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Quadrotor Fault Tolerant Incremental Sliding Mode Control driven by
Sliding Mode Disturbance Observers

Xuerui Wanga,∗, Sihao Suna, Erik-Jan van Kampena, Qiping Chua

aDelft University of Technology, Kluyverweg 1, 2629HS Delft, The Netherlands

Abstract

This paper proposes an Incremental Sliding Mode Control driven by Sliding Mode Disturbance Observers

(INDI-SMC/SMDO), with application to a quadrotor fault tolerant control problem. By designing the

SMC/SMDO based on the control structure of the sensor-based Incremental Nonlinear Dynamic Inversion

(INDI), instead of the model-based Nonlinear Dynamic Inversion (NDI) in the literature, the model depen-

dency of the controller and the uncertainties in the closed-loop system are simultaneously reduced. This

allows INDI-SMC/SMDO to passively resist a wider variety of faults and external disturbances using con-

tinuous control inputs with lower control and observer gains. When applied to a quadrotor, both numerical

simulations and real-world flight tests demonstrate that INDI based SMC/SMDO has better performance

and robustness over NDI based SMC/SMDO, in the presence of model uncertainties, wind disturbances, and

sudden actuator faults. Moreover, the implementation process is simplified because of the reduced model de-

pendency and smaller uncertainty variations of INDI-SMC/SMDO. Therefore, the proposed control method

can be easily implemented to improve the performance and survivability of quadrotors in real life.

Keywords: Incremental Nonlinear Dynamic Inversion, Fault Tolerant Control, Sliding Mode Disturbance

Observer, Sliding Mode Control, Quadrotor Flight Tests

1. Introduction

Characterized by mechanical simplicity, high maneuverability, and task adaptability, autonomous quadro-

tors have attracted considerable interests in academic and industrial communities. A recent research revealed

the usage of quadrotors has a potential for reducing the greenhouse gas emissions and energy consumption [1].

Due to the lack of redundancies, rotor failures have high impacts on quadrotor safety. To make widespread

applications of quadrotors possible in the future, improving their reliability while maintaining affordability

becomes more and more important.

∗Corresponding author.
Email addresses: X.Wang-6@tudelft.nl (Xuerui Wang), S.Sun-4@tudelft.nl (Sihao Sun), E.vanKampen@tudelft.nl

(Erik-Jan van Kampen), Q.P.Chu@tudelft.nl (Qiping Chu)

Preprint submitted to Aerospace Science and Technology April 10, 2019

© 2018 Manuscript version made available under CC-BY-NC-ND 4.0 license 
https://creativecommons.org/licenses/by-nc-nd/4.0/



Being invariant (better than just robust) to matched uncertainties [2, 3], Sliding Mode Control (SMC)

is a promising candidate to fulfill this goal. A variety of SMC methods have been proposed for quadrotors

to resist external disturbances and to cope with faults [4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]. In spite of the

varieties in SMC designs, for most SMC algorithms, the required control gains are positively correlated with

uncertainty bounds (for first-order SMC), or the bounds of uncertainty derivatives (for higher-order SMC).

However, high-gain SMC methods are problematic, they amplify the measurement noise, excite unmodeled

dynamics, and aggravate the well-known chattering phenomenon [15]. On account of these side-effects, one

of the research focuses in the SMC community is on achieving the minimum possible value of the SMC

gains [15, 16, 17, 18].

Two effective approaches can be used to reduce the SMC gains. One is using a continuous model-based

preliminary feedback control term to roughly cancel the nonlinearities and dynamic couplings, such that

only the remaining uncertainties need to be compensated by SMC. Regrading nonlinear control problems,

this feedback term is commonly derived by dynamically inverting nonlinear algebraic equations, namely, by

using Nonlinear Dynamic Inversion (NDI). Examples can be given for both first-order [4, 5, 6, 7, 8, 9, 12, 19]

and higher-order [11, 13, 20, 21] sliding mode control methods. The other approach is incorporating the

uncertainty estimations, for example by using Sliding Mode Disturbance Observers (SMDO), such that only

the estimation errors need to be dealt with by SMC [8, 13, 19, 22]. Although these two approaches have their

advantages, it is impractical and tedious to pursue a perfect model. Moreover, the switching gains used in

SMDO still need to be larger than the uncertainty bounds or their derivatives [8, 13, 19, 22]. Even though

continuity can be retained by using a filtering process in the equivalent control estimations of SMDO, the

high-frequency switching component can only be attenuated instead of being totally rejected [19]. Therefore,

it is valuable to design a control method which could fundamentally reduce the control efforts of SMC/SMDO

whilst requiring less model knowledge.

Incremental Nonlinear Dynamic Inversion (INDI) is a sensor-based control method, which not only has

less model dependency, but also obtains better robustness as compared to the NDI control [23, 24]. INDI

was initially proposed in [25], and has been successfully applied on the angular rate control [26] and posi-

tion control [27] problems of quadrotors. Flight tests on a CS-25 certified passenger aircraft demonstrate

that INDI outperforms NDI, in the presence of model uncertainties, sensor noises, and real-world distur-

bances [23]. Recently, this INDI control method was reformulated in [24] to broaden its applicability. The

stability and robustness of this method are also analyzed in [24] using Lyapunov methods and the nonlinear

system perturbation theories. It has been proved in [24] that for a nonlinear system with stable internal

dynamics, if the remaining regular perturbation term in INDI is bounded, then the states will be ultimately

bounded by a class K function of the regular perturbation bound. Although the ultimate bound of the

states can be reduced by increasing the sampling frequency and the control gains, these two approaches

have practical limitations.
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A nonlinear control framework named Incremental Sliding Mode Control (INDI-SMC), which hybridizes

the reformulated INDI with SMC was proposed in [28]. This hybridization inherits the advantages and

remedies the drawbacks of both methods. On the one hand, by introducing a SMC term into INDI, the

influences of the remaining regular perturbation term can be compensated. On the other hand, by designing

SMC based on the sensor-based INDI control framework, the model dependency and the minimum possible

control gains of SMC can simultaneously be reduced. Nevertheless, Ref. [28] still has some limitations.

First of all, the influences of sudden faults were not explicitly considered in the control derivations and the

stability analyses. Also, the external disturbances were not included in the control derivations, analyses and

simulation tests. Finally, only a classical first-order SMC hybridized with INDI was numerically verified

in [28], whilst the consequences of incorporating SMDO have not been demonstrated yet. These issues will

be dealt with in the present paper.

The main contributions of this paper are the proposal of Incremental Sliding Model Control driven by

Sliding Mode Disturbance Observers (INDI-SMC/SMDO), and its application to a quadrotor fault tolerant

control problem. Apart from its lower model dependency, the proposed method also has improved robustness

and performance as compared to SMC/SMDO designs based on NDI in the literature. Moreover, by virtue

of the sensor-based characteristic of INDI, the control objectives can be achieved using lower switching gains,

which effectively mitigates the chattering effects of SMC. Furthermore, a wider range of disturbances and

faults can be passively resisted without gain adaption. Finally, the effectiveness of this method is verified

by both numerical simulations and real-world flight tests.

The structure of this paper is as follows: Sec. 2 proposes the INDI-SMC/SMDO method and analyzes

its stability and robustness. Theoretical comparisons with NDI based SMC/SMDO are also conducted in

Sec. 2. Both the NDI and INDI based SMC/SMDO methods are applied to a quadrotor fault tolerant

control problem in Sec. 3. The effectiveness of the proposed INDI-SMC/SMDO method is demonstrated by

simulations in Sec. 4 and by flight tests in Sec. 5. Main conclusions are drawn in Sec. 6.

2. Incremental sliding mode control driven by sliding mode disturbance observers

Consider a nonlinear multi-input/multi-output control-affine system:

ẋ = f(x, κ(t)) +G(x, κ(t))u+ d(t), y = x (1)

where x ∈ Rn,u ∈ Rn,f(x, κ(t)) ∈ Rn,G(x, κ(t)) = [g1, g2, .., gn] ∈ Rn×n, gi ∈ Rn, i = 1, 2, ..., n. d ∈ Rn

represents the bounded external disturbances. To indicate the sudden fault at t = tf during flight, κ(t) ∈ R

is designed as a step function, with t < tf , κ = 0 indicates the fault-free case and t ≥ tf , κ = 1 denotes the

post-fault condition. f and G are expanded as:

f = f̄ + (ff − f̄)κ+ f̂ , G = Ḡ+ (Gf − Ḡ)κ+ Ĝ (2)
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where f̄ , Ḡ are the nominal dynamics used for controller design, ff , Gf denote the post-fault dynamics,

and f̂ , Ĝ represent the model uncertainties as continuous functions of x.

Assumption 1. G(x, κ(t)) in Eq. (1) is nonsingular for all t.

Assumption 1 constrains the damage intensity considered in the present paper. If G(x, κ(t)) becomes

singular because of faults, subspace control strategies need to be used. For example, a subspace control

strategy is used in conjunction with Incremental Nonlinear Dynamic Inversion (INDI) in [29] for achieving

the high speed flight (over 9 m/s) of a damaged quadrotor with complete loss of a single rotor.

The control aim is to design a continuous Sliding Mode Control (SMC) input that achieves decoupled

asymptotic output tracking yc − y = e→ 0, in the presence of model uncertainties, external disturbances,

and sudden faults. The output reference yc should be differentiable with continuous ẏc. In the context of

the sliding mode control, the sliding variable σ is designed such that when σ = 0 is reached, the desired

error dynamics are achieved. For fair comparisons, a sliding variable designed as

σ = e+Kc

∫
edt (3)

will be consistently used in this paper. Kc = diag{Kci}, i = 1, 2, .., n, and Kci are chosen to achieve desired

error dynamics.

In subsection 2.1, SMC/Sliding Mode Disturbance Observer (SMDO) based on the control structure of

NDI will be introduced first as a benchmark, then INDI-SMC/SMDO will be proposed in subsection 2.2.

These two control approaches will be compared analytically in subsection 2.3.

2.1. NDI-SMC/SMDO

Using Eq. (1), the dynamics of the sliding variable in Eq. (3) are given by:

σ̇ = ė+Kce = (ẏc +Kce− f̄) + (f̄ − f − d)− Ḡu− (G− Ḡ)u

, Ψ̄ + ∆Ψ− Ḡu−∆Gu (4)

in which ∆Ψ and ∆G are unavailable for controller design. It is noteworthy that ∆G represents the

multiplicative uncertainties in the control effectiveness matrix, which was not considered in Ref. [8, 19].

In order to reduce the control gains, SMC can be used along with SMDO, which can estimate bounded

uncertainties. SMDO designs are independent of the model structure, only the bounds of uncertainties are

needed by the classical SMDO designs, and the bounds of the uncertainty derivatives are required by the

higher-order SMDO (e.g. Super-twisting SMDO [8, 19, 22]) designs. This paper designs a classical SMDO

as an example, where the auxiliary sliding variables are introduced as:

s = σ + z, ż = −Ψ̄ + Ḡu− νo (5)
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Substituting Eq. (4) into Eq. (5) yields:

ṡ = (∆Ψ−∆Gu)− νo , −εndi − νo (6)

Denote the control input as undi, then using Eqs. (2, 4), εndi in Eq. (6) is rewritten as:

εndi = −∆Ψ + ∆Gundi = [f̂ + Ĝundi + d] + κ[(ff − f̄) + (Gf − Ḡ)undi] (7)

Assumption 2. For all x ∈ Rn, κ ∈ R, and bounded external disturbance d ∈ Rn, εndi in Eq. (7) is

bounded.

The boundedness of the perturbations is the precondition of many robust control methods. For example,

Assumption 2 is made in [19, 30, 31, 32, 33]. Design νo as:

νo = KsSign(s) = [Ks,1sign(s1),Ks,2sign(s2), ...,Ks,nsign(sn)]T , Ks,i ≥ η + |εndi,i| (8)

where η is a small positive constant. Then s is stabilized at zero in finite time. This can be proved by

introducing a candidate Lyapunov function V1 = 1
2s
Ts. Using Eqs. (6, 8), the time derivative of V1 is:

V̇1 = sT ṡ = sT (−εndi − νo) ≤
n∑
i=1

|si||εndi,i| −Ks,i|si| ≤ −η
n∑
i=1

|si| (9)

sT ṡ ≤ −η
∑n
i=1 |si| is referred to as the η reaching law, which ensures si = 0 is reached in finite time tr,i ≤

|si(0)|/η [19, 18]. Therefore, in view of Eq. (6), the equivalent control [2, 19] νeq,i estimates exactly −εndi,i,

∀ti ≥ tr,i. One way to obtain νeq is filtering νo as ν̂eq,i(s) = GLPF (s)νo,i(s), in which s is a Laplace variable

and GLPF (s) is the transfer function of a low-pass filter. When first-order low-pass filters with time constant

τi are used, ν̂eq estimates −εndi with a small estimation error proportional to τi, i.e. |−εndi,i−ν̂eq,i| < O(τi).

Using ‖ · ‖ to denote the 2-norm of a vector, then ‖εndi + ν̂eq‖ < O(τ ) , ‖[O(τ1), ...,O(τn)]T ‖. As presented

in [19], τi can be taken very small, and its lower boundary is the sampling interval of the onboard computer.

Following the SMDO design, the continuous SMC/SMDO control input that asymptotically stabilizes σ

is designed as:

undi = Ḡ
−1

(Ψ̄ +Kσσ + ν̂eq) (10)

where Kσ = diag{Kσ,i}, Kσ,i > 0. Substituting Eqs. (6, 10) into Eq. (4) leads to σ̇ = −Kσσ + [∆Ψ −

∆Gundi] − ν̂eq = −Kσσ − (εndi + ν̂eq). Introducing a candidate Lyapunov function V2 = σTPσ, where

P = P T > 0 is the solution of the Lyapunov equation PKσ +KT
σP = I. I ∈ Rn×n is an identity matrix.

Then when t > max{tr,i}, the time derivative of V2 is:

V̇2 = −σT [PKσ +KT
σP ]σ − 2σTP (εndi + ν̂eq)

< −‖σ‖2 + 2‖σ‖‖P ‖O(τ )

≤ −γ‖σ‖2, ∀‖σ‖ ≥ 2‖P ‖O(τ )

1− γ
(11)
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with constant γ ∈ (0, 1). Eq. (11) proves that under Assumptions 1 and 2, the NDI-SMC/SMDO control

law given by Eq. (10), in which ν̂eq is observed using a SMDO with gain condition given in Eq. (8) ensures

that the state σ is ultimately bounded by a class K function [24, 34] of O(τ ). Theoretically, this ultimate

bound can be made arbitrarily small [19, 31] by reducing τi and increasing Kσ,i.

Remark 1. The control input given by Eq. (10) is essentially based on the control structure of Nonlinear

Dynamic Inversion (NDI), whose virtual control now contains three parts: the classical NDI virtual control

ẏc+Kce, the SMC virtual control Kσσ, and the SMDO virtual control ν̂eq. Therefore, Eq. (10) is referred

to as NDI based SMC driven by SMDO in this paper, which is abbreviated to NDI-SMC/SMDO.

Remark 2. Many other SMC/SMDO designs in the literature also contain a preliminary feedback term using

NDI to reduce the control efforts of SMC/SMDO. For example, adaptive fuzzy gain-scheduling SMC [12],

first-order SMC using the equivalent control estimated from the nominal model [4, 6, 7, 8, 9, 19], adaptive

SMC [5], higher-order SMC [20, 21, 22], adaptive super-twisting SMC [11], modified super-twisting SMC

using a higher-order sliding mode observer [13].

One well-known drawback of NDI is its model dependency, which consequently reduces its robustness

to model uncertainties, on-board faults and external disturbances. SMC/SMDO is able to observe and

compensate for bounded perturbations, as shown in Eqs. (9, 10). Even though the SMC/SMDO control

input designed by Eq. (10) is continuous, the high-frequency switchings of νo are only attenuated by filtering,

instead of being totally rejected [19]. In other words, the ν̂eq term in Eq. (10) is still oscillating. A method

that can simultaneously reduce the model dependency of NDI and mitigate the side effects of SMC/SMDO

would be beneficial.

2.2. INDI-SMC/SMDO

INDI-SMC/SMDO aims to reduce the model dependency, and improve the robustness of NDI-SMC/SMDO,

without using high control/observer gains. Denote the sampling interval as ∆t. To begin with, the incre-

mental dynamic equation is derived by taking the first-order Taylor series expansion of Eq. (1) around the

the condition at t−∆t (denoted by the subscript 0) as:

ẏ = ẏ0 +G(x0, κ0)∆u+
∂[f(x, κ) +G(x, κ)u]

∂x

∣∣∣∣
0

∆x+
∂[f(x, κ) +G(x, κ)u]

∂κ

∣∣∣∣
0

∆κ

+∆d+O(∆x2) , ẏ0 +G(x0, κ0)∆u+ ∆d+ δ(x, κ,∆t) (12)

In the above equation, ∆x = x − x0, ∆u = u − u0, respectively denote the variations of states and

control inputs in one incremental time step ∆t. ∆κ = κ − κ0 denotes the changes of the fault indicator κ,

while ∆d = d − d0 denotes the variations of the external disturbances d in ∆t. ẏ0 is the latest sampled

output derivate vector. If ẏ0 cannot be measured, it can be estimated from the sampled outputs. The
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approaches of obtaining ẏ0 for control implementation will be further discussed in Sec. 5. The remainder

term O(∆x2) is only a function of ∆x2, since according to Eqs. (1, 2), ∂iẏ
∂ui = 0, ∂iẏ

∂di = 0, ∂iẏ
∂κi = 0 for all

i ≥ 2. It is noteworthy that, compared to the incremental dynamic equations derived in [28, 24], Eq. (12)

takes partial derivatives with respect to both κ and d.

The same sliding variable σ in Eq. (3) is also used by INDI-SMC/SMDO for fair comparisons. However,

the controller will be designed based on Eq. (12) instead of Eq. (1). The dynamics of σ are then derived as:

σ̇ = ė+Kce = (ẏc +Kce− ẏ0) + (−δ(x, κ,∆t)−∆d)− Ḡ∆u− (G− Ḡ)∆u

, Ψ̄
′
+ ∆Ψ′ − Ḡ∆u−∆G∆u (13)

Design an auxiliary sliding variable s′ = σ + z′, ż′ = −Ψ̄
′
+ Ḡ∆u − ν′o, then by using Eq. (13), the

dynamics of s′ are:

ṡ′ = (∆Ψ′ −∆G∆u)− ν′o , −εindi − ν′o (14)

εindi in Eq. (14) is the lumped perturbation term in INDI-SMC/SMDO. Denote the control input as

uindi, which will be designed in Theorem 1. Using Eq. (2), δ(x, κ,∆t) in Eq. (12) is further derived as:

δ(x, κ,∆t) = δb(x,∆t) + δd(x,∆t)κ0 + δκ(x)∆κ (15)

where

δb(x,∆t) =
∂[f̄ + f̂ + (Ḡ+ Ĝ)uindi]

∂x

∣∣∣∣
0

∆x+O(∆x2)

δd(x,∆t) =
∂[(ff − f̄) + (Gf − Ḡ)uindi]

∂x

∣∣∣∣
0

∆x

δκ(x) = [(ff − f̄) + (Gf − Ḡ)uindi]|0 (16)

Therefore, recall Eq. (13), εindi in Eq. (14) is written as:

εindi = −∆Ψ′ + ∆G∆uindi = [δb + Ĝ∆uindi + ∆d] + κ0δd + κ(Gf − Ḡ)∆uindi + δκ∆κ (17)

For a bounded εindi, design ν′o in Eq. (14) as:

ν′o = K ′sSign(s′) = [K ′s,1sign(s′1),K ′s,2sign(s′2), ...,K ′s,nsign(s′n)]T , K ′s,i ≥ η + |εindi,i| (18)

where η is a small positive constant.

Theorem 1. For system described by Eqs. (1, 2), and the sliding variable σ in Eq. (3), if the INDI-

SMC/SMDO control is designed as

∆uindi = Ḡ
−1

(Ψ̄
′
+K ′σσ + ν̂′eq) (19)

where Ψ̄
′

is defined in Eq. (13), K ′σ = diag{K ′σ,i}, K ′σ,i > 0, and ν̂′eq is low-pass filtered from ν′o in Eq. (18),

then under Assumption 1, for a bounded εindi (Eq. (17)), σ will be ultimately bounded by an arbitrarily small

bound.
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Proof : Choosing the candidate Lyapunov function as V3 = 1
2s
′Ts′, using Eqs. (14, 18) leads to:

V̇3 = s′T ṡ′ = s′T (−εindi − ν′o) ≤
n∑
i=1

|s′i||εindi,i| −K ′s,i|s′i| ≤ −η
n∑
i=1

|s′i| (20)

Therefore, according to the η reaching law [19, 18], the sliding surfaces s′i = 0, i = 1, 2, ..., n are reached

in finite time t′r,i ≤ |s′i(0)|/η. On the sliding surfaces, using Eq. (14), the equivalent control [2, 19] ν′eq,i

equals −εindi,i. This equivalent control can be estimated by filtering ν′o as ν̂′eq,i(s) = GLPF (s)ν′o,i(s), where

GLPF (s) is the transfer function of a low-pass filter. Consequently, ν̂′eq,i estimates −εindi,i in finite time

with a small estimation error proportional to the time constant of the filter, i.e. | − εindi,i − ν̂′eq,i| < O(τi).

In a vector form, ‖εindi + ν̂′eq‖ < O(τ ) , ‖[O(τ1), ...,O(τn)]T ‖.

Using the observed perturbation term ν̂′eq, and substituting Eqs. (17, 19) into Eq. (13) results in:

σ̇ = −K ′σσ + [∆Ψ′ −∆G∆uindi]− ν̂′eq = −K ′σσ − (εindi + ν̂′eq) (21)

Introducing the candidate Lyapunov function as V4 = σTP ′σ, where P ′ = P ′T > 0 is the solution of

the Lyapunov equation P ′K ′σ +K ′Tσ P
′ = I. Then when t > max{t′r,i}, the time derivative of V4 is:

V̇4 = −σT [P ′K ′σ +K ′Tσ P
′]σ − 2σTP ′(εindi + ν̂′eq)

< −‖σ‖2 + 2‖σ‖‖P ′‖O(τ )

≤ −γ‖σ‖2, ∀‖σ‖ ≥ 2‖P ′‖O(τ )

1− γ
(22)

with constant γ ∈ (0, 1). Eq. (22) proves σ is ultimately bounded by a class K function [24, 34] of O(τ ). In

theory, this ultimate bound can be made arbitrarily small [19, 31] by reducing τi and increasing K ′σ,i. �

The total control command of INDI-SMC/SMDO is uindi = uindi|0 + ∆uindi, where ∆uindi is designed

as Eq. (19), uindi|0 is the latest sampled uindi. If uindi|0 is not directly measurable, it can also be estimated

online [35]. In view of Eqs. (13, 19), the control law designed using the structure of INDI does not require the

model information of f . Even through the model dependency of INDI-SMC/SMDO is reduced, its robustness

is enhanced by virtue of its sensor-based structure [24, 28, 36]. This distinguishes INDI-SMC/SMDO from

Ref. [37, 38], where the nominal model of f is still needed. The sensor-based structure also has lower

computation load than the online dynamic reconstruction using neural networks [39]. Apart from its reduced

model dependency, other benefits of using the INDI control structure in SMC/SMDO designs will be further

explored.

For both NDI and INDI based SMC/SMDO, the boundedness of the perturbation term is the precondition

of controller design. The boundedness of εndi for all t is assumed in Assumption 2. Instead of making a

similar assumption for εindi, it will be shown in Theorem 2 that some less strict conditions can guarantee

the boundedness of εindi.

Assumption 3. The partial derivatives of f and G in Eq. (1) with respect to x up to any order are bounded.
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Assumption 4. δκ(x) in Eq. (16) is bounded for tf ≤ t < tf + ∆t.

Assumption 4 is less strict than Assumption 2. It can be seen from Eqs. (7, 16) that the κ[(ff − f̄) +

(Gf−Ḡ)undi] term contained in εndi corresponds to δκ(x) in εindi. However, only the boundedness of δκ(x)

for a short time interval ∆t is needed in Assumption 4, while the boundedness of the entire εndi for all t

is required in Assumption 2. Since κ(t) is a step function to indicate a sudden fault, ∆κ is a single square

pulse with magnitude of one and width of ∆t. Consequently, the term δκ(x)∆κ is only non-zero during a

short time interval tf ≤ t < tf + ∆t. After t = tf + ∆t, the main influences of the fault have already been

included by the measurements/estimations at the latest sampled condition.

This completes the proof.

Theorem 2. If ‖I −GḠ−1‖ ≤ b̄ < 1 for all t, under Assumptions 3 and 4, for sufficiently high sampling

frequency, εindi given by Eq. (17) is ultimately bounded.

Proof : Using Eqs. (13, 17, 19), εindi is written as

εindi = δ(x, κ,∆t) + ∆d+ ∆GḠ
−1

(Ψ̄
′
+K ′σσ + ν̂′eq)

= δ(x, κ,∆t) + ∆d+ (GḠ
−1 − I)((ẏc +Kce) +K ′σσ + ν̂′eq − ẏ0) (23)

Define the lumped virtual control term as ν = (ẏc +Kce) +K ′σσ + ν̂′eq, which contains three parts:

the classical INDI virtual control ẏc +Kce, the SMC virtual control K ′σσ, and the observation term ν̂′eq.

These three terms are all continuous in time.

Using the definition σ = e+Kc

∫
edt, e = yc−y, and the closed-loop dynamics given by Eq. (21), then

σ̇ = −K ′σσ − (εindi + ν̂′eq) = ẏc − ẏ +Kce (24)

Therefore

ẏ = (ẏc +Kce) +K ′σσ + ν̂′eq + εindi = ν + εindi (25)

Eq. (25) is valid for all t, thus for the previous time step, ẏ0 = ν0 + εindi0 . Substituting this equation

into Eq. (23) yields:

εindi = δ(x, κ,∆t) + ∆d+ (GḠ
−1 − I)(ν − ẏ0)

= (I −GḠ−1
)εindi0 − (I −GḠ−1

)(ν − ν0) + δ(x, κ,∆t) + ∆d

, Eεindi0 −E∆ν + δ(x, κ,∆t) + ∆d (26)

which can be written in a recursive way as:

εindi(k) = E(k)εindi(k − 1)−E(k)∆ν(k) + δ(k) + ∆d(k) (27)
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k in the above equation indicates the k-th time step. Since x is continuously differentiable, lim∆t→0 ‖∆x‖ =

0. Therefore, using Assumption 3, the perturbation terms satisfy:

lim
∆t→0

‖δb(x,∆t)‖ = 0, lim
∆t→0

‖δd(x,∆t)‖ = 0, ∀x ∈ Rn (28)

which means that the norms of these perturbation terms become negligible for sufficiently small sampling

interval [24, 28]. Eq. (28) also indicates that ∀δ̄ε > 0,∃∆t > 0, s.t. ∀∆t ∈ (0,∆t], ∀x ∈ Rn, ‖δb(x,∆t)‖ ≤

δ̄ε, ‖δd(x,∆t)‖ ≤ δ̄ε. In other words, there exists a ∆t that ensures the boundedness of both δb(x,∆t) and

δd(x,∆t). Also, these bounds can be further diminished by reducing the sampling interval. Moreover, since

∆κ is only non-zero for tf ≤ t < tf + ∆t, then δκ∆κ is bounded under Assumption 4. Recall Eq. (15), since

‖δ(x, κ,∆t)‖ ≤ ‖δb(x,∆t)‖+ ‖δd(x,∆t)‖ · 1 + ‖δκ(x)∆κ‖, then Assumptions 3, 4 and a sufficiently small

∆t ensure a bounded δ(x, κ,∆t). Denote the bound as δ̄. Furthermore, ν is designed to be continuous in

time, thus

lim
∆t→0

‖ν − ν0‖ = 0, ∀x ∈ Rn (29)

consequently, for a sufficient small ∆t, ∆ν = ν − ν0 is bounded. Denote this bound as ∆ν. In addition,

for a bounded disturbance vector d, its increment in one time step ∆d is also bounded. Denote this bound

as ∆d. Using these bounds, and recall the condition ‖E‖ = ‖I −GḠ−1‖ ≤ b̄ < 1 in this theorem, Eq. (27)

satisfies:

‖εindi(k)‖ ≤ (b̄)k‖εindi(0)‖+

k∑
j=1

(b̄)k−j+1‖∆ν(j)‖+

k−1∑
j=1

(b̄)k−j‖δ(j) + ∆d(j)‖+ ‖δ(j) + ∆d(j)‖

≤ (b̄)k‖εindi(0)‖+ ∆ν

k∑
j=1

(b̄)k−j+1 + (δ̄ + ∆d)

k−1∑
j=1

(b̄)k−j + (δ̄ + ∆d)

= (b̄)k‖εindi(0)‖+ ∆ν
b̄− b̄k+1

1− b̄
+ (δ̄ + ∆d)

1− b̄k

1− b̄
(30)

Since b̄ < 1, Eq. (30) satisfies:

‖εindi‖ ≤
b̄∆ν + δ̄ + ∆d

1− b̄
, as k →∞ (31)

In conclusion, εindi is bounded for all k, and is ultimately bounded by b̄∆ν+δ̄+∆d
1−b̄ . �

Remark 3. Theorem 2 in this paper improves the Theorem 1 in [28] in three aspects: 1) consideration of

the external disturbances d; 2) consideration of the sudden faults, as δ(x, κ,∆t) is a function of the fault

indicator κ; 3) the virtual control ν in this paper also includes the contributions from SMC and SMDO,

while the νc in [28] only considers the classical INDI virtual control term.

Remark 4. Theorem 2 proves that a diagonally dominate structure of GḠ
−1

, a sufficiently high sampling

frequency, as well as Assumptions 3 and 4 guarantee a bounded εindi. This bound can also be further

10



diminished by increasing the sampling frequency. By contrast, εndi is independent of ∆t, and its boundedness

is undetermined under the same conditions. Therefore, for the feasibility of the NDI-SMC/SMDO design,

the stricter Assumption 2 needs to be imposed.

2.3. Comparisons between NDI and INDI based SMC/SMDO

A block diagram is shown by Fig. 1, in which two switches are used to transform between NDI and INDI

based SMC/SMDO. When these switches are connected to black solid lines, the INDI-SMC/SMDO control

structure is activated, where the controller uses the measurements/estimations of ẏ0 and uindi|0. On the

contrary, when the switches are connected to blue dashed lines, the NDI-SMC/SMDO control structure is

activated, which depends on the model f̄(x). This block diagram mainly illustrates the control structures,

so the gain matrices Kσ, Ks can be different for these two approaches.

Figure 1: Block diagram for INDI-SMC/SMDO (black solid lines) and NDI-SMC/SMDO (blue dashed lines).

As can be seen from the derivations of NDI and INDI based SMC/SMDO and Fig. 1, the same

SMC/SMDO design is used to compensate for different perturbations, εndi and εindi. The properties of

these perturbations are crucial to the stability and robustness of the closed-loop systems. As discussed in

subsection 2.2, εindi is bounded when the conditions in Theorem 2 are satisfied, while the boundedness of

εndi is undetermined under the same conditions. Moreover, it has been proved in [28] that there exists a ∆t

such that εindi has smaller bound as compared to εndi. This feature of the incremental framework is fun-

damentally beneficial for reducing the switching gains in SMC [28]. However, only the model uncertainties

are considered in [28]. In this paper, the properties of εndi and εindi will be compared considering model

uncertainties, external disturbances and sudden faults. Their influences on SMC/SMDO design will also be

revealed.

Denote the fault instant as t = tf , the values of εndi and εindi will be analyzed in three cases:

1. Pre-fault t < tf : κ0 = κ = 0, ∆κ = 0.

2. Fault instant tf ≤ t < tf + ∆t: κ0 = 0, κ = 1, ∆κ = 1.
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3. Post-fault t ≥ tf + ∆t: κ0 = κ = 1, ∆κ = 0.

For the pre-fault condition, recall Eqs. (7, 17), εndi = f̂ + Ĝundi + d, while εindi = δb + Ĝ∆uindi +

∆d. ‖f̂‖ is normally large because f̂ contains the uncertainties of inertia and aerodynamic properties for

aerospace systems, which are the most challenging parts to model. On the contrary, as a function of ∆t,

‖δb‖ can become negligible as shown by Eq. (28). Also, when undi 6= 0, there exists a ∆t that ensures

‖Ĝ‖‖∆uindi‖ < ‖Ĝ‖‖undi‖ [24, 28]. As compared to the fixed-wing aircraft control, this inequality is easier

to fulfill in quadrotor control, because the control inputs (rotor speeds) are far from zero for overcoming

gravity. Moreover, most external disturbances in real life are continuous, thus lim∆t→0 ‖d‖ = 0. In other

words, when d 6= 0, ∃∆t, s.t. ‖∆d‖ < ‖d‖. For the discontinuous disturbances, such as a bird strike or a

sudden collision, the influences of d can be analyzed in the same way as that of κ. In summary, when t < tf ,

if d 6= 0, undi 6= 0, then there exists a ∆t such that the upper bound of εindi is smaller than that of εndi.

During tf ≤ t < tf + ∆t, κ0 = 0, κ = 1, ∆κ = 1. Recall Eqs. (7, 17), an additional term (ff − f̄) +

(Gf − Ḡ)undi is added to εndi, while (Gf − Ḡ)∆uindi + δκ is added to εindi. Using the formulation of δκ

(Eq. (16)), and the condition uindi = uindi|0 + ∆uindi, it can be seen that these two additional perturbation

terms have comparable bounds.

When compared to the pre-fault condition, εndi is augmented by (ff−f̄)+(Gf−Ḡ)undi in the post-fault

condition, while δd + (Gf − Ḡ)∆uindi is added to εindi. As discussed in subsection 2.2, the δκ(x)∆κ term

in εindi converges to zero after the fault. Even though the multiplicative uncertain term (Gf − Ḡ)∆uindi

still exists in εindi, there exists a ∆t that ensures ‖(Gf − Ḡ)‖‖∆uindi‖ < ‖(Gf − Ḡ)‖‖undi‖, when undi 6= 0.

Moreover, system using the INDI control structure is only perturbed by δd instead of ff−f̄ . Recall Eq. (28),

after the fault occurs, if d 6= 0, undi 6= 0, ∃∆t, such that the upper bound of εindi is smaller than that of

εndi.

In summary, there exists a sampling interval ∆t, such that in the perturbed circumstances, if undi 6= 0,

the bound of εindi is smaller than that of εndi, before and after the fault. Also, ‖εindi‖ can be further

diminished by decreasing ∆t. These properties of εindi can fundamentally reduce the control efforts of

SMC/SMDO, because for most SMC and SMDO methods, the required switching gains are monotonically

increasing functions of the uncertainty bounds. As a consequence, the SMC/SMDO designs based on the

incremental control structure can achieve better performance and robustness using not only less model

information but also reduced gains, as compared to those NDI based methods. The robustness of the

incremental control structure is contributed by its sensor-based characteristic, that the uncertainties can be

reduced by fully exploring the measurements.

It is worth noting that εindi also has smaller variations in different fault cases, while the augmented

uncertainty term (ff−f̄)+(Gf−Ḡ)undi in εndi is more fault-case dependent. Therefore, INDI-SMC/SMDO

has the potential of passively resisting a wider range of perturbations, while gain adjustments may be required
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by NDI-SMC/SMDO in different fault scenarios.

The above analyses are conducted for generic nonlinear systems. The condition of “sufficiently high

sampling frequency” may sound strict, but actually it is not difficult to find a reasonable ∆t in practice.

Further discussions about the selections of ∆t can be found in [24]. In the following two sections, the

benefits of INDI-SMC/SMDO will be demonstrated via both simulations and flight tests for a quadrotor

fault tolerant control problem.

3. Quadrotor fault tolerant flight control

In order to compare the performance and robustness of NDI and INDI based SMC/SMDO, a quadrotor

attitude control problem in the presence of model uncertainties, wind disturbances, and actuator faults will

be considered in this section. The position control of quadrotors can be designed in the same way.

3.1. Quadrotor model

BO

Figure 2: A Bebop 2 quadrotor and axes definition.

A Parrot Bebop 2 quadrotor is shown in Fig. 2. Denote the body frame as (OB , XB , YB , ZB), where OB

coincides with the aircraft center of mass, and OBXBZB represents the aircraft symmetrical plane. The

distances to each of the rotors along the OBXB and OBYB axes are respectively given by l and b. The

rotation rates of the four rotors are denoted by ω = [ω1, ω2, ω3, ω4]T . The orientation of the vehicle is

described by Euler angles θ = [φ, θ, ψ]T . Assume θ ∈ (−π2 ,
π
2 ), φ ∈ (−π2 ,

π
2 ). Expressing the angular rate of

the quadrotor in the body frame as Ω = [p, q, r]T , then the kinematic equations for the Euler angles are:

θ̇ = Rθ(θ)Ω (32)

in which Rθ(θ) can be found in [40]. The quadrotor rotational dynamics are given by:

Iv(κ)Ω̇ + Ω× Iv(κ)Ω = M c(ω
2, κ) +Ma(Ω,V a, κ) +M r(ω, ω̇,Ω, Irzz (κ)) (33)

where Iv(κ) is the inertia matrix of the whole quadrotor, Ma(Ω,V a, κ) is the aerodynamic moment vector,

V a is the quadrotor airspeed, M c(ω
2, κ) is the control moment vector. M r(ω, ω̇,Ω, Irzz (κ)) contains two
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parts: the gyroscopic moments of the rotors (as a function of ω, Ω, rotor inertia vector Irzz (κ)), and also

the spin-up torque of the rotors (as a function of ω̇ and Irzz (κ)). For the rotor failure cases considered

in the present paper, the fault indicator κ is introduced to Iv, Irzz , M c, Ma in Eq. (33). On the one

hand, rotor failures directly lead to changes in the rotor inertia Irzz and the inertia matrix of the whole

quadrotor Iv. On the other hand, rotor failures modify the aerodynamic properties of the vehicle, thus the

aerodynamic moment Ma and the control moment M c are also functions of κ.

The thrust and reactive torque of the rotors are approximately proportional to ω2 [26, 41], and the

proportionality coefficients are respectively denoted by ki, λi, i = 1, 2, 3, 4. Therefore, using the geometry

parameters shown in Fig. 2, M c and the total thrust T can be modeled by:
M c

T

 =


−bk1 bk2 bk3 −bk4

lk1 lk2 −lk3 −lk4

λ1 −λ2 λ3 −λ4

k1 k2 k3 k4

ω
2 , Gm(κ)ω2 (34)

The spin-up toque in M r was neglected by most publications about quadrotor control, but it was shown

in Ref. [26] via flight tests that this term is influential to the yaw channel control. However, if M r is

incorporated into the controller design, the system dynamics become ẋ = f(x, κ) +G(x,ω, ω̇,ω2, κ), which

is not affine in ω. Actually, because the incremental dynamic equation is derived by taking partial derivatives

with respect to u (Eq. (12)), the INDI control structure can also deal with non-affine in the control systems,

as also shown in [26, 24]. In spite of this benefit of INDI, for fair comparisons with NDI-SMC/SMDO, M r

is viewed as uncertainty in this paper, and will be observed by a SMDO. Consequently, the dynamic model

for controller design becomes affine in ω2.

3.2. Controller design

The control objective is quadrotor attitude command tracking, i.e. θ = [φ, θ, ψ]T → θc. Considering the

natural time-scale separation of the quadrotor dynamics [8, 26, 27], the control law can be designed using two

nested control loops. An alternative way is taking y = θ, which makes the relative degree of y with respect

to ω2 equals two. Non-cascaded controllers can then be designed analogous to Eqs. (10, 19) [24]. Since these

two approaches are analogous, and the cascaded control structure is more widely used in aerospace systems,

this paper also designs the controllers in a cascaded way.

The inner-loop controller will be separately designed using NDI and INDI based SMC/SMDO methods,

aiming at Ω → Ωc, T → Tc, where Ωc and Tc will be provided by the outer-loop controllers. In view of

Eqs. (33, 34), the inner-loop dynamics are written as: Ω̇

T/m

 =

 −I−1
v (Ω× IvΩ) + I−1

v Ma

0

+

 I−1
v 03×1

01×3 1/m

Gmω
2 +

 d1 + I−1
v M r

d2

 (35)
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in which d1 ∈ R3, d2 ∈ R represent external disturbances.

Remark 5. In Ref. [4, 5, 7, 9, 10, 11, 12, 14], the control input vector is taken as u = [M c, T ]T . This

choice is deficient because only the uncertainties of Iv can be considered in the controller designs. However,

it is more difficult to estimate Gm owing to the aerodynamic effects. Furthermore, actuator faults have

the largest influences on Gm. In addition, for real-life implementations, u = [M c, T ]T still needs to be

converted into rotor speed commands. Therefore, this paper takes u = ω2, and the rotor speed command

vector is accordingly
√
u.

Define x = [Ω,
∫

(T/m)dt]T , then Eq. (35) can be expressed in the form of Eq. (1). Following the

procedures in subsection 2.1, the inner-loop control using NDI-SMC/SMDO is designed by Eq. (10). On the

other hand, the INDI-SMC/SMDO controller is designed using the incremental dynamic equation, which is

derived as: Ω̇

T/m

 =

 Ω̇0

T0/m

+

 δ(Ω,V a, κ,∆t)

0

+

 I−1
v 03×1

01×3 1/m

Gm∆ω2 +

 ∆d1 + δMr
(∆t)

∆d2

 (36)

where

δ(Ω,V a, κ,∆t) =
∂[I−1

v (−Ω× IvΩ +Ma)]

∂Ω

∣∣∣∣
0

∆Ω +
∂[I−1

v Ma]

∂V a

∣∣∣∣
0

∆V a +O(∆Ω2,∆V 2
a)

+
∂[I−1

v (−Ω× IvΩ +Ma +M c)]

∂κ

∣∣∣∣
0

∆κ (37)

and with δMr
(∆t) representing the variations of I−1

v M r in one incremental time step. According to the

physical time-scale separations of quadrotor dynamics, the variations of velocities are slower than the varia-

tions of angular rates. Also, V a is a continuous function of time. Based on the above two reasons, Eq. (28)

is still valid. Following the procedures in subsection 2.2, the inner-loop control using INDI-SMC/SMDO is

then designed by Eq. (19).

After the design of the inner-loop controllers using both NDI and INDI based SMC/SMDO, the outer-

loop controllers are designed to provide the commands Ωc and Tc. Ωc is designed to achieve attitude control:

θ → θc, while Tc is designed to control height: h→ hc.

Recall Eq. (32), since there is no model uncertainty in this kinematic equation, a simple NDI controller

can be adopted. Design the virtual control as νatt = θ̇c+Katt(θc−θ), Katt = diag{Katti}, Katti > 0, i =

1, 2, 3, then the reference for the angular rates is designed as Ωc = R−1
θ (θ)νatt. Rθ(θ) is invertible when

θ ∈ (−π2 ,
π
2 ).

For the height control, define the position vector as P = [x, y,−h]T , then its dynamics are given as:

P̈ = g +RIB(F a + T )/m (38)

where g = [0, 0, g]T is the gravitational acceleration vector, RIB is the rotational matrix from the body

frame to the inertial frame. F a is the aerodynamic force vector expressed in the body frame, and T =
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[0, 0,−T ]T is the thrust vector. Denote the z component of P̈ as az, and assume the aerodynamic force

in the OBZB direction is negligible as compared to thrust, then the last row of Eq. (38) is written as

az = g−(cosθcosφ)T/m. Design the command for az as azc = −ḧc−Kd(ḣc−ḣ)−Kp(hc−h), Kd > 0, Kp > 0,

then the command for thrust is accordingly given by (Tc/m) = (g − azc)/(cosθcosφ).

At this point, the height, attitude, and angular rate controllers have been completely designed. In order

to enforce the natural time-scale separations in the closed-loop system, the gain matrices Kc, Katt, need

to fulfill min(Kci) > max(Katti) for roll, pitch, and yaw control channels.

4. Numerical validations

In this section, the controllers designed in Sec. 2 and Sec. 3 will be tested in the Matlab/Simulink

environment. Two models for a Parrot Bebop quadrotor are set up. One high fidelity model identified from

wind tunnel test data [41] is used for simulations. Another simplified model, which excludes aerodynamic

effects, gyroscopic moments and spin-up torque, is used by the controllers. It is worth noting that neglecting

these factors in quadrotor control design is a common practice. The actuator dynamics are modeled as first-

order low-pass filters with time constants of 0.02 s. The maximum and minimum rotational speed of the

rotors are 12000 revolutions per minute (rpm) and 3000 rpm respectively. The controller sampling frequency

is 500 Hz.

Three perturbation sources are tested: model uncertainties, wind disturbances and sudden actuator

faults during flight.

For the model uncertainties, the inertia matrix Īv used by on-board controllers equals 70% of the nominal

Iv. The mismatch between Iv and Īv brings model uncertainties. The Gm matrix used for simulations

is time varying because ki, λi, i = 1, 2, 3, 4 are influenced by the aerodynamic conditions (airspeed, air

density, etc.). However, for the simplicity of implementation, constant Ḡm matrix evaluated at the hover

condition is used by the controllers, which brings model mismatches even without actuator fault.

Remark 6. The pure INDI control designed for a quadrotor in Ref. [26] identifies the time varying control

effectiveness matrix during flight. This system identification based adaption is a modular approach, whose

stability cannot be ensured. The usage of constant control effectiveness matrix in this paper is simpler, and

the corresponding uncertainties can be compensated by SMC/SMDO.

The airspeed V a of a quadrotor equals V − V w [40], where V is the ground speed, and V w denotes

the velocity of the atmosphere relative to the inertial frame. In this paper, V w is considered as the “1-cos”

gust [42]. As shown in Fig. 3, gusts are added along the x and y directions of the inertial frame. The

maximum gust velocity equals 3 m/s. Since the airspeed V a contains V w, the dynamic pressure and the

angle of attack of the rotor system are influenced by V w. Consequently, the thrust, in-plane forces, and
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moments on each rotor are affected by V w. As mentioned in Sec. 3, these aerodynamic effects caused by

V w are viewed as external disturbances. For more details about the influences of atmospheric disturbances

on the quadrotors, readers are recommended to Ref. [29].
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Figure 3: Wind disturbances.

Finally, to model a sudden fault of the i-th rotor during flight, for t ≥ tf , the corresponding effectiveness

in Gm is scaled in the simulation model, i.e. k′i = µiki, λ
′
i = µiλi, µi ∈ (0, 1]. However, in spite of faults,

constant Ḡm matrix is consistently used by both controllers.

The attitude commands are smoothly combined sigmoid functions (shown in Fig. 4 and Fig. 8) as

continuous realizations of doublet signals. These commands on different channels have phase shifts with

each other, in which way the decoupling performance of the controllers can be tested. The height command

is h = 1 m. The initial conditions are φ(t = 0) = 0◦, θ(t = 0) = 0◦, ψ(t = 0) = 0◦, h(t = 0) = 0 m.

The main focus of this paper is on the comparisons between NDI and INDI based SMC/SMDO designs,

so the outer-loop controllers are kept identical. The gains used by the outer-loop controllers are: Kp =

10, Kd = 5, Katt = diag([2, 2, 1]), Kc = diag([8, 8, 6]). Trade-offs should be made when tuning the inner-

loop parameters: Kσ, Ks, and the filter time constants τi. High Kσ gains can accelerate the convergence of

σ, but will amplify measurement noise at the meanwhile. Trade-offs also exist in tuning the filter parameters

in SMDO. Specifically, high cut-off frequency introduces more chattering and noise into ν̂eq, but low cut-

off frequency increases the observation errors O(τi). For fair comparison, Kσ = diag([0.5, 0.5, 0.5, 1]), and

τ = [0.05, 0.05, 0.08, 0.05]T are used by both NDI and INDI based SMC/SMDO controllers. The filter time

constant in the yaw channel is larger for suppressing the oscillations caused by the spin-up torque.

The gain requirements presented in Eqs. (8, 18) are the minimum possible gains for enforcing sliding

motions [15, 16, 17, 18]. Since εndi and εindi are time-varying, the minimum possible gains are also time-

varying. The dual layer nested adaptive methodology in [18] can be used to adjust the gains online. In

subsection 2.3, it has been shown that there exists a ∆t, such that the bound of εindi is smaller than that

of εndi, in the presence of model uncertainties, wind disturbances, and sudden faults. Moreover, εindi also

has smaller variations in different fault cases. Because of these merits, the required Ks gains for INDI-
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SMC/SMDO are lower and need less adjustments. For the simplicity of implementation, constant Ks gains

will be used by both NDI and INDI based SMC/SMDO. In the following two subsections, the robustness

and chattering magnitude of the two methods will be compared.

4.1. Simulation results of NDI-SMC/SMDO

Fig. 4 illustrates the tracking performance of NDI-SMC/SMDO. In all of the three different cases, model

uncertainties and wind disturbances are incorporated, while the degree of actuator faults varies. Without

loss of generality, sudden effectiveness losses are imposed on the third rotor at t = 5 s, which are reflected

by the abrupt tracking overshoots in Fig. 4. Regardless of these overshoots, the quadrotor using NDI-

SMC/SMDO control is able to recover from faults within seconds, and resist the perturbations of model

uncertainties and wind disturbances at the same time. However, the tracking and decoupling performance

of this controller indeed deteriorates with the increases of fault degree.
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Figure 4: Quadrotor responses under NDI-SMC/SMDO control.

The responses of the sliding variables σ are shown in Fig. 5, as consistent with the analyses in Sec. 2,

σ asymptotically converges to the sliding surface. Additionally, ‖σ‖ distinctly increases after the actuator

fault occurs, and ‖σ‖ is positively correlated to the fault degree. It can also be observed from Fig. 5 that

the auxiliary sliding variable s converges in finite time under perturbations. The high frequency switchings

of s (which is normal [19]) will not influence the continuity of u because of the filtering process in SMDO.

One core parameter that guarantees the convergence of s is Ks. As proved by Eqs. (8, 9), the elements of
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Figure 5: Responses of sliding variables under NDI-SMC/SMDO control.

Ks need to be larger than the uncertainty bounds. In view of Eq. (7) and the discussions in subsection 2.3,

the uncertain term εndi is influenced by all the three perturbation sources. Moreover, owing to the term

(ff − f̄) + (Gf − Ḡ)undi, ‖εndi‖ varies significantly for different fault cases. This is verified by Fig. 6, which

presents abrupt increases of ‖εndi‖ after t = 5 s, and also strong correlations of ‖εndi‖ with the fault degree.

As a consequence, the Ks used in NDI-SMC/SMDO must be adapted or manually adjusted in different

scenarios. For the simulation cases shown in Fig. 6, Ks = diag([4, 5, 3, 8]) is used when no actuator fault

occurs. To guarantee the convergence of s, Ks needs to be increased to diag([50, 40, 4, 10]) for the ‘25%

fault’ case, and be further raised to diag([150, 90, 5, 12]) when half of the rotor effectiveness is lost. These

gain increases induce a side effect, chattering. As illustrated by Fig. 6, the oscillation magnitudes of ν̂eq

increase with the rise of Ks.

Furthermore, in view of Eq. (10), an increase of Ks will lead to the oscillations in the control input. It

can be seen from Fig. 7 that even though filtered by the actuator dynamics, the measured (without noise in

simulations) rotor speeds are still oscillating. In addition, ω3 in Fig. 7 increases after t = 5 s to compensate

for the effectiveness loss.

4.2. Simulation results of INDI-SMC/SMDO

In this subsection, the same fault scenarios will be used to test the effectiveness of INDI-SMC/SMDO.

When comparing Fig. 8 with Fig. 4, obvious tracking performance improvements of INDI based control
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Figure 6: Observed uncertainties ν̂eq under NDI-SMC/SMDO control.
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Figure 7: Measured rotor speeds under NDI-SMC/SMDO control in the ‘50% fault’ case.

can be observed. The effectiveness of INDI-SMC/SMDO is hardly influenced by the perturbations, and only

small ripples appear after t = 5 s.

The responses of the sliding variables in Fig. 9 also show improvements when compared to the responses

in Fig. 5. Specifically, |σp|, |σq| under INDI-SMC/SMDO are one order of magnitude smaller than the

values using NDI-SMC/SMDO control. Moreover, σ in Fig. 9 has a higher convergence rate, and smaller

variations. The auxiliary sliding variable s also shows smaller fluctuations in Fig. 9.

The main reason for the performance and robustness improvements of INDI based SMC/SMDO can be

seen from Fig. 10. Since s in both Fig. 5 and Fig. 9 converges, ν̂eq in Fig. 6 and Fig. 10 can respectively

estimate −εndi and −εindi. According to the analyses in subsection 2.3, there exists a sampling frequency

such that the bound of εindi is smaller than that of εndi, in the presence of faults, model uncertainties and

disturbances. This is verified by comparing Fig. 10 with Fig. 6, where |νeq,p| and |νeq,q| are two orders of
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Figure 8: Quadrotor responses under INDI-SMC/SMDO control.
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Figure 9: Responses of sliding variables under INDI-SMC/SMDO control.

magnitude smaller under INDI based SMC/SMDO control than NDI based in the ‘50% fault’ case. Also,

|νeq,r| and |νeq,T/m| are one order of magnitude smaller under INDI-SMC/SMDO control. Furthermore,
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as illustrated in Fig. 10, since δκ(x)∆κ is only non-zero for tf ≤ t < tf + ∆t (subsection 2.3), εindi has

comparable bounds before and after a sudden fault. Furthermore, according to Eq. (17), after a fault occurs,

the term δd + (Gf − Ḡ)∆uindi is added to εindi, which also has smaller changes in different fault cases as

verified by Fig. 10.

0 10 20

ν
e

q
,p

 [
ra

d
/s

2
]

-1

-0.5

0

0.5

1

0 10 20

ν
e

q
,q

 [
ra

d
/s

2
]

-1

-0.5

0

0.5

1

t [s]

0 10 20

ν
e

q
,r
 [
ra

d
/s

2
]

-0.2

-0.1

0

0.1

0.2

t [s]

0 10 20

ν
e

q
,T

/m
 [
m

/s
2
]

-1

-0.5

0

0.5

0% fault

25% fault

50% fault

Figure 10: Observed uncertainties ν̂eq under INDI-SMC/SMDO control.

These beneficial properties of εindi allow a lower and fixed gain matrix Ks = diag([2, 2, 0.5, 1]) to be used

for resisting all the tested perturbations, which simplifies the implementation process, and fundamentally

reduces the chattering effects of SMC/SMDO. As can be seen by comparing Fig. 10 with Fig. 6, the uncer-

tainty observations ν̂eq are much smoother when using INDI-SMC/SMDO. The rotor speeds in Fig. 11 are

also much smoother than those shown in Fig. 7.
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Figure 11: Measured rotor speeds under INDI-SMC/SMDO control in the ‘50% fault’ case.
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5. Experimental validations

5.1. Experimental setup

The performance and robustness of the proposed INDI-SMC/SMDO controller are further validated via

flight tests. These experiments are conducted using a Parrot Bebop 2 quadrotor as shown in Fig. 12. The

control laws are executed on-board using an open-source autopilot software, Paparazzi, which is able to read

the MPU 6050 Inertia Measurement Unit (IMU) measurements and drive the motors at 512 Hz. The position

and attitude are measured by external motion capture system (OptiTrack) in 120 Hz and transmitted to

the on-board controller via Wi-Fi.

Figure 12: A Bebop 2 quadrotor with one damaged rotor.

Some practical issues should be considered before implementing the INDI-SMC/SMDO control law. The

first issue is the way of obtaining Ω̇0 when applying Eqs. (19, 36) in the inner-loop. The feasibility of

directly measuring Ω̇0 via angular accelerometers has been demonstrated in Ref. [43]. Another simple way

is estimating Ω̇0 from gyroscope measurements using a wash-out filter [26]. To deal with the correspond-

ing lag, the input signal should be synchronized with the estimations. Since this way of estimation and

synchronization has been verified via both passenger aircraft and quadrotor flight tests [26, 27, 23], it is

also adopted in the present flight tests. T0/m in Eq. (36) is calculated from the specific force measured by

linear accelerometers. The rotor speed uindi|0 is measured by the Brushless DC Motor Driver of the Bebop2

quadrotor.

The outer-loop controllers used in flight tests are identical with the simulated controllers. For the inner-

loop, Kσ is still equal to diag([0.5, 0.5, 0.5, 1]), while τ is increased to [0.1, 0.1, 0.17, 0.1]T for attenuating

the measurement noise. An estimated constant control effectiveness matrix Ḡ is used by both NDI and

INDI based controllers. The nominal model f̄ used by NDI-SMC/SMDO is a hover model which excludes

aerodynamic effects, gyroscopic moments and spin-up torque. As shown in Eqs. (13, 19), INDI-SMC/SMDO

does not need the model information f̄ .
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Both controllers are tested in two scenarios: with and without actuator faults. Even if four unbroken

rotors are equipped, model mismatches still exist, which become more conspicuous when airspeed increases

during maneuvers. For the faulty configuration, the diameter of the right rear rotor disk (third) is reduced

by 5 cm as shown by Fig. 12, which approximately reduce its effectiveness by 55% according to flight test

results.

5.2. Flights without actuator fault

The SMDO gain matrix Ks = diag([20, 20, 1, 1]) is used by INDI-SMD/SMDO in flight tests. The Ks

used by NDI-SMC/SMDO is first tuned to be identical to the INDI based, as denoted by ‘NDI-S/S’ in the

subsequent figures, then it is increased to ensure the convergence of s as denoted by ‘NDI-S/S-HG’.

Fig. 13 illustrates the responses of a quadrotor tracking a filtered doublet pitch angle command. When

using INDI-SMC/SMDO control, the quadrotor performs the best with smallest overshoots and tracking

errors. Although NDI based SMC/SMDO control using the same Ks is able to follow the command, large

transition errors are present. This performance deterioration is mainly caused by model uncertainties. As

also shown by Fig. 14, ‘NDI-S/S’, which uses the same Ks as ‘INDI-S/S’, is unable to adequately observe

the uncertainties in pitch, yaw and thrust channels. The large variations of εndi can only be observed when

Ks is raised to diag([20, 50, 20, 10]), as shown by the high-gain ‘NDI-S/S-HG’ in Fig. 14. This high-gain

controller performs better than the low-gain ‘NDI-S/S’, but is still inferior than INDI based SMC/SMDO

as illustrated by Fig. 13.
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Figure 13: Quadrotor tracking responses without actuator fault.

It can also be seen from Fig. 14 that the observed uncertainties under INDI based control have smaller

variations. Increasing the switching gains in NDI-SMC/SMDO can better observe εndi, but consequently

cause severe oscillations, especially in pitch and yaw channels.
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Figure 14: Observed uncertainties ν̂eq without actuator fault.

The responses of the sliding variables are presented in Fig. 15. As is consistent with the above analyses,

using the same Ks with INDI based control is insufficient for NDI-SMC/SMDO, because sr diverges, and

sq, sT are absent from the sliding surfaces for about two seconds. Moreover, σr under low-gain NDI based

control also diverges. High-gain NDI-SMC/SMDO can enforce the convergence of σ and s. However, severe

oscillations in sq are present, and the convergence of σq, σT/m is still slower than the response under

INDI-SMC/SMDO control.

5.3. Flights with actuator fault

This subsection presents the flight test results of NDI and INDI based SMC/SMDO controllers applied

to a quadrotor with one damaged rotor (Fig. 12). As verified by simulations, INDI based SMC/SMDO

is able to passively tolerate actuator faults and model uncertainties, thus the same SMDO gain matrix

Ks = diag([20, 20, 1, 1]) is still used by the faulty quadrotor. However, this gain matrix is insufficient for

NDI based SMC/SMDO, even without actuator fault, as shown in the previous subsection. Therefore, in

this subsection, it is going to be tested whether NDI based SMC/SMDO can passively resist the actuator

fault without gain adjustment. Namely, Ks = diag([20, 50, 20, 10]) is used by NDI based controller first, as

denoted by ‘NDI-S/S-HG’ in the subsequent figures.

Fig. 16 shows that although the faulty quadrotor can follow the trend of command without gain adjust-

ment, its performance deteriorates. Recall from Eq. (7) that actuator faults introduce (ff−f̄)+(Gf−Ḡ)undi

into εndi. This term causes large variations in ‖εndi‖ after fault occurs because undi is far from zero for

trimming the quadrotor. Therefore, as exposed by Fig. 17, the gain matrix tuned for the fault-free case is

insufficient, which leads to saturations in the observed uncertainties in the pitch and roll channels. In order

to fully observe the uncertainties, Ks needs to be increased to diag([80, 100, 20, 10]) according to the flight
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Figure 15: Sliding variable responses without actuator fault.

test results. This very high gain control case is denoted by ‘NDI-S/S-VHG’ in Fig. 16-19. This controller

with even higher switching gains can better observe −εndi as shown in Fig. 17, and consequently improve

the tracking performance as illustrated in Fig. 16.
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Figure 16: Quadrotor tracking responses with actuator fault.

On the contrary, INDI-SMC/SMDO is able to tolerate the actuator fault passively without any gain

adjustment. In view of Fig. 17, the observed −εindi has much smaller oscillations as compared to the observed
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−εndi. Moreover, as shown in Fig. 16, INDI-SMC/SMDO performs the best with smallest transition errors.

Analogous to the above analyses, when using NDI-SMC/SMDO control without gain adjustment, sp diverges
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Figure 17: Observed uncertainties ν̂eq with actuator fault.

and sq is absence from the sliding surface throughout the maneuvering time period, as illustrated by Fig. 18.

Even though without gain adaption, the sliding variables σ and s under INDI-SMC/SMDO control have

the highest convergence rates and lightest oscillations among all the tested controllers.
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Figure 18: Sliding variable responses with actuator fault.
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Reducing the switching gains is crucial for chattering reduction of SMC/SMDO methods. As verified by

both simulations and flight tests, the filtering process in SMDO can only attenuate instead of rejecting the

oscillations in ν̂eq. Therefore, the lower gains used by INDI-SMC/SMDO also lead to lighter oscillations in

ν̂eq (Fig. 10, 14, 17) and in the rotor speeds (Fig. 11).

The rotor speeds under the control of very-high-gain NDI-SMC/SMDO and INDI-SMC/SMDO are shown

in Fig. 19. The first rotor get saturated at 3000 rpm for 0.3 s under NDI-SMC/SMDO control, while the

rotor speeds are within limits using INDI-SMC/SMDO. Owing to the measurement noise, the chattering

reduction advantage of INDI based SMC/SMDO becomes less obvious in Fig. 19, where the rotor speeds

using NDI and INDI based controllers seem to have comparable oscillations.
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Figure 19: Rotor speeds using NDI (left) and INDI (right) based SMC/SMDO in faulty condition.

The reason behind this phenomenon can be better revealed in the frequency domain. Divide undi

(Eq. (10)) into undi,s = Ḡ
−1

(Kσσ + ν̂eq) (the contributions of SMC/SMDO), and undi,c = Ḡ
−1

Ψ̄ (the

contributions of the traditional NDI). Also, uindi (Eq. (19)) is divided into uindi,s = Ḡ
−1

(K ′σσ + ν̂′eq) and

uindi,c = uindi|0 + Ḡ
−1

Ψ̄
′
. The Power Spectral Densities (PSD) of undi,si and uindi,si , i = 1, 2, 3, 4 for

the four rotors are illustrated in the left subplot of Fig. 20, where it can be seen that Puu,indi,s is lower

than Puu,ndi,s in most frequency ranges. This verifies that the control efforts of SMC/SMDO is indeed

released using the INDI control structure, and the chattering is reduced in uindi,s. On the other hand,

INDI-SMC/SMDO is contributed more by uindi,c, which has less model dependency than undi,c but relies

more on sensor measurements. The corresponding measurement noise in uindi,c conceals the benefit of uindi,s

in high frequency range, and leads to a comparable PSD of the overall uindi and undi as illustrated by the

right subplot of Fig. 20. The noise level in uindi,c can be reduced by using better sensors, which can be

easier than perfecting the model used by NDI-SMC/SMDO.
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6. Conclusions

A control method named INDI-SMC/SMDO, which designs the Sliding Mode Control (SMC) driven

by Sliding Mode Disturbance Observers (SMDO) based on the control structure of Incremental Nonlinear

Dynamics Inversion (INDI) is proposed in this paper. By virtue of the sensor-based characteristic of INDI,

SMC/SMDO designs based on INDI require less model knowledge than designs based on NDI. In the

presence of model uncertainties, external disturbances and sudden faults, it has been shown both analytically

and numerically that the perturbation terms under NDI and INDI based SMC/SMDO control (εndi and

εindi) have different properties. First of all, the boundedness of εindi is guaranteed when the conditions in

Theorem 2 are satisfied, while the boundedness of εndi is undetermined under the same conditions. More

importantly, there exists a sampling frequency such that the bound of εindi is smaller than that of εndi.

This smaller bound can fundamentally reduce the control efforts of SMC/SMDO because for most SMC

and SMDO designs, there is a positive correlation between the required switching gains and the uncertainty

bounds. εindi is also proved to have smaller variations in different fault circumstances, while εndi is more

fault-case dependent. These merits of εindi allow INDI-SMC/SMDO to use reduced and fixed gains for

resisting a wider variety of faults and disturbances, while the gains for NDI based SMC/SMDO are higher and

require adjustments in different scenarios. Finally, the advantages of INDI-SMC/SMDO are demonstrated

by both numerical simulations and real-world quadrotor flight tests. In conclusion, easier implementation,

reduced model dependency, improved performance and robustness make the proposed INDI-SMC/SMDO a

promising method for enhancing aircraft safety in real life.
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