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Abstract
MRI images are very useful for detecting diseases, as well as for the treatment of diseases. How-
ever, MRI scanners are usually too expensive for developing countries to purchase and maintain.
Therefore, a less expensive scanner is being developed at Delft University of Technology and Leiden
University Medical Center. Unfortunately, the images which are generated by this low-cost MRI
scanner are contaminated by noise. The MRI images are determined by solving a system of equa-
tions of the form Ax = y, where x is the unknown image. As this system is perturbed, regression
methods can be applied in order to find the best approximate value of x. The ordinary least squares
method solves this system for perturbations in y. Whereas in the MRI case, it appears that both
A and y are perturbed. The total least squares method is often used in order to solve these kind of
perturbed systems of equations. The aim of this thesis is to investigate the abilities of this method
for the purpose of noise reduction in MRI images. It appears that the total least squares method
in combination with regularization operators is able to cancel out a certain amount of noise from
the images. However, no significant advantages compared to the ordinary least squares method are
found.
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1 Introduction
It is impossible to imagine our health care without MRI scanners, as they are a very effective tool
for diagnosing lots of different diseases. Unfortunately, MRI scanners are very expensive and as a
consequence, MRI diagnostics are unavailable for lots of people in developing countries. In order
to make a difference, several researchers at Delft University of Technology and Leiden University
Medical Center are developing a new kind of MRI scanner, as shown in Figure 1. This new scanner
should be affordable and maintainable in third world countries. The ultimate goal is to make the
MRI scanner usable for treatment of children with hydrocephalus (also known as water on the
brain), from which numerous are suffering in developing countries. However, some problems inter-
fere with the proper use of the low-cost MRI scanner. One of the main issues is the large amount
of noise that contaminates the images. In general, regression methods are used to reduce noise.
Therefore, in this thesis we look into a regression method called total least squares. The aim is to
find out if this method can improve the quality of images generated by the low-cost MRI scanner,
this gives rise to the followings research questions:

- How can the total least squares solution be computed?

- Is the total least squares method of interest to our problem?

The remainder of this thesis is structured as follows. In Section 2 we derive the mathematical
model to describe how MRI images are generated. To this end, we present some physical back-
ground information on the workings of an MRI. As the images which result from the mathematical
model are perturbed, regression methods are discussed in Section 3 in order to reduce noise in
general. In Section 4 we explain how the regression methods can be applied to MRI images and
the obtained results are shown in Section 5. Finally, in Section 6 we will formulate answers to the
research questions and give recommendations for future research.

Figure 1: The low-cost MRI scanner. (Photo by F. Auperle.)
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2 MRI
The aim of this section is to derive the mathematical model to describe how MRI images are gener-
ated. Section 2.1 provides some physical background that is needed to understand the functioning
of an MRI scanner. Next, in Section 2.2, we describe how the introduced physical properties are
applied in MRI. In Section 2.3 we show how the functioning of the MRI scanner leads to a measur-
able signal. This signal can be used to generate a 2D image of a slice of the object to be imaged,
which we explain in Section 2.4. Finally, in Section 2.5 we derive the mathematical model from the
obtained signal which is used for image reconstruction. This Section is based on [8] and [3].

2.1 Background theory

Magnetic fields and magnetisation lay at the foundation of the functioning of an MRI scanner.
First, we introduce magnetic fields. A magnetic field is an invisible physical phenomenon which is
caused by charged particles in motion. For example, by electricity flowing through a coil or by a
magnet. Furthermore, it is important to note that a magnetic field exerts a measurable force on
charged particles, which we will use later in this section. Magnetic fields are often denoted by a
vector ~B which describes its direction and magnitude in Tesla (T). Once a charged particle enters a
magnetic field it becomes magnetised, i.e., its behaviour is changed by the magnetic field. Different
particles react differently to a magnetic field. This behaviour is described by magnetisation ~M in
(A·m−1).

Next, we describe an important property of atoms. Atoms consist of a nucleus and electrons or-
biting around the nucleus. The nucleus of an atom consists of neutrons and at least one proton,
whose total number is approximately the atomic weight. Atoms with odd atomic weight are known
to possess a non-zero spin, which can be interpreted as the rotation of a particle about its own
axis. If a spinning particle is partially charged, it will generate its own magnetic field.

Once a spinning particle enters an external magnetic field, which is the case during an MRI scan,
several things happen. First, the spin aligns either parallel or anti-parallel with the direction of
the external magnetic field. Each spinning particle is most likely to align parallel to the field, since
this is the lower energy state. Secondly, the spinning particle starts precessing about the axis of
the external magnetic field, as shown in Figure 2. Precession is the change in the direction of the
axis of a spinning particle.

x
y

z

Figure 2: Precession of a spinning particle around the z-axis.

The frequency ω (in Hz) of this precession is proportional to the strength of the magnetic field.
This relation is described by the Larmor frequency

ω = γ| ~B|, (2.1)
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where γ is the gyromagnetic ratio in rad s−1T−1, which is given for different particles.

2.2 Theory behind MRI scanners

Humans consist of numerous hydrogen atoms, these atoms are very useful for generating MRI
images. The nucleus of a hydrogen atom consists of a single proton and hence has odd atomic
weight. Therefore the hydrogen atom, also referred to as proton, possesses a spin. Since protons are
charged and spinning particles, they each generate a microscopic magnetic field. As the direction
of these magnetic fields is random without the presence of an external magnetic field, the net
magnetization inside the human body is approximately zero. However, this changes when someone
is subjected to a magnetic field, which is the case during an MRI scan. MRI scanners are designed
to generate a strong static homogeneous magnetic field ~B0(r), where r = (x, y, z). This field is
applied in the z-direction, meaning ~B0(r) = B0~k, with ~k the unit vector in the z-direction. Due
to this applied field, the protons inside the body align either parallel or anti-parallel to the field
and a net magnetization arises. The net magnetization is in the z-direction, as can be observed
from Figure 3a and is called the longitudinal magnetization. Furthermore, the protons will precess
about the field’s axis at the following Larmor frequency

ω0 = γB0. (2.2)

Note that the protons do not precess in phase relative to each other.

x
y

z

(a) Spins are precessing out of phase, hence only
a net longitudinal magnetization exists.

x
y

z

(b) Spins are precessing in phase, resulting in a
net transverse magnetization.

Figure 3: The direction and phase of spins result in a net magnetization.

It is in the interest of MRI to also generate a transverse magnetization, i.e., in the (x, y) plane. In
particular, changes in magnetization are used to generate MRI images. The transverse magnetiza-
tion is obtained using a Radio Frequency (RF) system. The RF system generates another magnetic
field, which we call ~B1(r, t). This field is switched on and off during an MRI scan and therefore
depends on the time t. The RF system consists of a coil that emits waves in the radio frequency
range. The energy provided by these waves, makes the protons precess in phase. Consequently,
a transverse magnetization arises, as can be noted from Figure 3b. Furthermore, the radio fre-
quency waves cause some of the spinning protons to flip into the higher energy state. As a result,
the longitudinal magnetization decays. After this so-called RF excitation period, the longitudinal
magnetization will regrow, whereas the transverse magnetization dissolves. Since this changing
magnetization is important for generating MRI images, we will observe the changing behaviour of

4



the magnetization ~M(r, t) that is caused by adding the ~B1(r, t) field. Let

~M(r, t) = Mx(r, t)~i+My(r, t)~j +Mz(r, t)~k, (2.3)

where ~i,~j,~k denote the unit vectors in the x, y and z direction, respectively. Then the transverse
magnetization can be defined as follows

Mxy(r, t) = Mx(r, t) + i ·My(r, t), (2.4)

where i is the complex constant. The change of magnetization in time in the presence of an applied
magnetic field ~B(r, t) is described by the Bloch equations. The Bloch equation for MRI is of the
following form

d ~M(r, t)
dt = ~M(r, t)× γ ~B(r, t)− Mx(r, t)~i+My(r, t)~j

T2
− (Mz(r, t)−M0)~k

T1
, (2.5)

where M0 is the equilibrium value of ~M(r, t) when only the magnetic field ~B0(r) is present. T1
and T2 are relaxation times, i.e., T1 represents the time in seconds that is needed to recover 63%
of the longitudinal magnetization. Whereas T2 is the time in seconds that is needed for a 63%
decay of the transverse magnetization. Once the RF excitation period is completed, the precessing
protons will gradually start precessing out of phase again. As a result the transverse magnetization
decreases exponentially with a factor e−t/T2 . Let t = 0 be the time when the RF excitation period
is ended, then the transverse magnetization for t > 0 is given by

Mxy(r, t) = Mxy(r, 0)e−t/T2(r)e−i(γBz(r)+ω0)t. (2.6)

Here Mxy(r, 0) is what forms the MRI image and Bz(r) denotes the longitudinal component of the
present magnetic field ~B. A detailed description of this derivation is included in Appendix A.1.

2.3 Signal obtained by MRI scanners

Next, one can use this change in magnetization to convert it into a measurable signal. This
conversion is carried out by another coil of the RF system. According to Faraday’s law of induction,
a changing magnetic field will create an electromotive force in a nearby coil. From this law it follows
that the induced voltage V (t) in the RF coil is given by

V (t) = − ∂

∂t

∫
object

c(r)
(
~B(r) · ~M(r, t)

)
dr, (2.7)

with c(r) the coil response pattern. ~B(r) = ~Bx(r)~i+ ~By(r)~j + ~Bz(r)~k denotes the magnitude and
direction of the magnetic field at position r. As a result, the obtained signal is as follows

S(t) =
∫

object
c(r) ~Bxy(r)Mxy(r, 0)e−t/T2(r)e−iγBz(r)t dr. (2.8)

Here, ~Bxy(r) is the magnetic field in the transverse plane. For a detailed description of this
derivation, see Appendix A.2.

2.4 Generating 2D images

In order to generate 2D images from the received signals, MRI scanners contain a gradient system.
This system consists of three orthogonal coils, which are used to generate a magnetic field whose
z component varies linearly at different positions. When we want to create an image in the (x, y)
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plane, we first have to select a slice of the object to be imaged. This is carried out using the gradient
coil in the z-direction. In this selected slice, the experienced gradient field is homogeneous. Since
frequency is proportional to the strength of the magnetic field, all spins in the selected slice precess
at the same rate, as in Figure 4a. This makes it impossible to distinguish their signals. However,
the gradients in the other directions are used to solve this problem. While switching on the gradient
field in the x-direction, a linearly varying magnetic field from left to right, as in Figure 4, arises.
As a result, the spins that experience a stronger magnetic field will precess at a higher frequency.
Using the gradient field that is applied in the y-direction, a linearly varying magnetic field from
bottom to top arises. Hence, it causes spins at different rows of the slice, as sketched in Figure
4, to precess at a different rate. Opposed to the x-gradient, the y-gradient is quickly turned off.
As a result, the y-gradient makes spins in distinct rows to precess out of phase, which is shown in
Figure 4b. In conclusion, all spins in the selected slice are precessing at different frequencies and
have phase shifts. Then, methods known as phase and frequency encoding can be used to localize
the signals.

(a) The direction ofMxy(r, t) caused by the spins
on different (x, y) positions in the selected slice.

(b) The influence on the left image after the y-
gradient has quickly been switched on and off.

Figure 4: The influence of the y-gradient on a selected slice of the object to be imaged.

2.5 Mathematical model

From the signal obtained in Equation (2.8), the goal is to estimate the unknown continuous function
x(r) := Mxy(r, 0), which represents the MRI image. We can approximate Mxy(r, 0) using a finite
series expansion. Thus,

x(r) =
N∑
j=1

xj(r)b(r− rj), (2.9)

where b is the rect(·) basis function, rj denotes the center of the translated jth basis function and
N is the number of pixels. Substituting Equation (2.9) into Equation (2.8), we obtain the following
equation for every ith sample of the signal at time ti

S(ti) =
N∑
j=1

aijxj(r), (2.10)

for i ≥ 1 and
aij =

∫
object

b(r− rj)c(r) ~Bxy(r)e−ti/T ∗2 (r)e−iγBz(r)ti dr. (2.11)

Here, T ∗2 (r) represents T2 in the vicinity of field inhomogeneities. Since basis functions are usually
highly localized, we can use ’center of pixel’ approximations, hence aij can be denoted as follows

aij = c(rj) ~Bxy(rj)e−ti/T
∗
2 (rj)e−iγBz(rj)ti . (2.12)
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The measured signals of MRI scans, as described by Equation (2.10), are contaminated by noise.
Thus the obtained signal yi at the ith sample is given by

yi = S(ti) + gi. (2.13)

Here, gi represents the Gaussian noise which is present at the ith sample. This leads to the following
perturbed system of equations

y = Ax + g, (2.14)

where the matrix entries of A are given by Equation (2.12). In addition, we assume the coil
response pattern to be constant for a particular pixel. Also, the magnetic field is considered to be
homogeneous for a certain pixel. Furthermore, note that T ∗2 , which is in the order of thousands
of milliseconds, is very long compared to ti. Hence, the most interesting part of the MRI signal is
given by

aij ∝ e−iγBz(rj)ti . (2.15)
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3 Regression analysis

In the previous section we obtained the following system of equations

Ax = y, (3.1)

with A ∈ Cm×n, m > n the coefficient matrix, x ∈ Cn is the vector that contains the unknown
pixel values and y ∈ Cm contains the measured signals. In practice, it is difficult to find x as the
system is perturbed, i.e., A and y include noise. As a result, it is no longer possible to determine x
with certainty, hence we approximate x. In order to find an approximation, regression methods can
be applied. In Section 3.1 we briefly discuss the ordinary least squares method. Next, in Section
3.2 we introduce the total least squares method and show how it can be used to compute a solution
to a system as described above. In Section 3.3 it is shown how the power method provides an
alternative way of computing the total least squares solution. Finally, in Sections 3.4 and 3.5 some
examples about the difference between the least squares and total least squares methods and their
performances are shown. Sections 3.1, 3.2 and 3.4 are based on [11] and [9].

3.1 Least squares

The least squares (LS) method assumes that perturbations in a system as described by Equation
(3.1) are caused by errors in y only. Hence, the variables in the coefficient matrix A are considered
to be free of error. Assuming that A has full column rank, i.e., all columns of A are linearly
independent, the unique least squares solution xls is given by

xls = (A∗A)−1A∗y, (3.2)

where A∗ denotes the conjugate transpose of A. The LS method can be reformulated as it aims to
determine a correction ∆y to y such that the system Ax = y + ∆y has an exact solution and ∆y
is as small as possible. Precisely, the least squares solution is obtained by minimizing the following
problem

min
∆y∈Cm

||∆y||2, subject to y + ∆y ∈ R(A). (3.3)

Here, || · ||2 denotes the 2 norm and R(A) is the column space of A. When a minimizing ∆y is
found, every x that satisfies Ax = y + ∆y is called an LS solution.

3.2 Total least squares

Opposed to LS, the total least squares (TLS) method assumes that besides y, the matrix A is
perturbed as well. Both the errors on A and y are assumed to be identically distributed. Hence, it
treats errors in both A and y equally. In order to find the best approximate solution to Equation
(3.1), TLS searches for ∆A and ∆y such that (A + ∆A)x = y + ∆y has an exact solution. TLS
optimizes the following problem

min
∆A∈Cm×n, ∆y∈Cm

|| [∆A ∆y] ||F subject to (y + ∆y) ∈ R(A+ ∆A). (3.4)

Here, ||A||F is the Frobenius norm of an arbitrary matrix A, which is defined as
√
trace(A∗A),

where trace(A∗A) is the sum of the elements on the main diagonal of A∗A. Once minimizing ∆A
and ∆y are found, then any x satisfying (A + ∆A)x = y + ∆y is called a TLS solution. In the
remainder of this subsection, we derive a basic TLS solution to the perturbed system. In order to
do so, we use the singular value decomposition.
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3.2.1 Singular value decomposition

The singular value decomposition (SVD) [4] is often used to determine a total least squares solution.
One of the advantages of this decomposing method, is that it can be applied to any m× n matrix
A. However, computing the SVD of large matrices becomes computationally expensive. The SVD
factorizes the matrix A of rank r into the following product of matrices

A = UΣV ∗, with Σ =
[
Σr 0
0 0

]
.

Here, U = [u1, ..., um] ∈ Cm×m and V ∗ = [v∗1, ..., v∗n] ∈ Cn×n are both unitary matrices, i.e.,
UU∗ = U∗U = I and V V ∗ = V ∗V = I. The columns of U are called the left singular vectors of A
and the columns of V are the right singular vectors of A. Furthermore, Σr ∈ Rm×n is a diagonal
matrix that contains the singular values σ1 ≥ · · · ≥ σr > 0 of A.

The SVD and eigen decomposition of a matrix A ∈ Cm×n are closely related. Let UΣV ∗ be the
SVD of A, then

A∗A = V ΣTU∗UΣV ∗

= V ΣTΣV ∗

= V Σ2V ∗.

Since V ∗ is a unitary matrix, i.e., V ∗ = V −1, the notation above is equivalent to the eigen decom-
position of A∗A, where the elements on the diagonal of Σ2 are the eigenvalues. Hence, it follows
that the right singular vectors of A are the eigenvectors of A∗A. Furthermore, the singular values
of A are the square root of the eigenvalues of A∗A.

3.2.2 Solution

Next we can use the SVD to compute the TLS solution. First, note that Equation (3.1) can be
rewritten as follows [

A y
] [ x
−1

]
= 0. (3.5)

For ease of notation, define C =
[
A y

]
where the columns of A and y are concatenated horizon-

tally. Then, applying the singular value decomposition to C, results in C = UΣV ∗. Next, suppose
that A is of full column rank, i.e., A has n linearly independent columns. If no exact solution to
Equation (3.1) exists, y is not in the column space of A. Consequently, the matrix C is of row rank
n + 1. In order to find a solution to the system, we need to reduce the rank of the rows of C to
n. The following theorem adjusted to complex matrices states that the best rank n approximation
can be found, using only the n largest singular values and their corresponding singular vectors.

Theorem Eckart-Young-Mirsky. Let the SVD of C ∈ Cm×n, m > n be given by C =∑r
i=1 σiuiv

∗
i , with r = rank(C). If k < r and Ck =

∑k
i=1 σiuiv

∗
i , then

min
rank(D)=k

||C −D||2 = ||C − Ck||2 = σk+1.

Proof
This proof makes use of [10] and [2]. Let D ∈ Cm×n be an arbitrary matrix with rank(D) = k. We
have to show that

||C −D||2 ≥ ||C − Ck||2.
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As D is of rank k, it follows that dim Null(D) = n−k. Moreover, the subspace of Cn that consists of
the k+1 right singular vectors of C corresponding to the k+1 largest singular values, v1, . . . , vk+1,
is of rank k + 1. Meaning that

dimNull(D) + dim([v1, ..., vk+1]) = n− k + k + 1 > n.

Since all vectors from both of these subspaces are part of Cn and the sum of their dimensions is
bigger than n, they must have a non-trivial intersection. Hence, there must be an x ∈ Null(D) ∩
R([v1, ..., vk+1]). More specifically, there must be an x of unit length, i.e., ||x||2 = 1. Suppose x is
not of unit length, in this case it holds that x/||x|| ∈ Null(D) and x/||x|| ∈ R([v1, ..., vk+1]). Thus
x can be scaled to a vector of unit length. Hence, we get the following

||C −D||22 ≥ ||(C −D)x||22
= ||Cx||22
= (Cx)∗Cx
= x∗V ΣU∗UΣV ∗x
= (V ∗x)∗Σ2(V ∗x)

=
k+1∑
i=1

σ2
i ||v∗i · x||21

≥ σ2
k+1.

In the last step, we used that the singular values are denoted in descending order. Furthermore,
the 2 norm of a matrix is defined to be its largest singular value. As a result, we get

||C − Ck||22 = ||
n∑
i=1

uiσiv
∗
i −

k∑
i=1

uiσiv
∗
i ||22 = ||

n∑
i=k+1

uiσiv
∗
i ||22 = σ2

k+1,

since σk+1 denotes the largest resulting singular value of
∑n
i=k+1 uiσiv

∗
i . We obtain,

||C −D||2 ≥ ||C − Ck||2 = σk+1.

As a result, we find that the best rank n approximation of C is given by
∑n
i=1 uiσiv

∗
i . Multiplying

this lower rank n approximation of C by the vector vn+1 yields
n∑
i=1

uiσiv
∗
i vn+1 = 0,

where we used that V is a unitary matrix, i.e., vi · vj = 0 if i 6= j. Hence, [A y]vn+1 = 0. In
order to obtain the TLS solution as formulated in Equation (3.5), the vector vn+1 has to be scaled.
Consequently, we find that the total least squares solution xtls is given by

xtls = − 1
vn+1,n+1


vn+1,1
vn+1,2

...
vn+1,n+1

 , (3.6)

if vn+1,n+1 6= 0. Here vn+1,i denotes the ith entry of the right singular vector that corresponds to
singular value σn+1.
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3.3 Power method

It follows from Equation (3.6) that the TLS solution can be found using only the right singular
vector of C that corresponds to its smallest singular value σn+1. This observation can be used
in order to compute the TLS solution differently and thereby simplify the needed calculations.
Hence, the TLS solution can be computed by the power method [1]. The power method computes
the (in absolute value) largest eigenvalue λmax of a diagonalizable matrix and the corresponding
eigenvector without decomposing the matrix.

Since the eigenvectors and singular vectors of a matrix are closely related, the power method
can also be used to find the right singular vector of C that corresponds to its largest singular
value. However, we are interested in the right singular vector of C that corresponds to the smallest
singular value. Equivalently, we want to find the eigenvector of C∗C that corresponds to its smallest
eigenvalue. In order to do find this eigenvector of C∗C, we have to make some slight alterations. A
scalar µ must be found such that λmax−µ ≤ 0. Then the method, in this case known as the shifted
power method, converges to the eigenvector of C∗C − µI which corresponds to the (in absolute
value) largest eigenvalue of C∗C − µI. Next, we show that this can be used to obtain the desired
eigenvector of C∗C. Suppose v is an eigenvector of C∗C − µI corresponding to eigenvalue λ, then

(C∗C − µI)v = λv
C∗Cv− µv = λv

C∗Cv = (λ+ µ)v.

Hence, C∗C and C∗C −µI have the same eigenvectors, but different eigenvalues. The scalar µ can
be found using the Frobenius norm of C as follows

µ := ||C||2F
= trace(C∗C)
= trace(V Σ2V ∗)
= trace(Σ2V ∗V )
= trace(Σ2)

=
n∑
i=1

σ2
i

≥ σ2
max,

where σmax denotes the largest singular value of C and therefore σ2
max equals the largest eigenvalue

λmax of C∗C.

3.3.1 Algorithm

The power method is an iterative algorithm. We will shortly describe how the algorithm computes
the eigenvector of an arbitrary matrix A corresponding to the in absolute value largest eigenvalue.
The first step of the algorithm is to select a starting vector q0, which might be chosen at random.
At the following step, the matrix A is multiplied by this vector and then normalized in order to
obtain the vector q1. This process is repeated until the algorithm has converged to the desired
eigenvector that corresponds to the eigenvalue of largest magnitude. Hence, the vector obtained at
the kth iteration step is as follows:

qk+1 = Aqk
||Aqk||

,

with k ≥ 0.
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3.3.2 Convergence

Next, we will analyse the convergence of the power method. First, suppose that |λ1| > |λ2| ≥ ... ≥
|λm| are the eigenvalues of an arbitrary matrix A. Suppose that the corresponding eigenvectors of A
form a basis for Cm. Then, the initial guessed vector q0 is a linear combination of the corresponding
eigenvectors v1, ...,vm. This assumption holds for the matrix C∗C as described above, as it is a
diagonalizable matrix. Hence,

q0 = c1v1 + c2v2 + ...+ cmvm, ci ∈ R. (3.7)

To obtain convergence, q0 should have a component in the direction of the eigenvector corresponding
to the largest eigenvalue in magnitude. Hence, we assume that c1 6= 0. Then

Akq0
||Akq0||

= Ak(c1v1 + c2v2 + ...+ cmvm)
||Ak(c1v1 + c2v2 + ...+ cmvm)||

= c1A
kv1 + c2A

kv2 + ...+ cmA
kvm

||c1Akv1 + c2Akv2 + ...+ cmAkvm||

= c1λ
k
1v1 + c2λ

k
2v2 + ...+ cmλ

k
mvm

||c1λk1v1 + c2λk2v2 + ...+ cmλkmvm||

=
λk1

(
c1v1 + c2

(
λ2
λ1

)k
v2 + ...+ cm

(
λm
λ1

)k
vm

)

||λk1

(
c1v1 + c2

(
λ2
λ1

)k
v2 + ...+ cm

(
λm
λ1

)k
vm

)
||

= ±
c1v1 + c2

(
λ2
λ1

)k
v2 + ...+ cm

(
λm
λ1

)k
vm

||c1v1 + c2

(
λ2
λ1

)k
v2 + ...+ cm

(
λm
λ1

)k
vm||

.

Since |λ1| is a dominant eigenvalue by assumption, this expression goes to ± c1
|c1|v1, where v1

is normalized, as k tends to infinity. Hence, the power method converges to a multiple of the
eigenvector that corresponds to the largest eigenvalue in magnitude. When other eigenvalues are
in absolute value close to |λ1|, the power method will converge more slowly.

3.4 Difference between least squares and total least squares

To gain some insight into the differences between LS and TLS, we will consider an example which
is shown in Figure 5. In this example, we are dealing with an overdetermined system of equations,
i.e. there are more equations than unknowns. Since no exact solution to this system exists, the aim
is to find a straight line that best fits the twenty perturbed data points. In this example, the line
is passing through the origin, thus the slope of the curve is the only parameter to be estimated.
The least squares method determines the best approximation by correcting only the y-coordinate
of each point, which can be seen in Figure 5a. Whereas Figure 5b shows that the total least squares
method aims to find the best curve by adjusting both the x-, and y-coordinates. Every ∗ in Figure
5 denotes what the corrected value of the perturbed data point is.
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(a) Least squares solution. (b) Total least squares solution.

Figure 5: Least squares and total least squares solutions of a perturbed system of equations.

From this example, it can be observed that the LS and TLS errors are characterized in different
ways. Leading to fairly different results in this case. The least squares error is defined by the
sum of the squared vertical distances between each measured data point and its corresponding
approximated data point on the line. Whereas the TLS error minimizes the sum of the squared
orthogonal distances between a data point and its corrected value.

3.5 Examples

Next, we present some examples for which we determine the LS and TLS solutions. The aim of these
examples is to show what method derives the best solution compared to the exact solution. Both
LS and TLS will be applied to an overdetermined system of equations as described by Equation
(3.1). However, in this case there exists an exact solution to the system, which is known beforehand.
Subsequently, normally distributed noise with zero mean and variable variance will be added to
the system. The noise is added to either the measurement vector y or both y and the coefficient
matrix A. Next, LS and TLS are applied to the perturbed system in order to find the LS and TLS
solution, respectively. After every test, the results show what method gave the best approximation
to the exact solution. Here, the best approximation is defined to be the one with smallest Euclidean
distance to the exact solution. This set-up will be repeated 200000 times for each example. The
final results show how often each method gave the best solution (in percentages). In all examples, a
cut-off value of 10−10 is used, meaning if the errors differ at most 10−10, the solutions are considered
to be equal.

3.5.1 Polynomial regression

This first example is similar to the example we looked at in Section 3.4. Again, the aim is to fit a
polynomial to the perturbed system of equations. In this case, the system is as follows,

1 a1 a2
1 . . . an1

1 a2 a2
2 . . . an2

...
...

... . . . ...
1 am a2

m . . . anm



x1
x2
...
xn

 =


y1
y2
...
ym

 , (3.8)
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where m > n. Solving this system is equivalent to fitting a n-th degree polynomial. This can be
described as follows

yi =
n∑
j=0

aji · xj ,

for i ∈ {1, ...,m}.

In the example underneath, the aim is to fit a first degree polynomial y = α + βx to a set of
perturbed data points. In order to do so, the two parameters α and β, have to be estimated. The
system we use in the example is as follows

1 −2.0
1 −1.8
...

...
1 1.8


[
α
β

]
=


−1.3
−1.1
...

2.5

 , (3.9)

with the exact solution [α, β]T = [0.7, 1.0]T . The code of this example is given in Appendix B.2.
Next we add Gaussian noise to the measurements in the vector y on the right-hand side of Equation
(3.9) with different values of the standard deviation sy. The data in the matrix A are free of error.
The results that are obtained after applying LS and TLS to this system are shown in Table 1.

Table 1: The results after applying LS and TLS to fit a first degree polynomial to a perturbed
system of equations. The first column shows the value of the standard deviation sy of the normally
distributed noise which is applied to the measurements in y. The second and third column show
how often the LS and TLS method gave the best solution in percentages, respectively.

sy LS (in %) TLS (in %)
1.00 88.7 11.3
0.50 71.0 29.0
0.10 54.3 45.7
0.05 52.1 47.9
0.01 50.1 49.9

It is clear that for larger values of the sy, the least squares method performs better than the
total least squares method. As only vertical perturbations are added to y, which in turn will be
minimized by the least squares method, this result is as expected. For smaller values of sy, both
methods become almost equally likely to give the best solution. Next, also the data matrix A will
be perturbed with normally distributed noise with zero mean and different values of the standard
deviation sA. The aim is still to fit a first degree polynomial as explained above. The obtained
results are shown in Table 2.
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Table 2: The results after applying LS and TLS to fit a first degree polynomial to a perturbed
system of equations. The first and second column show the value of the standard deviations sA and
sy of the normally distributed noise which is applied to the measurements in A and y, respectively.
The third and fourth column show how often the LS and TLS method gave the best solution in
percentages, respectively.

sA sy LS (in %) TLS (in %)
1.00 1.00 38.4 61.6
0.50 0.50 32.6 67.4
0.10 0.10 45.6 54.4
0.05 0.05 47.8 52.2
0.01 0.01 49.5 50.5

The results are different when the data matrix A contains normally distributed noise as well,
compared to the case where only y is perturbed. In this case, we see that for larger values of the
standard deviation of the noise, TLS performs better than LS, as expected. For smaller values of
sA and sy, the two methods give similar results, as in the first scenario.

3.5.2 Exponential regression

Next, we consider an example which corresponds to the case of images generated by an MRI
scanner. As observed in Equation (2.15), the obtained signal is a combination of sines and cosines
corresponding to different frequencies fi at different points in time tj , with i ∈ {1, ...,m} and
j ∈ {1, ..., n}. Therefore it might be interesting to have a look at an example of the following form,
where the entries of the coefficient matrix A are e2πifitj . Hence, the overdetermined system takes
the following form 

e2πif1t1 e2πif1t2 . . . e2πif1tn

e2πif2t1 e2πif2t2 . . . e2πif2tn

...
... . . . ...

e2πifmt1 e2πifmt2 . . . e2πifmtn



x1
x2
...
xn

 =


y1
y2
...
ym

 , (3.10)

withm > n. For this example, we used f = [0, ..., 6]T and t = [0, 1
175 ,

2
175 , ..., 1]T . The exact solution

is chosen as x = [2, 1.5, 4, 2.5, 3.5, 2, 1]T , which is used to determine y. The code which is used for
this example is given in Appendix B.3. The results after applying both LS and TLS to this system
when only the measured data in y are perturbed with Gaussian noise and different values of the
standard deviation sy, are shown in Table 3.

Table 3: The results after applying LS and TLS to the system described in Equation (3.10). The
first column shows the value of the standard deviation sy of the normally distributed noise which
is applied to the measurements in y. The second and third column show how often the LS and
TLS method gave the best solution in percentages, respectively.

sy LS (in %) TLS (in %)
1.00 97.5 2.5
0.50 83.7 16.3
0.10 57.5 42.5
0.05 54.0 46.0
0.01 50.9 49.1

As in the previous example, LS performs better than TLS for larger values of sy. The smaller the
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standard deviation of the noise becomes, the more equally the methods perform. Next, also the
data matrix A will be perturbed with Gaussian noise with zero mean and different values of the
standard deviation sA. The aim is still to find the best solution x to the system which is described
in Equation (3.10). The obtained results after applying both LS and TLS are shown in Table 4.

Table 4: The results after applying LS and TLS to the system described in Equation (3.10). The
first and second column show the value of the standard deviations sA and sy of the normally
distributed noise which is applied to the measurements in A and y, respectively. The third and
fourth column show how often the LS and TLS method gave the best solution in percentages,
respectively.

sA sy LS (in %) TLS (in %)
1.00 1.00 23.4 76.6
0.50 0.50 0.0 100.0
0.10 0.10 15.0 85.0
0.05 0.05 30.1 69.9
0.01 0.01 45.7 54.3

From the results it follows that TLS performs better than LS, especially for larger values of sA and
sy. When the standard deviation of the noise becomes small, there is almost no noise, hence both
methods are almost equally likely to give the best result.

3.5.3 Exponential regression with specific noise

In the previous example, Gaussian noise has been added to the data matrix A. However, it is
more likely that a specific part of the entries of A contain noise. For example, the frequencies may
contain noise. Therefore, this example focuses on errors in fi, as described in Equation (3.10),
instead of errors on the data matrix itself. Applying both LS and TLS to this perturbed system
for different values of the standard deviation sf of the noise applied to f , leads to the results as
shown in Table 5.

Table 5: The results after applying LS and TLS to the system which is described in Equation
(3.10). The first and second column show the value of the standard deviations sf and sy of the
normally distributed noise which is applied to the measurements in f and y, respectively. The third
and fourth column show how often the LS and TLS method gave the best solution in percentages,
respectively.

sf sy LS (in %) TLS (in %)
1.00 1.00 100.0 0.0
0.50 0.50 100.0 0.0
0.10 0.10 94.2 5.8
0.05 0.05 82.5 17.5
0.01 0.01 58.0 41.9

The least squares method clearly outperforms the total least squares method. As in previous
examples, the added noise is normally distributed. However, in this case, the normally distributed
noise is added to a component of an exponential power. Hence, the noise on the data matrix A is
not Gaussian any more, whereas the noise on the measurements in y still are. As both sides of the
equation are no longer perturbed the same way, this may partially explain the unexpected results.
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4 Least squares and total least squares applied to MRI data
The examples we considered in Section 3.5 were included to show differences in the LS and TLS
solution of a perturbed and overdetermined set of equations. However, these examples do not
necessarily represent the case where actual MRI data is used. Therefore, the aim of this section
is to show how TLS can be used to potentially improve the quality of MRI images, where data
from the LUMC MRI scanner is used. In Section 4.1 we describe how the images are obtained
in this case. Next, in Section 4.2 we introduce regularization, which is used to cancel out noise
while computing the LS and TLS solution. In Section 4.3 and Section 4.4 it is explained how the
corresponding LS and TLS solutions can be derived.

4.1 Fast Fourier transform

MRI images are often obtained using a Fourier transform [12], i.e., applying a Fourier transform
to the measured signals leads to the desired image. Computing a Fourier transform can be carried
out by multiplying the measured signals with a discrete Fourier transform (DFT) matrix, which
is a (scaled) unitary matrix of full column rank. However, this can be a very time-consuming
process. A more efficient way of computing the Fourier transform of a signal, is by using the fast
Fourier transform (FFT). This algorithm decomposes the DFT matrix in order to compute the
Fourier transform and is therefore very efficient. The image, i.e., x is determined using a inverse
fast Fourier transform (IFFT) such that x = IFFT(y), where y contains the measured signals. As
these signals are perturbed, the obtained image contains noise as well.

4.2 Regularization

In an attempt to cancel out as much noise as possible from the obtained image x, a regularization
operator L can be added to the problem. Regularization allows for adding prior knowledge about
the solution. For example, when it is known that neighbouring pixel values barely differ, a first
order difference matrix can be used as a regularization operator. The least squares method as
presented by Equation (3.3), becomes the following problem when adding regularization [5]

min
∆y∈Cm

||∆y||2 + τ ||Lx||2, subject to y + ∆y ∈ R(A). (4.1)

Here, τ is a regularization parameter, which can be used to either limit or amplify the influence
of the regularization operator L. Choosing a useful regularization parameter is not trivial, in [6] a
method is described which can be used in an attempt to choose a good regularization parameter.
Moreover, Equation (4.1) can also be presented as

min
∆y∈Cm

||∆y||2, subject to y + ∆y ∈ R(A) and ||Lx||2 ≤ δ, (4.2)

where δ is a positive constant. The corresponding normal equation is given by

(A∗A+ τ2L∗L)x = A∗y. (4.3)

Similarly, the total least squares method as presented by Equation (3.4), becomes the following
problem when adding regularization

min
∆A∈Cm×n, ∆y∈Cm

|| [∆A ∆y] ||F , subject to y + ∆y ∈ R(A+ ∆A) and ||Lx||2 ≤ δ. (4.4)

Different choices can be made for the operator L. We use two regularization operators, Dx and
Dy. Here, Dx is a first order difference matrix, i.e., a matrix with 1 on the main diagonal and -1 on
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the super diagonal. Hence, Dx allocates pixels next to each other the same value. Analogously, the
first order difference matrix Dy is added in order to assign pixels above and below each other the
same value. Thus, Dy is a matrix with 1 on the main diagonal and -1 on the diagonal that starts p
positions to the right of the main diagonal. Here, p denotes the number of pixels that a row of the
image contains. Hence, as can be observed from Equation (4.3), the aim is to determine the best
approximate solution x such that FFT(·)

τDx

τDy

x =

y
0
0

 . (4.5)

4.3 Regularized least squares

The corresponding normal equation for the system described in Equation (4.5) is as follows

(I + τ2D∗xDx + τ2Dy∗Dy)x = IFFT(y), (4.6)

note that IFFT(y) is the original obtained image, which is contaminated by noise.

4.4 Regularized total least squares

In order to find the TLS solution, we again have to determine a shift µ to make sure that the power
method converges to the smallest singular value and the corresponding right singular vector of

C :=

FFT(·) y
τDx 0
τDy 0

 . (4.7)

As the notation of C is not fully represented by matrix and vector notation, we cannot use the
Frobenius norm of C in order to determine the shift µ. However, we can determine C∗C and use
Gershgorin’s circle theorem in order to find bounds for the largest eigenvalue λmax of C∗C. For
notational convenience, let F (·) = FFT(·) and F ∗(·) = IFFT(·), then

C∗C =
[
F ∗(·) τD∗x τD∗y
y∗ 0T 0T

]F (·) y
τDx 0
τDy 0

 (4.8)

=
[
I + τ2D∗xDx + τ2D∗yDy F ∗(y)
(F ∗(y))∗ y∗y

]
. (4.9)

Using Gershgorin’s theorem, we find the following bound for the eigenvalues λ for the top part of
C∗C,

|λ− (1 + 2τ2 + 2τ2)| ≤ 2τ2 + 2τ2 + max |F ∗(y)|.

For the bottom part of C∗C we find that

|λ− y∗y| ≤
n2+1∑
i=1
|(F ∗(y))∗i |,

where n2 + 1 is the number of columns of C∗C. Hence, we find that

λmax ≤ µ := max{1 + 8τ2 + max |F ∗(y)|, y∗y +
n2+1∑
i=1
|(F ∗(y))∗i |}. (4.10)
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5 Results
In this section we consider three different test problems. Each of these cases provide an image
which is generated by the low-cost MRI scanner from Leiden University Medical Center. We will
apply both the regularized least squares method (RLS) and regularized total least squares method
(RTLS) to these cases and discuss the obtained results. The code which is used to obtain the results
is in Appendix B.4.

5.1 Test case Orange

The first test case is an image of an orange. The original image which is obtained by applying the
inverse fast Fourier transform to the measured signals, is as follows.

Figure 6: The original MRI image of the test case Orange, which is obtained by applying the inverse
fast Fourier transform to the measured MRI signal.

The image shows roughly the contour of the orange, while it is clear that a lot of noise is present.
In an attempt to remove as much noise as possible, we will apply both RLS and RTLS.

5.1.1 Regularized least squares

In this subsection we will observe the results when RLS is applied. Hence, the aim is to solve
the system as described in Equation (4.5), where y contains the measured signals of the Orange
test case. We will use different values of the regularization parameter τ , which are chosen for
demonstration purposes. The obtained results are shown in Figure 7.
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(a) τ = 0.1. (b) τ = 0.5.

(c) τ = 1. (d) τ = 2.

(e) τ = 3. (f) τ = 10.

Figure 7: Results after applying the regularized least squares method to the test problem Orange
for different values of the regularization parameter τ .
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From the results, it can be observed that for larger values of τ , the images are less contaminated
by noise. On the other hand, the images become blurry as the values of neighbouring pixels get
closer.

5.1.2 Regularized total least squares

When using the same values for the regularization parameter τ as with RLS, the following RTLS
solutions are obtained for the test problem Orange.

(a) τ = 0.1. (b) τ = 0.5.

(c) τ = 1. (d) τ = 2.
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(e) τ = 3. (f) τ = 10.

Figure 8: Results after applying the regularized total least squares method to the test problem
Orange for different values of the regularization parameter τ .

The RLS and RTLS solutions seem very similar up to a scaling constant for almost all values of
τ . However, when τ = 10, differences between the solutions can be observed. Both RLS and
RTLS show images that are too smooth to observe the orange properly. But the RTLS solution
seems even smoother than the RLS solution. In order to explain these results, we derive a different
formulation of the (regularized) TLS solution, as shown in [11].

Suppose σmin is the smallest singular value of C which corresponds to the right singular vector
v, where C is as described in Equation (4.7). Then it follows that σ2

min is an eigenvalue of C∗C
corresponding to the eigenvector v. As shown in Section 3.2.2, v is a scaled version of the TLS

solution xtls. On the other hand,
[
xtls
−1

]
is an eigenvector of C∗C corresponding to eigenvalue σ2

min.

Hence, we can formulate the following eigen decomposition of C∗C[
I + τ2D∗xDx + τ2D∗yDy F ∗(y)
(F ∗(y))∗ y∗y

] [
xtls
−1

]
= σ2

min

[
xtls
−1

]
. (5.1)

The top half of this equation shows that

(I + τ2D∗xDx + τ2D∗yDy)xtls − F ∗(y) = σ2
minxtls, (5.2)

((1− σ2
min)I + τ2D∗xDx + τ2D∗yDy)xtls = F ∗(y). (5.3)

Hence an alternate expression for the RTLS solution is given by

xtls = ((1− σ2
min)I + τ2D∗xDx + τ2D∗yDy)−1F ∗(y), (5.4)

or equivalently, (
I + τ2

(1− σ2
min)

D∗xDx + τ2

(1− σ2
min)

D∗yDy

)
xtls = F ∗(y)

1− σ2
min

, (5.5)

for σ2
min 6= 1. Since the obtained image is scaled, F ∗(y)/(1− σ2

min) is optically the same as F ∗(y).
From Equation (4.6) we know that the RLS solution xls corresponding to the same system of
equations is given by

xls = (I + τ2D∗xDx + τ2D∗yDy)−1F ∗(y). (5.6)
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Hence, the RLS and RTLS solutions are equivalent for σ2
min = 0.

The value of σ2
min can be determined by the Rayleigh quotient, using the obtained eigenvector v of

C∗C−µI which is computed by the shifted power method. Here, µ denotes the shift as determined
in Equation (4.10). Note that v is also an eigenvector of C∗C as explained in Section 3.3. Hence,
the largest eigenvalue λ of C∗C − µI is given by

λ = v∗(C∗C − µI)v
v∗v . (5.7)

Then the corresponding eigenvalue of C∗C is given by σ2
min = λ + µ.

From Equations (5.5) and (5.6), it follows that the RLS and RTLS solutions differ by a scaling
constant and regularization parameter. The optical differences are only caused by the difference in
regularization parameter, i.e., the RLS solution would visually give the same result as the RTLS
solution when the regularization parameters τ/

√
1− σ2

min and τ are used for RLS and RTLS,
respectively. As we have used the same values of the regularization parameter in the case above,
the RLS and RTLS solutions will only visibly differ for large values of τ or values of σ2

min which are
very close to 1. The values of σ2

min, the smallest eigenvalue of C∗C, for different values of τ have
been computed by the Rayleigh quotient and are shown in Table 6.

Table 6: The value of the smallest eigenvalue σ2
min of C∗C for different values of the regularization

parameter τ .

τ σ2
min

0.1 0.0073
0.5 0.0933
1.0 0.1535
2.0 0.2015
3.0 0.2362
10.0 0.5006

These values of σ2
min explain the obtained results. For example, when τ = 0.1, the term D∗xDx +

D∗yDy, as described in Equation (5.6) is multiplied by 0.12 in order to obtain the RLS solution.

Whereas this same value of τ leads to multiplication of
(

0.1√
1−0.0073

)2
≈ 0.10042 in the RTLS case,

as can be observed in Equation (5.5). Hence, the solutions barely differ from an optical point
of view. Conversely, the value τ = 10 for the RLS solution corresponds with a multiplication of
D∗xDx+D∗yDy by 102. For RTLS, this results in multiplication by a factor

(
10√

1−0.5006

)2
≈ 19.97602,

this relatively big difference is visible in the images. Observing all obtained values of σ2
min in Table

6, the RLS and RTLS solutions are further apart for larger values of τ , which corresponds to the
results as shown in Figures 7 and 8.

5.1.3 Convergence

The shifted power method as described in Sections 3.3 and 4.4 is used to compute the RTLS
solution. As explained, any arbitrary starting vector can be used in order to find the solution,
as long as the vector has a component in the direction of the largest eigenvector. Hence, we first
used a starting vector with every entry equal to 1. As this starting vector is chosen arbitrarily,
it might converge relatively slowly to the solution. Hence, another starting vector might provide
a faster convergence rate. Since the results in Figure 7 and Figure 8 are very similar, the RLS
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solution could be used in an attempt to obtain a better initial vector. Hence, the first entries of
this vector correspond to the RLS solution and the last component is set equal to minus one, as
the starting vector needs one extra entry compared to the RLS solution. In this case, the shifted
power method stops iterating if two consecutively RTLS solutions differ less than 10−6. In Figure
9 the convergence of the shifted power method to σ2

min, the desired eigenvalue of C∗C, is shown for
both starting vectors when τ = 1.

(a) Convergence of the shifted power method to σ2
min while using the starting vector where every entry is

equal to 1.

(b) Convergence of the shifted power method to σ2
min while using the RLS solution as the first entries of the

starting vector and the last entry is equal to -1.

Figure 9: Convergence of the shifted power method to the smallest eigenvalue σ2
min of C∗C when

τ = 1 for different starting vectors.

Both starting vectors eventually lead to the smallest eigenvalue of approximately 0.1535. As can be
observed from Figures 9a and 9b, the first starting vector needs hundreds of thousands of iterations
before the desired eigenvalue is found, whereas the adjusted RLS starting vector only needs a couple
of iterations to get very close to the smallest eigenvalue. Hence, the first starting vector experiences
a much slower convergence rate than the RLS starting vector.
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5.2 Test case Tubes

The next test problem is an image of five tubes. The image which is originally obtained by applying
the inverse fast Fourier transform to the MRI signal, is as follows.

Figure 10: The original MRI image for the test problem Tubes, which is obtained by applying the
inverse fast Fourier transform to the measured MRI signal.

In comparison with Figure 6 of the previous test example, this image seems originally less contam-
inated by noise.

5.2.1 Regularized least squares

Next, we apply regularized least squares to the MRI signal for the same values of the regularization
parameter τ as in the previous test case. The results are shown below.

(a) τ = 0.1. (b) τ = 0.5.
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(c) τ = 1. (d) τ = 2.

(e) τ = 3. (f) τ = 10.

Figure 11: Results after applying the regularized least squares method to the test problem Tubes
with different regularization parameter values τ .

Similar to the previous test case, we find that more noise is removed for larger values of τ . However,
the image becomes too smooth while using these larger values.

5.2.2 Regularized total least squares

The following results are obtained by applying regularized total least squares to the MRI signal.
Again, we choose the same values of the regularization parameter τ .

28



(a) τ = 0.1. (b) τ = 0.5.

(c) τ = 1. (d) τ = 2.

(e) τ = 3. (f) τ = 10.

Figure 12: Results after applying the regularized total least squares method to the test problem
Tubes with different regularization parameter values τ .
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The differences in the RLS and RTLS solutions are comparable to the differences in results of the
Orange test problem. Again, the images obtained by RLS and RTLS only seem to differ up to a
constant for smaller values of τ . When τ = 3, a small difference in the amount of noise can be
noticed and the image which is obtained by RTLS is smoother. Also, when τ = 10, the solutions
clearly differ. It can be observed that the RTLS solution is blurrier than the RLS solution. These
results can again be explained by the smallest eigenvalue σ2

min of the matrix C∗C. The values of
σ2

min for different values of τ are shown in Table 7.

Table 7: The value of the smallest eigenvalue σ2
min of C∗C for different values of the regularization

parameter τ .

τ σ2
min

0.1 0.0019
0.5 0.0367
1.0 0.1024
2.0 0.2604
3.0 0.4233
10.0 0.8846

For larger values of τ , it can be observed that σ2
min gets closer to 1. As a result, the RLS and RTLS

solutions will (visually) be further apart for larger values of τ , as can be noted from Equations
(5.5) and (5.6).

5.2.3 Convergence

Next, we will observe the convergence of the shifted power method to the desired eigenvalue σ2
min

of C∗C for τ = 1. We use two different starting vectors, the same as in the previous test case.
Hence, we first used the starting vector where every entry is equal to one. Secondly, the starting
vector which corresponds to the RLS solution and where the last entry is equal to −1 is used. The
shifted power method stops iterating if two consecutively RTLS solutions differ less than 10−6. In
Figure 13 the convergence for these two starting vectors is shown.

(a) Convergence of the shifted power method to σ2
min while using the starting vector where every entry is

equal to 1.
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(b) Convergence of the shifted power method to σ2
min while using the RLS solution as the first entries of the

starting vector and where the last entry equal to -1.

Figure 13: Convergence of the shifted power method to the smallest eigenvalue σ2
min of C∗C when

τ = 1 for different starting vectors.

Both starting vectors converge to the smallest eigenvalue of approximately 0.1024. As can be
observed from Figures 13a and 13b, the starting vector that contains 1 at each entry needs lots
of iterations. The RLS vector however only needs a couple of iterations to get very close to the
smallest eigenvalue. Hence, the first starting vector experiences a much slower convergence rate
than the adjusted RLS starting vector.

5.3 Test case Shepp Logan

The final test problem is the Shepp Logan image. The image that is originally obtained by applying
the inverse fast Fourier transform to the obtained MRI signal is as follows.

Figure 14: The original MRI image for the test problem Shepp Logan, which is obtained by applying
the inverse fast Fourier transform to the measured MRI signal.

This image seems to be equally contaminated by noise compared to the image in Figure 6, which
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was obtained by the Orange test case. However, the contour of the object in this image is more
clearly. Next, we will apply RLS and RTLS to this test case for different values of the regularization
parameter τ and observe the results.

5.3.1 Regularized least squares

First, we apply RLS to the measured signal. The obtained results for different values of the
regularization parameter τ are as follows.

(a) τ = 0.1. (b) τ = 0.5.

(c) τ = 1. (d) τ = 2.
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(e) τ = 3. (f) τ = 10.

Figure 15: Results after applying the regularized least squares method to the test problem Shepp
Logan with different regularization parameter values τ .

While using the RLS method, a lot of noise can be cancelled out. On the contrary, edges and
structures become less clear for larger values of τ .

5.3.2 Regularized total least squares

Next, RTLS is applied to the measured signal. The obtained results are shown in Figure 16.

(a) τ = 0.1. (b) τ = 0.5.
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(c) τ = 1. (d) τ = 2.

(e) τ = 3. (f) τ = 10.

Figure 16: Results after applying the regularized total least squares method to the test problem
Shepp Logan with different regularization parameter values τ .

The differences in the results which are obtained by RLS and RTLS correspond to the differences
in results which were found in the previous test cases. Again, the images obtained by RLS and
RTLS only seem to differ up to a constant for smaller values of τ . When τ = 3, a small difference
in the amount of noise can be noticed and the RTLS image is smoother. Also, the RTLS solution
which is obtained when τ = 10, is smoother than the RLS solution. These results can, as in the
previous test cases, be explained by the value of the smallest eigenvalue σ2

min of the matrix C∗C.
The values for σ2

min for different values of τ are shown in Table 8.
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Table 8: The value of the smallest eigenvalue σ2
min of C∗C for different values of the regularization

parameter τ .

τ σ2
min

0.1 0.0070
0.5 0.0914
1.0 0.1534
2.0 0.2035
3.0 0.2366
10.0 0.4669

As the value of τ increases, the value of σ2
min gets closer to 1. Therefore, the images which are

obtained by RLS and RTLS will differ more when larger values of τ are used, as can be observed
from Equations (5.5) and (5.6).

5.3.3 Convergence

Finally, we will observe the convergence of the shifted power method to desired eigenvalue σ2
min of

C∗C when τ = 1. The used starting vectors are the same as in the previous test cases. Again,
the shifted power method stops iterating if two consecutively RTLS solutions differ less than 10−6.
In Figure 17a, the convergence of the initial vector where each entry equals one can be observed.
Next, Figure 17b shows the convergence of the adjusted RLS starting vector.

(a) Convergence of the shifted power method to σ2
min while using the starting vector where every entry is

equal to 1.
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(b) Convergence of the shifted power method to σ2
min while using the RLS solution as the first entries of the

starting vector and the last entry equal to -1.

Figure 17: Convergence of the shifted power method to the smallest eigenvalue σ2
min of C∗C for

different starting vectors.

Both starting vectors converge to a smallest eigenvalue of approximately 0.1534. As can be observed,
the starting vector that contains 1 at each entry requires over a million iterations until the desired
eigenvalue is found. Whereas the RLS starting vector needs much less iterations in order to get
very close to the smallest eigenvalue. Hence, the first starting vector experiences a much slower
convergence rate than the RLS starting vector. This result is similar to the result of the previous
test cases. Therefore, the RTLS method seems to converge very slowly to the solution when an
arbitrary starting vector is used.
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6 Conclusion
In this section we summarise the most important conclusions, formulate answers to our research
questions and give recommendations for future research. We start by answering the first research
question:

How can the total least squares solution be computed?

In Section 3.2, we observed that the total least squares (TLS) solution of a perturbed system of
equations Ax = y, can be computed using the singular value decomposition (SVD). The SVD
should be applied to the matrix that contains both the columns of the A and the measurement
vector y. It follows that the right singular vector that corresponds to the smallest singular value,
equals the TLS solution up to a scaling constant. However, computing the SVD of a very large
matrix becomes computationally expensive. Hence, we use the shifted power method to compute
the desired singular vector and thereby the TLS solution.

Is the total least squares method of interest to our problem?

As observed in Section 5, the (regularized) total least squares method provides solutions which are
very similar to the (regularized) least squares solution. The visual difference between both solutions
is only caused by a regularization parameter. Hence, it cannot be concluded what method leads
to better results in this case. However, the regularized least squares method is computationally
cheaper. As a result, no significant advantages of the total least squares method are found com-
pared to the least squares method in this case.

Finally, we have some suggestions for future research. First, in Section 3.5, we observed the LS and
TLS performances to several perturbed systems of equations. The results in Tables 2 and 4 show
a sudden increase in the TLS performance for a standard deviation of 0.50 of the Gaussian noise.
Furthermore, the test which is generated in Section 3.5.3 led to remarkable results. LS clearly
outperformed TLS, while noise was present on both the data matrix and measurement vector. In
this case, the noise on the data matrix and measurement vector were both derived from different
distributions. Hence, it might be interesting to investigate the performance of TLS in different
circumstances concerning the distributional form of the error and the deviation of the noise.

Secondly, as observed in the Section 5, the convergence rate of the (shifted) power method is very
slow for starting vectors which are chosen arbitrarily. Hence, other methods might provide faster
convergence rates. As the matrix we used to calculate the TLS solution is Hermitian, Lanczos
iteration [7] might provide faster convergence to the TLS solution.

Finally, by aggregating pixels, better noise reduction could be achieved at the cost of lowering the
resolution of the image. For example, four neighbouring pixels could be reduced to one by taking
their average values. Hence, combining this method with TLS, might provide images which are less
contaminated by noise.
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A MRI theory

A.1 Magnetization

As the protons in the magnetic field are precessing, the transverse magnetization rotates according
to the Larmor frequency as described in Equation (2.2). This makes it difficult to observe changes
in magnetization. To simplify, we introduce an x′ and y′ axis which both rotate at the same
frequency ω0 as the transverse magnetization. Hence, the direction of both axes change over time.
The magnetization from this so called rotating frame of reference, ~Mrot(r, t), can be defined as
follows

~Mrot(r, t) = Mx′(r, t)~i′ +My′(r, t)~j′ +Mz′(r, t)~k′, (A.1)

where ~i′, ~j′, ~k′ are defined by 
~i′ = cos(ω0t)~i− sin(ω0t)~j
~j′ = − sin(ω0t)~i+ cos(ω0t)~j
~k′ = ~k

. (A.2)

According to Equations (2.4), (A.1) and (A.2), the relation between the rotating and laboratory
frame of reference of the transverse magnetization is given by

Mx′y′(r, t) = Mxy(r, t)eiω0t. (A.3)

Note that the magnetization in the laboratory frame of reference uses the ordinary x and y axes.
Now define

d ~M
dt = dMx

dt
~i+ dMy

dt
~j + dMz

dt
~k, (A.4)

∂ ~Mrot
∂t

= dM ′x
dt

~i′ +
dM ′y
dt

~j′ + dM ′z
dt

~k′. (A.5)

We obtain the following formula, as derived in [8],

d ~M
dt = ∂ ~Mrot

∂t
+ ~ω × ~Mrot, (A.6)

where ~ω = −ω~k. Furthermore, d ~M
dt describes the rate at which the magnetization changes in the

laboratory frame of reference and ∂ ~Mrot
∂t describes this change from a rotating frame of reference.

Let ~Brot be the magnetic field which is experienced from a rotating frame of reference. Combining
Equations (2.5) and (A.6) under the assumption that T1 and T2 →∞, we find that

∂ ~Mrot
∂t

= ~Mrot × (γ ~Brot + ~ω). (A.7)

This describes the changing magnetization in time from a rotating frame of reference. From Equa-
tions (A.3) and (A.7) it follows that the changing magnetization in the transverse plane right after
the RF excitation period is given by the next equation,

∂

∂t
Mx′y′(r, t) = −iγBz(r)Mx′y′(r, t), (A.8)

where Bz(r) is the part of the (rotating) magnetic field that points into the z-direction. Let t = 0
be the time when the RF excitation is completed. One can observe the transverse magnetization for
t > 0 by solving the above first order linear differential equation. This gives the following formula

Mx′y′(r, t) = Mx′y′(r, 0)e−iγBz(r)t. (A.9)

41



Once the RF excitation period is completed, it no longer holds that T1, T2 →∞. Furthermore, the
precessing protons will gradually start precessing out of phase again. As a result the transverse
magnetization decreases exponentially with a factor e−t/T2 . From Equation (A.3) it follows that in
the laboratory frame of reference the transverse magnetization is given by

Mxy(r, t) = Mxy(r, 0)e−t/T2(r)e−i(γBz(r)+ω0)t. (A.10)

A.2 MRI signal

The relaxation time T1, as described in Equation (2.5), is generally much longer than T2. As
a result, Mz(r, t) is a slowly varying function compared to Mx(r, t) and My(r, t). Hence, the
z component of the magnetization in Equation (2.7) can be neglected and the equation can be
rewritten as follows

V (t) = −
∫

object
c(r)

(
Bx(r)∂Mx(r, t)

∂t
+By(r)∂My(r, t)

∂t

)
dr. (A.11)

The components of the magnetic field in the x- and y- direction, Bx and By can be written as
follows

Bx = | ~Bxy(r)| cos(φr) and By = | ~Bxy(r)| sin(φr),
with φr ∈ [0, 2π) the reception phase angle. For example, if φr = 0, the direction of the magnetic
field at position r is in the x- direction and at φr = π/2 the field is in the y-direction.

Let γBz(r) = ∆ω(r) and define ω(r) := ω0 + ∆ω(r). Using Equation (A.10), Mx(r, t) and My(r, t)
can be rewritten as follows

Mx(r, t) = |Mxy(r, 0)|e−t/T2(r) cos[−ω(r)t+ φe(r)], (A.12)
My(r, t) = |Mxy(r, 0)|e−t/T2(r) sin[−ω(r)t+ φe(r)]. (A.13)

with φe ∈ [0, 2π) the initial phase shift introduced by RF excitation. φe shows analogous to φr the
direction of the magnetization. Usually ω(r) � 1/T2(r), using this assumption and the equations
above, we can observe that the time-derivatives of Mx(r, t) and My(r, t) are approximated by

∂Mx(r, t)
∂t

= ω(r)|Mxy(r, 0)|e−t/T2(r) sin[−ω(r)t+ φe(r)], (A.14)

∂My(r, t)
∂t

= −ω(r)|Mxy(r, 0)|e−t/T2(r) cos[−ω(r)t+ φe(r)]. (A.15)

Substituting the above derivations in Equation (A.11), we find that the detected voltage signal is
given by

V (t) =
∫

object
c(r)ω(r)| ~Bxy(r)||Mxy(r, 0)|e−t/T2(r) cos[−ω(r)t+ φe(r)− φr(r) + π

2 ] dr. (A.16)

This voltage is the high-frequency signal that is received by the RF system. Next, the signal V (t)
will be moved into a low-frequency band by signal demodulation. In order to do this, the received
signal will first be multiplied by two different reference signals, that is 2 cos(ω0t) and 2 sin(ω0t).
After this, a technique known as low-pass-filtering can be applied in order to create a low-frequency
signal. As a result, the demodulated signal S(t) is obtained. Multiplying V (t) by the first reference
signal yields

2 cos(ω0t)V (t) =
∫

object
c(r)ω(r)| ~Bxy(r)||Mxy(r, 0)|e−t/T2(r) cos[−ω(r)t− ω0t+ φe(r)− φr(r) + π

2 ] dr

+
∫

object
c(r)ω(r)| ~Bxy(r)||Mxy(r, 0)|e−t/T2(r) cos[−ω(r)t+ ω0t+ φe(r)− φr(r) + π

2 ] dr.
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Next, low-pass-filtering can be applied in order to create a low-frequency signal. Low-pass-filtering
leads to the removal of the first term. Hence,

V1(t) =
∫

object
c(r)ω(r)| ~Bxy(r)||Mxy(r, 0)|e−t/T2(r) cos[−ω(r)t+ω0t+φe(r)−φr(r)+ π

2 ] dr. (A.17)

V1(t) is now a low frequency signal. By using the reference signal 2 sin(ω0t), a similar low frequency
signal V2(t) is found. Hence,

V2(t) =
∫

object
c(r)ω(r)| ~Bxy(r)||Mxy(r, 0)|e−t/T2(r) sin[−ω(r)t+ω0t+φe(r)−φr(r)+ π

2 ] dr. (A.18)

Next, the obtained signal can be written as S(t) = V1(t) + iV2(t), where i denotes the complex
number. As a result, we obtain the following signal

S(t) =
∫

object
c(r)ω(r)| ~Bxy(r)||Mxy(r, 0)|e−t/T2(r)e−i[∆ω(r)t−φe(r)+φr(r)−π2 ] dr. (A.19)

First, we assume that ∆ω(r)� ω0. Then omitting the scaling factor ω0e
π
2 i and using the following

observations
| ~Bxy(r)|e−iφr(r) = ~Bxy(r) and |Mxy(r, 0)|eiφe(r) = Mxy(r, 0),

we obtain the signal as described in Equation (2.8).

43



B Matlab codes

B.1 Function: tls

function x = tls(A,b)
C = [full(A) b];
[U,S,V] = svd(C,0);

[m,n] = size(A);
[m,r] = size(b);

V12 = V(1:n, n+1:end);
V22 = V(n+1:end, n+1:end);

if det(V22) ~= 0
x = -V12*(V22\eye(size(V22)));

end
end

B.2 Polynomial regression

This code makes use of the function tls(A,b) which is given in Appendix B.1.

t = 0.2*[-10:9].’;
A = [ones(length(t),1), t];
xsol = [0.7,1].’;
b = A*xsol;

numberOfExperiments = 200000;
r = [1,0.5,0.1,0.05,0.01];

countxls = zeros(length(r),1);
countxtls = zeros(length(r),1);

for i=1:length(r)
for j = 1:numberOfExperiments

bn = b + r(i)*randn(size(b));
An = A + r(i)*randn(size(A));

xlsA = An\bn;
xtlsA = tls(An,bn);

errxlsA = norm(xlsA - xsol);
errxtlsA = norm(xtlsA -xsol);

if errxlsA > (errxtlsA + 10^(-10))
countxtls(i) = countxtls(i) + 1;

end

if errxtlsA > (errxlsA + 10^(-10))
countxls(i) = countxls(i) + 1;
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end
end

end

countxls = (countxls/numberOfExperiments)*100;
countxtls = (countxtls/numberOfExperiments)*100;

B.3 Exponential regression

This code makes use of the function tls(A,b) which is given in Appendix B.1.

numberOfExperiments = 200000;
r = [1,0.5,0.1,0.05,0.01];

countxlsA = zeros(length(r),1);
countxtlsA = zeros(length(r),1);
countxlsf = zeros(length(r),1);
countxtlsf = zeros(length(r),1);

t = linspace(0,1,175);
f = [0:1:6];

for n=1:length(r)
for m = 1:numberOfExperiments

fn = f + r(n)*randn(size(f));

for i=1:length(t)
for j=1:length(f)

A(i,j) = exp(2*pi*1i*f(j)*t(i));
Af(i,j) = exp(2*pi*1i*fn(j)*t(i));

end
end
xsol = [2,1.5,4,2.5,3.5,2,1].’;
b = A*xsol;

bn = b + r(n)*(1+1i)*randn(size(b));
An = A + r(n)*(1+1i)*randn(size(A));

xlsA = An\bn;
xlsf = Af\bn;
xtlsA = tls(An,bn);
xtlsf = tls(Af,bn);

errxlsA = norm(xlsA - xsol);
errxtlsA = norm(xtlsA -xsol);

if errxlsA > (errxtlsA + 10^(-10))
countxtlsA(n) = countxtlsA(n) + 1;

end
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if errxtlsA > (errxlsA + 10^(-10))
countxlsA(n) = countxlsA(n) + 1;

end

errxlsf = norm(xlsf - xsol);
errxtlsf = norm(xtlsf -xsol);
if errxlsf > (errxtlsf + 10^(-10))

countxtlsf(n) = countxtlsf(n) + 1;
end
if errxtlsf > (errxlsf + 10^(-10))

countxlsf(n) = countxlsf(n) + 1;
end

end
end

B.4 Power method

load(b);
x = ifft2c( b );

n = length(b);
lambda = 1; %regularisatie parameter

Dx = spalloc(n^2,n^2,3*n);
Dy = spalloc(n^2,n^2,3*n);
for j = 1:n

for i = 1:n
k = i + (j-1)*n;
if i < n

Dx(k,k) = 1;
Dx(k,k+1) = -1;

end
if j < n

Dy(k,k) = 1;
Dy(k,k+n) = -1;

end
end

end

xls = (speye(n^2) + lambda^2*Dx’*Dx + lambda^2*Dy’*Dy)\reshape(ifft2c(b),n^2,1);
xls = reshape(xls,n,n);

p = ifft2c(b);
p = reshape(p,n^2,1);

%Gershgorin:
shift = max(1+8*lambda^2 + max((abs(p))),

sum(abs(p)) + reshape(b,n^2,1)’*reshape(b,n^2,1));

%startvector power method [qouda; qoudb]
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qouda = reshape(xls,n^2,1);
qoudb = -1;

%qouda = ones(n^2,1);
%qoudb = 1;

marge = 10^(-6);
verschil = 1 + marge;
maxIter = 2000000;
eigval = zeros(10^7,1);
while verschil > marge && (iter < maxIter)

qa = qouda + lambda^2*Dx’*(Dx*qouda) + lambda^2*Dy’*(Dy*qouda) + p*qoudb;
qb = p’*qouda + reshape(b,n^2,1)’*reshape(b,n^2,1)*qoudb;
qa = qa - shift*qouda;
qb = qb - shift*qoudb;
normq = norm([qa;qb]);
qa = qa/normq;
qb = qb/normq;

verschil = (norm(((-1/qb)*qa) - ((-1/qoudb)*qouda)));

eigval1 =[qouda;qoudb]’*([qa;qb]*normq);
eigval2 = [qouda;qoudb]’*[qouda;qoudb];
eigval(iter + 1) = eigval1/eigval2;

qouda = qa;
qoudb = qb;

end

xtls = (-1/qb)*qa;
xtls = reshape(xtls,n,n);
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