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Abstract

The goal of this thesis is developing an efficient method that produces good quality solutions
to real-life Vehicle Routing Problems with time-dependent travel times. The Time-Dependent
Vehicle Routing Problem (TDVRP) is one of the most challenging combinatorial optimisation
problems and belongs to the category of NP-hard problems. Therefore, several heuristic algo-
rithms are explored and the most promising that handles the TDVRP is implemented.

This study is motivated by the effect of dynamic changes in traffic, such as rush hour traffic
jams, and the resulting logistics cost. Due to this increasing effect TNO would like to include
this in their advice. Currently, TNO uses the logistics optimisation model RESPONSETM to give
advice to logistics companies. However, this tool is based on an Evolution Strategy that cannot
handle time-dependent travel times. Therefore, in this thesis, I search for possibilities to improve
this. A Construction and Route Improvement Algorithm (CRIA) is developed that deals with
time-dependent travel times. The routes must be designed in such a way that first the total
number of vehicles are minimised and secondly the total route durations are minimised.

The developed CRIA takes a route improvement approach instead of the local improvement
approach that most researchers take, and is integrated with a time-dependent shortest path
algorithm that will be executed during the TDVRP process. Due to varying travel times, paths
(with different distances) may result in a shorter path (in time) between customers at different
times of the day. Using the time-dependent shortest path algorithm, also developed in this
thesis, these shorter paths may be found. In practise, this approach allows for the creation of
routes that avoid congested areas during rush hours. No other published work using a similar
algorithm is known to exist.

Notice that in an urban context, variable traffic conditions play an essential role and cannot be
ignored in order to derive realistic solutions to routing problems. In this thesis it is shown that
when dealing with time dependent scenarios, the solutions generated by a non time-dependent
algorithm may become infeasible. Moreover there is a possibility to find solutions that are better
than the solutions found with constant speed applied to the time-dependent context.

The method is tested on one of the Solomon’s benchmark problems and on a real-life dataset. The
developed algorithm seems to generate solutions of good quality. The computational complexity
of the solution method is analysed and experimental results indicate that the computation time
increases proportionally to the number of time-zones, as well as to the square of the number of
customers.

When time-dependent measurement data connected to a geographic network become available,
the services of TNO can play an even more important role for the logistics planning of companies.

Key words: Vehicle Routing Problems, time dependent travel time and speed, congestion,

heuristic methods, transportation, logistics cost.
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Chapter 1

Introduction

One of the current challenges in logistics optimisation is the high degree of dynamics and uncer-
tainty that influences so many transportation companies. The Vehicle Routing Problem (VRP)
plays a central role in this field. TNO Business Unit Mobility and Logistics (BU M&L) has
designed a logistics optimisation model to handle VRPs, called RESPONSETM. Currently this
model does not explicitly take into account changes and uncertainty in travel times due to traf-
fic conditions. It is very interesting to extend RESPONSETM with possibilities for taking these
dynamics and uncertainties into account in such a way that it can handle time-dependent travel
times. This dynamic and therefore more realistic planning in logistics gives TNO BU M&L the
opportunity to bring out a broader scale of advice supported by RESPONSETM.

1-1 Problem Investigation

Congestion creates a substantial variation in travel speeds during morning and evening rush
hours. This is problematic for all vehicle routing models that rely on a constant value to
represent vehicle speeds. Urban route designs that ignore these significant speed variations
result in inefficient, unrealistic and suboptimal solutions. These poorly designed routes that
lead freight vehicles into congested urban traffic, result in some cases in a waste of valuable
time, and customers have to wait unreasonably long without having any reliable information
about the actual arrival times of the vehicles. In these circumstances, it becomes difficult to
satisfy the time windows during which the customers must be visited. This increases supply
chain and logistics cost.

TNO BU M&L has observed these dynamic changes and is including this effect in their models.
In order to obtain a more realistic solution, a method should be created that deals with time-
dependent travel times. Van Rijswijck (2008) reported on the need for complex optimisation
algorithms and the need for time dependent measurement data. This thesis focuses on the first.
Not only does the optimisation algorithm need to calculate a low cost feasible solution, it also
has to do this efficiently. Efficiency becomes critical for the large problems often occurring in a
logistics company. Note that basic assumptions for constructing an algorithm that can handle
time-dependent travel times are that all input information (like service requests and all travel
times over all road types) are known before the start of the planning horizon.

M.Sc. Thesis Ester Stegers



2 1. Introduction

1-2 Problem Statement and Objective

The objective of this master’s thesis can be defined as follows:

Developing an efficient method that produces good quality solutions to real-life
Vehicle Routing Problems with time-dependent travel times.

In this thesis, this research objective is dealt as follows: first a literature review with regard to
solution methods for solving vehicle routing problems with time-dependent travel times is per-
formed. In parallel, an analysis of the current vehicle routing model (with constant travel times
on each path) is done by studying the work of Uil (2004). From this research, interesting algo-
rithms are explored and the most promising solution method is implemented and tested. In this
way an algorithm that is able to handle time-dependency is designed and implemented. Next,
the developed Construction and Route Improvement Algorithm is tested, in terms of solution
quality as well as computation time, on a small benchmark problem as well on a real-life problem.

1-3 Profile TNO

This thesis is written during an internship at TNO BU M&L, that is part of the core area Built
Environment and Geosciences. TNO is a research organisation with the primary goal to apply
scientific knowledge in practice. TNO has about 4,500 employees, the head office is established
in Delft and there are a lot of other locations stretched out over the Netherlands. TNO has also
a number of small foreign offices in countries like Belgium, China, Korea, France, Japan and
the USA.

TNO has five core areas in total, each of which offers its own package of products and services.
Topical issues of the core area Built Environment and Geosciences include the use of the subsur-
face, mobility, the infrastructure, the renewal of the inner cities and the formation of a network
between cities. Vlaar (2009) presents more information about the organisation TNO.

In team Logistics of TNO BU M&L, the logistics experts apply scientific knowledge to logistics
with the aim of helping the logistics to companies to grow with the increasing dynamics and
complexity of trade and production processes. In addition, smart logistics contribute to achiev-
ing social goals such as reducing traffic jams and emissions as well as boosting traffic safety. The
logistics experts work for large and medium-sized companies, intermediary organisations and
authorities in both the Netherlands and Europe. Team Logistics of TNO offers services like:

• optimising and designing logistics networks using a model-based approach;

• evaluating and preparating of an effective policy for logistics and freight transport;

• improving cooperation in logistics networks;

• creating innovative logistics solutions;

• advising about resilience and risk management in logistics.

Verweij (2009) presents more information about these services.
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1. Introduction 3

1-4 Thesis Outline

This thesis is organised as follows: Chapter 2 introduces mathematical notation and formulates
the Vehicle Routing Problem (VRP) followed by a literature review for the Time-Dependent
Vehicle Routing Problem (TDVRP). An overview of the methodology used in RESPONSETM is
presented in Chapter 3. Chapter 4 presents the Construction and Route Improvement Algorithm
(CRIA) that can handle time-dependent travel times, developed during this master’s thesis.
Here, results in terms of solution quality as well as computation time are presented and discussed.
In Chapter 5 a realistic view is made by introducing a real-life dataset on which the CRIA
is tested. Chapter 6 ends this thesis with conclusions and recommendations. Appendices,
bibliography and an index are included at the end, and a detailed list of the acronyms employed
in this thesis is added after the table of contents.

M.Sc. Thesis Ester Stegers





Chapter 2

Vehicle Routing Problems

This chapter presents a global overview of the Vehicle Routing Problem (VRP). First, Section 2-1
gives a mathematical formulation as well as solution methods for the basic VRP and describes
several VRP variants. Next, Section 2-2 defines the TDVRP with their developed solution
methods.

2-1 Vehicle Routing Problems and their Solutions

The VRP is one of the most challenging combinatorial optimisation problems. It consists of
designing the optimal set of routes for a fleet of vehicles parked at a central depot in order to
service a given set of customers with a fixed demand. The VRP originated from the Travelling
Salesman Problem (TSP), a special case of the VRP in which only one vehicle with ‘sufficient’
capacity is available. The TSP is the simplest, and probably most famous of routing problems
known to most researchers. The interest in the VRP is motivated by its practical relevance
as well as its considerable mathematical difficulty. In some market sectors, transportation cost
form a large part of the total cost of a product. Therefore, the utilisation of computerised meth-
ods for transportation often results in significant savings ranging from 5% to 20% of the total
product cost, as reported by Toth and Vigo (2001). Since the VRP was introduced 50 years
ago by Dantzig and Ramser (1959), a lot of papers are devoted to the exact and approximate
(near-optimal) solution of the many variants of this problem. Subsection 2-1-1 gives a math-
ematical formulation of the basic VRP. Solution methods for the basic VRP are discussed in
Subsection 2-1-2 and several variants of the VRP are described in Subsection 2-1-3.

2-1-1 Mathematical Formulation

To obtain a mathematical formulation of the basic VRP, first some notation and definitions are
needed. This thesis uses the same formulation as the one found in Baldacci et al. (2008a).

Let G = (V,A) be a directed graph with vertex set V = {0, . . . , n} and arc set A. Then the
input data becomes

• vertex 0 corresponds to the depot;

• vertices 1, . . . , n correspond to the customers, take V ′ = {1, . . . , n};

• a set of M = {1, . . . ,m} identical vehicles (a homogeneous fleet), each vehicle with capacity
C, is available at the depot;

M.Sc. Thesis Ester Stegers



6 2. Vehicle Routing Problems

• the vehicles must return to the depot they originated from;

• each customer i ∈ V ′ is associated with a known demand di ≥ 0 to be delivered (assume
d0 = 0 and di ≤ C for all i ∈ V ′);

• a fixed cost F for each vehicle required that models the rental or capital amortisation cost
of a vehicle;

• a non-negative cost cij is associated with each arc (i, j) ∈ A representing the travel cost
between vertices i and j (assume cii = 0).

In addition, the decision variables become

• the binary variables xij are used as vehicle flow variables that take value 1 if a vehicle
travels directly from customer i to customer j, and 0 otherwise;

• the flow variables yij specify the quantity of goods that a vehicle carries when it leaves
customer i to service customer j.

With this notation, the mathematical formulation of the VRP becomes

minimise:
∑

j∈V ′

Fx0j +
∑

i,j∈V, i6=j

cijxij, (2-1)

subject to:
∑

i∈V

xij = 1, ∀j ∈ V ′ (2-2)

∑

i∈V

xip −
∑

j∈V

xpj = 0 ∀p ∈ V ′ (2-3)

∑

j∈V ′

x0j ≤ m (2-4)

∑

i∈V

yij −
∑

i∈V

yji = dj ∀j ∈ V ′ (2-5)

djxij ≤ yij ≤ (C − di)xij ∀i, j ∈ V, i 6= j (2-6)

yij ≥ 0 ∀i, j ∈ V, i 6= j (2-7)

xij ∈ {0, 1} ∀i, j ∈ V, i 6= j. (2-8)

In the above formulation, the objective (2-1) is to find a collection of simple circuits in the graph
G (each circuit corresponding to a vehicle route) with minimal cost (vehicle cost and travel cost)
such that:

• each customer is visited once by exactly one vehicle route (constraints 2-2);

• if a vehicle visits a customer, it must also depart from it (constraints 2-3);

• the number of vehicle routes is not greater than the number of available vehicles, i.e., there
is a finite vehicle fleet (constraints 2-4);

• the difference between the quantity of goods a vehicle carries before and after visiting a
customer is equal to the demand of that customer (constraints 2-5);

• the sum of the demands of the customers visited by each vehicle route does not exceed the
given vehicle capacity C (constraints 2-6).

Ester Stegers M.Sc. Thesis



2. Vehicle Routing Problems 7

2-1-2 Solution Methods

The VRP belongs to the category of NP-hard problems, meaning that the computational effort
required to solve this problem increases exponentially with the problem size in the worst case.
A small VRP (up to 100 customers) is solvable with exact algorithms, but for a large VRP
(more than 100 customers) it is desirable to obtain approximate solutions using heuristics as
well as metaheuristics. These methods often give routes of sufficient quality within reasonable
computation time when exact algorithms are not fast enough. More detailed information about
exact approaches, heuristic methods and metaheuristics is given below in the same order used
by Dorronsoro (2007).

Exact Approaches

For small problems, exact approaches are proposed that evaluate implicitly, every possible solu-
tion to obtain the best solution. A well-known exact method is the branch and bound method,
which consists of a systematic implicit enumeration of all feasible solutions. Using lower and
upper bounds on the optimal objective value, more and more subsets of the feasible solutions
will be rejected, such that the optimal solution appears. Another exact approach is the branch
and cut method, a hybrid of the branch and bound method and the cutting plane method. The
cutting plane method adds linear inequalities, called cuts, to the problem in order to define an
as small as possible feasible set of the objective values. To prevent a slow convergence to the
optimal value, the structure of the problem can be used to generate very good cuts. One of
the most efficient exact methods in the literature is proposed by Baldacci et al. (2008b), who
combine three different bounding procedures to compute the optimal solution.

Heuristic methods

To approximately solve larger problems within reasonable computation time, heuristic methods
are used. Heuristic methods perform a relatively limited exploration of the search space and
typically produce good quality solutions within modest computation times. The heuristic meth-
ods can be divided into two-phase methods and constructive methods. Two-phase methods are
decomposed into two natural components, on the one hand clustering of customers into feasi-
ble routes and on the other hand actual route construction (like solving a Travelling Salesman
Problem (TSP)), with possible feedback loops between the two stages. Constructive methods
consist of route construction heuristics and local improvement heuristics. A route construction
heuristic quickly builds a feasible solution, but usually not the optimal one. The most well-known
route construction heuristic is the greedy nearest neighbour heuristic. This heuristic starts at an
arbitrary customer, subsequently it chooses the nearest customer as the next one to visit and so
on, until a feasible solution is obtained. Another well-known route construction heuristic is the
Clarke-Wright savings heuristic. This savings heuristic starts with an initial allocation of each
customer to a separate route. Then for each pair of customers the cost savings of joining those
customers on one route are calculated. Based on the values of these savings, the customers are
sequentially joined into routes starting with the customer combination yielding the largest cost
savings until no further savings can be achieved. Local improvement heuristics are heuristics
based on simple route modifications. The most well-known local improvement heuristic is the
k-opt heuristic, which removes k arcs and reconnects the routes in another possible way to find
a better solution. Other well-known local improvement heuristic are the Or-opt heuristic (an
intermediate heuristic between 2-opt and 3-opt), the crossover heuristic (two routes are mixed
at one point), the customer relocation heuristic (a customer located at one route is changed to
another one) and the customer exchange heuristic (two customers of two different routes are
interchanged between the two routes).
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8 2. Vehicle Routing Problems

Metaheuristics

Metaheuristics are more generic solution schemes that combine several heuristic methods. In
these methods, the emphasis lies on performing a deep exploration of the most promising regions
of the solution space. The quality of solutions produced by these methods has the potential
to be higher than that obtained by only one heuristic method. A metaheuristic is a search
strategy that first constructs an initial solution using a route construction heuristic. The initial
solution is then improved by an iterated local search procedure, with phases of intensification
and diversification. Intensification is achieved through finding an optimum in the neighbourhood
of the initial solution using local improvement heuristics. When a local optimum has been found,
several diversification mechanisms like a random restart, or penalising moves, may be invoked
to ‘jump’ to an unexplored part of the search space in order to escape from poor local minima.
More detailed information about local search is formulated by Aarts and Lenstra (1997).

There are several types of metaheuristics like Greedy Randomised Adaptive Search Procedure
(GRASP), Ant Colony Optimisation (ACO),Variable Neighbourhood Search (VNS), Simulated
Annealing (SA), Tabu Search (TS) and Evolutionary Algorithm (EA). An overview of these
types is given below and more information including references on specific metaheuristics can
be found in Gendreau et al. (2008).

Greedy Randomised Adaptive Search Procedure (GRASP) focuses on the route con-
struction heuristic. GRASP uses an randomised greedy route construction heuristic within a
multi start procedure to generate a variety of solutions. At each step of the route construction
heuristic, customers with minimal added cost are kept in a restricted candidate list. Subse-
quently one customer is randomly chosen from that list and becomes the next customer to visit.
After the construction process is completed, the solution is further improved with an iterated
local search procedure.

Ant Colony Optimisation (ACO) is another metaheuristic with focus on the route con-
struction. ACO uses ‘pheromone’, which represents the memory of the system in which good
solutions are remembered. The basic idea comes from the communication and cooperation mech-
anisms among ants that allow them to find short paths from their nest to food sources. The
communication medium is pheromone, a chemical compound that is laid down on the ground.
While an isolated ant would travel randomly, an ant detecting a pheromone path will follow it,
with some probability, and will strengthen it with its own pheromone. Based on this idea, the
ACO is implemented associating ‘pheromone’ weights with each arc, which are related to the
presence of the arc in good solutions previously constructed by the ‘ants’, i.e., each ‘ant’ uses
a positive feedback mechanism to reinforce those arcs that belong to a good solution. After
constructing the route using pheromone, the solution is further improved with an iterated local
search procedure.

Variable Neighbourhood Search (VNS) is a metaheuristic with focus on the iterated local
search procedure, which exploits neighbourhoods to escape from local minima. The first step
is to select a set of neighbourhood structures in a random order. Start with an initial solution
and take this as the current solution. Then a solution is generated in the first neighbourhood of
the current solution, on which local improvement heuristics are applied. If the local minimum
obtained is not better than the current solution, then the procedure is repeated by generating
a solution in the next neighbourhood of the current solution. The search restarts from the first
neighbourhood when either a solution that is better than the current solution is found or all
neighbourhoods have been tried. This is repeated until the current solution cannot be improved
anymore.
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Simulated Annealing (SA) is another metaheuristic with focus on the iterated local search
procedure, which allows bad solutions to escape from local minima. The basic idea comes from
a physics process of annealing in which a pure lattice structure of a solid is made by increasing
its temperature in a heat bath until it melts, then cooling it down slowly until it solidifies into a
low-energy state. Based on this process in SA, a solution corresponds to a state and the solution
cost to its energy. At each iteration the current solution is modified. A modification leading to
a better solution is always accepted, but also a modification leading to increase in solution cost
could be accepted. For the acceptance of solution cost increase, a probability criterion is defined
in which modifications are more likely to be accepted if the ‘temperature’ parameter is high and
the cost increase is low. When the temperature is sufficiently low, only improving modifications
can be accepted and the method stops in a local minimum.

Tabu Search (TS) is like VNS and SA another metaheuristic with focus on the iterated local
search procedure. The key idea is to forbid certain possible solutions based on a short-term
memory, known as the tabu list. This list stores recently visited solutions to avoid short-term
cycling. TS also allows bad solutions to escape from local minima.

Evolutionary Algorithm (EA) uses techniques inspired by Darwin’s principle of natural
selection such as recombination (also known as genetic crossover), mutation, selection (also
known as survival of the fittest). The most popular type of EA is Genetic Algorithm (GA). This
metaheuristic contains 4 processes. GA starts by generating multiple solutions often encoded
as bit or integer strings, known as ‘chromosomes’. Every solution is feasible, but does not
necessarily have to be a good solution to the problem. This set of solutions is called a population
and a single solution is called an individual. The second process of GA is the recombination.
This process combines several individuals from the parent population to create new individuals.
To create one new individual mostly two parents are selected and their most desirable features
are combined in order to create an offspring solution, i.e., the new individual. To increase the
chance of high-valued offspring in this recombination process, more offspring are generated than
the number of individuals in the parent population. After the new population is generated, the
third process starts, the mutation. Each individual is subjected to mutation, which may allow for
escaping local minima by preventing the population of chromosomes from becoming too similar
to each other. The result after the first three processes is the final offspring population. The
fourth and final process of GA concerns the selection of a new starting population and saving
the current best solution. Every offspring individual is rated by one or more criteria and the best
or most promising individuals are promoted to a new parent population. To get a final solution
with a high potential to have good quality, more iterations can be done in which processes
two to four can be repeated. Another type of EA is Evolution Strategy (ES), mentioned by
Homberger and Gehring (1999). According to them, differences between ES and GA lie in the
representation of the problem (ES operates with non-encoded individuals) and in the mutation
process. The mutation process from ES has a superior role over the recombination process.
Where GA uses mutation for escaping local minima, ES also uses mutation for improvement of
the solution, i.e., application of local improvement heuristics.

2-1-3 VRP Variants

In Subsection 2-1-1 a mathematical formulation of the basic VRP was given. This formulation
makes a number of assumptions, including utilising capacity constraints, a single depot, a homo-
geneous fleet, one route per vehicle, etc. These assumptions can be eliminated by introducing
additional constraints or relaxing certain constraints of the problem. This leads to several VRP
variants. An overview of these variants is given in this subsection. It must be noted that several
variants can be combined into one specific VRP.
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Capacitated VRP

The Capacitated Vehicle Routing Problem (CVRP) is a VRP in which the emphasis is on the
capacity constraints (in contrast to the TSP). Generally the CVRP is defined with a symmetric
travel cost matrix, i.e., the travel cost cij from customer i to j equal the travel cost cji from
customer j to i. The CVRP with an asymmetric travel cost matrix is explicitly denoted by the
Asymmetric Capacitated Vehicle Routing Problem (ACVRP). In this case, the travel cost from
customer i to j are not necessary equal to the travel cost from customer j to i.

VRP with Time Windows

One of the most important extensions of the basic VRP is the Vehicle Routing Problem with
Time Windows (VRPTW). This variant introduces the additional restriction that a time window
is associated with each customer, defining an interval in which arriving at the customer is allowed.
Moreover there is a time window at the depot, which guarantees that each route must start and
end within the time window associated with the depot.

The time windows are either soft or hard. A hard time window has a strict lower bound and
upper bound, i.e., if a vehicle arrives before the lower bound of the customer time window an
additional waiting time on the route is taken into account and if a vehicle arrives after the upper
bound of the customer time window a solution becomes infeasible. A soft time window also adds
a waiting time when a vehicle arrives too early at a customer, but when a vehicle arrives too late
the solution remains feasible, however the total travel cost will be penalised by some amount.

Because the VRPTW contains waiting time, an extension of the objective of the basic VRP
is needed. The objective of the VRPTW is not only to minimise the number of vehicles re-
quired (vehicle cost) and the total travel distance (travel cost), but also the total travel time
incurred by the fleet of vehicles (travel time cost). Detailed research of the VRPTW is done by
Bräysy and Gendreau (2005).

VRP with Pick-up and Delivery

The Vehicle Routing Problem with Pick-up and Delivery (VRPPD) is a VRP in which the
possibility that customers return some products is admitted. All delivery demands start from
the depot like in the basic VRP and all pick-up demand should be returned to the depot. No
interchanges of products between customers are allowed. Using one depot, this procedure is
called single sourcing VRPPD. An important restriction of the VRPPD is that the products
that customers return to the deliver vehicle must fit, i.e., the vehicle capacity may never be
exceeded.

Multiple Depot VRP

In contrast to the standard VRP with a single depot, the Multiple Depot Vehicle Routing
Problem (MDVRP) is a VRP in which a company has several depots from which it can service
its customers. A fleet of vehicles is parked at each depot and each vehicle has to return to its
own depot. To handle realistic size MDVRP instances, the problem has to be split up in several
single depot VRPs, which can be approximately solved separately. To split up the MDVRP, an
assignment of customers to depots is required. For this, it is important to know how the depots
and customers are positioned.

Heterogeneous VRP

The Heterogeneous Vehicle Routing Problem (HVRP) is a VRP with a heterogeneous fleet of
vehicles, i.e., a fleet with multiple vehicle types. In the basic VRP a homogeneous fleet (a fleet
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with identical vehicles) is used. In a homogeneous fleet, each vehicle has the same capacity C
and the same fixed vehicle cost F . In a heterogeneous fleet, each vehicle type k has its own
capacity Ck and is also associated with its own fixed vehicle cost equal to Fk. In addition, the
travel cost between two vertices (between customers or customer-depot) is also dependent on
the vehicle type in a heterogeneous fleet.

VRP with Multiple routes per vehicle

The Vehicle Routing Problem with Multiple routes per vehicle (VRPM) permits vehicles to
make multiple routes to and from a depot within a given time period. In the basic VRP the
assumption is made that each route from depot to depot is done by a different vehicle. The
VRPM sets several routes after each other (if the time period allows it), which can be serviced by
one vehicle. In this way, the minimal number of vehicles can be reduced, which gives a smaller
minimal cost than the basic VRP.

Generalised VRP

The Generalised Vehicle Routing Problem (GVRP) is an extension of the VRP in which the
vertex set V is partitioned into n + 1 non-empty subsets (or clusters) C0, C1, . . . Cn, with n
the number of clusters to visit. Cluster C0 has only one vertex (vertex 0 that corresponds to
the depot), while each cluster Ch ∈ V represents r(h) possible locations of a customer, i.e.,
Ch has r(h) vertices. The GVRP has the condition to visit each cluster Ch exactly once. A
cluster can be interpreted as a neighbourhood with the possibility to drop off the product for
this neighbourhood at the optimal place in this neighbourhood.

Time-Dependent VRP

In the Time-Dependent Vehicle Routing Problem (TDVRP), the travel time between two vertices
of the network depends on the distance between the vertices and the time-dependent speed
between these vertices. This in contrast to the basic VRP in which only the travel time depends
on the distance and the directed fixed speed between the vertices. Due to the time-dependent
travel times, the shortest path between two customers also becomes time-dependent. In the
TDVRP, the day is divided into several time-zones, each having its own travel speeds over the
network. An important property for the TDVRP is the First-In-First-Out (FIFO) property,
also called the ‘non-passing’ property: If two vehicles leave from the same location for the
same destination, travelling the same route, the one that leaves first will always arrive first, no
matter how speed changes on the links during the travel. This property is important because it
precludes the solution from inducing useless waiting times. Without the FIFO property, it can
happen that a vehicle could wait at some location for the time when speeds are higher and then
arrive at the desired location before another vehicle that had left before.

Stochastic VRP

The Stochastic Vehicle Routing Problem (SVRP) differs from the basic VRP by the introduction
of some elements of variability, like random travel times, service times and demands. These
elements are stochastic and one makes assumptions on the probability distribution of these
elements. The basic VRP is termed static, where all information on the problem is known with
good enough certainty and it is available before problem solving starts and does not change
thereafter. In the case of SVRP, the information is also known a priori, but some elements are
determined by predicting future events with taking uncertainties into account. This uncertainties
can be traffic conditions that may severely influence driving time, variation in service time and
imprecise information on customer demands.
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Dynamic VRP

In the Dynamic Vehicle Routing Problem (DVRP), new information on the problem becomes
available during plan execution. Examples of this new information can be new customer orders,
changes in travel times due to unpredictable traffic conditions, vehicle breakdowns, early arrival
and a change of demands. In the case of new customer orders, a set of orders is known in
advance and a first schedule is calculated for it. If a new order dynamically arrives when the
vehicles have already started executing their tours, the orders have to be planned again in
order to include these new orders. The DVRP is sometimes also referred to as ‘on-line’ or ‘real-
time’ transportation planning. Technological developments, such as wireless communication and
global positioning systems have enabled the realisation of tools for the DVRP. An interesting
overview of papers on the DVRP is given by Gendreau et al. (2008).

2-2 Time-Dependency in Vehicle Routing Problems

Because the objective of this thesis is developing an efficient method that produces good quality
solutions to real-life Vehicle Routing Problems with time-dependent travel times, this section
devotes more attention to this VRP variant. An overview of the best known results up to now
are presented in Subsection 2-2-1. Moreover, Subsection 2-2-2 gives a short conclusion of this
literature review.

2-2-1 Literature Review

The TDVRP is first formulated by Malandraki and Daskin (1992). They use a GRASP meta-
heuristic without further improvement by an iterated local search procedure. They handle small
TDVRPs (with 10-25 customers and 2-3 time-zones) without time windows, in which the travel
times over the network per time-zone are given (no shortest path calculations are needed). On
each arc (between customers or customer-depot) a step function distribution of the travel time
is introduced. In addition, research is done into time-dependent TSP.

Ichoua et al. (2003) were the first who introduced the FIFO property. They show that models
based on discrete travel time does not satisfy the FIFO property. They set up a model based on
discrete travel speed, i.e., they use a model that assigns a step function to the travel speed for each
link, resulting in a piecewise linear travel time function that satisfies the FIFO property. They
propose a solution methodology to approximately solve the TDVRP with soft time windows.
The optimisation is done with a TS metaheuristic that handles the TDVRP with 100 customers
and 3 time-zones. The model is also formulated for a dynamic environment, where not all service
requests are known before the start of the planning horizon. Notice that they do not deal with
time-dependent shortest path calculations, but they do experiments with fixed distances between
customers.

Subsequently, Fleischmann et al. (2004) analyse constructive methods (including local improve-
ment heuristics) to approximately solve the TDVRP with and without hard time windows.
Their developed algorithms are tested on instances created from a traffic information system in
the city of Berlin. They formulate travel time matrices, each travel time matrix corresponds
to a specific time-zone and contains all travel times from a vertex i to a vertex j travelled in
this specific time-zone. Neighbouring time-zones with similar travel times are joined to reduce
memory requirements. To ensure the FIFO property on travel times, they use a smoothed travel
time function that depends on departure time and time-zone bounds. Because this travel time
function can be evaluated with constant effort, the limitation for the number of time-zones comes
rather from the required storage space for the travel time matrices than from the computation
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time. They can handle problems up to 700 customers with 10 time-zones within reasonable
computation time as well as problems up to 100 customers with 50 time-zones.

Next, Haghani and Jung (2005) propose to use a GA metaheuristic to handle the TDVRP with
soft time windows and a heterogeneous fleet of vehicles. They prefer a GA because of its
significant advantage in dealing with complex constraints (that included time windows, multiple
depots and a continuous travel time function) that can be embedded in the model. Moreover
no hard to obtain parameters are needed for the implementation. The performance of the
GA is evaluated by comparing its results with exact solutions and lower bounds. For small
problems (with up to 10 customers and 15 time-zones), the GA provides almost the same results
as the exact solutions, while its computation time is less than 10% of the time required to
produce the exact solutions. For problems with up to 30 customers and 30 time-zones, the GA
results have less than 8% gap with lower bounds. When the number of customers increases, the
population for the GA increases accordingly because it is directly proportional to the number
of customers. In order to handle problems larger than 70 customers in reasonable computation
time, further research is desirable to improve the efficiency of computation. The GA is also
tested on the DVRP with real-time customer requests and real-time variations in travel times
between customers. In this last case the travel times between the nodes are calculated using
a time-dependent shortest path algorithm and form the input to the vehicle routing problem
algorithm in a matrix form.

More recently Donati et al. (2008) use the ACO metaheuristic to work on the TDVRP with hard
time windows. New time-dependent iterated local search procedures are introduced to perform
efficiently in terms of computation times and quality of the solutions. They take the travel time
distribution as a continuous function by deriving the discrete speed distribution. The TDVRP
is approximately solved within reasonable computation time for 30 customers using a real life
network in Padua (Italy), with speeds collected hourly from the traffic control system Cartesio.
To compute the time dependent paths between customers, the model is integrated with a robust
shortest path algorithm that stores a set of paths that represent a suitable approximation of
the problem. That is, when the departure time is known, the proper pre-calculated path will be
selected and the proper travel time distribution calculated to reflect the path follows.

Van Woensel et al. (2008) use a TS metaheuristic to handle the TDVRP without time windows.
To determine travel speeds, approximations based on queuing theory are used. They show
that their queuing approach has significant gains compared to other time-dependent modelling
approaches. They mention that in most real-life cases, speeds are not available or are only
available for a small part of the road network. Flows, which are much easier to measure and
estimate, are however more often available. The queueing approach offers in this case a valuable
model for translating flows into speeds. They test their solution method successfully (using a
real life network in Belgium) for up to 80 customers with 144 time-zones of 10 minutes. In this
experiment they assume that the distance between customers are fixed and have to be known.
Their future research path involves applying the developed approach to the DVRP with time
windows.

Further research about iterated local search procedure for the TDVRP is done by Hashimoto et al.

(2008). This research proposes a filtering method to restrict the search space in the neighbour-
hoods to avoid many solutions having no prospect of improvement. Moreover, they use efficient
local improvement heuristics as the 2-opt heuristic and cross exchange heuristic. The iterated
local search procedure is first tested for time-independent instances for which the computational
results indicates that the proposed method is highly efficient. Subsequently the procedure is
used for the TDVRP with 100 customers and 3 time-zones in which the shortest paths over the
network are known a priori.
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Figliozzi (2009) presents time-dependent instances with 100 customers and solutions using new
constructive methods. He uses a route construction method, where at each iteration the customer
who adds the minimum amount of cost will be visited next. No iterated local search procedure
is used. All moves are on route level, the improvements work on a subset of routes. The idea
is to combine several routes with prospect of improvement by taking all customers of these
routes together. Subsequently, he creates new routes using the route construction method. The
computational results indicate that the proposed algorithms can handle the soft and the hard
time window TDVRP in relatively small computation times. In these experiments, distances
between customers are fixed, i.e., no shortest path calculations will be done. The analysis and
experimental results of the computational complexity indicate that average computation time
increases quadratically with the number of customers.

In contrast to the papers cited above, which provide heuristic procedures for the solution of the
TDVRP, Soler et al. (2009) present a way to optimally solve the TDVRP, at least for small size
instances due to its complexity. They deal with the problem by transforming it into a GVRP and
then transform the obtained GVRP into an ACVRP, a VRP without time windows restrictions
for which several exact procedures have been tested. Thus, they can solve the TDVRP with
existing algorithms for the ACVRP (as those cited in Subsection 2-1-2) both heuristically and
optimally, in this last case at least for small size instances. Notice that the mentioned paper is a
theoretical work, with the aim that its results can be used in the future as ideas or tools to test
the efficiency of specific procedures for the TDVRP. Until now, to the best of our knowledge,
no computational experiments using the work of Soler et al. (2009) are reported on.

2-2-2 Lessons Learned

From the literature review, it is obvious that the usual VRP metaheuristics are not able to deal
with time-dependent travel times without essential structural modifications. Local improvement
heuristics do not only influence the travel times of a few exchanged customers, but may now
have impact on all other customers on the route. Due to the possibility of arrivals in other
time-zones, the travel time has become variable. In this way, the number of required travel time
calculations and shortest path calculations becomes a critical factor, that has a big influence
on the increase of computation time. Nevertheless, Ichoua et al. (2003) use local improvement
heuristic on the TDVRP in a TS environment. Next, Fleischmann et al. (2004) with focus on
a local improvement heuristic, Haghani and Jung (2005) using GA, Donati et al. (2008) using
ACO, Van Woensel et al. (2008) using TS, and Hashimoto et al. (2008) with focus on local
improvement heuristics, follow them. However, none of them calculate the shortest paths on the
fly, i.e., at departure time from a location to the next. All of them store one or a set of paths
before the start of the VRP calculation.

Malandraki and Daskin (1992) were the first who focused on the TDVRP. They use GRAP
without local improvement heuristics and mention that more research needs to be devoted to
the development of algorithms for the TDVRP. This recommendation is taken to heart by the
earlier mentioned researchers.

Later Figliozzi (2009) proposes a solution method that needs no local improvement heuristics
and the solution quality seems to be at least so good as previously reported results. He uses
only improvements on route level. Note that also Figliozzi (2009) does not perform a shortest
path calculations during the TDVRP process.

Moreover an extra consequence of having time-dependent travel time is that a proposed method
does not automatically satisfy the FIFO property. Ichoua et al. (2003) were the first who guar-
anteed the FIFO property and did this in such a smart way that a lot of researchers until Figliozzi
(2009) copied their idea. The concept is to take the travel time distribution as a continuous
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function by deriving the discrete speed distribution. Only Fleischmann et al. (2004) use their
own developed smoothed time function.

More lessons that can be learned come from the work of Fleischmann et al. (2004). They reduce
the number of time-zones by joining time-zones with similar travel times.

Finally Soler et al. (2009) had a clever idea to make a transformation from the TDVRP into the
GVRP and then into the ACVRP. The last is solvable with familiar methods that can handle
problems faster than the direct methods found for the TDVRP. Notice that it is a challenge to
use this idea, because the implementation of the results seems non-trivial.
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Chapter 3

Methodology RESPONSETM

TNO BU M&L has developed a logistics optimisation model to approximately solve the Vehicle
Routing Problem, called RESPONSETM. This chapter presents the methodology used in this
model. Section 3-1 gives an introduction of the model. Section 3-2 formulates the methodology
used in the model based on the work of Uil (2004). This chapter ends with an discussion in
Section 3-3.

3-1 Introduction

RESPONSETM searches for possibilities to reduce cost in a company specific network. In order
to realise this, it must be determined which depot services each customer, how many vehicles
are needed and which routes are used. This problem can be decomposed by first assigning
each customer to a depot using the RESPONSETM Facility Location Model (FLM) tool and next
using the RESPONSETM VRP tool for solving the resulting VRP to obtain the minimal number
of routes with the minimal driving time. Finally the minimal number of vehicles needed are
calculated using the slack in the trips. If the approximate transportation cost of the FLM tool
differ considerably from the transportation cost of the VRP tool, a feedback to the FLM tool is
done, in which the distribution cost will be updated, until the transportation cost of both tools
are similar.

RESPONSETM is successfully applied to many different real life situations where strategic ques-
tions, as well as tactical and operational questions are an issue. An example of a strategic
questions is ‘How many depots are needed and where should they be located in order to re-
tain a given service level?’. A tactical and operational question could be ‘What is the optimal
composition of the vehicle fleet?’ or ‘What is the extra cost of visiting a new customer?’. Van
Staalduinen (2009) presents more information about the application of RESPONSETM.

This thesis focuses on the VRP, therefore from now the FLM tool is taken out of considera-
tion. The VRP tool is written in the object-oriented computer programming language Visual
Basic .NET (VB.NET) and is based on an ES metaheuristic proposed by Homberger and Gehring
(1999). They present two ways to formulate the VRPTW problem. The implementation of
RESPONSETM is based on the ES2 metaheuristic in their article.

RESPONSETM currently uses a road network based on constant speeds, i.e., the travel times
are not time-dependent. To model congestion, the speeds on the network are determined by
multiplying the off-peak hours speeds with a congestion factor (between 0 and 1) for specific
areas. Notice that during the scheduling horizon the speeds will remain constant. Clearly, this
is just a rough approximation of actual conditions. RESPONSETM can currently approximately
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solve a VRP with 100 customers and 15 routes within 10 minutes on an Intel Core 2, 2.4 GHz
computer. It seems the results of RESPONSETM are of reasonable quality when comparing them
with other existing methods.

3-2 The Model

The previous section presents a short description of RESPONSETM. This section gives detailed
information on the methodology used in RESPONSETMbased on the work of Uil (2004). Subsec-
tion 3-2-1 formulates the objective and constraints. The problem is separated by first solving a
VRP with only one route per vehicle. From this solution, a new solution that possibly contains
multiple routes per vehicle can be created. Subsection 3-2-2 takes more interest in the used
solution method, i.e., ES, for solving the VRP with only one route per vehicle. Subsection 3-2-3
approximately solves the VRP with multiple routes per vehicle.

3-2-1 Mathematical Formulation

RESPONSETM is constructed in such a way that it can approximately solve a homogeneous
single depot VRPTW with pick-up and delivery using multiple routes per vehicle. This gives
the following conditions:

• there is one depot with opening time, closing time and load time per vehicle;

• there are n customers that need to be serviced from the depot;

• each customer has a time window in which it has to be serviced;

• each customer has a specific fixed service time;

• there is an infinite vehicle fleet containing one vehicle type with a fixed capacity;

• each customer has a demand and supply smaller than the capacity of the vehicle;

• a customer order is serviced in one stop;

• fixed distances and travel times between all locations (depot and customers).

First RESPONSETM works on the problem without multiple routes per vehicle. The mathematical
formulation for this problem can be formulated using two types of variables, introduced by Uil
(2004). Endogenous variables, that variate during the VRP process and the exogenous variables,
that remain constant. The mathematical formulation defined using these variables uses a slightly
uncommon style in notation, this is done to present the way in which RESPONSETM calculates
the solution, in detail. Especially notice the used indices.

The used endogenous variables are

NR variable indicating the needed number of routes;
NC(r) variable indicating the number of customers in route r;
id(r, c) variable indicating the ID of the cth customer that is visited in route r;
i− the ID (depot or customer) of the predecessor of customer i;
i+ the ID (depot or customer) of the successor of customer i;
epddepot earliest possible departure time, i.e., earliest time a vehicle can leave the depot;
epdi earliest possible departure time, i.e., earliest time that a vehicle can leave cus-

tomer i, depending on previous customers in the route and restrictions at the
depot;
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lfadepot latest feasible arrival time, i.e., latest time that a vehicle must be back at the
depot.

lfai latest feasible arrival time, i.e., latest time a vehicle must arrive at customer i to
be able to service customer i and all its successors and be back at the depot on
time;

tL(r, c) time that the vehicle leaves from the cth customer or depot in route r;
ldepot load time at the depot;
si service time for the ith customer.

In addition, the used exogenous variables are

c customer/depot index (element of N);
r route index (element of N+);
i an ID of a customer (element of I);
depotID the ID of the depot;
cpr cost per route;
cph cost per hour;
tc1,c2 the time needed to travel from customer or depot c1 to customer or depot c2;
demandc the demand of the customer with ID c;
supplyc the supply of the customer with ID c;
capacity the capacity of the vehicle;
LBdepot lower bound, i.e., opening time of the depot;
UBdepot upper bound, i.e., closing time of the depot;
LBi lower bound, i.e., start of the service time window of customer i;
UBi upper bound, i.e., end of the service time window of customer i;
N set of natural numbers = {0, 1, 2, · · · };
N+ set of positive natural numbers = {1, 2, · · · };
I set of customer IDs.

The mathematical formulation becomes

minimise:

cpr · NR + cph ·

NR
∑

r=1

(

tL (r,NC(r)) + tid(r,NC(r)),depotID − tL(r, 0)
)

, (3-1)

subject to:

NC(r)
∑

c=1

demandid(r,c) ≤ capacity ∀r | 1 ≤ r ≤ NR (3-2)

i
∑

c=1

supplyid(r,c) +

NC(r)
∑

c=i+1

demandid(r,c) ≤ capacity ∀r, i

∣

∣

∣

∣

1 ≤ r ≤ NR

1 ≤ i ≤ NC(r) − 1
(3-3)

NC(r)
∑

c=1

supplyid(r,c) ≤ capacity ∀r | 1 ≤ r ≤ NR (3-4)

NR
∑

r=1

NC(r)
∑

c=1

V (r, c, i) = 1, where V (r, c, i) =

{

1 if id(r, c) = i

0 otherwise
∀i ∈ I (3-5)

id(r, 0) = depotID ∀r | 1 ≤ r ≤ NR (3-6)

id(r,NC (r) + 1) = depotID ∀r | 1 ≤ r ≤ NR (3-7)
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i− = id(r, c)

∣

∣

∣

∣

∣

∣

id(r, c + 1) = i
r ≤ NR

0 ≤ c ≤ NC(r)
∀i ∈ I (3-8)

i+ = id(r, c)

∣

∣

∣

∣

∣

∣

id(r, c − 1) = i
r ≤ NR

1 ≤ c ≤ NC(r) + 1
∀i ∈ I (3-9)

epddepot = LBdepot + ldepot (3-10)

epdi = max(epdi− + ti−,i, LBi) + si ∀i ∈ I (3-11)

lfadepot = UBdepot (3-12)

lfai = min(lfai+ − ti,i+ − si, UBi) ∀i ∈ I (3-13)

epdi ≤ lfai + si ∀i ∈ I (3-14)

tL(r, 0) = lfaid(r,1) − tid(r,0),id(r,1) ∀r | 1 ≤ r ≤ NR (3-15)

tL(r, c) = max
(

tL(r, c − 1) + tid(r,c−1),id(r,c), LBid(r,c)

)

+

. . . + sid(r,c)
∀r, c

∣

∣

∣

∣

1 ≤ r ≤ NR

1 ≤ c ≤ NC(r)
(3-16)

NR ∈ N+ (3-17)

NC(r) ∈ N+ ∀r | 1 ≤ r ≤ NR (3-18)

id(r, c) ∈ I ∀r, c

∣

∣

∣

∣

1 ≤ r ≤ NR

1 ≤ c ≤ NC(r).
(3-19)

The objective of the model (3-1) is first to minimise the number of routes due to the high cost
per route (cpr) and than to minimise the total travel time over all routes.

The first three constraints make sure that the amount of products in the vehicle never exceeds
the vehicle capacity. Constraint 3-2 states that the total demand of the customers in one
route may never exceeds the vehicle capacity. This total demand equals, due to the single
sourcing of the pick-up and delivery, the amount of loaded products by departure from the depot.
Constraint 3-3 also takes into account the supplied products from the customers. Because of the
supplied products, after each customer departure a feasibility check for the capacity is needed.
Constraints 3-4 check the last customer departure to the depot for each route. In this last
travel path, all delivery products are already serviced, the vehicle contains now only all pick-up
products.

Constraint 3-5 requires that every customer has to be visited exactly once by exactly one vehicle.
This constraint also forces that the number of customer IDs equals the total number of customers
serviced over all routes. Constraints 3-6 and 3-7 force each route to start and end at the depot.
Constraints 3-8 and 3-9 define the succeeding and preceding customer to each customer.

The model does not have to imply start and end times for each route, because typically a route
will hold some slack and therefore many different departure times will result in the same total
travel time. The variables epd and lfa are used to check if a solution is feasible, i.e., the routes
may not violate lower and upper bounds of the customers time window and the depot time
window. The variable epd is set per customer by constraints 3-10 and 3-11 and give the earliest
possible departure time that the allocated vehicle can leave the customer, considering the route
to the customer. The variable lfa is set per customer by constraints 3-12 and 3-13 and gives
the latest feasible arrival time that the vehicle must arrive at the customer to still be able to
make the rest of the route in time. A route is feasible when the route from the begin depot to
each customer does not violate the route from the customer to the end depot. This is the case
when the earliest possible departure time is not greater then the latest feasible departure time,
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this is implied by constraint 3-14. Notice that the latest feasible departure time equals latest
feasible arrival time plus the service time.

As mentioned above, a route does not have to result in unique departure and arrival times at
the customers, but a travel schedule of the route to calculate its total travel time is needed.
Therefore a variable leave time is introduced per stop in each route, that gives a possible time
to leave the current stop in a route and results in the minimal travel time. Constraints 3-15
and 3-16 set these variables.

Finally constraints 3-17, 3-18 and 3-19 set the explanatory variables to correct target values.

3-2-2 Evolution Strategy

As mentioned in Section 3-1, RESPONSETM is based on an ES metaheuristic, i.e., the ES2 pro-
posed by Homberger and Gehring (1999). The global idea of ES is presented in Subsection 2-1-2
with subsection subtitle ‘Evolutionary Algorithm’. Recall that ES contains four processes: gener-
ating a start population, recombination, mutation and selection respectively. In this subsection,
these processes are applied to the VRP with only one route per vehicle, formulated in the pre-
vious subsection. Before the processes of ES can be started, first a definition of an individual
and a population has to be made. The way in which RESPONSETM performs this definition and
the 4 processes, inspired by the work of Homberger and Gehring (1999) is written below.

Definition of Population and Individual

A set of solutions to the VRP is called a population and a single solution is called an individual.
This individual consists of a set of routes and can be represented as

NR

NC(r) ∀r | 1 ≤ r ≤ NR (3-20)

id(r, c) ∀r, c

∣

∣

∣

∣

1 ≤ r ≤ NR

1 ≤ c ≤ NC(r).

This makes it possible to represent the population as

NInd

NR(i) ∀i | 1 ≤ i ≤ NInd

NC(i, r) ∀i, r

∣

∣

∣

∣

1 ≤ i ≤ NInd

1 ≤ r ≤ NR(i)
(3-21)

id(i, r, c) ∀i, r, c

∣

∣

∣

∣

∣

∣

1 ≤ i ≤ NInd

1 ≤ r ≤ NR(i)
1 ≤ c ≤ NC(i, r).

In this formulation, the variable NInd indicates the number of individuals. The possible routes
with customers are now individual dependent. It is not shown that the possible routes represent
feasible solutions to the VRP. This is not a problem, because in the generation of the routes
feasibility in each step is maintained.
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In the recombination process (process 2), the new offspring solution is not directly recombined
from the parent population. Even if this is the case, this mostly results in infeasible solutions.
Therefore, for each solution two extra properties are given. The first is a mutation code and
the second is the route elimination parameter. The mutation code is an array that contains
all customers IDs twice in a seemingly random order and is used in the mutation phase to
restructure a solution. The route elimination parameter can have the value 0 or 1, which
indicates if the mutation phase should end with an attempt to reduce the number of routes.
These two properties are added to the previous definition of individual and population. The
formulation of the properties is given by

RouteEliminaton(i) ∀i | 1 ≤ i ≤ NInd

MutationCode(i, c) ∀i, c

∣

∣

∣

∣

1 ≤ i ≤ NInd

1 ≤ c ≤ 2 · CardinalityI .
(3-22)

Here, CardinalityI means the total number of customers in the collection I.

Process 1: Generate Starting Population

A starting population is a set of different feasible routes. The size of the population can be
chosen arbitrarily, but has to be big enough to ensure enough diversity and a significant solution
space that can be searched. A too big population is also not a good choice, because it will cause
slow convergence towards good solutions.

A start solution is generated in the following 3 steps:

1. shuffle all customers in random order and insert them to create the routes;

2. create the mutation code by shuffling the set of two times all customers in random order;

3. randomly select 0 or 1 to create the route elimination parameter.

The insertion procedure in step 1 does need extra explanation. For the insertion of a customer,
all possible positions a customer can be inserted at need to be investigated, i.e., for each position
in each route, the following conditions need to be checked:

• insertion of a customer never violates capacity constraints 3-2, 3-3 and 3-4;

• insertion of a customer never violates time window constraints 3-14.

If both conditions are met, the customer can be inserted at the given position. If there is no
position that the customer can be inserted at, a new route is created from the depot to the new
customer and back. If there is only one position that meets both conditions, then the customer
is inserted at that position. Mostly there are several options to insert the customer, in which
case the ‘greedy’ best option that minimises the extra travel time and distance caused by the
insertion will be chosen. The calculation of these extra travel time and distance is given below.

The extra distance of an insertion can easily and efficiently be calculated. If customer i is
inserted between customers j and k in a route, then the extra distance equals

ExtraDistance = distancej,i + distancei,k − distancej,k. (3-23)

Unfortunately it is a bit more difficult to calculate the extra travel time of the insertion of
the customer. The travel time of a route is not always a direct result of the visited customers
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location, it also depends on the time the route starts. To calculate the minimal travel time,
the following procedure will be done. First, the latest feasible arrival time of the first customer
(calculated by constraints 3-12 and 3-13) is taken as the time the vehicle arrives at this customer.
Next, from this moment an extrapolation can be done to the other leave times and arrival times
of the route. The leave time from each location (depot or customer) can be calculated using
constraints 3-15 and 3-16. By the definition of lfa, this procedure determined the minimal travel
time. This procedure is rather unfortunate, because many steps are needed for the calculation
of the travel time, which results in poor performance.

Fortunately, next to explicitly calculating the travel time, there is another way to say something
about the change in travel time. The change in total travel time is always initiated by the shift
in the lfa of the predecessor of the inserted customer as well as the shift in the epd of the
successor of the inserted customer. These variables are defined in equations 3-24 and 3-25.

lfaShiftr,i,c = lfar,i−1 − lfar′,i−1 (3-24)

epdShiftr,i,c = epdr′,i+1 − epdr,i+1. (3-25)

Here, lfaShiftr,i,c and epdShiftr,i,c stand for the shift in lfa respectively epd when inserting
customer c in route r at position i. Moreover, r′ stands for the altered route after the insertion.
The greater the change in one of these variables, the greater the increase of the travel time.
Because the lfa shift and epd shift can be explored in only one step, the use of this variables
keep a good performance.

As a consequence, the ‘greedy’ best position to insert the customer will be determined by the
following selection procedure. A customer will be inserted at a certain route position if the lfa
shift plus epd shift is minimal compared to all other feasible insert positions. If the change in
lfa shift plus epd shift is minimal at more than one position, the position with the least increase
in travel distance will be chosen. If this final criterion has also not left one insert possibility, the
position will be randomly chosen from the remaining best options.

Process 2: Recombination

The recombination process consists of two steps. The first is the actual recombination that
combines the mutation code from two parents to a new one for a new individual. The second
step adds routes and the route elimination parameter from a third parent. The process is shown
in Figure 3-1.

For the recombination of the mutation codes, a uniform order based crossover algorithm will
be used. This is a crossover operation between the two parent codes, where the ordering of the
elements is pretty much preserved.

The crossover operation first creates a mask array, containing randomly ordered zeros and ones,
of the same length as the mutation code arrays of the two parents. Next, the elements of the first
parent that are in the position where the mask array contains ones are copied to the child array.
Finally the empty spots in the child array are filled by the missing elements in the order of the
second parent. This operation is illustrated in Figure 3-2. Note that, when copying the missing
elements from the second parent, the second element of parent 2 (“1”) is already twice present
in the child, therefore the second element of the child becomes the next element of parent 2 (“2”
instead of “1”).
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Figure 3-1: The general structure of an evolution strategy metaheuristic.

Figure 3-2: The three steps in the uniform order based crossover algorithm. In the second and third
step the first two copy actions are indicated.

Ester Stegers M.Sc. Thesis



3. Methodology RESPONSETM 25

Process 3: Mutation

The mutation process changes every individual from the offspring population (constructed by the
recombination process). An individual is mutated by removal and insertion of every customer
in the order given by the mutation code. As described before, the mutation code is an array
that lists every customer twice. The procedure loops over the mutation code and performs
an action on the customer at the current position. If it is the first time that the customer is
encountered, the customer is deleted from its current route and if it is the second time the
customer is inserted back into solution. The same insertion procedure is used as is described
previously in this subsection (3-2-2) with paragraph title ‘Generate Starting Population’.

For example, if the mutation code of a solution is equal to the mutation code of the created child
in Figure 3-2 (mutation code = 8-2-5-7-9-5-6-9-3-7-8-1-4-3-1-4-2-6), then the following actions
would be performed on the set of routes:

1. remove customers 8, 2, 5, 7 and 9;

2. insert customer 5;

3. remove customer 6;

4. insert customer 9;

5. remove customer 3;

6. insert customer 7 and 8;

7. remove customer 1 and 4;

8. insert customer 3,1,4,2 and 6.

When for each individual the mutation using the mutation code is finished, an attempt is made
to eliminate a route from each solution if the RouteElimination parameter of the individual
is equal to 1. The elimination attempt takes the route with the smallest number of stops and
tries to insert the customers in the other routes. If all customers can be fit in the other routes,
the reduced solution will replace the solution before the elimination attempt in the offspring
population. If it is not possible to remove a route, the offspring population remains the same.

Process 4: Selection

In the selection process all solutions in the offspring population set are rated on the following
criteria:

1. minimal total trip times.

2. minimal number of routes;

3. minimal delay factor;

To guide the search of the algorithm to a minimal number of routes, next to criterion 2, criterion 3
is used. The delay factor gives an interpretation of the possibility that a route can be removed
from the solution. The delay of a solution is defined as:

SolutionDelay(i) =
∑

c∈S

Delay(i, c). (3-26)
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Here, S is the set of all customers from the smallest trip of solution i. Then, Delay(i, c) is
the smallest delay of inserting customer c in another route of solution i than its own. Its value
is equal to 0, if customer c can be inserted in at least one other route of solution i, without
violating any time window constraints. A Delay(i, c) larger than 0 equals the smallest time
window constraint violation cost by the customer c being inserted in another route than its own.
As follows from definition 3-26, the delay of a solution is the sum of delays of all c ∈ S. However,
if all capacity in the smallest trip is used, the opportunity that a route can possibly be removed
is very small. In this last case, the value of the solution delay is set to ∞.

The selection process generates a new parent population in two steps. For this, two evolution
strategy parameters, µ and κ are needed. Here, µ + κ equals the size of the new parent
population. In the first step, µ solutions from the offspring population that perform best on
criterion 2 will be added to the new parent population. If this criterion gives no unique selection,
criterion 1 is applied. The second step completes the new parent population by adding µ
solutions. This selection is also based on criterion 2. But now, if this criterion gives no unique
selection, criterion 3 is applied. The selection process always orders the new parent population
based on 1, with the best known solution at the top.

When the new parent population is created, one can try to improve the quality of the best
solution by repeating processes two to four on the new parent population. Each repeat is called
an iteration. The number of iterations can be chosen arbitrarily just like the size of the starting
population needed in the first process.

3-2-3 Multiple Routes per Vehicle

The previous subsection has shown in which way RESPONSETM creates a solution for the VRP
without multiple routes per vehicle. The obtained solution contains optimal routes, which do
not have a fixed begin or end time. Each route actually can be started anywhere between the
earliest possible departure time (epddepot) and the latest possible departure time (derived from
lfadepot). But the minimal travel time is only reached when the route starts anywhere between
the earliest minimal departure time and the latest minimal departure time. The latter is given by
tL(r, 0), which is previously defined by equation 3-15. The former (tearly

L (r, 0)) can be calculated
by

tearly
L (r,NC (r)) = epdid(r,NC(r)) ∀r | 1 ≤ r ≤ NR (3-27)

tearly
L (r, c) = min

(

tearly
L (r, c + 1) − sid(r,c+1)+

. . . − tid(r,c),id(r,c+1), UBid(r,c) + sid(r,c)

)
∀r, c

∣

∣

∣

∣

1 ≤ r ≤ NR

0 ≤ c ≤ NC(r) − 1.
(3-28)

Each route constructed by the solution method of the previous subsection is associated with
only one vehicle. In order to handle the problem with multiple routes per vehicle, a scenario
has to be found where as many routes as possible can be serviced by one vehicle, i.e., a route
to vehicle allocation problem occurs. This can be done by looking at each route as a task that
needs to start between tearly

L (r, 0) and tL(r, 0), where the length of the task is equal to the total
travel time. With this in mind, the minimal number of vehicles have to be found by looking for
the minimal number of vehicles that are needed to service these tasks. The intermediate times
between the tasks, must be equal to the load time. As a result, the route to vehicle allocation
problem can be formulated as a VRP just like handled in the previous subsection, in which the
following assumptions are met:

• the routes are modelled as the new ‘customers’;
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• the tearly
L (r, 0) is the lower bound of ‘customer’ r, i.e., LBr;

• the tL(r, 0) is the upper bound of ‘customer’ r, i.e., UBr;

• the load time at the depot is the travel time between all ‘customers’, i.e., tr1,r2∀r1, r2 ∈ I;

• the total travel time of route r is the service time of ‘customer’ r, i.e., sr.

After reformulation, the problem can be approximately solved using the same ES metaheuristics
as in the previous subsection. The resulting variables are translated to find the required number
of vehicles and the final route schedule. This translation is listed in Table 3-3. Note that using
the same VRP techniques to solve the route to vehicle allocation problem leads to a solution
with multiple routes per vehicle.

Table 3-3: Translation of the resulting variables of the ‘VRP formulated in the previous section’ to
the ‘route to vehicle allocation problem’.

Resulting variable Translation

NR the needed number of vehicles
NC(r) the number of routes for each vehicle
id(r, c) the cth route of vehicle r

tearly
L (r, c) the start time of the cth route of vehicle r

3-3 Discussion

In this chapter the way in which Uil (2004) created RESPONSETM to solve the VRP is described.
This gives insight into the complexity of solving a VRP and I use it to devise a solution algorithm
for a TDVRP. In the next chapter this solution method is described, implemented and tested.
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Chapter 4

Time-Dependency related to a

Small Problem

This chapter describes the solution method, developed during this masters thesis, for vehicle
routing problems with time-dependent travel times tested on a small problem with 100 cus-
tomers. Section 4-1 reports on the choice and implementation of the solution method. Section
4-2 formulates the small problem. This chapter ends with the computational results obtained
using the solution method on the small problem in Section 4-3.

4-1 Solution Method Trade-Off

The previous chapter has described the methodology used in RESPONSETM. From this, it is
clear that the current version of RESPONSETM is not able to consider time-dependent travel
times without essential structural modifications. For instance, local changes of a route, as
insertions or removals of customers, do not only influence the travel times around the inserted
or removed customers, but may now have impact on all other customers on the route. This
section describes the choice and implementation of the solution method for the TDVRP obtained
from the lessons learned in Subsection 2-2-2. First, Subsection 4-1-1 gives some remarks on
the shortest path calculation that should be adapted when using time-dependent travel times.
Next, Subsection 4-1-2 searches for an efficient solution method for the TDVRP in which the
time-dependent shortest path calculation can be executed. Finally, Subsection 4-1-3 presents a
successful solution method based on the work of Figliozzi (2009).

4-1-1 Time-Dependent Shortest Path Calculation

From the last condition given in Subsection 3-2-1 it can be concluded that fixed distances and
travel times between all locations must be known in order to approximately solve the VRP from
Chapter 3. These distances and travel times are stored in, respectively, a distance matrix and
a travel time matrix. In some cases the fixed distances and travel times are given in advance
(simple experiments), but in other cases only the distances and speeds over the road network
are given (real-life experiments). In the latter, an arc between two customers can possibly be
constructed by several links over the network. The combination of links to create the shortest
path (in time), can be calculated using a shortest path algorithm. This shortest path algorithm
is included in RESPONSETM; it is the implementation of the work of Dijkstra (1959). Due to
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the fixed speeds over the network, the distance and travel time matrices have to be calculated
once before the start of the VRP process.

To handle the TDVRP in real-life experiments, the travel time is dependent on the departure
time, as well as the time dependent speed. The time dependent speed has influence on the
shortest path and hence it also becomes time dependent. From Subsection 2-2-2 can be concluded
that none of the researchers do shortest path calculations during the TDVRP process. Most of
them store one path before the start of the TDVRP calculation and only some (like Donati et al.

(2008)) store a set of paths that represent a suitable approximation of the problem, such that
the proper pre-calculated path from the set of paths will be selected given the departure time.
However when the departure time is such that a time-zone border will be crossed, the pre-
calculated shortest path is possibly not the shortest any more. This effect becomes even larger
for real-life problems, since congestions cause large speed variations over the planning horizon
and solutions using the pre-calculated shortest paths may become inefficient. The goal of this
thesis is to obtain good quality solutions to real-life problems. This is why the choice is made to
calculate the shortest paths during the TDVRP process, i.e., at departure time from a location
to the next. Therefore, a shortest path function depending also on the departure time is created
that can be applied in the TDVRP tool. This implies that during the TDVRP process the
time dependent shortest path algorithm will be called a lot of times. This has impact on the
calculation time, however the increase in efficiency of the solution is chosen to be more important
in this thesis. The increase in computation time is probably the reason why other researchers
refrain from this approach.

The time dependent shortest path algorithm calculates for a specific departure time the shortest
path between two customers. This path and each of its links, also needs to satisfy the FIFO
property. This can be done using the idea of Ichoua et al. (2003) formulated in Section 2-2.
However, he uses it for a given shortest path and for this thesis it is integrated into the shortest
path algorithm. To clarify the procedure to satisfy the FIFO property, some pseudo-code will
follow. The procedure describes how to calculate a time-dependent travel time and the function
is a recursive function that is applied in the procedure to satisfy the FIFO property. The actual
VB code is included in appendices A-1 and A-2.

procedure Calculation of the time-dependent travel time
T = time-zone at departure

if arrival is in T
travel time = length link / speed link(T )

else
travel time = function Time-zone crossing

end if
end

function Time-zone crossing
travel time until time-zone border (t1) = subtract departure time from border time
distance until time-zone border (x1) = t1∗ speed link(T )
remaining travel time = (length link - x1) / speed link(T+)

if arrival is in T+

travel time = length link / speed link(T+)
else

travel time = function Time-zone crossing
end if

end
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4-1-2 Search for an Efficient Solution Method

The previous subsection shows how to calculate the time-dependent shortest path and travel
times. Now, a solution method is needed in which these paths and travel times can be integrated.
Here, local improvement heuristics have to be avoided due to the big influence on computation
time mentioned in Subsection 2-2-2. From this point of view, the approach of Soler et al. (2009)
seems very promising, but first more research on how to implement this work has to be done.

As previously mentioned, the implementation of the work of Soler et al. (2009) seems non-trivial.
At a first glance, the difficulty seems to lie in the transformation. However, further research
turns out that the difficulty lays not in the transformation but in handling the resulting ACVRP.

The transformation from TDVRP to GVRP can be visually interpreted as transforming one
TDVRP node into several GVRP nodes. Each created node represents a different time-zone at
the same location of the original TDVRP node. The new nodes derived from one TDVRP node
become a cluster. In this way, multiple clusters can be created and the GVRP is defined.

During the transformation from GVRP to ACVRP the clusters remain the same. But where in
the GVRP exactly one node from each cluster has to be visit, in the ACVRP all nodes over all
clusters have to be visited. The work of Soler et al. (2009) illustrates an ACVRP solution of a
small theoretical example, that is presented in Figure 4-1.

Figure 4-1: An optimal ACVRP solution constructed by the transformation formulated by Soler et al.

(2009).

In Figure 4-1, vd represents the depot vertex. S1
s and S2

s indicate the start (departure time
from the depot) of vehicle 1 resp. 2. S1

e and S2
e indicate the end (arrival time at the depot)

of vehicle 1 resp. 2. There are 4 clusters, clusters S1 to S4 and each cluster contains several
nodes. The example has integer values for the travel times and the time windows for practical
reasons. Every node corresponds to one time-unit and the access information from node to
node is saved before the start of the TDVRP tool. The problem is disconnected from time
windows restrictions. This is needed, because inside a cluster it must be allowed to go from a
later time-unit to an earlier one. If a vehicle enters a new cluster, all nodes in this cluster have
to be consecutively visited before leaving this cluster. The solid line in the figure represent the
route of vehicle 1 and the dotted line represent the route of vehicle 2. Notice that the demand
of a customer is split up over all nodes of the specific cluster, e.g., the demand of customer 1
equals d11 + d12. Moreover, the service time of a customer is included in the travel time from
this customer to a next customer, only when travelling to a new cluster. When translating the
solution of this ACVRP to the solution of the TDVRP, only the first visited customers of a
cluster are kept to construct the routes.

Generally, the ACVRP is a simplification of the VRP variant that can be approximately solved
by RESPONSETM. From this, one could hope that the created ACVRP can be solved with
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RESPONSETM. But this optimisation model cannot handle this clustered ACVRP in which it is
allowed to go from a later time-unit to an earlier one. For this small theoretical example the
created ACVRP could be easily solved as is done in the article of Soler et al. (2009). However,
to solve a real-life problem, which is in the objective of this thesis, the nodes of the clustered
ACVRP include not only one time-unit, but a whole time-zone. In this case it is also important
to know in which part of the time-zone the vehicle is leaving, due to satisfaction of the FIFO-
property. Therefore the time-zones need to be split up in a lot of time-units, however this
requires a lot of memory, and seems difficult to realise in practise.

In conclusion, a clustered ACVRP differs from the general ACVRP. A clustered ACVRP has
to save the access information from node to node disconnected from time window restrictions,
which cannot be solved with de current RESPONSETM model. In this way, the transformation
does not lead to a VRP that can be solved within our framework. In other words, the theoretical
work of Soler et al. (2009) is not readily applicable in our case.

Because the application of the theoretical work of Soler et al. (2009) is not able to deal with a
real-life problem, this work is of less importance for this thesis. The work of Figliozzi (2009)
is used instead. Figliozzi (2009) takes a route improvement approach instead of the local im-
provement approach. This work can be applied successfully, and more information about the
implementation is presented in the following subsection.

4-1-3 Successful Solution Method

This subsection describes a successful solution method based on the work of Figliozzi (2009). The
difference between this solution method and the solution method of the current RESPONSETM

without time-dependent travel times will be described. First a short description of the method-
ology used by Figliozzi (2009) is given and then my way of implementing a successful solution
method based on that methodology is presented.

Methodology Figliozzi (2009)

As mentioned in Section 2-2, the idea of Figliozzi (2009) is to use a solution method that needs
no local improvement heuristics. First, he creates a start solution based on a route construction
algorithm. After that, on a subset of routes, improvements are done on route level.

The route construction algorithm starts with a random customer. Next, there is a search for
the best order to insert at the next position in the route. The best order is the one with the
smallest insertion cost. This insertion cost is dependent on several factors, including the shift
in departure time of the last customer, the extra distance travelled from the previous to the
new customer, the urgency of serving the customer (the time remaining until the vehicle’s last
possible service time starts) and the capacity slack of the vehicle after serving the customer.
If there is no feasible order found, a new route with a random order that is not yet visited, is
created.

When the start solution is created, a route improvement algorithm will be applied. The mo-
tivation of Figliozzi (2009) for this algorithm is to combine several routes with prospect of
improvement. First, he chooses to take the route with the smallest number of orders. Next, one
or more routes nearest to this first smallest route are taken, assuming that the nearest routes
have the potential to be improved. Here, the nearest route is determined by calculating the
geographical distance between the absolute centre of the routes. When the subset of routes to
improve are determined, all customers of these routes will be taken together. On this subset
of routes, the route construction algorithm can be applied. Notice that the route improvement
algorithm can be applied several times, each time on another subset of routes.
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Implementation of the method

Because local improvements will be avoided, the ES algorithm from RESPONSETM cannot be
used. To handle time-dependent travel times, I had to completely restructure RESPONSETM.
The new method will be referred to as RESPONSETM CRIA (Construction and Route Improve-
ment Algorithm) and the current RESPONSETM model will be referred as RESPONSETM ES
(Evolution Strategy). In this paragraph, the changes from RESPONSETM ES to RESPONSETM

CRIA will be formulated.

In the first place, the start solution in RESPONSETM CRIA has to be constructed in a different
way than in RESPONSETM ES. In the latter, as can be read in Subsection 3-2-2, a random
order is given and is inserted at the best position. But in RESPONSETM CRIA, the position
will be given (always the last position of a route) and the best order will be inserted. This is
recommend, because in the time-dependent case, a customer insertion at another position than
the last one of a route, has impact on all succeeding arcs in the route, in the same way local
improvement heuristics do. To implement a construction algorithm that contains the above
methodology, the procedure Sub FindBestOrderToInsert is written in VB. The code can be
found in Appendix A-3. For clarity the construction algorithm with the above methodology is
given is pseudo code.

procedure Construction of a solution
for each order selected as starting point in route list

for each parameters in insertion strategy parameters
for order index = 1 to number of orders

function Find the best order to insert at the next position
next order index

next parameters
next order selected as starting point
if check for improvement of the solution

use this solution when it is better then the previous best solution
end if

end

function Find the best order to insert at the next position
if there is already a trip created with at least one order

for each order in order list
if order insertion is feasible

Calculate insertion cost depending on the parameters
Remember the order with the least insertion cost

end if
next order

end if
if there is no feasible order found (or a new trip is needed)

for each order in order list
if order insertion is feasible

Calculate insertion cost depending on the parameters
Remember the order with the least insertion cost

end if
next order

end if
end
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The second difference between RESPONSETM ES and RESPONSETM CRIA is that, due to the
time-dependent travel times, the time shifts on epd end lfa from RESPONSETM ES could no
longer be used. This is why in RESPONSETM CRIA, these time shifts are removed and all
routes now have fixed departure times. To construct the routes, a lot of information will be
stored for each order to insert, such as the previous leg travel time, the previous leg distance,
the arrival time, the waiting time, the start service time, the leg travel time to depot, the leg
distance to depot and the departure time. To make the routes as large as possible, each route
has to be started at the earliest possible departure time, such that there is no waiting time to
service the first customer. For this, a backwards shortest path algorithm is used to calculate
this departure time. Because all created routes from the construction algorithm now have fixed
departure times, the construction from RESPONSETM ES that determines multiple routes per
vehicle cannot be used any more. However, it is theoretically possible to realise multiple routes
per vehicle, when the created routes are full because of capacity constraints. RESPONSETM

CRIA cannot (yet) solve a TDVRP with multiple routes per vehicle.

The third difference between RESPONSETM ES and RESPONSETM CRIA is the insertion strategy.
In RESPONSETM ES, the best insertion is the one where the lfa shift plus epd shift is minimal.
Now, in RESPONSETM CRIA the best insertion is the one with the smallest insertion cost, if
there are multiple best orders, the one with the minimal time-shift is taken. The insertion cost
is dependent on several factors based on the methodology used by Figliozzi (2009). The chosen
factors are time-shift, extra distance, time-shift from depot to depot, extra distance from depot
to depot, delay, remaining capacity and waiting time, which is calculated in Appendix A-3.
Here, Sub Overrides CompareInsertPosition (described in A-4) will be executed, in which the
insertion cost will be calculated. The relation between the mentioned factors dependent on the
search space parameters {δ0, δ1, δ2, δ3, δ4, δ5, δ6}, which are formulated in Appendix A-5. Notice
that search space parameters {1, 0, 0, 0, 0, 0, 0} lead to the order with the minimal time-shift,
also known as the least time insertion strategy. In the same way, search space parameters
{0, 1, 0, 0, 0, 0, 0} lead to the least distance insertion strategy. The least time insertion strategy
and the least distance insertion strategy are based on the time resp. distance travelled from
the previous to the new customer. To get the insertion in a different direction, other criteria
are chosen for the time resp. distance, namely the time resp. distance travelled from depot to
depot, that is assigned to δ2 resp. δ3. In some search space parameters, δ4 is chosen to influence
the insertion in such a way that customers have priority when they almost close. Moreover δ5 is
taken to deliver first the customer with as much as possible demand and δ6 is inserted to avoid
needless waiting time. A lot of trail and error has lead to these parameters.

To create a good start solution, it is useful to run the construction algorithm several times, each
time starting with another order with prospect of no waiting time (instead of starting with a
random order), and each time with a different insertion strategy (instead of using 1 parameter
set from the search space).

As follows from the name of RESPONSETM CRIA, it is a construction and route improvement
algorithm. The way to implement the construction algorithm is mentioned above. Next, more
information about the route improvement algorithm is given. Again this is illustrated with
pseudo code and the VB code corresponding to this route improvement algorithm can be found
in Appendix A-6 and A-7.
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procedure Improvement of a solution
for each route in smallest, second smallest, largest waiting time

search for routes near this one
make subsets containing all orders from selected routes

for subset = 1 to end
procedure Construction of a solution

next subset
remember the best solution of all subsets

next route
for each route in route list

procedure Construction of a solution (for the orders in only this route)
next route
check if the solution has improved

end

The improvement algorithm is based on a variation of the idea of Figliozzi (2009). Several
subsets of routes from the constructed solution will be taken, and on each subset the route
construction algorithm will be applied. Recall that the nearest route is determined by calculating
the geographical distance between the absolute centre of the routes and the smallest route has
the least number of orders. Take n, the number of routes of the constructed solution, then the
first subset contains the route with the smallest number of orders and n − 2 routes nearest to
this first smallest route. In this way, a subset P of n − 1 routes is created. All next subsets
also contains the smallest route, but for each next subset, the furthest route to the first will
be removed, until 2 routes are over. These first n − 2 created subsets, will be referred to as
standard subsets. Next, n − 3 extended subsets will be created containing the same smallest
route, but in all subsets leaving out the nearest route to the first. For example, a constructed
solution with 5 routes, where route 1 is the smallest, and route 2, 3, 4 and 5 consecutively
are the nearest to route 1. Then, the standard subsets become (1, 2, 3, 4), (1, 2, 3) and (1, 2)
and the extended subsets become (1, 3, 4) and (1, 3). Next, on each subset, the obtained routes
will be reconstructed with the use of the construction algorithm. The best solution will be
remained. Next, this best solution is taken as the new constructed best solution and a new
route improvement can be done. Now, not taking the smallest route as the first one, but the
second smallest one, could also yield potential improvement. For the same reason, the route with
most waiting time is taken as first, but only if this route is not the same as the smallest or the
second smallest. All of the above improvements will be repeated until there is no improvement
any more. Last but not least I try to improve all single routes, by ordering them in another way.

Notice that a lot of improvements are done here. For very small problems up to 25 customers
this is no problem. But for problems with 100 customers within 15 routes, the computation
time will become problematic. Naturally, the solution has a bigger prospect of improvement
when more improvements are done. In the example above, taking all other possible subsets like
(1, 4) or (1, 3, 4, 5) might lead to a better solution. Due to the increase in computation time, in
RESPONSETM CRIA I only take the most promising subsets to improve the solution.

Moreover, to generate a broader spectrum of solutions, in the insertion strategy I tried to take
in some cases the second best order, instead of the best one. For example, on each subset the
improvement algorithm can be applied a second time, now chosing the second best order as the
first order in the second route. Because the poor quality of solutions in relation with the large
computation time, these kind of improvements will not be done in RESPONSETM CRIA.
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Additionally, I considered to start the construction algorithm of RESPONSETM CRIA first with
a clustering of the customers to get the solution in a promising direction. However, this would
be a thesis study in itself and is not done within this thesis research. As can be read above,
in RESPONSETM CRIA I choose to get the solution in a promising direction by running the
construction algorithm several times with different search space parameters.

Last but not least, I have considered taking local improvements into account, like the 2-opt or
the cross exchange heuristic implemented by Hashimoto et al. (2008). As previously mentioned
these heuristics need a lot of computation time in comparison to the solution quality. That is,
why local improvements are not implemented in RESPONSETM CRIA.

Notice that in this thesis, the objective of the TDVRP is the same as the objective mentioned
in last chapter for solving the VRP with constant speed. That is, I first wish to minimise the
number of routes and second to minimise the total travel time over all routes.

4-2 Small Benchmark Problem

This section formulates a small benchmark problem on which the solution method of RESPONSETM

CRIA, defined in the previous section, can be tested. In the literature on the VRP with con-
stant speed, frequently the VRP is tested on the well-know 56 Solomon’s benchmark problems
formulated by Solomon (1983). These benchmark problems are widely studied and provide an
indication of the performance of the algorithm with constant travel speed. Because the TDVRP
is an extension of the VRP with constant speed, variations of the Solomon’s benchmark prob-
lems can be used to test the TDVRP. Figliozzi (2009) has proposed variants of this benchmark
that are readily replicable.

The classical set of 56 Solomon’s benchmark problems are composed of six different problem
types with 100 customers. The six problem classes are named R1, R2, C1, C2, RC1, and RC2.
Customers location are randomly generated (problem sets R1 and R2), clustered (problem
sets C1 and C2), or mixed with randomly generated and clustered customers (problem sets RC1
and RC2). The customer coordinates are identical for all problems within one type, i.e., R, C
and RC. In these problems, travel times equal the corresponding Euclidean distances and travel
speeds are 1 kilometre per minute. Problem sets of type 1 have a shorter scheduling horizon,
tighter time windows, and a smaller vehicle capacity than problem sets of type 2. Therefore, the
solutions of type 2 problems have very few routes and significantly more customers per route.

For testing RESPONSETM CRIA, I use one of the 56 Solomon’s benchmark problems, namely
R103. From this benchmark problem, the best known solution to be found in literature, is
determined in terms of number of vehicles, travelled distance and the sequence of the orders.
Especially the latter is not known for all other benchmark problems. Dataset R103 can be found
in Appendix B.

In this chapter, several variants on benchmark problem R103 are taken. The variants are
expressed in different scenarios as constructed in Table 4-1. Each scenario differs only in the
specific speeds over the network. The scheduling horizon is divided into time-zones of equal
durations in the same way as Figliozzi (2009) did. Notice that Scenario 1 takes the original
Solomon’s problem R103 with constant speed. Scenario 2 and 3 also have constant speed. In
Scenario 2 a vehicle moves 20% slower than in Scenario 1 and in Scenario 3 a vehicle moves
20% faster than in Scenario 1. In Scenario 4 and 5, the travel speed of a vehicle depends on the
period of the scheduling horizon, these scenarios are in the work of Figliozzi (2009) known as
speed distributions TD5 resp. TD2.
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Using the proposed benchmark problem within the 5 scenarios, the solution quality of RESPONSETM

CRIA can be tested. By considering only the first 25 customers of the dataset, the structure of
the routes can be clarified with the help of pictures. Moreover some conclusions can be made
about the advantage of taking into account time-dependent travel times. Next, it is interesting
to test RESPONSETM CRIA on the whole dataset (all 100 customers). In the constant case (that
is a simplification of the time-dependent case), the results can now be compared with the best
solution ever and in the time-dependent case the results can be compared with the results of the
work of Figliozzi (2009). However, as mentioned before, his method does not deal with time-
dependent shortest paths calculations (distances between customers are taken as fixed). This is
why the computation time of Figliozzi (2009) will be a lot shorter than the computation time of
RESPONSETM CRIA. Anyhow, there is no other literature known with time-dependent bench-
marks in which the results of this thesis can be compared. Researchers mentioned in Section 2-2
like Hashimoto et al. (2008) and Ichoua et al. (2003) uses variations on Solomon’s benchmark
problems, but none of them uses specific fixed speeds in such a way that their problems can
be replicated. In conclusion, to the best of my knowledge, the only work where the results of
RESPONSETM CRIA on the time-dependent scenarios can be compared, is the work of Figliozzi
(2009). However, in his paper he presents only the average values over the whole R1 problem
class. The values of R103 specifically remain unknown to me.

Table 4-1: Scenarios with travel speed over the time-zones.

Scenario Number of time-zones Travel speed (km/min) over the time-zones

1 1 [1.00]
2 1 [0.80]
3 1 [1.20]
4 5 [1.20, 0.80, 1.00, 0.80, 1.20]
5 5 [1.00, 2.00, 1.50, 2.00, 1.00]

4-3 Computational Results

This section shows some computational results on the small dataset and the scenarios mentioned
in the previous section. Recall from Section 4-1 that in this theses, the objective of the TDVRP
is first to minimise the number of routes and then to minimise the total travel time over all
routes. This section first handles the dataset with only the first 25 nodes in Subsection 4-3-1 for
constant speed and Section 4-3-2 for time-dependent speed. Next, in Subsection 4-3-3 (that deals
with constant speed) and 4-3-4 (that deals with time-dependent speed), the dataset with all 100
customers is considered. This section ends with the computational complexity of RESPONSETM

CRIA in Subsection 4-3-5.

As mentioned in Section 4-1, RESPONSETM ES stands for the current RESPONSETM model
with the Evolution Strategy. In the computations, there are 200 iterations taken with 100
parents. RESPONSETM CRIA stands for the Construction and Improvement Algorithm. It
is interesting to see the construction of the solution and therefore the construction method
from RESPONSETM CRIA without using the route improvement algorithm is considered. This
algorithm will be referred to as RESPONSETM CA (Construction Algorithm). In the following
section on computational results, the method followed by a superscript number that represents
the scenario used are given, e.g., RESPONSETM CRIA1 means the use of RESPONSETM CRIA
within Scenario 1. Notice that all computation times include the time-dependent shortest path
calculations.
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4-3-1 Problems with 25 Nodes and Constant Travel Speeds

This subsection presents, the computational results on the problems with 25 nodes and constant
speeds (Scenario 1, 2 and 3). The advantage of taking the problems with 25 nodes instead of the
problems with 100 nodes are that when the solutions are plotted (or the sequence of orders is
given) it is easier to see the results of the several solution methods. Here, the computational re-
sults created by RESPONSETM CRIA will be compared with the results created by RESPONSETM

CA (Construction Algorithm) and the solution created by RESPONSETM ES. This last method
can be applied because the problem in this subsection has only constant travel speeds (there is
only 1 time-zone).

The structure of the routes created by RESPONSETM CRIA will now be clarified using the results
of Scenario 1 (the original constant speed). With RESPONSETM CA a first solution is constructed
(Solution 1). The sequence of the orders of Solution 1 is presented in Table 4-2 (this solution is
also plotted in Figure C-2 of Appendix C). Here, Solution 2 to 4 describe the solution after each
crucial improvement and Solution 5 gives the sequence of the orders of the final best solution
calculated by RESPONSETM CRIA (this solution is also plotted in Figure C-3 of Appendix C).
During the creation of Solution 1, the crucial search space parameters are {1, 0, 0, 0, 0.3, 0, 0.3}
with Order 14 to start the first route. When applying the improvement algorithm, the following
critical improvements are done. First to create Solution 2, the smallest route with the two
nearest routes are taken (Route 5,4 and 3) and the first route is started with Order 20 and use
search space parameters {3, 0, 1, 1, 1, 1, 1}. Next, to create Solution 3, the second smallest route
together with the nearest to this one are taken (Route 4 and 3). Now, the solution can start
the first route with Order 7, and taking search space parameter {1, 0, 0, 1, 0.3, 1, 0.3} gives the
represented solution. Solution 4 is created by taking the smallest route and the second nearest to
this smallest route together (Route 3 and 2) and take search space parameters {5, 0, 0, 1, 1, 1, 1}
and Order 24 to start the first route. The last solution is created by improving the single routes
in which by the use of search space parameters {5, 0, 0, 1, 1, 1, 1} the sequence of Route 4 is
improved as can be seen in Table 4-2.

Table 4-2: Construction of routes using RESPONSETM CRIA within Scenario 1.

Solution Route 1 Route 2 Route 3 Route 4 Route 5
1 14 - 15 - 6 - 5 - 16 - 17 - 18 1 - 23 - 22 - 21 - 4 - 25 - 12 2 - 24 - 9 - 20 - 3 7 - 11 - 8 - 19 10 - 13
2 14 - 15 - 6 - 5 - 16 - 17 - 18 1 - 23 - 22 - 21 - 4 - 25 - 12 3 - 24 - 9 - 10 - 19 20 - 11 - 8 - 7 - 13 - 2
3 14 - 15 - 6 - 5 - 16 - 17 - 18 1 - 23 - 22 - 21 - 4 - 25 - 12 3 - 24 - 9 - 10 - 20 7 - 19 - 11 - 8 - 13 - 2
4 14 - 15 - 6 - 5 - 16 - 17 - 18 24 - 23 - 22 - 21 - 4 - 25 - 12 1 - 3 - 20 - 9 - 10 7 - 19 - 11 - 8 - 13 - 2
5 14 - 15 - 6 - 5 - 16 - 17 - 18 24 - 23 - 22 - 21 - 4 - 25 - 12 1 - 3 - 20 - 9 - 10 7 - 19 - 11 - 8 - 2 - 13

The computational results (in terms of number of routes, total travel time and total distance
driven) for Scenario 1, 2 and 3 can be found in Table 4-3. Note that the superscript number i
after each solution method indicates the use of the method within Scenario i. As mentioned
before, the solution method RESPONSETM CA1 gives a solution with five routes and the solution
method RESPONSETM CRIA1 gives a solution with only four routes. For a first solution, the
solution of RESPONSETM CA1 is not very bad, but if improvements on this solution are possible,
of course this is preferred.

Table 4-3 also shows, that the solution of RESPONSETM CRIA on Scenario 1 as well as on
Scenario 2 and 3, is a little bit worse than the solution of RESPONSETM ES (same number of
routes, but about 1 hour more total travel time). This is quite logical, because RESPONSETM

CRIA is created to handle time-dependent speed problems and can never try as many possible
solutions as RESPONSETM ES can. The solutions of the different methods tested on Scenario 1
can be found in Figure C-1 to C-3 of Appendix C.
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Notice that the solution of RESPONSETM CRIA2 does not fit within 4 routes any more. Due to
the slow speeds, the vehicles need more travel time. Moreover it could happen that the solution
will become infeasible, because an order cannot be planned any more. With a speed of 0.80 and
the same time windows, Order 36 and Order 65 cannot be planned any more, i.e., when leaving
form the depot as early as possible and travelling with a speed of 0.80, customers 65 and 31 can
only be served 2 minutes resp. 1 minute after closing time. This is not a problem here, since
only the first 25 customers are used.

The solution of RESPONSETM CRIA3 is faster in total travel time with the same number of
routes. This is not surprising, due to the higher constant speed. Notice that the sequence of the
orders of the solution of RESPONSETM CRIA3 and RESPONSETM CRIA1 is not the same.

All computations for the RESPONSETM methods in this thesis are done on an Intel Core 2, 2.4
GHz computer. For all RESPONSETM CRIA computations, the shortest path computation time
takes the largest part of the total computation time. For each simulation the total shortest paths
computation time is determined and presented in all computational results tables. However,
shortest path results from customer to customer at a specific time are stored and not recalculated.
The lookup time to see whether shortest path calculation is necessary is not included in the total
shortest path computation time. It is clear that shortest path calculations take a significant
portion of the total computation time.

Table 4-3: Computational results on R103 with constant speeds and 25 nodes.

Solution method Number of Total travel Total distance Computation Of which
routes time (hours) driven (km) time (h:min:sec) shortest path (%)

RESPONSETM ES1 4 12.48 491 0:1:24 0.06
RESPONSETM CA1 5 14.86 596 0:0:04 73.47
RESPONSETM CRIA1 4 13.31 513 0:0:08 66.48

RESPONSETM ES2 5 14.87 509 0:1:37 0.02
RESPONSETM CRIA2 5 16.16 537 0:0:11 53.11

RESPONSETM ES3 4 10.98 491 0:1:24 0.06
RESPONSETM CRIA3 4 12.09 518 0:0:09 67.28

4-3-2 Problems with 25 Nodes and Time-Dependent Travel Speeds

In this subsection, the computational results on problems with 25 nodes when taking time-
dependent travel speeds into account (scenario 4 and 5) are presented. Table 4-4 shows these
results.

It is no surprise that the solution from RESPONSETM CRIA3 gives a better solution than the
one of RESPONSETM CRIA4. This is the case, because the lowest speed of Scenario 4 equals the
constant speed of Scenario 2.

RESPONSETM CRIA5 gives a better solution than RESPONSETM CRIA1, which is also obvious,
since the lowest speed from Scenario 5 equals the constant speed of Scenario 1.

The whole idea of Scenario 4 is that this time-dependent scenario is more realistic than Sce-
nario 1, that has the same average speed (1 km/min). When a method is used which re-
quires a constant speed, problems may arise in the solution; if we try to insert the solution of
RESPONSETM CRIA1 into Scenario 4, as can be seen in Table 4-5, the solution does not fit any
more, because of the variable travel times. The last order (13) of Route 4 does not fit in the
route any more, since the vehicle leaves from Order 2 at 2:43:17, which was 2:37:14 before. Also
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the travel times increases from Order 2 to 13 (9.4 minutes to 11.8 minutes) and the closing time
of Customer 13 is 2:49:00, hence an additional route is needed.

When a feasible solution is required for a real-life environment and only a time-independent
solution method is available, the solution method has to be applied on Scenario 2. Due to
the constant lower speed, the solution will always fit into the variable higher speed scenario.
However as shown in Table 4-4 this solution is inefficient in comparison with RESPONSETM

CRIA1. Notice that the average speed of Scenario 4 equals 1.00 km/min and the average speed
of Scenario 2 equals 0.8 km/min. So, when the vehicles travel non-stop during the scheduling
horizon, their travel time is 25% longer than in Scenario 4 than in Scenario 2.

Another advantage of having a time dependent solution method is the possibility of finding
solutions that are better than the constant speed solution. For instance when the solution
of RESPONSETM CRIA4 is inserted into Scenario 1, a worse solution is obtained than for
RESPONSETM CRIA4 itself. Notice that the efficient solution of RESPONSETM CRIA4 would
never be found by RESPONSETM CRIA1. In some cases the results are even more drastic. When
the solution of RESPONSETM CRIA4 is inserted into Scenario 2, the solution does not fit any
more with the same number of routes (11 routes required instead of 5).

Table 4-4: Computational results on R103 with time-dependent speeds and 25 nodes.

Solution method Number of Total travel Total distance Computation Of which
routes time (hours) driven (km) time (h:min:sec) shortest path (%)

RESPONSETM CRIA1 4 13.31 513 0:0:08 66.48
RESPONSETM CRIA2 5 16.16 537 0:0:11 53.11
RESPONSETM CRIA3 4 12.09 518 0:0:09 67.28
RESPONSETM CRIA4 4 14.20 545 0:4:06 98.55
RESPONSETM CRIA5 4 11.17 565 0:3:48 98.80

Table 4-5: Computational results on dataset R103 with 25 nodes, the sequence of the orders of the
calculated solutions using the speeds of different scenarios.

Solution Inserted in Number of Total travel Total distance
calculated by scenario routes time (hours) driven (km)

RESPONSETM CRIA1 4 5 16.37 532
RESPONSETM CRIA2 4 5 15.64 537
RESPONSETM CRIA4 1 4 14.23 545
RESPONSETM CRIA4 2 11 27.77 777

4-3-3 Problems with 100 Nodes and Constant Travel Speeds

This subsection presents the computational results on the problem with 100 nodes and constant
travel speeds, i.e., the original Solomon’s benchmark problem. The advantage of testing the
method on these 100 nodes problems instead of the 25 nodes problems is that solutions for
these Solomon’s benchmark problem are known for several solution methods presented in the
literature. For dataset R103, the best known solution in terms of number of vehicles and travelled
distances is presented order to order by Gambardella (1999). From this information, the best
known solution of R103 is plotted in Figure C-4 of Appendix C.

The computational results on the problems with 100 nodes and constant travel speeds are
presented in Table 4-6. Notice that for the best ever solution the primary objective is to minimise
the number of vehicles and the secondary objective is to minimise the shortest distance. This
also is the objective that Figliozzi (2009) uses for the constant speed problems. However for
RESPONSETM CRIA the total travel time is used as secondary objective, since this is part of the
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goal of this thesis. This leads to the solutions formulated in Table 4-6. For more information on
the best ever solution the reader is referred to Hasle (2009). In the table the results of Figliozzi
(2009) are also presented. It must be noted that these are given in an average value over the
whole R1 problem class (12 scenarios). Unfortunately the specific results of R103 are unknown
to me.

The solution of RESPONSETM CRIA comes close to the best ever solution (14 routes vs 13),
however there is a large computational cost. Every route improvement takes 8 minutes calcula-
tion time and on average 8 route improvements are needed in 4 loops (this loop is presented in
Appendix A-6).

For illustrative purposes the solutions of RESPONSETM CRIA and Best Ever on dataset R103
for Scenario 1 are given in Figure C-5 to C-4 of Appendix C.

Table 4-6: Computational results on R103 with constant speeds and 100 nodes.

Solution method Number of Total travel Total distance Computation Of which
routes time (hours) driven (km) time (h:min:sec) shortest path (%)

Best Ever1,average 11.92 - 1,210 - -
Figliozzi (2009)1,average 12.58 - 1,248 0:0:20 0.00
Best Ever1 13 45.49 1,293 - -
RESPONSETM ES1 14 38.96 1,331 0:10:14 0.03
RESPONSETM CRIA1 14 44.64 1,588 0:51:59 28.01

4-3-4 Problems with 100 Nodes and Time-Dependent Travel Speeds

This subsection discusses the computational results on problems with 100 nodes and time-
dependent travel speeds. Table 4-7 shows these results. The superscript 4 soft denotes Scenario 4
using soft time-windows. Where soft means the soft time-window violation principle proposed
by Figliozzi (2009): Pmax = 0.1(l0 − e0) = e#

i − ei = li − l#i , with [ei, li] the hard time window

interval and [e#
i , l#i ] the soft time window interval and where i = 0 equals the depot. Notice that

the depot working time [e0, l0] is not relaxed. Scenario 5 does not require soft time windows,
since a feasible solution can always be found, due to the low speed.

Notice that the computation time of Figliozzi (2009) is calculated without the shortest path
algorithm and averaged over 65 problems using a Dell Latitude 430, 1.2 GHz computer. The
solutions of RESPONSETM are calculated on an Intel Core 2, 2.4 GHz computer and include the
time-dependent shortest path calculations.

Comparing the results of Figliozzi (2009) with the results of RESPONSETM CRIA leads to the
believe that Figliozzi (2009) presents his travel time without waiting time. This is denoted in
Table 4-7 as the effective travel time. Notice that the secondary objective of Figliozzi (2009)
for problems with time-dependent speeds, is this effective travel time. It seems the results of
RESPONSETM CRIA are of reasonable quality, however the computational cost is a problem. The
largest part of this problem stems from the use of the shortest path algorithm in RESPONSETM

CRIA (about 97% of the total computation time).

Table 4-7: Computational results on R103 with time-dependent speeds and 100 nodes.

Solution method Number of Total travel Effective travel Total distance Computation Of which
routes time (hours) time (hours) driven (km) time (h:min:sec) shortest path (%)

Figliozzi (2009)4 soft,average 10.42 - 18.90 1,131 0:0:21 0.00

RESPONSETM CRIA4 soft 11 39.26 22.30 1,349 49:20:34 98.08

Figliozzi (2009)5,average 10.75 - 14.95 1,258 0:0:19 0.00

RESPONSETM CRIA5 12 37.82 19.31 1,679 22:27:17 96.51
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4-3-5 Computational Complexity

This subsection describes the runtime complexity of RESPONSETM CRIA. As mentioned in
Subsection 4-1-3, RESPONSETM CRIA uses the construction algorithm multiple times. This
construction algorithm is called during the TDVRP process no more than ns ·δ ·S times. Where
S is the total number of order subsets, ns is the number of customers tried to start the route,
and δ is the number of search space parameters. Notice that ns, δ and S are finite numbers and
S depends on when the proposed algorithms have converged. From this I can conclude that the
computational complexity of the construction algorithm has a substantial impact on the running
time of the TDVRP process.

The key parameters in terms of computation time are the number of customers and the number
of time zones. First the impact of the number of customers will be investigated. For this,
instances with different number of customers have to be run. When running only the start
solution (using RESPONSETM CA), ns, δ and S have the same constant values when varying the
number of customers, which forms a good basis of comparison. Note that, S equals one, the
complete order list.

Table 4-8 shows the results of RESPONSETM CA on the Solomons problem R103 with constant
speed. Solomon’s problem is defined with n = 100, n = 25 and n = 50 are defined using a
selection of R103 and n = 200 and n = 250 are defined using copies of the customers with new
coordinates. Notice that the results are expressed as the ratio between each computation time
and the computation time for n = 25. The last column of the table shows that as the number of
customers n increases, the ratio as a percentage of the n3 growth factor is decreasing. From this,
I conclude that the running time is increasing by a factor of O(n2). This is expected, because
Figliozzi (2009) made the same conclusion for a similar construction algorithm.

Now that the complexity of RESPONSETM CA is determined to be of order O(ns ·δ ·S ·n2). Then,
from the structure of RESPONSETM CRIA I observe that the impact on this solution method is
similar. The only difference lies in S, which is 1 for RESPONSETM CA and dependent on the
specific problem for RESPONSETM CRIA.

Secondly, the increase in computation time dependent on the number of time-zones is checked.
The results are expressed in Table 4-9, in which p indicates the number of time-zones. From
this it can be obtained that the computation time increases by a factor of O(p).

The major contribution of computation time due to increase in time-zones is caused in the
shortest path algorithm. When calculating the shortest path using the algorithms presented in
Appendix A-1 and A-2, an increase in time-windows will trigger the function CrossTimeZone-
High more often.

As mentioned in Section 2-2, researchers sometimes run into memory problems of their comput-
ers. Their problems occur during pre-calculation of the shortest path matrix. Since RESPONSETM

CRIA does not use such a matrix, this problem is not experienced. However similar problems
may occur during the TDVRP process. The reason for this is that the shortest path results
from customer to customer at a specific time are stored during the TDVRP process, in order
to prevent recalculation when the same shortest path is needed again. This storage space also
becomes a critical factor for a large number of customers. For problems like the one presented
in Subsection 4-3-4 with 100 customers and 5 time-zones, memory limitations are reached after
many iterations. Clearing the memory of the shortest path results is needed, which of course
causes a setback in computation time. An advantage is that clearing the memory of the shortest
path results is possible, something which would not be the case during a pre-calculation phase.
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In conclusion experimental results indicate that the computation time increases proportionally
to the number of time-zones, as well as to the square of the number of customers.

Table 4-8: Computation time ratio depending of the number of customers

Number of O(n2) O(n3) Ratio % O(n3)
customers (n)

25 1 1 1.0 100
50 4 8 3.9 49
100 16 64 17.5 27
200 64 512 100.5 20
250 100 1,000 174.0 17

Table 4-9: Computation time ratio depending of the number of time-zones

Number of O(p) O(p2) Ratio % O(p2)
time-zones (p)

2 1 1 1.0 100
4 2 4 3.1 77
8 4 16 7.4 46
16 8 64 18.0 28
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Chapter 5

Time-Dependency related to a

Real-Life Problem

This chapter describes a real-life problem. First the real-life dataset is defined on which the
solution method of RESPONSETM CRIA, presented in Section 4-1, can be tested. The chapter
ends with the computational results.

In the previous chapter, the travel speed depended only on the time-zone. In other words the
travel speed at a given time was constant over the entire network. In real life the travel speed is
not only time-dependent, but also position dependent. This is because, there are several types
of roads in the network (highway, trough way, main road, local road), each of which has its own
travel speed, and where congestion of the network is local (not every highway is congested at
once).

The real-life problem contains a part of The Netherlands, i.e., the urban agglomeration that
stretches from Rotterdam to Amsterdam with a surface of about 60 km2. The network, which
contains information on road type, free-flow speed and off-peak hours speed of a truck for every
link, is derived from a dataset that TNO BU M&L owns. Here the nodes are given in RD
coordinates (Rijks Driehoek coordinates). The network of the real-life problem used contains
962 links, which is small compared to the network that RESPONSE usually uses of West Europe,
10,000 links. In these networks however, only the main roads are modelled, and many more links
are needed if also the small roads would be added to the model. Note that the Solomon’s problem
of the previous chapter uses a network of 10,100 links, since every customer can be reached on
one link from every customer. I choose the number of customers of the real-life problem used to
be 35, for visualisation purposes. This is nothing compared to a large transportation company
in the Netherlands, that delivers 1,000 orders per day.

Collecting the required time-dependent travel speed information is a very time consuming. Even
if the global properties of the travel time variation are known, for example, rush hour periods in
the early morning and in the late afternoon, the single links in the road network may be affected
quite differently.

In a recent development at TNO, time dependent road maps made by the American company
INRIX have become available. In these road maps the travel speeds are recorded for many links
in the network at different times during the day. INRIX and TNO have a combined effort in
producing models that can predict traffic behaviour in Europe. Also the ANWB travel time
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predictor uses the models made by INRIX, in which actual traffic jam information is linked
to TMC coordinates (Traffic Message Channel coordinates). If the TMC coordinates could be
converted to RD coordinates (or any other geographical system), then it would be possible to use
this network in RESPONSETM CRIA. This would have a very large potential benefit for TNO.
However at this moment there is no working conversion algorithm and it would be a thesis in
itself to create one.

Since a conversion algorithm does not (yet) exist, the choice has been made to simulate the
travel speed variations. Of course this should be done in the most realistic way. Therefore the
congestion of a Thursday (a normal work day) is simulated with the time-zones as presented in
Table 5-1. Here, the speeds over the network during the morning rush hours and evening rush
hours are modelled with the assumption that during the evening rush hours on highways and
through ways, there is a little bit more congestion than during the morning rush hours. On
the other hand, on roads where a lower maximum speed is allowed, the morning rush hours are
a little bit worse than the evening rush hours. To simulate position dependent congestion, a
random factor is added. Notice that all speeds are simulated for a truck that delivers the orders
with a maximum speed of 80 km/hour as defined by national law.

In mathematical formulation, take:

V the simulated speed on a link in this time-zone (km/hour);
Vmax the maximum speed on a link (km/hour);
Voff-peak the off-peak hours speed on a link (km/hour);

γlink a random number between 0 And 1 for each link.

Then, the speeds over the network for Time-zone 2 are simulated as:

If Vmax > 90 then

V = 0.2 · Voff-peak + γlink · 0.8 · Voff-peak
Else

V = 0.85 · Voff-peak + γlink · 0.15 · Voff-peak.

On a same way the speeds over the network for Time-zone 4 are simulated as:

If Vmax > 90 then

V = 0.15 · Voff-peak + γlink · 0.85 · Voff-peak
Else

V = 0.89 · Voff-peak + γlink · 0.11 · Voff-peak.

The real-life dataset can be found in Appendix B-1. Notice that the depot is open the whole
day (24 hours), but the customers need to be delivered within the time-windows.

Table 5-1: Time-zones for the real-life problem

Time-zone nr. Traffic situation Start time End time

1 Off-peak hours 00:00:00 07:30:00
2 Morning rush hours 07:30:00 09:15:00
3 Off-peak hours 09:15:00 16:45:00
4 Evening rush hours 16:45:00 18:45:00
5 Off-peak hours 18:45:00 24.00:00
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To present the difference between RESPONSETM CRIA and a non time-dependent method, a
solution of the real-life problem using 5 time-zones is compare to a solution using 1 time-zone
with the average speed per link. Figure C-6 of Appendix C-3 shows the solution with one time-
zone and C-7 shows the solution with 5 time-zones. Table 5-2 shows the computational results
of both, with only five trucks all 35 customers can be delivered on time. It must be noted
that the time-dependent method clearly is more efficient. When the single time-zone solution
is inserted into the 5 time-zone environment, a solution of 4 routes with 33 hours travel time is
found. However when the 5 time-zone solution is inserted into the single time-zone environment,
the solution becomes infeasible and more routes are needed. This means that the 5 time-zone
solution, of 3 routes with 31 hours travel time, would never be found by the non time-dependent
method.

Table 5-2: Computational results on real-life problem.

Solution method Nr of Total travel Total distance Computation Of which
routes time (hours) driven (km) time (h:min:sec) shortest path (%)

RESPONSETM CRIA1TZ 4 33.17 995 0:0:05 77.19

RESPONSETM CRIA5TZ 3 31.99 957 0:0:13 95.15

Table 5-3: Computational results on real-life problem, the sequence of the orders of the calculated
solutions using the speeds of different scenarios.

Solution Inserted in Number of Total travel Total distance
calculated by scenario routes time (hours) driven (km)

RESPONSETM CRIA1TZ 5 Time-Zones 4 33.61 995

RESPONSETM CRIA5TZ 1 Time-Zone 5 37.40 1,068

Figure C-8 of Appendix C-3 shows the travelled links for the single time-zone solution and
Figure C-9 shows travelled links for the solution with 5 time-zones. The preference for highways
is clear for both, but for the 5 time-zones solution also the avoidance of congested areas can be
seen. A part of the Dutch highways A1 and A4 are avoided and secondary roads, which are less
congested are used.
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Chapter 6

Conclusions and Recommendations

This chapter describes the conclusions and recommendations of this thesis. Section 6-1 formu-
lates conclusions based on the research project and Section 6-2 presents recommendations for
future work.

6-1 Conclusions

The objective of this thesis was defined in Section 1-2 as developing an efficient method that
produces good quality solutions to real-life Vehicle Routing Problems with time-dependent travel
times. In this thesis a literature study on the Vehicle Routing Problem (VRP) has been done
in which VRP variants and solution methods are formulated that structured the field of the
VRP. And also a literature review on the Time-Dependent Vehicle Routing Problem (TDVRP)
is made. From this review I was inspired to design and implement my Construction and Route
Improvement Algorithm (CRIA), which can handle time-dependent travel times. The algorithm
will be discussed in light of realism, efficiency, followed by a general conclusion.

Realism The developed CRIA is integrated with a time-dependent shortest path algorithm
that will be executed during the TDVRP process. No other published work using this method-
ology is found. In all research on the TDVRP, one or a set of paths are stored before the start of
the TDVRP calculation, and during the TDVRP process a pre-calculated path will be selected
and the time-dependent travel time corresponding to the path will be calculated. A drawback
of this methodology with varying speeds, but constant distances, is that it does not consider
(enough) potential changes of the shortest (i.e., fastest) paths themselves. Due to varying travel
times, alternative paths (with different distances) may result in a shorter path between cus-
tomers. The methodology used in this thesis therefore gives a more realistic solution, that is in
line with the objective of this thesis. Routes will be created that avoid locations with congestion
during rush hours.

In any way, a solution created with a time-dependent method is more realistic than one created
with a method that can only handle constant travel times. A solution obtained with constant
speeds may well be infeasible in the real-life time-dependent context, i.e., the closing time at a
customer or at the depot may be exceeded. Moreover there is a possibility to find solutions that
are better than the constant speed solutions in the time-dependent context, that otherwise would
never have been found. Notice that in this thesis a visualisation is made for the performance of
a real-life problem. This visualisation shows that congested areas are indeed avoided.
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Efficiency Because local changes of a route do not only influence the travel times around
a few exchanged customers, but may have impact on all other customers on the route, local
improvement heuristic have to be avoided. Therefore and due to the resulting big influence on
computation time, the developed CRIA takes a route improvement approach instead of the local
improvement approach that most researchers take. The developed CRIA is tested on one of the
Solomon’s benchmark problems and works quite good. For constant scenarios, the methods cre-
ated for dealing with constant scenarios perform better though. However, taking into account
that the developed CRIA is created for time-dependent purposes, the results can be said to have
reasonable quality. Because there are only a few people that did research on the TDVRP and
their experimental results cannot easily be compared, it is not possible to compare the quality
of the time-dependent cases. The computational cost becomes problematic for large instances
(more than 100 customers and 5 time-zones). The largest part of this problem stems from the
use of the time-dependent shortest path algorithm. Because the solver typically can be started
some time before the start of the planning horizon, the computation time is not a critical factor
and this drawback is of less importance for problems up to 100 customers.

Notice that experimental results from this thesis indicate that the computation time of the
time-dependent solution method increases proportionally to the number of time-zones, as well
as to the square of the number of customers. Thus for the TDVRP, the developed CRIA can
be referred to as an relatively efficient solver.

In conclusion In this thesis, complex optimisation algorithms are explored, from which an
efficient method is created that handles time-dependent travel times and produces good quality
solutions for real-life problems. Comparison between this new method and existing methods is
difficult, but the solutions of the method seem to have good quality. The advantages are clear:
the possibility to generate good quality solutions of the TDVRP that better reflect reality.

6-2 Recommendations

This section presents some recommendations for future work. The efficient solution method,
presented in this thesis gives realistic solutions when dealing with time-dependent travel times.
Similar to the solution method for the classic VRP, it deals with several boundary conditions.
Therefore, further research can be done by handling additional assumptions, like multiple time
windows per customer/depot, driving hours regulations for truck drivers or a heterogeneous fleet
of vehicles. For all these additional assumptions a trade off should be made between increase in
realism and additional computation time.

Due to the time-dependency, the created routes cannot always be shifted over time. Where
in the constant scenarios the created routes do not always have a fixed begin or end time, in
the time-dependent scenarios they have. That is why in the time-dependent context a route to
vehicle allocation problem is not relevant. Due to this complexity, the developed CRIA is not
yet able to solve a TDVRP with multiple routes per vehicle. Therefore, the vehicle routes that
are full because of capacity constraints may become suboptimal. Further research can be done
on the TDVRP with multiple routes per vehicle. Notice that the cost of an extra truck becomes
important in this case. The consideration has to be made, when it is profitable to let a truck do
a next route from the depot with the possibility that less orders can be serviced, due to closing
time-windows, or when an extra truck should be used, which can start from the depot much
earlier.

Ester Stegers M.Sc. Thesis



6. Conclusions and Recommendations 51

As can be read in this thesis, the insertion strategy of the developed CRIA is dependent on
several search space parameters. Here, the most promising parameters are taken, but obviously
an extended research can be done to analyse the efficiency of these parameters. Moreover more
research can be done on the efficiency of the route-improvements, i.e., make other combinations
of the subsets of routes.

Further research can be to add multiple time-zones to the Facility Location Model that handles
strategic problems. It is a challenge to model the congestion also in this tool, such that an
strategic optimisation can be done by taking into account the time-dependent optimal routes
calculated by the VRP.

There will be random variations in travel times, mainly due to accidents or weather conditions,
that are unpredictable. These variations can and should be considered in dynamic vehicle
routing, where orders arrive during the planning horizon and decisions are taken in real-time
based on the current state of information. Therefore, it is recommended to extend the developed
CRIA with the ability to handle the Dynamic Vehicle Routing Problem (DVRP). Note that
due the long computation time it can be advised that the number of shortest path calculations
is reduced, since this is a critical factor in the computation time. The rationale behind this
optimisation is that in a dynamic reality, a truck can decide to leave earlier or later to avoid
periods of high congestion.

There is an opportunity for TNO, to bring out a broader scale of advice by taking the in-
fluence of road-pricing into account. In a recently proposed law by minister Eurlings from
Verkeer en Waterstaat (2009) kilometre-pricing for freight transportation will be introduced
gradually from 2012 until 2018. During this transition phase the kilometre-price will increase
several times. This kilometre-pricing is expected to become location and time dependent. Which
roads will be expensive at what time is currently unknown. With the developed CRIA, time-
dependent calculations can be done and with some adjustments it should also be able to deal
with location dependency. Then, the objective can be changed from optimising on shortest
travel time to optimising on minimal kilometre cost. And also, the shortest path algorithm can
be adapted to a cheapest path algorithm, where the input becomes the kilometre-pricing per
link.

As a last remark, when time-dependent measurement data connected to a geographic network
would become available, solutions would be even more realistic. By creating a link between
the measurement data and the developed Construction and Route Improvement Algorithm, the
realism and usefulness of the solutions would increase substantially.

Hopefully, the results presented in this thesis will contribute to the effectiveness and the efficiency
of future projects in dynamic planning in logistics.
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Appendix A

Implementation Codes

A-1 Calculating Time-Dependent Travel Time

A-2 Function CrossTimeZoneHigh

A-3 Sub FindBestOrderToInsert

A-4 Sub Overrides CompareInsertPosition

A-5 Class CSearchSpace

A-6 Sub Solve

A-7 Sub TryToImproveRoutes

- Confidential -
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Appendix B

Datasets

B-1 Solomon’s Dataset R103

Table B-1: Solomon’s dataset R103 with vehicle capacity 200 and cust no. 0 equal to the depot.

cust no. xcoord. ycoord. demand ready time due date service time
(min) (min) (min)

0 35 35 0 0 230 0
1 41 49 10 0 204 10
2 35 17 7 0 202 10
3 55 45 13 0 197 10
4 55 20 19 149 159 10
5 15 30 26 0 199 10
6 25 30 3 99 109 10
7 20 50 5 0 198 10
8 10 43 9 95 105 10
9 55 60 16 97 107 10
10 30 60 16 124 134 10
11 20 65 12 67 77 10
12 50 35 19 0 205 10
13 30 25 23 159 169 10
14 15 10 20 0 187 10
15 30 5 8 61 71 10
16 10 20 19 0 190 10
17 5 30 2 157 167 10
18 20 40 12 0 204 10
19 15 60 17 0 187 10
20 45 65 9 0 188 10
21 45 20 11 0 201 10
22 45 10 18 97 107 10
23 55 5 29 68 78 10
24 65 35 3 0 190 10
25 65 20 6 172 182 10
26 45 30 17 0 208 10
27 35 40 16 37 47 10
28 41 37 16 0 213 10
29 64 42 9 0 190 10
30 40 60 21 71 81 10
31 31 52 27 0 202 10
32 35 69 23 0 186 10
33 53 52 11 37 47 10
34 65 55 14 0 183 10
35 63 65 8 143 153 10
36 2 60 5 41 51 10
37 20 20 8 0 198 10
38 5 5 16 83 93 10
39 60 12 31 44 54 10
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cust no. xcoord. ycoord. demand ready time due date service time
(min) (min) (min)

40 40 25 9 85 95 10
41 42 7 5 97 107 10
42 24 12 5 31 41 10
43 23 3 7 0 185 10
44 11 14 18 69 79 10
45 6 38 16 32 42 10
46 2 48 1 0 184 10
47 8 56 27 0 185 10
48 13 52 36 0 192 10
49 6 68 30 108 118 10
50 47 47 13 0 203 10
51 49 58 10 0 193 10
52 27 43 9 0 208 10
53 37 31 14 95 105 10
54 57 29 18 0 197 10
55 63 23 2 136 146 10
56 53 12 6 130 140 10
57 32 12 7 0 196 10
58 36 26 18 200 210 10
59 21 24 28 0 202 10
60 17 34 3 0 201 10
61 12 24 13 0 194 10
62 24 58 19 58 68 10
63 27 69 10 0 185 10
64 15 77 9 73 83 10
65 62 77 20 51 61 10
66 49 73 25 127 137 10
67 67 5 25 83 93 10
68 56 39 36 142 152 10
69 37 47 6 50 60 10
70 37 56 5 182 192 10
71 57 68 15 0 180 10
72 47 16 25 0 197 10
73 44 17 9 0 199 10
74 46 13 8 149 159 10
75 49 11 18 0 192 10
76 49 42 13 73 83 10
77 53 43 14 179 189 10
78 61 52 3 96 106 10
79 57 48 23 92 102 10
80 56 37 6 182 192 10
81 55 54 26 0 192 10
82 15 47 16 0 196 10
83 14 37 11 0 198 10
84 11 31 7 101 111 10
85 16 22 41 0 196 10
86 4 18 35 0 184 10
87 28 18 26 93 103 10
88 26 52 9 74 84 10
89 26 35 15 0 211 10
90 31 67 3 0 187 10
91 15 19 1 0 194 10
92 22 22 2 18 28 10
93 18 24 22 188 198 10
94 26 27 27 0 207 10
95 25 24 20 0 205 10
96 22 27 11 0 204 10
97 25 21 12 0 202 10
98 19 21 10 0 198 10
99 20 26 9 83 93 10
100 18 18 17 185 195 10
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B-2 Real-Life Dataset

Table B-2: Real-life dataset with vehicle capacity 1,000 and cust no. 0 equal to the depot.

cust no. settlement xcoord. ycoord. demand ready time due date service time
(h:min) (h:min) (min)

0 Rotterdam-Haven 92260 433887 0 00:00 24:00 60
1 Papendrecht 106952 428157 90 08:00 12:00 24
2 Leerdam 134426 434622 60 08:00 12:00 21
3 Rotterdam 94051 438588 75 08:00 12:00 23
4 Schoonhoven 117942 440205 50 08:00 12:00 20
5 Nieuwerkerk aan den IJssel 102005 442832 50 08:00 12:00 20
6 Vianen 135160 444906 60 08:00 12:00 21
7 Delft-Zuid 83885 445788 75 08:00 12:00 23
8 Gouda 108274 447257 90 08:00 12:00 24
9 Pijnacker 89468 447697 50 08:00 12:00 20
10 IJsselstein 131655 448522 50 08:00 12:00 20
11 Delft-Noord 84326 449167 90 08:00 12:00 24
12 Montfoort 125317 449167 50 08:00 12:00 20
13 Waddingsveen 104631 451913 50 08:00 12:00 20
14 Zoetermeer 94317 452840 110 08:00 12:00 26
15 Bodegraven 112947 453868 50 08:00 12:00 20
16 Woerden 119881 454456 50 08:00 12:00 20
17 Den Haag 80359 454750 110 08:00 12:00 26
18 Utrecht 137511 456366 125 08:00 12:00 28
19 Wassenaar 84914 458863 60 08:00 12:00 21
20 Maarssen 130233 460994 85 13:00 17:00 24
21 Nieuwkoop 113122 461067 50 13:00 17:00 20
22 Leiden 92133 462329 85 13:00 17:00 24
23 Alpen aan den Rijn 106511 462536 75 13:00 17:00 23
24 Hilversum 141478 468707 75 13:00 17:00 23
25 Mijdrecht 117677 468854 50 13:00 17:00 20
26 Uithoorn 117236 472674 60 13:00 17:00 21
27 Lisse 97255 474731 60 13:00 17:00 21
28 Aalsmeer 111506 475025 60 13:00 17:00 21
29 Bussum 138686 475906 60 13:00 17:00 21
30 Amstelveen 119293 478991 90 13:00 17:00 24
31 Hoofddorp 105189 480167 75 13:00 17:00 23
32 Amsterdam-Oost 126198 482664 110 13:00 17:00 26
33 Heemstede 105483 486044 90 13:00 17:00 24
34 Haarlem 100346 486718 100 13:00 17:00 25
35 Amsterdam-West 116795 486778 90 13:00 17:00 24

M.Sc. Thesis Ester Stegers





Appendix C

Plots of Solutions

C-1 Solutions of R103 with 25 Nodes
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Figure C-1: The solution of R103 with 25 nodes created by RESPONSE
TM ES1.
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Figure C-2: The solution of R103 with 25 nodes created by RESPONSE
TM CA1.
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Figure C-3: The solution of R103 with 25 nodes created by RESPONSE
TM CRIA1.
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C-2 Solutions of R103 with 100 Nodes
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Figure C-4: The best known solution of R103 with 100 nodes.
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Figure C-5: The solution of R103 with 100 nodes created by RESPONSE
TM CRIA.
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C-3 The Solution of the Real-Life Problem
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Figure C-6: The solution of the real-life problem taking one time-zone
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Figure C-7: The solution of the real-life problem taking five time-zones
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Figure C-8: The roads used of the real-life problem taking one time-zone
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Figure C-9: The roads used of the real-life problem taking five time-zones
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