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Abstract

In networked control systems (NCS), the components of the control system communicate over
a network, which poses challenges to the control synthesis procedure. Signal sampling is one
of those challenges. A typical approach is to sample the signal periodically, but this can be
inefficient. Event-triggered control (ETC) is a more efficient way to implement digital control
for NCS because the control input is only recalculated when a triggering condition is violated.
However, formal synthesis of event-triggered controllers is an open topic.

In this work, we propose different methods to synthesize event-triggered controllers. The
event-triggered controller consists of a triggering function based on a certificate function and
a stabilizing feedback law. Counterexample-Guided Inductive Synthesis (CEGIS) is used
to synthesize formally correct controllers. The feedback law is synthesized along with the
certificate function or using feedback linearization. This framework is also extended to the
synthesis of periodic event-triggered controllers, which periodically evaluate the triggering
condition. A method is provided for how the sampling time of the triggering condition
should be chosen. The synthesis approach is tested on several systems, through which the
effectiveness of the approaches are demonstrated. It is shown that the method can synthesize
event-triggered controllers for general nonlinear systems.
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Chapter 1

Introduction

1-1 Motivation

Networked control systems (NCS) are spatially distributed control systems. Communication
between plants, sensors, actuators, and controllers takes place over a digital communication
network. NCS are, for example found in mobile sensor networks [36], remote surgery [34],
automated highway systems [55] and energy networks [57]. Over the last decades, they have
become popular because control systems have become more interconnected and complex.
Using a network to connect spatially distributed components of the control system results in
flexible architectures and generally reduces installation and maintenance costs [24].

New challenges are introduced due to imperfections of the network. One of those challenges
is that signals in NCS need to be sampled before transmission through the network. Another
challenge is the limited availability of bandwidth on the network. Therefore components of
the network should communicate as little as possible. The sampling process and limited
bandwidth have an impact on the design process of the controller. Besides limited bandwidth
and sampling, a modern controller must be efficient in energy consumption, computational
power, and memory. Event-triggered controllers cope with those challenges. These controllers
do not recalculate the control input periodically, but only when some performance treshold is
exceeded. As a result, they require fewer calculations than conventional controllers, resulting
in energy, bandwidth, and computational power savings.

It must be possible to design controllers for NCS, in a way that a wide variety of tasks or
specifications can be satisfied. Besides that, guarantees on the correctness of the controller
are needed. Ideally, the controller is synthesized automatically, with little interference from a
control engineer. Formal controller synthesis methods deal with these challenges for controller
design.

Although formal synthesis methods have been developed for various systems, formal controller
synthesis of event-triggered controllers is an open research topic. Therefore the research goal
of this thesis is to develop formal controller synthesis methods for event-triggered control.

Master of Science Thesis T.L. van der Zijden



2 Introduction

Figure 1-1: Multiple control loops that access the same network

1-2 Controller Synthesis

A NCS system with multiple control loops is depicted in Figure 1-1. A control loop consists
of a plant with corresponding sensor nodes, actuator nodes, and a controller. The sensor
node measures selected physical quantities of the plant, such as its position or speed. These
quantities are referred to as the systems states. The states are sent through a shared digital
communication network. Based on the states, the controller calculates the control signal
and sends it to the actuator. An actuator physically controls the plant. NCS can consist of
multiple control loops that can access the same network. A scheduler decides which control
loop can access the network.

In this thesis we consider automatic synthesis of the controller in the control loop. For the
class of linear systems a wide range of controller synthesis methods is available. However
the field of controller synthesis for the more general class of nonlinear systems is less mature.
Older methods include feedback linearization and backstepping, which are only applicable to
a subclass of nonlinear systems [28]. Other methods are Model Predictive Control (MPC)
[35] and abstraction and simulation [38, 74, 61]. However those methods need computation-
ally expensive calculations online or they require much memory. Another method designs
controllers from control certificate functions. These functions are design tools to modify the
system behavior such that the closed-loop system satisfies the desired system properties. Ex-
amples of such control certificate functions are the Control Lyapunov Function (CLF) [6, 54],
used as a design tool for stabilization and the Control Barrier Function (CBF) [73], used for
safety specification.

The Counterexample-Guided Inductive Synthesis (CEGIS) methodology can be used to syn-
thesize control certificate functions and/or control laws [58, 49, 47, 69, 68]. CEGIS is an
iterative design method. Each iteration, a candidate solution is found based on previously
added states. Subsequently, the candidate is verified, typically utilizing an Satisfiability Mod-
ulo Theory (SMT)-solver, a tool capable of verifying the validity of first-order logic formulas.
If the candidate is not valid, a state (counter-example) is obtained at which the candidate does
not satisfy the control specification. The counter-example is used to improve the candidate
solution in the next iteration. The algorithm is iterated until a valid solution is found or until
a prespecified termination time or iteration. The synthesis of control certificate functions
with CEGIS is not restricted to a subclass of systems and the resulting controllers do not
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1-3 Event-Triggered Control 3

need expensive online computation or memory.

1-3 Event-Triggered Control

Modern controllers are implemented on digital devices; hence it is required to implement
sampling of measured signals. The sampling of signals at the sensor side is needed to imple-
ment a controller on a digital device because the plant’s output is continuous-time, and the
controller signal is discrete-time. At the actuator side, the converse is done to convert the
discrete control signal to a continuous-time input signal to the plant. For example, this can
be done by keeping the control input constant between two sampling instants, referred to as
zero-order hold.

Conventionally sampling takes place periodically at equally spaced sampling instants and is
referred to as time-triggered sampling. Although guarantees on the stability and performance
of the system exist and that reliable design methods are available, time-triggered sampling is
conservative [5]. It is not always needed to sample and calculate the control input periodi-
cally in order to achieve the desired performance. Therefore, time-triggered sampling can be
inefficient in terms of energy consumption and network occupation. Event-triggered sampling
implementations were proposed to overcome these limitations [60, 40, 62, 23]. Event-triggered
controllers only measure and recalculate the control input when some performance bound is
exceeded. Event-triggered control (ETC) thus shows potential to incorporate sampling in NCS
efficiently. Furthermore, it solves another issue of NCS by actively reducing communication
between components. Event-triggered sampling also affects that the energy consumption of
the control system is reduced.

A controller consists of two components in the event-triggered sampling framework: a feedback
law and a triggering function. The feedback law maps the states to an input, and the triggering
function is used to determine when the plant is sampled. Different implementations have
been proposed for the triggering function. Motivated by the ability of certificate functions to
design controllers, most triggering functions are also based on certificate functions. However,
for most implementations, an ISS-Lyapunov Function is used that is not easy to find [60, 40].
Another challenge in the design of the triggering function is to avoid Zeno behavior [43]. In
this context, Zeno behavior means that the event-triggered controller triggers infinitely many
times in finite time. Not all ETC implementations can rule out Zeno behavior [56].

Thus, ETC is an efficient way to incorporate sampling and save bandwidth on a network.
However, no general method exists to co-synthesize the feedback law and triggering function
of the controller. While the CEGIS synthesis method is applied to a wide variety of systems
[49, 50, 47, 69, 68], it is not yet applied to the synthesis of event-triggered controllers. This
motivates the development of methods that will synthesize CLF for ETC automatically.

1-4 Related Work

Besides synthesis of controllers that satisfy classical stability specifications, the research di-
rection of formal controller synthesis is focused on the synthesis of controllers that satisfy
temporal specifications [7]. These types of specifications are incorporated by logic formulae
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4 Introduction

qualified over time. Temporal specifications can, for example, include statements like: ‘The
system trajectories must finally reach region B while visiting region A once.’ Different meth-
ods have been developed for automatic controller synthesis. The synthesis methods mainly fit
into three categories: 1) abstraction and simulation, 2) optimization, 3) certificate functions
[66].

Abstractions are finite-state models for control systems with an infinite number of states or
inputs [38, 74, 61]. States are aggregated into partitions in such a way that the resulting
abstraction is a finite-state model. Using the abstraction, one can synthesize controllers that
satisfy temporal specifications. Efficient algorithms exist to synthesize controllers for the
abstracted model that enforce a temporal specification. For example, fixed-point algorithms
described in [61] can be used to construct the controller.

The key idea of the optimization approach is that the formal synthesis problem can be trans-
formed into an optimization problem that is solved with a wide variety of existing solvers [9].
In these approaches, mainly the temporal logic variant Signal Temporal Logic (STL) is used,
which directly reasons over continuous-time signals. STL provides quantitative semantics on
how robustly the temporal logic formula is satisfied. As a result, the quantitative semantics
provide a clear cost function for optimization-based methods, such as MPC [18, 45, 18, 52].

Another formal controller synthesis method is to design controllers based on certificate func-
tions [49, 50, 19, 59, 67]. By their existence, these kinds of functions certify certain behavior.
In control theory, Lyapunov functions are a familiar tool to verify the stability of a system. As
a tool for the design of stabilizing controllers, the CLF was introduced in [6]. The existence
of a CLF for the system ensures that the system can be asymptotically stabilized with an
associated feedback law based on the CLF. Furthermore, CBFs can be used to design feed-
back laws with safety specifications. For control affine systems, a control law can be deduced
from the CLF by Sontag’s formula [59, 6]. Other types of controllers utilizing a CLF are
optimization-based controllers [64, 42] or switching mode controllers [46, 67]. The synthesis
of a certificate-based controller thus comes down to finding a valid certificate function.

Although abstraction and optimization approaches are applied to different kinds of systems,
most ETC triggering conditions are based on certificate functions. Therefore, the certificate
function paradigm is the most natural choice for event-triggered controller synthesis. In the
following subsection, literature on the synthesis of certificate functions is described.

1-4-1 Certificate Function Synthesis

Synthesis methods for certificate functions can be divided in their versatility to solve the
problem for a general class of system, their scalability, and the amount of expert knowl-
edge needed. For the class of strict feedback systems, feedback linearizable systems, and
passive or feedback-passive system, a CLF and stabilizing controller can be found by back-
stepping [19, 29, 27, 25, 72]. Another approach to finding certificate functions for control
affine polynomial systems is the Sum-Of-Squares (SOS)-programming approach [63, 44, 70].
The certificate function is assumed to have a specific polynomial structure or template. By
using a template of the CLF, the problem reduces to finding a suitable set of parameters for
the template. The parameters of the template are found by solving an optimization problem.
A tool implementing this approach is SOSTOOLS [41].

T.L. van der Zijden Master of Science Thesis



1-4 Related Work 5

A more recent approach is the CEGIS algorithm, which is an iterative algorithm, originally
proposed to find parameters for programs [58]. Each iteration of the algorithm consists of
two steps. In the first step, a candidate function is found. In the second step, it is verified
whether the candidate function satisfies the conditions put on it. If the conditions are not
satisfied, a so-called witness state or counter-example is extracted, at which the conditions are
violated. In [49, 50, 47], the procedure is used to synthesize a CLF for (disturbed) switched
systems with reach-while-stay (RWS) specifications. A polynomial template is used for the
CLF. Candidates, in the form of a set of template parameters, are found with the SMT-
solver Z3. The verification step is implemented using the SMT-solver dReal. When the logic
formula is satisfied, it also returns a counter-example at which the formula is satisfied. For
polynomial systems and templates, the verification problem can also be written as a system
of Linear Matrix Inequalitys (LMIs), for which efficient solvers exists [46]. The approach of
[46] can also be extended for the synthesis of a CLF for the class of polynomial control affine
systems. Finding a CLF candidate with an SMT solver is a bottleneck of the approaches, as
mentioned above [46].

In [67] it is described how candidate functions can be found without assuming an explicit
template for the CLF. Genetic Programming (GP) is used to evolve the structure of the
candidate functions. A cost function is defined that captures how well the conditions on the
certificate function are satisfied over a finite set of states. The parameters of the candidate
functions are found by minimizing this cost function. In [67] this is done with the Covariance
Matrix Adaption Evolution Strategy (CMA-ES) global optimization solver. CMA-ES is a
differentiation-free optimization method, which is robust with respect to discontinuous and
non-convex cost functions [22]. The approach of [67] is extended to simultaneous CLF and
control law synthesis for hybrid systems [69], and sampled-data systems [68]. Using GP
to evolve the structure of the candidate functions, the search space is significantly increased,
which also results in increased synthesis time. However, it is not needed to specify a template.
Therefore less expert knowledge is required in the synthesis process [68].

1-4-2 Event-Triggered Control

ETC was already shortly introduced in Section 1-1 as a method to incorporate sampling in
NCS and to reduce communication between components of the network. In ETC, control tasks
are executed when an event occurs based on an event-triggered mechanism. Different variants
of ETC have been proposed in literature: early ETC implementations focus on Continuous
Event-Triggered Control (CETC) for which the triggering condition is continuously evaluated
[60, 15, 53, 12]. Consequently this raises the need of extra hardware to implement CETC on
digital platforms, which might be impractical. Therefore Periodic Event-Triggered Control
(PETC) and Self-Triggered Control (STC) were proposed [39, 62, 5, 33, 32]. In the PETC
scheme, the triggering condition is only evaluated periodically. In STC, the controller decides
its own next triggering instant, instead of checking a triggering condition.

Most of the ETC research focuses on the design of triggering conditions. Early CETC imple-
mentations consider a triggering condition based on state variation [1, 53]. However, these
methods lack theoretical results on stability and convergence [30].

As in controller synthesis, control certificate functions can be used for the design of event-
triggered controllers. A monotone decrease of the Lyapunov function is ensured by using
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6 Introduction

triggering conditions based on control certificate functions. The most studied case is where the
control certificate function is a so-called Input-to-State Stable (ISS) Lyapunov function [60],
[40]. The ISS condition allows to prove Input-to-State Stable of the closed-loop system with
respect to measurement errors. The ISS-Lyapunov function-based event-triggered controller
guarantees the non-existence of Zeno behavior. The condition holds for linear systems [60],
and some polynomial systems [5], but in general, it is restrictive. Furthermore, it is not easy
to verify the conditions of the ISS Lyapunov function. An approach proposed in [30], [31]
disregards the ISS condition and uses a triggering function and feedback law that is based
on Sontag’s theorem [59]. This theorem states that the existence of a smooth CLF implies
smooth stabilizability. The controllers of [30], [31] ensure positivity of the dwell time. They
can be applied to control affine systems. In [56] the ISS condition is substantially relaxed, but
for some trajectories, Zeno behavior might occur. In [43] a triggering condition is designed for
which a minimal convergence rate is known. This triggering condition is based on a normal
CLF instead of an ISS Lyapunov function. Extra conditions are put on the CLF, in such a
way that no Zeno behavior can occur.

Synthesis of the above described ETC implementations is not trivial, and for most implemen-
tations, it is an open question. In this thesis, methods to synthesize event-triggered controllers
automatically are developed. The research goal and contributions are further discussed in the
next section.

1-5 Research Goal and Contributions

The previous section described how event-triggered control implementations use control cer-
tificate functions to design triggering functions and feedback laws. In literature, it is assumed
that the certificate function and feedback law are given. However, the synthesis of certificate
functions and feedback laws is nontrivial for general nonlinear systems. Furthermore, existing
methods for the synthesis of certificate functions are not applied to ETC yet. This problem
leads to the following research goal:

Problem

Develop a framework for automated synthesis of event-triggered controllers for general
nonlinear systems with stability and possibly safety specifications that can be readily
implemented on digital devices.

To be able to solve this problem, it will be divided in the subproblems described below.

Subproblem 1

Synthesize an event-triggered controller for a nonlinear system that ensures that:
S1) the event-triggered controller does not trigger infinitely fast;
S2) the origin is exponentially stable and system trajectories cannot leave a known

safe set.

It is needed to monitor the triggering condition continuously, hence it is not readily imple-
mentable on digital devices. Therefore the periodic event-triggered mechanism is used, as
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1-6 Outline 7

described in [43]. In this work, an upper bound on time between two measurements is given,
recalled to as the maximum admissible sampling period (MASP).

Subproblem 2

Find an underapproximation of the maximum admissible sampling period, such that a
periodic event-triggered controller provides the same control specification as the con-
tinuous event-triggered controller.

As described in the previous sections, the use of certificate functions to synthesize controllers
and the triggering function of event-triggered controllers is promising. However, for some
certificate-based triggering functions, issues arise. For example, an ISS Lyapunov function is
challenging to synthesize [60]. Another implementation is not able to rule out Zeno behavior
for some trajectories [56]. Moreover, the approaches of [30], [31] are only applicable to control
affine systems. Furthermore, [30], [31] do not provide a known convergence rate. The problems
are solved in [43]. In this work, a triggering function based on a CLF with extra conditions is
proposed. This CLF excludes Zeno behavior, is not based on the ISS condition, has a known
convergence rate, and applies to general nonlinear systems.

Therefore to solve the first problem, a CLF for ETC is proposed which is based on the CLF as
proposed in [43]. The CEGIS framework is used to find a function that satisfy the conditions
on the proposed CLF for ETC.

Two methods to design a feedback law are applied. For the first method, a feedback law
is simultaneously found in the CEGIS framework. The second approach uses feedback lin-
earization to find a control law before synthesis of the CLF. The first method offers the
most flexibility in the synthesis process, whereas the second method reduces the number of
parameters to be bound in the synthesis process. In [43] a non-closed form expression is given
for the maximum time between two sampling instants. We propose to find an approximation
of this intersample time by finding Lipschitz constants and optimization.

1-6 Outline

In this section, it is described how this thesis is structured. In Chapter 2, control theory
results that are used in this work are described. In Chapter 3 it is described how both a
CLF and control law can be found in the CEGIS framework. In Chapter 6, this research is
concluded.
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Chapter 2

Preliminaries

In this chapter, preliminary theory is described that is used in this thesis. In Section 2-2
stability theorems are described. Preliminaries on event-triggered control (ETC) are described
in Section 2-3. Finally, feedback linearization is described in Section 2-4.

2-1 Notation

The sets of natural and real numbers are denoted by N,R, respectively. A non-negative subset
is denoted using the subscript .≥0, e.g. R≥0 = {x ∈ R | x ≥ 0}. Given a function f : Rn → Rm

that maps x ∈ Rn into f(x) = (G1(x), . . . , Gm(x))T ∈ Rm, G′(x) =
(
∂Gi(x)
∂xj

)
∈ Rm×n is used

to denote its Jacobian matrix. A function is said to be C l if it can be differentiated l times. A
function f : Rn → Rm is said to be Lipschitz continuous on compacts if for every compact set
S ⊂ Rn there exists a constant L > 0 such that ‖f(x)− f(y)‖ ≤ L‖x− y‖ for every x, y ∈ S.
Given a set S ⊆ Rn, the boundary set is denoted as ∂S and the interior as int(S). The image
of set A under f is denoted by f [A]. An n-dimensional vector of zeros is denoted as 0.

2-2 Control Lyapunov Functions

Synthesis of controllers for continuous-time nonlinear systems is addressed, described by

ẋ(t) = f(x(t), u(t)) t ≥ 0, (2-1)

where x(t) ∈ D ⊆ Rn denotes the state vector and u(t) ∈ U ⊆ Rm the input vector. It is
assumed that the system f(x(t), u(t)) is locally Lipschitz over the domain D. Furthermore,
D contains the origin. The control law U : D → U maps the states to the inputs:

u(t) = U(x(t)). (2-2)

Master of Science Thesis T.L. van der Zijden



10 Preliminaries

Combining Equations (2-1) and (2-2) results in a closed-loop system

ẋ(t) = f(x(t),U(x(t))). (2-3)

Suppose that x̄ ∈ D is an equilibrium point of (2-1); that is f(x̄,U(x̄) = 0. It is assumed
that the equilibrium point is at the origin of Rn, i.e. x̄ = 0.

Remark 2.1. Without loss of generality, it can be assumed that the equilibrium point is at
x̄ = 0. Any equilibrium point can be shifted to the origin via a change of variables. Suppose
x̄ 6= 0 and consider the change of variables y = x− x̄, then in the new coordinate system, the
system has an equilibrium point at the origin.

An equilibrium point is stable if all solutions starting in a nearby point stay bounded. The
formal definition is as follows:

Definition 2.2 (Stability and Asymptotic Stability [27, Definition 4.1])). An equilibrium
point x̄ = 0 of the closed-loop system (2-3) is said to be stable if, for any ε > 0, there is
δ(ε) > 0, such that

‖x(0)‖ < δ ⇒ ‖x(t)‖ < ε ∀t ≥ 0. (2-4)

Furthermore, x̄ is said to be asymptotically stable, if it is stable and δ can be chosen such that

‖x(0)‖ < δ ⇒ lim
t→∞

x(t) = 0. (2-5)

Lyapunov functions are used to access stability of an equilibrium point.

Definition 2.3 (Lyapunov Function [27]). Given the closed-loop system (2-3), a continuously
differentiable function V (x) defined over the domain D ⊂ Rn is called a Lyapunov Function
if V (0) = 0 and

(∀x ∈ D\{0}) V (x) > 0;
(∀x ∈ D) V̇ (x) ≤ 0. (2-6)

Theorem 2.4 ([27, Theorem 4.1], ). Given the system (2-3). If there exists a Lyapunov
function as defined in Definition 2.3, then the origin is a stable equilibrium point. Moreover,
if

(∀x ∈ D\{0}) V̇ (x) < 0, (2-7)

then the origin is asymptotically stable.

A stronger version of asymptotic stability is exponential stability.

Definition 2.5 (Exponential stability [27, Definition 4.5]). An equilibrium point x̄ = 0 of
the closed-loop system 2-3 is said to be exponentially stable if there exists positive constants
c, k, γc such that

‖x(t)‖ ≤ k ‖x (0)‖ e−γc(t), ∀ ‖x (0)‖ < c (2-8)

Inspired by the use of Lyapunov functions for stability verification of the closed-loop system
(2-3), in [6] Control Lyapunov Functions (CLFs) were proposed for the design of stabilizing
controllers. The definition of a CLF is as follows:
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Definition 2.6 (Control Lyapunov Function [6]). A C1 function V : D → R, is called a CLF
if V (0) = 0, and

(∀x ∈ D\{0}) V (x) > 0; (2-9a)
(∀x ∈ D\{0}) inf

u∈U
[V ′(x)f(x, u) < 0]. (2-9b)

The second condition implies that for each x ∈ D\{0}, a control input u ∈ U can be chosen
to ensure an instantaneous decrease in V . This is also referred to as Lyapunov decrease.
Obviously, the condition (2-9b) can be reformulated as

(∀x ∈ D\{0}) (∃u ∈ U) V ′(x)f(x, u) < 0. (2-10)

Below, the theorem ensuring the existence of control law is stated.

Theorem 2.7 (Existence of Stabilizing Control Law [59, Theorem 1]). Let U ⊆ Rm be convex,
then the existence of a CLF V ensures that a smooth stabilizing controller u = U(x) exists,
where U : Rn → U is continuous.

The exponentially stabilizing CLF ensure exponential stability (Definition 2.5) of the closed-
loop system.

Definition 2.8 (Exponentially Stabilizing Control Lyapunov Function [4, Definition 1]).
Given the system (2-1), a continuously differentiable function V : D → R is an exponentially
stabilizing control Lyapunov function if there exists positive constants c1, c2, c3 > 0, such that

(∀x ∈ D) c1‖x‖2 ≤ V (x) ≤ c2‖x‖2; (2-11a)
(∀x ∈ D) inf

u∈U
[V ′(x)f(x, u) ≤ −c3V (x)]. (2-11b)

Lemma 2.9 ([10, Theorem 2.21]). Given an Exponentially Stabilizing Control Lyapunov
Function defined in Definition 2.8, the origin of the system (2-1) is exponentially stable and
the following holds

‖x(t)‖ ≤ ce−γct ‖x(0)‖ . (2-12)

2-3 Event-Triggered Control

In the context of ETC, the nonlinear system (2-1) is considered. As described earlier, ETC was
proposed as an alternative to periodic sampling. Event-triggered controllers only recalculate
the input when a condition is violated. An additional advantage is that event-triggered
controllers can deal with constrained energy, communication, and computational resources
[60]. Early ETC implementations focus on Continuous Event-Triggered Control (CETC) for
which the triggering condition is continuously evaluated. Consequently, this raises the need
for extra hardware to implement CETC on digital platforms, which might be impractical.
Therefore Periodic Event-Triggered Control (PETC) was proposed [23]. In the PETC scheme,
the triggering condition is only evaluated periodically.
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In literature different approaches have been proposed for the design of the triggering function
[60, 15, 53, 12]. Most CLF-based ETC implementations make use of an Input-to-State Stable
(ISS)-Lyapunov function, which can be difficult to find. In the work of [43] a CETC and
PETC implementation are proposed, which is based on a less restrictive CLF. Furthermore,
the controller implementations have a known convergence rate, and they do not exhibit Zeno
behavior.
The main results and resulting theorems of [43] are described in this section. For a more
detailed description and proofs, the interested reader is referred to [43]. A general nonlinear
system (2-1) is consdired, whereD = Rn. The ETC implementation is based on a γ-stabilizing
CLF, which gives a known convergence rate.
Definition 2.10 (γ-stabilizing Control Lyapunov Function [43, Definition 2]). Given the
system (2-1). Consider a continuous function γ : [0;∞)→ [0;∞), such that γ(v) > 0 ∀v > 0.
A C1-smooth function V : Rn → R is called a γ-stabilizing CLF, if V (0) = 0, lim|x|→∞ =∞,
f(0,U(0)) = 0, and there exists a map U : Rn → U , satisfying the conditions

(∀x ∈ Rn\{0}) V (x) > 0; (2-13a)
(∀x ∈ Rn) V ′(x)f(x,U(x)) ≤ γ(V (x)). (2-13b)

The problem as posed in [43] is to design an event-triggered controller that has a convergence
rate arbitrarily close to convergence rate of the continuous-time controller u = U(x). The
event-triggered controller should satisfy the condition

V̇ (x(t)) ≤ −σγ (V (x(t)) ∀t ≥ 0, (2-14)

where σ ∈ (0, 1) is a design parameter. The parameter σ regulates how close the conver-
gence rate of the event-triggered controller is to the convergence rate of the continuous-time
controller.

Continuous Event-Triggered Control The continous event-triggered controller proposed in
[43] is

u(t) = U (x (tk)) ∀t ∈ [tk, tk+1) , t0 = 0,

tk+1 =
{

inf {t > tk | C(x(t), x(tk)) = 0} , V (x (tk)) > 0;
∞, V (x (tk)) = 0,

C(x(t), x(tk)) = V ′(x(t))f(x(t),U(x(tk))) + σγ(V (x(t))).

. (2-15)

The event-triggered controller gives a convergence rate as defined in the following lemma.
Lemma 2.11 (CLF with known convergence [43, Proposition 1]). Let the system (2-1) have
a γ-stabilizing CLF V , corresponding to the controller U . Let x(t) be a solution to the closed-
loop system (2-3). Furthemore, define the following function Γ : (0,∞)→ R

Γ(s) :=
∫ s

1

dv

γ(v) , s > 0. (2-16)

Then on the the interval of the solutions existence, the function V (x(t) satisfies the following
inequality

0 ≤ V (x(t)) ≤ Γ−1(Γ(V (0))− t). (2-17)
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As shown in [43, Example 1]), for a function γ(v) = γcv, the γ-stabilizing CLF provides
exponential decrease of the γ-stabilizing CLF.

Proposition 2.12 ([43]). For a function γ(v) = −γcv, Equation (2-17) reduces to

0 ≤ V (x(t)) ≤ e−γctV (x(0)). (2-18)

To assure practical ability of the proposed controller it is proved in [43] that a unique solution
between two sampling instants exists, and furthermore that solutions to the closed-loop system
are not Zeno.

Definition 2.13 (Zeno Behavior, [43, Definition 3]). A solution to the closed-loop system
(2-1) is said to be Zeno, or exhibit Zeno behavior, if the sequence of sampling instants is
infinite and has a limit t∞ = limk→∞ tk = supk≥0 tk <∞.

Three assumptions are adopted to ensure uniqueness of solutions and to exclude Zeno behav-
ior. For a given x∗ ∈ Rn the sublevel set B(x∗) is defined:

B(x∗) := {x ∈ Rn | V (x) ≤ V (x∗)} . (2-19)

Given a set S0 ⊂ Rn, the set B(S0) is the union of the sets B(x∗) for all x∗ ∈ S0:

B(S0) :=
⋃

x∗∈S0

B(x∗). (2-20)

Assumption 2.14 ( [43, Assumption 2]). Let the Lipschitz function (x∗) on the compact set
B(x∗) be defined as

Lf (x∗) := sup
x1,x2∈B(x∗)

x1 6=x2

‖f (x1,U (x∗))− f (x2,U (x∗))‖
‖x2 − x1‖

<∞ Lf (0) := 0. (2-21)

It is assumed that the Lipschitz constant Lf (x∗) is a locally bounded function of x∗.

This implies that the difference of the system dynamics for two points x1, x2 ∈ B(x∗) for a
last measured state x∗ ∈ B(x∗) can be bounded by a Lipschitz constant Lf as Lf ‖x1 − x2‖.

Proposition 2.15. Assumption 2.14 holds if U(x) is locally bounded and the jacobian f ′(x, u)
with respect to x exists and is continuous in x and u.

Assumption 2.16 ([43, Assumption 3]). The Lipschitz constant of V ′ on the compact set
B(x∗) is defined as

LV ′ (x∗) := sup
x1,x2∈B(x∗))

x1 6=x2

‖V ′ (x1)− V ′ (x2)‖
‖x2 − x1‖

, LV ′(0) := 0. (2-22)

It is assumed that the gradient V ′(x) is locally Lipschitz.

This statement is a stronger of smoothness of the CLF. The following proposition states a
sufficient condition to satisfy Assumption 2.14.
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14 Preliminaries

Proposition 2.17 ([43]). Assumption 2.14 is satisfied when V ∈ C2.

The third assumption allows to establish the relation between the convergence of the CLF and
the solution x(t). By assuming a relation between those two, Zeno behavior can be excluded.

Assumption 2.18 ([43, Assumption 4]). The γ-CLF V (x) and continuous-time feedback map
u = U(x) satisfy the following properties

(∀x ∈ Rn) ‖f(x,U(x)‖ ≤M1(x)|V ′(x)|,
(∀x ∈ Rn\{0}) cos θ(x) ≤ −M2(x), (2-23)

where M1(x) is uniformly bounded and M2(x) is uniformly strictly positive on any compact
set.

The intuition behind this assumption is that the conventional CLF decrease condition does
not exclude fast changing system solutions. This can be seen by decomposing the closed-loop
continuous time system f(x,U(x) into a sum of two vectors, one parallel to the gradient of
the CLF ∇V (x) = V ′(x)T and the other orthogonal to it as

f(x,U(x)) = −α(x)∇V (x) + v⊥, (2-24)

with α ∈ R and ∇V (x) ⊥ v⊥(x) ∈ Rn ∀x 6= 0. The traverse component v⊥ is not bounded in
any way. This has as a result that the magnitude of the systems solutions can change much
faster than the decrease of the CLF. The conditions of Assumption 2.18 ensure that the trans-
verse component of the velocity v⊥ is proportional to the gradient component −α(x)∇V (x),
and, also that both components decay as O(‖V ′(x)‖) as ‖x‖ → 0. In [43], the conditions in
Assumption 2.18 are reformulated into a single condition

Lemma 2.19 ([43, Lemma 1]). For a γ-stabilizing CLF V , Assumption 2.18 holds if and
only if a locally bounded function M(x) > 0 exists such that

(∀x ∈ D) ‖V ′(x)‖ ‖f(x,U(x)‖+ ‖f(x,U(x))‖2 ≤M(x) |V ′(x)f(x,U(x))| . (2-25)

For the real-time implementation of event-triggered controllers, it is needed to have a minimal
time between two triggering instants, referred to as the dwell time.

Definition 2.20 (Dwell-time [43, Definition 4]). The value T (x0) = infk≥0(tk+1(x0)−tk(x0))
is called the dwell-time.

To examine the behavior of the solutions between two sampling instant, the auxiliary Cauchy
problem, see [43] is introduced:

ξ̇(t) = F (ξ(t), u∗) , ξ(0) = ξ0, t ≥ 0, (2-26)

where u∗ ∈ U . To estimate the time elapsed between consecutive events tk+1 − tk it suf-
fices to study the behavior of the solution ξ(t) = ξ (t | x∗,U (x∗)) to the Cauchy problem
(2-26), with ξ0 = x∗ 6= 0 and u∗ = U(x∗). Namely, the first instant t̄ is found, such that,
V ′(ξ(t̄))f

(
ξ(t̄), u∗

)
= −σγ(V (ξ(t̄))). The following lemma implies that t̄ ≥ τ (x∗), where τ(·)

is some function, uniformly strictly positive on any compact set.
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Lemma 2.21 (Solution uniqueness and dwell-time positivity [43, (Lemma 2]). Let Assump-
tions 2.14, 2.16 and 2.18 be valid and γ(·) either non-decreasing or C1. Then a function
τ : Rn → (0,∞) exists, that depending on σ, γ, Lf , LV ′ ,M , satisfies the conditions:

1. τ(·) is uniformly strictly positive on any compact set;
2. for any x∗ the solution ξ(t) is well-defined on the closed interval [0, τ (x∗)] and

V ′(ξ(t))f (ξ(t),U (x∗)) < −σγ(V (ξ(t))) ∀t ∈ [0, τ (x∗)) . (2-27)

The above theorem lemma leads to the following theorem

Theorem 2.22. Let the assumptions of Lemma 2.21 hold, then the following estimate for
the dwell-time of the controller (2-15) holds

T (x0) ≥ inf
x∈B(x0)

τ(x) > 0, (2-28)

where B(x0) := {x | V (x) ≤ V (x0)}. The dwell time T is uniformly positive for all solutions
starting in a compact set S0, i.e. infx0∈S0 T (x0) > 0. The explicit formula of τ is

τ(x∗) := min
{

(1− σ)2

µ (x∗)2M (x∗)2 ,
1

1 + 2Lf (x∗)

}
> 0, (2-29)

with
µ(x∗) :=

√
emax

{
Lf (x∗) , LV ′ (x∗)

(
1 + Lf (x∗)

√
e
)}
. (2-30)

Periodic Event-Triggered Control Fixing two constants σ̃ ∈ (σ, 1) and K > 1 the proposed
PETC implementation in [43] is

u(t) = un := U (x (knh)) ∀t ∈ [knh, kn+1h) ; k0 = 0,
kn+1 = min {k > kn | ¬P(x(kh), un)} ,

P(x, u) := V ′(x)f(x, u) < −σ̃γcV (x) ∧ ‖V
′(x)‖ ‖f(x, u)‖+ ‖f(x, u)‖2

M(x)|V ′(x)f(x, u)| ≤ K,
(2-31)

where h > 0 is the sampling interval. The choice of h is based on the following lemma. It
deals with the solution ξ(t) = ξ (t | x̄, u∗) of the Cauchy problem (2-26).

Lemma 2.23. Let the Assumptions 2.14, 2.16 and 2.18 be valid, γ(·) be either non-decreasing
or C1-smooth, σ̃ ∈ (σ, 1) and K > 1. Then there exists a function τ0 : Rn → (0,∞) such that

1. τ0 is uniformly positive on any compact set;

2. if x∗ 6= 0, x̄ ∈ B(x∗) and P (x̄,U(x∗)) is valid, then the solution ξ(t) is well defined for
t ∈ [0, τ0(x∗)] and the following inequality holds

V ′(ξ(t))f(ξ,U(x∗) < −σγ(V (ξ(t)) ∀t < τ0(x∗). (2-32)

The following is the result of this lemma.
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Theorem 2.24. Let the assumptions of lemma 2.23 be valid. The periodic event-triggered
controller (2-31) provides the inequality (2-18) for any x(0) ∈ S0 if the sampling interval h is
chosen such that

h ∈ (0, τMASP) , (2-33)

where τMASP is defined as

τMASP := inf
x∗∈B(S0)

τ0(x∗) = inf
x∗∈B(S0)

min
{

(σ̃ − σ)2

K2µ (x∗)2M (x∗)2 σ̃2
,

1
1 + 2Lf (x∗)

}
, (2-34)

and µ(x∗) as in Equation (2-30)

2-4 Feedback Linearization

In this section the technique of feedback linearization is described. In Chapter 3 feedback
linearization is used to design the feedback law of event-triggered controllers. Feedback lin-
earization is a well-known approach to nonlinear control design. The central idea is to trans-
form the nonlinear system dynamics into linear dynamics, such that linear control techniques
can be applied. It is described how a feedback linearizing controller can be designed. Consider
the nonlinear system

ẋ = f(x) + g(x)u, (2-35)

The matrices f : D → Rn and g : D → Rn×m are sufficiently smooth on a domain D ⊂ Rn.
Furthermore, f(0) = 0. By a change of coordinates the dynamics can be mapped in a special
form. This mapping is recalled to as a diffeomorphism, which is defined as follows:

Definition 2.25 (Diffeomorphism, [27]). The continuously differentiable map z = Φ(x) with
a continuously differentiable inverse is called a diffeomorphism.

A feedback linearizable system is defined as follows.

Definition 2.26 (Feedback Linearizability, [27, Definition 13.1 ]). Consider the system Equa-
tion (2-35). The system is said to be feedback linearizable if there exists a diffeomorphism
Φ : D → Rn (2.25), such that the image Φ[D] contains the origin and the change of variables
z = Φ(x) transforms the system into the form

ż = Az +Bγ(x)[u− α(x)], (2-36)

with (A,B) controllable and γ(x) nonsingular for all x ∈ D.

There exists conditions that guarantee the existence of a transformed system of the form
(2-36) exists. The interested reader is referred to Appendix A for a more detailed description
on this.

Let γ−1(x) be the inverse matrix of γ(x) in Equation (2-36). Then the feedback control

u = U(x) = γ−1(x)[α(x) + v] (2-37)

cancels the nonlinearities, which results in the system with linear dynamics

ż = Az +Bv. (2-38)
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As a result, the origin can be stabilized by v = −Kz, where A−BK is Hurwitz (all eigenvalues
negative) and the closed-loop system, in the z-coordinates is

ż = (A−BK)z. (2-39)

The control in x-coordinates is

u = U(x) = γ−1(x)[α(x)−KΦ(x)], (2-40)

and closed-loop system is

ẋ = f(x) + g(x)γ−1(x)[α(x)−KΦ(x)] := fc(x) (2-41)

Lemma 2.27. Given the system (2-39), then the origin of the closed-loop system fc(x) in-
herits exponential stability of the origin in z-coordinates.

Proof. Since,
ż = ∂Φ

∂x
(x)ẋ = (A−BK)z, (2-42)

the following holds:
∂Φ
∂x

(x)fc(x) = (A−BK)Φ(x). (2-43)

Using the fact that fc(0) = 0, the Jacobian matrix of each side of Equation (2-43), the
following is obtained:

∂fc
∂x

(0) = J−1(A−BK)J, where J = ∂Φ
∂x

(0) (2-44)

The matrix J is nonsingular and the similarity transformation J−1(A−BK)J preserves the
eigenvalues of A−BK. Hence, J−1(A−BK)J is Hurwitz, and x = 0 is exponentially stable
by Theorem 3.2 of [28].
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Chapter 3

CEGIS

In this chapter, the first subproblem as defined in Section 3-1 is considered. For the sake of
convenience, the problem is recalled.

Subproblem 1

Synthesize an event-triggered controller for a nonlinear system that ensures that:
S1) the event-triggered controller does not trigger infinitely fast;
S2) the origin is exponentially stable and system trajectories cannot leave a known

safe set.

As described in Section 2-3, an event-triggered controller consists of a feedback law and
triggering condition. The triggering condition is based on a certificate function. In this
chapter, two different certificate functions are used, inspired by [43], to certify the behavior
as described in the above subproblem.
In this chapter, Counterexample-Guided Inductive Synthesis (CEGIS) is used to synthesize
certificate functions [26, 46]. Two different methods are proposed to synthesize a feedback
law. In the first approach, a closed-form feedback law for general nonlinear systems is co-
synthesized with the certificate function in the CEGIS synthesis loop. The second approach
uses feedback linearization to synthesize a feedback law, whereafter a certificate function
is found. This approach is only suited for the class of feedback linearizable systems, see
Section 2-4.
A predefined template assumes a particular structure of the certificate function and possibly
other functions, reducing the synthesis procedure to finding parameters of the templates.
Several studies have proposed to use CEGIS for the synthesis of different kinds of controllers
for different systems. For example, CEGIS is applied to nonlinear switched systems [46],
general nonlinear systems [67] and sampled-data systems [68]. The main contribution of this
chapter is the extension of the CEGIS framework to the synthesis of certificate functions
suited for event-triggered controllers.
This chapter is organized as follows. To begin, a formal problem definition for Subproblem 1
is provided in Section 3-1. The triggering condition is then introduced in Section 3-2, followed
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by the introduction of the certificate functions used in the triggering condition. In Section 3-3
the two methods to design a feedback law are presented, whereafter the CEGIS framework is
outlined. Finally, this chapter is summarized in Section 3-4.

3-1 Problem Definition

In this section the problem is formalized. A control affine system is considered of the form

ẋ(t) = f(x(t)) + g(x(t))u(t) = F (x(t), u(t)), t ≥ 0, (3-1)

where x(t) ∈ D ⊆ Rn and u(t) ∈ Rm denote the state and input respectively. The sets D is
the state space. The control law U : D → Rm maps the states to the inputs. The origin is
contained in the domain D and the system has an equilibrium point x̄ = 0, i.e. F (0, 0) = 0.
Assuming the equilibrium point to be at the origin can be done without loss of generality (see
Remark 2.1). Furthermore, the following assumption is adopted.

Assumption 3.1. The jacobian F ′(x, u) exists and is continuous in x and u for all x ∈ D,
u ∈ Rm.

In this chapter, the event-triggered controller is of the form

u(t) = U (x (tk)) ∀t ∈ [tk, tk+1) , t0 = 0,

tk+1 =
{

inf{t > tk | C(x(t), x(tk)) = 0}, V (x (tk)) > 0
∞, V (x (tk)) = 0.

(3-2)

with U and C the feedback law and triggering function, respectively.

It is wanted to synthesize controllers that meet the control specification in a compact set
D. As in the synthesis process the controller is not formally verified, it must be made sure
that trajectories cannot leave D. The first control specification is defined as follows. All
trajectories starting in a set R ⊆ int(D) stay in D and the origin is exponentially stable with
a desired convergence rate γc > 0 and gain ρ > 0:

CS1 : ∀x (0) ∈ R,∀t ∈ [0,∞) : x(t) ∈ D ∧ lim
t→∞

x(t) = 0 ∧ ‖x(t)‖ ≤ ρe−γct‖x(0)‖. (3-3)

The set R follows from the certificate functions defined later. The above definition allows to
pose a formalized version of Subproblem 1.

Subproblem 1 for control specification CS1 (formalized)

Given the compact sets D, the system (3-1) and a desired exponential convergence
rate γc > 0, synthesize an event-triggered controller of the form (3-2) consisting of a
control law u = U(x) and triggering condition C(x), such that if x(0) ∈ R, all solutions
x(t) ∈ R to the closed-loop system given by (3-1) and (3-2)
S1) do not exhibit Zeno behavior;
S2) satisfy control specification CS1.

Note that for CS1 the set R is not specified by the user. Below a control specification is
defined in which a set of initial states is explicitly defined by the user. It is given as follows.
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Figure 3-1: Representation of the sets

All trajectories starting in a set I ⊂ S stay in S and the origin is exponentially stable with a
desired convergence rate γc > 0 and gain ρ > 0:

CS2 : ∀x (0) ∈ I, ∀t ∈ [0,∞) : x(t) ∈ S ∧ lim
t→∞

x(t) = 0 ∧ ‖x(t)‖ ≤ ρe−γct‖x(0)‖. (3-4)

A representation of the sets used in the control specifications, projected onto a two-dimensional
space, is shown in Figure 3-1. For CS2 the formalized subproblem is as follows.

Subproblem 1 for control specification CS2 (formalized)

Given the compact sets (S, I), the system (3-1) and a desired exponential convergence
rate γc > 0, synthesize an event-triggered controller of the form (3-2) consisting of a
control law u = U(x) and triggering condition C(x), such that if x(0) ∈ I, all solutions
x(t) ∈ R to the closed-loop system given by (3-1) and (3-2)
S1) do not exhibit Zeno behavior;
S2) satisfy specification CS2.

We propose to solve the problems by using the triggering condition of [43] as described in
Section 2-3. The triggering condition is based on a certificate function, which varies depending
on the specification.

3-2 Control Strategy

In Section 2-3 the event-triggered control (ETC) implementation of [43] was presented. The
implementation is based on a γ-stabilizing Control Lyapunov Function (CLF), which achieves
stabilization with a known convergence rate. Furthermore, by the additional assumption As-
sumptions 2.14, 2.16 and 2.18, the solutions of the closed-loop system are uniquely defined,
and the controller does not exhibit Zeno behavior. However, the γ-stabilizing CLF can not
directly be synthesized with CEGIS. The reason is that SMT-solvers can only verify propo-
sitional formulas over a compact domain.

3-2-1 Certificate Function for Control Specification 1

To enforce CS1 the following certificate function is proposed.
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Definition 3.2 (Exponential Stabilizing Control Lyapunov Function for Event-Triggered
Control). Given a convergence rate γc > 0, a C2 smooth function V : D → R is called
an exponentially stabilizing Control Lyapunov Function for event-triggered control w.r.t. the
compact sets S and system (3-1) if V (0) = 0 and there exists a locally bounded function
M : D → R, a locally bounded function U : D → Rm and scalar constants c1, c2 > 0, such
that

(∀x ∈ D) M(x) > 0; (3-5a)
(∀x ∈ D) c1‖x‖2 ≤ V (x) ≤ c2‖x‖2; (3-5b)
(∀x ∈ D) V ′(x)F (x,U(x)) ≤ −γcV (x); (3-5c)
(∀x ∈ D)

∥∥V ′(x)
∥∥ ‖F (x,U(x))‖+ ‖F (x,U(x))‖2 ≤M(x)

∣∣V ′(x)F (x,U(x))
∣∣ . (3-5d)

For simplicity, the Exponential Stabilizing Control Lyapunov Function for Event-Triggered
Control is referred to as CLF in this chapter. Note that the CLF above is a variant of
the γ-stabilizing CLF as defined in Definition 2.10, with γ(v) = γcv, such that exponential
convergence is obtained.

The triggering function used, is based on the one described in Section 2-3. Given a con-
stant σ ∈ (0, 1), convergence rate γc and certificate function as defined in Definition 3.2, the
triggering function is defined as:

C (x(t), x (tk)) := V ′(x(t))F (x(t),U (x (tk))) + σγcV (x(t)). (3-6)

The parameter σ regulates the convergence rate. By the following lemma, the controller (3-1)
provides dwell-time positivity.

Lemma 3.3. Given a system (3-1) satisfying Assumption 3.1, functions V,U ,M , such that
V is a CLF w.r.t U , M , a desired convergence rate γc > 0, and a compact sublevel set
R := {x ∈ D | V (x) ≤ β} ⊂ int(D), then if x(0) ∈ R, the minimal dwell-time T (x0) :=
infk≥0(tk+1(x0)− tk(x0)) is uniformly positive for all x(0) ∈ R.

Proof. First we show that the assumptions Assumptions 2.14, 2.16 and 2.18 hold on R. By
Assumption 3.1, it follows from Proposition 2.15 that Assumption 2.14 is satisfied on R.
By definition of the CLF, V is C2 smooth, therefore from Proposition 2.17 it follows that
Assumption 2.16 is satisfied on R. By definition of the CLF, M > 0 is locally bounded for all
x ∈ R. Furthermore as condition Equation (3-5b) holds, by Lemma 2.19 Assumption 2.18 is
satisfied on R. Furthermore, V is a γ-stabilizing CLF for x0 ∈ R, with γ(v) = γcv, γc > 0. For
Lemma 2.21 to hold on R, the assumptions need to hold over B(R), as defined in Equation (2-
20). As R is a sublevel set, B(R) = R and Lemma 2.21 holds. Therefore, for x0 ∈ R the
minimal dwell time satisfies

T (x0) ≥ inf
x∈R

τ(x) > 0, (3-7)

where τ is defined in Equation (2-29). Hence, for all x0 ∈ R, T is uniformly positive on R:
infx0∈R T (x0) > 0.

Using the CLF and triggering condition the result for Subproblem 1 for CS1 is formulated:
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Theorem 3.4. Let R be a sublevel set contained in D, i.e. R := {x ∈ D | V (x) ≤ β}, with
β such that R ⊆ int(D). Given a system (3-1) satisfying Assumption 3.1, an event-triggered
controller of the form (3-2), a CLF V , feedback law U and function M as defined in Def-
inition 3.2 w.r.t compact set D, a desired convergence rate γc > 0 and constant parameter
σ > 0, then if x(0) ∈ R, solutions x(t) to the closed-loop system given by (3-1) and (3-2)

S1) do not exhibit Zeno behavior;
S2) satisfy CS1.

Proof. Since R := {x ∈ D | V (x) ≤ β} and D is compact, it follows that R is compact. By
Lemma 3.3 the minimal dwell time T is uniformly positive on R, hence no Zeno solutions can
exist on R, and S1) is proven. From Equation (3-5c) and the triggering condition formed by
(3-2) and (3-6), it follows that for all x(t) ∈ R, there exists a control input u(t) = U(x(t))
such that for all t > 0, x(t) ∈ R, it holds that V ′(x(t))F (x(t),U(x(t))) < −γcV (x(t)). By
Lemma 2.11 and Proposition 2.12 it holds that for all x(t) ∈ R

V (x(t)) ≤ e−γctV (x(0)) ≤ V (x(0)). (3-8)

Hence, given x(0) ∈ R, we have V (x(t)) < V (x(0)), while x(t) ∈ R. Since R ⊂ int(D) we
have that V (x(t)) > V (x(0)) for all x ∈ ∂D. Hence, for all x(0) ∈ R, x(t) remains in the
interior of D for all t ≥ 0. Furthermore, by the conditions (3-5b), (3-5c) V is an exponentially
stabilizing CLF (see Definition 2.8) and the origin is exponentially stable by Lemma 2.9 and
thus S2) is satisfied.

3-2-2 Certificate Function for Control Specification 2

A set of initial states for which CS1 hold does not directly follow from its definition. Therefore
CS2 was introduced. For this control specification, the set of initial states is defined by the
user. In this section a control Lyapunov barrier functions (CLBF) is defined, which establishes
sufficient conditions for specification CS2.

Definition 3.5 (Exponential Stabilizing Control Lyapunov Barrier Function for Event-Trig-
gered Control). Given a convergence rate γc, a C2 smooth function V : D → R is called an
exponentially stabilizing Control Lyapunov Barrier Function for event-triggered control w.r.t.
the compact sets S, I and system (3-1) if V (0) = 0 and there exists a locally bounded function
M : D → R, a locally bounded function U : D → Rm and scalar constants c1, c2, β > 0, such
that

(∀x ∈ S) M(x) > 0 (3-9a)
(∀x ∈ A) c1‖x‖2 ≤ V (x) ≤ c2‖x‖2 (3-9b)

(∀x ∈ ∂S) V (x) > β (3-9c)
(∀x ∈ I) V (x) ≤ β (3-9d)
(∀x ∈ A) V ′(x)F (x,U(x)) ≤ −γcV (x) (3-9e)
(∀x ∈ A)

∥∥V ′(x)
∥∥ ‖F (x,U(x)‖+ ‖F (x,U(x))‖2 ≤M(x)

∣∣V ′(x)F (x,U(x))
∣∣ , (3-9f)

where A := {x ∈ S | V (x) ≤ β}.
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By the following lemma, the controller (3-1), employing the CLBF provides dwell-time posi-
tivity.

Lemma 3.6. Given a system (3-1) satisfying Assumption 3.1, functions V,U ,M , such that
V is a CLBF w.r.t U , M and a desired convergence rate γc > 0, then if x(0) ∈ I, the minimal
dwell-time T (x0) := infk≥0(tk+1(x0)− tk(x0)) is uniformly positive for all x(0) ∈ I.

Proof. Analogous to the proof of Lemma 3.3 Assumptions 2.14, 2.16 and 2.18 hold on A. By
definition, A is also a sublevelset of V and from Lemma 2.21 it holds that the minimal dwell
time satisfies

T (x0) ≥ inf
x∈A)

τ(x) > 0, (3-10)

where τ is defined in Equation (2-29). Hence, for all x(0) ∈ I, T is uniformly positive on R:
infx(0)∈R T (x0) > 0.

Using the CLBF and triggering condition the result for Subproblem 1 for CS2 is formulated:

Theorem 3.7. Given a system (3-1), satisfying Assumption 3.1, an event-triggered controller
of the form (3-2), a CLBF V , feedback law U and function M as defined in Equation (3-9)
w.r.t compact sets S, I, a desired convergence rate γc > 0 and constant parameter σ ∈ (0, 1),
then if x(0) ∈ I solutions x(t) to the closed-loop system given by (3-1) and (3-2)

S1) do not exhibit Zeno behavior;
S2) satisfy CS2.

Proof. As A ⊂ S, A is a compact set. Let R = A. Then by Lemma 3.3 the dwell time T
is uniformly positive on A, hence no Zeno solutions can exist on A, and S1) is proven. For
x(0) ∈ I it follows from Equation (3-9d) and the definition of A that x(0) ∈ A. The proof of
S2) is analogous to the proof of S2) in Theorem 3.4, from which it follows that for all x(0) ∈ A,
x(t) remains in the interior of S for all t ≥ 0. Furthermore, by the conditions (3-9b), (3-9e) V
is an exponentially stabilizing CLF (see Definition 2.8) and the origin is exponentially stable
by Lemma 2.9 and S2) is satisfied.

3-3 Synthesis

In the previous section, certificate functions were established to infer that the closed-loop
system satisfies CS1 or CS2. In this section, a framework is proposed to synthesize a certificate
function V , feedback law U and function M , such that the closed-loop system satisfy the
control specifications. Candidate solutions for the tuple (V,U ,M) are found, using different
methods. The candidate solutions are subsequently formally verified, using an Satisfiability
Modulo Theory (SMT)-solver. A counterexample at which the conditions are not met is
extracted to improve the candidate solution in the next iteration. This framework is also
referred to as CEGIS.

The SMT-solver dReal can not verify formulas with conditions that become tight for x → 0
due to the δ-complete decision procedure, dReal relies on. This is described in more detail
in Section 3-3-4. For the CLF all conditions become tight for x → 0, and for the CLBF
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the conditions (3-9a), (3-9b), (3-9d) and (3-9e). Therefore in the remaining of this thesis a
compact goal set G ⊂ S is excluded from verification. Verification of the goal set is subject
of future research.

This section is organized as follows. In Section 3-3-1 the standard form of a CEGIS problem
is introduced. In Section 3-3-2 and Section 3-3-3 it is described how a feedback law can be
derived in different ways. In Section 3-3-4 it is described how candidate solutions are verified
using an SMT-solver. In Section 3-3-5 it is described how candidate solutions are found.
Finally, in Section 3-3-6 the total CEGIS algorithm is outlined.

3-3-1 Standard CEGIS Form

The conditions on the certificate functions in Definition 3.2 and Equation (3-9) can be ex-
pressed as a propositional formula ϕ in the form:

ϕ := (∀x ∈ X)

 k∧
i=1

 li∨
j=1

φi,j(x) ≤ 0

 , (3-11)

where φi,j : Rn → R and X is some compact set. The functions (V,U ,M) are parameterized
in templates. The template of V (x), U(x) and M(x) are recalled to as VT (m,x), UT (n, x)
and MT (p, x), where m, n, p denote the parameters of the templates. In Chapter 5 it is
described which templates are used. By using these templates, the problem is reduced to
finding a parameter vector c := [m,n, p], such that the conditions on the certificate functions
are satisfied. As ϕ is dependent on the templates, which are themselves a function of c, ϕ is
also a function of c:

ϕ(c) := (∀x ∈ X)

 k∧
i=1

 li∨
j=1

φi,j(x, c) ≤ 0

 . (3-12)

Hence, the synthesis problems in this chapter are of the form:

(∃c ∈ Rf )


ϕ1(c)
ϕ2(c)
...
ϕf (c),

(3-13)

where f denotes the number of conditions. We propose two different approaches for the
synthesis of the control law U(x), which are described in the next two subsections.

3-3-2 Template Feedback Law Synthesis by CEGIS

In the first approach a feedback law U is found in the CEGIS synthesis process, simultaneously
with the functions V and M . We refer to this as template-based feedback law synthesis. The
parameters of the templates VT (m,x), UT (n, x) and MT (p, x) are found with CEGIS. The
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parameter vector is c = [m,n, p]. For CS1 this results in the following problem P1 in standard
form:

P1 := (∃c = [m,n, p] ∈ Rf )



(∀x ∈ S\G) MT (p, x) > 0;
(∀x ∈ S\G) c1‖x‖2 ≤ VT (m,x) ≤ c2‖x‖2;
(∀x ∈ S\G) V ′T (m,x)F (x,UT (n, x)) < −γcVT (m,x);
(∀x ∈ S\G) ‖V ′T (m,x)‖ ‖F (x,UT (n, x)‖+ ‖F (x,UT (n, x))‖2

≤MT (p, x) |V ′T (m,x)|F (x,UT (n, x)).
(3-14)

The CLBF of Equation (3-9) used for CS2 also involves the parameter β. This parameter is also
found in the synthesis process. Hence, the parameter vector is c = [m,n, p, β]T . Note that the
conditions (3-9e), (3-9f) are required to hold over the sublevel set A := {x ∈ S | V (x) ≤ β}.
As shown in [65, Appendix B] a logic formula of the form (∀x ∈ A) f(x) ≤ 0 is equivalent
to (∀x ∈ S) − V (x) + β + η ≤ 0 ∨ f(x) ≤ 0. The arbitrary constant η > 0 is used to cast
non-strict inequalities to strict inequalities. The problem P2 in standard form to be solved is:

P2 := (∃c = [m,n, p, β] ∈ Rf )



(∀x ∈ S\G) MT (p, x) > 0;
(∀x ∈ S\G) c1‖x‖2 ≤ VT (m,x) ≤ c2‖x‖2;
(∀x ∈ ∂S) VT (m,x) > β;
(∀x ∈ I) VT (m,x) ≤ β;
(∀x ∈ S\G) V ′T (m,x)F (x,UT (n, x)) < −γcVT (m,x) ∨

−VT (m,x) + β + η ≤ 0;
(∀x ∈ S\G) ‖V ′T (m,x)‖ ‖F (x,UT (n, x)‖+ ‖F (x,UT (n, x))‖2

≤MT (p, x) |V ′T (m,x)F (x,UT (n, x))| ∨
−VT (m,x) + β + η ≤ 0

(3-15)
An overview of the synthesis process for P1 and P2 can be found in Figure 3-2. The set X̂ϕ,s

is elaborated on in Section 3-3-6.

Remark 3.8. For some applications it is needed to constrain the input to a compact set U .
Assume that the set U is a hyper-rectangle, i.e. U = [u1, ū1] × [u2, ū2] × · · · × [um, ūm]. By
adding the following condition to the problems P1 and P2, it is ensured that u ∈ U :

(∀x ∈ Xu)
m∧
i

(UT,i(n, x) ≥ ui ∧ UT,i(n, x) ≤ ūi) , (3-16)

where Xu ⊂ D is some compact set and UT,i(n, x) denotes the i-th element of UT (n, x). For
CS1 it is Xu = S\G and for CS2, Xu = A\G.

3-3-3 Feedback Law Synthesis by Feedback Linearization

Using the technique of feedback linearization as described in Section 2-4, a stabilizing con-
troller can be found before employing the CEGIS algorithm. This way, the number of param-
eters to be found in the synthesis process descreases. However, this approach is only suited
for feedback linearizable systems. The following assumption is adopted to be able to design
a feedback linearizing control law.
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startUser-defined
(VT ,UT ,MT )

Propose candidate
(CMA-ES): c

ϕ̂(c)
satisfied?

ϕ̂(c)
(V,U ,M)Yes

Extract
counterexample

No
X̂ϕ,s

Figure 3-2: Algorithm to solve the problems P1 and P2. The tuple of all conditions ϕi(c),
i ∈ {1, . . . , f} is denoted as ϕ̂(c). The tuple sets of samples Xϕi,s, i ∈ {1, . . . , f} is denoted as
X̂ϕ,s

Assumption 3.9. The system (3-1) is feedback linearizable (see Definition 2.26). Further-
more a diffeomorphism Φ over the domain D is given such that the change of variables
z = Φ(x) transforms the system into the form

ż = Az +Bγ(x)[u− α(x)], (3-17)

As described in Section 2-4, choosing the control law as

u = U(x, z) = γ−1(x)[α(x) + v(z)], (3-18)

results in linear closed loop dynamics in the z-coordinates, i.e. ż = Az+Bv(z). The origin can
be stabilized by choosing v(z) = −Kz, where (A−BK) is Hurwitz. The poles of (A−BK)
are specified by the user. As a result, the control law in x-coordinates is given by

u = U(x) = −γ−1(x)[α(x)−KΦ(x)]. (3-19)

Below, two methods are described how feedback linearization can be used in the synthesis
process.

Deriving VT and U from feedback linearization For the linear system ż = (A − BK)z
a quadratic Lyapunov function V (z) = zT z always exists [27]. Therefore, the template
VT (m,x) can be chosen as VT (m,x) = Φ(x)TP (m)Φ(x), where m are the elements of P .
By Definition 2.25, the diffeomorphism Φ is continuously differentiable, hence VT (m,x) is
continuously differentiable.

So compared to the previous approach, the template VT (m,x) follows from the feedback
linearizing control law U (3-19). The template for MT (p, x) is user-defined. The parameters
of the templates VT (m,x) and MT (p, x) are found with CEGIS. An overview of the synthesis
process can be found in Figure 3-3. This approach leads to the following problem P3 to be
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startUser-defined
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No
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linarization :
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Figure 3-3: Algorithm to solve the problems P3 and P4

solved with CEGIS for CS1:

P3 := (∃c = [m, p] ∈ Rf )



(∀x ∈ S\G) MT (p, x) > 0;
(∀x ∈ S\G) c1‖x‖2 ≤ VT (m,x) ≤ c2‖x‖2;
(∀x ∈ S\G) V ′T (m,x)F (x,U(x)) < −γcVT (m,x);
(∀x ∈ S\G) ‖V ′T (m,x)‖ ‖F (x,U(x)‖+ ‖F (x,U(x))‖2

≤MT (p, x) |V ′T (m,x)F (x,U(x))| .
(3-20)

For CS2 the problem P4 is defined as:

P4 := (∃c = [m, p, β] ∈ Rf )



(∀x ∈ S\G) MT (p, x) > 0;
(∀x ∈ S\G) c1‖x‖2 ≤ VT (m,x) ≤ c2‖x‖2;
(∀x ∈ ∂S) VT (m,x) > β;
(∀x ∈ I) VT (m,x) ≤ β;
(∀x ∈ S\G) V ′T (m,x)F (x,U(x)) < −γcVT (m,x) ∨

−VT (m,x) + β + η ≤ 0;
(∀x ∈ S\G) ‖V ′T (m,x)‖ ‖F (x,U(x)‖+ ‖F (x,U(x))‖2

≤MT (p, x) |V ′T (m,x)F (x,U(x))| ∨
−VT (m,x) + β + η ≤ 0

(3-21)

Remark 3.10. In the current approach the poles of the z-dynamics are defined by the user,
which fully defines the controller U (3-18). One could also define a linear template v(n, z) :=
KT (n, x)z, which results in a feedback law template UT (n, x) := −γ−1[−α(x)−KT (n, x)Φ(x)].
The search for the parameter vector n is done simultaneoulsy in the CEGIS problems P3
(3-20)and P4 (3-21). This way, it is also possible to bound the input as described in Re-
mark 3.8.

Deriving V and U from feedback linearization The method described above derives a
feedback law U an a template VT from feedback linearization. In the remaining of this
subsection it is described how both U and V can be derived from feedback linearization.
Consider the Lyapnov Equation

P (A−BK) + (A−BK)TP = −Q. (3-22)
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Because (A − BK) is Hurwitz, for any Q = QT > 0 there exists P = P T > 0 such that
the Lyapunov equation is satisfied. By the following lemma V can be found by solving an
equation similar to the Lyapunov equation.

Lemma 3.11. Given a convergence rate γc. Let P = P T > 0 solve the equation

(A−BK)TP + P (A−BK) + γcP < 0, (3-23)

then V̇ (z) ≤ −γcV (z).

Proof. This proof follows the line of reasoning of [4]. Because (A−BK) is Hurwitz, for any
Q = QT > 0 there exists P = P T > 0 such that the Lyapunov equation

(A−BK)TP + P (A−BK) = −Q (3-24)

is satisfied. Let γ := λmin(Q)
λmax(P ) > 0, where λmax(·) and λmin(·) denote the maximum and mini-

mum eigenvalues of a symmetric matrix, respectively. Applying the Rayleigh-Ritz inequality,
see e.g. [4] it is obtained that Q ≥ γcP . Hence,

ATP + PA+ γcP ≤ 0 (3-25)

Defining the Lyapunov function V (z) = zTPz it follows from Equation (3-25) that along the
trajectories of the system ż = (A−BK)z it holds that V̇ (z) ≤ −γcV (z).

By Lemma 2.27, the function V can be defined as V (x) = Φ(x)TPΦ(x). From Lemma 2.27
the origin in x-coordinates inhertis exponential stability of the origin in z-coordinates. The
matrix P is found by solving the Linear Matrix Inequality (LMI) Equation (3-23). The
equation can be solved by a convex optimization solver, such as CVX. By this approach the
conditions (3-9b), (3-9c) are satisfied, and it is only needed to find a functionM with CEGIS.
An overview of the overall synthesis process can be found in Figure 3-4. The CEGIS problem
is:

P5 := (∃c = [m] ∈ Rf )


(∀x ∈ S\G) MT (p, x) > 0
(∀x ∈ S\G) ‖V ′(x)‖ ‖F (x,U(x)‖+ ‖F (x,U(x))‖2

≤MT (p, x) |V ′(x)F (x,U(x))| .
(3-26)

Next, it is described how the problems P1, P2, P3, P4, P5 can be solved with CEGIS.

3-3-4 Verification

To determine whether the first-order propositional logic formula ϕ of the form (3-11) is
satisfied an SMT solvers is used. SMT-solvers use a combination of background theories
to determine whether a first-order logic formula is satisfied over real numbers [8]. Proving
that ϕ is satisfied is done by proving that ¬ϕ is unsatisfiable.

If φi,j is polynomial, the problem is decidable. In this case, the SMT solver Z3 [14] can
be used to prove the formulae of the form (3-11). The output of the solver is satisfiable
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Figure 3-4: Algorithm to solve the problems P5

(sat), unsatisfiable (unsat), or unknown. When the solver returns that ¬ϕ is unsat, it is
proved that the original formula ϕ is satisfied. The solver can return unknown when the
logic formulas provided are too expensive in terms of calculations needed and/or when the
procedure implemented in Z3 is incomplete, i.e., an algorithm is used that does not guarantee
that a solution is found.

First-order logic formulas involving, for example, transcendentals, like the sine function, or
exponentials are undecidable [51] and cannot be solved with Z3. However, a δ-complete
decision procedure [20] can be used in this case. This procedure determines whether a first-
order logic formula is unsatisfiable (unsat) or if its δ-weaking is satisfiable (δ-sat). The
δ-weakening can be thought of as a perturbed version of the original inequality that makes
the decision-making process decidable. The δ-complete decision procedure is implemented
SMT-solver dReal [21], which is used in this thesis. The perturbation δ is a user-defined
parameter.

Note that in the conditions of the certificates in Definition 3.2, Equation (3-9) for some
conditions the goal set G is excluded from the domain of interest. This is because those
inequalities become tight for x→ 0. It is inherent to the δ-complete decision procedure that
it is not possible to verify tight inequalities, see [65, Example 2.4.1]). However, for polynomial
systems the problem is decidable and an SMT-solver, such as Z3 can be used. As Z3 does
not rely on δ-complete decision procedures the goal set can be taken as G = {0} in this case.
For polynomial systems and templates the conditions for which the goal set were excluded
can be verified with Z3.

3-3-5 Candidate Proposal

Different methods exist to find candidate parameters of the certificate function. In [48] an
SMT-solver is used to find candidate parameters. By assuming that the template functions
in the candidate parameter vector c are linear, the candidate generation problem becomes a
linear arithmetic formula. These formulas are solved with SMT-solver Z3. However, in [48], it
is concluded that the framework’s primary shortcoming stems from the difficulty of proposing
candidates using an SMT-solver. In [68], candidate generation is posed as an optimization
problem. Covariance Matrix Adaption Evolution Strategy (CMA-ES) is used to solve the
optimization problem. This optimization method is a derivative-free method for numerical
optimization of nonlinear and non-convex continuous optimization problems [22]. Candidate
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generation by optimization is driven by a fitness function F(c), based on the finite set Xϕ.
The fitness function is based on a quantitative measure of how robustly the inequality in
Equation (3-11) is satisfied. In this thesis, CMA-ES is used to solve an optimization for
candidate generation.

The fitness function that drives candidate generation is discussed in more detail in this section.
To find a candidate parameter c, a fitness function is defined based on [67]. The fitness
function is used as the objective for an optimization that is solved with CMA-ES [22].

We wish to define a satisfaction measure that is negative if a formula of the form (3-12) is
satisfied for a given c. Consider a logical disjunction (φ1 ≤ 0 ∨ φ2 ≤ 0). If φ1 ≤ 0 or φ2 ≤ 0,
min(φ1, φ2) results in a negative value, because in this case φ1 or φ2 is negative. For a logical
conjunction (φ1 ≤ 0 ∧ φ2 ≤ 0), max(φ1, φ2) results in a negative value only if φ1 ≤ 0 and
φ2 ≤ 0. Therefore, for a given a formula ϕ(c) of the form (3-12), for a point x ∈ Xϕ, c ∈ Rf ,
a satisfaction measure ρϕ : D → R is defined as

ρϕ(x, c) = max
i∈{1,...,k}

(
min

j∈{1,...,li}
φij(x, c)

)
. (3-27)

In this satisfaction measure, if the inequality in Equation (3-11) is satisfied, φi,j(x, c) is
negative. Therefore, if ρϕ is negative, ϕ is true. Based on the measure ρϕ, the following error
metric is defined:

eϕ(x, c) := max (ρϕ(x, c), 0) . (3-28)

If ϕ is true for a given point x and parameter c, then eϕ(x, c) equals zero; otherwise, it is
positive. Then, for a given c, the fitness Fϕ is defined over the set Xϕ as

Fϕ(Xs,ϕ, c) := 1
1 + ‖[eϕ (x1, c) , . . . , eϕ (xd, c)]‖

, (3-29)

Note that a valid parameter vector c for all x ∈ X results in a value of p for the fitness function.
The CMA-ES optimization algorithm can be used to solve the optimization problem

argmaxc
1
p

p∑
i=1
Fϕi . (3-30)

to find a candidate c.

Remark 3.12. An effect of the δ-satisfiability approach is that cases of ‘δ-sat’ or ‘unsat’ are
not mutually exclusive [67]. To prevent this overlap, candidate solutions are generated that
are robust with respect to the δ-perturbation. Instead of finding a solution that satisfies (3-11),
a solution is found that satisfies the following formula:

ϕ′ := (∀x ∈ X)

 k∧
i=1

 li∨
j=1

φi,j(x) + ε ≤ 0

 , (3-31)

where ε > δ. For a more thorough description of this approach see [68].
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3-3-6 CEGIS Algorithm Outline

In this subsection it is described how the parameter vector c of P1-P5 can be found. This is
done in the CEGIS framework. The set Xϕi denotes the domain of interest X for the i-th
condition ϕi, i ∈ {1, . . . , d}. The algorithm consists of the following steps:

1. For each condition ϕi, a finite setXϕi,s ⊂ Xϕi is initialized with ninitial uniform randomly
selected states.

2. A candidate parameter c is found, solving the optimization (3-30) with CMA-ES.

3. All the conditions ϕi(c) are verified with dReal.

4. If some ϕi(c) is not satisfied, a counterexample xc is extracted that disproves ϕi(c).

5. For all ϕi it is checked whether xc ∈ Xϕi , if true, xc is added to the set Xϕi,s.

6. Steps 2-5 are repeated until all ϕi are true, or when a maximum number of iterations
is met.

3-4 Summary

In this chapter, it was described how underlying functions of event-triggered controllers could
be synthesized. The event-triggered controller is based on a control certificate function and
a feedback law. Two different certificate functions were proposed, based on the work of
[43] that can be used for two controller specifications. The second specification considers
forward invariance of some safe set as opposed to the first specification. Two approaches were
presented to find a feedback law in the synthesis process. The first approach uses CEGIS to
find the certificate function and a feedback law simultaneously. The second approach first
finds a feedback law using feedback linearization, whereafter a certificate function is found
using CEGIS. It was also shown that for polynomial system equations, feedback law and
certificate function asymptotic stability could be verified.
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Chapter 4

Periodic Event-Triggered Control

The event-triggered control implementation described in the previous chapter requires con-
tinuous evaluation of the triggering condition. Consequently, this raises the need for extra
hardware to implement this type of implementation on digital platforms, which might be
impractical. As described in Chapter 1, Periodic Event-Triggered Control (PETC) imple-
mentations only require checking the triggering condition periodically [23]. The periodic
nature of the triggering condition leads to several benefits. First, PETC is better suited for
practical implementation as it can be implemented on digital embedded systems. Secondly,
scheduling simplifies as the number of possible triggering instants reduces to a finite set. Fi-
nally, using PETC, a minimum inter-event time of at least the event-triggering condition’s
sampling interval is ensured.

In this chapter we show that the PETC triggering condition described in Section 2-3 in
combination with the certificate functions described in Chapter 3 can also satisfy control
specification CS1 or CS2. We show that Subproblem 1 can also be solved by using a periodic
event-triggered controller. In Section 2-3 it was described that the time between two samples
of the triggering condition should be chosen lower than the maximum admissible sampling
period (MASP) to ensure that the system is sampled before an event is triggered. This
resulted in the following Subproblem:

Subproblem 2

Find an approximation of the maximum admissible sampling period, such that a peri-
odic event-triggered controller provides the same control specification as the continuous
event-triggered controller.

An expression for the MASP for the specific PETC implementation was provided in Sec-
tion 2-3. This expressions involves Lipschitz functions, for which a closed-form expression
is unknown. In this chapter, we describe how an approximation of the MASP can be found
using optimization. This involves the calculation of Lipschitz constants from the Lipschitz
functions of the closed-loop system and the derivative of the certificate function.
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This chapter is organized as follows. First, in Section 4-1 we derive a formalized version of
Subproblem 2. Second, in Section 4-2 it is described how the certificate function defined in the
previous chapter are used in combination with a periodic event-triggered controller to enforce
control specification CS1 or CS2. Then, in Section 4-3 it is described how an approximation
of the MASP can be found. In Section 4-4 it is described how the approximations can be
improved an how the MASP can be influenced in the synthesis process. Lastly, in Section 4-5
this chapter is summarized.

4-1 Problem Definition

In this chapter the same system (3-1) is considered as in Chapter 3. The periodic event-
triggered controller considered in this chapter is of the form

u(t) = un := U (x (knh)) ∀t ∈ [knh, kn+1h) ; k0 = 0,

kn+1 =
{

min {k > kn | ¬P(x(kh), un)} , x (knh) 6= 0,
∞, x (knh) = 0.

(4-1)

where h > 0 is the sampling interval and P is some boolean triggering function. For PETC
Zeno behavior is automatically excluded, because h > 0. For PETC the problem formulation
is similar to the problems of the previous chapter, except that the specification to exclude
Zeno behavior is omitted. The formalized version of Subproblem 1 for PETC and CS1 is
formulated as follows.

Subproblem 1, CS2, PETC (formalized)

Given the compact sets D, the system in Equation (3-1) and a desired exponential
convergence rate γc, synthesize a periodic event-triggered controller of the form (4-1)
consisting of a control law u = U(x) and triggering condition P(x, u) such, that if
x(0) ∈ R, all solutions x(t) ∈ R to the closed-loop system given by (3-1) and (4-1)
satisfy specification CS1.

The formalized version of Subproblem 1 for PETC and CS2 is formulated as follows.

Subproblem 1, CS2, PETC (formalized)

Given the compact sets (S, I), the system in Equation (3-1) and a desired exponential
convergence rate γc, synthesize a periodic event-triggered controller of the form (4-1)
consisting of a control law u = U(x) and triggering condition P(x, u) such, that if
x(0) ∈ I, all solutions x(t) to the closed-loop system given by (3-1) and (4-1) satisfy
specification CS2.

The MASP determines the sampling interval h. So for the periodic event-triggered controller
an estimation of the MASP is needed.

Subproblem 2 (formalized)

For the set R, find an estimation τ∗ of the MASP τMASP.
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4-2 Control Strategy 35

4-2 Control Strategy

We use the PETC triggering condition P as defined in Equation (2-31). For a given constant
σ ∈ (0, 1), σ̃ ∈ (σ, 1) and K > 1, P is defined as:

P(x, u) := V ′(x)F (x, u) < −σ̃γcV (x) ∧ ‖V
′(x)‖ ‖F (x, u)‖+ ‖F (x, u)‖2

M(x)|V ′(x)F (x, u)| ≤ K. (4-2)

The parameter σ regulates the convergence rate. The parameters σ̃ and K influence the
MASP. The certificate function V , feedback law U and functionM are assumed to be known.
They can be found by approaches described in the previous chapter. For a given x∗ ∈ S the
sublevel set B(x∗) is defined:

B(x∗) := {x ∈ S | V (x) ≤ V (x∗)} . (4-3)

Given a set S0 ⊂ S, the set B(S0) is the union of the sets B(x∗) for all x∗ ∈ S0:

B(S0) :=
⋃

x∗∈S0

B(x∗). (4-4)

For sake of convenience the Lipschitz functions defined in Section 2-3 are recalled. The
Lipschitz function of the closed-loop system given by (3-1) and (4-1) is defined as

LF (x∗) := sup
x1,x2∈B(x∗)

x1 6=x2

‖F (x1,U (x∗))− F (x2,U (x∗))‖
‖x2 − x1‖

LF (0) := 0. (4-5)

The Lipschitz function of the Jacobian of V is

LV ′ (x∗) := sup
x1,x2∈B(x∗)

x1 6=x2

‖V ′ (x1)− V ′ (x2)‖
‖x2 − x1‖

, LV ′(0) := 0. (4-6)

Using the CLF and PETC triggering condition the result for Subproblem 1 for CS1 is formu-
lated:

Theorem 4.1. Let R be a sublevel set contained in D, i.e. R := {x ∈ D | V (x) ≤ β}, with
β such that R ⊆ int(D). Given a system (3-1), satisfying Assumption 3.1, an event-triggered
controller of the form (4-1), a Control Lyapunov Function (CLF) V , feedback law U and
function M as defined in Definition 3.2 w.r.t compact sets S, a desired convergence rate
γc > 0 and constant parameters σ > 0, σ̃ ∈ (σ, 1), K > 1, then if the sampling interval h
is chosen as h ∈ (0, τMASP), with τMASP defined in Equation (2-34) and x(0) ∈ R, solutions
x(t) ∈ R to the closed-loop system given by (3-1) and (3-2) satisfy specification CS1.

Proof. Following the same line of reasoning as in the proof of Lemma 3.3 it is proved that
Assumptions 2.14, 2.16 and 2.18 are satisfied on R. Therefore, by Theorem 2.24 it follows
that the MASP on R is

τMASP = inf
x∗∈B(R)

τ0(x∗) = inf
x∗∈B(R)

min
{

(σ̃ − σ)2

K2µ(x∗)2M (x∗)2 σ̃2
,

1
1 + 2LF (x∗)

}
, (4-7)
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with µ as in Equation (2-30), and the Lipschitz function LF as in Equation (4-5) and L′V
as in Equation (4-6). By definition, LF and LV ′ are positive. Furthermore, by Assump-
tions 2.14 and 2.16, LF > 0 and LV ′ > 0 are locally bounded for all x∗ ∈ R, and thus
µ is a positive definite locally bounded function. By Definition 3.2 the function M > 0 is
locally bounded. Therefore, the function τ0(x∗) is uniformly positive on R. As h is chosen
as h ∈ (0, τMASP), the triggering conditions is checked before an event occurs and by The-
orem 2.24, V ′(x(t))F (x(t),U(x(t))) < −γcV (x(t)) holds for all t > 0, x(t) ∈ R. Analogous
to the proof of Theorem 3.4, it follows that ∀x(0) ∈ R, x(t) ∈ D and that the origin is
exponentially stable and CS1 is satisfied.

Theorem 4.2. Given a system (3-1), satisfying Assumption 3.1, an event-triggered controller
of the form (4-1), a CLF V , feedback law U and function M as defined in Definition 3.2 w.r.t
compact sets S, I, a desired convergence rate γc > 0 and constant parameters σ > 0, σ̃ ∈ (σ, 1),
K > 1, then if the sampling interval h is chosen as h ∈ (0, τMASP), with τMASP defined in
Equation (2-34) and x(0) ∈ I, solutions x(t) ∈ A to the closed-loop system given by (3-1) and
(3-2) satisfy specification CS2.

Proof. Following the same line of reasoning as in the proof of Lemma 3.6 it is proved that
Assumptions 2.14, 2.16 and 2.18 are satisfied on A. Analogous to the proof of Theorem 4.1 it
follows that V ′(x(t))F (x(t),U(x(t))) < −γcV (x(t)) holds for all t > 0, x(t) ∈ A. Analogous
to the proof of Theorem 3.4, it follows that ∀x(0) ∈ I, x(t) ∈ A ⊂ S and that the origin is
exponentially stable and CS2 is satisfied.

By Theorem 4.1 the sampling interval h is chosen as h ∈ (0, τMASP). In the next section, it is
described how an approximation of τMASP can be found.

4-3 Approximation of the MASP

The formula for τMASP in Equation (4-7) is the solution to the following optimization problem

τMASP = minimize
x∗

min
{

(σ̃ − σ)2

K2µ(x∗)2M (x∗)2 σ̃2
,

1
1 + 2LF (x∗)

}
.

subject to x∗ ∈ B(S0).
(4-8)

The goal is to find an intersampling time τ∗ that is an approximation of τMASP. The optimiza-
tion problem above involves the Lipschitz functions LF and LV ′ . Closed-form expressions for
these functions are unknown. Therefore, in this section it is described how for a given x∗, an
approximation of the values of LF (x∗) and LV ′(x∗) can be found.

Note that an increase in LF and LV ′ cause a decrease of τMASP. Hence, to make sure that
τ∗ ≤ τMASP, the goal is to find overapproximations of LF and LV ′ . These overapproximations
are denoted as LF,a and LV ′,a, that is LF (x∗) < LF,a(x∗) and LV ′(x∗) < LV ′,a(x∗). For a
given x∗ an overapproximation of the Lipschitz constant can be found by the following lemma.
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Lemma 4.3. Consider a function φ defined on D ⊂ Rn, φ : D → Rn. Let φi denote the i-th
element of φ. Assume that φi is differentiable with respect to x. Then a Lipschitz constant L
that satisfies

sup
x1,x2∈D,x1 6=x2

‖φ(x1)− φ(x2)‖
‖x1 − x2‖

≤ L, (4-9)

is

L =

√√√√ n∑
i

(
sup
x∈D

∥∥∥∥∂φi∂x

∥∥∥∥
)2

, (4-10)

Proof. Consider the functions φi : D → R, i ∈ {1, . . . , n}. As φi is differentiable, by the mean
value theorem, see e.g. [28], given any x1, x2 ∈ D, there exists a point z ∈ [x1, x2], such that

φi(x1)− φi(x2)
x1 − x2

= ∂φ

∂x
(z). (4-11)

On any compact set D, ∂φi
∂x is bounded. Thus there exists a constant Li > 0 such that

∂φi
∂x < Li ∀x ∈ D. Therefore, it holds that

|φi(x1)− φi(x2)| ≤ Li‖x1 − x2‖ i ∈ {1, . . . , n}, (4-12)

which by definition of the two norm implies

‖φ(x1)− φ(x2)‖2 =
n∑
i=1
|φi(x1)− φi(x2)|2 ≤

n∑
i=1

L2
i ‖x1 − x2‖2, (4-13)

which shows that ‖φ(x1)− φ(x2)‖ ≤ L‖x1 − x2‖ with L =
√∑n

i L
2
i [17].

By Assumption 3.1 f ′(x, u) = [∂f(x, u)/∂x] exists. Furhtermore, the certificate functions are
C2 smooth. Therefore, Lemma 4.3 can be applied. The approximations are:

LF,a(x∗) =

√√√√ n∑
i

(
sup

x∈B(x∗)

∥∥∥∥∂f(x,U(x∗))
∂x

∥∥∥∥
)2

, (4-14)

and

LV ′,a(x∗) =

√√√√ n∑
i

(
sup

x∈B(x∗)

∥∥∥∥∂2V (x)
∂x2

∥∥∥∥
)2

. (4-15)

Recall that the optimization variable x∗ in Equation (4-8) is constrained to the set B(S0)
(2-20), with S0 a compact set of initial states. By Theorem 4.1 all solutions to the closed-loop
system stay in R. As R is level sets of V , B(R) = R. Thus, for CS1, B(S0) = R. For CS2 the
optimization variable is constrained to B(I), for which a closed form expression is difficult
to find. As it is known that I ⊂ A and A is forwariant invariant from Theorem 4.2, the set
I can be replaced by the level set A. As a result for CS2 the optimization is constrained to
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B(A) = A. The cost function of the optimization (4-8) is also scaled with a parameter N > 0,
to avoid numerical issues. Hence, we solve the following optimization:

τ∗N := minimize
x∗

min
{

N(σ̃ − σ)2

K2µ(LF,a(x∗), LV ′,a(x∗))2M (x∗)2 σ̃2
,

N

1 + 2LF,a (x∗)

}
,

subject to x∗ ∈ B(S0).
(4-16)

This is a non-convex nonlinear optimization problem, which can be solved with available
solvers. As the optimization is non-convex, an approximation can be found that is higher
than the true MASP. This is undesired as this can result in the sampling time h, being
chosen to high. Subject of future research is to verify whether the approximated MASP is
lower than the true MASP.

4-4 Improvement of Approximations of the MASP

In the previous section, it was described how an approximation of the MASP could be found.
For some applications, it might be practical to be able to influence the MASP in the synthesis
procedure, for example due to sample limit on hardware. Furthermore, when the MASP is
high, it is advantageous, because the triggering condition should be checked less frequently,
resulting in less communication and computation. In this section, two methods are described
how the MASP can be influenced in the synthesis process.

4-4-1 Fitting Polynomial M-function

Note that an increase in the function M cause a decrease of τ∗. Therefore one would want
the inequality to be tight:

(∀x ∈ B(S0))
∥∥V ′(x)

∥∥ ‖F (x,U(x)‖+ ‖F (x,U(x))‖2 ≤M(x)
∣∣V ′(x)F (x,U(x))

∣∣ . (4-17)

In the synthesis process of Chapter 3, no conditions were put on this tightness. Therefore in
this section it is described how a polynomial functionM can be fitted, such that the inequality
becomes tight. A polynomial template function MT (p, x) for M is defined as

MT (p, x) :=
nmon∑
i

pisi, (4-18)

where p is a parameter vector, and pi is the i-th element of p. Furthermore, si are monomials
and nmonomial is the number of monomials. The target data the function M should be fitted
to is defined as:

Mtarget(x) := ‖V
′(x)‖ ‖f(x,U(x)‖+ ‖f(x,U(x))‖2

|V ′(x)F (x,U(x))| ∀x ∈ {x ∈ B(S0) | x 6= 0}. (4-19)

A finite set of ns states Xs := {x1, . . . , xns} can be sampled to find values of Mtarget. The
loss function must take into account that the fitted polynomial must be as close as possible
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to the target data, but the inequality Equation (4-17) should always be satisfied. Hence, it
is required that the residuals ε(p, xs) := MT (p, xs) −Mtarget(xs) ≥ 0 ∀xs ∈ Xs. The loss
function for a set Xs is given as

L(p,Xs) =
ns∑
i

l(p, xi)2, (4-20)

where the loss the function l is defined as

l(p, xs) :=
{
ε(p, xs), if ε(p, xs) ≥ 0;
Ppenaltyε(p, xs), if ε(p, xs) < 0. (4-21)

where Ppenalty > 0 is some arbitrarily large constant to penalize negative residuals. The
following problem is solved to find the optimal parameters popt:

popt := argminp L(p, xs). (4-22)

Note that this is a nonlinear least-squares problem, which can be solved with solvers imple-
mented in Scipy [37]. Even if ε(popt, xs) ≥ 0 for all xs there is no formal guarantee that
M(x) = MT (popt, x) satisfies Equation (4-17) as the function is only fitted to a finite set
of samples. Therefore we verify it with an Satisfiability Modulo Theory (SMT) solver. If
Equation (4-17) does not hold, the constant Ppenalty is increased to increase penalization of
negative residuals.

4-4-2 Bounding Template Parameters

Consider the expression for the MASP τMASP in Equation (4-16), which is dependent on the
Lipschitz functions LF and LV ′ . The function LF is dependent on U and LV ′ on V . For
higher values of Lf and LV , the MASP, is lower. Thus, by bounding the absolute value of
the parameters of the templates, the MASP can be raised. This is accomplished by adding an
additional term to the fitness function (3-29). Assume that the parameter vector c is bounded,
that is c ∈ C ⊂ Rf . The domain C is a hyper-rectangle, i.e. C = [c1, c̄1]×[c2, c̄2]×· · ·×[cf , c̄f ].
Let ci denote the i-th element of parameter vector c, a logic formula representing the bounds
on c is given as

ψ(c) :=
f∧
i

(−ci + ci ≤ 0 ∧ ci − c̄i ≤ 0) (4-23)

Following the same line of reasoning to define the satisfaction measure in Section 3-3-5, the
following satisfaction measure is defined:

ρc(c) := max
i∈{1,...,f}

(max(−ci + ci, ci − c̄i)) (4-24)

Note that if for a given parameter vector c, ψ(c) is true, then ρc(c) is negative. Based on the
measure ρc, the following error measure is constructed:

ec(c) := max(ρc(c), 0), (4-25)

which for a given vector c is equal to zero if ψ(c) is true and positive if not. The parameter
fitness is defined as

Fc(c) := 1
1 + ec(c)

(4-26)
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By definition, Fc ∈ [0, 1], and if for a given c, ψ(c) is true Fc(c) equals 1. The overall fitness
function F is composed of the sample-based fitness Equation (3-29) and the parameter fitness:

F(x, c) := 1
2(Fϕ(Xs,ϕ, c) + Fc(c)), (4-27)

4-5 Summary

In this chapter, it was described how an approximation of the MASP can be found. An
approximation can be found by solving an optimization problem. This optimization prob-
lem involves the computation of Lipschitz constants of the system and the derivative of the
certificate function. It was described how these Lipschitz constants could be found. It was
also described how a polynomial function M can be fitted, such that the inequalities (4-17)
is tight. This results in a lower approximation of the MASP.
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Chapter 5

Results

In this section, the effectiveness of the described methods will be demonstrated on benchmark
systems. Event-triggered controllers will be synthesized as described in Chapter 3 for several
systems. An approximation of the maximum admissible sampling period (MASP) is found,
using the methods described in Chapter 4.

5-1 CEGIS Synthesis

In this section, event-triggered controllers are synthesized for the synthesis problems in P1 and
P2 of Section 3-3-2 and P3 and P4 of Section 3-3-3. For the problems in P1 and P2 a feedback
law is found simultaneously with Counterexample-Guided Inductive Synthesis (CEGIS) and
for the problems P3 and P4 a feedback law is found with feedback linearization. The systems
in Table 5-1 are considered for synthesis of event-triggered controllers. The systems (1) - (4)
are two-dimensional and the system (8) is three-dimensional. Diffeomorphisms are found,
using the approach as described in Appendix A. First it is verified whether the system is
feedback linearizable. Then a ‘virtual output’ is selected, by looking at the system dynamics.
Using this approach a diffeomorphism is found for the systems (1) - (4). The system (8) is
feedback linearizable, but a suitable ‘virtual output’ was not found to transform the system
is feedback linearized form (2-36).

The synthesis procedure is implemented in Python, which runs on an Intel Core i7-8750H
2.20Ghz using 6 CPU cores. The (private) code is published on the SYNC-LAB repos-
itory https://gitlab.tudelft.nl/sync-lab/cadusy/formal-etc. For all experiments,
5000 initial points are used for the CMA optimization, i.e. ninitial = 5000. The robust-
ness parameter ε (see Remark 3.12) is taken as 0.05. The perturbation parameter of dReal δ
is taken as 0.01. The synthesis algorithm is run five times for the systems in Table 5-1. First,
simulations are shown for an inverted pendulum on a cart with the synthesized controllers.
Then the synthesis procedure is benchmarked on multiple systems, including the inverted
pendulum on a cart. In the next subsection, the choice of templates is motivated.
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5-1-1 Templates

Consider synthesis problems P1 (3-14) and P2 (3-20). For these problems it is needed to
choose the templates VT ,UT and MT . Note that by definition of the Control Lyapunov
Function (CLF) and control Lyapunov barrier functions (CLBF), the resulting certificate
functions needs to be C2-smooth. Therefore the template VT is chosen to be polynomial with
degree 2, i.e.

VT (m,x) =
nmon∑
i

misi(x), (5-1)

where m are the parameters, and mi is the i-th element of m. Furthermore, si are monomials
and nmon is the number of monomials. In the next section an example of a polynomial
template is given. The template of UT (x) is also chosen to be polynomial with degree 2. The
template can also be linear (polynomial with degree 1), but a linear controller may not exist
for some systems. Choosing UT (x) polynomial, results in a locally bounded feedback law
U(x). To keep the number of parameters to a minimum, the template MT (p, x) is chosen to
be a constant. This is possible as by definition a locally bounded function M > 0 is bounded
by some constant, i.e. M(x) ≤ supx∗M(x) for all x∗. When needed, a polynomial function
M can be found after synthesis, using the approach described in Section 4-4.

For the problems P3 (3-15), P4 (3-21) and P5 (3-26), it is only needed to define the template
MT (p, x) and to define the poles of the z-dynamics. The template MT (p, x) is also chosen
constant. For demonstration purposes, the poles for two-dimensional systems are placed at
-1 and -0.5 and for the three dimensional system at -1.5, -1 and -0.5.

5-1-2 Case Study - Inverted Pendulum on a Cart

In this case study, the non-polynomial nonlinear inverted pendulum (3) is considered. Sim-
ulations are shown for controllers that are synthesized according to P2 (3-15) and P4 (3-21).
Remember that these problems correspond to synthesis of the CLBF for CS2 for a template-
based and feedback linearizing control law, respectively. Again, the desired convergence rate
is γc = 0.1. The simulation step size is taken as h = 0.01. After a simulation, it is checked that
the step size is smaller than the minimal time between two triggering times. The parameter
σ is set to σ = 0.9, σ̃ = 0.9 and K = 1.1.

The following templates are used for the template-based feedback law synthesis:

VT (m,x) = m1x
2
1 +m2x1x2 +m3x

2
2,

UT (n, x) = n1x1 + n2x2 + n3x
2
1 + n4x

2
2,

MT (p, x) = p1.

(5-2)

In the synthesis procedure the parameters mi, i ∈ {1, 2, 3}, nj , j ∈ {1, 2, 3, 4}, p1 and β are
found. A solution found is:

V (x) = 1.94x2
1 + 1.39x1x2 + 1.80x22,

U(x) = −0.31x2
1 + 0.41x2

2 − 8.47x1 − 5.45x2,

M = 7.2, β = 0.33.
(5-3)
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System F (x, u) (S, I,G) Φ(x)

(1)
(

x2
−x1 + u

) ([−1, 1]2,
[−0.5, 0.5]2,
[−0.1, 0.1]2)

[
x1
x2

]

(2)
(
x2 − x3

1
u

) ([−1, 1]2,
[−0.5, 0.5]2,
[−0.1, 0.1]2)

[
x1

x2 − x3
1

]

(3)
(

x2
4.9 sin(x1)− 0.5x2 + 0.5 cos(x1)u

) ([−1, 1],×[−3, 3],
[−0.5, 0.5]2,
[−0.25, 0.25]2)

[
x1
x2

]

(4)
(

sin(x2)
−x2

1 + u

) ([−1, 1]× [−π/2, π/2],
[−0.5, 0.5]2,
[−0.1, 0.1]2)

[
x1

sin x2

]

(5)
(

x2
−2x1 + 3x2 + u

) ([−1, 1]2,
[−0.5, 0.5]2,
[−0.1, 0.1]2)

[
x1

sin x2

]

(6)
(

x2
− sin(x1) + u

) ([−1, 1]2,
[−0.5, 0.5]2,
[−0.25, 0.25]2)

[
x1
x2

]

(7)

 x2 − 1.01x1
x3 − 1.01x2

−2.37x1 + 3.67x2 − 1.31x3 − 3.33u


(
[−3, 3]3

[−1, 1]3

[−0.2, 0.2]3
)

(8)

 −10x1 + 10x2 + u
28x1 − x2 − x1x3
x1x2 − 2.6667x3


(
[−5, 5]3

[−0.5, 0.5]3

[−0.3, 0.3]3
) -

Table 5-1: (1): linear system, [47]. (2): 2nd-order polynomial system, [47], (3): 2nd-order
pendulum system, [68], (4): 2nd-order non-polynomial system [47], (5): linear system [60], (6)
single-link robot arm [3], [47], (7): adaptive cruise control system [43], (8): Lorentz chaotic
system. The function F (x, u) are the system dynamics, S, the safe set, I, initial set and G goal
set, Φ(x) is the diffeomorphism.
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For the feedback linearizing controller it is only needed to specify the template MT , which is
again chosen to be a constant. The feedback law U follows from the feedback linearization.
As described in Section 3-3-3, the template VT also follows from feedback linearization. The
template in z-coordinates is VT (m, z) = zTP (m)z, where P (m) is a symmetric matrix. In
x-coordinates it is VT (m,x) = Φ(x)TP (m)Φ(x). Hence, the templates are:

VT (m,x) = m1x
2
1 +m2x1x2 +m3x

2
2,

MT (x) = p1.
(5-4)

In the synthesis procedure the parameters mi, i ∈ {1, 2, 3}, p1 and β are found. A solution
found is

V (x) = 4.28x2
1 + 3.48x1x2 + 4.61x22,

U(x) = −0.5x1 − 2.5x2 − 4.9 sin(x1)
cos(x1) ,

M = 5.2, β = 1.33.

(5-5)

A simulation with continuous control and event-triggered control (ETC) with the same control
law U(x) for a template-based controller and feedback linearized controller can be found in
Section 5-1-2. For both controllers the trajectory of the system under time-triggered and
event-triggered control resemble. The control input is a ‘staircased’ version of the continuous
controller. The inter-event time under the feedback linearized controller is higher than under
the template-based controller.

Consider the simulations with the template-based controller and feedback linearizing con-
troller. It can be seen that the convergence of the feedback linearizing controller is less fast
than that of the template-based controller. They are the same in the number of triggering
times.

A simulation with three different synthesized controllers can be found in Section 5-1-2. Con-
sidering the three controllers of the template-based controller, the trajectories are somewhat
different. However, note that the input values of controller C3 are much higher than that of
C1 and C2. The values of C2 are between those of C1 and C3. However, note that the number
of triggering instants of C1 and C3 is almost the same, whereas the number of triggering
instants of C2 is around three times higher. Controller C1 and C2 have approximately the
same convergence, whereas C3 converges faster.

For the feedback linearizing controller, it can be seen that the trajectories almost exactly
resemble. Also, the control values are approximately the same. However, note that they
differ in the number of triggering times. C2 triggers less than C1 and C3. The convergence
of V is almost the same. Comparing both controllers most notable is that the three feedback
linearizing controllers resemble in trajectory and input, whereas the template-based controllers
have different behavior.

5-1-3 Synthesis Results

The synthesis algorithm is run 50 times for the systems in Table 5-1. The templates are
chosen as described in the previous subsection. The desired convergence rate is taken as
γc = 0.1.
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Figure 5-1: Continuous control (CT) and event-triggered control (ETC) for pendulum system,
UB denotes the upper bound on the CLBF. Upper row: template-based controller, lower row:
feedback linearized controller.
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Figure 5-2: Pendulum system controlled by three different controllers (C1, C2 and C3)
.
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Figure 5-3: Statistics over 50 synthesis runs on the total time per synthesis run to find a candidate
parameter vector
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Figure 5-4: Statistics over 50 synthesis runs on the total time per synthesis run to verify candi-
dates.

The maximum number of CEGIS iterations until a solution is found is below 4 in all synthesis
runs. For most of the synthesis runs a solution is found in 1 iteration. In Figure 5-3 statistics
can be found on the total time per synthesis run to find a candidate parameter vector for the
synthesis problems P1-P4. Most of the time a solution can be found within 10 seconds. It can
be seen in the figure that on average the total time to find a candidate is higher for CS2 than
for CS1. In Figure 5-4 a figure can be found with statistics on the total time per synthesis
run to verify candidate parameters. The verification time for CS1 is on average higher than
the verification time of CS2. The time to find candidate parameters is of the same magnitude
of the time to verify candidates.

For the synthesis problem P5 the total time for one synthesis run to find candidates is within
0.1 second for all the systems in Table 5-1. Also the total verification time is on average lower
than two seconds for all the systems.

Statistics on the average dwell-time for a simulation of 20 seconds starting from the initial
condition x(0) = [−0.5, 0.5] can be found in Figure 5-5. From the figure, it can be concluded
that for all the systems the average dwell-time for the feedback linearized controllers P3 and
P4 is higher than the for the feedback linearized controllers P1 and P2.

For the three-dimensional systems (7), (8) in Table 5-1, 50 controllers were synthesized fol-
lowing the approaches of P1 and P2 to be able to determine how the method scales to higher
dimensions. In Figure 5-6 the time to find candidate parameters and to verify them is found.
Whereas for two-dimensional systems a solution can be found within 10 seconds, for the sys-
tem (7) a solution is found in on average 60 seconds and for the system (8) in 30 seconds. In
some cases the synthesis takes 600 seconds.

The goal set of the polynomial systems in Table 5-1 can be verified with Z3 as described in
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Figure 5-5: Statistics over 50 synthesis runs on the average dwell-time for a simulation of 20
seconds starting at x(0) = [−0.5, 0.5] for synthesis problems P1-P4
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Figure 5-6: Statistics on synthesis of event-triggered controller for three dimensional systems

Section 3-3-4. The conditions of the CLF (3.2) and CLBF (3-9) that exclude the goal set are
now verified in the goal set. For the two-dimensional systems it is verified that the conditions
are satisfied in the goal set. Verification in the goal set for the three-dimensional systems was
not successful. It returns unknown for last two conditions of Equation (3-9). As described
in Subsection 3-3-4, this can happen due to the conditions being too expensive for Z3 or the
procedure implemented in Z3 being incomplete.

5-2 Finding Maximum Allowable Sampling Time

The approach as described in Section 4-3 is used to find an approximation τ∗ of the MASP
τMASP. As I as explicitly known, it is easier to find the MASP for CS2. Therefore, in this
section the MASP for the problems P2 and P4 are found, involving CS2. For CS2 the set S0 is
S0 = I.

In section 5-2 statistics on the approximations of the MASP can be found. It can be seen that
for all the systems the approximated MASP is higher for the feedback linearizing controllers
(P4) compared to the template-based controllers (P2). It is also noted that the approximated
MASP is much lower than the minimal dwell time in simulations.

A function M(x) is fitted following the approach as described in Section 4-4 to 50 event-
triggered controllers synthesized for the system (2). The approximations of the MASP are
compared with the approximations of the MASP which are found using a constant function
M(x) = Mc, with Mc a constant. For 40 of the controllers, the fitted M function results in a
lower approximation of the MASP. For the controller with improvement, the approximation
of the MASP is on average 38.1 times higher when a tight function M is fitted. For the
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Figure 5-7: Statistics on the MASP for the different systems for 5 synthesis runs

controllers where no improvement is obtained, the fitted tight M function lies above the
constant Mc at the state where the dwell time is minimized.

In Section 4-4 it was also described that by bounding the parameters of the templates, the
Lipschitz functions Lf and LV can be bounded and thus the MASP can be increased. In this
experiment the lower bound on the parameters of the templates VT andMT is set to -2 and the
upper bound on 2. A total of 50 new event-triggered controllers is synthesized with bounded
parameters for the system (2) and for the problem P4. Comparing the average MASP over
50 synthesis runs with the newly synthesized controllers with average MASP of System (2),
P4 it is concluded that the average MASP with bounded parameters over 50 synthesis runs is
43.9 times higher compared to the average MASP for the unbounded parameters. In another
experiment a lower bound of -1 and upper bound of 1 is set to the parameters. However in
this case a solution with optimal fitness cannot be found by CMA-ES. This indicates that a
solution does not exists.

5-3 Literature Comparison

In this section the behavior of synthesized event-triggered controllers is compared with other
ETC implementations. First, system (5) is considered. The same system was considered for
the design of an event-triggered controller in for example [60, 12, 23, 15]. The triggering
mechanisms in [60, 12, 23, 15] is based on a ISS-CLF.

A template-based controller is synthesized for CS1 with (S,G) = ([−60, 60]2, S = [−0.1, 0.1]2)
and γc = 0.01. The initial state x(0) is chosen as x(0) = [−10, 10]. It is verified that
R = {x ∈ S | V (x) ≤ V (x(0))} ⊂ int(S). Simulations can be found in Figure 5-8. The
trajectories converge to the origin within 5 seconds, whereas the event-triggered controller of
[16, Fig. 3] converges in 10 seconds. For the synthesized controller the dwell-time is constant,
whereas the dwell-time in [16] increases when the states approach a vicinity of the origin. It
can also be observed that the the synthesized controller, has on average a 25 times higher
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Figure 5-8: Simulation of the system (5)
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Figure 5-9: Simulation of the system (6)

dwell-time than the one of [15]. In [15] a MASP of 6.5× 10−9 is reported, which is similar to
our approximation.

Next, system (6) is considered. This system represent a single-link robot arm. The design of
an event-triggered controller for this system was also considered in [3, 71]. In this work they
also use a triggering mechanism that is based on a ISS CLF. We synthesize a template-based
controller for CS1 with (S,G) = ([−30, 30]2, S = [−0.5, 0.5]2) and γc = 0.01. As in [3], the
initial state is x(0) = [−10, 10]. The level set R is contained in S. A simulation can be found
in Figure 5-9. Again, the dwell-time is much higher, compared to [3, Fig 4.] and no clear
drop in dwell time is observed in the vicinity of the origin, whereas this is the case in [3]. In
[3] a MASP is reported of 5.6× 10−3, which is significantly higher than our approximation.

The synthesis of controller for the systems (1), (2), (4), using CEGIS was also considered in
[65, 47]. In [65] a switched controller is synthesized for sampled-data systems and in [47] for
a general nonlinear system for a control specification similar to CS2. In Table 5-2 a table can
be found with the total synthesis time of the [66, 47] and the synthesis of this work. The
synthesis time for all methods is of the same order of magnitude.

5-4 Summary and Discussion

In this chapter we applied the results of Chapter 3 and Chapter 4 to synthesize (periodic)
event-triggered controllers. We have tested the approaches on multiple systems. A control
law is found by either simultaneously synthesizing it with a certificate function or by feedback
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[65] [47] CS2
templated-based

CS2
feedback linearization

System (1) 3.6 5.2 7.1 6.3
System (2) 7.9 2.6 12.8 6.2
System (3) 12.3 3.0 7.4 6.7

Table 5-2: Comparison of synthesis time with [65, 48]

linearization. In Section 5-1 an event-triggered controller were synthesized for five different
systems according to P1-P4.

In Section 5-1-2 simulations were shown of synthesized controllers for the system (2).The
primary conclusion is that when a template controller (P1, P2) is used, the difference between
synthesized and feedback linearized controllers is more substantial than for feedback linearized
controllers (P3, P4). On the one hand, this offers flexibility to find controllers with the desired
behavior; on the other hand, the synthesis is less predictable. This result is as expected, as
for the feedback linearizing controller, the controller is fixed, and the different behavior is
only caused by the CLBF that is synthesized. For the template-based controller, it is also
dependent on the control law that is synthesized.

In Section 5-1-3 synthesis results for multiple systems were outlined. For all two-dimensional
systems, solutions are found. It was observed that the time to find and verify candidate
parameters is less for CS1 compared to CS2. This is as expected, as CS1 involves less condi-
tions and parameters, resulting in an easier-to-solve optimization problem in the search for
a candidate parameter and less conditions to verify in the verification step of the synthesis
algorithm. A disadvantage of CS1 is that it is not possible by the user to enforce a specific
set of initial conditions, whereas this is possible for CS2. As a result, the sublevel set R can
only be a small subset of the domain D.

It was also observed that for synthesis of a CLF to enforce CS1 (P5) the synthesis time is
much lower than for the problems P1-P4. This is because convex optimization is used to find
a function V , which is more efficient in computational time. Also, only two conditions need
to be verified. However, it must be noted that this approach is only applicable to feedback
linearizable systems to enforce CS1.

For the feedback linearizing controller, less parameters need to be found. Therefore, it was
expected that a candidate can be found faster. However, note that this cannot be concluded
from the synthesis results. This can be explained by the fact that by fixing a feedback
linearized controller, the candidate space decreases and thus the number of possible solutions,
which makes it more difficult to find a solution.

Event-triggered controllers were also synthesized for a three-dimensional linear and polyno-
mial system. As expected, the synthesis time is higher, because more parameters need to be
found. As a diffeomorphism is unknown, P3 and P4 cannot be solved for the three-dimensional
system (8). This illustrates that feedback linearization involves more expert knowledge be-
cause a diffeomorphism need to be provided, which might be difficult to find.

Another disadvantage of a feedback linearizing controller is that it is needed to specify the
poles of the closed-loop z-dynamics. It was illustrated that for some poles, no solution can
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be found. The synthesis framework can also be adopted to be able to place the poles auto-
matically, as described in Remark 3.10, but this increases the number of parameters to be
found.

In Section 5-2 an approximation of the MASP is found for the synthesized controllers of
Section 5-1-3. It was noted that for the feedback linearized controllers, the MASP is higher
compared to the template-based controllers. This can be caused by the chosen poles of the
z-dynamics for the feedback linearizing controller. By fitting a function M following the
approach of Section 4-4 the approximations of the MASP can be improved; that is the ap-
proximations are 38.1 times higher. By bounding the parameters of the templates controllers
are found with a MASP that is on average 43.9 times higher.

Another observation is that the dwell-time in simulations is much larger than the approxima-
tions of the MASP; it appears that estimates on the MASP are conservative. This possibly can
be caused by the estimations of Lipschitz constants being conservative or the optimization,
used to find approximations getting stuck in local minima. Finding better approximations is
a topic of further research. Another possible cause is that the provided lower bound on the
MASP is conservative.

In Section 5-3 the behavior of synthesized controllers was compared with other ETC imple-
mentations. The main observation is that, in the vicinity of the origin the dwell-time does
not drop for our implementation, whereas it does for the implementations [60, 12, 23, 15].
Intuitively, the stabilization of the system needs less control attention in a vicinity of the ori-
gin, and hence the dwell time can be high. A topic of future research is to influence the dwell
time, especially in a neighbourhood of the origin. For the system (6) a MASP was provided in
[3] that is much higher than the approximation found in this work for this particular system.
This again motivates for further research to find better approximations of the MASP and to
be able to influence the MASP.

The synthesis results were also compared with existing CEGIS synthesis approaches. It was
concluded that the synthesis time for event-triggered controllers is comparable with other
CEGIS approaches to synthesize for example switched controllers for general nonlinear sys-
tems.
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Chapter 6

Conclusion and Recommendations

6-1 Conclusions

The goal of this thesis was to develop a framework for automated synthesis of event-triggered
controllers for general nonlinear systems with stability and possibly safety specifications that
can be readily implemented on digital devices. The triggering function of the event-triggered
controllers in this work are based on certificate functions. In existing event-triggered control
(ETC) literature the certificate function and feedback law are assumed to be known. However,
synthesis of a certificate function and feedback law is non-trivial for general nonlinear systems.
This is mainly due to the fact that Zeno behavior must be excluded. In Chapter 3 the following
subproblem was considered.

Subproblem 1

Synthesize an event-triggered controller for a nonlinear system that ensures that:
S1) the event-triggered controller does not trigger infinitely fast;
S2) the origin is exponentially stable and system trajectories cannot leave a known

safe set.

We proposed two methods to synthesize event-triggered controllers, such that Subproblem
1 was solved. A Counterexample-Guided Inductive Synthesis (CEGIS) approach was used
to synthesize certificate function for event-triggered control. The methods differ in how the
feedback law is found, i.e. a feedback law is simultaneously found with CEGIS, or feedback
linearization is used. Using the approaches, it is also possible to synthesize event-triggered
controllers that consider safety. Simultaneously finding a controller has the disadvantage the
search space becomes bigger, compared to the feedback linearization approach. However, the
feedback linearization approach is not applicable to all nonlinear systems. In the synthesis
framework candidate solutions are verified with the Satisfiability Modulo Theory (SMT) solver
dReal. For general nonlinear systems it is not possible to verify the conditions in a region
around the origin. Verification around the origin is only possible for polynomial systems with
polynomial template functions.
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In Chapter 4, a periodic event-triggered controller counterpart of the event-triggered con-
trollers in Chapter 3 was introduced. Furthermore, in this chapter we considered the following
subproblem.

Subproblem 2

Find an approximation of the maximum admissible sampling period, such that a peri-
odic event-triggered controller provides the same control specification as the continuous
event-triggered controller.

We proposed a method to be able to find an approximation of the maximum admissible
sampling period (MASP), which solves Subproblem 2. The approximations found with this
method are used to choose the sampling interval. This allows the event-triggered controller to
be implemented digitally. A disadvantage of the proposed method is that the approximation
is not guaranteed to be lower than the real MASP. This can lead to the sampling interval
being chosen to low.

In Chapter 5, it was proved through experiments that the method is able to find event-
triggered controllers for systems up to three dimensions. It was expected that using a feedback
linearizing controller the time to find candidate parameters would decrease, as the number of
parameters to be found with CEGIS decreases. However, it was concluded that the candidate
time for feedback linearization was comparable with the candidate time of template-based
controllers. Other notable differences are that the average inter-event time and estimated
MASP for feedback linearized controllers are higher. In terms of expert knowledge needed,
for feedback linearization, less templates need to be provided, compared with template-based
synthesis. However, for feedback linearization it is assumed that a diffeomorphism is known.
In general, this is not the case and expert knowledge is needed to derive a diffeomorphism.

In Chapter 5 it was also concluded that the time to find candidates and the verification time
grows quick for increasing dimension. To keep the increase in synthesis time limited, the
number of parameters to be found in the synthesis must be kept low. The use of SMT-solvers
for verification can be a bottleneck.

To summarize, it is possible to synthesize (periodic) event-triggered controllers with stability
and safety specifications for general nonlinear systems using the approaches described in
this thesis. However, the main bottleneck is that the search space increases significantly for
higher dimensions. As a result, the synthesis time increases significantly. In the next section,
recommendations are given for future research.

6-2 Recommendations

Altough the approaches have shown to work well, some issues arise in practice. In this section
we propose other synthesis approaches and future research directions. Below we will describe
some recommendations to solve some of the issues described in this chapter.

Sontags Controller Instead of using a template controller or a feedback linearizing feedback
law one could use Sontag’s universal control law. It is possible to reduce the number of
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parameters needed to find in the synthesis process by using this control law. Sontag’s universal
control law was described in Section 2-2. It was described that it provides an explicit formula
to derive a stabilizing controller from the Control Lyapunov Function (CLF). The main
disadvantage of using Sontag’s law is that its form does not allow direct verification by the
SMT-solvers used in this work. It is recommended to research whether it is possible to make
verification in some sort possible to use Sontag’s control law.

Verification of Non-Polynomial Systems Around the Origin Inherent to δ-satisfiability
approaches for SMT verification is that it is not possible to verify an inequality that becomes
equality for some limit value. Therefore for nonpolynomial systems, it was not possible
to verify the conditions in a region around the origin. However, by taking a polynomial
abstraction of the original nonpolynomial system the resulting polynomial system can be
verified with a solver that does not rely on a δ-satisfiability approach, such as Z3.

Guiding the MASP In the current approach, we can not directly influence the MASP. This
has as a result that the functions found in the CEGIS approach lead to a MASP that is lower
than needed. We recommend researching a method to be able to guide the MASP. This
can be done, for example, by bounding individual functions that involve computation of the
MASP, which are the function Lf , LV ′ and M or by directly optimizing the MASP in the
synthesis process.

Verification of the MASP A disadvantage of the proposed method to find an approximation
of the MASP is that the approximation is not guaranteed to be lower than the real MASP.
This can lead to the sampling interval being chosen to low. It is recommended to research
whether the approximations can be verified with an SMT-solver. When this verification can
be done in reasonable time, SMT-solvers can also be used to find better approximations, by
using line search methods for example. This way, iteratively an approximation can be found
and verified, such that the approximation is close to the real value of the MASP.

Genetic Programming In the CEGIS approach used in this thesis, it is needed to specify
a template of the to-be-found functions. For the certificate function and feedback law we
used polynomial templates. Although a solution is found for the templates that are used, it
can be that using a polynomial template, a solution can not be found. Furthermore, some
expert knowledge is needed to define the templates. A solution to this is to automatically
evolve the structure of the function along with its parameters. As a result, it is not needed to
define templates. In [68] for example this is done with Genetic Programming (GP). Although
this approach has shown great potential for different types of systems, the search space is
significantly increased [67], [68], which increases synthesis time.

Furthermore, other learning approaches recently developed can be considered for synthesis
of certificate functions for event-triggered control. For example, in [2] Lyapunov Neural Net-
works are constructed to automatically find Lyapunov functions, without defining a template.

Sample-Based Verification A bottleneck for scalability to higher dimension is the verifica-
tion time needed by the SMT-solver. Ideally, one would be able to parallelize computation,
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such that the verification is speed up. Algorithms that are of decentralized nature are suitable
for parralelization, i.e. the algorithms allow for multiple separate calculations at the same
time. However, to the best of our knowledge, the SMT-solver dReal and Z3 used in this work
does not allow for parralelization. Opposed to SMT-solvers, sample-based algorithms allow
parralelization as they are distributed [13], [11]. These algorithms exploit local continuity to
extend validity of an inequality in a finite number of sampling points to an infinite bounded
set of points. However the reported verification times are much higher than for the SMT-
solver we use in this work. More research is needed to find whether this type of verification
is useful.
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Appendix A

Conditions on Feedback Linearizability

Consider the system as defined in Section 3-1. In this section the conditions on feedback
linearizability of a nonlinear system is outlined. To be able to describe the results on feedback
linearizability of the nonlinear system Equation (3-1) we introduce the following input-output
system

ẋ = f(x) + g(x)u
y = h(x).

(A-1)

The relative degree is defined as the number of times the output y has to be differentiated
until the input u appears. The formal definition is given below.

Definition A.1 (Relative Degree, ([27], Definition 8.1)). The nonlinear system Equation (3-
1) has relative degree ρ, 1 ≤ ρ ≤ n, in an open set R ⊂ D if, for all x ∈ R, LgLi−1

f h(x) = 0,
for i = 1, 2, . . . , ρ− 1; LgL

ρ−1
f h(x) 6= 0.

For the case that ρ = n, a simple expression is available for the control law. Hence the goal is
to select a ‘virtual output’ h(x), such that with respect to this output, the system has relative
degree ρ = n in a domain Dx ⊂ D, with x(0) ∈ Dx. This comes down to finding h(x), such
that partial differential equations

LgL
i−1
f h(x) = 0, i = 1, 2, . . . , n− 1 (A-2)

are satisfied, subject to the condition

LgL
n−1
f h(x) 6= 0, (A-3)

for all x ∈ Dx. Conditions exist for the existence of a function h such that a solution exists of
the problem above. We introduce some mathematical notations and definitions before stating
a result on feedback linearizability.

Definition A.2 (Lie Derivative). Let h : D→ R be a smooth function, and f : D→ Rn be a
smooth vector field on the domain D ∈ Rn. Then, the Lie derivative of h(x) with respect to
f(x) is a scalar function defined by

Lfh(x) = ∂h

∂x
(x)f(x). (A-4)
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Definition A.3 (Lie Bracket). Let f and g be two vector fields on the domain D ∈ Rn. The
Lie bracket of f(x) and g(x) is a vector field defined by

[f, g](x) = ∂g

∂x
(x)f(x)− ∂f

∂x
(x)g(x). (A-5)

Definition A.4 (Distributions). For vector fiels f1, f2, . . . , fk on D ⊂ Rn, let

∆(x) = span {f1(x), f2(x), . . . , fk(x)} (A-6)

be the subspace of Rn spanned by the vectors f1(x), f2(x), . . . , fk(x) at any fixed x ∈ D. The
collection of all vector spaces ∆(x) for x ∈ D is called a distribution and referred to by

∆ = span {f1, f2, . . . , fk} (A-7)

Definition A.5 (Involutive Distributions). A distribution ∆ is involutive if, whenever f, g ∈
∆, also [f, g] ∈ ∆

The above definitions allow to introduce the conditions of feedback linearizability.

Theorem A.6 (Conditions on Feedback Linearizability, [27, Theorem 8.2]). The system
Equation (3-1) is feedback linearizable in a neighborhood of x0 ∈ D if and only if there is a
domain Dx ⊂ D, with x0 ∈ Dx, such that

1. The matrix
[
g(x) adfg(x) · · · adn−1

f g(x)
]
has rank n for all x ∈ Dx;

2. the distribution D = span
{
g, adfg, . . . , ad

n−2
f g

}
is involutive in Dx.
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List of Acronyms

ETC event-triggered control
CLF control-lyapunov function
STL signal-temporal logic
CBF control barrier functions
CEGIS Counterexample-Guided Inductive Synthesis
CETC Continuous Event-Triggered Control
CBF Control Barrier Function
CLBF control Lyapunov barrier functions
CLF Control Lyapunov Function
CMA-ES Covariance Matrix Adaption Evolution Strategy
GP Genetic Programming
ISS Input-to-State Stable
MASP maximum admissible sampling period
MPC Model Predictive Control
NCS networked control systems
PETC Periodic Event-Triggered Control
RWS reach-while-stay
SMT Satisfiability Modulo Theory
SOS Sum-Of-Squares
STC Self-Triggered Control
STL Signal Temporal Logic
LMI Linear Matrix Inequality
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