anemometer, a wave analyzer together with an RMS analyzer was em-
ployed during Run 3 to measure the relative energy spectrum. Both the
Hytemco and the Wollaston wires were tested. The result showed that
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the frequencies of the energy-containing eddies were surprisingly low,
mainly of the order of 10 cps. Comparatively, the averaging time of the
anemometer was short. This resulted in the unsteadiness of the indica-
tors of the meters, and the mean values of the readings had to be

interpreted by naked-eye observations.

Because of the aforementioned drawbacks, the turbulence
measurements were repeated two to four times at each point. It was
found that the readings were in agreement within +10%, with about two
thirds within +5%. The measured turbulence intensity.jjfﬁyvo was
plotted in Figs. 23. Since u'v' was evaluated from the difference
between two very close values of only two significant figures each, the
computed turbulent shear was not reliable. As an illustration, the

measurements for u'v' at section CIIO for Run 2 are shown in Fig. 24.
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VII. DISCUSSION OF RESULTS

l. Spiral Motion

The existence of the spiral motion in a curved channel can be
explained as follows. Assuming that at the beginning there is no spiral
motion, so that u = w = 0; differentiation of Egs. (5) and (7) with
respect to z and r, respectively, and subtracting the latter from the
former, noting that n = (3u/dz) - (@Ww/ 2r) is the vorticity component
on an axis along the tangential direction, one obtains

On _2vav 32— 3. 2°UwW  3%uw 9, uw

=R - e (- B 2 L 28
28 2V . Tuy, 20w\, 13 E 7y
ragaz (VT ruV )t ar(vag )t raz (VY (60)

For potential flow, all the turbulent-stress and the viscous-stress
terms drop out; if d¥/®z = 0, then dn/9+t = 0; hence the flow is
steady and no spiral motion exists. For laminar flow, all the turbulence
terms drop out; unless v(dV/9z) = az(ui)/raeaz, on/ 3t does not
vanish; that is, the flow is unsteady and the spiral motion is growing.
For turbulent flow, only for very special conditions that the combina-
tion of the values of the eight terms at the right side of the equality
sign in Eq. (60) is zero; in general, 2n/ dt # 0, the spiral motion
must exist. ’

Besides the consumption of the energy of the flow, the spiral
motion modifies the distribution of the velocity. Following the direc-
tion of the spiral, high-momentum fluid from the upper flow filaments
is transported outward and the low-momentum fluid near the bed is trans-
ported inward. However, near the inner wall, the reverse occurs, as
will be explained later in this section.

For flow in a bend of large width-depth ratio, the vertical
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velocity component is much smaller than either the radial or the tan-
gential component except very near the banks. As can be seen intuitively
by changing imaginarily the vertical length scale so that the distorted
depth would be of the same order as the undistorted width, the distorted
vertical velocity would then be of the same order as the undistorted
radial velocity component. Since the width is of one order or more
larger than the undistorted depth, the undistorted vertical velocity
component is expected to be one order smaller than the radial one. This
fact is also clearly indicated by Eq. (34). It is primarily because of
this reason and the difficulty in experimental technique that the verti-
cal angle of the velocity vector was not measured. Besides, computa-
tions from measured velocities showed that, except very near the banks,
this vertical angle of streamlines is negligible.

The measured horizontal angle of the velocity vector, which is
practically the same as the angle made on a plane parallel to the bed,
since the bed slope is small, is shown in Figs. 13; and it indicates
clearly the existence as well as the growth and decay of the spiral mo-
tion, and the helicoidal shape of the streamlines. This measured direc-
tion is the time average of the tangent of the streamlines projected on
a horizontal plane. If the measured angles are the same at the corre-
sponding point of two different runs, then the two corresponding stream-
lines coincide at that point. The experimental results show that the
direction of flow at corresponding points for Runs 2, 3, and 4 is in
general the same. Thus, when the geometry is the same — that is, the
width-depth ratio is a constant and the amount of superelevation is
small as compared to the depth —— the flow pattern is independent of
the Froude number. This can be explained by the fact that, since the
pressure distribution along the vertical direction is practically hydro-
static, as long as the flow is subcritical and the value of F of the
flow is not too close to unity, the role of gravity played in this flow
is similar to that in closed conduits. This fact provides a basis for



G4

the study of flow in bends by using a different fluid, e.g., air, in
closed conduits. However, the lack of dependence of the flow pattern
upon the Froude number does not actually prevail everywhere in the bend.
As indicated by experimental results, the measured directions, and hence
the streamlines, do show minor differences at the entrance of the bend,
because of the high acceleration effects and the difference in response
with respect to adjustment of the water surface, both of which are
affected by gravity.

Analytically, in considering the growth and decay of the spiral
motion near the entrance or the exit of a bend, the derivatives with re-
spect to @ in Egs. (5), (6), (7), and (8) no longer vanish. Dropping
terms of small order of magnitude as in Sec. IV-1, one can rewrite the

equations of motion as

-Qu V¢ _ 2 ,p 3 2u

i R A= C (1)
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From Eq. (15), once again the condition of hydrostatic pressure distribu-
tion is obtained. From Eq. (62), adding the continuity equation (8)
multiplied by v, then integrating with respect to z from the bottom to
the surface, and noting that w = 0 at both z = O and z = h and that

pe(@v/dz) = ’_fgz has the value of zero on the free surface, one obtains

| 8, ,rh—_ S, __, 8 B, 0y Tz
?a_r(r[()uvdz)+aefo vidz = ~hgg(g+ Q)-r—2=0 (63)

_ The counterparts of Egs. (61) and (63) for the straight reach
of the channel, in terms of Cartesian coordinates, are
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Equations (61), (63), (15), (64), and (65) serve as the basic
equations for the description of the growth and decay of the spiral mo-
tion from a bend. Since their solution is impossible, Rozovskii
neglected the potential-energy term in Eq. (64) and assumed that
u = EhFlz(z/h), where Gﬁ is the transverse velocity component on the
- free surface and Flz(z/h) is independent of y. Substituting Bq. (33')
for u, he found the decay to be approximately

u=ugexp (-2 aded] f% )

C

where -‘-‘o is the radial velocity component at the exit y = 0. For the

growth of the spiral, he obtained

U= o[" exp(—ZK—@ r—e)J

C h

where Eo is the radial velocity component for fully developed flow.
Since, first, the centripetal-acceleration term and the potential-energy
term are not negligible, and, second, his assumption concerning u is not
Justified, because the lateral discharge jg’ﬁdz is not zero in the zone
of developing flow, neither of his solutions is acceptable. Moreover,
the value of GO in the region of decay and the location of the cross
section of Ug in the case of growth are both undefined, and actually u
is not zero at the entrance of the bend 6 = 0.

For a meandering channel with bends connected by short tan-
gents, like that of the present study, the growth of the spiral in a
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bend is strongly affected by the residual spiral from the preceding bend,
while the decay of the spiral from the preceding bend is accelerated by
the growth of the new spiral.

The relative strength of the spiral motion along the axis of
the channel, expressed as £?|E/V0|df;,can be obtained from the sum of
the inward and outward dimensionless radial discharges in Fig. 21. It
is evident that the spiral from the preceding bend decays very fast in
the straight reach because of the absence of a curved boundary and the
growth of a reverse spiral due to the following bend. At the midsection
of the straight reach, the spiral is only half as strong as at the

entrance, while at the exit it is only about one quarter as strong.

The spiral motion of the following bend starts to grow at
about the latter quarter of the straight reach. It starts to develop
near the water surface a little upstream from the inside bank of the
following bend. At the entrance section of the following bend, this
new developing spiral motion is still confined to a very small area at
the upper inside corner of the section, and its strength is very small
in comparison with the decaying spiral motion. However, the pressure
gradient on the bed due to the deformed water surface has already re-
duced the lateral flow of the decaying spiral near the bed, giving rise
to the growth of the new spiral. Without the residual spiral motion
from the preceding bend, the new spiral would develop much earlier along
the inner side in the straight reach. ‘

As the flow enters the bend, the new spiral motion grows
rapidly. At Section w/16, it has already penetrated the whole width of
the channel in the bottam region, as well as the upper portion very near
the inner bank, while the decaying spiral motion still occupies three
quarters of the upper portion of the flow, as sketched in Fig. 20. As
the fluid flows farther downstream, the new spiral motion grows continu-
ously and constrains the decaying spiral to an ever-decreasing region at
the upper outside corner. While the new spiral motion is still growing
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at Section 5 7/16, the residual spiral motion has practically vanished.
From this section on downstream there still exists a small spiral motion
with the same sense of rotation as the decayed spiral motion in a very
small region in the upper outside corner. Since its strength is con-
stant along the channel, it is believed that this small spiral motion

is due to the sidewall corner effect just as that of the secondary
current in a straight channel which is essentially a three-dimensional
boundary-layer effect.

The main spiral motion in the bend attains the maximum of its
relative strength in a region between Sections 37 /8 and 77 /16. Maxi-
mum angles of deviation of the velocity vector from the tangential direc-
tion occur in the central portion of the cross sections in this region,
of about 12° inward on the bottom and about 6°
surface. Near the exit of the bend, the spiral motion starts to decay,
yet at the exit section the spiral motion still has more than 80% of its
maximum strength.

to 8° outward near the

From the experimental result that the flow pattern is not a
function of the Froude number, it can be reasoned that the spiral motion
should also be independent of the Froude number. On the other hand, the
direction of flow at the corresponding points varies as the width-depth
ratio changes; hence the flow pattern including the growth and decay of
the spiral motion is a function of the width-depth ratio. From Fig. 21
it is evident that in the straight reach, although the relative rate of
decay of the spiral motion is similar, the strength of the spiral is
greater 1f the width-depth ratio is smaller; this agrees qualitatively
with the conclusion drawn from Eq. (33). However, because of different
effects due to the residual spiral motion for different geometries, the
initial growth of the spiral is faster for greater width-depth ratios.
For Bb/hm = 17 and even 12, the rate of growth becomes very slow once
Section /4 is reached, and the maximum strength occurs near Section
3mw/8. For Bb/hm = 8, however, the spiral motion does not reach its
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maximum strength before Section 77 /16 and thereafter decreases rapidly
as the exit of the bend is approached. For the width-depth ratio of 8
the shape of the radial-flow curves in Figs. 21 and 22 indicates that,
should the bend be longer, i.e., Oc> 900, the spiral motion would con-
tinue to grow. In other words, the bend of the present model is too
short for the flow to be fully developed. For smaller depths, Bb/hm = 12
and 17, although the strength of the spirals has not approached a con-
stant and the lateral discharges are not yet zero, as indicated in

Fig. 22, the very small variation in the longitudinal direction of both
the spiral strength and the lateral discharge indicates that the flow
has almost approached the fully developed condition. Moreover, the two
curves of lateral discharge for B, /h = 12 and 17 in Fig. 22 are similar
in shape, except near the entrance of the bend. From Fig. 21 one can
see that at corresponding sections the ratio between the spiral strengths
for the width-depth ratios of 12 and 17 is between 1.25 and 1.45, which
is very close to the ratio of the depths of 1.4. As indicated in Eq.
(33), the spiral strength of fully developed flow should indeed be al-
most proportional to the depth provided r unchanged. Hence it can be
concluded that for Bb/hmz,lz the growth and the decay of the spiral mo-
tion in the central region of a cross section become independent of the
width-depth ratio and, as a first approximation, the relative strength
becomes inversely proportional to the radius-depth ratio.

2. Pressure and Velocity Distributions

a. Pressure distribution

The pressure distribution along any vertical of the flow, as
described in Egs. (15) and (37), is approximately hydrostatic with a
possible error of the order of h/r — that is, for the present experi-
mental model, less than 1.5% to 3% of the measured pressure. During the
experiments, the pressure distribution was checked at different loca-
tions, near either bank as well as near the center, in high-acceleration

as well as low-acceleration regions. It was found that, for all runs
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and locations, the pressure distribution was practically hydrostatic.
If there is any deviation of pressure from the hydrostatic, it is much
smaller than the variation of pressure due to the fluctuation of the
water surface. Hence the conclusion is verified that the pressure dis-
tribution along any vertical is hydrostatic when h/r is small.

b. Longitudinal velocity component

Owing to the small deviation of the direction of velocity vec-
tors from the axial direction of the channel, the longitudinal velocity
component v is practically equal to the total velocity. Even at the
position of maximum deviation the error involved in this approximation
is less than 3. Therefore, Figs. 16 and 18 can well be used for the
discussion of the variation of v,

As shown in Fig. 18, the radial distribution of the average
longitudinal velocity Voy OVer a vertical is fairly uniform at the en-
trance section of the straight reach, and this is a very good inverse
image of the average velocity distribution at the exit section of the
following bend. As the flow enters the straight reach, the water near
the bank adjoining the outside of the following curve decelerates, while
the water near the opposite bank flows faster. This is primarily due to
the residnal spiral motion from the preceding curve and is indicated
clearly by the longitudinal slope of the water surface. As the follow-
ing bend is approached, this adjustment of velocity distribution is
furthered by the acceleration of the fluid near the inner side of that
bend. At the entrance section of the following bend, the radial distri-
bution of v, follows approximately that of a free vortex, i.e., Vv1l/r,
from the centerline of the section to almost the inner bank, while in
the outer half of the section the velocity varies more rapidly than the
inverse proportionality requires. This increase of Vo V/VO near the inner
bank continues until a region between Sections /16 and /8 is reached,
where the radial distribution of the velocity varies more rapidly than
that of a free vortex, and the maximum - is equal to 1.24V0. From
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Section 7 /8 on downstream, the maximum Vg of a section gradually shifts
outward. The close relationship between the water-surface slope and the
distribution of velocity is noteworthy. Downstream from Section 37/8,
the effect on the flow of the exit of the bend is no longer negligible;
the depth of flow near the inner bank starts to increase. From Section

7 m/16 on downstream the depth decreases near the outer bank; thus the
local surface slope increases, and the radial distribution of the average
velocity is readjusted rapidly. At the exit section of the bend, this
distribution of v, is fairly uniform. Although the maximum v, v/"o of a
section shifts from the inside half of the channel at the entrance of the
bend to the outside half at the exit the average velocity ¥ oar at center-
line verticals remains almost constant, varying from 1.04VO in the
straight reach to l.OGV0 in the downstream half of the bend.

The foregoing discussion is obtained from Run 3 with Bb/hm = 12
and [F = 0.58. However, the same has been found to be true for different
Froude numbers. As the width-depth ratio decreases, vavao tends to be
slightly higher near the central region of the channel and lower near
the banks, owing to the stronger spiral motion and the relatively higher
bank resistance; yet qualitatively the discussion in the preceding para-
graph still holds.

The lack of dependence of the relative velocity vav/Vo upon
the Froude number is justified by the following analytical consideration.
The integration constant c¢ in Eq. (31) is given by

ro+ho Y'°+h mK C
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where VO is the average velocity over the sectional area A at the mid-
section of the straight reach. Then Eq. (31) can be written as
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Assuming that as an approximation, the product mk is a constant and the

quantities under the square-root signs cancel each other, one obtains

m,AL//G*"°x _ AL |
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In this equation only h is affected by the Froude number. However, if
the superelevation is small compared to the depth of flow, then h is
approximately constant. Hence Ve V/Vo is, as a first approximation, not
a function of Froude number. Moreover, because A = hm(B.b + hm) and
h = h, this same equation shows that Vav/vo is only slightly affected
by the width-depth ratio, provided Bb/hm is large, as verified experi-
mentally. The same — that the lack of dependence upon [ and that only
 slightly affected by B /b — 1s true for v/V,.

The radial variation of va.v/vo as predicted by Eq. (31) is
plotted as a short dashed line at Section 5 /16 on Fig. 18. The inte-
gration constant is eliminated by making the measured Ve v/vo at the
centerline vertical equal to that of Eq. (31). The justification for
this procedure is that Eq. (31) is not valid near the banks. The agree-
ment between the measured and the predicted distributions of Vs V/VO is
only fair. This is to be expected, because Eq. (31) applies to the case
of fully developed flow in a bend, which was not attained in the present
experiment.

In Sec. IV-1, the vertical distribution of the longitudinal
velocity component was assumed to follow a logarithmic law. But due to
the lateral momentum transfer brought about by the spiral motion it is
not possible for every vertical to have logarithmic distribution, even
in a region far away from the banks. Although a better approximation
could probably be obtained numerically by successive approximations
using the continuity relationship, once the first approximation is given
by Eqs. (32) and (33), it is always worthwhile to check this variation
of w—r/Vo along verticals experimentally. As shown in Figs. 16, the
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vertical distribution of ;/Vochanges from vertical to vertical as ex-
pected. In every cross section, there is always a vertical near the
central region on which v varies approximately according to the logarith-
mic law. In the neighborhood of this vertical, the velocity deviates
slightly from the logarithmic distribution, and the deviation is a maxi-
mum near the surface. For inner regions, the velocity near the surface
is smaller than that predicted by the logarithmic law, and the maximum
v along a vertical occurs at ever greater depths as r decreases. At
r/rc = 0.90, which is not far from the inner bank, the maximum velocity
occurs at about mid-depth; this rapid decrease of the velocity near the
surface is clearly due to the spiral motion, by which the low-velocity
fluid is carried upwards to the water surface. Near the outer bank, the
point of maximum v again moves downwards from the water surface; however,
because of the supply of high-momentum fluid from the central region by
the main spiral motion, the decrease of the velocity near the surface is
smaller than that near the inner bank. Adjacent to the entrance of the
bend, around r/rc = 0.9, the velocity near the surface, rather than de-
creasing as in the downstream part of the bend, becomes nearly constant
because of the acceleration of the flow adjacent to the inner bank;
while near the opposite bank the surface velocity is further reduced
because of the strongly decaying spiral motion.

The trace of the maximum surface velocity is almost the same
as that of the maximum vav; in the downstream half of the bend the for-
mer is slightly closer to the outer bank. The trace of the maximum velo-
city near the bottom in the downstream half of the bend is much closer
to the inner bank than Vav' This difference in traces of the maximum
velocity at different depths is explained by the momentum transfer due
to the spiral motion.

Very near the bottom, the viscous effect is more dominant than
the effect of the width-depth ratio or the Froude number; thus locally the
Reynolds number should be expected to be the most significant parameter
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to show the variation of the velocity. A plot of the velocity distribu-
tion near the bed along the central vertical of the midsection S2 of the
straight reach for different runs is shown in Fig. 19 in terms of zvz/¥
ve. V/ve . Velocity variations near the bed for several other verticals
along the centerline of the channel for Run 3 are also shown in this
figure. The experimental points agree well with the data obtained by
Smith and Walker for flat plates [38]. In the present experiment, if a
viscous sublayer exists, its thickness would range from 0.00035 ft to
0.0007 ft, or 0.0007h to 0.0014h , when 6ve/v 1is assumed to be equal
to 4. The thickness of the transition zone of the boundary layer, by
taking zvy/»¥ = 30, ranges from 0.0025 ft to 0.0055 ft, or approximately
O.OOShln to 0.0llhm. However, measurements were not made close enough to
the bed to verify the existence of a viscous sublayer. Furthermore, by
taking zvy /¥ = 200 as the upper limit of validity of the inner law, the
corresponding thickness of the inner-law region is 0.017 ft for Run 2
and 0.036 £t for Run 4, or approximately O.O:Shm to 0.08hm for all five
runs. Since this thickness is small and the velocity in this inner-law
region is relatively low, the effect on the velocity distribution of the
change of thickness of the inner-law region due to different Bb/hm or F
is negligible over the whole depth. Nevertheless, when the Reynolds
number is of the order of 104 or smaller, this viscous effect is expected
to be no longer negligible; and the flow pattern will be a function of
the Reynolds number as well.

c. Radial velocity component

The experimental results of the variation of the relative
radial velocity component ’ﬁ/vo, vhich illustrate clearly the growth and
decay of the spiral motion, are shown in Figs. 17. The variation of this
radial velocity component is closely related to the variation of the
spiral motion described in Sec. VII-1l. For the width-depth ratios of
this experimental study, the radial velocity component is one order
smaller than the longitudinal one.
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Since the measured direction and magnitude of the total velo-
city are not functions of the Froude number except in the region near
the inner bank from Section S3 to Section 7/16 and over most of the
section T /16 where the acceleration effects are dominant, E/Vo is evi-
dently not a function of [F. This lack of dependence on [F of G/VO
agrees with the prediction of Eq. (33). However, Eq. (33) predicts T/V
to be proportional to h/r, whereas experimentally this is roughly veri-
fied only at the vertical r/rc = 0.90 in Section 3 7 /8; this poor agree-
ment is probably due to the fact that the bend is too short to have a
fully developed flow for which Eq. (33) is applicable. Nevertheless,
the experimental results show that in the downstream half of the bend as

0

well as in the straight reach the relative radial velocity is smaller,
the larger the width-depth ratio, which agrees qualitatively with the
theoretical prediction.

The relative radial velocity component predicted by Eq. (33) is
plotted for the central region verticals at Section 57/16. It is seen
that except very near the bottom and the surface, the shape of the pre-
dicted curves agrees with that of the experimental curves. But in gen-
eral, Eq. (33) gives a smaller algebraic value of the radial velocity
component. Once again, this is explained by the fact that the flow is
not fully developed. At these verticals, the net discharge is outward.
If one of the integration constants in solving for Eq. (33) is evaluated
by setting L:ﬁdz equal to the actual lateral discharge instead of zero,
the agreement between the experimental and theoretical results would be
much better; and Eq. (33) can be used as a first approximation to predict
the relative velocity component of the flow in a bend.

d. Lateral discharge

In Sec. IV-1 the theoretical analysis is based on fully de-
h_
veloped bend flow and consequently on the condition Q‘udz = 0. Since
there is neither a section with zero lateral discharge nor flow charac-

teristics independent of © in the present experimental study, it is
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clear that the bend is too short for such a fully developed flow to be
established. As discussed earlier, the trace of maximum vav moves from
the inside outward in a bend; in accordance with continuity considera-
tions, a net lateral transport of fluid must exist. This lateral dis-
charge can be evaluated by integration of the radial velocity component
over an area on the tangential plane. The integration of 1_1/Vo over
centerline verticals is shown separately in Fig. 21 for radially outward
and inward flow. The radially outward flow is subtracted from the rad-
ially inward flow at the same location and the resulting net rate of
lateral discharge per unitlength along the longitudinal direction is
shown in Fig. 22. The lateral discharge is zero for a centerline around
/32 rad in the bend, while through other verticals in this cross sec-
tion the net rate of lateral volume transfer is not zero. From Section
'ﬂ/32 on downstream, the lateral discharge through the centerline section
is increasing almost up to the exit of the bend. Then it starts to de-

crease as the flow approaches the straight reach, and the maximum L -

moves across the centerline to the outer half of the channel. For Bb/hm :

equal to 12 and 17, the curves in Fig. 22 are similar in shape as dis-
cussed in Sec. VII-1l; the relative net lateral discharge is larger for
smaller width-depth ratios. For Bb/hm = 8, the net relative lateral dis-
charge increases more rapidly in the downstream part of the bend as com-
pared to that for Bb/hm = 12 and 17, yet its magnitude is between those
of the latter two width-depth ratios, which indicates that the behavior
of the flow for Bb/hm = 8 is different from that of smaller relative
depths as discussed in Sec. VII-1.

3. Water-Surface Profiles

As the flow is curvilinear in a channel bend, the water sur-
face is higher at the outside of the bend than at the inside. The
measured transverse water-surface profiles are represented nondimension-
ally in Figs. 10. In the middle half of the tangent section, the water

surface is practically horizontal in the transverse direction. For a
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flow approaching the bend from a long straight channel, the acceleration
due to the geometry causes higher velocity near the inner bank as well
as curved streamlines and thus superelevation starts to develop far up-
stream from the entrance of the bend. However, in the present model,
since the flow from the preceding bend has already shifted the high-
velocity fluid near the inner bank, the superelevation at the entrance
gsection is not very large, and the sloping water surface does not extend
very far into the tangent. As soon as the fluid enters the bend, the
boundary confines the flow and the superelevation develops quickly. At
Section 77/32, the superelevation is almost fully developed, and the
water surface is convex. At Section /8, the water surface attains its
maximum curvature; from this section on downstream, the transverse water-
surface profile tends to approach a sloping straight line. At Section

3 17/8, the transverse surface slope S, is already a constant, ﬁnd the
superelevation starts to decrease. At the exit of the bend, the water
surface is slightly concave, and the superelevation is reduced to ap-
proximately one half of its maximum value in the bend. This change of
shape of the water surface and the superelevation at different sections
is evident from Eq. (39'). For sections in the bend near its entrance,
high-velocity fluid is close to the inner bank where r is small; hence a
convex water surface is expected. Farther downstream, the high-velocity
fluid gradually shifts towards the outer bank; thus the curvature of the
surface gradually decreases until Section 317/8, vhere the slope is prac-
tically a constant. Farther downstream, the low-velocity fluid near the
inner bank and the high-velocity fluid in the central region of the
section cause the surface to be concave.

The expressions for the transverse water-surface profile ob-
tained analytically in Sec. IV-3 are plotted in Fig. 12 for the case of
(vav)c/vo = 1.05 by making the water surface for the different expres-
sions coincided at r/rc = 1. From Eq. (43), with the aid of data of

Run 3 and by assuming F = 1, a convex transverse surface of hyperbolic
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shape is obtained. The transverse surface profiles predicted by a uni-
form velocity distribution, Eq. (44), and by a free-vortex velocity
distribution, Eq. (45), are also convex in shape; the former has a
smaller curvature, and the latter has a larger curvature, respectively,
as compared to that predicted by Eq. (43). The profiles predicted by

Eq. (44), with r/rC < 1, and by Eq. (45), with r/rC > 1, are very close
to that predicted by Eq. (43), provided r/rC does not deviate much from
unity. The transverse surface profile predicted by a forced-vortex
velocity distribution is a concave parabola. In spite of the differences
in the shape of the water surface, the superelevations between the inside
and the outside bank predicted by the four equations are in agreement
within 2% of Ah. '

Comparing the analytical to the experimental results, one sees
that Eqs. (43) and (44) fit very well with the measured surface from
Section m/8 to 5m/16, while Eqs. (45) and (46) can be used as an approxi-
mation. However, from Section 5n/16 to 7m/l6, Eqs. (43) and (44) can
only be used as approximations. From Section 7m/16 on downstream, none
of the equations is applicable, because of the decrease of curvature of

the streamlines.

It is seen from Figs. 10 that, for the ranges of R and F
tested, the relative superelevation, (h - hm)/VOZ/Zg), is only a function
of location, but not of either the Froude number or the width-depth ratio
of the flow. This fact can be justified analytically by modifying Eq. (43),
noting that hm é’hc where hC is the depth at r = res to yield

"
h-hn _ , ) Te (| _ 3F2 _r sind,|*
VOZ/Zg Voz r mZ k2 N m? "

The value of the terms in the parenthesis is approximately unity. More-
over, as has been discussed in Sec. VII-2, a change of width-depth ratio
does not change the distribution of Vav/VO appreciably; neither does the
Froule number, provided the ratio of the total superelevation to the

depth, Ah/h, is small. As a consequence, the relative superelevation is

uniquely determined by the location in the bend.
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From Fig. 11 it is seen that the nondimensional longitudinal
profiles of (h - hm)/(Voz/Zg) are, within the experimental accuracy, a
function of neither the Froude number nor the width-depth ratio. The
centerline water surface is almost parallel to the bed, except around
the entrance of the bend, where it is depressed slightly. Because the
flow characteristics in a bend are the inverse image of those in the
following bend, the longitudinal water-surface profile along (rC +Ar)/rC
at Section T /2 can be followed continuously by the longitudinal water
surface along (rc -Ar)/rc at Section SO (y/rc = -0.5), which is the en-
trance section of the straight reach of the following bend.

It should be noted here that, in spite of the variation of the
depth, the water surface is always sloping downstream in the longitudinal
direction. At rising depths the slope is flatter and at falling depths
the slope is steeper.

4. Boundary-Shear Distribution

The measured variation of :L:o/('%pvoz) along the longitudinal
direction for different r/rc is shown in Fig. 14. The boundary shear
contours of ‘TO/(’ro)av, vhere ("CO)av is the overall average boundary-
shear stress of the whole channel, are shown in Figs. 15. The measured

boundary shear is a vector and its direction can be found from Figs. 13.

As has been discussed earlier, the flow pattern is independent
of the Froude number, provided [F is smaller than and not too close to
unity and the nondimensional geometry remains unchanged. Consequently,
the ratio of boundary shear force to inertia force ’fo/ ( —;_pvoz) should
also be independent of [F. The experimental results of Runs 2, 3, and 4
verify this. On the other hand, the change of width-depth ratio slightly
alters the distribution of boundary shear, corresponding to the change in
flow pattern, as shown in Figs. 15. '

The trace of maximum boundary shear, starting from the down-
stream quarter section S3 of the straight reach, is located on the bed
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very near its junction with the inner bank. This trace follows almost a
circular arc with its center coinciding with the center of the bend until
Section 51 /16, downstream from which the trace moves outward gradually
with decreasing magnitude of the boundary shear stress. At the exit
section of the bend, the point of maximum boundary shear is slightly in-
side the centerline of the section, where the boundary shear distribution
is fairly uniform across the section. In the following first quarter of the
straight reach, the trace of maximum boundary shear shifts abruptly to
the other side of the channel, followed by the high-shear region of the
next bend. Since the boundary shear stress is proportional to the velo-
city gradient at the boundary, i.e., T, = u( aV/az)z=o, the redistri-
bution of the boundary shear is closely related to the velocity distri-
bution discussed in Sec. VII-2.

In Sec. VI-1, it is sssumed that v_ /v = 1.498"%/@n = m.
Since both h'/6 and n are nearly constant, m should also be approximately
a constant. Whether this is actually true is checked experimentally.
For Run 3, with hm = 0.512 ft and n = 0.0103, the computed m is 23.2.
The experimental values of the ratio vav/VT vary from 20.5 to 24.1,
being higher near the inner bank around the entrance of the bend, and
lower near the inner bank of the downstream half of the bend and near
the outer bank around the bend entrance. The average value of vav/;T
is 22.5. Thus as a first approximation, vav/;“: = m can be regarded as
a constant. )

Despite the fact that high boundary shear prevails near the
inner bank, it has been observed in natural rivers as well as in some
models with movable bed that scour occurs at the outer bank. This is
mainly due to the orientation of the boundary shear stresses. At the
inner bank, although the shear is high, the spiral motion is in a direc-
tion that stabilizes the bank. At the outer bank, the spiral motion has
a downward direction and thus helps to carry bed material away. Because
of the existence of the residual spiral from upstream, in the first three
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quarters of the bend the orientation of the boundary shear also helps to
stabilize the outer bank. Near the exit of the bend, the boundary shear
stress is not only higher than elsewhere on the outer bank, but also

directed downwards; hence this is the location most seriously exposed to

scour.
5. Turbulence

The measured root-mean-square values of the fluctuation of the
longitudinal velocity component for Bb/hm = 12 are shown nondimensionally
in Figs. 23. Since the magnitude of Vo is very close to that of the
average velocity over any cross section in the channel,JjjﬁaVo can be
regarded as the turbulence intensity relative to the average velocity.

In géneral, the turbulence intensity approaches a constant near the sur-
face with a value of 3 to 4%, increases gradually with the depth, and
approaches rapidly 7 to 9% near the bottom. It is expected that the
turbulence intensity approaches & maximum in the transition zone of the
boundary layer, the thickness of which is 0.005hm to 0.0llhm. The varia-
tion of turbulence intensity is generally the same for all verticals in
the same cross section, except for the verticals very near the banks,
where the values of -;TE/VO are smaller; the latter is due to the low
local mean velocity there. Near the entrance of the bend, in the region
of highly accelerated flow, the turbulence intensity is low. From Sec-
tion 37 /16 to Section 71 /16, along verticals between r/rc = 0.90 and
1.00, the turbulence intensity is found to increase linearly from the
free surface down towards the bottom instead of having nearly a constant

value near the surface.

Measurements of the turbulent shear GFVT, although not precise
enough to give quantitative results, as discussed in Chapter VI, do yield
qualitative conclusions. In general, GTVT/VO2 is a maximum near the
banks, where its value approaches that of v'2/V02. In the region away
from the banks the value of ET;T/Voz approaches zero near the surface,

increases slowly from about mid-depth on down, and reaches the same
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order of magnitude as v'z/vo2 very close to the bottom within the inner-
law region.

Since the mean flow pattern is not a function of the Froude
number, it may be expected that the turbulence characteristics are also
not functions of [F. Experimental results of Runs 2 and 3 for F = 0.81
and 0.58 and Bb/hm = 12, as plotted in Figs. 23, show that the turbulence
intensity is approximately independent of the Froude number. Near the
bottom, because turbulence is more sensitive to viscous effects than the
mean flow, and the thickness of the inner-law region varies for different
Reynolds numbers, differences of turbulence characteristics are to be
expected near the solid boundary for different values of R.

No attempt has been made to investigate the effect of the width-
depth ratio on the turbulence characteristics. Since the mean-flow charac-
teristics do not change appreciably for different values of Bb/hm’ it may
be expected that the turbulence characteristics will not change appreci-
ably for flows of large width-depth ratios.

6. EnegglVConsiderations

A bend in an open channel acts as an obstacle similar to
bridge piers, sudden contractions, etc., and causes an additional energy
loss. As has been discussed in Sec. IV-4, between two control sections
OO and © with enclosed fluid volume V¥V, the rate of loss of energy from
the mean flow to turbulence is expressed by the volume integral in Egq.
(57) containing the turbulent-shear stresses, and the rate of loss
directly through viscous action is represented by the volume integral
containing the viscous stresses; the sum of these two is the total rate
of loss of mean-flpw energy from 6, to 8. Among the seven terms in Eq.

0
(57), these two volume-integral terms are the most significant ones.

Unfortunately, u'w' and v'w' were not measured because of experimental
difficulties, so that the integral containing these turbulent shears

could not be evaluated. Moreover, the experimental results regarding
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the two integrals of the viscous terms are not reliable, because the
velocity measurements were not made close enough to the bed where the
viscous stresses are relatively large. The other four terms in the
energy equation were evaluated from the experimental data according to
Eq. (57) and plotted in Fig. 25 for Run 3. The integrals, representing
the rate at which work is done by pressure and the rate of convection of
kinetic energy of the mean motion, are both approximately constant with
values of about 0.35 and 0.12, respectively, except near the entrance of
the bend where the kinetic energy is slightly higher because of accelera-
tion effects. The rate at which work is done on the mean motion by tur-
bulence stresses is smaller than 1/1000 of the magnitude of the former
two gnd is nearly constant in the upstream three quarters of the straight
reach. This rate at which work is done on the mean motion by turbulence
stresses decreases sharply in the downstream quarter of the stfaight
reach due to the acceleration effects, and is about 25% smaller at Sec-
tion /16 than that at the midsection of the straight reach; farther
downstream, it increases gradually until Section 37/8 is reached; from

there on downstream it is again a constant.

Theoretically, the two energy-loss terms could be evaluated
from the requirement of the balance of the energy equation. However,
this procedure is not practical for the present study because of the
differences in order of magnitude of the terms involved. Both energy-
loss terms are two to three orders smaller than either the potential-
energy or the kinetic-energy term. With the accuracy of the measurements,

the computed result of the energy loss is not reliable.

The loss of energy for a bend is equal to the work which is
done to overcome the surface resistance along the solid boundary, the
form resistance which associates with the formation of spiral motion and
separation if there is any, and the wave resistance owing to the deforma-
tion of the free surface. (An accurate subdivision of the total energy
loss would be difficult to achieve.) The difference between the total
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energy loss for a bend and the loss of energy of uniform flow in a
corresponding straight channel, i.e., a channel with the same cross-
sectional shape, the same roughness, the same discharge, but slightly
flatter slope, should give the additional loss due to the bend. The
ratio of this additional loss of head to the average velocity head
V02/2g can then be defined as the loss coefficient of the bend. The
variation of the loss coefficient was investigated by Hayat [13] in a
specially constructed meandering channel of six 90° bends inserted in
the 90-ft tilting flume at the Iowa Institute of Hydraulic Research.
Except for the cross section, which was rectangular instead of trape-
zoidal, and that the meandering channel was with uniform valley slope
instead of uniform channel slope, the geometry of the small channel
was the same as that of the big model described in Chapter V. Despite
the writer's conclusion that the flow pattern was approximately inde-
pendent of the Froude number, Hayat's experimental results show that
the loss coefficient (and hence the wave resistance) increases as F
increases so long as F 1is less than 1.5. Hayat also found the loss
coefficient to increase with increasing width-depth ratio. Experimen-
tal results of Runs 2, 3, and 4 of the present study confirm the

tendency of the loss coefficient to increase with Froude number.
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VIII. AIR MODEL

The importance of turbulence in the transfer of energy of flow
in bends is clearly shown by Eq. (57). Moreover, the knowledge of the
spatial variation of the eddy-diffusion coefficient € from turbulence
measurements would further the understanding of the flow. In order to
obtain such information, because of the difficulties involved in measur-
ing turbulence in water, the possibility of using an air model of similar
geometry was studied [40].

A wooden-frame air duct with its upper half section a mirror
image of the lower half was constructed for this purpose. Each half of
the section was geometrically similar to the midsection of the straight
reacﬁ in Run 5 of the open-channel model, with a scale ratio of 1 to 4.
Thus, B, = 1.5 ft and r_ = 7 ft. A bellmouth entrance was constructed
3.33 ft upstream from the entrance of the first bend. Screens were used
at the end of the bellmouth for the simulation of the velocity distribu-
tion at the entrance of the bends. Air was drawn into the conduit by a
squirrel-type fan located 4.75 ft downstream from the exit of the second
bend. The surface of the conduit was carefully varnished. The average
value of the resistance coefficient f, computed from Eq. (59), at the
midsection of the straight reach was found to be 0.0163.

The top of the conduit consisted of removable panels. One
special panel had a travelling mechanism on which a rotatable disk was
attached, and together they could be moved latefally. The disk was
similar to that described in Sec. V-2, with a Lory-type gage fixed to it
for vertical movement to the nearest 0.001 ft. Any one of the sensing
probes could be mounted on the gage for measurement at any desired loca-
tion.

The direction of the flow was measured with a yaw meter made
from two 0.035-in. hypodermic needles soldered together side by side.
The tips of both needles were cut at 45° to the probe axis and the cut
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surfaces were perpendicular to each other. By rotating the disk to ob-
tain equal pressure readings for each of the two holes of the yaw meter,
the direction was determined to the nearest half degree. It was verified
that the error due to the velocity gradient along the direction normal

to the axis of the yaw meter on the flow direction measurements was
negligible.

Total and static pressures were measured with probes made from
hypodermic needles pointing in the direction indicated by the yaw meter.
The total-pressure probe was 0.035 in. in outside diameter and 0.023 in.
in inside diameter. The static-pressure probe was 0.051 in. in outside
diameter and had a half ellipsoid nose with four 0.010-in. holes, 90°
- apart, at 15 probe diameters from the tip. A water manometer open to the
atmosphere with readings to the nearest 0.001 ft was employed for pres-

sure measurements.

The Reynolds number for the experiment was 0.85 x 105. Details
of experimental equipment and procedure can be found in Ref. [40].
Measurements were made along nine verticals in each of the cross sections
at every 15° in the second bend, and at the entrance, the midsection,
and the exit of the preceéing straight reach. The data were then con-
verted by interpolation to the verticals where the open-channel measure-
ments were performed, and plotted in the appropriate figures for com-
parison with Run 5, for which the width-dgpth ratio was the same.

The agreement of intensities of the spiral motion, shown in
Fig. 21, is fair, except at the exits of both the first and the second
bends. There the outward flow is about forty percent larger for the air
model. Consequently, the net lateral discharges through the axial section
of the channel, shown in Fig. 22, agree very well except in the straight

reach and near the exit of the second bend.

From Fig. 16 it is seen that the relative longitudinal velocity

components V/Vo for air and open-channel models agree qualitatively;
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quantitatively, however, they deviate as much as 410%. The same is true
for the relative radial velocity component 'G/V0 (Figs. 17), except for
the upstream one third of the bend where the deviation is even more.

The air-model experiment also indicates that, as in the open-channel
case, the vertical velocity component w is negligible compared to v and

the static pressure is constant along any vertical.

The piezometric heads measured in the air model are compared
to the respective transverse water-surface profiles in Figs. 10. The
agreement is fairly good. The variation of the piezometric head in the
air model was computed through

h—hyn h,—(hgz+52)
= =
Vo?/29 Vp/29
where hl is the piezometric head on the vertical in a section at dis-
tance | from the midsection S2 of the straight reach of the air model,

hSz is the average piezometric head at section S2, and s is the hydraulic
gradient of the line of best fit through points of average piezometric

head at each section.

There are several possible reasons for the disagreement be-
tween the experimental results of the air model and those of Run S.
First, there is a slight difference in Reynolds number between the two.
The value of R for the air model was 0.85 x lO5 and that for Run S was
1.08 x 105. However, for such relatively high Reynolds numbers the
viscous effects can be regarded as the same for both cases despite this
difference. Secondly, there is a slight difference in geometry due to
the superelevation of the free surface. But the maximum superelevation
for Run 5 was only 2.9% of the average depth, and the variation of the
average depth for cross sections was negligible; hence, this difference
probably contributes only a small part of the disagreement. Thirdly,
the local depth of the flow was self-adjusted to fulfill the energy

requirement in the open-channel model, and consequently, the amount of
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lateral flow required by continuity was reduced as compared to the air
model, in which the depth was a constant. Fourthly, the free surface
was a natural boundary for turbulence in the open-channel case, while in
the air model no such boundary existed at the plane of symmetry. Fifthly,
the entrance conditions, especially the turbulence level, at the first
bends of the two models were different; however, the effect of this dif-
ference was checked experimentally at the exits of the first bends and
was found to be negligible. Lastly, the relative roughness might have
been different in the two models. Although it was not possible to deter-
mine the surface resistance accurately, as has been discussed in Chapter
VI, the average values of f of 0.016 and 0.014 at the midsections of the
~ straight reaches for the air model and for Run 5, respectively, deter-
mined by velocity measurements, can be used as & roughness indicationm.
But the velocity measurements were not made close enough‘to the bed, so
the accuracy of f obtained is questionable. Moreover, it can be seen
from Bq. (33) that T:L/vo is only slightly affected by the change of the
boundary roughness.

Thus, despite the fact that similarity exists between the flow
in an open-channel meander and that in an air model of similar geometry,
the experimental results do not lead to a quantitative conclusion. Fur-
ther experimental studies on this question with similar boundary roughness
and Reynolds numbers are desirable.
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IX. CONCLUSIONS

Through a series of experiments, the characteristics of sub-
critical flow in a meandering channel of large width-depth and radius-
depth ratios, at Reynolds numbers of the order of 105 or higher, have
been determined and compared with an approximate theoretical solution
for fully developed bend flow. It has been confirmed that the spiral
motion and the superelevation are two of the most evident characteristics
of the flow, and that the effect of the bend extends both upstream and
downstream. For a meandering channel with finite central angle, the
highest velocity occurs very near the inner bank around the entrance of
the curve and gradually shifts outward with distance downstream. The
magnitude of the radial velocity component is one order smaller than
that of the longitudinal component, and the vertical velocity component
is negligible except very near the banks. Because the flow pattern
changes from section to section, in general there is a lateral discharge
through any longitudinal section, although its magnitude is very small
compared to the longitudinal discharge. The nondimensional flow pattern
is a function of the width-depth ratio but not of the Froude number, pro-
vided that the relative superelevation is small and [F is appreciably
less than unity. Moreover, the pressure distribution along a vertical is
very nearly hydrostatic.

For flow in bends connected by short tangents, like those of
the present model, there exist two spirals through most of each bend —
a decaying spiral from the preceding bend near the outer bank, and a
growing spiral of reversed rotation near the inner bank. The boundary-
shear stress is generally higher near the inner bank, and its distribu-
tion is similar to that of the longitudinal component of the mean velo-
city averaged over verticals. However, due to the direction of the
spiral motion, the location most seriously exposed to scour is not along
the inner bank but at the outer bank near the exit of the bend.

Although fully developed bend flow was not obtained for the
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channel geometry investigated, the theoretical solution for this type of
flow was found to provide a useful approximation to such mean-flow charac-
teristics as the velocity and boundary-shear distributions and the trans-
verse water-surface profiles; it also substantiates the experimental in-
dications that the spiral motion becomes stronger as the radius-depth
ratio decreases and that the flow in the central region becomes independ-
ent of the width-depth ratio for values of this ratio greater than

roughly 12.

The measured turbulence intensity of the flow ranges from 3 to
9 percent. In general, it is lower and almost constant near the surface
and higher near the solid boundary. Since it is through the turbulence
. stresses that part of the energy of the mean flow is converted into tur-
bulence energy and eventually dissipated into heat, further and more
detailed information on the turbulence in a meandering channel is impor-
tant and desirable. Concerning the possibility of using an air model of
gimilar geometry to facilitate the measurement of mean-flow and, especial-
ly, turbulence characteristics, the experimental results did not lead to
a conclusion, because only a limited investigation of this sort was con-
ducted. They do indicate, however, that the loss of energy of flow in
an open-channel meander is greater than that of its air-duct simulation,
and increases with the Froude number because of wave resistance.
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NOTATION

cross-sectional area

channel width

bottom width

surface width

Chézy coefficient

a constant

a function

Froude number, vo/jgh_o

resistance coefficient

acceleration of gravity

. depth of flow

water-surface elevation above channel bottam at innermost point
average depth of flow at midsection of straight reach
water-surface elevation above channel bottom at outermost point
hydraulic mean depth of flow, A/Bs

loss of energy per unit change of angle of bend,

= al(p/p) +Q1/060

wave length of meander as defined in Fig. 1
boundary-roughness coefficient, defined as vav/V&
Manning roughness coefficient

pressure intensity

total discharge .

radial discharge per unit width, positive outward
hydraulic radius

Reynolds number, VR/y

radial coordinate

centerline radius of bend

innermost radius of bed

outermost radius of bed

surface area

water-surface slope in longitudinal direction
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Sp bed slope

sc water-surface slope along centerline of channel

5. water-surface slope in radial direction

8, valley slope

4 length of tangent

Tl distance between tangents of bends as defined in Fig. 2

u radial velocity component

\') total velocity

Vo average velocity over midsectiqn of straight tangent, Q/A
volume
longitudinal velocity component

- average longitudinal component of mean velocity over a vertical

< < <«

(vav)c average longitudinal component of mean velocity over centerline
vertical :

shear velocity, «Fﬁ;ﬁg

amplitude of meander as defined in Fig. 1

vertical velocity component

transverse coordinate in tangent section
longitudinal coordinate in tangent section, positive downstream
vertical coordinate

meander angle at nodal point, as defined in Fig. 1
thickness of viscous sublayer

eddy diffusion coefficient

eddy diffusion coefficient in i-j plane

angular coordinate

m o Q N W X € o= d

(M
[
Ca

central angle of bend
Karman universal constant
dynamic viscosity
kinematic viscosity

mass density

normal stress in i-direction

Hq'Dt\QXOOO

shear stress on plane perpendicular to i-direction along
j=direction

2
e
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TABLE AND FIGURES
(See Page 2 for Fig. 1)



TABLE I Important Experimental Work on Flow in Open-Channel Bends

Investigator|lio. of @  Cross- r B h v r /B r /h B/h B/R  Bed Yo - VoR Items Remarks Ref.
Bends ¢ sectional € 0 i3 ¢ Slope L 'ﬁo » Investigated
Deg. Shape in. in. * in. fps in 1
Raju 1 90 Rectangular £9 11.3 <7.9 1.15- 1-3 1.6- 0 <1 0.15-  V,, loss coefficient 31
1.8 11.8 2.76- 2.30 4.3 0.45
7.3
Blss 1 Rectangular 25.5 11.8  3.54 1.96 2.16 6.1 3.33 5.35 0.64 0.36  Superelevation 2
25.5 11.8 4.3 1.63 2.16 5.9 2.72 4.57 0.48 0.34
Yarnell and | 1 130 Rectangular 7.5- 5-10 7.5 = 2.6- 1.0- 1.07-  0.67- 2.66- 0O 0.6- 0.42- Longitudinal velocity 42
Woodward 12.5 2.9 2.5 1.67 1.33 3.33 0.7 0.68 distribution, water sur-
face, different entrance
velocity distributions
Mockmore 2 180 Rectangular 21 18 5.6 ~0.57 1.17 3.75 3.2 5.2 0.00005 0.15 0.17 Longitudinal T_ a3 27
21 18 ~4.5 -~0.5 4.6 4.0 6.0 0.00005 0.4 0.13 velocity distribu-t,
tion, water surface
Shukry 1 45- - Rectangular 5.9- 11.8 7.1=  0.36= 0.5- 0.42- 0.83 2.83 0 0.1- 0.10- Velocity components, 37
180 35.5 1.2 3.2 3.0 5.0 1.67 3.67 0.8 0.78  water surface
Prus- 5 45 Rectangular 39 6 2.5 6.5 16 2.4 4.4 0.055 Spiral motion, T_ouas 3°
Chacinski effects of en- r: .
trance condition
3instein and 120 Rectangular 120 16 1.3  0.4- 7.5 37- 4.9- 7.0- ~0.0003 ~0.2- ~0.05- V to verify that Spiral 7
Harder 3.3 0.8 91 12.2 4.2 0.4 0.13 r a¥ transition
. == could be>1
Vo approach
Leopold, Sinus- Trapezoidal * 4.5 0.18- 0.37- 2.9 4.3 0.00035 0.2- 0.4~ 24
Bagnold, oidal 1:1 side (bottom) 1.6 L:53 4.3 5.8 -0.0118 0.9 0.24 resistance
Wolman and slope (surface)
Brush
Ippen, 1 60 Trapezoidal 60 24 2.98- 1.33- 2.5 10- 4-8 5.6~ 0.00064 0.38- 0.30- Longitudinal Smooth 37318
Drinker, 2:1 side (bottom) 6 1.91 20 10.0 0.55 0.7S5 velocity distri- n=0.010
Jobin, and slope bution, water
Shemdin surface, bound-
1 60 60 % 3.94 0.94 2.5 9. 4-6 5.9- 0.00064 0.32 0.24 ary shear Rough
(bottom) 6.04 1.18 15.2 8.0 0.3¢ 0.36 n=0.017
1 60 70 12 2.01- 0.87- 5.8 19.3- 3-6 4.5~ 0.00055 0.42- 0.1l1- Smooth
(bottom) 3.98 1.40 34.7 7.9 0.51 0.31 n=0.010
1 60 60 24 3.86 1.50 2.5 10 4.0 5.6 0.00064 0.52 0.408 Similated
(bottom) 6.00 1.91 15.5 6.2 8.1 0.55 0.75 entrance
condition

n=0.010



TABLE I (Continued)

Investigator|No. of ©_  Cross- r B " h v r/B r/h B/h B/R Bed Vo VoR Items Remarks  Ref.
Bends € Sectional € 9 J o Slope "'vag B Investigated
Deg. Shape in. in. - in. fps in 1
Milovich 1 180 Rectangular 11.0 9.5 1.8- 0.02- 1l.16 2.0- 1l.7- 3.7- 0 <1l 0.0016- Trace of bottom particles, 19,3¢
5.4 0.16 6.2 5.3 5.5 0.012 surface velocity
Daneliya 1 180 Rectangular 23.6 15.8 4.7 ~1 1.5 5.0 3.33 5.33 0 0.28 0.21 Distribution of longitudi- 19,35
nal and radial velocity
components
Kozhevnikov 1 180 Rectangular 63- 12.1- 0.8~ 0.65- 2- 16= 6.7~ 0.0004~ <1l 0.031- Traces and velocity of 19,3¢
Triangular 73 31.5 3.9 1.9 6 90 40 0.00125 0.45 bottom and surface parti-
Trapezoidal : cles, water surface
3 180 Rectangular 31.4 15.7 0.79- 0.46- 2 13,3~ 6.7- 8.7- 0.0005- 0.2- 0.023-
2.4 1.2 40 20 22 0.0015 0.7 0.15
Ter- 1 67.5 Rectangular 8.2 15.1 4.3 1-1.3 5.5 19 3.8 5.5 0.3- 0.18-0.25 Distribution of velo- 19,35
Asvatsatryan 180 22.8 5.9 1.5 3.85 2.5 4.5 0.4 0.22-0.32 city components
Konovalov, |Sinus- Trapezoidal 15 2- 0.65- 3.8- 5.8~ 0.0005- 0.2- 0.07- Direction of bot- 19
Makkaveev, |oidal 3.9 0.82 8.3 9.6 0.0015 0.3 0.14 tom and surface
V.M., and velocities
Romanenko
Makkaveev, Sinus- Rectangular min. 9.8 1.2- 0.65- min. min. 2-10 4.1- <1l 0.04- Direction of 19,35
N.I., and |oidal 19.7 4.7 2.4 2 4.17 10.4 0.4 bottom and sur-
Romanenko ’ face velocities
Fidman 3 117.5 Rectangular 88.5 39.4 4.5 0.29- 2.25 1l4- 6.25- 8.2- 0.07- 0.09- Water surface 19,3¢
6.3 1.2 19.5 8.33 1l.8 0.3 0.38
Ananyan 2 180 Rectangular 98.5 19.7 5.9- 0.92- 5.0 1l4- 2.8~ 4.8- 0.21- 0.24- Distribution of 19,35
7.1 1.1 17 3.3 5.3 0.28 0.31 velocity camponents
Rozovskii 1 29 Rectangular 23- 14.2- 0.8-5.9 0.49- 1~ 2.7~ 35
Triangular 39 31.5 Triang. 0.85 2.5 4.3
Polygonal up to
24
1 90 Movable bed
1 180 Rectangular 23- 14.2- 0.8- 0.49- 1- 5.3~ 4.3 6.4~ 0.2- 0.0028- Distribution of velocity
Triangular 39 31.5 5.9 0.95 2.5 45 27 29 0.5 0.27 components and water

surface
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