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Light-induced spin polarizations in quantum rings
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Nonresonant circularly polarized electromagnetic radiation can exert torques on magnetizations by the inverse
Faraday effect (IFE). Here, we discuss the enhancement of IFE by spin-orbit interactions. We illustrate the
principle by studying a simple generic model system, i.e., the quasi-one-dimensional ring in the presence of
linear/cubic Rashba and Dresselhaus interactions. We combine the classical IFE in electron plasmas that is
known to cause persistent currents in the plane perpendicular to the direction of the propagation of light with the
concept of current and spin-orbit-induced spin transfer torques. We calculate light-induced spin polarization that
in ferromagnets might give rise to magnetization switching.
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I. INTRODUCTION

The Faraday effect (FE) describes the rotation of the plane
of linearly polarized light when passing through a ferromagnet
with a magnetization component parallel to the light vector. It
is caused by the difference of phase shifts of transmitted light
in the two circular polarization states. The inverse Faraday
effect (IFE) is the ability of circularly polarized light to
induce a spin polarization in metals and to reorient or even
reverse the magnetization in ferromagnets. In other words,
the IFE stands for effective circularly polarized light-induced
magnetic fields in the direction of the light wave vector with
sign governed by the helicity and magnitude scaling with the
intensity. In contrast to other photomagnetic effects, neither
FE nor IFE involve absorption of photons, which makes them
potentially very fast and therefore interesting, e.g., for data
storage technologies.

IFE was initially predicted by Pitaevskii [1] and formulated
in terms of the dependence of the free energy on a time-
dependent electric field. After observation of IFE by van der
Ziel et al. [2], Pershan et al. [3] developed a microscopic theory
explaining IFE in terms of an optically induced splitting of
degenerate spin levels, followed by thermal relaxation. They
predicted that magnetization M = V λ0(2πc)−1(IR − IL)ek

was created by the circularly polarized light propagating in
the ek direction with the intensity IR(L) of the right- (left-)
handed circularly polarized light component. Here, V , λ0, and
c are the Verdet constant, the wavelength, and the speed of the
light, respectively. Popova et al. [4,5] generalized the Pershan
et al. [3] approach to include the time dependence of the light
field that becomes relevant on the fs time scale, and applied
the formalism to isolated atoms.

Kimel et al. demonstrated IFE in DyFeO3 by exciting
magnetization dynamics with circularly polarized laser pulses
on fs time scales [6]. These and subsequent experiments as
reviewed in Ref. [7] are not fully explained by the theory
presented by Pershan et al. [3] because thermal relaxation
does not occur at such short-time scales. Subsequently, Stanciu
et al. [8] demonstrated that the perpendicular magnetization
of GdFeCo thin films can be switched on subpicosecond time
scale. Vahaplar et al. [9] modeled the switching process by
multiscale calculations of the magnetization dynamics [10]
with effective magnetic fields of the order of 20 T. However,

the microscopic origin, magnitude, and material dependence
of these fields remain unexplained.

The reciprocity between FE and IFE is not universally
observed [11], and was found by theory to break down in
the presence of absorption [12]. Taguchi et al. calculated the
effect of terahertz electromagnetic radiation on disordered
metals with spin-orbit interaction (SOI) [13]. They found a
light-induced magnetization, but at the cost of light absorption.
This is in contrast to the IFE phenomenology. Recently, strong
effective magnetic fields were calculated for magnetic semi-
conductors that are caused by the spin-selective dynamical
Stark effect [14].

IFE has also been studied in classical plasmas, where it can
be explained in terms of the Ørsted magnetic fields generated
by light-induced circulating dc charge currents [15–18]. Hertel
investigated this process for solid-state electron plasmas [19].
He derived the eddy currents and associated magnetic fields
generated by time-dependent circularly polarized light in a
conducting metal film modeled as a collisionless electron gas.
Both currents and the related magnetic fields are dissipation-
less and scale to second order in the electric field amplitude
of the circularly polarized light, in line with the microscopic
theories for IFE. However, these effects are too small to explain
the light-induced magnetization switching. Yoshino discussed
dissipative corrections to Hertel’s theory [20].

Here, we pursue the concept that IFE is caused by light-
induced dc currents, but invoke the spin-orbit interaction to
explain the large effective fields apparently at work. This
perspective of IFE is motivated by the linear current-driven
intrinsic spin torque in ferromagnets predicted by Manchon
and Zhang [21,22], who demonstrated that current in the
presence of SOI of the Rashba-type produces an effective
magnetic field which is perpendicular to both an inversion
symmetry-breaking electric field and the current. The nondissi-
pative currents discussed above can be interpreted as a reactive
response to a light field, or as a ground-state property of the
system in the presence of the light field, quite analogous to
persistent currents or diamagnetic response to magnetic field
that can be formulated as ground states in the presence of a
vector potential [23]. The quantum-mechanical ground-state
nature of the light-induced current in a one-dimensional (1D)
ring has been investigated by Kibis [24]. A theory of the IFE
can be based on Kibis’ approach but for Hamiltonians with
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spin-orbit interactions. Rather than focusing on the quantum
mechanics of the generation of charge currents by the light
field, we concentrate here on the generation of effective
magnetic fields in the presence of circulating charge currents,
while using Hertel’s approach to estimate the magnitude of
these currents for a given light intensity. This is allowed in
the high-frequency limit in which the length scale associated
with the direct response is much smaller than the geometric
confinement or the spin-orbit precession length.

In order to establish the principle, we focus here on a
nonmagnetic system with spin-orbit interaction and in the
presence of electron current bias that is generated by circularly
polarized light. For a magnetic sample, such polarization
can exert spin-orbit torques on magnetization. We focus on
a simple yet realistic model system in which the spin-orbit
interaction Hamiltonian is well known and analytical results
can be achieved, viz., a one-dimensional (1D/single transverse
mode) ring fabricated from a high-mobility two-dimensional
electron/hole gas (2DEG/2DHG) with Rashba and Dressel-
haus SOI interactions. SOI in a 2DEG that is linear in the wave
vector is known to be quite anomalous, causing, e.g., vanishing
spin Hall effect by impurity scattering [25]. Here, we find that
light-induced effective fields in 1D rings with linear Rashba or
Dresselhaus SOI also vanish, which can be traced to the state
independence of the equilibrium spin texture. The holes of a
2DHG close to the valence band edge can also be described by
Rashba and Dresselhaus SOI interactions, but with a cubic
dependence on the wave vectors [26,27]. A quantum ring
containing a hole gas has an out-of-plane state-dependent
spin texture that indeed generates the current-induced spin
polarization. In a ferromagnet, these would indeed induce
torques on a magnetization, thereby confirming our working
hypothesis.

The remainder of the paper is organized as follows. We
solve the problem of a ground state in the presence of a
given charge current by the method of Lagrange multipliers
as explained in Sec. II. In Sec. III, we apply this method to
a simple case of rings in the absence of SOI, and discuss the
difference of the ground-state current induced by Lagrange
multiplier and the one induced by the magnetic field in a ring.
In Sec. IV, we discuss different models of SOI in more detail. In
Secs. IV A and IV B, we address rings consisting of electrons in
the presence of linear Rashba or Dresselhaus SOI, respectively,
in which the current-induced spin polarization vanishes. In
Secs. IV C and IV D, we continue with a p-doped quantum
ring, in which a current-induced polarization is generated
by the cubic Dresselhaus or Rashba SOI, respectively. We
summarize our conclusions in Sec. V.

II. METHOD OF LAGRANGE MULTIPLIERS

We are interested in the ground state of a conductor in
the presence of currents induced by an external perturbation
such as electric field of light. Rather than diagonalizing the
Hamiltonian in the presence of electric field [24], we calculate
the ground state for given persistent current. Hereby, we lose
some subtle nonperturbative quantum effects [24] beyond the
current generation, which can be important when microwave
frequencies are tuned to lie between quantized states. This is
beyond the scope of this paper.

According to the current-density-functional theory [28],
the ground-state energy of a system is a functional of the
charge current distribution jext (r). The minimum energy of
the system under the constraint of given jext (r) can be found
by the method of Lagrange multipliers. Here, the Hamiltonian
H0 is augmented by the sum of the product of constraints
and Lagrange multipliers that in continuous systems becomes
an integral. We limit attention to noninteracting systems with
single-particle states |�i〉 and occupation numbers fi ∈ {0,1}
with

∑∞
i=1 fi = N for a number of N electrons. We may then

express the constraint as∑
i

fiji (R) = jext (R), (1)

where the current operator ĵ (R) is defined in terms of the
expectation value

ji (R) = 〈�i | ĵ (R) |�i〉 (2)

= e

2

∫
�∗

i (r) [vδ (r − R) + δ (r − R) v] �i (r) dr (3)

= e Re �∗
i (R) v�i (R) �= e 〈�i | v |�i〉 (4)

and v is the velocity operator. The objective functional under
this constraint and the normalization condition 〈�i |�i〉 = 1 is

F [{�i} ,jext] =
∑

i

fi [〈�i | H0 |�i〉 − εi (〈�i |�i〉 − 1)]

+
∫

A (R) ·
(

jext (R) −
∑

i

fiji (R)

)
dR.

(5)

Here, A is the Lagrange multiplier functional. Minimizing F ,
i.e., δF/δ�∗

i = 0, leads to the Schrödinger equation with the
eigenfunctions |�i〉 corresponding to the Hamiltonian

H = H0 −
∫

A (R) · ĵ (R) dR. (6)

In the absence of spin-orbit interactions ji =
(e�/m) Im �∗

i ∇�i and

H (r,p) → H0 [r,p − eA (r)] − �
2e2A2 (r)

2m
. (7)

When the objective current density jext (r) is constant in space
and time, the Lagrange function A (r) is a vector potential
corresponding to constant magnetic field, and the implemen-
tation of the charge current constraint is equivalent to a gauge
transformation. We note the close relation with the current
density functional theory [28], in which effective vector and
scalar potentials are introduced to construct energy functionals
of charge and current densities. Finally, we observe that the
time derivative of the vector potential is the electric field E =
−dA/dt . Harmonic ac electric field therefore corresponds to
a vector potential in the same direction with the amplitude
Aω = −iEω/ω in frequency space. The effect of finite Aω

in the dc limit ω → 0 is then equivalent to the transport
response to electric field that remains finite in a ballistic
system. Alternatively, we can associate the vector potential
with applied magnetic field inducing persistent ground-state
current, although it should be kept in mind that when the
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current is generated by other means, our magnetic field is a
fictitious one.

III. SINGLE-MODE QUANTUM RINGS WITHOUT SOI

In the following, we focus on quantum rings fabricated
from 2DE(H)G in which the charge carriers are confined
normal to the plane by a potential V (z) and in the radial
direction by an axially symmetric confining potential U (r)
centered at an effective radius r = a, but free to move along
the azimuthal direction along the unit vector eϕ . In the
envelope function approximation with effective mass m for
electrons or (heavy) holes

H0 = p2
x + p2

y

2m
+ V (z) + U (r), (8)

where px(y) is the x(y) component of the momentum operator.
The eigenstates are then separable as �nlk(r,ϕ,z) =
ψn(ϕ)Rl(r)Zk(z) normalized as

∫ |ψn(ϕ)|2 dϕ =∫
r|Rl(r)|2dr = ∫ |Zk(z)|2dz =1. To simplify the problem

further, we assume that the confinement is strong enough
such that only the lowest subbands (k = l = 0) are occupied,
which makes the system effectively one dimensional (1D) in
azimuthal direction. The eigenstates of Eq. (8) are

ψn(ϕ) = 1√
2π

einϕ (9)

with the energies εn = �
2n2/(2ma2) + ε0, where ε0 is the

confinement energy corresponding to R0(r)Z0(z).
We wish to model the system in the presence of constant

persistent current. In the absence of SOI, the current operator
along the ring is defined by its expectation value

jϕn (r,z) = jϕ
n (r,z) eϕ (10)

= eϕ

e�

mr
|R0(r)|2 |Z0(z)|2 Im ψn(ϕ)

∂

∂ϕ
ψn(ϕ), (11)

where we used vϕ = −i�/(mr)∂/∂ϕ, and the total current in
the wire is

Iϕ =
∫ ∫

dz dr jϕ (r,z) (12)

= −e�

m
Im ψn(ϕ)

∂

∂ϕ
ψn(ϕ)

∫
dr

1

r
|R0(r)|2

∫
dz |Z0(z)|2

(13)

= − e�

ma2

∑
n

fn Im ψn(ϕ)
∂

∂ϕ
ψn(ϕ), (14)

where e > 0, and we used
∫

dr |R0(r)|2 /r = 1/a2 assuming
Gaussian R0 [29]. The current operator (3) is diagonal in the
basis of the states (9), which are therefore also eigenfunctions
of the current carrying system. The total current density in the
ring then reads as

Iϕ = − e�

2πma2

∑
n

fnn. (15)

The projected Hamiltonian 〈Z0R0 |H0| Z0R0〉 in the presence
of the Lagrange multiplier term −AϕÎ ϕ (parametrizing the
vector potential as Aϕ = 2π�nλ/e where nλ is dimensionless)

is diagonal in the basis (9) with the energies

εn = Ean
2 − 2π�nλ

e

e�

2πma2
n + ε0 (16)

= Ea (n − nλ)2 + ε̃0, (17)

where Ea = �
2/(2ma2) and ε̃0 = ε0 − Ean

2
λ. At zero temper-

ature fn = �(εn − εF + ε̃0), where εF is the Fermi energy and
� the step function, therefore,

Iϕ ≈ 2e�

πma2
nλnF , (18)

where nF = √
(εF − ε̃0) /Ea . We assume that the number of

electrons is constant under variation of nλ, which implies that
ε̃0 may be set to zero. The current constraint Iϕ = I determines
the effective vector potential

nλ = πma2

2e�nF

I = π

4e

�

Ea

I

nF

(19)

so that the spectrum (16) is fully determined. The current is
optimally accommodated by rigidly shifting the distribution
function proportional to the applied current.

Real magnetic field Bext also generates persistent cur-
rents [23]. There is a difference, however. The energies of
a quantum ring in the presence of a real magnetic flux
� = πa2Bext read as

En = Ea

(
n − �

�0

)2

, (20)

where �0 = e/h is the flux quantum and we can identify
nλ = �/�0. The total energy in the presence of diamagnetic
persistent current is

E′ =
n

(+)
F∑

n
(−)
F

En, (21)

where n
(±)
F = �±

√
2ma2(εF − ε0)/� + �/�0
is the largest

integer smaller of equal
√

2ma2 (εF − ε0)/�. E′ (�) is periodic
since the quantum numbers of the highest occupied states jump
by ±1 when two states cross the Fermi energy. The current

Iϕ′ = ∂

∂�
E′ = −�0Ea

n
(+)
F∑

n
(−)
F

(
n − �

�0

)
(22)

oscillates as a function of � with the maximum

|Iϕ′|max = NEa�0 = 1.5 × 10−10 A
N

1000

0.1 μm

a2
, (23)

where N = 2(n(+)
F + n

(−)
F ) is the total number of electrons.

The Lagrange multiplier on the other hand contributes the
additional term �

2n2
λ/(2ma2) [see Eq. (16)], which modifies

the expressions to

En

Ea

= (n − nλ)2 − n2
λ = n (n − 2nλ) , (24)

Iϕ = �0
∂E

∂nλ

= −Ea�0

nF −nλ∑
−nF −nλ

n, (25)

which agrees with Eq. (15).
The current is finite for any nλ �= 0 (except when N =

1 and n = 0 or 2nλ). Thus, contrary to the diamagnetic
current induced by real magnetic field, the Lagrangian method
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FIG. 1. (Color online) Current versus nλ. The current axis is
scaled in units of I0 = 2e�nF /(πma2).

generates unbound currents. However, due to the discreteness
of the energy levels, the currents are quantized (see Fig. 1). In
the following, we work with a large number of electrons such
that the currents are quasicontinuous.

Nevertheless, if it is taken into account that there is a max-
imum for magnetic-field-induced currents, our method also
predicts spin polarization generated by diamagnetic currents
and correspondingly enhanced paramagnetic susceptibility of
quantum rings. It is instructive to compare the magnitudes
of the Lagrange multipliers with the corresponding magnetic
fields. With eAϕ = 2πnλ = eBexta

2/ (2�),

Bext =
(

π�

ea

)2 1

Ea

I

n0
=

(π

e

)2 2m

n0
I (26)

≈ 0.1 mT
1000

n0

I

nA
, (27)

which does not depend on the size of the ring.
The generation of charge current by circularly polarized

light is discussed in Appendix following Hertel [19]. We find
that for experimentally accessible light intensities, Bext can be
of the order of 1 T.

IV. SINGLE-MODE RINGS IN THE PRESENCE OF SOI

In the weakly relativistic limit, a particle spin experiences
SOI, i.e., effective magnetic field that scales with the particle

velocity. It requires inversion symmetry breaking induced
either by space charges or asymmetric heterostructures or
by a unit cell without inversion symmetry, as is the case
for the zinc-blende structure. The Rashba SOI in quasi-two-
dimensional electron gas (2DEG) is a simple realization of the
former [30,31] while the Dresselhaus [32] SOI represents the
latter type. For 2DEG in the x,y plane, the Hamiltonian (8) is
then augmented by

He
SO = αe

�
(σypx − σxpy) + βe

�
(σxpx − σypy), (28)

where σx(y) are the x(y) components of the momentum
operator for electrons and a vector of the Pauli matrices,
respectively. In two-dimensional hole gas (2DHG), on the
other hand [27,33,34],

Hh
SO =

(
i
αh

�3
p3

− + βh

�3
p−p+p−

)
σ+ + H.c., (29)

and O± = Ox ± iOy , where O ≡ p,σ , are the momentum
operator and the Pauli spin matrix vectors, respectively. αe(h)

and βe(h) parametrize the linear (cubic) Rashba and the linear
(cubic) Dresselhaus SOI. The canonical velocity operators
are modified by the spin-orbit interaction since they do
not commute with the Hamiltonian. Dropping the index for
electrons and holes,

v = ṙ = 1

i�
[r,H ] (30)

= v0 + vSO = �

im
∇ + 1

i�
[r,HSO] , (31)

where vSO is the anomalous velocity. The current operators are
modified analogously.

As before, we add an axially symmetric confinement
potential to the 2DE(H)G and consider the electric quantum
confinement (1D) limit. Here, we separately discuss electrons
and holes in such quantum rings in the presence of a circular
current, and calculate the current-induced spin polarization in
each system.

A. Electrons with the Rashba SOI

For electrons in the 1D quantum ring, the projection of the
full Hamiltonian H onto the azimuthal subspace leads to [29]

H (ϕ) = 〈Z0R0 |H0 + HSO | Z0R0〉 = − �
2

2ma2
∂2
ϕ − i

α

a

{
(σx cos ϕ + σy sin ϕ)∂ϕ + 1

2
(σy cos ϕ − σx sin ϕ)

}

− i
β

a

{
(σx sin ϕ + σy cos ϕ)∂ϕ + 1

2
(σx cos ϕ − σy sin ϕ)

}
. (32)

Let us first focus on the Rashba spin-orbit interaction, i.e.,
β = 0. The eigenstates of the system are

ψR
n+ (ϕ) = 1√

2π
einϕ

(
cos θR

2

sin θR

2 eiϕ

)
; (33)

ψR
n− (ϕ) = 1√

2π
einϕ

(
− sin θR

2

cos θR

2 eiϕ

)
, (34)

where n is an integer, with the energies
Enσ

Ea

=
(

n + 1

2

)2

+ σ

(
n + 1

2

)
sec θR + 1

4
, (35)

where tan θR = 2maα/�
2. The velocity operator in this system

reads as

vϕ = − i�

ma
∂ϕ + α

�
σr (36)
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and the current is 〈Iϕ〉 = ∑
nσ fnσ I

ϕ
nσ = I . The current opera-

tor is diagonal in the nσ basis [Eqs. (33) and (34)], but acquires
a spin dependence

Iϕ
nσ = − e�

2πma2
n − σ

eα

2π�a
sin θ

− e�

2πma2

(
δσ,+1 cos2 θ

2
+ δσ,−1 sin2 θ

2

)
. (37)

The projected Hamiltonian in the presence of the Lagrange
multiplier term (parametrizing the vector potential as Aϕ =
�nλ/e where nλ is dimensionless) is diagonal in the basis (9)
with the energies

Enσ

Ea

=
(

n + 1

2

)2

+ σ (n + 1/2) sec θR + 1

4

− 2π�nλ

e

2ma2

�2

[
e�

2πma2
n + σ

eα

2π�a
sin θR

+ e�

2πma2

(
δσ,+1 cos2 θR

2
+ δσ,−1 sin2 θR

2

)]
(38)

=
(

n − nλ + 1

2

)2

+ σ

(
n − nλ + 1

2

)
sec θR + 1

4
− n2

λ.

(39)

At zero temperature,

I =
∑
nσ

fnσ Iϕ
nσ =

∑
σ

nr+nλλ−σ sec θR−1/2∑
−nr+nλλ−σ sec θR−1/2

Iϕ
nσ = 2e�

πma2
nλnr,

(40)

where nr ≡
√

εF /Ea + sec2θR/4 and we substituted Eq. (37).
The leading term is therefore the same as in the absence of
spin-orbit interaction:

nλ = π

4e

�

Ea

I

nr

. (41)

Since the system is not magnetic, it is not spin polarized
at equilibrium. The spin polarization of the current-carrying
ground state reads as

〈σz〉RI =
∑
nσ

〈
ψR

nσ

∣∣σz

∣∣ψR
nσ

〉
I

=
∑
nσ

fnσ σ cos θR,

and 〈σy〉RI = 〈σx〉RI = 0. In the absence of current, the energy
bands are equally filled for both spins in the negative and
positive directions, and we do not have unpaired electrons.

Thus,

〈σz〉RI=0 = cos θR

∑
nσ

σ�(εF − Enσ ) (42)

= cos θR

∑
σ

nr+nλ−σ sec θR−1/2∑
−nr+nλ−σ sec θR−1/2

σ = 0. (43)

In the presence of the current bias, the electron distribution
is shifted in reciprocal space around the Fermi level by nλ.
The spinors (33) and (34) that determine the spin texture do
not depend on n. Furthermore, the relative occupation of the
two spin bands also remains the same. Therefore, the induced
current does not generate spin polarization and 〈σz〉RI = 0
for all current levels. To put it differently, since the ring is
invariant to rotation, the system is invariant to a Galilean
gauge transformation that induces the persistent current. The
conclusion that there is no current-induced spin accumulation
in the Rashba systems holds also for 1D wires. Vanishing of
the spin accumulation is caused by the compensating effect
of the two subbands. This can be suppressed when a gap is
induced at k = 0 by a Zeeman field or exchange interfaction
and the Fermi energy is tuned to fall into this gap [35]. We also
note that the linear current-induced spin accumulation does not
vanish in two-dimensional electron gas either [36].

B. Electrons with the Dresselhaus SOI

A similar situation arises for a ring with only linear
Dresselhaus interaction, i.e., α = 0 in Eq. (32). Its eigenstates
are [37]

ψD
n+ (ϕ) = 1√

2π
einϕ

(
− sin θD

2

i cos θD

2 e−iϕ

)
; (44)

ψD
n− (ϕ) = 1√

2π
einϕ

(
cos θD

2

i sin θD

2 e−iϕ

)
, (45)

with the energies identical to those for the Rashba ring

Enσ

Ea

=
(

n + 1

2

)2

+ σ

(
n + 1

2

)
sec θD + 1

4
, (46)

but now tan θD = 2maβ/�
2. Thus, the spin texture does not

depend on the angular momentum. This means that shifting
a distribution function rigidly does not change the balance of
the spin states and, as in the Rashba case, there is no current-
induced spin polarization.

C. Holes with the Dresselhaus SOI

Stepanenko et al. [38] derived an effective low-energy
Hamiltonian for heavy holes from the Luttinger Hamiltonian
that includes Dresselhaus and Rashba-type SOI that are cubic
in the angular momenta. Simple analytical solutions were
obtained in two limits, representing the Dresselhaus-only
interaction (αh = 0) and the Rashba-only SOI (βh = 0). The
spin textures in these two limits are shown in Fig. 2. In contrast
to the electron case, both spinors include terms quadratic in
the angular momentum. Here, we show that these do generate
current-induced spin accumulation.
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FIG. 2. (Color online) Top: electrons spin texture in the presence
of the linear Dresselhaus (left) or Rashba (right) interaction. The
angle of the spin with the ring in this case only depends on the SO
coupling strength and not the angular momentum. Bottom: the hole
spin texture in the presence of the cubic Dresselhaus (left) or Rashba
(right) spin-orbit interaction. The direction of the spins in both cases
depends on the angular velocity of the holes and on the SO coupling
strength. Here, the particles orbit counterclockwise. The clockwise
movement induces spin texture which is mirrored with respect to the
plane containing the ring.

The heavy-hole Hamiltonian for a 1D ring with the
Dresselhaus SOI is [38]

HcD
0 = − �

2

2mhha2
∂2
ϕ

+ βhe
iϕ

(
G0 + G1∂ϕ + G2∂

2
ϕ + G3∂

3
ϕ

)
σ−

+ βhe
−iϕ

(
G0 − G1∂ϕ + G2∂

2
ϕ − G3∂

3
ϕ

)
σ+, (47)

where G0 = i(R0 + R1 − R2), G1 = −(R1 + R2), G2 =
i(R2 − 2R3), and G3 = −R3, and the coefficients Rj =
〈r−j ∂

3−j
r 〉radial depend on the ground-state radial confinement

wave function. For a ring with radius a and width w, R2 =
R3/2 = 1/(2a3) and R1 = −2/3R0 = −1/(aw2) [39]. Here,
mhh = m0/(γ1 + γ̃ ), where γ̃ = γ2 for the [001] (γ̃ = γ3 for
[111]) growth direction and γi are the standard Luttinger
parameters for the valence band of III-V semiconductors. The
eigenfunctions of the system are

ψcD
l,+ = 1√

2π
eilϕ

(
i cos θcD(l)

2 e−iϕ/2

− sin θcD (l)
2 eiϕ/2

)
; (48)

ψcD
l,− = 1√

2π
eilϕ

(
i sin θcD(l)

2 e−iϕ/2

cos θcD(l)
2 eiϕ/2

)
, (49)

where l = n + 1/2, and the texture angle θcD(l) is

θcD(l) = tan−1

{
2mhhβh

�2R
2/3
3

[
2

3
R0 +

(
l2 − 5

4

)
R3

]}
, (50)

with the energies

Elσ = Eh
a

(
l2 + 1

4
+ σ l sec θcD (l)

)
,

where Eh
a = �

2/(2mhha
2). In terms of the velocity operator

vϕ = − i�

mhha
∂ϕ + iaβh

�
eiϕ

(
G1 + 2G2∂ϕ + 3G3∂

2
ϕ

)
σ−

+ iaβh

�
e−iϕ

(−G1 + 2G2∂ϕ − 3G3∂
2
ϕ

)
σ+, (51)

the current operator reads as

Î
ϕ

lσσ ′ = e

a
Re ψ

†
lσ (ϕ)vϕψlσ ′(ϕ). (52)

Both the Hamiltonian and current operators are diagonal in
the orbital angular momentum, which allows us to introduce
2 × 2 operators in spin space for calculation of the expectation
values in position space:

− Î
ϕ

l

e
= 2Eh

a (l−σ1 + l+σ2)

+ βh

�
(G1 + 2iG2l− + 3G3l

2
−)σ−

+ βh

�
(G1 − 2iG2l+ + 3G3l

2
+)σ+, (53)

where σ1 and σ2 are 2 × 2 matrices with all elements zero
except for the first and second diagonal one, respectively, and
l± = l ± 1/2. Thus, the Hamiltonian HcD + λ 〈Iϕ〉 in spin
space reads as

HcD
l = Eh

a [(l2
− − nλl−)σ1 + (l2

+ − nλl
+)σ2]

− βh(G0 + G1l− + G2l
2
− + G3l

3
−)σ−

− βh(G0 − G1l+ + G2l
2
+ − G3l

3
+)σ+

+ nλβh(G1 + 2G2l− + 3G3l
2
−)σ−

+ nλβh(−G1 + 2G2l+ − 3G3l
2
+)σ+. (54)

The eigenstates in the presence of a current now read as

ψcD
(l,nλ),+ = 1√

2π
eilϕ

(
cos θcD(l,nλ)

2 e−(i/2)(ϕ+π/2)

sin θcD(l,nλ)
2 e(i/2)(ϕ+π/2)

)
; (55)

ψcD
(l,nλ),− = 1√

2π
eilϕ

(
− sin θcD (l,nλ)

2 e−(i/2)(ϕ+π/2)

cos θcD (l,nλ)
2 e(i/2)(ϕ+π/2)

)
, (56)

with the spin texture

θcD(l,nλ)

= arctan

{
2mhhβh

�2R
2/3
3

[
2

3
R0+

(
l2 − 5

4
− 3n2

λ + 2
n3

λ

l

)
R3

]}
,

(57)

and the energies

Elσ = Ea

(
(l − nλ)2 + 1

4
+ σ

(l − nλ)

cos θcD [(l − nλ) ,nλ]

)
.
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We can obtain nλ from the current constraint by noting
that the state lσ carries the current

I
ϕ

lσ = − e

2π

{
�

ma2
l − σ

�

2ma2
cos θcD(l)

+ σ
βh

�

(
G1 − iG2 − 3G3

[
l2 + 1

4

])
sin θcD(l)

}
.

(58)

We now derive analytical expressions for nλ in the weak
spin-orbit coupling limit, i.e., for small θcD . Subsequently, we
also present numerical results for larger SOI strengths. For
small angles θcD , the expectation value of the current reduces
to

I
ϕ

lσ ≈ − e

2π

{
�

ma2
l − σ

�

2ma2

+ σ
β2

h

�Eh
a

(
G1 − iG2 − 3G3

[
l2 + 1

4

])

×
[

2

3
R0 +

(
l2 − 5

4
− 3n2

λ + 2
n3

λ

l

)
R3

]}
. (59)

At zero temperature,

Iϕ =
∑

σ=±1

nr+nλ−σ/2∑
−nr+nλ−σ/2

I
ϕ

lσ = I, (60)

where nr ≈ √
εF /Eh

a and εF is the Fermi energy in the
absence of current. Taking cos θcD ≈ 1 in the boundaries of
the summation,

nλ ≈ �

4Eh
a

π

e

I

nr

[
1 + 3

(
βhR3nr

Ea

)2
]

≈ π�

4eEh
a

I

nr

, (61)

which in the limit of weak SOI does not depend on βh. We find
that the system is now spin polarized in the z direction. With

〈σz〉lσ = 〈
ψcD

(l,nλ)σ

∣∣σz

∣∣ψcD
(l,nλ)σ

〉
= σ cos θcD(l,nλ) ≈ σ [1 − θcD(l,nλ)2], (62)

the total spin polarization is

〈σz〉cDI =
∑
nσ

σfnσ cos θcD(l,nλ)

≈
∑

σ=±1

nr−nλ+σ/2∑
n=−nr−nλ+σ/2

σ {1 − [θcD(l,nλ)]2). (63)

This leads to

〈σz〉cDI = β2
h(

Eh
a

)2
a6

{
−4n3

λnr + 64
n6

λ

n3
r

(
nλ − 1

2

)

+ 2nrnλ

[
4n2

λ + 1 + (nr + 1) (2nr + 1)
]

−
[

a2

w2
−

(
5

4
+ 3n2

λ

)](
−4nλnr − 16

n4
λ

n2
r

)}
.

(64)

To the leading order in the current nλ,

〈σz〉cDI → 2β2
h(

Eh
a

)2

nrnλ

a6

×
[

1 + (nr + 1) (2nr + 1) + 2a2

w2
− 5

2

]
. (65)

The total number of electrons

N =
∑
nσ

fnσ ≈
∑

σ=±1

nr+nλ−σ/2∑
−nr+nλ−σ/2

1 = 4nr . (66)

For nr � a/w, the term proportional to 2n3
r dominates and the

spin polarization simplifies to

〈σz〉cDIϕ
≈ 4β2

h

Eh
a

2
R2

3n
3
r nλ = εF

Eh
a

π�β2
h(

Eh
aa2

)3

I

e
, (67)

while in the limit of a wide and narrow ring

〈σz〉cDIϕ
≈ 〈σz〉cDI → 4β2

h(
Eh

aa2
)2

nrnλ

w2
= a2

w2

π�β2
h(

Eh
aa2

)3

I

e
. (68)

The spin polarization is in both cases proportional to the
current and the squared amplitude of the SOI interaction,
which is expected. The proportionality with Fermi energy
when nr � a/w reflects the increasing spin texture angle θcD

with energy. This implies the scaling with the squared number
of particles as well as the area of the ring. In the opposite limit,
we find that the spin polarization increases when tightening
the laterally quantized subband because this enhances the SOI
matrix elements. For realistic and currently experimentally
feasible dimensions, the former approximation seems more
appropriate, and thus, we focus on this limit henceforth. One
can estimate the the spin polarization in this regime from
Eq. (67) and the Dresselhaus coupling constant for GaAs [40]

βh = 30 eV Å
3

as

〈σz〉cDIϕ
≈ 0.2

( εF

10 meV

)(
a2

μm

) (
I

nA

) (
βh

30 eVÅ
3

)2

.

(69)
For better understanding, we can derive the equivalent

effective magnetic field that would generate the same spin
polarization (67) in the absence of SOI. Consider the Hamil-
tonian HB = p2/(2mhh)1̂ − �σz, with the Zeeman energy
� = �eghBeff/(4mhh), where gh is the gyromagnetic ratio.
Clearly, such a system is spin polarized and in the limit of
�/εF � 1,

〈σz〉Z ≈ �

2

eghBeff

mhh

1√
Eh

a εF

. (70)

The ε
−1/2
F dependence reflects the 1D density of states that

decreases with energy. Comparison of Eqs. (70) and (67) gives
an equivalent effective field of

Beff = 32π√
2

m
9/2
hh a

e�7gh

ε
3/2
F β2

h

I

e
,

where we assume the g factor gh = −0.5 [41]. Inserting the
parameters

Beff = 1.3
( εF

10 meV

)3/2 a

1 μm

I

nA

(
βh

30 eVÅ
3

)2

mT, (71)

we find that light-induced current of the order of 10 nA (see
Appendix) generates the effective field of roughly 10 mT.
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FIG. 3. (Color online) The current-induced spin polarization of
heavy holes in a quantum ring subject to the cubic Dresselhaus
(Rashba) SOI, plotted in the upper (lower) panel. The plots are shown
as a function of the SOI parameters and mhh = 0.45m0, N = 1144,

which in the absence of current is equivalent to εF = 10 meV, a radius
of a = 1 μm, and width of w = 50 nm. Here, we assumed a current
of I = 35 nA, which is equivalent to circularly polarized light with
the frequency of ω = 2 × 1014 s−1, and the electric field amplitude
of |E0| = √

60 × 107 Vm−1 (see Appendix).

Keeping in mind that the current is quantized in steps as
a function of the system parameters as discussed above, the
spin polarization computed numerically increases linearly with
the current level up to I = 100 nA, in agreement with the
analytic result. The deviations from the perturbation theory
are quite large for the spin-orbit interaction parameter for
GaAs used above. The nonperturbative numerical results for
the spin polarization are plotted as a function of SOI strengths
for constant electron numbers in Fig. 3. We observe that at
small βh the spin polarization increases quadratically with
SOI as found in the weak SOI limit above but saturates at
higher values. We also observe a sawtoothlike behavior on
top of this trend that is caused by a repopulation of states:
SOI induces a spin polarization when the current bias shifts
the occupation numbers around the Fermi level. For small but
increasing βh, we expect an increasing spin polarization with
SOI at constant current since the state dependence of the spin

FIG. 4. (Color online) Comparison of analytical and numerical
results in the regime of the small Dresselhaus SOI for holes orbiting
in a ring. Upper panel: n2

r � a2/w2. The parameters are the same as
in Fig. 3 in this limit. Lower panel: limit of n2

r � a2/w2 with w = 1
nm. The other parameters are the same as in Fig. 3.

texture increases. At large βh, on the other hand, the angle
of the spin with respect to the z axis θcD(l,nλ) can be large,
corresponding to smaller values of the z component of the
spin. Thus, by further increasing βh, the overall polarization
saturates and even slightly decreases. The jumps reflect level
crossings with increasing βh. In these calculations, the number
of electrons is kept constant (the Fermi energy oscillates).
At such a discontinuity, an electron vacates a high angular
momentum state in favor of a smaller one, which reduces
the total spin polarization. In the regime of small SOI, the
numerical and analytical results for the current-induced spin
polarization agree well (see Fig. 4).

D. Holes with the Rashba SOI

The Hamiltonian of holes in the presence of the Rashba
SOI is [38]

HcR
0 = − �

2

2mhha2
∂2
ϕ

+ iαhe
3iϕ

(
F0 + F1∂ϕ + F2∂

2
ϕ + F3∂

3
ϕ

)
σ−

− iαhe
−3iϕ

(
F0 − F1∂ϕ + F2∂

2
ϕ − F3∂

3
ϕ

)
σ+, (72)
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where F0 = i(R0 − 3R1 + 3R2), F1 = −3R1 + 9R2 − 8R3,
F2 = i(−3R2 + 6R3), and F3 = R3. Ri’s depend on the radial
confinement and are defined in Sec. IV C.

The current operator in spin space is

Î
ϕ

l

e
= 2Eh

a (l′−σ1 + l′+σ2)

− αh

�
(F1 + 2iF2l

′
− + 3F3l

′
−

2)σ−

− αh

�
(F1 − 2iF2l

′
+ + 3F3l

′
+

2)σ+, (73)

where l′+ = l + 1 and l′− = l − 2. Thus, the same procedure
as before leads to the Hamiltonian carrying a ground-state
current. In spin space,

HcR =HcR
0 (l − nλ) |F̄1→F1,F̄0→F0

− 2αhe
iϕF3n

3
λσ− + 2αhF3n

3
λe

−iϕσ+, (74)

where F̄1 = F1 + 3F3n
2
λ and F̄0 = F0 − F2n

2
λ, and we disre-

gard a constant shift of −�
2n2

λ/(2mhha
2) in the Hamiltonian.

Eigenstates are now

ψcR
(l,nλ),+ = eilϕ

(
cos θcR (l,nλ)

2 e−(3i/2)(ϕ)

sin θcR (l,nλ)
2 e(3i/2)(ϕ)

)
; (75)

ψcR
(l,nλ),− = eilϕ

(
− sin θcR(l,nλ)

2 e−(3i/2)(ϕ)

cos θcR (l,nλ)
2 e(3i/2)(ϕ)

)
, (76)

where the texture angle θcR(l,nλ) is

θcR(l,nλ)

= tan−1

{
α̃h

[
2

3
R0 +

(
13

12
− 1

3
l2 + n2

λ − 2

3

n3
λ

l

)
R3

]}
,

(77)

with α̃h = 2mhhαh/(�2R
2/3
3 ) and the energies

Ek,σ = Ea

(
(l − nλ)2 + 1

4
+ σ

(l − nλ)

cos{θcR[(l − nλ),nλ]}
)

.

For small θcR we find, as above,

nλ ≈ − �

4Eh
a

π

e

I

nr

(78)

and a spin polarization in the z direction:

〈σz〉cRIϕ
≈ − εF

Eh
a

π�α2
h

9
(
Eh

aa2
)3

I

e
, (79)

very similar to the Dresselhaus limit, but with a prefactor 1
9 .

Therefore, the above discussions for the small SOI limit hold
for the cubic Rasba Hamiltonian as well. In the lower part
of Fig. 3, we plotted numerical results for larger values of
αh. The values of the SO coupling used in this figure can
be experimentally achieved (e.g., Ref. [26]) by external gate
voltage.

V. CONCLUSIONS

IFE allows in principle ultrafast and nondissipative actua-
tion and eventual switching of magnetization. We investigated

the impact of the SOI on this nonabsorbing “opto-spin”
phenomena. We provided a proof of principle for a mechanism
that is based on the current-induced generation of a spin
polarization that would generate torques in a magnetic sample.
The current bias can be generated by the Lagrange multiplier
method inspired by current-density functional theory. For
electrons moving in quantum rings in the presence of the
Rashba and the Dresselhaus SOIs, the effect vanishes. It
becomes nonzero only when the Kramers’ degeneracy is
broken by an exchange potential or applied magnetic field,
but the effects are still small [35]. On the other hand,
holes in a ring with cubic Dresselhaus and Rashba SOI
display spin polarization under current bias. This polarization
is a competition between two effects. On one hand, with
increasing SOI, the band splitting increases, which amplifies
the magnitude of the polarization. Simultaneously, however,
the z component of the spin of electrons with energies near to
the Fermi level decreases, and therefore the net polarization
decreases. These two might enhance the effect rather than
cancel each other when the spin texture would push the spin out
of the plane. This can be achieved in a ring with an asymmetric
potential in the radial direction, such as a thin slice of GaAs|p-
doped GaAlAs core/shell nanowire. The second Rashba SOI
would pull the spin toward the z direction and lead to
monotonic increase of current-induced spin polarization with
SOI.

Induced polarization in the z direction, calculated in this
paper, could be either parallel or antiparallel to the z axis
depending on the direction of the current. This is consistent
with the IFE in which the effective magnetic field changes
sign with the helicity of light. Here, we focused on the
spin polarization induced by current in a material which is
nonmagnetic. This spin polarization can be measured directly
by pump and Kerr rotation probe measurements. GaMnAs
in the ferromagnetic state is a hole conductor. Here, the
current-induced spin polarization would induce torques on the
magnetic order parameter, eventually causing magnetization
switching. The spin-dependent dynamic Stark effect also
induces torques by circularly polarized light [14]. The two
processes are independent and should be added. They can
be distinguished by tuning the light frequency close to the
energy gap, where the dynamic Stark effect is resonantly
enhanced.

The currents generated by nonresonant light are persistent,
analogous to the diamagnetic currents in conducting rings
induced by dc magnetic fields [23]. While this issue has
not been central to our study, our results imply that the
spin-orbit interaction can induce large paramagnetic correc-
tions to the diamagnetic response. Cantilever-based torsional
magnetometers with integrated mesoscopic rings allow very
sensitive measurements of magnetic susceptibilities [42]. We
suggest that quantum ring arrays made from 2DHGs would be
interesting subjects for such experiments.
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APPENDIX: LIGHT INDUCED CURRENTS

Here, we show how to use the collisionless plasma model
by Hertel [19] to obtain the light-induced current in a
quantum ring. This model can be used for the present system
in the high-frequency limit, in which the path an electron
traverses under a half-cycle of the oscillating light electric
field is much smaller than the characteristic length scales
such as the finite radial thickness or the spin-orbit precession
length.

Hertel finds a circular current as a result of the circularly
polarized light in the form of

jϕ = − i

4e〈n〉ω∇ × [σ ∗E∗ × σE], (A1)

where E is the electric component of the light field and

σ = i〈n〉e2

mω
(A2)

is the high-frequency conductivity of a collisionless plasma,
with 〈n〉 the volume density of the electrons and ω the
light frequency. For circularly polarized light with helicity
� = ±

E × E∗ = �i |E|2 ez.

Thus,

jϕ(r) = �
〈n〉e3

4m2ω3
∇ × (|E(r)|2ez) (A3)

= −�
〈n〉e3

4m2ω3

(
∂ |E (r)|2

∂r

)
eϕ. (A4)

Since this result does not depend on the z coordinate, it holds
for a 2DEG and normally incident light.

In a ring we can project the current to one dimension by
writing the current density

jϕ = j 1D
ext eϕ, (A5)

where

j 1D
ext = 〈R0(r)Z0(z)| jext (r) |Z0(z)R0(r)〉 (A6)

= −�
〈n〉e3

4m2ω3

∫
dr |R0(r)|2 ∂ |E (r)|2

∂r
. (A7)

We consider a laser spot with Gaussian spatial
distribution

E(r) = (ex + �iey)E0 exp

(
−γ r2

2

)
, (A8)

|E|2 = E2
0 exp(−γ r2), (A9)

where E0 is the maximum value of the electric field in the spot
center. Thus, the total current in the ring with radius a then
becomes

I =
∫∫

dz dr j 1D
ext = �γE2

0 exp(−a2γ )
Ne3

4πm2ω3
, (A10)

where we used
∫

dr
∫

dz〈n〉 = N/(2πa), the linear density of
a ring with N electrons. The above current has dimension of
ampere. The result is also valid for the holes (with modified
mass and opposite current direction). The light intensity reads
as, in terms of the electric field,

Intensity = cn′ε
2

|E|2 , (A11)

where c is the velocity of light in vacuum, ε is the dielectric
constant, and n′ the index of refraction. We estimate the current
by assuming ε ≈ 10ε0, n′ ≈ 3. At a typical laser intensity
of 1013 Wm−2 or, equivalently, |E0|2 ≈ 3 × 1015 V2 m−2,
and wavelength/frequency λ′ = 12π μm / ω = 2 × 1014 s−1

used in all-optical switching [43], we find for the current in a
2DHG ring

|I | = 16 nA
E2

0

3 × 1015 V2 m−2

γ exp(−a2γ )

1012 exp(−1) m−2

N

1000
(A12)

×
(

0.45m0

m

)2 (
2 × 1014 s−1

ω

)3

. (A13)
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