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Abstract
Wind direction uncertainty is often overlooked in wind resource assessment, despite its
potential to cause significant deviations in annual energy production (AEP). This study
quantifies directional uncertainty arising solely from wind data, decomposed into three
components: measurement uncertainty, long-term wind rose difference (LTWRD), and
interannual variability (IAV). Two offshore sites with contrasting layouts and inflow regimes
were analysed using statistical and resampling-based approaches.

The results show total directional uncertainties of 0.71% and 4.39% of AEP, with LTWRD
emerging as the dominant contributor at the more directionally sensitive site. No con-
sistent pattern in the composition of directional uncertainty was observed across sites,
highlighting the need for site-specific assessments.

Given that typical total AEP uncertainties for wind projects average 8–10%, the findings
indicate that directional uncertainty can represent a substantial fraction of the total, es-
pecially at sites with strong wake sensitivity and uni-directional inflow. Therefore, wind
direction should be explicitly included in uncertainty analyses, and long-term correction
procedures should address wind direction as well as wind speed.
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1 Introduction
1.1 Background
Wind energy plays a central role in the global transition to renewable energy. Annual wind
power production continues to grow, with Europe alone expected to install an additional
187 GW of capacity between 2025 and 2030 to meet the EU’s 42.5% renewable energy
target. This expansion will bring total installed capacity in the EU to approximately 425
GW by 2030 [1].

Such rapid growth places an increasing emphasis on the accuracy and consistency of
annual energy production (AEP) estimates. The reliability of AEP calculations is funda-
mental to project financing, operational planning, and energy policy development. High
AEP uncertainty can negatively impact debt-service coverage ratios, raise financing costs,
and in extreme cases threaten project viability [2].

At the same time, modern wind farms are growing in size, and turbines are increasingly
exposed to harmful wake interactions. Accuratemodelling of inflow conditions, particularly
wind direction, is therefore essential, since even small directional shifts can significantly
alter wake propagation patterns and total farm output.

Uncertainty in AEP estimation is generally grouped into five categories [3]: (1) Wind data,
(2) Wind model, (3) Power conversion, (4) Bias, and (5) Losses. The thesis focuses ex-
clusively on wind data uncertainty, as it forms the foundation for all subsequent modelling
steps.

1.2 Wind Data Uncertainty in AEP and the Role of Wind
Direction

Most research on wind data uncertainty has focused on wind speed because of its di-
rect link to turbine power production via the power curve. Numerous deterministic and
probabilistic methods have been developed to propagate wind speed measurement error
into AEP uncertainty [4, 5]. Even with high-quality instrumentation, wind speed measure-
ment uncertainty alone is rarely below 2%, and when propagated through the cubic power
curve relationship, this translates to AEP uncertainties of 3–6% [3]. These studies have
examined not only the magnitude of wind speed errors but also their interactions with
other variables such as turbulence intensity (TI), hub-height selection, and correlations
between uncertainty components.

By contrast, wind direction uncertainty remains comparatively underexplored and is of-
ten neglected in AEP assessments [6, 7]. While wind speed determines the magnitude
of available energy, wind direction strongly governs wake interactions and spatial vari-
ability in wind farm performance. Neglecting directional uncertainty can therefore lead to
systematic underestimation of wake losses and total AEP uncertainty.

Djokić et al. [8] demonstrated that explicitly incorporating wind direction uncertainty im-
proved predictive performance in models that otherwise assumed perfect directional data.
Brandis et al. [9], usingmesoscalemodelling (NEWAdataset, 1989–2018 [10]) for theGer-
man Bight, reported mesoscale wind direction changes exceeding 11◦ in 50% of cases.
These variations, relevant over spatial scales of tens to hundreds of kilometres, can
markedly influence wake model performance.
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Porté-Agel et al. [11] quantified this sensitivity by simulating the Horns Rev offshore wind
farm under multiple inflow angles with a large eddy simulation (LES) model. They found
that a 10◦ shift from the worst-case (full wake) inflow increased total farm power output by
43%. While striking, this result is a deterministic sensitivity analysis and does not consti-
tute a full uncertainty quantification, as it does not incorporate the probability distribution
of inflow directions.

Gaumond et al. [12] partly addressed this gap by estimating wind direction uncertainty
and its influence on model–data agreement for Horns Rev. However, their work focused
on model uncertainty related to direction, rather than wind data uncertainty itself. Other
direction-related studies have focused on yaw misalignment or sensor-comparison errors
[13, 14, 15], for example, comparing mast-mounted wind vanes with nacelle yaw sensors.
Overall, there is no widely adopted framework for incorporating wind direction uncertainty
into AEP uncertainty budgets within the wind data category.

1.3 Uncertainty Quantification of Wind Rose Characteristics
Quantifying uncertainty in wind direction (and, more generally, in the wind-rose frequency
distribution) is less standardised than for wind speed. Two main methodological families
can be identified:

1. Circular statistical metrics
Because wind direction is a circular variable bounded between 0◦ and 360◦, conven-
tional statistical measures such as linear standard deviation are unsuitable. Sev-
eral alternative formulations exist [16, 17], with the Yamartino method [18] shown
to perform well in many cases [19, 20]. However, these methods typically assume
unimodal or symmetric wrapped-normal distributions [21] and may fail to represent
multi-modal or highly skewed distributions, which are common in offshore sites.

2. Frequency-distribution comparisons
This approach quantifies differences in wind direction frequency distributions be-
tween two datasets (e.g., short-term mast measurements vs. long-term reanalysis)
by comparing their sector-wise frequencies. A common metric is the wind rose devi-
ation (WRD) [22], defined as the sum of absolute differences in sector frequencies,
similar to metrics applied in wind rose bias-correction methods [23, 24]. These meth-
ods preserve the difference in distributional shape but are sensitive to the choice of
sector bin size and to sample size limitations. As noted by Kjeller Vindteknikk [22],
the representativeness of a long-term directional variation cannot be fully charac-
terised by a single statistic such as a correlation coefficient or the WRD alone.

Despite these limitations, both approaches are widely used in practice, yet no industry
consensus exists on which is most appropriate for integrating wind rose uncertainty into
AEP calculations.

1.4 Research Goal and Thesis Outline
The aim to this thesis is to quantify wind direction uncertainty from wind data and assess
its contribution to AEP uncertainty. The study addresses two key research questions:

• How does uncertainty in wind direction propagate into AEP through wake modelling,
and to what extent does measurement bias contribute to the overall AEP uncer-
tainty?

• What is the most appropriate way to quantify uncertainty in wind direction: using
circular statistical metrics or frequency distribution differences?

2 Propagation of Wind Direction Uncertainty into Wake Modelling



The analysis is carried out for two offshore sites with contrasting inflow regimes and lay-
outs, enabling assessment of site-specific behaviour. The findings aim to guide wind farm
developers in selecting measurement strategies, highlight the importance of long-term
correction methods, and inform whether directional uncertainty should be systematically
integrated into total AEP uncertainty budgets.

The remainder of this thesis is structured as follows:

• Chapter 2 – Theoretical background

• Chapter 3 – Methodologies for quantifying directional uncertainty

• Chapter 4 – Case study applications and results

• Chapter 5 – Discussion, additional uncertainty considerations, and recommenda-
tions

• Chapter 6 – Conclusions and future work

Propagation of Wind Direction Uncertainty into Wake Modelling 3



2 Basis and Framework
2.1 Site Overview and Datasets
This study investigates wind conditions and uncertainty quantification at two offshore wind
project sites. For confidentiality reasons, the sites are anonymised as Site A and Site B,
with sufficient descriptive context retained for the purposes of this thesis. Site A is an
operational offshore wind farm located in the Baltic Sea between Denmark and Germany.
In contrast, Site B is a pre-construction offshore site situated off the western coast of the
United States and is currently in the planning phase.

2.1.1 Site Characteristics and Measured Dataset
Both sites were selected based on the availability of site-specific measured data and long-
term reanalysis datasets. For Site A, 35 years of hourly reanalysis data and 5.5 years of
10-minute resolution met mast measurements are available. Site B is supported by 20
years of hourly reanalysis data and 1.5 years of 10-minute resolution met mast data. All
measured datasets are sourced from the RWE database and are subject to confidentiality
agreements. The availability of both long-term reanalysis data and higher-frequency mea-
surements provides a basis for investigating directional uncertainty in wind conditions, as
shown in Figure 2.1.

Figure 2.1: The availability of wind data from measurement and reanalysis of Site A and
Site B.

It is worth noting that while the measured dataset at Site B nominally spans 1.5 years, a
substantial data gap between late December 2020 and the end of May 2021 reduces the
effective duration of usable data to approximately 1.1 years. Relying on such a limited
measurement period for AEP calculation and uncertainty quantification introduces several
challenges for Site B. First, the reduced temporal coverage compromises representative-
ness, making the results more sensitive to seasonal imbalances and abnormal events.
Second, the smaller dataset limits the diversity of resampled sequences in bootstrapping,
potentially leading to an underestimation of uncertainty. Finally, the shortened concurrent
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period weakens the statistical correspondence between measured and reanalysis data,
which may impair the accuracy of future long-term corrections.

2.1.2 Reanalysis Dataset

This study uses the ERA5 reanalysis dataset [25], which provides a physically consistent
reconstruction of historical weather conditions by assimilating a wide range of observa-
tions into a global forecast model. ERA5 delivers hourly atmospheric data on a global
grid at 0.28◦ × 0.28◦ resolution (approximately 31 km) [26], with wind variables available
at multiple vertical levels, including 100 m above ground level, making it suitable for long-
term climatological assessments at turbine hub heights.

ERA5 is widely used in wind resource assessment, yet previous studies report substantial
underestimation of wind power when using ERA5 wind speeds directly, up to 20% accord-
ing toWilczak et al.[27]. Comparisons with other reanalyses (e.g., MERRA-2) indicate that
ERA5 provides more accurate large-scale patterns[28], especially offshore, where the ab-
sence of orographic effects improves correlation with site measurements [29]. However,
like other reanalyses, ERA5 cannot fully resolve local wind speed or wind direction varia-
tions. While no specific studies have quantified ERA5’s wind direction accuracy at local
scale, similar resolution constraints apply.

Moreover, ERA5’s hourly resolution does not capture high-frequency fluctuations such as
rapid direction shifts or wind veer events. However, since this study focuses on wind direc-
tion uncertainty at longer time scales (e.g., interannual variability), such high-frequency
limitations are not expected to have a major influence.

For consistency, only measured wind direction datasets with documented quality control
and at least one year of continuous coverage were compared against ERA5. In this study,
wind direction from ERA5 is used only after spatial downscaling to site level; no bias cor-
rection or directional adjustment has been applied. Unless otherwise stated, all references
to reanalysis data in the following sections refer to ERA5 after this downscaling step.

2.1.3 Wind Direction Characteristics

A second motivation for selecting these sites is their contrasting wind direction character-
istics. Site A locates in the Baltic Sea, leading to more uniformly distributed wind direc-
tions with seasonal bi-directionality. In contrast, the Site B site is dominated by a persis-
tent, strongly uni-directional inflow. These differences in wind rose patterns allow for a
comparative assessment of how directional variability in fluence uncertainty quantification.
Figure 2.2 illustrates the wind rose distributions derived from met mast measurements at
each site, corresponding to turbine hub heights of 100 meters (Site A) and 170 meters
(Site B), respectively.
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Figure 2.2: Wind roses of 10-minute measured wind speed and direction at hub height for
Site A (100 m, left) and Site B (170 m, right).

2.1.4 Wind Farm Layouts
The wind farm configurations of both sites are shown in Figure 2.3. The turbine locations
have been normalised by rotor diameter to preserve confidentiality and show turbine spac-
ing. While terrain information is not considered for offshore wind farms in this study, and
due to confidentiality, terrain features are not visualised. This simplification is justified as
the layout simulations in Pywake are conducted under the assumption of flat terrain.

Figure 2.3: Wind farm layout at Site A (left) and Site B (right), normalised by their rotor
diameter D (154 meter and 292 meter, respectively).

As illustrated in Figure 2.3, the two wind farm layouts exhibit markedly different spatial con-
figurations when normalised by rotor diameter. Site A displays a relatively symmetric grid-
like arrangement, particularly symmetric about the y-axis. This symmetry, when coupled
with the broader and more uniformly distributed wind rose observed at Site A, suggests
that the site is likely to be less sensitive to small directional shifts in inflow. In contrast,
Site B features a denser and more staggered turbine arrangement with clear asymmetry
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and tighter inter-turbine spacing. The dominant inflow direction at Site B aligns closely
with the long axis of the layout, resulting in a high probability of wake interactions.

Notably, inter-row spacing in the prevailing inflow direction at Site B is approximately 5–7
rotor diameters (D), within the lower end of the typical recommended range. For refer-
ence, the Horns Rev wind farm off the coast of Denmark averages about 7D spacing
[30], while downstream spacing is often optimised between 6D and 10D depending on
site-specific constraints and control strategies [31]. Spacing models, developed by Men-
eveau et al., suggest that larger spacings (around 15D) can improve cost efficiency [32].
The compact configuration at Site B amplifies directional sensitivity, small inflow shifts can
substantially alter the number of turbines exposed to upstream wakes, with corresponding
impacts on energy yield.

By comparison, Site A has wider turbine spacing of roughly 8–10D along its dominant
westerly inflow, reducing wake overlap and directional sensitivity.

Together, these two sites provide complementary test cases for evaluating directional un-
certainty in offshore wind resource assessment. Site A represents a well-documented,
operational site with long-term measurements and a less waked layout, serving as a base-
line for conventional offshore conditions. Site B, by contrast, presents an extreme case of
strong uni-directional inflow, compact turbine spacing, and limited measurement duration.
This pairing enables assessment of directional uncertainty across both typical offshore
conditions and more challenging, directionally sensitive configurations.

2.2 Sources of Wind Direction Uncertainty
Reliable wind resource estimation requires a comprehensive understanding of its associ-
ated uncertainties. In the context of wind direction, these uncertainties stem from various
sources, including measurement bias, interannual variability (IAV), and long-term wind
rose deviation (LTWRD), which is the discrepancy between directional frequency distribu-
tions in short-term measurements versus long-term reference datasets.

According to the IEC 61400-1 framework and as summarised by Lee and Fields [6], energy
production uncertainty during resource assessment stage can be categorised into five
main components: measurement, historical wind resource, spatial extrapolation, project
evaluation period variability, and plant performance. This section focuses on the uncer-
tainty component and details the selection and justification of the uncertainty sources
incorporated into this study.

2.2.1 Measurement Uncertainty
A key objective of this study is to understand whether wind direction measurement un-
certainty inherent to standard met mast setups significantly contributes to the overall di-
rectional uncertainty in wind resource assessments. One of the research questions ad-
dressed is whether there is a justified need to upgrade instrumentation for higher precision,
or if the uncertainty associated with lower-accuracy equipment is already sufficiently small
relative to other sources.

While high-accuracy sensors and calibration protocols can be used to improve measure-
ment precision and accuracy, systematic errors may still arise from practical factors such
as mast alignment, sensor orientation, and flow distortion around the mast structure.
These errors typically do not vary randomly over time but are instead persistent and site-
specific, making it important to quantify their impact carefully. Including this source in
the total directional uncertainty budget is therefore essential for understanding the extent
to which measurement uncertainty could bias energy yield estimates, especially when
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combined with or compared to other sources of uncertainty. All detailed calculations, as-
sumptions, and individual contributions to the measurement uncertainty are presented in
Section 3.1.

2.2.2 Historical Wind Resource
While long-term reanalysis data are essential for capturing climatological trends in wind re-
source assessment, their treatment differs depending on the variable of interest. For wind
speed, long-term correction techniques such as Virtual Met Mast or Measure-Correlate-
Predict are commonly applied to bridge the gap between short-term measurements and
long-term reference data [33]. However, for wind direction, such corrections are not typi-
cally performed. Instead, wind direction in reanalysis datasets is implicitly refined during
the downscaling process. The downscaling models improve spatial representation but do
not explicitly calibrate wind direction against local measurements.

Although reanalysis datasets are widely used for directional analysis, they introduce ad-
ditional uncertainty due to spatial mismatches, model limitations, and lack of site-specific
validation [34, 35, 36]. The resulting deviation between the directional distributions (wind
roses) of short-term measurements and long-term reanalysis is referred to this study as
historical resource assessment uncertainty.

To characterise this uncertainty in wind direction, it is decomposed into two indepen-
dent components: Inter-Annual Variation (IAV) and Long-Term Wind Rose Difference
(LTWRD) [37]. IAV accounts for natural year-to-year shifts in the wind rose distribution,
while LTWRD reflects systematic differences between the short-term measured and long-
term reanalysis directional data. To avoid double-counting of annual variation, seasonal-
trend decomposition is applied to datasets to isolate and remove long-term patterns prior
to LTWRD uncertainty estimation.

Unlike wind speed, wind direction is a circular variable, making conventional metrics like
Pearson correlation and linear standard deviation inappropriate. Moreover, wind direction
affects AEP indirectly through altering the distribution of wind speeds and their directional
frequency. For this reason, IAV is not expressed in degrees, since there is no universally
transferable scalar metric for circular, often multimodal, wind direction distributions, as
discussed in Section 3.3. In the case of LTWRD, seasonal components are first removed,
andMoving Block Bootstrapping (MBB) is then applied to the residuals over the concurrent
period to quantify the associated uncertainty, as detailed in Section 3.2.

Due to their distinct sources and statistical properties, IAV and LTWRD are treated as
independent contributions to the total historical wind direction uncertainty and combined
accordingly.

2.2.3 Spatial Extrapolation Uncertainty
Spatial extrapolation uncertainty pertains to the errors introduced when vertically or hori-
zontally projecting windmeasurements from themast height to the turbine height or across
wind farm layout. Vertically, wind veer occurs due to the Coriolis force, frictional forces,
and pressure gradients. In offshore environments, the low surface roughness substan-
tially reduces vertical veer. An NREL studied off the coast of Massachusetts reported
offshore veer rates ranging from 0.03◦m−1 to a maximum of about 0.1◦m−1 [38]. Conse-
quently, when extrapolating from the anemometer up to hub height, the directional change
is typically under one degree, which is negligible compared to other sources of uncertainty
such as IAV or instrumental bias. Horizontally, wind direction tends to remain coherent
over offshore distances due to the absence of complex terrain effects.

While this component could be incorporated into the total uncertainty budget for complete-
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ness in future work, it is excluded from the present study, which focuses solely on inherent
uncertainties in the wind data itself.

2.2.4 Project Evaluation Period Variability
Uncertainty in the project evaluation period arises due to the assumption that the mod-
elled operational period aligns with the long-term site average. The uncertainty in the
future wind resource can be divided into two components: (1) that due to normal year-to-
year variability in the wind climate, which is also called interannual variability, and (2) that
due to the risk of long-term climate change. The interannual variability of the reference
data period has already been accounted for in the historical wind resource assessment
uncertainty. In addition, potential changes in wind direction due to climate change fall
outside the scope of this study and are therefore treated as external and independent
factors. Thus, period variability uncertainty has been excluded from the current study, but
uncertainty from climate change could be incorporated in future research if necessary.

2.2.5 Plant Performance Uncertainty
This study specifically addresses uncertainties related to wind direction and therefore ex-
cludes uncertainties associated with plant performance. Such plant performance uncer-
tainties cover factors including, but not limited to, turbine and balance-of-plant availability,
electrical efficiency losses, turbine performance, and downtime resulting from extreme
environmental conditions. These sources of uncertainty, while relevant to overall energy
production assessments, are beyond the scope of this analysis.

In this study, the full directional uncertainty propagated into wake modelling consists of
three independent terms: measurement uncertainty, LTWRD uncertainty, and IAV un-
certainty. Each component is quantified as the standard deviation of its impact on AEP.
Assuming that these sources of uncertainty are statistically independent and have ap-
proximately Gaussian distribution, they are combined using the root-sum-square (RSS)
method to yield the total standard uncertainty on AEP.

2.3 Numerical Methods
This section describes the data pre-processing process, the wake model used in this
research, and the AEP calculation in PyWake [39].

2.3.1 Pre-Processing: Site Conditions
To simulate wind farm performance using PyWake, site-specific wind conditions must be
defined in terms of wind speed, wind direction, turbulence intensity, and the joint prob-
ability of these combinations. This setup is handled by XRSite class in PyWake, which
maps ambient conditions to turbine relative coordinates (e.g., crosswind and downwind
directions) and propagates wake effects accordingly.

In the selected study sites, strong winds predominantly arriving from specific directions.
This anisotropy is evident in the joint probability distribution of wind speed and wind direc-
tion. As illustrated in Figure 2.4, wind speed probability density functions are weighted
by the directional occurrence frequency, demonstrating how different sectors contribute
to the overall wind climate.
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Figure 2.4: Wind speed probability distribution weighted by wind direction frequency for
Site A (left) and Site B (right).

To capture the direction-dependent wind characteristics, the input wind data is binned into
2◦ directional sectors, resulting in 180 sectors over the full 360◦ range. Within each sector,
a Weibull distribution is fitted to the wind speed data to describe the probability density
function of wind speeds. This sector-wise Weibull characterisation allows the simulation
to reflect the directional variation of wind energy potential across the site.

TheWeibull distribution is defined by two parameters: the scale parameterA, which corre-
lates with the mean wind speed, and the shape parameter k, which controls the spread of
the distribution. These parameters are estimated using Maximum Likelihood Estimation
(MLE). Although Ordinary Least Squares (OLS) fitting is sometimes preferred in cases of
small sample size due to its lower bias, the large number of data points in each sector
justifies the use of MLE in this study [40]. To ensure the reliability of the Weibull fits, a min-
imum sector width of 2◦ is enforced. This guarantees a sufficient number of observations
in each sector, avoiding unreliable parameter estimation due to undersampling.

2.3.2 Wake Model
There is currently no universally accepted model that can fully capture all flow phenomena
and precisely predict energy production across diverse wind farm configurations. While
computational fluid dynamics approaches offer high-fidelity representations of flow be-
haviour, they are computationally expensive and often impractical for large-scale AEP
assessments. In contrast, engineering wake models provide a more practical balance
between computational efficiency and accuracy. However, these models depend on a
combination of sub-models, including wake deficit, superposition, and blockage models.
The selection of sub-models must be tailored to the specific site conditions and layout. A
model configuration that performs well in one context may not be suitable in another.

In this study, the PyWake framework is adopted as the simulation platform due to its
modular structure and flexibility. The sub-model combinations and parameters setting
used in this work follow the recommendations outlined in the PyWake documentation [41].
The following section outlines the specific model setup used in this work and the rationale
behind these choices.
2.3.2.1 Wake Deficit Model
The wake model employed in this study is TurbOPark, a turbulence-optimised Gaussian-
type engineering wake model developed by Ørsted. TurbOPark is designed to improve
the prediction of wake losses by incorporating the influence of both ambient and wake-
generated turbulence on the wake expansion process. It dynamically adapts the wake
growth rate as a function of the downstream turbulence, resulting in improved directional
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sensitivity and wake recovery estimates in offshore wind farms.

The decision to use a Gaussian-type model follows general modelling guidance from DTU
PyWake documentation [41]. Compared to top-hat models, Gaussian models avoid dis-
continuities and better conserve momentum in isolated wakes. Among the Gaussian
formulations available in PyWake, TurbOPark is distinguished by its dynamic wake ex-
pansion governed by local turbulence intensity (TI), rather than using a fixed or overly
simplified wake growth rate. Following the relation from Pedersen et al. [42], TurbOPark
models models the wake expansion rate as a function of local turbulence intensity I(x):

dDw

dx
= AI(x) (2.1)

where Dw is the wake diameter, x is the downstream distance from the turbine, and A
is the wake expansion coefficient. The wake expansion rate is proportional to the local
turbulence intensity. A value of A = 0.04 is adopted, based on Ørsted’s validation against
19 offshore wind farms using SCADA data, as discussed in Nygaard et al. [43].

To calculate I(x), TurbOPark uses the Frandsen wake turbulence model [44] to combine
the ambient turbulence intensity I0 with the additional turbulence generated in the wake
Iw(x) as:

I(x) =
√

I20 + I2w(x) (2.2)

The wake-generated turbulence Iw(x) is empirically modelled as[42]:

Iw(x) =
1

c1 + c2
x/D

CT (Vin)

(2.3)

where D is the rotor diameter, CT is the thrust coefficient of the turbine as a function of
the incoming wind speed Vin, and c1 = 1.5 and c2 = 0.8 are the two empirical constants
given in [43, 42] based on wind tunnel and field data.

TurbOPark’s wake shape inherently accounts for long-term averaging, integrating the
effects of wake meandering, shear-layer growth, and small-scale mixing into a single,
smooth profile. This makes it particularly suitable for estimating the impact of wind direc-
tion uncertainty on the same base. Moreover, the model’s greater sensitivity to directional
changes, as compared to traditional Jensen-type models, improves its capability in cap-
turing the AEP deviation caused by shifts in directional frequency distributions.

A sensitivity analysis of the wake expansion coefficient A and turbulence model parame-
ters c1 and c2 is discussed in Section 5.4.2.
2.3.2.2 Superposition Model
To account for the combined influence of multiple upstream wakes on a downstream tur-
bine, a superposition model must be applied. This model determines how individual wake
deficits interact and accumulate at the rotor plane of a given turbine. The choice of super-
position model is closely tied to the definition of effective wind speed. In this study, the
setting use_effective_ws=True is enabled, which means that the effective wind speed at
each turbine accounts for the local wake-modified flow field rather than assuming a uni-
form freestream velocity throughout the array. Under this setting, the LinearSum model
provides a coherent and physically correct approach to combining wake deficits, as it
avoids the risk of overestimating cumulative losses or producing negative wind speeds in
highly waked regions.

Alternative superposition methods recommended in the documentation, such as Squared-
Sum, may offer improved approximations of wake effects in very deep wind farm arrays.
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However, these methods assume a uniform freestream wind speed across all turbines,
which is a condition that is not satisfied when using effective wind speed formulations.
Additionally, SquaredSum-based methods are known to artificially amplify wake losses
by effectively double-counting overlapping wake deficits, which can lead to overestima-
tion of power loss for dense wake interactions.

For these reasons, LinearSum was selected as the superposition model in this study. It
ensures compatibility with the chosen wake deficit model and the physical interpretation
of effective wind speed at each turbine.
2.3.2.3 Blockage Model
In addition to wake effects, blockage refers to the deceleration of the flow upstream due
to flow obstruction. This phenomenon leads to a region of reduced wind speed ahead
of the turbines, causing the local flow field to differ from free-streamed conditions. If
unaccounted for, blockage can result in systematic overestimation of energy production
in wind farm simulations.

Studies from DTU estimate that blockage-related overprediction can lead to power output
increases of up to 2% in aligned turbine layouts [45]. To mitigate this bias, a blockage
correction is incorporated into the modelling framework. In this study, the SelfSimilarity-
Deficit model from the PyWake package is employed to represent blockage effects. The
SelfSimilarityDeficit model is a simplified analytical induction model that captures the up-
stream flow deficit using the self-similarity assumption for flow expansion. It provides a
physically motivated correction to inflow condition upstream of turbines, thereby improving
the accuracy of predicted AEP.
2.3.2.4 Engineering Wind Farm Model
In summary, this study adopts a modular modelling approach using PyWake, combining
three sub-models: the TurbOGaussianDeficit for wake deficit, LinearSum for wake su-
perposition, and SelfSimilarityDeficit for blockage effects. This configuration is referred
to asNygaard_2022_adjusted in Table 2.1. The use_effective_ws=True setting is enabled
to ensure that each turbine’s performance is evaluated based on the locally modified wind
field rather than a uniform freestream value. This ensures internal consistency between
the deficit and superposition models, as recommended in the PyWake documentation.

To integrate these components, the All2AllIterative engineering wind farm model is em-
ployed. Among the three general models available in PyWake:PropagateDownwind, Prop-
agateUpDownIterative, and All2AllIterative, only All2AllIterative fully accounts for both
wake and blockage effects by iteratively solving the mutual interactions among all tur-
bines. In each iteration, wake deficits from all turbines are superposed at every turbine
location, and the resulting effective wind speeds are updated until convergence is reached
or the maximum number of iterations is exceeded.

Although PyWake includes predefined composite models such as Nygaard_2022, which
bundle wake, turbulence, and superposition models according to published literature [42],
the default Nygaard_2022 implementation relies on the PropagateDownwind solver. This
method estimates the wind speed at each turbine based solely on upstream influences,
thereby neglecting upstream-facing blockage effects. For this reason, a modified version
of Nygaard_2022 is constructed using the All2AllIterative solver to properly capture the
full array of wake and blockage interactions.

While this study does not primarily aim to benchmark wakemodels, three industry-relevant
engineering models (summarised in Table 2.1) are included for comparison. These are:
the adjusted Nygaard_2022 model, which applies the updated TurbOPark framework
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Table 2.1: Wake Model Configuration Overview
Name Wind Farm Model Wake Deficit Blockage Superposition
Nygaard_2022_adjusted All2AllIterative TurboGaussianDeficit SelfSimilarityDeficit LinearSum
Nygaard_2020_Jensen All2AllIterative TurboNOJDeficit SelfSimilarityDeficit LinearSum
Ott_Nielsen_2014_Blockage All2AllIterative FugaDeficit FugaDeficit LinearSum

with Gaussian wake deficit and blockage representation; the original Nygaard_2020 Tur-
bOPark model based on the Jensen wake formulation [46]; and the OttNielsen_2014 im-
plementation, which incorporates the Fuga model to account for both wake and blockage
effects [47]. The comparative results of these models are discussed in Section 5.4.1.

2.3.3 AEP calculation
AEP is computed using the PyWake framework, which models wind farm performance by
combining a wind resource characterisation with turbine-specific power curves and wake
interactions. AEP is calculated by integrating the expected power output over all wind
directions and wind speeds, weighted by the joint probability distribution f(U |θ), the wind
speed distribution conditioned on wind direction.

PyWake handles this using a sector-wise Weibull fit, as introduced in Section 2.3.1. For
each direction θ, the turbine power output P (U) is evaluated based on the local inflow
conditions and thenweighted by f(U |θ). The total AEP is computed by aggregating across
all directional sectors:

AEP = T

360◦∑
θ=0◦

F (θ)

Nturb∑
i=1

∫ Ucut-out

Ucut-in

Pi(U)f(U |θ) dU (2.4)

where T is the number of seconds in a year, F (θ) is the directional frequency for sector
θ, Pi(U) is the power curve applied at turbine i, and f(U |θ) is the wind speed distribution
for that sector.

Unlike uniform inflow models, this study enables effective wind speed in PyWake, which
accounts for local wind conditions at each turbine based on wake propagation and flow
deficits. As a result, each turbine may experience a different inflow speed even within
the same site condition, leading to a non-uniform power output across the farm. The total
AEP, calculated as the sum of all turbines, thus becomemore directionally sensitive, since
the extent of wake losses and local wind speed variation depends on wind direction.

Propagation of Wind Direction Uncertainty into Wake Modelling 13



3 Uncertainty Quantification
As concluded in Section 2.2.1, the uncertainty in wind direction are primarily from three
sources: measurement uncertainty, LTWRD uncertainty, and IAV uncertainty. In this
chapter, the quantification method of three uncertainty sources will be introduced respec-
tively.

3.1 Measurement Uncertainty
This section quantifies how systematic measurement uncertainty in wind direction prop-
agates into uncertainty in AEP. Directional errors from measurements primarily manifest
as a fixed angular offset in the measured wind rose. To determine a reasonable value for
this offset and assess its impact on AEP, the analysis proceeds in two steps. First, a con-
servative estimate of the directional measurement uncertainty is obtained by aggregating
individual error sources according to standard uncertainty propagation principles. Next, a
sensitivity analysis is conducted to evaluate how a fixed directional offset influences the
resulting AEP. All details are presented in the two following subsections.

3.1.1 Estimation of Directional Measurement Uncertainty
Based on the ECN report [48], the systematic uncertainty in wind direction measurement
includes the following components: (1) wind vane accuracy, (2) sensor resolution, (3)
mast alignment error, (4) flow distortion, and (5) data acquisition.
(1) Wind vane measuring accuracy
According to wind vane manufacturer specifications [49], the wind vane used in this study
to represent measuring instrument has an accuracy of ±1°. Under the assumptions of the
Guide to the Expression of Uncertainty in Measurement (GUM) [50], where the distribution
of measurements is assumed to be approximately normal, an expanded uncertainty of ±1°
with a coverage factor k = 2 corresponds to a standard uncertainty of:

u =
1◦

2
= 0.5◦

(2) Wind vane sensor resolution
The resolution of the wind vane is specified as 0.1◦ [49]. However, in practice, resolution
uncertainty contributes negligibly compared to other dominant sources such asmeasuring
accuracy or alignment error. According to GUM [50], when an uncertainty component is
significantly smaller than others and has minimal influence on the combined standard
uncertainty, it may be omitted. Therefore, the uncertainty due to sensor resolution is not
included in the final uncertainty budget in this study.
(3) Mast alignment error
Notably, manual orientation during mast installation is still commonly performed using
hand compasses (as shown in appendix A). Therefore, the two main contributors to align-
ment error is hand compass accuracy and operator error. According to the Handbook
[51, p. 650-1.39], the typical accuracy of a hand compass under optimal conditions is ±2°.
In the absence of more detailed information on the distribution of compass errors, a rect-
angular distribution is assumed. Per GUM [50], the corresponding standard uncertainty
is:

u = 2◦/
√
3 ≈ 1.15◦
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Operator-induced error, such as misreading the compass or improper setup, introduces
additional uncertainty [52]. While the exact value is difficult to quantify universally, a com-
bined mast alignment of 2◦ is the suggested number reported in industry studies (e.g.
ECN [48]). Thus, a conservative standard uncertainty of u = 2◦ is used to account for
total alignment error.
(4) Flow distortion
Wind flow distortion caused by mast structure and mounting effects is typically estimated
to contribute less than 1.5◦ to the directional uncertainty. Following the ECN industry study
[48], a conservative estimate of u = 1.5◦ is adopted in this study.
(5) Data acquisition
The data logger used in the met mast system has a digital resolution of 0.1◦ [49]. However,
due to the signal digitisation, this uncertainty is considered negligible in the total budget
and is thus assigned u = 0◦.

Since all the above uncertainties are assumed to be independent components, the total
standard uncertainty in wind measurements is given by the root-sum-square:

σmeasurement, total =
√
0.52 + 2.02 + 1.52 ≈ 2.54◦ ≈ 3◦ (3.1)

The numerical values of estimate uncertainty should not have excessive digits. As the
uncertainty estimation is conservative in this study and from limited information, there is
an uncertainty in the estimated uncertainty. Hence, over-precision is misleading. The
total wind direction measurement is rounded up to 3 degrees in the subsequent analysis.

3.1.2 Propagation of Directional Uncertainty to AEP
Measurement uncertainty in wind direction primarily originates from setup errors which
introduce systematic offsets in directional readings. To quantify how this directional mea-
surement uncertainty propagates to uncertainty in AEP, a sensitivity analysis is performed
by artificially shifting the entire wind rose.

In this analysis, the wind rose is rotated by ±6◦ in increments of 2◦, both clockwise and
counterclockwise. The step size of 2◦ is chosen to match the directional bin width used in
theWeibull sector fitting in Section 2.3.1, ensuring that each bin contains sufficient data for
a reliable statistical fit. The total shift range of ±6◦ correspond to two standard deviations
(2σ) based on a directional measurement uncertainty of 3◦ from Equation (3.1). This
covers approximately 95% of expected deviations when assuming normally distributed
errors.

For each shifted wind rose, the AEP is recalculated using the wakemodel setup introduced
earlier. The resulting relationship between directional shift and AEP change is evaluated
using linear regression. As shown in Section 4.1, the dependence is well-approximated
by a linear model, with coefficients of determination (R2) of 0.993 for Site A and 0.985 for
Site B, confirming the linearity of the response in the tested range.

Based on standard uncertainty propagation principles from [50] and [53], when the input-
output relationship is approximately linear, the uncertainty in AEP due to directional mea-
surement errors can be estimated as:

σAEP = |dAEP

dθ
| ∗ σθ (3.2)

where σθ is the standard uncertainty in the directional measurement and dAEP/dθ is the
sensitivity obtained from the regression slope. The final AEP uncertainty is computed
using a directional uncertainty σθ of 3 degrees, calculated in Equation (3.1).
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3.2 LTWRD Uncertainty
As mentioned in Section 2.2.2, Long-Term Wind Rose Difference (LTWRD) refers to the
observed discrepancy between the wind direction distributions derived from short-term
measurements and those from long-term reanalysis datasets. Unlike wind speed, wind
direction is typically not corrected or calibrated during long-term extrapolation procedures.
As a result, differences between the short-term and long-term wind roses can introduce
additional uncertainty in directional analysis and AEP estimation.

For Site A, the concurrent period between the mast measurements and reanalysis data
spans only 5.5 years. This limited duration restricts the number of independent sam-
ples that can be used for uncertainty quantification. Non-overlapping sampling permits
only five distinct AEP estimates, while overlapping subsampling introduces high similarity
among the samples, leading to clustering and potentially biased estimates, as detailed
in Appendix B.1. Therefore, resampling strategy is necessary to properly represent the
variability. This study employs a Monte Carlo approach, integrated with Moving Block
Bootstrapping (MBB), to estimate the LTWRD uncertainty. Directly applying MBB to the
original wind speed time series leads to synthetic samples with seasonally imbalanced
representations, resulting in an artificial inflation of AEP error distribution, as discussed
in Appendix B.2. To preserve the seasonal characteristics of the data while allowing tem-
poral resampling, MBB is instead applied to the residuals, as further described in Sec-
tion 3.2.2. The LTWRD uncertainty is then quantified as the standard deviation of the
AEP error across synthetic samples generated from bootstrapped time windows.

3.2.1 Spectral Analysis
Prior to implementing any resampling methods, a spectral analysis is conducted to identify
dominant temporal correlations in wind speed time series. In wind energy applications,
spectral analysis provides a critical insight into the scales of variability. The power spectral
density (PSD) describes how variance is distributed across frequency components in the
time series.

In this study, the logarithmic form of the PSD, fS(f), is used to better visualise the variance
contribution from each frequency decade. The variance of a process can be computed
as [54]:

σ2 =

∫ ∞

−∞
fS(f) d logf = 2

∫ ∞

0
fS(f) d logf

Hence, when plotted against logarithmic frequency, the area under the fS(f) curve cor-
responds to half the total variance. This representation allows for easier identification of
which time scales dominate the variability.

Figure 3.1 presents the log-frequency spectral density of 10-minute wind speed data from
Site A. Distinct peaks are visible at daily and semi-daily timescales, consistent with diurnal
and semi-diurnal cycles. While a flattening platform is observed near the 1-week mark,
no sharp peak is present. This suggests a transition zone between low-frequency trends
(e.g., seasonal variation) and high-frequency fluctuations (e.g., turbulence), rather than
a dominant weekly cycle. Figure 3.2 shows the corresponding S(f) plot, which helps
confirm the interpretation. Although a peak at the annual scale is theoretically expected,
it is not prominent due to the limited 5.5-year dataset.
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Figure 3.1: Log-frequency spectral density (fS(f)) of wind speed at Site A, showing the
relative contribution of each frequency decade to total variance.

Figure 3.2: Frequency spectral density (S(f)) of wind speed at Site A.

3.2.2 MBB apply to residuals
Traditional bootstrapping assumes that data points are independently and identically dis-
tributed, which is not valid for wind time series. To preserve the inherent temporal struc-
tures such as autocorrelation and seasonal variability, the Moving Block Bootstrapping
(MBB) method [55] is used in this study. MBB resamples the data in blocks of contigu-
ous time intervals, preserving local dependencies and allowing the resampled series to
maintain realistic temporal structure.

The selection of an appropriate block size is critical. If the blocks are too short, they
may fail to capture autocorrelated structures; if too long, they reduce the number of in-
dependent resamples, increasing estimation bias and reducing variability. Since there is
no universally optimal block size for wind time series, several approaches can guide this
choice.

One approach is based on spectral analysis, which identifies dominant timescales of vari-
ability. In the spectral density plot for Site A, peaks appear at 12-hour and 1-day intervals,
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corresponding to diurnal and semi-diurnal cycles. Although no distinct peak is observed at
longer timescales, synoptic variability (3–7 days) is commonly found in wind data. Conse-
quently, block size selection should aim to preserve periods longer than the diurnal peak
variance.

Another common method uses the autocorrelation function (ACF), with the block size
determined by the lag at which the ACF falls below a threshold (e.g., 0.1) to indicate a
loss of temporal dependence. While an ACF plot was not generated for this study due
to time constraints, previous research by Monahan [56] shows that ACFs of surface wind
vectors in midlatitude ocean regions typically decay below 0.1 after approximately 4 days,
while tropical regions retain higher autocorrelation (e.g., 0.3 after 4 days). Since the site in
this study is located in the midlatitudes, a conservative block size of 7 days is adopted to
ensure the preservation of synoptic-scale structures while allowing sufficient resampling
variability.

The wind time series is modelled as a stochastic process composed of deterministic and
random components. Following the decomposition from Climate analysis textbook[57],
the wind variable X(T ) is represented as:

X(T ) = Xtrend(T ) +Xout(T ) + S(T ) ·Xresidual(T ) (3.3)

where T denotes continuous time, Xtrend(T ) represents seasonality signal by applying
seasonal-trend decomposition, Xout(T ) accounts for rare outlier events, S(T ) is a time-
dependent variability function, and Xresidual(T ) is a stationary noise process with zero
mean and unit variance. Given the circular nature of wind direction, outliers are not easily
defined and thus Xout(T ) is omitted. The time series is then discretised as:

X(i) = Xtrend(i) + S(i) ·Xresidual(i) (3.4)

where i denotes discrete timestamps. To ensure continuity and validity of this model,
missing timestamps in the data are filled using nearest-neighbour interpolation for wind
speed and circular interpolation (”wrap”) for wind direction.

The components of Equation (3.4) are derived separately for wind speed and wind direc-
tion (see Section 3.2.2.1 and Section 3.2.2.2, respectively).
3.2.2.1 Wind Speed
As described in Equation (3.4), the wind speed time series is first decomposed into trend,
variability, and residual components before applying the MBB method to residuals. This
decomposition enables the generation of synthetic time series that preserve the temporal
structure of the original data.

The log-frequency plot of the power spectral density (Figure 3.1) revealed prominent
peaks at 12-hour and 24-hour (daily), indicating the presence of both diurnal variability
in the wind speed signal. To accurately capture these multi-scale temporal patterns, the
Multiple Seasonal-Trend Decomposition using LOESS (MSTL) is employed [58, 59]. This
method allows for the inclusion of multiple seasonal components and provides decompo-
sition based on those components. Unlike a simple moving average or low-pass filter,
which can introduce distortions when trends shift overtime, MSTL can separate daily and
annual patterns while preserving non-stationary behaviour in the trend component.

In this context, the term ”trend” in MSTL refers to the long-term variation over the full
time series, whereas in the MBB decomposition Equation (3.4), the term ”trend” (denoted
Xtrend(i)) refers to the seasonal component that is used as the deterministic based onto
which residuals are resampled.
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The MSTL decomposition is configured with two seasonalities: daily and yearly cycles.
Although the 12-hour peak is visible in Figure 3.1, the 24-hour cycle is the dominant diur-
nal pattern. Additionally, when decomposing using a 24-hour seasonal component, the
MSTL method also implicitly capture higher-order harmonics. On the other hand, while
the annual signal is less dominant in the spectral plot, it is included to ensure the resulting
synthetic time series retains the annual variability necessary for AEP estimation.

Figure 3.3: MSTL decomposition of the wind speed time series at the Site A mast. Each
subplot shows the trend, residual, and seasonal components (daily and yearly).

The reconstructed seasonal base signal WSPtrend(i) is obtained by summing the ex-
tracted seasonal components from MSTL. This is illustrated in Figure 3.4, where the sea-
sonal base is plotted alongside with the original wind speed data. This based is then
used as the deterministic foundation in the MBB framework, and residuals are resampled
in 1-week blocks to preserve short-term autocorrelation.

Figure 3.4: Synthetic wind speed using MSTL seasonal base: full record (top) and
zoomed view of 2012 (bottom).
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To characterise the short-term variability of wind speed Swsp(i), a local standard deviation
is computed using a centred rolling window of one week (block size = 168):

Swsp(i) = std
(
WSP (i± block size

2 )
)

(3.5)

This scaling function accounts for time-varying fluctuations in the amplitude of wind speed
variability.

Following the decomposition model introduced in Equation (3.4), the residual (or nor-
malised noise) component of the wind speed is computed as:

WSPresidual(i) =
WSP (i)−WSPtrend(i)

Swsp(i)
(3.6)

3.2.2.2 Wind Direction
Wind direction is a circular variable, whichmeans that direct arithmetic operations can lead
to incorrect results near the 0◦ and 360◦ boundary. To address this, all preprocessing is
performed in vector space by converting directional angles into unit vectors. Each wind
direction θ(i) is mapped to Cartesian coordinates via: (u(i), v(i)) = (cos(θ(i)), sin(θ(i))).
To extract the trend in wind direction, MSTL is applied separately to the u and v com-
ponents using the same seasonality cycles as used for wind speed, including daily and
yearly cycles. The extracted vectors (u∗(i), v∗(i)) may deviate from the unit circle due to
filtering. Before converting back to angular space, the vectors are renormalised:

norm(i) =
√

u∗(i)2 + v∗(i)2, u∗(i)← u∗(i)

norm(i)
, v∗(i)← v∗(i)

norm(i)
(3.7)

This guarantees that the angle recovered using the function atan2(v∗, u∗) lies on the unit
circle. The final trend in wind direction, WDtrend(i), is then:

WDtrend(i) =

(
atan2(v∗(i), u∗(i))× 180◦

π

)
mod 360◦ (3.8)

Figure 3.5 shows theMTSLwind direction trend for the full dataset and a zoomed-in period
from 2012.

Figure 3.5: Synthetic wind direction using MSTL seasonal base: full record (top) and
zoomed view of 2012 (bottom).
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The short-term variability of wind direction Swd(i) is quantified using the circular standard
deviation. Similar to wind speed, a rolling window approach is used; however, since wind
direction is processed as unit vectors on the unit circle, the resultant vector length R(i) is
first computed and then converted to a circular standard deviation [60]:

R(i) =

√√√√√
 1

N

N∑
j=1

uj

2

+

 1

N

N∑
j=1

vj

2

(3.9)

Swd(i) =
√
−2 lnR(i) (3.10)

To compute the residual (i.e., noise) component, direct subtraction of angular values is
avoided. Instead, the smallest signed angular difference is computed via Euler’s identity
(ejθ = cosθ + jsinθ):

WDresidual(i) =
1

Swd(i)
· deg

(
ej(WD(i)−WDtrend(i))

)
(3.11)

This method ensures the correct sign and magnitude of the angular difference, avoiding
errors such as interpreting a −5◦ offset as 355◦.

Once the residuals are calculated using Equation (3.6) and Equation (3.11), MBB is ap-
plied using overlapping 1-week blocks to generate synthetic residual samples. These
resampled residuals are then combined with the seasonal component and the average
trend from the MSTL decomposition to reconstruct synthetic time series that preserve
both the seasonal structure and the short-term statistical variability. By applying MBB to
the residuals and extract the trend from the raw data, this approach effectively removes
the influence of long-term trends and interannual variability, isolating the uncertainty at-
tributable to short-term fluctuations.

To isolate the effect of wind direction uncertainty, wind speed is held constant across
simulations. Synthesised wind speed from the mast measurements is used for both sim-
ulations, while wind direction inputs are drawn separately from the reanalysis and mast
datasets. A total of 200 Monte Carlo simulations are performed, each corresponding to a
randomly resampled time window. The convergence analysis for the number of samples
is provided in Appendix B.3. The LTWRD uncertainty is finally defined as the standard
deviation of the resulting 200 AEP differences between the two directional inputs.

3.2.3 Disjunct Sampling
As previouslymentioned, themeasured data are available at 10-minute resolution, whereas
the reanalysis data have a 1-hour temporal resolution. Li [61] demonstrated that increas-
ing the sampling interval can underestimate average wind speeds and reduce statistical
representativeness of the wind regime. Although that study focuses on extreme wind
speeds for structural design, the same principle applies to AEP estimation, where tem-
poral mismatch can distort directional distributions and sectoral frequency content. To
enable a consistent comparison and estimation of LTWRD uncertainty between the two
datasets, and to quantify the uncertainty introduced by temporal sampling resolution, a
disjunct sampling approach was applied to the 10-minute measured data. In this method,
only the observations recorded at the start of each hour were retained to construct an
effective hourly time series, thereby mimicking a lower-frequency measurement regime
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without applying block averaging. This disjunct dataset was compared against the full 10-
minute dataset using 200 randomly selected 1-year windows, with AEP estimated sepa-
rately from both using a sector-wise Weibull fitting approach followed by wake modelling
with PyWake.

The rationale for using disjunct rather than block-averaged sampling lies in the frequency-
domain characteristics of the wind signal. Spectral analysis indicates that the dominant en-
ergy content in the wind variability occurs at timescales longer than one hour, as shown in
Figure 3.1. Consequently, no substantial difference is expected between AEP estimates
obtained using disjunct sampling and those based on block-averaged data. This expec-
tation is further supported by the negligible difference observed between AEP estimates
derived from disjunct sampling and those obtained using conventional block-averaging
method, as discussed in Appendix B.4. Thus, disjunct sampling provides a practical and
computationally efficient way to assess the sensitivity of AEP estimation to temporal res-
olution.

To further examine the representativeness of the disjunct dataset, histograms of wind
speed and direction for both the 10-minute and 1-hour disjunct datasets are plotted side-
by-side in Figure 3.6. As expected from the spectral analysis, the visual difference be-
tween the two distributions is minimal, indicating that disjunct sampling does not signifi-
cantly distort the underlying wind regime at Site A. Nonetheless, even small discrepancies
can lead to measurable differences in AEP, particularly when propagated through nonlin-
ear wake effects and directional weighting. Therefore, the impact of disjunct sampling
must still be treated as a source of uncertainty and quantified accordingly.

Figure 3.6: Comparison of wind direction and wind speed distributions between 10-minute
and 1-hour (disjunct) datasets at Site A. Top row: wind direction; bottom row: wind speed.
Left: 10-minute data; right: disjunct 1-hour data.
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Since disjunct sampling represents an independent source of uncertainty, it is treated as
a separate component and can be combined with other LTWRD uncertainty contributions
through a root-sum-square approach.

3.2.4 Overview of LTWRD Uncertainty Estimation Procedure
This subsection provides a concise summary of themethodology used to estimate LTWRD
uncertainty. As the theoretical framework and technical implementation are detailed in
the previous subsections, this overview aims to clarify the practical workflow without over-
whelming the reader with methodological depth.

To quantify LTWRD uncertainty, the following steps are performed:

1. Decompose the measured and reanalysis wind time series into three compo-
nents: trend (i.e., seasonality), variability, and residual, using Multiple Seasonal-
Trend Decomposition using LOESS (MSTL). Wind speed and wind direction are
treated separately, with direction represented in vector space to preserve circular
properties.

2. ApplyMovingBlockBootstrapping (MBB) on residuals using 1-week blocks. This
produces synthetic samples that retain the autocorrelation and seasonal character-
istics of the original data.

3. Reconstruct 1-year synthetic time series by combining resampled residuals with
the original seasonal base. Wind speed is held fixed (to ensure consistent sectoral
Weibull fits across measurements and reanalysis), while wind direction is drawn
separately from either the measured or reanalysis datasets, allowing the isolation
of directional effects.

4. Estimate AEP for each synthetic 1-year time series (200 Monte Carlo samples in
total) using PyWake’s wake modelling framework. LTWRD data bias uncertainty
is then defined as the standard deviation of AEP differences between simulations
using measured vs. reanalysis-based synthetic wind direction inputs.

5. Quantify disjunct sampling uncertainty by comparing AEP estimates from the
full 10-minute measurement dataset and a 1-hour disjunct subset, using the same
methodology.

6. Combine both uncertainty components using root-sum-square method to yield
the total LTWRD uncertainty.

The total LTWRD uncertainty thus represents the combined impact of temporal resolution
and climatological directional mismatch.

3.3 IAV Uncertainty
While the interannual variability (IAV) of wind speed has been widely studied and well-
documented, much less attention has been paid to IAV in wind direction. Existing studies
on wind direction variability primarily focus on frequency changes across directional sec-
tors [62, 63, 64], rather than attempting to quantify directional variation in degrees. This
is largely due to the circular nature of wind direction data, which makes conventional sta-
tistical metrics (such as the mean or standard deviation) problematic and meaningless.
As Keevallik et al. [65] emphasise, long-term averages of wind direction are particularly
misleading when distributions are multimodal or highly dispersed.

To test this assertion, a trial application of the vector averaging and Yamartino method [18]
was carried out to estimate the standard deviation of wind direction and assess whether
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the synthesised directional data could represent the actual distribution. The results con-
firmed that the vector averaged and Yamartino-derived standard deviation did not ade-
quately reproduce the characteristics of the original dataset, supporting Keevallik et al.’s
conclusion. Details of this test are provided in Appendix C.

Some researchers (e.g., [66]) have used average wind direction over short periods, but
this approach is not reliable for long-term climatological assessments. Instead, wind roses
(i.e., sectoral frequency distributions) are typically used to represent directional character-
istics. However, simply comparing the differences between two wind rose profiles is insuf-
ficient to characterise AEP impact, since directional changes may have highly asymmetric
effects depending on the wind farm layout. For instance, if the dominant wind direction is
shifted from south to west or to east could result in similar wind rose deviation metrics but
yield different AEP outcomes.

To demonstrate that sectoral frequency distribution may not be a reliable predictor of AEP
variation, a sensitivity test was conducted using reanalysis data (Figure 3.7). In this ex-
periment, only the wind direction frequency (i.e., the shape of the wind rose) was varied
across years, while the sectoral Weibull parameters (i.e., shape and scale in each sector)
were held constant. This isolates the impact of directional variability on AEP. The y-axis
of Figure 3.7 shows the Normalised Wind Rose Difference (WRD), a metric that quantifies
the deviation in directional frequency between a specific year and the multi-year reference
distribution. It is defined as:

WR
(j)
diff,norm = (Σall

sec,i=0|f
(j)
sec,i − f

(ref)
sec,i|)/2 ∗ 100 (3.12)

where f (j)
sec,i denotes the frequency in sector i of the wind rose for the j-th year, and f

(ref)
sec,i is

the corresponding frequency from the full-period (multi-year) wind rose. This metric, first
introduced by Kjeller Vindteknikk [22], ranges from 0% (identical wind roses) to 100% (no
overlap in any sector), and is normalised by a factor of 2 to reflect the maximum possible
absolute difference between two valid probability distributions.

Figure 3.7 shows that AEP variation correlates strongly with the mean wind speed, while
showing no consistent linear relationship with WRD when wind speed is held constant.
This is partly because the mean wind speed is itself calculated as a directionally weighted
value, meaning that changes in the wind rose distribution can indirectly influence AEP via
altered sectoral weighting. However, WRD only measures the magnitude of the difference
between two wind roses without capturing how those differences are distributed across
sectors. Two wind roses with the same WRD can yield very different sectoral weightings,
and thus different weighted mean wind speeds and AEP outcomes. This makes WRD a
poor standalone predictor of AEP variation.
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Figure 3.7: Sensitivity of AEP to variations in mean wind speed and directional frequency.
Each point represents a synthetic year with fixedWeibull parameters and varied wind rose
shape.

Given this, it becomes impractical to quantify IAV uncertainty in wind direction using angu-
lar offsets or even WRDmetrics alone. Instead, this study adopts an approach analogous
to the wind speed case: calculating the standard deviation of simulated AEPs overmultiple
years while fixing the wind speed distribution and varying only the directional frequencies
(i.e., wind rose). Specifically, the Weibull A and k parameters for each wind direction sec-
tor are calibrated using the full period reanalysis dataset. Then, the interannual variability
in direction is introduced by changing only the wind rose annually, holding all other inputs
constant.

In this way, the IAV of AEP driven by wind direction is quantified directly as the standard
deviation of annual AEP estimates, reflecting true yield variability rather than relying on
ambiguous directional metrics. This variability is expressed as a normalised standard
uncertainty in AEP due to direction-driven IAV, defined as:

IAV =
σannual AEP
AEPoverall

· 1√
N

(3.13)

where σannual AEP is the standard deviation of simulated AEP acrossN years, and AEPoverall
is the mean AEP over the full period. The 1√

N
factor accounts for the fact that the uncer-

tainty is expressed relative to the estimate of the mean AEP. This approach allows IAV
uncertainty to be incorporated consistently with other uncertainty components in a wind
resource assessment framework.
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4 Results
4.1 Measurement Uncertainty
As introduced in Equation (3.2), the influence of measurement uncertainty on AEP is as-
sessed by shifting the wind rose direction by a fixed angular offset and recalculating the
resulting AEP. Figure 4.1 shows the relationship between the applied directional shift and
the corresponding change in AEP at Site A and Site B. The observed trend closely follows
a linear relationship, indicating that the AEP change is approximately proportional to the
magnitude of directional bias.

Given this linearity, the uncertainty in AEP resulting from wind direction measurement bias
can be estimated as the product of the absolute slope of the fitter line and the directional
measurement uncertainty, σθ, introduced in Section 2.2.1. For Site A, the slope of the
fitted regression line is approximately −0.093. With a total measurement uncertainty of
σθ = 3◦, the propagated AEP uncertainty is calculated as:

σAEP = | − 0.093| ∗ σθ = 0.093 ∗ 3 ≈ 0.28% (4.1)

For Site B, the slope of the fitted regression line is approximately −0.230. With a total
measurement uncertainty of σθ = 3◦, the propagated AEP uncertainty is calculated as:

σAEP = | − 0.230| ∗ σθ = 0.230 ∗ 3 ≈ 0.69% (4.2)

Figure 4.1: Relationship between directional shift and corresponding change in nor-
malised AEP at Site A (left) and Site B (right).

This result quantifies the influence of wind direction measurement bias on AEP and con-
firms the suitability of a linear uncertainty propagation approach within the tested range of
directional shifts (±6◦). Although a 3◦ uncertainty is adopted in this study, higher thresh-
olds, up to 5◦ or even 10◦, are recognised in industry practice. For example, Foussekis
[67] reports a acceptance criterion of < 10◦ for directional offset for offshore systems dur-
ing early deployment phases, and tighter tolerance of < 5◦ after full calibration. Notably,
the linear relationship between directional shift and AEP deviation remains valid even at
higher uncertainty level. The linear propagation model described in Equation (3.2) re-
mains applicable for estimating AEP uncertainty, if the directional uncertainty does not
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exceed approximately 6◦. For larger uncertainties, additional simulations and updated
sensitivity curves would be required to ensure validation.

4.2 LTWRD Uncertainty
Data Bias Uncertainty
The LTWRD uncertainty was quantified by evaluating the distribution of normalised AEP
errors between measured and reanalysis-based wind resource assessments at the target
site. As shown in Figure 4.2, the distribution of errors at Site A, derived from 200 Monte
Carlo samples using 1-year windows over a 5.5-year concurrent period, follows a near
normal shape with a mean of 0.14% and a standard deviation of 0.35%. This standard
deviation is taken as Site A’s LTWRD uncertainty under the assumption that 1 year is
the relevant time-averaging basis and that each sample captures intrannual seasonal
variability.

At Site B, the distribution of normalised AEP errors over 1-year windows exhibits a much
wider spread, with a standard deviation of 4.27%, as depicted in Figure 4.2 (right). The
higher LTWRD uncertainty atSite B suggests that site-specific factors can amplify the chal-
lenges of correcting reanalysis data, reinforcing the need for careful site-based uncertainty
evaluation. Notably, the distribution is not centred at 0% but has a mean bias of -2.61%,
suggesting a systematic difference between the reanalysis and measured datasets. This
may reflect a climatological mismatch, where the long-term downscale datasets does not
adequately capture the directional inflow experienced during the measurement period.
However, this deviation could also arise from the short duration of measured data (only
1.1 years), which might have coincided with an anomalous directional regime.

Figure 4.2: Distribution of normalised AEP error between measured and reanalysis
datasets over 1-year windows at Site A (left) and Site B (right).

It is important to note that LTWRD uncertainty is sensitive to the length of the concurrent
measurement period. A sensitivity test at Site A demonstrated that restricting the con-
current period to just the first 3 years resulted in a reduced standard deviation of 0.33%,
potentially underestimating the true LTWRD uncertainty. This finding underscores the
importance of using the longest possible concurrent period to ensure robust estimates.
In this study, the full available concurrent datasets were used: 5.5 years for Site A and
1.1 years for Site B. However, the limited duration at Site B likely increases the risk of
underrepresenting sample variability, which may lead to an underestimation of LTWRD
uncertainty. This limitation and its implications are further discussed in the sensitivity
analysis in Section 5.3.
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Disjunct Sampling Uncertainty
To account for the impact of temporal resolution on AEP estimation, disjunct sampling
was applied to the 10-minute measured data to simulate a 1-hour measurement regime,
as introduced in Section 3.2.3. As shown in Figure 4.3 (left), the disjunct sampling uncer-
tainty at Site A, which quantifies the error introduced by reduced measurement frequency,
is calculated to be 0.37%. Similarly, in Figure 4.3 (right), the uncertainty introduced by
disjunct sampling at Site B is calculated as 0.47%.

Figure 4.3: Distribution of normalised AEP error between 10-minute measured data and
1-hour disjunct-sampled datasets over 1-year windows at Site A (left) and Site B (right).

The difference in disjunct sampling uncertainty between the two sites is primarily attributable
to site-specific characteristics, such as the wind rose distribution and wind farm layout.
Site A, which exhibits a broader and more uniform wind direction distribution, is less sen-
sitive to short-term fluctuations. Even if both sites experience a similar level of turbulent
fluctuation, Site A is more likely to smooth out these variations, resulting in a lower propa-
gation of uncertainty into AEP. In contrast, Site B is dominated by a narrow wind rose and
has a more closely spaced, heavily waked layout. This makes it more sensitive to small
directional shifts, meaning the same magnitude of wind direction fluctuation can lead to
a larger deviation in wind rose sectors and a more pronounced impact on AEP. Thus,
the higher disjunct sampling uncertainty at Site B is consistent with its greater directional
sensitivity and layout-induced wake effects.

This finding highlights a key consideration when assessing the effect of reduced temporal
resolution: sites with different directional characteristics and layouts can respond differ-
ently to the same magnitude of wind fluctuation. Disjunct sampling uncertainty should
therefore be evaluated on a site-by-site basis through AEP simulations, rather than as-
sumed to have a uniform effect across projects.

Total LTWRD Uncertainty
The total LTWRD uncertainty reflects the compounded effect of two independent sources:
temporal sampling resolution and data discrepancy between measurements and reanal-
ysis. These two effects arise from fundamentally distinct mechanisms, disjunct sampling
stems from reduced temporal resolution, while LTWRD data bias uncertainty originates
from discrepancies between short-term measurements and long-term reanalysis. There-
fore, they are combined using the root-sum-square approach:

σLTWRD,total =
√
σ2
disjunct + σ2

LTWRD, data bias (4.3)
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where σdisjunct is the standard deviation of normalised AEP error introduced by 1-hour
disjunct sampling, and σLTWRD, data bias is the uncertainty due to the discrepancy between
measured and reanalysis directional distributions. The resulting total LTWRD uncertain-
ties are:

σLTWRD,total, Site A =
√
0.372 + 0.352 ≈ 0.51% (4.4)

σLTWRD,total, Site B =
√
0.472 + 4.272 ≈ 4.30% (4.5)

These results underscore the dominant role of directional mismatch in the total LTWRD
uncertainty, particularly for directionally sensitive sites like Site B.

LTWRD uncertainty arises from the assumption that the long-term directional distribution,
typically derived from downscaled reanalysis data, accurately reflects the site’s climato-
logical inflow. If this assumption is violated, the resulting wind rose deviation introduces
a systematic bias into all future AEP estimates.

While some LTC techniques include direction correction (e.g., mean-sectoral offsets or
FFT-based interpolation) [68], such corrections are not standard in reanalysis workflows.
In practice, directional biases often remain uncorrected, undermining representativeness
in directional analyses. At Site B, the reanalysis wind rose is taken directly from the
downscaling model without post-processing to align it with site-specific measurements.

Figure 4.4 compares the directional frequency distributions from measurements and re-
analysis during the concurrent period. Although the two wind roses appear visually similar
and the normalised wind rose difference (Equation (3.12)) is 10.3%, their energy roses
differ substantially. As Langreder and Højstrup [69] emphasise, visual similarity can be
misleading, since small differences in directional frequency can have a disproportionate
impact on AEP. This occurs because directional frequency scales each sector’s contribu-
tion to total energy production, and not all sectors contribute equally due to wake effects
and layout asymmetry.

Figure 4.4: Comparison of directional frequency distributions from measurement and re-
analysis data during the concurrent period at Site B.

Without robust correction, such directional mismatches propagate through thewakemodel
and bias long-term AEP estimates. The Site B results illustrate that directional uncer-
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tainty is often a structural problem in the long-term climatology. To mitigate this, correc-
tion method should be applied and should focus on aligning the energy rose, rather than
merely matching wind rose frequencies, to ensure that wind direction is accurately repre-
sented in long-term projections.

4.3 IAV Uncertainty
To quantify the IAV of direction-driven AEP uncertainty, annual AEP estimates were com-
puted from reanalysis data by varying the wind rose for each year while holding sector-
wise Weibull parameters fixed. The resulting standard deviation of normalised AEP re-
flects the directional variability from year to year.

At Site A, using the full 33-year reanalysis period, the standard deviations of annual AEP
was found to be 1.83% , as shown in Figure 4.5 (left), corresponding to an IAV standard
uncertainty of IAVSite A, full = 1.83%√

33
≈ 0.32%. While a longer reanalysis record is available,

several studies recommend using a reference period of approximately 15-20 years for
long-term representativeness [70]. When only the most recent 20 years were considered,
the standard deviation slightly decreased to 1.77% , as shown in Figure 4.5 (right). This
results in a higher standard uncertainty:

IAVSite A, last 20 =
1.77%√

20
≈ 0.40% (4.6)

The standard uncertainty is higher in 20 years with lower standard deviation of annual
AEP. This counter-intuitive result occurs because standard uncertainty reflects not only
the variability but also the confidence in the estimate. Although the variability is slightly
lower, the shorter reference period (20 years) provides fewer samples, leading to higher
uncertainty in the estimated mean.

Figure 4.5: Normalised annual AEP across 33 years (left) and the most recent 20 years
(right) of reanalysis data at Site A.

For Site B, which also used 20 years of reanalysis data, the observed standard deviation
was higher at 2.65% (Figure 4.6), yielding a directional IAV uncertainty:

IAVSite B =
2.65%√

20
≈ 0.59% (4.7)

The higher IAV at Site B could be attributed to its more uni-directional and heavy-waked
wind farm layout, making the site more sensitive to year-to-year variations in wind direc-
tion, as discussed in the previous result section.
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Figure 4.6: Normalised annual AEP for Site B over a 20-year reanalysis period.

These results confirm that the length of the reanalysis record has a direct influence on
the estimated IAV uncertainty, and that regional wind direction climatology also plays a
significant role in the magnitude of interannual variability.

4.4 Summary of Directional Uncertainty
The three main components of directional uncertainty were evaluated separately for Site A
and Site B using site-specific measured data and reanalysis data. The resulting standard
uncertainties, expressed as percentages of AEP, are summarised in Table 4.1.

Table 4.1: Comparison of directional uncertainty components on AEP at Site A and Site
B.

Site Measurement [%] LTWRD [%] IAV [%] Total Uncertainty [%]
Site A 0.28 0.51 0.40 0.71
Site B 0.69 4.30 0.59 4.39

The total directional uncertainty, calculated via the root-sum-square (RSS) of the three
contributions, reflects the combined impact of all directional effects on AEP. At Site A,
the total uncertainty is moderate (0.71%), with each component contributing on a similar
scale. In contrast, Site B shows a much larger total uncertainty (4.39%), almost entirely
driven by the LTWRD component (4.30%).

The relative importance of each component can be expressed as its fractional variance
contribution:

Contribution of σmeasurement =
σ2
measurement

σ2
measurement + σ2

LTWRD + σ2
IAV
× 100 (4.8)

By this measure, measurement uncertainty accounts for about 16% of the total variance
at Site A, but only 2.5% at Site B, where LTWRD overwhelmingly dominates. This indi-
cates that while improving measurement accuracy is beneficial, the representativeness
and accuracy of long-term directional reference data could exert a far greater influence
on total directional uncertainty.
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For context, comparable studies of typical wind projects report total AEP wind data uncer-
tainties, considering only measurement uncertainty and long-term wind resource variabil-
ity, of approximately 2.1–3.7% for array-averaged wind speed [71]. These values refer
to wind speed uncertainty, which generally has a stronger effect on AEP than directional
uncertainty. The 0.71% observed at Site A is therefore well below these typical ranges,
whereas the 4.39% at Site B is unusually high, even compared to typical wind speed un-
certainty. This suggests that neglecting the influence of wind direction on AEP can lead
to a significant underestimation of total uncertainty.

Overall, the results demonstrate that directional uncertainty is highly site-specific. Robust
AEP assessments therefore require site-by-site evaluation of wind rose uncertainty, with
particular attention to layouts with strong directional sensitivity or sites with highly uni-
directional inflow.
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5 Discussion
5.1 Significance of Directional Uncertainty in the Context of

Total AEP Uncertainty
In the wind industry, reported total AEP uncertainties vary depending on site conditions,
data availability, and the specific uncertainty categories included. For example, Lee
and Fields [6] report total AEP uncertainties ranging from 5% to 15% (average 10%),
Mortensen and Ejsing Jørgensen [72] report an average of 10% with a range of 6%–
21%, and the Wind Resource Assessment Handbook [71] reports a range of 4.1%–7.5%.
While the numbers vary, typical projects generally fall in the range of 8–10%, with very
low-uncertainty projects at 4–7% and high-uncertainty projects exceeding 10%.

It is important to note that these totals usually include several uncertainty categories that
are excluded from this study, such as future wind resource changes, wind shear and
veer (model extrapolation), wake modelling, and plant/turbine performance. Within this
context, the total directional wind data uncertainty at Site B (4.39%) is striking: it already
represents a substantial fraction of the total uncertainty budget for a typical project, even
without accounting for other categories. Moreover, the LTWRD component alone at Site B
(4.27%) is of a similar magnitude to the entire AEP uncertainty for low-uncertainty projects.

This finding underscores that in certain cases (particularly for sites with highly uni-directional
inflow and strong wake sensitivity, as observed at Site B), the uncertainty contribution from
wind direction alone can approach or even match the total AEP uncertainty normally ex-
pected in project assessments. Neglecting this factor risks significant underestimation
of project risk. Moreover, the magnitude of the LTWRD term at Site B suggests that
improving long-term wind rose representativeness should be treated as a priority in the
uncertainty mitigation strategy.

5.2 Mast Alignment Deviation
In practice, the uncertainty associated with mast alignment deviation, as discussed in Sec-
tion 2.2.1, is likely to be significantly greater than the conservative estimate of 2◦ used in
this study. Various sources can contribute to this deviation, including magnetic declina-
tion, human-induced errors, and general inaccuracies in compass readings. Common
mistakes such as misinterpreting directions, improper handling of the compass, and a
lack of understanding of how the compass operates can all introduce additional alignment
errors.

Due to the absence of a reliable method to quantitatively assess human error, this study
adopts a conservative estimate of 2◦ to represent mast alignment deviation. However, it is
important to acknowledge that the actual value could be significantly higher, which would
result in greater measurement uncertainty.

The results presented in Section 4.1 offer a useful basis for understanding the relationship
between measurement uncertainty and AEP uncertainty. As illustrated in Figure 4.1, the
relationship between wind direction bias and AEP remains approximately linear for devia-
tions up to ±6°. This indicates that the mapping function derived here remains valid even
if the actual mast alignment error exceeds 2◦, as long as the total measurement uncer-
tainty remains within the ±6° range. For measurement uncertainties beyond this range,
additional simulations would be required to establish the relationship.
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5.3 Sensitivity of LTWRD to Concurrent Period Length
When applying the Moving Block Bootstrap (MBB) to estimate LTWRD uncertainty, the
length of the concurrent period between measured and reanalysis data directly affects
the variability of the resulting AEP error distribution. A shorter concurrent period provides
fewer residuals for resampling, which limits the diversity of bootstrapped time series. Con-
sequently, shorter periods often yield lower standard deviations, leading to an underesti-
mation of LTWRD uncertainty.

This effect was evident in theSite A case study, where reducing the concurrent period from
5.5 years to the first 3 years decreased the standard deviation of the normalised AEP error
from 0.37% to 0.35% (Figure 5.1). Although this change appears small, it demonstrates
the sensitivity of LTWRD uncertainty to concurrent period length and suggests a risk of
underprediction if the available period is too short. This reinforces the importance of using
the longest possible concurrent period to better capture the “true” variability.

Figure 5.1: Effect of concurrent period length on LTWRD uncertainty (Site A).

Due to the limited measurement period at Site A, it is not possible to explore this sensitivity
beyond 5.5 years. To investigate the relationship more thoroughly, the same method was
applied to the Lindenberg datasets in the Tall Tower dataset [73], which offers a longer
time series of bothmeasured data and reanalysis data. In this test, the site-specific turbine
and layout for Lindenberg were not used, as the objective was not to produce a locally
representative AEP value, but rather to examine the general trend. Specifically, the aim
was to demonstrate that the standard deviation increases with concurrent period length
before converging toward a stable value, regardless of the absolute magnitude of the
results.

The results in Figure 5.2 confirm the hypothesised trend: as the concurrent period length
increases, the residual pool available for MBB becomes more diverse, which increases
the variability in bootstrapped AEP estimates and thus the estimated LTWRD uncertainty.
The curve show a gradual rise in standard deviation up to around nine years, beyond
which the values appear to plateau, suggesting a convergence point where adding more
years of data has minimal impact on the results.

Although the absolute change may appear small, the standard deviation increases from
0.89% for a 3-year period to 1.08% for a 9+ year period (a difference of 0.19 percentage
points), this change could be impactful when placed in context. For instance, measure-
ment uncertainty at Site A is only 0.28%, indicating that concurrent period length alone
could contribute a meaningful share of the total uncertainty budget.
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Figure 5.2: Sensitivity of LTWRD uncertainty to concurrent period length based on the
Tall Tower dataset [73].

It should be noted that these results are derived from a single dataset. The observed
convergence and magnitude of sensitivity may vary depending on site characteristics and
data quality. Further studies using multiple sites are recommended before generalising
these findings.

5.4 Wake Model Uncertainty
The following sections investigate two main sources of wake model uncertainty. First, in
Section 5.4.1, a model comparison is performed using three widely adopted wake models
to evaluate differences in AEP predictions and directional sensitivity across sites. Then,
in Section 5.4.2, a parameter sensitivity analysis is conducted on TurboGaussianDeficit
to assess how variations in internal model parameters (such as the turbulence intensity
coefficients c1, c2, and the wake expansion factor A) influence AEP estimates under di-
rectional shifts.

5.4.1 Wake Model Comparison
This section discusses the uncertainty introduced by the selection of wake models and
their parameter settings. As discussed previously, the baseline model employed in this
study is the adjusted version of Nygaard et al (2022)[42], implemented in PyWake as
TurboGaussianDeficit, commonly associated with the industry-accepted wake model ”Tur-
bOPark”. While the Nygaard 2022 model has seen widespread adoption for offshore wind
energy applications, alternative models remain in use, each with its own treatment of wake
recovery, turbulence propagation, and blockage effects.

To explore the directional sensitivity associated with different wake modelling approaches,
a comparison was made using three representative wake deficit models in PyWake [74].
These models differ primarily in how they describe the velocity deficit profile behind tur-
bines and the treatment of wake recovery.

• TurboNOJDeficit (Nygaard 2020) is a variant of the traditional NOJ (Nielsen-Olesen-
Jensen) engineering model, where the wake is represented as a uniform ”top-hat”
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profile with a sharp edge. It assumes a fixed wake expansion rate influenced by
local turbulence intensity but does not account for the gradual radial decay of the
deficit.

• TurboGaussianDeficit (Nygaard 2022) improves upon the NOJ formulation by re-
placing the top-hat deficit with a Gaussian distribution. This allows for a more realis-
tic radial wake profile that tapers smoothly from the wake center to the free stream,
improving the physical fidelity of wake interactions. It is the wake model used in
PyWake’s implementation of TurbOPark.

• FugaDeficit is a physics-basedmodel derived from a linearised Reynolds-averaged
Navier-Stokes (RANS) equations, solved in the frequency domain. In this study, the
model is applied under the assumption of homogeneous terrain and neutral atmo-
spheric stability, with wake deficits computed in spectral space. This allows FUGA to
capture linear wake interactions and turbulence propagation more rigorously than
empirical models. The model setup uses a roughness length of 0.0001 m and a
boundary layer height of 400 m. These parameters align with the recommendations
for neutral conditions of Ott et al. [47] and the course material on ideal atmospheric
boundary layer conditions in the Baltic Sea region [75]. Unlike empirical wake mod-
els, FUGA avoids pre-defined deficit shapes and instead computes the wake dy-
namically from turbine thrust and ambient conditions.

Figure 5.3: Comparison of downstream wake deficit at Site A.

As shown in Table 5.1 and Table 5.2, AEP was calculated using all three models with direc-
tional shifts of +6◦ and −6◦, and compared against the unshifted baseline. The changes
in AEP are reported as percentages normalised by the original AEP and shown in the
last column of each table. All models produce different absolute AEP values and different
sensitivities to wind direction shifts. Site B shows high sensitivity to ±6◦ directional shifts
across all models, particularly with the TurboGaussianDeficit, which exhibits a 4% spread
in AEP. This sensitivity is likely due to the site’s narrow wind rose and heavily waked lay-
out. In contrast, Site A shows much lower directional sensitivity (within ±1%), consistent
with its broader wind rose and more symmetric, widely spread layout.

Across both sites, the directional sensitivity follows the same ranking: TurboGaussianD-
eficit yields the largest AEP deviation, followed by TurboNOJDeficit, and then FugaDeficit.
This trend may stem from differences in how wake centre-line deficits and wake expan-
sion are modelled, see Figure 5.3. The TurboNOJDeficit model uses a top-hat wake
profile, while TurboGaussianDeficit employs a Gaussian wake profile that concentrates
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deficits more sharply. Both models use fixed-direction averaging, which can underesti-
mate wake width and overestimate velocity deficits, thereby increasing directional sensi-
tivity. In contrast, FUGA applies a spectral-domain approach with simple and Gaussian
directional averaging methods [47], which effectively filter out high-frequency directional
noise. This leads to reduced wake deficits and flatter wake profiles, inherently smooth-
ing the response to directional shifts. As a result, FUGA tends to show lower sensitiv-
ity to small angular changes in inflow direction. While this may lead to underestimation
of directional effects, engineering models like TurboGaussianDeficit may conservatively
overestimate the impact.

Table 5.1: Directional sensitivity of AEP under different wake models at Site A.
Wake Model AEP (Original) [GWh] AEP (+6°) [GWh] AEP (–6°) [GWh] |ΔAEP+6°−−6°| [%]
TurboNOJDeficit 1.6813e+06 1.6805e+06 (–0.050%) 1.6819e+06 (+0.038%) 0.088
TurboGaussianDeficit 1.4910e+06 1.4892e+06 (–0.122%) 1.4913e+06 (+0.018%) 0.140
FugaDeficit 1.5797e+06 1.5794e+06 (–0.015%) 1.5799e+06 (+0.018%) 0.033

Table 5.2: Directional sensitivity of AEP under different wake models at Site B.
Wake Model AEP (Original) [GWh] AEP (+6°) [GWh] AEP (–6°) [GWh] |ΔAEP+6°−−6°| [%]
TurboNOJDeficit 6314.1 6269.6 (–0.705%) 6371.2 (+0.905%) 1.610
TurboGaussianDeficit 5739.8 5597.5 (–2.479%) 5823.9 (+1.464%) 3.943
FugaDeficit 6496.2 6445.3 (–0.784%) 6538.6 (+0.653%) 1.437

5.4.2 Parameter Sensitivity of TurboGaussianDeficit
In addition to model-to-model variation, internal parameter settings of the TurboGaussian-
Deficit model were also tested (e.g., c1, c2, wake expansion factor A). TurbOPark models
the wake deficit using a Gaussian-shaped velocity deficit profile derived from the Bas-
tankhah and Porté-Agel formulation [76], with wake expansion modelled as a function of
turbulence intensity and thrust coefficient.

The characteristic wake width σw,i(xi) as a function of downstream distance xi is given
by [42]:

σw,i(xi)

Di
= ϵi+

AI0
β

(√
(α+ βxi/Di)2 + 1−

√
1 + α2 − ln

[
(
√

(α+ βxi/Di)2 + 1 + 1)α

(
√
1 + α2 + 1)(α+ βxi/Di)

])
(5.1)

In this expression, ϵi represents the initial wake width, and Di is the rotor diameter. The
constant A is a wake expansion calibration parameter, with a recommended default value
of 0.04 based on validation from Ørsted’s 19 offshore wind farm [42]. I0 is the ambient
turbulence intensity, while α = c1I0 and β = c2I0/

√
CT , where c1 and c2 are model con-

stants typically set to 1.5 and 0.8, respectively, as proposed in the Frandsen turbulence
model [44].

To assess the model’s sensitivity, a parametric sweep was conducted by varying c1, c2
andA by±33%around their default values. The AEP response was then evaluated under
angular wind direction shifts of ±6◦.

The results, shown in Figure 5.4 and Figure 5.5, highlight the non-negligible influence
of model parameters on directional sensitivity. The black cross in each figure indicates
the default parameter values (c1 = 1.5, c2 = 0.8, and A = 0.04). For Site B, depend-
ing on the parameter combination, AEP difference (∆AEP+6◦−−6◦) ranged from 3.7% to
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4.2%, resulting in a 0.5% spread. Although smaller than the variation observed between
different wake model formulations, this spread could still be significant, when comparing
uncertainties across multiple sources.

Figure 5.4: Sensitivity of AEP to TurbOPark parameter variations under ±6° wind direction
shift at Site A.

Figure 5.5: Sensitivity of AEP to TurbOPark parameter variations under ±6° wind direction
shift at Site B.

Given that model validation is beyond the scope of this study, the TurbOParkmodel with its
default parameter set was used. This default configuration has been previously validated
by Ørsted on multiple offshore wind farms and serves as a practical and industry-accepted
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baseline. However, it is important to note that both the model and its parameters remain
tunable. Future work focusing on model validation and site-specific calibration will be
necessary to improvemodelling accuracy and ensuremore reliable AEP predictions under
directional uncertainty.
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6 Conclusion
This thesis set out to address a gap in wind resource assessment: the limited treatment of
wind direction uncertainty in AEP estimation. By isolating directional uncertainty fromwind
data, the analysis decomposed it into three independent components: measurement un-
certainty, long-term wind rose difference (LTWRD), and interannual variability (IAV). Two
offshore sites with contrasting layouts, inflow regimes, and measurement records were
studied to test the robustness of the methodology and explore site-specific behaviour.

The results show that the composition of total directional uncertainty is highly site de-
pendent. At the more symmetric, broadly distributed inflow site (Site A), total directional
uncertainty was modest (0.71% of AEP), with contributions from all three components on
a similar scale. In contrast, the directionally sensitive site with a more compact, asymmet-
ric layout (Site B) exhibited a much higher total directional uncertainty of 4.39%, driven
almost entirely by LTWRD (4.27%). This magnitude is comparable to, or even exceeds,
the total uncertainty reported for low-uncertainty projects (typically range from 4% to 7%),
emphasising the potential impact of uncorrected directional bias.

From these findings, three key conclusions could be drawn:

1. No universal composition: The relative contribution of each directional uncertainty
component varies significantly across sites; general assumptions of composition are
unreliable.

2. LTWRD can dominate: In directionally sensitive sites, long-term directional bias can
be the single largest uncertainty source, even surpassing wind speed uncertainty in
relative importance.

3. Correction must be energy-based: Aligning long-term and short-term wind direction
by energy rose, rather than wind rose frequency, offers amoremeaningful correction
for AEP estimation.

In answering the research questions, two main insights emerge. First, measurement un-
certainty can be improved or reduced with higher-accuracy instruments, but it is rarely
the dominant source of directional uncertainty. LTWRD generally plays a far greater role,
particularly at directionally sensitive sites. Second, none of the proposed methods for
quantifying directional uncertainty proved to be a reliable standalone predictor of AEP
variation. The Yamartino method fails to represent actual directional variation in multi-
modal or broad distributions, leading to underestimation of its impact on AEP; while wind
rose deviation reflects percentage differences in frequency without considering shape and
shows no direct correlation to AEP changes.

For industry practice, this work highlights that while improving measurement accuracy can
reduce the measurement component, LTWRD is often the dominant source of directional
uncertainty. Therefore, it is essential to: (1) explicitly include wind direction in long-term
correction frameworks, (2) conduct site-by-site directional uncertainty assessments, and
(3) consider directional uncertainty alongside wind speed in the total uncertainty budget
to avoid underestimating project risk.

Future research could expand this framework to include spatial extrapolation effects, long-
term directional trends under climate change, increased measurement uncertainty from
installation errors, and detailed wake model sensitivity studies. By expanding the scope
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to these areas, a more comprehensive and realistic representation of directional effects in
AEP uncertainty can be achieved, improving the reliability of wind project assessments.
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A Hand Compass

Figure A.1: Installer using hand compass in orientation stage.
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B LTWRD Uncertainty Quantification

B.1 Limitations of the Sub-sampling Approach
As discussed in Section 3.2, the sub-sampling method was not selected for estimating
LTWRD uncertainty due to two key limitations observed in this study.

First, the distribution of normalised AEP errors (computed between measured and reanal-
ysis datasets) was found to be distinctly non-Gaussian, even when increasing the number
of windows (Figure B.1). The errors tended to cluster into separate groups, a behaviour
likely caused by persistent biases within certain periods of the relatively short 5.5-year
concurrent dataset. Such clustering can result in an overestimation of the standard devi-
ation. By contrast, combining MBB with MSTL decomposition mitigates the dominance of
specific biased periods by: (1) isolating and removing trend and seasonal components,
and (2) resampling continuous blocks randomly.

Second, the short concurrent period means there are few truly independent 1-year sam-
ples available. Sub-sampling without replacement therefore yields samples that are highly
similar, which risks underestimating variability. MBB addresses this by allowing overlap-
ping and repeated sampling of time blocks, thereby creating a more diverse ensemble
of synthetic 1-year realisations while still preserving key temporal dependencies such as
autocorrelation and seasonality.

Figure B.1: Effect of increasing the number of windows on the distribution of normalised
AEP errors in the sub-sampling approach.

B.2 Avoiding Seasonal Bias in MBB Sampling
Applying MBB directly to the original wind time series can distort the seasonal composi-
tion of resampled 1-year windows. Ideally, each month should appear with a frequency
of 1/12 ≈ 0.083. However, empirical results from six random 1-year MBB samples (Ta-
ble B.1) show large deviations from this ideal. Some months occur more than twice as
often, while others are entirely absent, leading to an over- or under-representation of spe-
cific seasons and biasing the seasonal wind characteristics.
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Table B.1: Monthly Representation in Six Resampled 1-Year MBB Windows

Index Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1 0.144 0.059 0.077 0.092 0.088 0.093 0.061 0.070 0.069 0.118 0.052 0.076
2 0.059 0.093 0.097 0.102 0.147 0.058 0.096 0 0.038 0.058 0.172 0.079
3 0.038 0.171 0.033 0.095 0.096 0.096 0.109 0.076 0.019 0.071 0.033 0.164
4 0.048 0.077 0.181 0.078 0.046 0.099 0.063 0.102 0.036 0.091 0.085 0.096
5 0.079 0.102 0.182 0.153 0.043 0.080 0.030 0.057 0.040 0.113 0.039 0.081
6 0.018 0.087 0.123 0.086 0.092 0.026 0.056 0.085 0.028 0.172 0.096 0.130

Since wind direction influences AEP indirectly by shaping the frequency-weighted wind
speed distribution, seasonal shifts in directional frequency can bias energy estimates. At
a given site, wind speed characteristics vary across directional sectors (Figure 2.4). Thus,
an over-representation of certain months in resampled series changes the weighted wind
speed distribution, introducing a seasonal bias in energy estimation.

To quantify this, the wind rose deviation (WRD) between mast and reanalysis data was
calculated for each month using an velocity-weighting exponent p = 2, following Kelly’s
[77] formulation:

WRDm =
∑(

|fsynth, i − fmast, i| ·A2
mast, i

)
(B.1)

where fsynth, i and fmast, i represent the wind direction frequency distributions from syn-
thetic and mast data respectively in sector i, and Amast, i is the Weibull scale parameter
derived from mast measurements in sector i.

Results for six MBB realisations (Table B.2) show large variability between months, with
deviations tending to peak in winter. Averaging across 100 random 1-year realisations
(Table B.3) confirms a clear seasonal pattern: winter months show systematically higher
disagreement between mast and reanalysis wind roses.

Table B.2: Monthly WRD Between Mast and Reanalysis Across Six Resampled 1-Year
MBB Windows for Site A.

Index Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1 48.03 45.27 47.31 35.92 46.20 50.96 27.96 31.80 51.57 48.91 67.75 34.00
2 56.25 69.71 56.09 66.96 49.73 25.71 39.64 37.24 41.19 37.22 34.48 66.07
3 73.41 50.81 44.59 47.75 35.87 21.82 25.99 28.44 49.69 44.17 49.49 40.64
4 48.48 45.27 47.31 35.92 46.20 50.96 27.96 31.80 51.57 48.91 62.19 38.45
5 48.03 45.27 44.59 35.92 47.20 57.81 28.43 32.82 53.16 48.17 49.49 58.50
6 70.38 77.24 74.83 28.61 24.96 57.81 23.28 39.82 35.33 30.34 58.34 60.76

Table B.3: Averaged WRD per Month Between Mast and Reanalysis over 100 Random
1-Year MBB Windows for Site A.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

56.20 97.18 56.09 45.08 39.50 38.04 28.23 32.55 47.66 42.95 56.41 50.84

To avoid conflating seasonal effects with random variability, MBB is applied to residuals
after removing trend and seasonality. This ensures that bootstrap samples preserve short-
term autocorrelation structures without introducing artificial seasonal imbalances, leading
to a more unbiased estimate of LTWRD uncertainty.

Propagation of Wind Direction Uncertainty into Wake Modelling 51



B.3 Sample Size Convergence Analysis
To ensure that the Monte Carlo resampling approach provides statistically reliable esti-
mates, a convergence analysis is performed by varying the number of resampled 1-year
windows: 100, 200 , and 300. The resulting distributions of normalised AEP error is shown
in Figure B.2.

As the number of samples increase, the distribution becomes progressively smoother
and more symmetric, approaching the shape of a Gaussian distribution. The standard
deviation of the normalised AEP error decreases slightly from 0.37% (100 samples) to
0.35% (200 samples) and remains stable at 0.35% for 300 samples. The numbers in
the standard deviation indicates that the resampling process has converged with 200
samples.

Although the distribution does not perfectly match a normal distribution, it exhibits no sig-
nificant skewness or multimodal characteristics. Therefore, the use of 200 samples is
considered statistically sufficient for quantifying the LTWRD uncertainty in this study.

Figure B.2: Distribution of normalised AEP error across different Monte Carlo sample
counts: 100, 200, 300 one-year windows.

B.4 Disjunct vs. Block-Averaging Sampling
As described in Section 3.2.3, the effect of temporal resolution on AEP estimation was
evaluated by comparing disjunct sampling with block-averaging applied to the 10-minute
measured data. In the disjunct approach, only the first observation of each hour is re-
tained, simulating 1-hour resolution without smoothing. In contrast, block-averaging com-
putes hourly values by averaging all six 10-minute observations within each hour.

Figure B.3 shows the distributions of normalised AEP errors from 200 Monte Carlo simu-
lations for both methods. The results are nearly identical: mean errors of 0.26% (disjunct)
and 0.33% (block-averaged), with both having a standard deviation of 0.37%. These neg-
ligible differences confirm the theoretical expectation that sub-hourly variability has little
effect on annual energy estimates.

Given its simplicity, computational efficiency, and demonstrated equivalence to block-
averaging in this context, the disjunct sampling method was adopted for all subsequent
analyses in this study.
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Figure B.3: Comparison of normalised AEP error distributions using disjunct sampling
(left) and block-averaging (right) on 10-minute measured data.
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C Quantify the Variability in Wind
Direction

C.1 Simple directional statistics, mean and variance of wind
directions

To characterise wind conditions, both wind speed and wind direction are described in
a planar geographic coordinate system, with wind direction θ defined between 0◦ and
360◦ (where 0◦ is equivalent to 360◦). The cyclic nature of wind direction complicates
conventional averaging: for example, two equal wind speeds at 1◦ and 359◦ have an
arithmetic mean of 180◦, which is physically meaningless. Correct averagingmust account
for the circular domain, which is achieved using vector-based methods.

Following the generalised vector averaging approach [78], each wind direction is decom-
posed into horizontal components. For N wind vectors, each with speed Un and direction
θn, the component-wise averages are:

sva = Upsinθ ≡ 1

N
ΣN
n=1U

p
n sinθn (C.1)

cva = Upcosθ ≡ 1

N
ΣN
n=1U

p
n cosθn (C.2)

Where p is a user-defined power exponent. In this study, p = 2 is used to approximate
an energy-weighted mean, following the framework of Kelly (2017) [77]. Kelly defines
the effective wind-power exponent p through the relationship AEP ∝ Up, where p =
ln(AEP )/ln(U), with assumptions of a canonical power curve with cubic dependence
below rated speed and Rayleigh-distributed wind speeds. For typical turbine sites, where
the mean wind speed at hub height is approximately 60-80% of the rated wind speed,
hence the effective exponent is consistently close to 2.0. The average wind direction is
then given by [78]:

θ =
180o

π
mod

[
tan−1

(
sva
cva

)
, 2π

]
(C.3)

To quantify the spread of wind directions, the Yamartino method [18] is commonly used,
as it avoids errors from angular wrap-around, i.e. the direction abruptly crossing from
359o to 0o. It employs a vector average with p = 0, meaning all directions are treated
equally regardless of wind speed, which is appropriate for assessing distribution shape
rather than energy content (which calculate with p = 2). The standard deviation of wind
direction is then:

ϵ =
√
1− s2va,p=0 − c2va,p=0 (C.4)

σθ = sin−1(ϵ)

[
1 +

(
2√
3
− 1

)
ϵ3
]

(C.5)

The original aim was to assess interannual variability (IAV) in wind direction by computing
the annual mean wind direction for each year (interpreted as the dominant inflow direction)
and assuming that the annual spread of wind directions remained relatively constant. IAV
would then be quantified as the standard deviation of these annual means.
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However, applying the Yamartino method to annual data from Site A and Site B yielded
yearly σθ values close to 70◦, indicating that the wind direction distributions are broad,
multimodal, or nearly uniform. In such cases, the concept of a single “dominant” direc-
tion is not meaningful. Nevertheless, the standard deviation of annual means over the
full reanalysis period was still computed to test whether it could provide a representative
measure of IAV, as discussed in the following section.

C.2 Limitations of Using Yamartino-Derived Standard
Deviation for IAV Representation

The IAV uncertainty calculated from the original dataset for Site A is 1.83%. To test
whether this could be reproduced using a simplified statistical representation, the stan-
dard deviation of the yearly mean wind direction was computed using vector averaging
followed by the Yamartino method. This yielded an interannual variation σθ of 11.2◦, inter-
preted here as “how much the dominant inflow direction varies from year to year.”

To test its suitability for modelling IAV, σθ was used as the standard deviation for a Monte
Carlo simulation. A normal distribution with 200 random samples (mean=0◦, standard
deviation=11.2◦) was generated, each value representing a random directional shift θshift
applied to the original wind rose WRoriginal:

WRshifted = (WRoriginal + θshift) mod 360 (C.6)

For each shifted wind roseWRshifted, AEP was recalculated. The resulting standard devia-
tion across the 200 AEP values was only 0.08%, more than an order of magnitude smaller
than the 1.83% obtained from the real dataset. This severe underestimation confirms that
using annual mean wind direction variability as a surrogate for IAV does not represent the
true directional uncertainty in AEP.

The underlying reason lies in the limitations of vector averaging and Yamartino-based
standard deviation for wind direction:

1. Loss of distribution shape: The mean direction capture only dominant inflow angle
and discards information about secondary peaks, distribution width, or asymmetry.

2. Bimodality bias: In bimodal years, the mean can fall in a low-frequency direction
between two peaks, yielding misleading variability metrics.

3. Ignores shape evolution: Interannual variability often manifest as changes in the
shape of the wind rose (e.g., shifts in lobe frequency or spread), not just its centre.

At Site A, the wind direction distribution is inherently asymmetric and frequently multi-
modal. These characteristic mean that a single scalar metric such as Yamartino σθ can-
not capture the year-to-year evolution of directional patterns that influence energy yield.
Therefore, simulating IAV using only the variability of the annual mean wind direction is
not representative.
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