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Climate and land use/cover changes are the main factors altering hydrological regimes. To understand the im-
pacts of climate and land use/cover changes on streamflow within a specific catchment, it is essential to accu-
rately quantify their changes given many possibilities. We propose an integrated framework to assess how
individual and combined climate and land use/cover changes impact the streamflow of Xinanjiang Basin, in
East China, in the future. Five bias-corrected and downscaled General Circulation Model (GCM) projections are
used to indicate the inter-model uncertainties under three Representative Concentration Pathways (RCPs). Addi-
tionally, three land use/cover change scenarios representing a range of tradeoffs between ecological protection
(EP) and urban development (UD) are projected by Cellular Automata - Markov (CA-Markov). The streamflow
in 2021–2050 is then assessed using the calibrated Soil and Water Assessment Tool (SWAT) with 15 scenarios
and 75 possibilities. Finally, the uncertainty and attribution of streamflow changes to climate and land use/
cover changes at monthly and annual scale are analyzed. Results show that while both land use/cover change
alone and combined changes project an increase in streamflow, there is a disagreement on the direction of
streamflow change under climate change alone. Future streamflow may undergo a more blurred boundary be-
tween the flood and non-flood seasons, potentially easing the operation stress of Xinanjiang Reservoir for
water supply or hydropower generation. We find that the impacts of climate and land use/cover changes on
monthlymean streamfloware sensitive to the impermeable area (IA). The impacts of climate change are stronger
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than those induced by land use/cover change under EP (i.e., lower IA); and land use/cover change has a greater
impact in case of UD (i.e., higher IA). However, changes in annual mean streamflow are mainly driven by land
use/cover change, and climate change may decrease the influence attributed to land use/cover change.

© 2019 Elsevier B.V. All rights reserved.
1. Introduction

Efficient water resource management calls for a thorough under-
standing of changes in hydrological regime. Streamflow, as a primary
component of the hydrological cycle, is widely believed to be affected
mainly by climate and land use/cover changes (Alaoui et al., 2014;
Ning et al., 2016; Abera et al., 2019). Climate change indirectly affects
streamflow through changes in temperature, precipitation, and evapo-
ration (Ruelland et al., 2012; Ahn and Merwade, 2014; Guo et al.,
2019). Land use/cover change can significantly alter canopy intercep-
tion, infiltration and evapotranspiration, which may eventually change
the runoff volume, peak flow and flow routing time (Molina-Navarro
et al., 2014; Zhang et al., 2017; Umair et al., 2019). Determining the in-
dividual or combined hydrological consequences of climate and land
use/cover changes is a key for implementing effective measures for ad-
aptation to climate change and for understanding the patterns of water
use under different land use/cover policies (Wang et al., 2018; Clerici
et al., 2019; Trolle et al., 2019).

Numerous studies have investigated the effects of climate change on
streamflow (Gao et al., 2015; Chase et al., 2016). Particularly, since the
publication of the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change (Cubasch et al., 2013), many studies have
widely applied General Circulation Model (GCM) projections of the
Coupled Model Intercomparison Project Phase 5 (CMIP5) to quantify
how climate change impacts streamflow (Neupane et al., 2015; Eisner
et al., 2017; Zheng et al., 2018). Results indicate that changes in
streamflow show strong spatial variability under different Representa-
tive Concentration Pathways (RCPs). For example, Shrestha et al.
(2018) found that RCP8.5 and RCP4.5 were responsible for a 19.5%
and 24% decrease in future streamflow, respectively, in Thailand; but
Wen et al. (2018) reported increases in streamflow along with the in-
creasing temperature and precipitation under RCP2.6, RCP4.5, and
RCP8.5 in the future, in southeast China. Another issue is the low resolu-
tion of GCMprojections. Previous studies agree that the rawGCMs is too
coarse to accurately describe the hydrological processes at regional
scales (Chen and Frauenfeld, 2014; Sun et al., 2016; Guo et al., 2019),
and thereby the conclusions on streamflow regime changes might not
be reliable.

However, the extent to which streamflow responds to land use/
cover change has not been fully investigated, and this response varies
between catchments and between scenarios. Due to the acceleration
of urbanization, the area of urban land has significantly increased, and
consequently the area of impermeable surface has expanded, causing
a sharp increase in streamflow at both long-term and short-term scales
(Suriya and Mudgal, 2012; Li et al., 2018; Zhang et al., 2018). Ecological
protection projects, e.g., the “Grain for Green” in China (Zhang et al.,
2016), were initiated to increase the areas of forest and grassland, po-
tentially resulting in an increase in vegetation coverage and a decline
in surface streamflow (Zuo et al., 2016; Wang et al., 2019a; Yang et al.,
2019). Some findings, however, have suggested that forest transforming
to farmland and grassland could cause increases in mean annual
streamflow (Shi, 2013). Accordingly, determining not only the impact
of climate change on hydrology but also how different land use/cover
management policies affect streamflow is vital for better managing
water resources.

Recently, the joint effects of climate and land use/cover change on
hydrology have been a main research focus (Liu et al., 2009; Kim et al.,
2013; Zhang et al., 2017). Results show the complex and non-additive
interactions between streamflow and climate and land use/cover
change. Some studies found that streamflow alteration involved the su-
perposition of the effects of climate and land use/cover changes, and
land use/cover change was a dominant factor (Liu et al., 2009; Yin
et al., 2017b), while some revealed that climate change was more dom-
inant (Kim et al., 2013;Woldesenbet et al., 2018); Other studies also re-
ported that climate change and land use/cover change each contributed
50% to streamflow variation (Wei et al., 2010). The abovementioned
studies argue that the effects of climate and land use/cover changes on
streamflow vary spatially. To understand the impacts of climate change
and land use/cover management on streamflow, it is essential to accu-
rately assess future changes within a specific catchment under diverse
conditions. Nevertheless, few studies have attempted to combine vary-
ing land use/cover with varying climatic conditions for an uncertain fu-
ture. Thus, an in-depth study on streamflow response to multiple
climate and land use/cover change scenarios is needed.

The Xinanjiang is the main water source for riverside residents in
Anhui and Zhejiang provinces. Studies investigating climate change in
Xinanjiang Basin have noted that the annual streamflow showed an ob-
vious increasing trend during a historical period due to the heavy rains
andmountainous terrain (Zheng et al., 2015; Pan et al., 2018). In recent
years, land use/cover in this basin has undergone dramatic changes be-
cause of urbanization and specific land use/cover policies; however, few
studies have investigated how land use/cover change has affected
streamflow. A better understanding of streamflow response driven by
climate and land use/cover changes in Xinanjiang Basin would be bene-
ficial for flood defense and hydropower utilization of Xinanjiang Reser-
voir. We aim to systematically investigate the individual and combined
effects of climate and land use/cover changes on future streamflow in
Xinanjiang Basin. Specifically, the Bias Correction and Spatial Disaggre-
gation daily (BCSDd) downscaled CMIP5 GCM projections and land
use maps simulated by the Cellular Automata - Markov (CA-Markov)
model are employed to drive a Soil and Water Assessment Tool
(SWAT) hydrological model and to project streamflow under diverse
scenarios. Then, the streamflow uncertainty is evaluated at various
levels using the fuzzy extension principle,while the individual and com-
bined effects of climate and land use/cover changes on streamflow are
analyzed with the relative change rate (RCA) and contribution rate.

2. Materials and methods

2.1. Study area

The Xinanjiang is the upstream part of the Qiantang River lo-
cated in eastern China and has a total length of 323 km with an
area of 11,503 km2, as shown in Fig. 1. Three tributaries, the
Hengshui River, the Shuaishi River, and the Lian River, flow into
the main stream of Xinanjiang. The average annual temperature
in Xinanjiang Basin is between 15.4 °C and 16.4 °C, whereas the av-
erage annual precipitation is between 1280 mm and 1700 mm. The
basin is dominated by a typical subtropical humid monsoon cli-
mate. The wet season (March to July) accounts for approximately
74% of the annual streamflow, while the dry season (from August
to February) takes up the remaining 26%. Various landscapes,
such as plains and mountains, are spatially distributed in the
basin. Forest and grassland are the most widely distributed types,
and cultivated land is concentrated at the periphery of urban
land. Xinanjiang Reservoir is located downstream of Xinanjiang



Fig. 1. Geographic location of Xinanjiang Basin.
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Basin, and is the first domestically designed and constructed reser-
voir in China, used mainly for hydropower generation for East
China Region including Shanghai, Jiangsu, Anhui, and Zhejiang
provinces, as presented in Fig. 1.

2.2. Data collection

The observed meteorological data from 1976 to 2005 here are
obtained from the National Meteorological Information Center of
China (http://data.cma.cn) and these data comprise the daily pre-
cipitation, temperature, solar radiation, wind speed, and relative
humidity, which are collected at nine hydrometric stations includ-
ing Ningguo, Huangshan, Linan, Qimen, Tunxi, Chunan, Jinhua,
Yiwu, and Quzhou, as shown in Fig. 1. The GCM climate projections
are provided by the Earth System Grid Federation (https://esgf-
node.llnl.gov), and these data include the daily precipitation and
average, maximum and minimum temperature in 1976–2005 and
2021–2050. Five Coupled Model Inter-comparison Project Phase 5
(CMIP5) GCMs, namely Cnrm-cm5, Gedl-esm2m, Ipsl-cm5a-lr,
Miroc-esm-chem, and Noresm1-m are used due to their good per-
formance in climate simulation in China (Wen et al., 2018; Yang
et al., 2019). More details on GCMs can be found in Supplementary
information A1.

Geospatial data includes digital elevation model (DEM), land use/
cover and soil map data. The DEMmap at 90 m resolution used for de-
fining streams and boundaries of sub-basins is provided by the
Geospatial Data Cloud of China (http://www.gscloud.cn). The 30 arc-
second soilmap is originally derived from the Cold andArid Regions Sci-
ences Data Center at Lanzhou (http://westdc.westgis.ac.cn). Land use/
cover maps at a 1 km resolution for 1995, 2005 and 2015 from the Re-
source and Environment Data Cloud Platform of China (http://www.
resdc.cn) are used to estimate the effect of land use/cover change over
this period. The land use/cover here is reclassified into six classes for
the SWAT model, namely forest, grassland, cultivated land, urban land,
water body, and unused land.

The Zhejiang Design Institute of Water Conservancy & Hydro-
electric Power provides the monthly inflow of Xinanjiang Reservoir
from 1976 to 2005.
2.3. Methodology

We propose an integrated and systematic framework to assess how
future climate and land use/cover changes impact streamflow using
Xinanjiang Basin as a case study. This approach combines 1) scenario
design involving individual and combined climate and land use/cover
change; 2) climate and land use/cover change projection, where GCM
projections are downscaled by the BCSDd method, and land use/cover
maps are simulated by the CA-Markov model; 3) streamflow response
modelling under uncertainty; 4) streamflow assessment including un-
certainty, monthly and annual attribution analysis. In this study, the
baseline is in the period of 1976–2005 and the future is in the period
of 2021–2050. We assume that there were no significant changes in
land use/cover before 2005, and therefore use the land use/cover in
1995 as the representative land use/cover in the baseline period. Re-
garding to the land use/cove change scenarios, we use the land use/
cover in 2025 as the representative land use/cover in the future period.

2.3.1. Scenario design
We select three RCP scenarios to assess how different emission sce-

narios impact streamflow, namely RCP2.6, RCP4.5 and RCP8.5. These
three scenarios represent the low, medium and high emission of green-
house gases, respectively, which are named according to their total radi-
ative forcing in 2100 relative to pre-industrial values (+2.6, +4.5 and
+8.5 W/m2, respectively).

Three land use/cover scenarios that represent a range of tradeoffs
between ecological protection and urban development are proposed
to identify how different land use/cover policies affect streamflow,
namely Historical Trend (HT), Ecological Protection (EP) and Urban De-
velopment (UD) scenarios. The three scenarios all assume that future
land use/cover demands are based on the historical trend, but vary
with specific characteristics of each scenario.

(1) HT Scenario. This scenario emphasizes there would be no inter-
ventional policy made for land use/cover changes in the future.

(2) EP Scenario. This scenario also aims tomaintain a greater vegeta-
tion coverage rate and develop the ecological land (forest and
grassland) area, which forbids the transformation of the

http://data.cma.cn
https://esgf-node.llnl.gov
https://esgf-node.llnl.gov
http://www.gscloud.cn
http://westdc.westgis.ac.cn
http://www.resdc.cn
http://www.resdc.cn
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ecological land to other land use/cover types. It is generally used
to represent future land use/cover with a low impermeable area
(IA).

(3) UD Scenario. In contrast with the EP scenario, this scenario not
only requires the urban land not to be transformed to other
land use/cover types, but also encourages the other types to be
converted to urban land. To some extent, this scenario reflects
the current maximum economic profit and ignores ecological
protection. It is generally used to represent future land use/
cover with a high IA.

In terms of the combined climate and land use/cover change scenar-
ios, we assemble RCPs with HT as HTs (i.e., HT2.6, HT4.5, and HT8.5); EP
as EPs (i.e., EP2.6, EP4.5, and EP8.5); UD as UDs (i.e., UD2.6, UD4.5, and
UD8.5). Thus, different scenarios, 15 in total, are designed based on dif-
ferent climate and land use/cover changes. Accordingly, there are in
total 75 possibilities by coupling 15 scenarios and 6 GCMs projections
(5 GCM models and 1 multi-model ensemble means).

2.3.2. Bias correction of future climate data
To address the low-resolution problem of raw GCM projections at

regional scales, the BCSDd method (Thrasher et al., 2012) is applied to
establish empirical relationships between GCM-resolution climate vari-
ables and local climate and to reproduce the regional climate features.
Generally, the BCSDd method includes two steps: 1) Bias correction.
Both daily raw GCM projections and observations are first re-gridded
to a certain coarse resolution by the inverse distance weighted (IDW)
method (Mito et al., 2011). The bias-corrected value for a raw daily
GCM projection is obtained by using the Cumulative Distribution Func-
tion (CDF) for the GCM and observation to determine the same quantile
associated with the projection. Particularly, bias correction covers a
common time period for observations and GCM. 2) Spatial downscaling.
The daily bias-corrected values are spatially disaggregated to a high-
resolution grid by the sonographic mapping system (SYMAP) interpo-
lating (Shepard, 1984). The high-resolution value is then used to calcu-
late the correction factors between the observations and high-
resolution GCMprojections, specifically, multiplication for precipitation
and plus for temperature. Further, the index of root mean squared error
(RMSE), mean of bias (MBIAS), standard deviation of bias (SBIAS), and
correlation coefficient (R) are used to examine the accuracy of the
downscaled results of the BCSDd method. Note that the low the
MBIAS, SBIAS, and RMSE values are, the better the results, whereas a
larger R are preferable. The details on statistic variable equations can
be found in Supplementary Materials A2.

2.3.3. CA-Markov land use/cover modelling
Land use/cover models are commonly divided into three categories,

namely quantitative, space and combination models. The CA-Markov
model (Zhao et al., 2019) linking CA (a space model) and Markov
Chain (a quantitative model) is adopted to project the land use/cover
change in this study. The Markov model (Sang et al., 2011) describes
the likelihood of change from one state to another based on a transition
probability matrix achieved with the following equation in the Markov
Chain process:

Stþ1 ¼ P � St ð1Þ

where St and St+1 are the land use/cover status at time of t and t+1, re-
spectively; P is the transition probability matrix in a state that is calcu-
lated as follows:

P ¼
P11 P12 ⋯ P1n
P21 P22 ⋯ P2n
⋯ ⋯ ⋯ ⋯
Pn1 Pn2 ⋯ Pnn

��������

��������
ð2Þ
where
Pn

i¼1 Pij ¼ 1, 0 ≤ Pij ≤ 1, Pij is the transition probability from land
use/cover type i to type j; and n is the number of land use/cover types in
the target area.

Due to lack of spatial parameters, the Markov Chain model is unable
to identify the spatial variability in land use/cover (Firozjaei et al., 2019).
By adding an element of spatial contiguity as well as information on the
likely spatial distribution of transitions toMarkov chain analysis, the CA
model makes it possible to simulate spatial and temporal evolution of
land use/cover using the CA-Markov model. The CA model can be de-
fined as follows:

Stþ1 ¼ f St ;Nð Þ ð3Þ

where N is the cellular field; and f is the transition rule of the cellular
states.

There are two cores in the CA-Markov model, the transition proba-
bility matrix from baseline to potential land use/cover change for Mar-
kov and the suitability map built according to the driving force
analysis of land use/cover change for CA, and their combination contrib-
utes to a better land use/cover simulation. To distinguish the differences
on land use/cover between scenarios, constraint maps under different
scenarios were expressed using the Boolean map, with suitable trans-
formation areas coded with one and others coded with zero (Behera
et al., 2012). Then, the sub-suitability maps coupled with the constraint
maps are prepared as the final suitability map for different scenarios. In
this study, we use the land use/cover in 2025 as the representative land
use/cover in the future period. Details on the specific processes of CA-
Markov modelling land use/cover in 2025 under different scenarios
can be found in Supplementary materials A3. Before prediction, the
Kappa index (Mitsova et al., 2011) is adopted to gauge the degree of
agreement between the simulated and observed land use/cover map.
The land use/cover simulation is acceptable if Kappa N0.4.

2.3.4. SWAT hydrological model
Hydrological modelling methods are widely used to quantify the ef-

fects of climate and land use/cover change (Woldesenbet et al., 2018).
The Variable Infiltration Capacity (Liang et al., 1994), SWAT (Arnold
et al., 1998), Hydrologic Simulation Program-Fortran (Deliman et al.,
1999) and Water Erosion Prediction Project (Flanagan et al., 2001) are
the commonly used hydrological models, among which the SWAT
model has been successfully used in studies associated with climate
change and land use/cover change. It is evident that the SWAT model
has yielded high accuracy for short/long-term simulations of yearly
and monthly mean streamflow (Zuo et al., 2016; Anand et al., 2018;
Bhatta et al., 2019). Thus, we use the SWAT model to project future
streamflow under diverse scenarios. In the SWAT model, a catchment
will be divided into several sub-basins and then partitioned into hydro-
logical response units (HRUs) according to the same land use/cover and
soil type. The water flow in each HRU is simulated based on the water
budget formula. See more details in Arnold et al. (1998).

In this study, ArcSWAT2012 running on an ArcGIS 10.2 platform is
used for watershed delineation and sub-basin discretization. The
Xinanjiang Basin is divided into 121 sub-basins and multiple HRUs ac-
cording to the land use/cover, soil types, and slope classes. The slope
of Xinanjiang Basin with a range from 0 to 10% is accounted for N90%
of the whole basin. The procedures of parameter calibration, verifica-
tion, and sensitivity analysis in the SWAT model can be conducted by
the SWAT Calibration and Uncertainty Programs (SWAT-CUP)
(Abbaspour et al., 2007). The sensitivity analysis of theparameters is de-
termined by the t-statistics and the p-value. A larger absolute value of t-
statistics and a smaller value of the p-value correspond to a more sensi-
tive parameter. The coefficients of determination (R2) (Woldesenbet
et al., 2017) and Nash-Sutcliffe efficiency (NSE) (Dile et al., 2016) are
used to quantify the goodness of model performance. The performance
of hydrological simulation is considered to be acceptable if R2 N 0.5 or
NSE N 0.5.
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Discharge data during the period of 1976–2005 at one hydrological
station (presented in Fig. 1) located at upper dam site of Xinanjiang Res-
ervoir is used for model sensitivity analysis, calibration and validation.
First, under the land use/cover of 1995 and driven by the observed me-
teorological data during 1975–2005, the SWAT model is calibrated and
validated on amonthly scale in 1976–1995 and 1996–2005. Further, the
individual and combined effects of climate change and land use/cover
change on streamflow are evaluated using the SWAT model.

2.3.5. Methods for streamflow change analysis
a) Fuzzy extension principle

As multiple drivers involve many uncertainties, identifying the un-
certainty and range of predicted streamflow is beneficial forwaterman-
agement. Fuzzy set theory is able to handle uncertainty problems,
especially one of which is associated with a lack of information at
hand. In this study, we use the fuzzy extension principle (Wambura
et al., 2015) to evaluate the uncertainty in streamflow. The method
uses a horizontal line, namely fuzzy alpha-level cut (α-cut), to describe
the elements belonging to a particular certainty level from themember-
ship function. The membership level may take any value ranging from
zero to one:

μA xð Þ ¼

0 if x≤a
x−a
b−a

if abx≤b
c−x
c−b

if bbx≤c

0 if x≥c

8>>>><
>>>>:

ð4Þ

where μA(x) is the degree of membership of x in fuzzy subset A, μA(x) =
0 means no membership and μA(x) = 1 represents full membership; a
and c stand for the lower and upper bounds, respectively, and b is the
core of the fuzzy number.

The α-cut is the certainty level, which ranges between zero and one
(Gonzalez et al., 1999). In general, a high α-cut corresponds to a higher
confidence degree and a lower uncertainty level. Assume that the α-cut
is assigned as 0%, 50% and 100%, the corresponding uncertainty levels
will be 100%, 50% and 0%, respectively.

b) Relative change rate

The RCA (Wen et al., 2018) is defined as the ratio of changes in the
outcome variable before and after considering the influence factors to
the standard deviation of the outcome variable, which can directly com-
pare the relative contribution on outcome variable between different
influence factors. Thus, the RCA is a powerful tool to provide a better un-
derstanding of how different influence factors alter streamflow at
monthly scale, and it can be calculated by the following formula:

αi ¼ di
.

Di

����
���� ð5Þ

Di ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N
∑N

j¼1 Qij−Qi

� �2
r

ð6Þ

di ¼ Qi−qi ð7Þ

where αi is the RCA of themeanmonthly streamflow of the ithmonth,Di

is the standard deviation of the mean monthly streamflow of the ith

month, di is the difference in mean annual streamflow of the ith month
between the basic and future periods, Qij is the mean monthly
streamflow in different years in the baseline,Qi and qi are the mean an-
nual streamflow of the ith month in the baseline and future period, re-
spectively; N is the number of years.
c) Contribution rate

When one driving factor varies and another remains constant, the
simulation results show the effects of the variable factor on the hydro-
logical components (Yin et al., 2017a). The contribution rate can be
used to directly separate the effects of climate and land use/cover
changes on streamflow (Qiang et al., 2016). We use RCP2.6 and HT as
an example here. The difference in streamflow between RCP2.6
(QRCP2.6) and the baseline (Qb) can be regarded as the effect of RCP2.6
on streamflow change. Similarly, the difference in streamflow between
HT2.6 (QHT2.6) and HT (QHT) can be regarded as the effect of RCP2.6 on
streamflow change. Therefore, the impacts of RCP2.6 (ΔQRCP2.6) on
streamflow should be calculated by the following formula:

ΔQRCP2:6 ¼ QRCP2:6−Qbð Þ þ QHT2:6−QHTð Þ
2

ð8Þ

Furthermore, the effects of HT (ΔQHT) on streamflow can be deter-
mined by applying the difference between HT (QHT) and the baseline
(Qo) or between HT2.6 (QHT2.6) and HT (QRCP2.6):

ΔQHT ¼ QHT−Qbð Þ þ QHT2:6−QRCP2:6ð Þ
2

ð9Þ

The difference between streamflow in HT2.6 and the baseline repre-
sents the combined effects of RCP2.6 and HT on streamflow change. We
find the combined effects (ΔQHT2.6) are equal to the sum of the individ-
ual effects.

ΔQHT2:6 ¼ QHT2:6−Qb ¼ ΔQRCP2:6 þ ΔQHT ð10Þ

Hence, the percentage contributions of RCP2.6 (ηRCP2.6) and HT (ηHT)
to the variations in streamflow can be calculated as follows:

ηRCP2:6 ¼ ΔQRCP2:6

ΔQRCP2:6 þ ΔQHT
� 100% ð11Þ

ηHT ¼ ΔQHT

ΔQRCP2:6 þ ΔQHT
� 100% ð12Þ

The quantitative contribution of the other climate and land use/
cover change scenarios can also be determined by the above principle.

3. Results

3.1. Climate change under varying scenarios

Weused the BCSDdmethod to correct and downscale the GCM tem-
perature and precipitation during the period of 1976–2005 and
2021–2050 in Xinanjiang Basin. Table 1 shows the evaluation indexes
between the raw and BCSDd downscaling of GCM projections from
1976 to 2005. It is clear that BCSDd downscaling can significantly cor-
rect the GCM temperature and precipitation. Specifically, all the perfor-
mance indexes for precipitation are improved. For temperature, the
values of RMSE and SBIAS are reduced by 0.42–1.10 °C and
0.32–0.71 °C, respectively, while the value of R is increased by
0.01–0.02; due to the bias correction of daily historical probability dis-
tribution function, the value of MBIAS is expected to be 0.

Fig. 2 shows the temperature and precipitation over Xinanjiang
Basin in 1971–2005 and 2021–2050. The mean annual temperature in
the baseline period is 16.32 °C, while that in the future varies under dif-
ferent GCM projections. The mean annual temperatures of the
Noresm1-m, Ipsl-cm5a-lr andMiroc-esm-chemmodels are significantly
increased by 0.07–3.86 °C under RCPs, the Gedl-esm2m model are
slightly decreased by 0.09–0.40 °C relative to the baseline period. The
Cnrm-cm5 model has the exception that the mean annual temperature
decreases under RCP2.6, but increases under RCP4.5 and RCP8.5. Not



Table 1
Comparison of the evaluation indexes between the raw and BCSDd downscaling of GCMs from 1976 to 2005.

GCM Precipitation (mm) Temperature (°C)

RMSE R MBIAS SBIAS RMSE R MBIAS SBIAS

Noresm1-m Raw 10.16 0.10 0.39 10.16 2.37 0.97 −0.89 2.20
BCSDd 5.86 0.80 −0.11 5.86 1.58 0.98 0.00 1.58

Miroc-esm-chem Raw 9.76 0.07 1.16 9.69 2.61 0.97 1.60 2.06
BCSDd 5.90 0.79 −0.12 5.90 1.75 0.98 0.00 1.76

Ipsl-cm5a-lr Raw 9.84 0.09 0.89 9.80 2.08 0.97 −0.60 1.99
BCSDd 6.23 0.78 −0.11 6.23 1.66 0.98 0.00 1.66

Gedl-esm2m Raw 9.81 0.11 1.07 9.75 2.72 0.96 −1.36 2.36
BCSDd 7.17 0.72 −0.13 7.17 1.65 0.98 0.00 1.65

Cnrm-cm5 Raw 10.60 0.10 −0.80 10.57 2.64 0.97 −1.85 1.88
BCSDd 6.05 0.79 −0.15 6.05 1.54 0.98 0.00 1.54

Multi-model ensemble means Raw 8.65 0.17 0.54 8.63 1.71 0.98 −0.62 1.59
BCSDd 4.98 0.84 −0.12 4.98 1.27 0.99 0.00 1.27
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surprisingly, themean annual temperature is expected to increase with
increasing radiation intensity for all GCM projections, and the multi-
model ensemble means under RCPs (solid markers) may experience
an increase in mean annual temperature ranging from 0.76 °C to
1.20 °C. Additionally, Xinanjiang Basin has four distinct seasons both
Fig. 2. Mean (a) annual temperature and precipitation, monthly (b) temperature and (c) pre
different RCPs in 2021–2050. The error bars indicate the multi-model ensemble range.
in the baseline and future periods. The differences in monthly tempera-
ture among RCPs are not significant.

The mean annual precipitation in 1976–2005 is 1598.61 mm, and
will probably increase by 2.40–3.24% in 2021–2050. The multi-model
ensemble range in monthly precipitation is narrow and similar.
cipitation averaged over Xinanjiang Basin projected by downscaled CMIP5 GCMs under
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However, the error bar indicating the multi-model ensemble range in
monthly temperature shows the larger uncertainty under RCPs. Al-
though GCMs do not all project an increased mean annual precipitation
Fig. 3. Projected land use maps in 2025 under (a) HT, (c) EP, and (e) UD scenarios, and prop
with increasing radiation intensity, the multi-model ensemble means
anticipates positive increases in the mean annual precipitation by
44.07–45.08 mm under RCPs. There is a non-uniform distribution of
ortions of area of each land use/cover type under (b) HT, (d) EP, and (f) UD scenarios.



Table 2
Parameter sensitivity analysis and calibration results for the SWAT model.

Parameter Description Sensitivity analysis Calibration

t-Statistics p-Value Min Max Optimal

v_ESCO Soil evaporation compensation factor −4.22 0 −1.00 1.00 0.40
r_GW_DELAY Groundwater delay time (days) −3.01 0 −120.00 100.00 −54.00
v_SURLAG Surface water lag −2.7 0.01 0.05 30.00 3.05
v_CH_S2 Average slope of the main channel in the sub-basin (m/m) 2.23 0.03 −0.20 0.10 0.07
v_CH_K2 Effective hydraulic conductivity in main channel alluvium (mm/h) 2.04 0.04 −0.20 0.10 0.01
r_GWQMN Threshold depth of water in the shallow aquifer required for return flow (mm) −2.02 0.04 0.00 2.00 1.40
v_CN2 SCS runoff curve number for moisture condition II −1.62 0.11 −0.20 0.20 −0.16
r_SLSUBBSN Average slope length −1.4 0.16 0.00 100.00 50.00
v_SOL_Z Soil depth (mm) 1.34 0.18 – – –
v_CANMX Maximum storage capacity(mm) 1.33 0.19 0.00 0.10 0.07
v_SOL_AWC Base flow alpha factor (mm/mm) 1.01 0.31 – – –
v_OV_N Manning's “n” value for overland flow 0.91 0.36 0.01 1.00 0.11
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mean monthly precipitation in Xinanjiang Basin. The precipitation in
spring and summer accounts for 72.93% of the total precipitation in
1976–2005, and 72.03–72.72% in 2021–2050.

3.2. Land use/cover change under varying scenarios

Here, the land use/cover map of 2015 was first predicted using the
maps of 1995 and 2005. The simulated map of 2015 was compared to
the observed map of 2015 to evaluate the reliability of the CA-Markov
model, which was acceptable with a Kappa value of 0.68 for Xinanjiang
Basin. Then, the CA-Markovmodelwas applied to simulate the land use/
cover changes under the three scenarios in 2025, as shown in Fig. 3.

By comparing the land use/cover simulation results of Xinanjiang
Basin in 2025 relative to those in 1995, we can see that the spatial distri-
butions of land use/cover under the three scenarios differ significantly.
Under HT, the areas of forest, cultivated land and water body decrease
from 1995 to 2025, while the areas of the other land use/cover types
are all increased to varying degrees ranging from 43.84% to 516.28%.
Under EP, forest and grassland are still the two dominant land use/
cover types, contributing to a total increase of 5.48%. The area of water
body declines slightly, and cultivated land has a large reduction of
51.70%. The urban area increases largely owing to the changeover of for-
est and cultivated land. Under UD, a sharp increase in urban land is ob-
served with a value of 192.68%. The urban area increases largely due to
the conversion of forest, grassland, and cultivated land. Overall, the
areas of forest and grassland under EP are predicted to undergo the larg-
est proliferation among all scenarios, while the area of urban land is the
lowest. In contrast, the area of urban land under UD is obviously larger
than those under the other two scenarios, while the areas of forest
and grassland are the lowest. Land use/cover under HT has undergone
changes because of urbanization following the historical trend, but
less urbanization occurs than that under UD.

3.3. Sensitivity analysis, calibration and validation results of SWAT model

The results of global sensitivity analysis using SWAT-CUP are listed
in Table 2, based on their ranking. ESCO, GW_DELAY, SURLAG, CH_S2,
CH_K2, GWQMN, CN2, SLSUBBSN, SOL_Z, CANMX, SOL_AWC, and
OV_N are the first 12 high sensitivity parameters for the simulated
streamflow. Soil evaporation compensation factor ‘ESCO’ ranked the
first, much higher than others. Table 2 shows that parameters
representing groundwater return flow, soil properties, ground water,
and surface runoff are sensitive. Therefore, accurate estimation of
these parameters is important for streamflow.

The SWATmodel was calibrated and validated on amonthly scale in
1976–1995 and 1996–2005, respectively. Results show that the ob-
served and SWAT simulated discharge fit well with values of R2 =
0.92 and NSE = 0.93 for the calibration period, and R2 = 0.90 and
NSE = 0.92 for the validation period. The hydrological model captures
the low flows and some peaks very well, in particular the highest
peak. The simulated and observed inflow of Xinanjiang Reservoir over
the period 1976–2005 for calibration and validation can be found in
Supplementary materials A4. The derived parameter values obtained
from calibration and confirmation analyses were incorporated with
the SWAT database for further simulations.

3.4. Streamflow response modelling under multiple scenarios

We then projected the long-term (2021–2050) streamflow under
climate change alone, land use/cover change alone, and their combina-
tion using the calibrated SWAT model and 75 possibilities. Two widely
used methods in mainstream literatures, Mann-Kendall-Sen (MK-Sen)
trend test (Mann, 1945; Kendall, 1975) and Pettitt test (Pettitt, 1979)
were adopted to analyze the trends and abrupt changes of the
streamflow time series in this study, respectively. The test principle
and results are provided in Supplementary materials A5-A6. These re-
sults show that almost every annual streamflow series show an increas-
ing trend during 2021–2050, and only some possibilities have a
significant increasing trend at 5% significance level. It can be found
that streamflow abruptly changed around 2030s in Xinanjiang Basin
in the future. The predicted streamflow at annual and monthly scales
are shown in Fig. 4.

3.4.1. Under varying climate change scenarios
In 1976–2005, the mean annual streamflow is 334.86 m3/s with a

frequent fluctuation between dry and flood years. The mean annual
streamflow in 2021–2050 is 334.32–356.35 m3/s, with a variation of
−0.16–6.42% relative to that in 1976–2005. All GCMs show an increas-
ing trend in future streamflow under RCPs except the Miroc-esm-chem
model under RCP2.6. This result occurs because the Miroc-esm-chem
model sees the most pronounced warming with minimal rainfall
under RCP2.6; thus, evapotranspiration increases, resulting in a de-
crease in streamflow. The annual streamflowhas a slight fluctuation be-
tween dry and flood years, and especially for themulti-model ensemble
means. This result indicates that the mean GCM projections will under-
estimate the probability of extreme flood and drought events.

Fig. 4(b) shows an uneven distribution ofmeanmonthly streamflow
is expected in Xinanjiang Basin in both 1976–2005 and 2021–2050. In
the flood periods from March to August, the mean streamflow is
541.77 m3/s and the total streamflow accounts for 80.89% of the total
streamflow in a year in 1976–2005. In 2021–2050, the difference in
streamflow between dry and wet years might decline. In the flood pe-
riods, the mean streamflow is decreased by 0.73–6.70% compared to
that in 1976–2005, while the total streamflow in this period accounts
for 74.06–76.56% of the total streamflow, with a decline of 5.35–8.45%.
Meanwhile, an increase in the monthly streamflow is observed in the



Fig. 4.Mean annual andmonthly streamflow in Xinanjiang Basin in 2021–2050 under (a)–(b) climate change, (c)–(d) land use/cover change, and (e)–(f) combined climate and land use/
cover change. The error bars indicate the multi-model ensemble range.
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dry periods and themean streamflow is 159.18–184.87m3/swith an in-
crease of 24.40–44.48% relative to that in 1976–2005; while the total
streamflow in this period accounting for the total streamflow in a year
is also increased by 22.67–35.77%. Overall, it is evident that a more
blurred boundary between dry andwet periodsmay occur in the future.
All GCMs project similar streamflow under RCPs at the monthly scale,
which indicates that the streamflow in Xinanjiang Basin is affected
mainly by precipitation rather than by temperature.

3.4.2. Under varying land use/cover change scenarios
Fig. 4(c) and (d) show the annual and monthly streamflow varia-

tions under land use/cover change. The streamflow shows a similar in-
creasing trend over the period of 2021–2050 under three land use/
cover change scenarios, with a mean annual streamflow of
347.89–354.32 m3/s. The areas of urban land use/cover significantly ex-
pand under UD, resulting in a sharp increase in IA, and themean annual
streamflow in 2021–2050 increases by 5.81% relative to that in
1976–2005. Because land use/cover has undergone dramatic changes
due to urbanization during 2005–2015, the urban land increases
under HT but its increase is still lower than that under UD. Therefore,
the mean annual streamflow under HT is lower than that under UD
with a variation of 4.00%. In EP, the vegetation coverage is the highest,
but themean annual streamflow is the lowest with a variation of 3.89%.

The maximum monthly streamflow is expected to decline by
55.78–90.32 m3/s in June, which is similar to the pattern under climate
change. TheUD scenario has the largestmonthly streamflow in June, in-
dicating that a flood crisis might be induced by urban development. Ad-
ditionally, an increase in themonthly streamflow is expected in the dry
periods, and the minimum monthly streamflow in December is pre-
dicted to increase by 248.32–249.19 m3/s. Overall, it is evident that a
more blurred boundary can be observed between the flood and non-
flood seasons under land use/cover change. The different distribution
characteristics of monthly streamflow under land use/cover change
can be divided into two periods. The monthly streamflow from January
to June under UD is higher than that under the other two scenarios; in
contrast, the monthly streamflow from August to December under UD



Fig. 5. Uncertainties of streamflow.
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is smaller than that under both HT and EP. Therefore, land use/cover
change can affect not only the amount of annual average, but also the
timing of streamflow in Xinanjiang Basin.

3.4.3. Under varying combined climate and land use/cover change
scenarios

Fig. 4(e) and (f) present the annual and monthly streamflow varia-
tions under combined climate and land use/cover changes. The
streamflow shows an increasing trend over the period 2021–2050
under combined scenarios, with a mean annual streamflow of
335.92–364.07 m3/s, and has an annual variation of 0.32–8.72% com-
pared with that in 1976–2005. The mean annual streamflow under
Fig. 6.Monthly attribution of streamflow attributed to climate change, land use/cover ch
UDs is the largest, followed by that under HTs and EPs.Moreover, the al-
teration characteristics of annual streamflow are similar under different
land use/cover changes. Regarding the same land use/cover change, the
annual mean streamflow is not sensitive to increasing radiation inten-
sity, and the annual fluctuation varies between the dry and flood year.
The annual streamflow under the combined climate and land use/
cover change is consistent with that under climate change alone, al-
though the mean value is lower than that of individual land use/cover
influence, and higher than that of individual climate change influence.

In the flood seasons from April to July, the streamflow accounts for
the total streamflow decrease by 2.97–9.55% relative to that in
1976–2005. However, there is a disagreement on the direction of
streamflow change in this period. The mean streamflow is
593.30–627.65 m3/s with a decline of 1.42–6.82% under HTs and EPs,
but themean streamflow is changed by−2.52–3.40% under UDs. A sig-
nificant increase of 25.91–65.94% occurs in the non-flood seasons from
October to January. This result also demonstrates that in the future
under combined climate and land use/cover changes, a more blurred
boundary between the flood and non-flood seasons may be expected.
Then, we compared the streamflow between the combined scenarios
and climate change alone and land use/cover change alone. A similar
distribution pattern of monthly streamflow with that under individual
land use/cover change can be observed. The monthly streamflow
under UDs from January to June is higher than that under both EPs
and HTs, while the monthly streamflow under UDs from August to Oc-
tober is lower. Under the same land use/cover change conditions, no sig-
nificant difference can be detected among RCPs, which is similar to that
under climate change alone. These results indicate that complex and
non-additive interactions exist between streamflow and climate change
and land use/cover change.
ange, and combined climate and land use/cover change effects in Xinanjiang Basin.



Table 3
Annual contributions of climate change and land use/cover change in Xinanjiang Basin.

Scenarios HT2.6 EP2.6 UD2.6 HT4.5 EP4.5 UD4.5 HT8.5 EP8.5 UD8.5

Climate change (%) −13.55 −14.67 −7.86 −14.09 −15.37 −8.14 −3.30 −3.64 −1.60
Land use change (%) 113.55 114.67 107.86 114.09 115.37 108.14 103.30 103.64 101.60
Total (%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
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4. Discussion

4.1. Uncertainty analysis of streamflow

We used the fuzzy extension principle method to describe the
streamflow uncertainty. The uncertainties at various levels resulted
from the uncertainties or ranges in the GCM projections and land use/
cover information in our study. Here the uncertainty in streamflow
was computed at the α-cut values of 0%, 25%, 50%, and 75%, therefore
the corresponding uncertainty levels were 100%, 75%, 50%, and 25%,
respectively.

As shown in Fig. 5, the maximum variation in monthly streamflow
occurs in October, and ranges from 125.17 to 258.40 m3/s, while the
minimum variation is observed in November and December, with a
value of 26.72–32.86 m3/s. The results show that annual streamflow in
the baseline (1976–2005) is 334.86 m3/s, and in the future
(2021–2050), the mean annual streamflow under all scenarios is
projected to be 345.69 m3/s. The baseline streamflow exceeds the
upper bounds in the flood seasons in March and June and the lower
bounds in the non-flood seasons from September to December. The
streamflow is concentrated mainly from April to July in both the base-
line and the future periods. However, the future streamflow migrates
from April to May and from June to July, resulting in a lower and more
uniformly distributed streamflow in theflood seasons. This result corre-
sponds to the phenomenon that GCM projections may underestimate
the probability of extreme flooding (Malhi et al., 2009; Pervez and
Henebry, 2014; Supharatid, 2015). In addition, the increased
streamflow in the main non-flood seasons from October to December,
with a significant value of 24.35–96.09%, contributes to a more blurred
boundary between the flood and non-flood seasons. This result means
that operating Xinanjiang Reservoir for water supply or hydropower
generation might be easier in the future.

4.2. Attributing streamflow change to climate and land use/cover change

In this study, we first analyzed the individual and joint contributions
of climate and land use/cover change to mean monthly streamflow
change in Xinanjiang Basin. We used the multi-model ensemble
means to eliminate the inter-model uncertainties under different
RCPs. The RCA of streamflow attributed to climate change, land use/
cover change, and combination is defined as the ratio of the change in
streamflow under RCPs, land use/cover change (i.e., HT, EP, and UD)
and combined conditions (i.e., HTs, EPs, UDs) in 2021–2050 relative to
that in 1976–2005 to the standard deviation of streamflow in
1976–2005, respectively. The results are shown in Fig. 6.

Overall, climate change is one of the primary factors that influences
the variation in streamflow. Although streamflow shows an increasing
trend with increasing radiation intensity relative to the baseline
streamflow, the RCA under RCPs is not sensitive to radiation intensity.
The maximum mean RCA occurs under RCP2.6, followed by that under
RCP8.5 and RCP4.5. The impacts of climate change on streamflow are
mainly realized through increased precipitation and temperature with
a mean RCA of 0.34, 0.33, and 0.33 under the effects of RCP2.6, RCP4.5
and RCP8.5, respectively. In addition, the streamflow is concentrated
mainly from May to July, it is less affected by climate change and thus
has a lower bound of b0.18 comparedwith that in the othermonths, es-
pecially in the non-flood seasons from September to October.Wen et al.
(2018) and Wang et al. (2019b) also had the similar conclusion when
evaluating the future streamflow variation induced by RCPs in south-
eastern China.

Furthermore, we find that streamflow induced by HT or EP has sim-
ilar changes to that affected by climate change, with amean RCA of 0.32
and 0.33, respectively; however, the streamflow under UD has a lower
mean value of 0.20. As we mentioned before, the land use/cover in
Xinanjiang Basin has undergone dramatic changes because of the
sharp increase in urbanization. In this case, the UD with strong urbani-
zation is more consistent with the baseline than the HT in terms of
monthly streamflow. Zhang andWei (2012) indicated that the decreas-
ing forest reduces evaporation and interception, and causes increases in
soil water content and groundwater re-charge, finally resulting in an in-
crease in low flow. However, the streamflow under EP slightly increases
due to the combined effects of the decreased forestland and increased
grassland in our study.

The streamflow is less affected in non-flood seasons from September
to October under UDs, which is similar to that under the effect of only
UD; however, the streamflow is significantly altered in this period
under the effects of HTs or EPs, which is similar to that under climate
change alone. Accordingly, the combined impacts of climate and land
use/cover changes on mean monthly streamflow are sensitive to IA.
The impacts of climate change are stronger than those induced by
land use/cover change under EP (i.e., lower IA), and land use/cover
change has a greater impact in the case of UD (i.e., higher IA). The lack
of observed significant changes in streamflow between HTs and EPs
demonstrates that an increase in vegetation coverage does not contrib-
ute to the streamflow variation as much as IA does in Xinanjiang Basin.

We then quantified the contribution of climate and land use/cover
changes impacting streamflow at the mean annual scale. The results
listed in Table 3 show that the joint climate and land use/cover changes
cause an increase in the mean annual streamflow of 6.35–13.61 m3/s.
Themean annual streamflow is expected to increase under both climate
change alone and land use/cover change alone, but under the combined
conditions it is lower than that of individual land use/cover influence,
and higher than that of individual climate change influence. These re-
sults are because the complex and non-additive interactions between
streamflow and climate change and land use/cover change in the future.
Changes in mean annual streamflowwill be mainly driven by land use/
cover change, and climate change might weaken the influence on
streamflow attributed to land use/cover change. Specifically, the land
use/cover change leads to an increase in annual streamflow by
7.32–13.83 m3/s, with a contribution of 101.60–115.37%, while the cli-
mate change decreases the annual streamflow by 0.22–0.99 m3/s, with
a contribution ranging from−15.37% to−1.60%. RCP8.5 has smaller ef-
fects in decreasing the influence on streamflow attributed to land use/
cover change than does RCP2.6 and RCP4.5. However, under different
catchments, different break points, different methods or even different
time periods, the results may be different. The dominant effects of
land use/cover change found in our study is consistent with the study
by Berihun et al. (2019) and Yang et al. (2012), who both found that
land use/cover change had a more pronounced effect than climate
change onmean annual streamflow in Ethiopia and China, respectively.
The opposite was found by Shrestha et al. (2018) in Thailand, and by El-
Khoury et al. (2015) in Canada, who reported that climate variability
had a greater effect than land use/cover change on annual streamflow
response.
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5. Conclusions

This study implemented a systematic framework consisting of sce-
narios design, climate and land use/cover change projection,
streamflow response modelling and assessment, to quantify and char-
acterize future streamflow variations in Xinanjiang Basin attributed to
the individual and combined effects of climate and land use/cover
changes. The main conclusions are summarized as follows:

(1) Climate in 2021–2050 was projected to be wetter and almost
warmer relative to that in 1976–2005 in the target region. The
areas of forest and grassland under EPwere projected to undergo
the largest proliferation among all scenarios from 1995 to 2025,
while the area of urban land was the lowest; the land use/cover
change under UD was on the contrary of that under EP. The
land use/cover under HT would undergo dramatic changes fol-
lowing the historical trend, but experience less urbanization
than that under UD.

(2) While both land use/cover change alone and combined changes
projected an increase in streamflow (relative change:
3.89–5.81%, and 0.32–8.72%), there was a disagreement on the di-
rection of streamflow change under climate change alone (relative
change: −0.16–6.42%). The increased streamflow in the main
non-flood seasons from October to December contributed to a
more blurred boundary between the flood and non-flood seasons,
which might potentially ease the operation stress of Xinanjiang
Reservoir for water supply or hydropower generation.

(3) The impacts of climate change and land use/cover change onmean
monthly streamflow was sensitive to IA: climate change was the
dominant factor when the IA was smaller under HT and EP,
whereas the land use/cover change was more dominant when
the IAwas larger under UD. However, changes in themean annual
streamflowweremainly driven by land use/cover change, and cli-
mate change might decrease the influence on streamflow attrib-
uted to land use/cover change. The contribution of climate
change to decrease annual streamflow was −15.37–1.60%, while
the contribution of land use/cover change to increase was
101.60–115.37%.

This study contributes to a better understanding the possible effects
of climate and land use/cover changes on streamflow in Xinanjiang
Basin and can therefore benefit greatly decision makers to design and
implement possible adaptation actions for reservoir operations under
environmental changes including both climate and land use/cover
changes. Moreover, the approach of this study is beneficial for evaluat-
ing the combined effects of climate and land use/cover changes on
basin hydrology and can be applied to other regions encountering sim-
ilar pressures from environmental changes.
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