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Abstract

Time-varying Stokes coefficients estimated from GRACE satellite data are routinely converted into mass anomalies at the
Earth’s surface with the expression proposed for that purpose by Wahr et al. (J Geophys Res 103(B12):30,205-30,229, 1998).
However, the results obtained with it represent mass transport at the spherical surface of 6378 km radius. We show that the
accuracy of such conversion may be insufficient, especially if the target area is located in a polar region and the signal-to-noise
ratio is high. For instance, the peak values of mean linear trends in 2003-2015 estimated over Greenland and Amundsen
Sea embayment of West Antarctica may be underestimated in this way by about 15%. As a solution, we propose an updated
expression for the conversion of Stokes coefficients into mass anomalies. This expression is based on the assumptions that: (i)
mass transport takes place at the reference ellipsoid and (ii) at each point of interest, the ellipsoidal surface is approximated by
the sphere with a radius equal to the current radial distance from the Earth’s center (“locally spherical approximation”). The
updated expression is nearly as simple as the traditionally used one but reduces the inaccuracies of the conversion procedure by
an order of magnitude. In addition, we remind the reader that the conversion expressions are defined in spherical (geocentric)
coordinates. We demonstrate that the difference between mass anomalies computed in spherical and ellipsoidal (geodetic)
coordinates may not be negligible, so that a conversion of geodetic colatitudes into geocentric ones should not be omitted.

Keywords Stokes coefficients - Spherical harmonics - Time-varying gravity - Mass transport - GRACE - GRACE Follow-On

1 Introduction

Since the launch of Gravity Recovery and Climate Exper-
iment (GRACE) satellite mission in 2002 (http://www.csr.
utexas.edu/grace), satellite gravimetry has become one of the
key tools to study large-scale mass transport in the Earth’s
system. Mass transport estimates based on GRACE data have
been successfully applied in numerous studies of the solid
Earth, cryosphere, oceans, and continental water resources
(for an overview, see, e.g., Wouters et al. 2014). To produce
these estimates, one exploits information about temporal
gravity variations sensed by GRACE satellites.

Newton’s law of gravitational attraction allows tempo-
ral gravity field variations to be computed uniquely, as
soon as mass anomalies are given (see, e.g., Chao et al.
1987). Such a relationship is used, for instance, to esti-
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mate rapid gravity field variations caused by non-tidal mass
transport in the ocean and atmosphere. These estimates are
distributed as a so-called Atmosphere and Ocean De-aliasing
product AODIB (Dobslaw et al. 2016), which is needed,
along with other background force models, for a preprocess-
ing of GRACE data. This is because rapid mass transport
signals cannot be properly interpreted and play a role of
additional source of noise in GRACE data. To properly pro-
cess mass re-distribution in the atmosphere, it is essential to
take into account its vertical structure (Swenson and Wahr
2002; Flechtner 2007), as well as the oblateness of the Earth
(Forootan et al. 2013). All these considerations are taken into
account in the production of the latest release (RL06) of the
AOD1B product (Dobslaw et al. 2016).

The inverse problem—conversion of temporal gravity
field variations into mass anomalies—is more difficult. It
cannot be solved uniquely without additional assumptions
about the mass transport. A commonly used assumption is
that mass transport takes place at a sphere of a certain radius
a. Then, the Stokes coefficients describing the time-varying
gravity field can be uniquely related to Fourier coefficients of
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mass anomalies, provided that the corresponding base func-
tions are defined as surface spherical harmonics (Chao et al.
1987). Wahr et al. (1998) proposed to apply such an approach
to recovery of mass anomalies from GRACE data, and this
has been done since then in hundreds of studies.

Unfortunately, the overwhelming majority of authors
ignore the fact that the actual Earth’s surface substantially
deviates from the sphere. If the radius a is defined as the mean
equatorial radius or the semimajor axis of the reference ellip-
soid (which is typically the case), these deviations become
particularly large in polar areas. Obviously, such deviations
may result in some distortions in mass anomaly estimates
(Chao 2005, 2016). However, they are not quantified so far
in the context of GRACE-based estimates, the temporal res-
olution of which is limited to about 400 km (in terms of
wavelengths).

Furthermore, the commonly used expressions for a con-
version of Stokes coefficients into mass anomalies refer to
spherical (geocentric) coordinates of a point, including the
geocentric colatitude 6. However, only a few authors define
the exploited coordinates properly. In most of cases, 6 is
defined as just “the colatitude.” We consider this as an indica-
tion that the step of converting standard ellipsoidal (geodetic)
geographical coordinates into spherical ones is likely omitted
in many studies, especially if they are conducted by non-
geodesists. Though the difference between geocentric and
geodetic colatitudes is relatively minor (< 11.5" &~ 21 km),
it might be improper to ignore it in all cases.

The primary goals of this publication are: (i) to demon-
strate that mass anomaly estimates produced with the expres-
sions from (Wahr et al. 1998) may not be sufficiently accurate
(in particular, this concerns long-term mass losses in polar
areas); (ii) to show that a simple modification of them may
increase the accuracy by an order of magnitude; and (iii) to
demonstrate that an (erroneous) interpretation of spherical
coordinate € as a geodetic colatitude may have a non-
negligible effect onto the estimated mass anomalies.

It is important to stress that our discussion is limited to
a recovery of a 2-D mass re-distribution. In practice, this
means that our focus is on hydrology, ice sheets, and oceans.
The corresponding mass variations take place at the Earth’s
surface or just below it (at a depth not exceeding in most
cases a few hundreds of meters). Then, our assumption that
mass transport is confined to a thin layer near the Earth’s
surface is fully justified, and a quantification of it in terms of
equivalent water heights is physically meaningful.

Mass transport in the solid Earth definitely occurs deeper,
spanning a much larger range of depths. For instance,
hypocenters of large earthquakes are typically located at
the depth of a few tens of km, whereas glacial isostatic
adjustment (GIA) takes place in the asthenosphere, the top
boundary of which is located in most places at the depth
of 100-200 km. Therefore, the techniques discussed in this
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paper are not applicable to mass transport in the solid Earth.
A more extended discussion of limitations associated with a
recovery of 3-D mass transport processes from GRACE data
can be found in Chao (2016).

The structure of this paper is as follows. In Sect. 2, we
present a general expression for the computation of mass
anomalies at the Earth’s surface, as well as possible sim-
plifications of that expression, depending on the assumption
about the Earth’s surface shape. That section concludes by
a comparison of the proposed simplifications using real
GRACE data, which allows us to identify the expression that
is the most appropriate in practice. In Sect. 3, we address the
issue of the proper definition of the coordinate 6. Section 4
is left for a discussion and conclusions.

2 Estimation of mass anomalies under
different assumptions about the Earth
surface geometry

2.1 Theory
2.1.1 General information

Information delivered by GRACE is usually provided to the
Earth science community in the form of monthly sets of
Stokes coefficients. Those coefficients represent the mean
value of the Earth’s gravitation potential U(r, 6, ¢, t) within
a given month. The subtraction of a long-term mean value
from each coefficient results in a time series of its temporal
variations. Those variations can be linked to temporal vari-
ations AU(r, 6, ¢) of the gravitational potential (see, e.g.,
Heiskanen and Moritz 1967, Eqs. 2-39):

Lmax 1

GM I+1 R
AU 0,¢) = —E Y (g) > [ACun i (6) cos mep
I=1 m=0
+ Aslm le (0) sin m¢] s (1)

where (r, 0, ¢) are spherical coordinates of a given point
(radial distance, colatitude, and longitude) in the terrestrial
reference frame; G is the universal gravitational constant;
Mg is the Earth’s mass; a is the Earth’s radius (a more spe-
cific definition of this parameter is addressed below); [ and
m are the spherical harmonic degree and order, respectively;
Lmax 1s a model-specific maximum degree; ACy,, and ASy,,
are temporal variations of Stokes coefficients (by definition,
ASy, = 0 for m = 0); and f_’l,m are normalized associ-
ated Legendre functions. The argument of time is omitted in
Eq. (1) for the sake of brevity. The summation does not con-
tain the degree-0 term, since variations in the total mass of
the Earth (which are described by that term) are negligible.
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The exact definition of the Earth’s radius a is a mat-
ter of convention. Classically, this parameter is defined as
the semimajor axis of the reference ellipsoid or the mean
Earth’s equatorial radius: a ~ 6,378,136 m (Heiskanen and
Moritz 1967). GRACE data products are also provided in
line with this definition. On the other hand, many publica-
tions define a, explicitly or implicitly, as the mean radius
of the entire Earth: a = 6371 km (e.g., Chao et al. 1987,
Wabhr et al. 1998; Swenson and Wahr 2002). Strictly speak-
ing, this means that an application of the expressions derived
in those publications requires the corresponding rescaling
of the GRACE-based Stokes coefficients. To the best of the
author’s knowledge, however, this is never done in practice.
Apparently, the impact of this rescaling is assumed to be
minor. In any case, in all the derivations presented below, a
is defined as the semimajor axis of the reference ellipsoid.

To make the further derivations simpler, we rewrite Eq. (1)
in a more compact form:

Lmax !
AU 0.9 = 20 (DTS ACW TG, 9.

=1 m=—I

@

In this notation, spherical harmonic order m runs from —/ to
[ and Y}, are 4w -normalized surface spherical harmonics:

(m > 0)
(m < 0).

cosmae

sin(—me) )

Yim (O, ¢) = Py, jm)(cos 0) {

The temporal variations ACj, of Stokes coefficients in
Eq. (2) are related to the traditionally considered ones as

Ag_‘lm
ASim

(m = 0)

(m < 0). @)

ACpy = {
In the further derivations, we make use of the publication
by Swenson and Wahr (2002) as a starting point. We also use
the same notation, when possible.
The general expression that connects temporal variations
of density Ap(r, 6, ¢) at/inside the Earth with temporal vari-
ations of Stokes coefficients is:

a? 1

T Mg 2L+ 1)

ACin // AL(O. §) T (0, $) A2, (5)
Q

where integration covers the entire sphere:

2 T
// dQ:/ d¢>/ sin 6 do, (6)
5 0 0

whereas A;(6, ¢) describes vertically integrated density
variations:

top of atmos 2
AL, $) =/ (-) Ap(r. 6, ) dr. %
0 a

Equation (5) is virtually equivalent to Eq. (2) in Swenson
and Wahr (2002), with the exception that we watch the dif-
ference between the mean Earth’s radius and the equatorial
one.

Asitis explained in Sect. 1, we assume that mass transport
takes place in a thin layer at the Earth surface. As such, it can
be represented by a single mass layer, so that A; (6, ¢) can
be approximated as

a

I+2
ALO, ¢) = / ) Ap(r,0,¢)dr

thin layer

[+2
~ <1+_‘§:h> Ac (0. ¢) ®)

[cf. Eq. (7) in Swenson and Wahr (2002)]. In Eq. (8),
Ao (6, ¢) are variations of surface density (i.e., mass vari-
ations per unit area) and (6, ¢) is the function describing
the shape of the Earth’s surface that can be represented with
a high accuracy as

<rx(6’, )

rs(0,¢) =a+£0,9)+h(, $) ©))

with £(6, ¢) being the height of the geoid above the sphere
of radius a, whereas (0, ¢) is the orthometric height of the
Earth’s surface topography [cf. Eq. (5) in Swenson and Wahr
(2002)]. In the expressions below, the arguments in the func-
tions £(6, ¢) and h (6, ¢) will not be explicitly written for the
sake of brevity.

Variations of surface density can be related to the mass
anomalies in terms of equivalent water heights (EWH)
AH,y, (0, ¢) in terms of equivalent water heights (EWH) with
a simple formula

Ao (0, ¢)

Pw

AHy0, ¢) = , where p,, is water density. (10)

Equations (5) and (8) describe the link between the tempo-
ral variations of surface density and the temporal variations
of Stokes coefficients under the assumption that the Earth
is a rigid body. In practice, solid Earth reacts elastically to
changes in the load on the Earth’ surface (see, e.g., Boy
and Chao 2005). Hence, actual variations in the gravitational
potential comprise both the direct effect of mass transport and
the elastic deformation of the Earth (deformation potential).
In order to take this into account, additional scaling factors
(1 + k;) are introduced, where k; are load Love numbers
(Wahr et al. 1998), so that Eq. (8) turns into

1+2
AL, ¢) ~ (1 + k) (1 + ?) Ao (B, ). an
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The function Ao (6, ¢), as any other function of coor-
dinates (@, ¢), can be represented in terms of the spherical
harmonic expansion. After retaining the spherical harmonic
degrees consistently with Eq. (1), we have:

Lmax 4

Ao(0,¢) =apw Y Y ACrwYrw(©,9), (12)

U=1m'=—1'

where ACy,, are Fourier coefficients, which can be com-
puted on the basis of the Stokes coefficients ACy,,. To that
end, we insert Egs. (12) and (11) into Eq. (5), which yields:

@ py (1 +k) // E+h "
AC, = 0, I+ —
Im = ME (2l+1) Yim (@, ¢) +
Lmax l
x> > ACrw Y (©, ¢)de. (13)
V=1 m'==1

By interchanging the order of the summation and integration,
we readily obtain:

4ﬂa3pw (1+ k) Lmax U i
ACy, = B S AG
" Mg @Q2I+1) E W:Z_l/ 1m0 ' ACrm
(14)
with
1 el -
By = E,// Yim (@, @) Yy 0, ¢)
Q
h 1+2
x<1+$+ ) do. (15)
a

Equation (14) represents a system of linear equations with
constant coefficients By, ;7 »’, which form a square matrix.
By solving this system, one can transform the Stokes coef-
ficients into the coefficients ACp,,. The system can be
simplified further under some assumptions about the geom-
etry of the Earth’s surface, as discussed below.

2.1.2 Spherical Earth approximation (radius = 6378 km)

Let us assume that the Earth is the sphere of radius a, i.e.,
rs(@,¢) = a, £&@,¢) = 0, and h(9,¢) = 0. Then, in
view of the fact that the surface spherical harmonics form
an orthogonal set on a sphere, the matrix formed by coeffi-
cients By . 17, turns into the unit one:

Bl,m,l’,m’ = Sl,l’am,m’a (16)
where §; x is the Kronecker delta. Furthermore, the Earth’s
mass can be related to its mean density pg:

@ Springer

4
Mg = gnaépg, (17

where ag is the mean Earth’s radius. Then, one can insert
Egs. (17) and (16) into (14). If the difference between aé and
a® is neglected (which is of the order of 0.3%), this readily
results in:

3pw (1 +k)

AChy. 18
pE QI+ (8

AClm =

Thus, the computation of the coefficients A@m reduces to a
scaling of the Stokes coefficients. A combination of Egs. (18),
(12), and (10) yields the well-known expression proposed for
GRACE data processing by Wahr et al. (1998):

Lmax I

AHy (0. $) = ‘5”’— 3

=1 m=

2I+1)

S CACIYim 6, b).
. (k) CimYim(©, @)

(19)

2.1.3 Ellipsoidal Earth approximation

Let the Earth’s surface geometry be an ellipsoid of rotation.
Then, (0, ¢) = 0 and £(0, ¢) = £(0), where ¢(0) is the
height of the ellipsoid above the sphere of radius a. The
radial distance r(6) of the points at the ellipsoidal surface is
given by:

-7
V1—eZsin?6
where f is the ellipsoid flattening (WGS84 value: f =

1/298.2572) and e is eccentricity (¢*> = 2f — f?). Then,
Eq. (15) turns into

r@@) =a+¢@)=a (20)

1 _ _
Bl,m,l’,m’ = E// Yim (0, @)Yy (0, @)
Q

| 142
Ny S e ds. 1)
1 —e2sin%0

Furthermore, the trigonometric functions sin m¢ and cos m¢
form an orthogonal set in the interval [0; 27 ]:

2
sinme - cosm’¢pdp =0
0

2 2
f cosme -cosm’'¢pdep = / sinme - sinm’¢p do
0 0

=na(l+ 8m,0) . 8m,m’-
(22)
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In view of Eq. (6), this allows the expression for the elements
By .17, m' to be simplified to:

(1 + 6m,0) . Bm,m’
4

T
x/ Py ) (€08 8) - Py | (cos 0) sin O
0

| f 1+2
x| —t do
1 — e2sin% 0

_ (1 + 6m,0) . Sm,m’
B 4

1
X/ Py ) (X) - P ) ()
—1

1+2
) dx. (23)

Bl,m,l’,m’ =

I—f
. (w/l—ez(l—xz)

Thus, the system of linear equations given by Eq. (14)
becomes block-diagonal and can be solved with ease.

2.1.4 Spherical Earth approximation (arbitrary radius)

Finally, one can also approximate the Earth’s surface with
a sphere of an arbitrary radius: rg(6,¢) = a + Ar (ie.,
£E@0,¢) = Ar, h(0,¢) = 0), with Ar being an arbitrary
value, provided that Ar > —a. In that case, the expression
for the elements By ;, j ,,» simplifies to:

Ar 1+2
Bl,m,l’,m’ = 8l,l’8m,m’ 1+ 7 5 (24)

so that the link between the coefficients ACj,, and the Stokes
coefficients is:

ACpy =

4adpy (1+k Ar\T?
pru(l _r) AC),. (25)

Mg QI+ 1) a

The parameter Ar can be chosen for a given target region
such that the difference between the actual radial distance of
the points at the Earth’s surface and the Earth’s equatorial
radius a is taken into account.

One step further is a “locally spherical” approximation.
With this, we mean that the parameter Ar can be chosen not
as a single constant for the entire target region, but as a value
dependent on the location of the current point where the mass
anomaly is computed. Let us assume, for example, that mass
transport takes place at the ellipsoid, i.e., Ar = Ar(0) =
¢(6). Then, a combination of Egs. (25), (20), (12), and (10)
yields the following expression for the mass anomalies in
terms of EWH:

L
ma @+D
Z Z (1+k1) Cim

AHO.¢) = -
) 1+2
x <—V1 S 9) Vin®.9)  (26)

or, in view of Eq. (17),

Lmax
AHy (. ¢) = g(a_E) PE Z Z (21+1) Cim

1 —e2sin?6 1+2_
X Y Yim(0,¢). (27)

This expression resembles Eq. (19), but contains an addi-

. . N
tional  degree-depended  scaling  factor  (%E)
142
1—e2 sin? 0
1-f

The most appropriate choice of the Earth’s geometry
approximation is discussed below.

2.2 Selection of the most appropriate
approximation of the Earth’s surface geometry

In the previous section, we presented a number of alternative
expressions to convert temporal variations of Stokes coeffi-
cients into mass anomalies. The complexity of the associated
computations depends on the adopted approximation of the
Earth’s shape. In order to identify the most appropriate com-
putational scheme, we consider the computation of mass
anomalies from real GRACE data.

2.2.1 Data

In this study, we use monthly gravity field solutions in 2003—
2015 produced at the Center for Space Research (University
of Texas at Austin) (Bettadpur 2012). For a few months, the
solutions are absent. Furthermore, we ignored the solutions
that were not limited to a specific calendar month. As such,
135 monthly solutions in total are exploited. Each of these
solutions is formed by a set of Stokes coefficients complete
to degree 96. No filtering is applied.

It is expected that mass anomalies at relatively short
spatial scales are particularly sensitive to the deviations of
the assumed Earth’s surface geometry from the actual one.
Therefore, it makes sense to focus on the scenarios where the
high-frequency signal in GRACE data is strong, whereas the
noise level is low. In view of this, we use the time series of
Stokes coefficients to estimate the mean rate of linear mass
change (i.e., linear trend) in the entire time interval 2003—
2015. In this way, random noise in the coefficients is largely
suppressed. The linear trend is co-estimated with a bias and

@ Springer
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a quadratic term, as well as with annual and semiannual
(co-)sinusoidal variations [see, e.g., Eq. (15) in Siemes et al.
(2013), for more detail].

2.2.2 Computation of mass anomalies at the actual Earth’s
surface

As areference, we convert the temporal variations of Stokes
coefficients into mass anomalies using Eqgs. (14) and (15)
explicitly. To define the elevations h(6, ¢) of the Earth’s
surface, we use the Global Land One-kilometer Base Eleva-
tion (GLOBE) digital elevation model (GLOBE Task Team
et al. 1999). For inland areas, the model provides terrain ele-
vations above the mean sea level. The oceans are flagged;
we set the elevations there equal to zero. The geoid heights
£(6, ¢) above the sphere of radius a are approximated by
Eq. (20) for the ellipsoid (thus, we ignore the differences
between the reference ellipsoid and geoid as relatively minor,
< 100m).

In general, the computed mass change rates are heav-
ily contaminated by random noise, which is not surprising
in view of the absence of filtering (not shown). Neverthe-
less, noise in polar areas is relatively low and allows one to
clearly see strong signals over the territory of Greenland and
the Amundsen Sea embayment of West Antarctica (Fig. 1).
The strongest negative trends are observed at the Jakobshavn
Isbree (West Greenland) and at the Pine Island glacier (West
Antarctica), see Fig. 1 and Table 1. A rapid ice mass loss
at both locations is also revealed by other observation tech-
niques (e.g., Groh et al. 2014; Mouginot et al. 2014).

We explain the low noise level in Fig. 1, in spite of the
absence of any filtering, by a combination of several fac-
tors. First, using 13 years of data allows random noise to be
largely averaged out, as it is already mentioned above. Sec-
ond, a large density of GRACE ground tracks, as well as
the intersection of ascending and descending tracks at rela-
tively large angles, ensures a good coverage of polar areas,
which reduces random noise further. Third, Greenland and
West Antarctica are notorious for the presence of very strong
negative trends due to a rapid ice mass loss. Ironically, these
locations are far away from the equator, so that deviations of
the actual Earth’s surface from the sphere of radius a &~ 6378
km are large there. Thus, the presented areas can be con-
sidered as the “worst-case scenarios” for Eq. (19), which is
traditionally used to convert Stokes coefficients into mass
anomalies. Therefore, our further analysis is limited to the
two geographical areas shown in Fig. 1.

2.2.3 Computation of mass anomalies at the sphere of
6378-km radius

Conversion of Stokes coefficients into mass anomalies
with the commonly used Eq. (19) reveals large differences
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Fig.1 Mean rate of linear mass change in Greenland (top) and Amund-
sen Sea embayment of West Antarctica (bottom) in 2003-2015, in terms
of EWH. The estimates are based on GRACE Release-5 monthly solu-
tions produced at CSR. The mass anomalies are computed at the actual
Earth’s surface, using GLOBE digital elevation model. Yellow triangles
denote the locations of the peak signal: the Jakobshavn Isbra in Green-
land and the Pine Island glacier in West Antarctica. Thick black lines
denote the profiles addressed in Fig. 5

from the values computed at the actual Earth’s surface (see
Fig. 2a). The observed differences are clearly anti-correlated
with the total signal shown in Fig. 1. In other words, the
traditionally used expression damps the recovered signals.
This is not surprising, since the polar Earth’s radius is 21 km
smaller than the equatorial one, so that actual mass transport
in the considered case takes place about 20 km further away
from GRACE satellites than it is implicitly assumed in the
traditional computations. The largest differences reach about
10cm/year (Fig. 2a, Table 1).

In order to better quantify the observed signal damping,
we also represent the difference D(6, ¢) between the two
variants of mass change rates in percentages, for which pur-
pose the following expression is used:

(170, ¢) — B 0. ))

A0, )|

D@, ¢) = x 100, (28)



Conversion of time-varying Stokes coefficients into mass. ..

1407

Table 1 Mass change rates (in terms of EWH) computed at the actual Earth’s surface, as well as the errors introduced by different assumptions
about its geometry. The considered points are the locations of the peak signal

Jakobshavn Isbra (Greenland)  Pine Island glacier (West Antarctica)

Peak signal location

Longitude

Latitude

Signal

Error of the spherical approximation (R = 6378 km)

Error of the ellipsoidal approximation

Error of the (ellipsoid-based) locally spherical approximation

Difference between the locally spherical and ellipsoidal approximation

47°W 98°W

69°N 76°S
—64.0cm/year — 68.6cm/year

9.2 cm/year (14.4%) 9.7 cm/year (14.2%)

—1.0cm/year (— 1.5%)
—1.2cm/year (— 1.8%)
—0.2cm/year (—0.3%)

—0.4cm/year (— 0.6%)
—0.6cm/year (— 0.8%)
—0.2cm/year (—0.2%)

°
>
£
G
T
=
w
~50° -40° -30° -
! -2
A9 ~70-
-3
-4
A8 s
< \
S %.

/7

Fig. 2 Difference (left) and the absolute value of relative difference
in percentages (right) between the mass change rates computed at the
sphere of radius ¢ = 6,378,136 m and those computed at the actual

where Hv(vappr) is the mass change rate computed with the

approximate formula and " is the reference mass change
rate. The results are presented in Fig. 2b. We only show the
observed differences if the reference signal at a given point
exceeds in absolute value 10 cm/year. In this way, we mask
out the large relative differences that are caused by a small
value in the denominator in Eq. (28). In spite of that, the
observed relative differences are, in general, quite large. At
the locations of strongest negative trends, they are of the order
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Earth’s surface. The relative differences are shown only at the locations
where the signal exceeds in absolute value 10 cm/year. For more details,
see the caption of Fig. 1 and the main text

of 15% (Table 1), whereas at some other locations they are
even larger, reaching 20% and more (Fig. 2b). One may argue
that the largest relative differences may be associated with
noise (e.g., over the ocean and, perhaps, over the inner part of
Greenland). Mass anomaly estimates there must be filtered
anyway, so that the errors introduced by the spherical Earth
approximation are not critical. Nevertheless, even if we limit
the discussion only to the coastal areas, the signal damping
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Fig.3 Same as Fig. 2, but the compared mass change rates are computed at the reference ellipsoid and at the actual Earth’s surface

caused by the considered approximation is at the level of up
to 10-15%, which is hardly acceptable.

2.2.4 Computation of mass anomalies at the reference
ellipsoid

Next, we compute mass anomalies under the assumption that
mass transport takes place at the reference ellipsoid. To that
end, we invert the block-diagonal matrix given by Eq. (23).
The resulting mass change rates are an order of magnitude
closer to those computed at the actual Earth’s surface, as
compared to those produced under the assumption that the
Earth is a sphere of 6378 km radius. The differences do not
exceed 1 cm/year (Fig. 3a, Table 1). The relative differences
are within 1.5% at the locations of the peak signal and typ-
ically stay within the 3% limit elsewhere (Table 1, Fig. 3b).
Thus, the approximation of the Earth surface geometry with
the reference ellipsoid may improve the conversion accu-
racy by an order of magnitude, as compared to the traditional
approximation with the sphere of radius a = 6378 km.

In addition, it is worth noticing that the spatial pattern of
the observed differences shows a clear positive correlation
with the signal itself (cf. Figs. 1 and 3a). In other words, the
recovered signal is sharper than the actual one. Obviously,
this is due to the fact that the surface of the reference ellipsoid

@ Springer

(which is close to the sea level) is a few km further away from
the GRACE satellites than the actual surface of ice sheets.
Finally, relatively large differences are observed in the ocean
areas at the western and southeastern coasts of Greenland.
We relate them to a strong gradient of mass anomalies at
the Greenland coasts. In view of a limited spectrum of the
function AHy, (6, ¢), ringing artefacts associated with the
Gibbs phenomenon must occur in those areas. As soon as
recovered signal becomes sharper, these artefacts become
more pronounced.

2.2.5 Computation of mass anomalies at the reference
ellipsoid using the locally spherical approximation

Finally, we compute mass anomalies at the reference ellip-
soid using the locally spherical approximation. That is, the
spherical Earth’s surface expression is used in the compu-
tations, but the radius of the sphere is latitude-dependent.
At each latitude, it is set equal to the distance between the
reference ellipsoid and the center of the Earth, cf. Eq. (26).
The obtained linear trend estimates are surprisingly close
to those produced with the explicit procedure addressed in
the previous section. The differences between the results do
not exceed 0.4 cm/year; see Fig. 4a. The relative differences
stay at the level of at most 1-2% (Fig. 4b). Thus, the locally
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explicitly

spherical approximation of the reference ellipsoid ensures
an almost the same conversion accuracy as the usage of the
reference ellipsoid explicitly. On the other hand, the conver-
sion based on the locally spherical approximation is easier to
implement in practice, since it does not require solving any
systems of linear equations.

3 Ellipsoidal versus spherical coordinates

In this section, we discuss the difference between mass
anomalies computed in spherical (geocentric) and ellipsoidal
(geodetic) coordinates. The maximum difference between
geodetic and geocentric (co-)latitudes is observed near the
45° latitudes, reaching approximately 11.5 arc-minutes or
21 km. In the polar areas, which are considered in our exam-
ples, this difference is smaller: of the order of 10—15km or
even less. One may argue that such differences must be neg-
ligible in the estimation of mass anomalies from GRACE
data, since the spatial resolution of those estimates is a few
hundreds of km. To demonstrate that such a statement may
be unfair, we consider the meridional profiles that cross the
Jakobshavn Isbre in Greenland and the Pine Island glacier
in West Antarctic (Fig. 5). The linear trend estimates along

these profiles are presented as functions of both geodetic and
geocentric latitude (Fig. 5). This figure clearly shows that
the accuracy of locating a sharp signal may by far exceed the
spatial resolution of GRACE data. As such, the difference
between the estimates in spherical and ellipsoidal coordi-
nates is clearly visible. Thus, we believe that the conversion
of geodetic colatitudes into geocentric ones must not be omit-
ted in GRACE data processing.

4 Discussion and conclusions

To convert time-varying Stokes coefficients into mass anoma-
lies at the Earth’s surface, geoscientists routinely use Eq. (19)
or its equivalents. However, the results obtained with this
expression represent mass transport at the spherical surface
of 6378 km radius. In this study, we show that the accuracy of
such a conversion may be insufficient, especially if the target
area is located in a polar region and the signal-to-noise ratio
is high. For instance, the mean linear trends in 2003-2015
estimated over Greenland and Amundsen Sea embayment of
West Antarctica may be underestimated in this way by 10—
15% or even more. Such an error may definitely exceed the
noise level of current mass transport estimates. Moreover,
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0 — As a solution, we propose an updated expression for the
-10 NS conversion of Stokes coefficients into mass anomalies. This
T 20 \\ 7/ expression is based on the assumptions that: (i) mass trans-
E -30 \\ 7 2 port takes place at the Earth’s surface that is approximated
I -40 by the reference ellipsoid; (ii) at each point of interest,
5 -50 k\ Y the Earth’s surface is further approximated by the sphere
-60 \\\Jl/ with a radius equal to the current radial distance from
70 the Earth’s center (“locally spherical approximation’). The
66 67 68 69 70 7 72 updated expression is nearly as simple as Eq. (19), but allows
Latitude the inaccuracies associated with the conversion procedure to

10 be reduced by an order of magnitude.
ol ’ In addition, we demonstrate that it is advisable to con-
10 A\ vert geodetic (co-)latitudes into geocentric ones, when mass
\\ // anomalies are computed. This is in spite of the fact that
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Fig.5 Mass change rates computed along the meridional profiles cross-
ing the Jakobshavn Isbrae in Greenland (top) and the Pine Island glacier
in West Antarctica (bottom); the exact location of the profiles is shown
in Fig. 1. The computed values are presented as functions of geocen-
tric latitude (in red) and geodetic latitude (in green). In both cases, it is
assumed that mass transport takes place at the actual Earth’s surface,
which is described by the GLOBE digital elevation model

there are no doubts that the accuracy and spatial resolution
of future estimates will increase further, so that a limited
accuracy of the conversion based on Eq. (19) will likely
become in the future even less tolerable. There are several
reasons to expect improvements in the mass anomaly esti-
mation in the foreseeable future: (i) an ongoing progress in
the techniques for satellite gravity data processing; (ii) a con-
tinuously increasing duration of mass anomaly time series,
which leads to a high accuracy of mean estimates for the
entire available time interval (including mean linear trends);
and (iii) the forthcoming launch of the GRACE Follow-On
(GFO) satellite mission (https://gracefo.jpl.nasa.gov). GFO
satellites will be equipped with a laser interferometer, allow-
ing for an order-of-magnitude increase in the accuracy of
inter-satellite ranging. Though the increase in the ranging
accuracy may not result in a proportional increase in the
accuracy of estimated mass anomalies in general (Flechtner
et al. 2016), the level-1 data will definitely become cleaner
at high frequencies, since ranging noise at those frequencies
is dominant (Flury et al. 2008; Ditmar et al. 2012). Then,
this reduction in noise level will likely have a positive effect
onto the estimates of mass anomalies at small spatial scales,
which are particularly vulnerable if the Earth’s geometry is
defined inaccurately.

@ Springer

the shifts caused by this conversion are an order of mag-
nitude smaller than the spatial resolution of GRACE-based
estimates.

In“Appendix A,” we summarize the recommended expres-
sions for the conversion of Stokes coefficients into mass
anomalies. Unlike in the main text, we use there the most tra-
ditional notation for the spherical harmonic expansion (when
the orders start from 0 and not from —/), in order to facilitate
the usage of the proposed expressions.

We would like to stress that the proposed conversion
formula is particularly beneficial in the presence of strong
signals in the range of high degrees, as it was the case in
the considered examples. The absence of such signals makes
the results much less sensitive to the assumption about the
surface where mass transport takes place. For instance, the
truncation of mass anomaly estimates at spherical harmonic
degree 60 reduces the conversion errors 2-3 times, as com-
pared to those presented in Fig. 2 (where the maximum
degree is equal to 96).

In all the discussions so far, we assumed that the load-
ing effects can be corrected just by introducing load Love
numbers as additional scaling factors of the kind (1 + k).
For a non-spherical Earth, such a simple approach is, strictly
speaking, incorrect. However, the loading effects manifest
themselves mostly in the range of low degrees. This can be
understood from the fact that the scaling factors (1 + k;)
rapidly approach 1 as spherical harmonic degree increases.
For instance, (1 + k;) > 0.96 for degrees above 30 and
(1+k;) > 0.98 for degrees above 70 (Wahr et al. 1998). Since
the impact of the proposed conversion formula is mostly lim-
ited to the range of relatively high degrees, we believe that a
simplified treatment of the loading effects is justified.

Finally, one may pose the questions whether mass anoma-
lies can be uniquely restored considering that mass transport
takes place at the Earth’s surface of a complicated geometry.
For the case of a spherical Earth, a unique recovery of mass
anomalies is guaranteed by Eq. (18). This formula establishes
a unique link between the Stokes coefficients (that describe
variations of gravitational potential) and the Fourier coef-
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ficients of mass anomalies. Moreover, this formula offers
a practical way to make the corresponding conversion. By
increasing the maximum spherical harmonic degree under
consideration, one may, in principle, recover mass anomalies
with an arbitrarily high spatial resolution. Thus, the spatial
resolution of the results is fully defined by the spatial resolu-
tion of the exploited gravity field model. The situation with
mass transport at the actual Earth’s surface is more com-
plicated. First of all, the unique conversion of time-varying
Stokes coefficients into mass anomalies can only be guar-
anteed if the matrix composed of coefficients By ,, ;7 (cf.
Eq. 15) is invertible. In all the computations conducted in
this study, this was indeed the case: this matrix was not only
invertible, but also close to the unit one. However, it remains
unclear if (or under what conditions) this matrix remains
invertible in general. Furthermore, the presence of nonzero
off-diagonal elements in this matrix implies that there is no
unique link anymore between the spatial resolution of grav-
ity field model and that of mass anomalies. For instance,
high-frequency signals in terms of mass anomalies can map
onto low-frequency signals in gravity field observations. If
the former signals contain spherical degrees above Lpax in a
given data processing run, a proper conversion of Stokes coef-
ficients into mass anomalies becomes impossible. In other
words, a realistic Earth’s geometry may result in a new type
of high-frequency signal aliasing, which is absent when mass
transport takes place at a spherical surface. A quantification
of this effect and, if necessary, designing optimal schemes to
mitigate it are the subjects of further studies.
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Appendix A: Recommended expressions to
convert time-varying Stokes coefficients into
mass anomalies at the Earth’s surface

1. Identify the time interval of interest. Subtract the mean
value of each Stokes coefficient in this time interval from
the coefficient time series to produce temporal variations
of Stokes coefficients (ACp;,, ASin).

2. For each point of interest, convert the geodetic colatitude
0, into the geocentric colatitude 0,:

6. = ATAN2 (sin6,, (1 — f)?cos6,), (29)

where f is the flattening of the Earth’s figure (1,/298.2572)

and
arctan(y/x) ifx >0
arctan(y/x) + 7 ifx <Oandy >0
ATAN2(y, x) = | 2rc@an(y/x) —z ifx < Oand y <0

/2 ifx=0andy >0
—m/2 ifx=0andy <0
undefined ifx=0and y =0.

(30)

3. For each point of interest, compute the mass anomaly
A H,, in terms of equivalent water heights using the fol-
lowing expression:

Mg Li: QL+ 1)
drapy = (1 + k)

1+2
<\/1 — e2sin? 6, )
X _—

AHy(Oc, ¢) =

= 3D)

l
X <Z AC Pry (cos 6,) cos mao

m=0

I
+ Y ASin P (cos ) sinm¢> ., (32)

m=1

where ¢ is the longitude of the current point; Mg is the
Earth’s mass (5.9722 x 10?* kg); a is the Earth’s equa-
torial radius (6,378,136 m); py, is water density (1000
kg/m3); Lnax 1 the maximum spherical harmonic degree
in the exploited GRACE data product; k; are load Love
numbers (Wahr et al. 1998); ¢> = 2f — f2, and Py, (x)
are normalized associated Legendre functions of argu-
ment x.
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