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SUMMARY

Network robustness describes a network’s ability to provide and maintain an acceptable
level of service in the face of failures and challenges to normal operation. Unfortunately,
failures of networks, such as power outages in power systems, congestions in transporta-
tion networks, failures of routers on the Internet, happen frequently in our daily life and
introduce a tremendous cascading effect on our society. We naturally expect that these
networks have high robustness to maintain their performance in face of failures or attacks.
As the first step, it is vital to investigate and analyze the robustness of networks so as to
propose effective methods to improve network robustness.

The first part of the thesis mainly focuses on the robustness of network controllabil-
ity in face of topological perturbations. In Chapter 2, we propose closed-form analytic
approximations for the minimum number of driver nodes which denotes the controlla-
bility of the network. Inspired by the concept of critical links, we deduce and validate
our approximations on both real-world and synthetic networks. We show that when the
fraction of removed links is small, our approximations perform well. Besides, we also find
that the critical link attack is the most effective among 4 considered attacks, as long as
the fraction of removed links is smaller than the fraction of critical links. In Chapter 3,
we focus on the controllability of swarm signalling networks with regular out-degree and
bi-modal out-degree distribution. We deduce the generating functions in random failure
process and then estimate the fraction of driver nodes with simulations. Results show
that our estimations have high accuracy in predicting the fraction of driver nodes in case
of random link failures. In order to further improve the accuracy of our proposed approxi-
mations in Chapter 4, we use a machine learning method to decrease the gap between our
analytical approximations and the simulation results. We compare our approximations
obtained by machine learning with existing analytical approximations and show that
our approximations significantly outperform the existing closed-form analytical approxi-
mations in both synthetic and real-world networks. Apart from targeted attacks based
upon the removal of critical links, we also propose analytical approximations for out-in
degree-based attacks. In Chapter 5, we investigate the reachability-based robustness of
controllability considering link-based random attack, targeted attack, as well as random
attack under the protection of critical links. We validate our approximations using 200
real-world communication networks and some synthetic networks and find that our
approximations perform well in most cases.

In the second part of the thesis, we work on the recoverability of networks. The recov-
erability of networks refers to the ability of a network to return to a desired performance
level after suffering topological perturbations such as link failures. In Chapter 6, we
propose a general topological approach and two recoverability indicators to measure
the network recoverability for optical networks for two recovery scenarios. Furthermore,
we employ the proposed approach to assess 20 real-world optical networks. Numerical
results show that the network recoverability is coupled to the network topology, the robust-
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ness metric and the recovery strategy. We also find that assortativity, which denotes the
tendency of network nodes to connect preferentially to other nodes with similar degree,
has the strongest correlation with both recoverability indicators. In Chapter 7, we adopted
the framework of network recoverability and investigate the recoverability of network
controllability for two recovery scenarios. We employ the proposed approach to assess
swarm signalling networks with regular out-degree, and networks with bi-modal out-
degree distributions. Besides, we also deduced the analytical results of the recoverability
indicators by generating functions, which are close to the results based on simulations. In
Chapter 8, we conclude this thesis and come up with some future work.



SAMENVATTING

De robuustheid van een netwerk beschrijft het vermogen van het netwerk om een accep-
tabel serviceniveau te bieden en te behouden in het geval van storingen en aanvallen op
het netwerk. Helaas komen storingen van netwerken, zoals stroomuitval in energiesys-
temen, congestie in transportnetwerken en pakketverlies op internet, regelmatig voor
in het dagelijks leven en hebben soms een aanzienlijke impact op onze samenleving.
We verwachten natuurlijk dat deze netwerken een hoge robuustheid hebben, zodat het
prestatieniveau behouden blijft bij storingen of aanvallen. Als eerste stap is het van vitaal
belang om de robuustheid van netwerken te onderzoeken en om effectieve methoden
voor te stellen om de netwerkrobuustheid te verbeteren.

Het eerste deel van het proefschrift richt zich voornamelijk op de robuustheid van
netwerkbeheersbaarheid in het geval van topologische verstoringen. In Hoofdstuk 2 stel-
len we analytische benaderingen voor, in gesloten vorm, waarmee het minimum aantal
z.g.n. driver nodes kan worden bepaald, nodig om het netwerk beheersbaar te maken.
Geïnspireerd door het concept van kritieke verbindingen, deduceren en valideren we
onze benaderingen op zowel echte als synthetische netwerken. We laten zien dat wanneer
de fractie verwijderde links klein is, onze benaderingen zeer nauwkeurig zijn. Daarnaast
tonen we ook aan dat de kritieke link-aanval het meest effectief is van 4 beschouwde
aanvallen, zolang de fractie verwijderde links kleiner is dan de fractie kritieke links. In
Hoofdstuk 3 richten we ons op de beheersbaarheid van zwerm-signaleringsnetwerken
met reguliere uitgaande graad en bi-modale uitgaande graad distributie. We leiden ge-
nererende functies af in het geval van willekeurige uitval van verbindingen en schatten
vervolgens de fractie van benodigde driver nodes m.b.v. simulaties. De resultaten tonen
aan dat onze schattingen een hoge nauwkeurigheid hebben bij het voorspellen van de
fractie van driver nodes, in het geval van willekeurige uitval van verbindingen. Om de
nauwkeurigheid van onze voorgestelde benaderingen verder te verbeteren, gebruiken we
in hoofdstuk 4 machine learning om de kloof tussen onze analytische benaderingen en de
simulatieresultaten te verkleinen. We vergelijken onze benaderingen die zijn verkregen
m.b.v. machine learning met bestaande analytische benaderingen en laten zien dat onze
benaderingen aanzienlijk beter presteren dan de bestaande analytische benaderingen in
gesloten vorm in zowel synthetische als echte netwerken. Naast gerichte aanvallen op
basis van het verwijderen van kritieke links, stellen we ook een analytische benadering
op, voor aanvallen gebaseerd op de uitgaande graad. In Hoofdstuk 5 onderzoeken we de
op bereikbaarheid gebaseerde robuustheid van beheersbaarheid. We beschouwen hierbij
willekeurige aanvallen op verbindingen, gerichte aanvallen en willekeurige aanvallen op
verbindingen waarbij kritieke verbindingen worden beschermd. We valideren onze bena-
deringen met behulp van 200 communicatienetwerken en enkele synthetische netwerken
en vinden dat onze benaderingen in de meeste gevallen nauwkeurig zijn.

In het tweede deel van het proefschrift richten we ons op de herstelbaarheid van net-
werken. De herstelbaarheid van netwerken verwijst naar het vermogen van een netwerk
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om terug te keren naar een gewenst prestatieniveau na topologische verstoringen zoals
het verwijderen van verbindingen. In Hoofdstuk 6 stellen we een algemene topologische
benadering voor, alsmede indicatoren, om de herstelbaarheid van netwerken voor op-
tische netwerken voor twee herstelscenario’s te kwantificeren. Verder gebruiken we de
voorgestelde aanpak om de herstelbaarheid van 20 echte optische netwerken te bepalen.
Numerieke resultaten tonen aan dat de herstelbaarheid van een netwerk is gekoppeld
aan de netwerktopologie, de robuustheidsmetriek en de herstelstrategie. We vinden ook
dat assortativiteit de sterkste correlatie heeft met beide indicatoren voor herstelbaarheid.
In Hoofdstuk 7 hebben we het raamwerk van netwerkherstelbaarheid overgenomen en
de herstelbaarheid van netwerkbeheersbaarheid onderzocht voor twee herstelscenario’s.
We gebruiken de voorgestelde aanpak om zwerm-signaleringsnetwerken met reguliere
uitgaande graad en netwerken met bimodale uitgaande graad distributies te analyseren.
Daarnaast hebben we ook de analytische resultaten van de herstelbaarheidsindicatoren
afgeleid door gebruik te maken van genererende functies. De verkregen resultaten liggen
dicht bij uitkomsten op basis van simulaties. In hoofdstuk 8 zetten we de resultaten van
dit proefschrift op een rij. Verder doen we enkele suggesties voor toekomstig onderzoek.



1
INTRODUCTION

I have not failed. I’ve just found 10,000 ways that won’t work.

Thomas A. Edison

NETWORKS exist everywhere and have deeply integrated into our daily life. Exam-
ples around us and even inside of us include social networks (Facebook, Twitter,

LinkedIn) [1], the Internet, transportation networks (airline, metro, train and bus net-
works) [2], telecommunication networks [3], neural networks [4], vascular networks [5]
and so on.

The routine of our life and the society depends much on the normal operation of these
networks. However, networks in real-life are frequently faced with failures or malicious
attacks which degrade the performance of networks [6], such as the Denial-of-Service
(DoS) attack on the Internet [7], cascading failures on the power grid [8], connection fail-
ures in telecommunication networks [9], etc. Naturally, we hope that these networks are
robust enough to maintain their functionality under external perturbations, which leads
to the research question, how can we characterize, measure and improve the robustness
of networks?

Graph theory provides powerful approaches to investigate the robustness of networks.
The history of the development of graph theory is presented briefly. In 1736, Leonhard
Euler solved the Seven Bridges of Königsberg problem, which is regarded as the origin
of graph theory. In 1959, Paul Erdős and Alfréd Rényi introduced probability theory
into graph theory [10] and established the random graph theory. In 1998, Watts and
Strogatz [11] discovered small-world phenomenon in numerous real-world networks and
proposed a model to generate small-world networks. In 1999, Albert and Barabási [12]
discovered the scale-free property in the Internet, whose degree distribution follows a
power law. The Barabási–Albert model was proposed to generate scale-free networks,
which adopts the preferential attachment mechanism in the network growth process.

1
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2 1. INTRODUCTION

Network robustness has been extensively investigated for decades from the perspec-
tive of graph theory. In 2000, Albert et al. [13] investigated the robustness of complex
networks in face of node-based failures. The results show that scale-free networks are
robust to random failures but extremely vulnerable to targeted attacks. The percolation
model was employed to analytically measure the robustness of networks [14], [15] fol-
lowed by a series of studies [16], [17]. In 2001, Newman et al. applied the generating
functions [18] to the percolation model in random graphs with arbitrary degree distri-
bution [19]. Wang et al. [20] derived the upper and lower bounds of the effective graph
resistance under topological changes and illustrated a novel comparison method by
considering the distance between the added or removed links. He et al. [21] proposed
an approach on network modeling and robustness assessment for multimodal freight
transport networks and found that the node criticality resembles a power-law distribution
which implies a relatively robust state of the network against single random disruptions.
In recent years, the research on robustness has switched to interdependent networks and
focuses on analyzing the interconnection patterns between networks. Huang et al. [22]
introduced a general technique which maps the targeted-attack problem in interdepen-
dent networks to the random-attack problem in a transformed pair of interdependent
networks. Results showed that when the highly connected nodes are protected and have
lower probability to fail in contrast to single scale-free networks. Parandehgheibi et al. [23]
focused on the interdependency between the power grid and communication networks
and developed heuristics to find a near-optimal solution to the minimum number of
node failures needed to cause total blackout.

There is still lack of consensus in the definition of robustness and the approach for
robustness assessment, which is due to the diversity of service and demand in real-
world networks. For example, a short end-to-end delay is desired in telecommunication
networks while a good connectivity is expected in transportation networks. In this thesis,
we focus on the robustness of network controllablity as described in Section 1.1.

1.1. NETWORK CONTROLLABILITY
Controllability as one of the fundamental concepts in control theory, quantifies the ability
to steer a dynamical system from an arbitrary initial state to an arbitrary terminal state in
finite time [24]. In some networked systems, a set of proper input can control the state
of the whole system. For example, in a bee colony, 5% of the bees are enough to guide
the entire population towards a new beehive [25]. We consider linear, time-invariant
dynamics on a directed network, which are described by:

d x(t )

d t
= Ax(t )+Bu(t ) (1.1)

where the N×1 vector x(t ) = (x1(t ), x2(t ), ..., xN (t ))T denotes the state of the system with
N nodes at time t. The weighted matrix A is an N×N matrix which describes the network
topology and the interaction strength between the components. The N ×M matrix B
is the input matrix which identifies the M ≤ N driver nodes controlled by outside input
signals. The M×1 vector u(t ) = (u1(t ),u2(t ), ...,uM (t ))T is the input signal vector. A driver
node j ∈ {1, . . . , M } has an input signal u j that is externally fed in u j (t). The fraction nD



1.2. RECOVERABILITY OF COMPLEX NETWORKS

1

3

of driver nodes is normally chosen as the metric that measures the controllability of a
network, a smaller the fraction nD denotes a higher controlllability of a network.

The linear system defined by Eq.(1.1) is controllable, if and only if the N×NM control-
lability matrix:

C = (B , AB , A2B , ..., AN−1B) (1.2)

has full rank, i.e., r ank(C ) = N . This criterion is called Kalman’s controllability rank
condition [26]. The rank of matrix C provides the dimension of the controllable subspace
of the system. We need to choose the right input matrix B consisting of a minimum
number of driver nodes to assure that the controllability matrix C has full rank. System
(1.1) is said to be structurally controllable if it is possible to fix the non-zero parameters in
A and B in such a way that the obtained system (A,B) satisfies Kalman’s rank condition.
We assume that the network described by A has no self-loops, i.e. all entries on the
diagonal of A are zero.

The minimum number of driver nodes needed for structural controllability can be
obtained through the “maximum matching” of the network. We define the source node of
a directed link as the node from which the link originates and the target node as the node
where the link terminates. A maximum matching of a directed network is a maximum
set of links that do not share source or target nodes [27], as illustrated in Figure 1.1(a).
Such links are named “matching links”. Target nodes of matching links are matched
nodes while the other nodes are unmatched nodes. For a given maximum matching, the
unmatched nodes are the driver nodes needed for controlling the network.

In order to find the maximum number of matching links, so as to determine the
minimum number of driver nodes ND , a directed network G with N nodes and L links
can be converted into a bipartite graph BN ,N with 2N nodes and L links, as shown in
Figure 1.1(b). A maximum matching in a bipartite graph can be obtained efficiently using
the Hopcroft-Karp algorithm [28]. The Hopcroft-Karp algorithm guarantees to return the
minimum number of driver nodes to completely control the network. The computational
complexity of the Hopcroft-Karp algorithm to find all driver nodes is O(

p
N L). In our

simulations, we use the algorithm mentioned above to determine the number ND of
driver nodes and then get the fraction nD of driver nodes which equals ND /N .

1.2. RECOVERABILITY OF COMPLEX NETWORKS
As mentioned before, most research on network robustness focuses on the network’s
ability to withstand perturbations such as failures or attacks. However, the recovery pro-
cess and methods are not considered in the degraded network after failures or attacks.
In recent years, more and more research focuses on proposing recovery strategies and
measuring their efficiency in restoring the performance of networks. Zhang et al. [29]
introduced a resilience-based framework to optimise the scheduling of the post-disaster
recovery strategies for road-bridge transportation networks. Two metrics were proposed
for measuring rapidity and efficiency of the network recovery: total recovery time (TRT)
and the skew of the recovery trajectory (SRT). Sun et al. [30] proposed two novel re-
covery strategies: Cold Backup Service Replacement Strategy (CBSRS) and Hot Backup
Service Replacement Strategy (HBSRS). Results showed that the proposed strategies sig-
nificantly improve the performance of service composition and effectively guarantee the
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Figure 1.1: Driver nodes and critical links in a directed network G . (a) An example network G with N = 5 nodes
and L = 5 directed links. Since link a, b, c and d are the maximum set of links that do not share source and
target nodes, these links are matching link. Target nodes of these matching links, i.e., node 2, 3, 4 and 5, are
matched nodes. Node 1 is an unmatched node. (b) The bipartite graph with 2N nodes and L links. Matching
links are highlighted in red in the bipartite graph. Driver nodes are highlighted in green. To create the bipartite
graph, each node V in the original network G will be translated into source node V + and target node V − in the
bipartite graph. The first column of the bipartite graph are all possible source nodes, whereas the nodes in the
second column are all possible target nodes. Links in the bipartite graph are determined by the directed links in
the original network G . By using the Hopcroft-Karp algorithm, a maximum set of matching links can be found in
the bipartite graph. None of the matching links share a common source or target node. Then, the target nodes
of matching links are matched nodes. Other target nodes are unmatched nodes, which are also driver nodes.

availability and reliability of service composition in dynamic network. Almoghathawi et
al. [31] studied the interdependent network restoration problem (INRP) and proposed a
resilience-driven multi-objective optimization model which considers partial disruptions
and recovery of the disrupted network components, and partial dependence between
nodes in different networks. In [32] [33] [34], a comprehensive methodology for topol-
ogy generation was proposed, and the analytical and experimental techniques used for
evaluating the network attributes depend on the efficiency of the recovery strategy. The
efficiency of a recovery strategy indicates how much network performance can be recov-
ered in a given number of edges or nodes once they are reconnected. Di Muro et al. [35]
proposed a recovery strategy to repair the nodes in the mutual boundary of functional
clusters in two interdependent networks based on a critical probability of recovery above
which the system is restored and below which it collapses.

Though a large amount of recovery strategies were proposed to restore the perfor-
mance of networks, the work above did not consider the failure or the attack process when
designing recovery strategies. In real life, we hope that networks are difficult to destroy
but easy to recover which suggests that we should consider both the failure process and
the recovery process to design a resilient network. Networks preferably have the ability to
return to a desired performance level after suffering malicious attacks or random failures.
We define such network capability as network recoverability and introduce the details in
Section 6.
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1.3. THESIS OBJECTIVES AND OUTLINE
This thesis is motivated by the increasing importance of robust networks in real life. We
regard network robustness as a beneficial property for real-world networks which provide
daily service to people. During random failures or malicious attacks, the performance of
real-world networks degrades which affects our daily life.

The aims of this dissertation are to model and analyse real-world networks and their
robustness in terms of failures, malicious attacks. Thus, the main questions this thesis
aims to answer are:

Chapter 2: Can we estimate the impact of random failures or targeted attacks on
network controllability? Which type of network is more resilient to attacks? Which attack
strategy is the most harmful?

Chapter 3: Can we propose analytical approximations for networks with specific
degree distribution? If so, how is the performance of the approximations?

Chapter 4: Can we use machine learning methods to further improve our approxima-
tions for the number of driver nodes in random failures or targeted attack? What network
metrics should be chosen as features? Are the approximations obtained by machine
learning always better than other existing methods?

Chapter 5: What is the difference between the reachability-based controllability and
the control-based controllability? How can we measure the reachability-based controlla-
bility for different attack strategies?

Chapter 6: How can we quantify the recoverability of optical networks? Which property
of the optical network has strong correlation with its recoverability? Can we come up with
a method to improve the recoverability of optical networks?

Chapter 7: How can we apply the framework for network recoverability to network
controllability? Can we get analytical results to calculate the recoverability of networks in
terms of controllability?

The dissertation is organized as follows. In Chapter 2, we propose closed-form ana-
lytic approximations for the minimum number of driver nodes needed to fully control
networks, where links are removed according to both random and targeted attacks. We
also do case studies for both real-world and synthetic networks. In Chapter 3, we deduce
the fraction of driver nodes in random failure process for two types of swarm signalling
networks. In Chapter 4, we apply machine learning models to further improve our ap-
proximations proposed in Chapter 2. We also compare our improved approximations
with existing methods. In Chapter 5, we propose closed-form analytic approximations for
the number of controllable nodes in sparse communication networks from the point of
view of network controllability, considering link-based random attack, targeted attack,
as well as random attack under the protection of critical links. We then compare our
approximations with simulation results on communication networks. Chapter 6 proposes
a general topological approach and recoverability indicators to measure the network
recoverability for optical networks for two recovery scenarios: 1)only the links which are
damaged in the failure process can be recovered and 2) links can be established between
any pair of nodes that have no link between them after the failure process. We use the
robustness envelopes of realizations and the histograms of two recoverability indicators
to illustrate the impact of the random failure and recovery processes on the network
performance. In Chapter 7, we adopted the framework of network recoverability and
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investigate the recoverability of network controllability for two recovery scenarios. We
also deduced the analytical results of the recoverability indicators by generating functions.
Chapter 8 concludes this thesis.

1.4. PUBLICATION RELATED TO THIS THESIS
The following papers are completed by the author of this thesis while pursuing the Ph.D
degree at Delft University of Technology.

1. P. Sun, R. E. Kooij, Z. He and P. Van Mieghem, Quantifying the Robustness of Network
Controllability, 4th International Conference on System Reliability and Safety (ICSRS
2019), 20-22 November, Rome, Italy. [Chapter 2]

2. P. Sun, R. E. Kooij and R. Bouffanais, Controllability of a class of Swarm Signalling
Networks, in preparation. [Chapter 3]

3. A. Dhiman, P. Sun and R. E. Kooij, Using Machine Learning to Quantify the Robust-
ness of Network Controllability, Machine Learning for Networking - Third International
Conference, MLN2020, Springer, p. 19-39. [Chapter 4]

4. P. Sun, R. E. Kooij and P. Van Mieghem, Reachability-based Robustness of Control-
lability in Sparse Communication Networks, IEEE Transactions on Network and Service
Management (2021). [Chapter 5]

5. P. Sun, Z. He, R. E. Kooij and P. Van Mieghem, Topological Approach to Measure the
Recoverability of Optical Networks, Optical Switching and Networking, 100617. [Chapter
6]

6. Z. He, P. Sun and P. Van Mieghem, Topological approach to measure network recov-
erability, best paper award, 11th International Workshop on Resilient Networks Design
and Modeling (RNDM 2019), 14-16 October, Nicosia, Cyprus. [Chapter 6]

7. A. Chen, P. Sun and R. E. Kooij, The recoverability of network controllability, 5th
International Conference on System Reliability and Safety (ICSRS 2021), 24-26 November,
Palermo, Italy. [Chapter 7]



2
THE ROBUSTNESS OF NETWORK

CONTROLLABILITY

In this chapter, we propose closed-form analytic approximations for the minimum number
of driver nodes needed to fully control networks, where links are removed according to
both random and targeted attacks. Our approximations rely on the concept of critical
links. A link is called critical if its removal increases the required number of driver nodes.
We validate our approximation on both real-world and synthetic networks. For random
attacks, the approximation is always very good, as long as the fraction of removed links
is smaller than the fraction of critical links. For some cases, the approximation is still
accurate for larger fractions of removed links. The approximation for an attack, where first
the critical links are removed, is also accurate, as long as the fraction of removed links is
sufficiently small. Finally, we show that the critical link attack is the most effective among
4 considered attacks, as long as the fraction of removed links is smaller than the fraction of
critical links.

2.1. INTRODUCTION
Our society nowadays depends critically on the proper functioning of a variety of infras-
tructures, such as the Internet, the power grid, water management networks and mobile
communication networks. It is common practice to model such infrastructures as com-
plex networks. Research over the last decades has led to a deep understanding of structural
and robustness properties of complex networks [37], [38]. In recent years, the empha-
sis has shifted to understanding the controllability of such networks [39] [40] [41] [42].
Controllability is an essential property for the safe and reliable operation of real-life infras-
tructures. A system is said to be controllable if it can be driven from any initial state to any
desired final state by external inputs in finite time [42]. Merging classical control theory
with network science [43] introduced the notion of structural controllability. Let the N×N
matrix A represent the network’s wiring diagram, while the connection of M input signals

This chapter is based on the published paper [36].
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to the network is described by the N ×M input matrix B , where M ≤ N . Then, the system
characterized by (A,B) is said to be structurally controllable, if it is possible to fix the
non-zero parameters in A and B in such a way that the obtained system (A,B) is control-
lable in the classical sense of satisfying Kalman’s rank condition. Liu et al. [39] found a
method that gives the minimum number of driver nodes, which are driven by external
inputs, that are needed to achieve structural controllability of a directed network. As was
pointed out by Cowan et al. [44], the results reported in Liu et al. [39] critically depend
on the assumption that the network has no self-links, i.e. a node’s internal state can only
be changed upon interaction with a neighbor. In this chapter, we will also assume this
condition. Ruths et al. [45] developed a theoretical framework for characterizing control
profiles of networks. Yuan et al. [40] further proposed the concept of exact controllability
based on the maximum multiplicity of all eigenvalues of the adjacency matrix A to find the
driver nodes in networks. Jia et al. [41] classified each node into one of three categories,
based on its likelihood of being included in a minimum set of driver nodes and discovered
bimodal behaviour for the fraction of redundant nodes, when the average degree of the
networks is high. Nepusz et al. [42] indicated that most real-world networks are more
controllable than their randomized counterparts. Yan et al. [46] investigated the relation
between the maximum energy needed for controllability and the number of driver nodes.

Real-world networks are often confronted with topological perturbations such as
link-based random failures or targeted malicious attacks. For instance, in power grids, the
breakdown of connections between different substations in some cases can be interpreted
as random failures due to circuit aging or natural disasters. Malicious, and targeted
attacks can seriously degrade the network performance [47]. In transportation networks,
betweenness centrality-based targeted attacks can have a significant impact on normal
operation [48].

Network robustness under topological perturbations has been widely investigated.
The effective graph resistance [20], the viral conductance [49], the size of giant com-
ponent [50], betweenness and eigenvector centrality are computed to measure the ro-
bustness of networks under topological perturbations. Wang et al. [51] investigated two
interconnection topologies for interdependent networks and proposed the derivative of
the largest mutually connected component as a new robust metric, which addresses the
impact of a small fraction of failed nodes. Trajanovski et al. [52] studied the robustness
envelope and concluded that centrality-based targeted attacks are sufficient for studying
the worst-case behavior of real-world networks. Koç et al. [53] found that increasing the
effective graph resistance of synthetic power systems results in decreased grid robustness
against cascading failures by targeted attacks.

The robustness of the network controllability can be assessed by quantifying the
increase in the minimum number of driver nodes ND , under perturbation of the network
topology. The impact of topological perturbations on the controllability of networks has
been investigated extensively in recent years. Pu et al. [54] found that the degree-based
node attack is more efficient than a random attack for degrading the controllability in
directed random and scale-free networks. Nie et al. [55] found that the controllability of
Erdős-Rényi random graphs with a moderate average degree is less robust, whereas a scale-
free network with moderate power-law exponent shows a stronger ability to maintain its
controllability, when these networks are under intentional link attack. Thomas et al. [56]
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identified that the potency of a degree-based attack is directly related (on average) to
the betweenness centrality of the edges being removed. Lu et al. [57] discovered that a
betweenness-based strategy is quite efficient to harm the controllability of real-world
networks. Mengiste et al. [58] introduced a new graph descriptor, ‘the cardinality curve’, to
quantify the robustness of the control structure of a network to progressive link pruning.

The previous works on the robustness of network controllability listed above, have
been mainly based upon simulations. In this chapter we quantify the robustness of
network controllability by deriving analytical expressions, approximating the increase
of the number of driver nodes, upon random and targeted link removals. Based upon
methods from statistical physics, Liu et al. [39] already found analytical approximations for
the number of driver nodes ND , as a function of the nodes in- and out-degree distributions.
However, the obtained expressions are an implicit set of equations, which are derived
under the assumptions of N →∞ (thermodynamic limit) and sufficiently large average
node degree.

We propose an analytical approximation to quantify the robustness of network con-
trollability, based upon the concept of critical links, introduced in [39]. Links can be
classified into three categories: critical, redundant, and ordinary [39]. A link is critical if
its removal increases the number of driver nodes to remain in full control of the system.
A link is redundant if it never belongs to a maximum matching. A link is ordinary if it is
neither critical nor redundant. In this chapter, we want to derive analytical expressions for
the increase in the minimum number of driver nodes, upon link removal. We will use the
concept of critical links to construct such approximations, both for random link removals
and targeted attacks. We show the performance of our approximations in both real-world
and synthetic networks. Finally, we compare an attack based upon critical links, to attacks
based upon topological properties, such as the out-in degree-based attack.

This chapter is organized as follows. In Section 2.2 and 2.3, we propose analytic ap-
proximations for the minimum number of driver nodes ND when the network is under
random attacks and targeted attacks, respectively. In Section 2.4, we compare the robust-
ness of controllability under four different attack methods. Section 2.5 concludes the
chapter.

2.2. NUMBER OF DRIVER NODES UNDER RANDOM ATTACKS
In this section, we assume that links are removed from the network uniformly at random.
We derive an analytical approximation for the minimum number of driver nodes ND

for random attacks and show the performance of the approximation for real-world and
synthetic networks.

2.2.1. THE FRACTION l OF REMOVED LINKS IS LESS THAN THE FRACTION

OF CRITICAL LINKS lc
For a network with N nodes and L links, denote the minimum number of driver nodes by
ND0. The number of critical links LC can be determined by applying the Hopcraft-Karp
algorithm L times, by considering all L networks that are obtained by removing exactly
one link from the original network. If we denote the number of removed links by m, then
the fraction of removed links l = m

L , while the fraction of critical links lc satisfies lc = Lc
L .
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We consider the case l ≤ lc , i.e. m links are removed uniformly at random, under the
condition that the number of removed links m ≤ Lc . Now assume that of these m links i
links are critical (i ≤ m) and, hence, m − i links are non-critical. We assume that the set of
critical links is nearly unchanged when the fraction of removed links is small. Invoking the
fact that after removing a critical link, the minimum number of driver nodes ND increases
by one [39], thus, when i critical links are iteratively removed one by one, the minimum
number of driver nodes ND increases by one in each iteration. For the m − i removed
non-critical links, the minimum number of driver nodes ND remains the same. We show
in the Appendix that this leads to the following approximation nD,r and for the normalized
minimum number of driver nodes:

nD,r and = ND0 + lLc

N
(2.1)

VALIDATION FOR REAL-WORLD NETWORKS

We evaluate the performance of the approximation nD,r and in (2.1) for 8 real-world net-
works. Table 2.1 presents the properties of the 8 real-world networks: the number of
nodes (N ), the number of links (L), the initial minimum number of driver nodes (ND0)
and the number of critical links (Lc ).

Table 2.1: Properties of the 8 real-world networks

Networks N L ND0 Lc

Amazon network [59] 105 441 25 29
Berlin traffic network [60] 224 523 14 123
IEEE118 power grid [61] 118 179 38 36

Illinois students network [62] 70 366 3 8
Hagy Chesapeake Bay ecosystem [63] 37 215 9 4

INSNA social network [64] 60 94 35 5
s838 [39] 512 819 119 179

TRN-Yeast-2 [39] 688 1079 565 23

Figure 2.1 shows the comparison between our approximation Eq. (2.1) and simulation
results in the considered real-world networks. For each figure, the right-most point at
the horizontal axis denotes the fraction of critical links lc . We use 10000 realizations and
obtain mean values for the fraction of minimum number of driver nodes nD , together
with the 95%− confidence interval, for each fraction l . Visual inspection of Figure 2.1
confirms that our approximation (2.1) is close to the simulation results for the 8 real-world
networks, when the fraction of removed links l satisfies l ≤ lc .

To further quantify the accuracy of the approximation nD,r and , Table 2.2 gives two per-
formance indicators. K different values of the fraction of removed links, i.e., c1,c2, ...,cK ,
are evenly determined in the interval [0, lc ]. Let n∗

D (ci ) and nD (ci ) denote the mean simu-
lated nd and the approximation (2.1) at the fraction of removed links l = ci , respectively.
The performance indicator γ denotes the fraction of the interval [0, lc ] for which the
absolute value of the relative error between the approximation and the mean simulated
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Figure 2.1: Performance of the approximation (2.1) for the normalized minimum number of driver nodes nD as
a function of the fraction of removed links l in real-world networks under random attacks. The results for each
fraction l are based on 10000 simulations.
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value, does not exceed 5%.

γ=

∑K
i=0 1∣∣ n∗D (ci )−nD (ci )

n∗D (ci )

∣∣≤5%

K

Finally, r denotes the absolute value of the relative error between the approximation
and the mean value obtained through simulation, at l = lc . Table 2.2 shows for all real-

Table 2.2: Performance indicators for the approximation ND,r and for the 8 real-world networks; l ≤ lc

Networks γ r

Amazon 100% 0.11%
Berlin traffic 100% 4.82%

IEEE118 power grid 100% 2.31%
Illinois students 100% 0.35%

Hagy Chesapeake Bay 100% 0.07%
INSNA 100% 0.20%

s838 100% 4.80%
TRN-Yeast-2 100% 0.01%

world networks that the approximation (2.1) for nD,r and performs very well for l ≤ lc . For
5 out of the 8 considered networks, the absolute value of the relative error at l = lc is less
than 0.5%.

SYNTHETIC NETWORKS

Next we test our approximation Eq.(2.1) on two types of synthetic networks. When gen-
erating the directed Erdős-Rényi random network Gp (N ) with N nodes, the probability
that every node has an outbound link to the other nodes is p. We generate the scale-free
network B A(N , M0, M) by using the Barabási-Albert (BA) model, where N is the number
of nodes, M is the number of out-going links for each new node added to the current
network. We assume that initially the network consists of a complete digraph on M0

nodes, where M0 equals M . In the initial complete digraph, every pair of distinct nodes
is connected by a pair of unique links (one in each direction). New nodes are added
to the network one at a time. Each new node is connected to M existing nodes with a
probability that is proportional to the number of links that the existing nodes already
have. Figure 2.2 shows that both for Erdős-Rényi and Barabási-Albert (BA) networks,
our analytic approximation (2.1) for nD,r and fits well with simulation results, when the
fraction of removed links l is less than the fraction of critical links lc . For the results
depicted in Figure 2.2, Table 2.3 reports the performance indicators γ and r introduced in
the previous subsection. Table 2.3 shows that also for the considered synthetic networks,
the approximation nD,r and performs very well for l ≤ lc .

The overall conclusion of this subsection is that our approximation nD,r and in Eq.(2.1)
gives a very good estimation for the minimum number of driver nodes, if the fraction of
randomly removed links l is smaller than, or equal to, the fraction of critical links lc .
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Figure 2.2: The normalized minimum number of driver nodes nD as a function of the fraction of removed links
l in synthetic networks under random attacks. In each sub-figure, we generate 100 corresponding synthetic
networks and calculate the average fraction of critical links lc and the average value of nD for each fraction of
removed links. For each network, the value of nD for each fraction l is based on 10000 simulations.

Table 2.3: Performance indicators for the approximation nD,r and for the 4 synthetic networks; l ≤ lc

Networks γ r

ER: G0.07(50) 100% 2.08%
ER: G0.04(100) 100% 1.80%

BA: N =200, E [D]=4 100% 0.29%
BA: N =500, E [D]=8 100% 0.09%

2.2.2. THE FRACTION l OF REMOVED LINKS IS LARGER THAN THE FRACTION

OF CRITICAL LINKS lc
Because in most cases lc is quite small, we also estimate the normalized minimum
number of driver nodes nD when the fraction l of removed links is larger than the fraction
lc of critical links. Therefore, for l ≥ lc , we propose a simple closed-form approximation
for nD :

nD = al 2 +bl + c (2.2)

where the parameters a,b and c will be determined by some boundary conditions. For the
first two boundary conditions we assume that, for l = lc , Eq.(2.2) has the same value and
the same derivative as Eq.(2.1). This leads to the equations ND0 + lc Lc = N (al 2

c +blc +c)
and Lc = N (2alc +b), respectively. Finally, if we remove all links, i.e. l = 1, all nodes need
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to be controlled. This gives the boundary condition 1 = a +b + c. Solving for a,b and c
and combining with the approximation Eq.(2.1), we obtain the following approximation
for nD for all values of l :

nD,r and =
{

ND0+l Lc
N l ≤ lc

al 2+bl+c
N l ≥ lc

(2.3)

with, a = N−ND0−Lc

N (lc−1)2 , b = Lc N −2alc , and c = 1−Lc N + a(2lc −1). Eq.(2.3) respresents

a closed-form approximation for nD , which only depends on N ,L, ND0 and LC . The
computational complexity of the approximation is O(

p
N L2), which is needed for the

computation of LC .

We compare the approximation (2.3) with simulation results for the 8 real-world
networks and two types of synthetic networks. Figure 2.3 shows that for moderate values
of the fraction of removed links, the approximation exhibits a very good fit for the real-
world networks. This is quantified in Table 2.4 where we show two performance indicators:
r which denotes the relative error at l = 0.2 and l∗, which represents the smallest value of
l , where the relative error between the approximation and the simulated mean exceeds
5%.

Table 2.4: Performance indicators for the approximation nD,r and for the 8 real-world networks

Networks r l∗

Amazon 3.12% 0.32
Berlin traffic 3.15% 0.24

IEEE118 power grid 2.31% 0.29
Illinois students 30.20% 0.12

Hagy Chesapeake Bay 5.22% 0.19
INSNA 1.50% 0.68

s838 4.15% 0.23
TRN-Yeast-2 0.39% 0.72

Figure 2.3 illustrates that the approximation both under- and overestimates the value
of nD . Table 2.4 shows that the approximation is the most accurate for the INSNA social
network and the TRN-Yeast-2 network, while the least accurate for Illinois students
network and Hagy Chesapeake Bay ecosystem. According to Table 2.4, for 6 out of the
8 real-world networks, for random link removals up to 20%, the absolute value of the
relative error of the approximation (2.3) does not exceed 5%. For the worst performing
network, Hagy Chesapeake Bay, 12% of the links can be removed before the absolute
relative error exceeds 5%.

Finally, Figure 2.4 shows that the comparison for Erdős-Rényi and Barabási-Albert
networks, leads to the same conclusions as above. The performance indicators r and l∗
for the 4 synthetic networks are given in Table 2.5.

The overall conclusion of this subsection is that our approximation nD,r and in Eq.
(2.3), in most cases, also gives a good estimation for the minimum number of driver nodes,
if the fraction of randomly removed links l is larger than the fraction of critical links lc ,
but still sufficiently small.
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Figure 2.3: The normalized minimum number of driver nodes nD as a function of the fraction of removed links l
in real-world networks under random attacks. In each plot, the dashed line shows the simulation results and the
solid line shows our approximation. The simulation results for each fraction l are based on 10000 simulations.
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Figure 2.4: The normalized minimum number of driver nodes nD as a function of the fraction of removed links
l in synthetic networks under random attacks. The results for each fraction l are based on 10000 simulations.

Table 2.5: Performance indicators for the approximation (2.1) for the 4 synthetic networks

Networks r l∗

ER: G0.07(50) 2.32% 0.47
ER: G0.04(100) 23.56% 0.08

BA: N =200, E [D]=4 1.47% 0.57
BA: N =500, E [D]=8 3.25% 0.28

2.3. DRIVER NODES UNDER TARGETED ATTACKS
In this section, we quantify the impact of targeted link attacks on the minimum number of
driver nodes. We assume that the attacker knows the critical links, which will be attacked
first. We consider two scenarios. In the first scenario, the attacker removes critical links
uniformly at random. We call this a random critical link attack. For the second scenario,
we rank the critical links according to some network property. Inspired by the degree-
based attack methods adopted in [56], we will rank the critical links in ascending order of
their out-in degree δi , j , which is defined as the sum of the out-degree of its source node
d out

i and the in-degree of its target node d in
j , i.e., δi , j = d out

i +d in
j . We refer to the second

case as a targeted critical link attack. For both scenarios, we first remove critical links
in the original networks. After all critical links are removed, the other links are removed
uniformly at random. Attacks based upon critical links removal were also suggested by
Mengiste et al. [58], however, only simulations results were reported.
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2.3.1. THE FRACTION l OF REMOVED LINKS IS LESS THAN THE FRACTION

OF CRITICAL LINKS lc
Again, we will derive an approximation for the minimum number of driver nodes. We
assume that, as long as the number of removed links m ≤ Lc , the removal of each link
increases the minimum number of driver nodes ND by one. Consequently, when the
number of removed links is smaller than Lc (the fraction of removed links l is smaller than
lc ), the approximation for the minimum number of driver nodes ND increases linearly
with the fraction of removed links l . When the number of removed links equals the
number of critical links Lc , the minimum number of driver nodes ND equals ND0 +Lc .
Thus, when the fraction l of removed links is no more than the fraction lc of critical links,
we obtain the following approximation for nD :

nD,cr i t = ND0 + l L

N
(2.4)

We evaluate the performance of (2.4) in our 8 real-world networks. Figure 2.5 shows
that the targeted critical link attack is slightly more efficient than the random critical link
in increasing the minimum number of driver nodes. Considering the small difference
between the two scenarios, in the remainder of the chapter, we will only consider random
critical link attack, and simply refer to it as critical link attack. For all cases the approx-
imation (2.4) is a good fit for sufficiently small l , while in some cases this holds for all
l ≤ lc . We also observe that the approximation (2.4) provides a worst-case estimate for the
number of needed driver nodes. Comparing with the critical link attack, we quantify the
performance of the approximation (2.4) in Table 2.6. We use γ, the fraction of the interval
[0, lc ] where the absolute value of the relative error does not exceed 5%, and the absolute
value of the relative error r at l = lc , as the performance indicators.

Table 2.6: Performance indicators for the approximation nD,cr i t for the 8 real-world networks; l ≤ lc

Networks γ r

Amazon 100% 0.68%
Berlin traffic 6.38% 79.60%

IEEE118 power grid 78.58% 7.25%
Illinois students 33.33% 22.22%

Hagy Chesapeake Bay 100% 0%
INSNA 100% 0%

s838 70% 9.88%
TRN-Yeast-2 100% 0.68%

While for 4 of the 8 considered real-world networks the approximation (2.4) for nD,cr i t

is very good, the approximation is reasonable for two networks (IEEE118 power grid and
s838) and rather poor for the remaining two (Berlin traffic and Illinois students). However,
approximation (2.4) always seems to overestimate the normalized minimum number
of driver nodes nD and, hence, approximation (2.4) can be considered a worst-case
approximation.

Next we evaluate the performance of (2.4) in synthetic networks. Figure 2.6 shows that
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Figure 2.5: Performance of the approximation for the normalized minimum number of driver nodes nD as a
function of the fraction of removed links l in real-world networks under targeted attacks. The results for each
fraction l are based on 10000 simulations.
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our approximation Eq.(2.4) fits well with the simulation results in the first few removal
steps. Qualitatively we observe the same behaviour as in Figure 2.5.
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Figure 2.6: Performance of the approximation for the normalized minimum number of driver nodes nD as a
function of the fraction of removed links l in synthetic networks under targeted attacks.

2.3.2. THE FRACTION l OF REMOVED LINKS IS LARGER THAN THE FRACTION

OF CRITICAL LINKS lc
We now construct an approximation when the number of removed links is larger than Lc

(the fraction of removed links l is larger than lc ), in a similar way as in the previous section.
Again assuming that for l ≥ lc it holds that nD is quadratic in l , we obtain ND = dl 2+el+ f .
Boundary conditions are now obtained from the assumptions that the parabola passes
through (1,1) and (lc , ND0 +LC N ) and has a zero derivative at the latter point. This leads
to the following approximation for nD for all values of l :

nD,cr i t =
{ ND0+l L

N l ≤ lc
dl 2+el+ f

N l ≥ lc
(2.5)

with, d = N−ND0−lc L
N (lc−1)2 , e =−2dlc , and f = 1+d(2lc −1).

From Figure 2.7 and Figure 2.8, we can find the approximation nD,cr i t fits well with
simulation results when the fraction of removed links is sufficiently small. When the
fraction of removed links is getting larger, the difference between our approximation and
simulation results is relatively large. However, in all cases the approximation seems to
serve as a worst-case estimate for the number of required driver nodes. This implies that
approximation (2.5) can have value in risk assessment studies.
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Figure 2.7: Performance of the approximation for the normalized minimum number of driver nodes nD as a
function of the fraction of removed links l in real-world networks under targeted attacks.
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Figure 2.8: Performance of the approximation for the normalized minimum number of driver nodes nD as a
function of the fraction of removed links l in synthetic networks under targeted attacks.

2.4. COMPARISON OF nD UNDER DIFFERENT ATTACK STRATE-
GIES

In this section, we compare the minimum number of driver nodes for link removals under
four attack strategies: (a) critical link attack (targeted attack), (b) out-in degree-based
attack, (c) betweenness-based attack and (d) random attack. In the out-in degree-based
attack, we remove links one by one in the ascending order of the out-in degree using the
recalculated out-in degree distribution at every removal step. In the betweenness-based
attack, we remove links one by one in the descending order of the betweenness using the
recalculated betweenness distribution at every removal step.

Figure 2.9 and Figure 2.10 show that, for most values of l , the out-in degree-based
attack is the most harmful attack strategy. In other words, the out-in degree-based attack
strategy is more efficient than other attack strategies in increasing the minimum number
of driver nodes ND , and, thus, degrading the controllability of the networks. However,
if the fraction of removed links is small (l ≤ lc ), the critical link attack is more effective
than the out-in degree based attack. The most obvious case where this happens is for
the TRN-Yeast-2 network, see Figure 2.9(h). When the fraction of removed links becomes
larger, the critical link attack becomes less effective than the out-in degree-based attack.
For large values of l , the targeted attack approaches the random attack. The random
attack is the least effective attack strategy.

From results in Figure 2.9 and Figure 2.10, we can deduce that the links with a small
out-in degree have a strong tendency to be critical links, whose removal increases the
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Figure 2.9: Performance of different attack strategies in real-world networks.

minimum number of driver nodes ND more efficiently. The maximum matching, which



2.5. CONCLUSION

2

23

 !"

"!#

"!$

"!%

"!&

'
(

 !""!#"!$"!%"!&"!"

)*+,-./'0/10*23/42506.'78

09*.-.,+606.'70+--+,7
0:+'5/30+--+,7
0;<-=>'052?*22=@+8250+--+,7
0A2-B22''288=@+8250+--+,7

(a) ER network G0.02(200)

 !"

"!#

"!$

"!%

"!&

"!'

"!(

)
*

 !""!$"!&"!("!+"!"

,-./012)3243-562758391):;

3<-101/.9391):3.00./:
3=.)8263.00./:
3>?0@A)385B-55@C.;583.00./:
3D50E55))5;;@C.;583.00./:

(b) BA network with E [D]=4

Figure 2.10: Performance of different attack strategies in synthetic networks.

is used to determine ND , can explain this phenomenon. As shown in Figure 1.1, link a
and link d have a small out-in degree which equals 2. The number of matching links
will decrease by 1 after removing either link a or link d . Consequently, the number
of unmatched (driver) nodes will increase by one. Thus, link a and link d are critical
links. Link e has a larger out-in degree which equals 4. The number of matching links is
unchanged after removing link e. Link e is not a critical link. As a result, the link with a
larger out-in degree is less likely to be a critical link since after removing this link, other
links which share the same source or target node with this link, can also be alternative
matching links.

2.5. CONCLUSION
In this study, we derived analytical closed-form approximations for the minimum number
of driver nodes ND needed to control networks, as a function of the fraction of removed
links, both for random and targeted attacks. Our approximations rely on the notion of
critical links. As targeted attack we consider the case, where first critical links are removed.
Both for random and targeted attacks, our approximation is linear in the fraction of
removed links l , as long as this fraction is smaller than the fraction of critical links. For
fractions of removed links larger than the fraction of critical links, our approximation
is quadratic in l . We validated our approximation through simulations on real-world
and synthetic networks. For random attacks, the approximation is always very good, as
long as the fraction of removed links is smaller than the fraction of critical links. For
some cases, the approximation is still accurate for larger fractions of removed links. The
approximation for attacks targeting the critical links is also accurate, as long as the fraction
of removed links is sufficiently small. The approximation for the targeted attack always
serves as a worst-case estimate. Finally, we showed that the critical link attack is the most
effective among 4 considered attacks, as long as the fraction of removed links is smaller
than the fraction of critical links.





3
CONTROLLABILITY OF A CLASS OF

SWARM SIGNALLING NETWORKS

In this chapter, we propose closed-form analytical expressions to determine to the minimum
number of driver nodes that is needed to control a specific class of networks. We consider
swarm signalling networks with regular out-degree distribution where a fraction p of
the links is unavailable. We further apply our method to networks with bi-modal out-
degree distributions. Our approximations are validated through intensive simulations, and
have high accuracy when compared with simulation results for both types of out-degree
distribution.

3.1. INTRODUCTION
Network controllability is an essential property for the safe and reliable operation of real-
world infrastructureshas and has been a hot reseach topic in recent years [39] [40] [41] [42].
A system is said to be controllable if it can be driven from any initial state to any desired
final state by external inputs in finite time [24]. Merging classical control theory with
network science [43] introduced the notion of structural controllability. Let the N ×N
matrix A represent the wiring diagram of a network with N nodes, while the connection
of M input signals to the network is described by the N ×M input matrix B , where M ≤ N .
Then, the system characterized by (A,B) is structurally controllable, if it is possible to
find the non-zero parameters in A and B in such a way that the obtained system (A,B) is
controllable in the classical sense of satisfying Kalman’s rank condition.

Liu et al. [39] seminally use maximum matching to get the minimum number ND of
driver nodes, which are driven by external inputs, that are needed to achieve structural
controllability of a directed network. However, the results reported in Liu et al. [39]
critically depend on the assumption that the network has no self-links, i.e. a node’s
internal state can only be changed upon interaction with a neighbor [44]. Yuan et al. [40]
further proposed the concept of exact controllability based on the maximum multiplicity
of all eigenvalues of the adjacency matrix A to find the driver nodes in networks. Ruths et

25
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al. [45] developed a theoretical framework for characterizing control profiles of networks.
Jia et al. [41] classified each node into one of three categories, based on its likelihood of
being included in a minimum set of driver nodes and discovered bimodal behaviour for
the fraction of redundant nodes, when the average degree of the networks is high. Yan et
al. [46] investigated the relation between the maximum energy needed for controllability
and the number of driver nodes. Nepusz et al. [42] indicated that most real-world networks
are more controllable than their randomized counterparts. Zhang et al. [65] studied the
change of network controllability in growing networks and found the lower bound of the
maximum number of nodes that can be added to a network while keeping the number of
driver nodes unchanged.

The robustness of network controllability under perturbation of the network topology
has been investigated extensively. Lu et al. [57] discovered that a betweenness-based
strategy is quite efficient to harm the controllability of real-world networks. Lou et al. [66]
present a search for the network configuration with optimal robustness of controllability
against random node-removal attacks. Wang et al. [67] proposed a dynamic cascading
failure model and investigated the controllability robustness in real logistics networks. Nie
et al. [55] found that the controllability of Erdős-Rényi random networks with a moderate
average degree is less robust, whereas a scale-free network with moderate power-law
exponent shows a stronger ability to maintain its controllability, when these networks are
under intentional link attack. Sun et al. [36] proposed closed-form analytic approxima-
tions for the minimum number of driver nodes needed to fully control networks, where
links are removed according to both random and targeted attacks. Kamareji et al. [68]
discussed the resilience and controllability of dynamic collective behaviours for a class
of Swarm Signalling Networks (SSNs). The SSNs are modelled as directed graphs where
the nodes have k-regular out-degree and Poisson in-degree with average k. Following the
seminal paper by Liu et al. [39], an implicit equation is derived, whose solution leads to
the minimum number of driver nodes to control the whole swarm [68]. However, upon
validation of the formula given in [68] through simulation, we found obvious difference
between the analytical results and simulation results.

The aim of this chapter is threefold. First, we correct the assumption when calculating
the minimum fraction of driver nodes given in [68] and back this up with simulations.
Second, we generalize the results by considering SSNs where a fraction p of the links is
removed at random. Also for this case we are capable of deriving an implicit equation,
whose solution leads to the minimum number of driver nodes. Finally, we relax the
condition that the out-degree is regular: we look at bi-modal out-degree distributions,
where the out-degree is k1 for a fraction α of the nodes and k2 for a fraction 1−α of the
nodes. Also for this case we consider scenarios with unavailable links.

3.2. GENERATING FUNCTIONS
As introduced in Section 1.1, the Hopcroft-Karp algorithm is applied to find the minimum
number of driver nodes in a network. The Hopcroft-Karp algorithm works efficiently
when the network is small and sparse. However, when the network is large and dense,
the Hopcroft-Karp algorithm is no longer efficient in finding the number of driver nodes.
A general expression for the minimum number ND of driver nodes by using generating
functions [37] is applicable, which is also provided in [39], as long as the closed-form
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degree distribution of the network is known. In the rest of the chapter, we use the general
expression to estimate the minimum number ND of driver nodes in the SSNs with regular
out-degree distribution and then deduce the general formula by considering the scenario
when a fraction p of the links is unavailable. We then relax the condition that the out-
degree is regular and look into networks with bi-modal out-degree distributions.

In a network, let x denote the probability that a link is in state X . For example, X can
denote the existence of a link. We assume that the states of links are independent from
each other. Then, the probability that all the links of a node with degree k are in state X is
xk . Averaging this probability by the degree distribution of the network, we then obtain
the probability that all the links of a randomly chosen node are in state X . According to
the definition of the generating function [69], this probability can be written as

G(x) =
∞∑

k=0
pk xk , (3.1)

where pk is the probability that a randomly chosen node in the network has degree k.
Let x = 1, then we obtain G(1) = ∑∞

k=0 pk = 1. Besides, the average degree < k > of the
network can be expressed as:

< k >=G
′
(1) =

∞∑
k=0

kpk . (3.2)

Assuming the degree of the node reached by following a randomly chosen link is k,
the probability that all the other links of this node are in state X is xk−1. The distribution
of the degrees of the nodes reached by following a randomly chosen link is called excess
degree distribution qk , which depends on the degree distribution pk ; the larger pk is, the
larger qk is. Furthermore, following a link, it is easier to reach a node with larger k. Hence,
we have

qk ∝ kpk . (3.3)

The normalized distribution qk satisfies

qk = kpk∑∞
k=0 kpk

= kpk

< k > . (3.4)

Thus, the probability that all the other links of a node reached by following a randomly
chosen link are in state X is

H(x) =
∞∑

k=1
qk xk−1 =

∞∑
k=1

kpk

< k >xk−1 = G
′
(x)

G ′ (1)
. (3.5)

It must be highlighted that all these functions are based on the assumption that the states
of links are independent from each other [37].

3.3. SSNS WITH k-REGULAR OUT DEGREE
It is shown in Liu et al. [39] that the minimum number of driver nodes can be obtained by
using the following set of generating functions
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Gout (x) =
∞∑

kout=0
Pout (kout )xkout , (3.6)

Gi n(x) =
∞∑

ki n=0
Pi n(ki n)xki n , (3.7)

Hout (x) =
∞∑

kout=1

kout Pout (kout )

< kout >
xkout−1, (3.8)

Hi n(x) =
∞∑

ki n=1

ki nPi n(ki n)

< ki n > xki n−1, (3.9)

where Pout () and Pi n() denote the probability distribution function of the out-degree
and in-degree, respectively, and < kout > and < ki n > denote the average out-degree and
in-degree, respectively.

The general expression for the minimum fraction ND of driver nodes obtained by Liu
et al. [39] reads

nD = ND

N
= 1

2
{Gi n(w2)+Gi n(1−w1)−2+Gout (ŵ2)+Gout (1− ŵ1)+

k(ŵ1(1−w2)+w1(1− ŵ2))},
(3.10)

where w1, w2, ŵ1 and ŵ2 satisfy
w1 = Hout (ŵ2), (3.11)

w2 = 1−Hout (1− ŵ1), (3.12)

ŵ1 = Hi n(w2), (3.13)

ŵ2 = 1−Hi n(1−w1). (3.14)

By construction, the out-degree distribution for the SSN suggested in [68], is a Dirac
delta function, i.e.

Pout (kout ) = δ(k −kout ), (3.15)

where k is the fixed out-degree for every node. It is also shown in [68] that, for sufficiently
large SSN’s, the in-degree distribution closely resembles a Poisson distribution, with
average k, i.e.

Pi n(ki n) = kki n

ki n !
e−k . (3.16)

Using the degree distributions in Eqs.(3.6)-(3.9) it follows

Gout (x) = xk , (3.17)
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Gi n(x) = e−k(1−x), (3.18)

Hout (x) = xk−1, (3.19)

Hi n(x) = e−k(1−x). (3.20)

Therefore, the parameters w1, w2, ŵ1 and ŵ2 satisfy

w1 = ŵk−1
2 , (3.21)

w2 = 1− (1− ŵ1)k−1, (3.22)

ŵ1 = e−k(1−w2), (3.23)

ŵ2 = 1−e−kw1 . (3.24)

For the trivial case k = 0 it is easy to see that the above set of equations leads to nD = 1, i.e.
all agents in the swarm need to be controlled, which makes sense because the out-degree
of every node is 0 in this case. Also, for the case k = 1, Eqs.(3.21)-(3.24) are solved for
w1 = 1, w2 = 0, ŵ1 = e−1 and ŵ2 = 1−e−1. Hence, for k = 1, it holds that nD = e−1.

For the case k > 1, [68] argues that the smallest solution of the pair of Eqs.(3.21) and
(3.24) is given by w1 = ŵ2 = 0, and assuming that w1 and ŵ2 are indeed zero, the following
expression for the fraction of driver nodes is derived:

nD = 1

2
{(1−e−k(1−w2))k −1+e−k(1−w2) +k(1−w2)e−k(1−w2)}, (3.25)

where w2 is the solution of the implicit equation

1−w2 = (1−e−k(1−w2))k−1. (3.26)

From Eq.(3.25) the asymptotic behaviour of nD for large k can also be derived:

nD ≈ 1

2
e−k . (3.27)

However, upon simulation of SSN’s, determining the fraction of driver nodes by
applying the maximum matching algorithm, as described in [39], we found a discrepancy
between Eq.(3.25) and the simulation results, see Figure 3.1.

We generate 10000 directed networks with N = 10000 for each out-degree k whose
value ranges from 1 to 8. The fraction nD of driver nodes is the average fraction of driver
nodes over 10000 networks for each out-degree k. As shown in Figure 3.1, the result from
Eq.(3.25) fits well with the simulation result at k = 1. However, the difference between
Eq.(3.25) and simulation results are obvious for other values of k. For example, at all k > 1,
the results from the simulation are about two times the results given by Eq.(3.25).
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Figure 3.1: Comparing Eq.(3.25) with simulation results.

The discrepancy is due to the assumption that one can choose the solution of Eq.(3.21)
and Eq.(3.24) given by w1 = ŵ2 = 0. One can also argue that the pair Eq.(3.21) and
Eq.(3.24) is equivalent with the pair Eq.(3.22) and Eq.(3.23). If we assume

w1 = 1−w2 (3.28)

and
ŵ2 = 1− ŵ1, (3.29)

then the pair of equations Eq.(3.22)-Eq.(3.23) follows from the pair of equations Eq.(3.21)-
Eq.(3.24). As a result, applying Eq.(3.10) leads to the following expression for the fraction
of driver nodes:

nD = ((1−e−k(1−w2))k −1+e−k(1−w2) +k(1−w2)e−k(1−w2)), (3.30)

where w2 is still the solution of Eq.(3.26).
The asymptotic behaviour of nD for large k becomes:

nD ≈ e−k . (3.31)

Note that Eq.(3.30) also holds for k = 1, another indication for its correctness.
Table 3.1 shows the comparison between the approximations in Eqs.(3.30) and (3.31)

and the simulations.
We generate 10000 directed networks with N = 10000 for each out-degree k whose

value ranges from 1 to 8. The fraction of driver nodes nD is the average fraction of driver
nodes in 10000 networks. Then we calculate the analytical results from Eq.(3.30) and
Eq.(3.31) and also the corresponding absolute relative error r . As shown in Table 3.1, the
absolute relative errors of our approximation are less than 1% for k from 1 to 6. For the
case where k = 7 and k = 8, the absolute relative errors are still small which are less than
6%. When the values of k are small, the absolute relative errors of Eq.(3.31) are large.

We conclude from Table 3.1 that the simulations are an excellent fit with our approxi-
mation Eq.(3.30). Also, the asymptotic approximation Eq.(3.31) is increasingly accurate
for increasing k.
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Table 3.1: Comparing Eqs.(3.30)-(3.31) with simulation results.

k
Eq.(3.30) Eq.(3.31)

Simulation
value r value r

1 0.367879 0.0079% 0.367879 0.0079% 0.36782
2 0.161903 0.40% 0.135335 16.07% 0.162003
3 0.060759 0.29% 0.049787 17.82% 0.06068
4 0.020916 0.28% 0.018316 12.18% 0.020943
5 0.007262 0.93% 0.006738 6.35% 0.007221
6 0.002578 0.23% 0.002479 4.06% 0.002561
7 0.00093 2.76% 0.000912 0.77% 0.000929
8 0.000339 5.93% 0.000335 4.69% 0.000346

3.4. SSNS WITH k-REGULAR OUT DEGREE AND RANDOM LINK

FAILURES
In this section we generalize the results of the previous section by considering again SSNs
with k-regular out-degree, but now we assume that a fraction p of the links is removed
at random. This assumption is in accordance with some real-life scenarios, such as the
communication disconnection between robots in swarm robotic networks because of the
limited range of communication.

We will show that the analysis that led to our implicit approximations can also be
conducted for this case. A crucial step is to find expressions for the generating functions
Eqs.(3.6)-(3.9) for this case.

Instrumental in this is the following Lemma, see [70] which gives an expression for
the degree distribution, after removing m links uniformly at random.

Lemma 1. After removing m links in a uniform and random way from a network G0(N ,L),
with degree distribution Pr [DG0 = j ], the degree distribution Pr [DG = i ] of the new network
G satisfies:

Pr [DG = i ] = (1−p)i
N−1∑
j=i

(
j

i

)
p j−i Pr [DG0 = j ], (3.32)

where p = m
L denotes the fraction of removed links in the original network G0

Theorem 2. Consider a directed network with k-regular out-degree and Poisson in-degree
with average k. Then, after removing uniformly at random a fraction p of the links, the
generating functions Ḡout (x) and Ḡi n(x) of the out- and in-degree, respectively, satisfy

Ḡout (x) = (p + (1−p)x)k (3.33)

Ḡi n(x) = e−k(1−p)(1−x) (3.34)

The proof of Theorem 2 is given in Appendix A. Note that for the case without link
removals, i.e. p = 0, Eqs.(3.33)-(3.34) reduce to Eqs.(3.17)-(3.18) Also, we can deduce from
Eqs.(3.33)-(3.34) directly that both the average out- and in-degree after link removals,
which we will denote by k̄, equal

k̄ = k(1−p). (3.35)
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Theorem 3. Consider a directed network with k-regular out-degree and Poisson in-degree
with average k. Then, after removing uniformly at random a fraction p of the links, the
generating functions H̄out (x) and H̄i n(x) of the excess out- and in-degree, respectively,
satisfy

H̄out (x) = (p + (1−p)x)k−1 (3.36)

H̄i n(x) = e−k(1−p)(1−x) (3.37)

The proof of Theorem 3 is given in Appendix A. Note that for the case without link
removals, i.e. p = 0, Eqs.(3.36)-(3.37) reduce to Eqs.(3.19)-(3.20).

The results in Theorems 2 and 3 can also be directly deduced by using a result from [70]: if
the generating function for the degree distribution for a network is given by G(x), then the
generating function Ḡ(x) for the resulting network after a fraction p of links are randomly
removed, satsifies:

Ḡ(x) =G(p + (1−p)x). (3.38)

In addition, Theorem 3 can also be established directly by applying Eq.(3.5) to Eqs.(3.33)-
(3.34).

We are now in a position to state the following result.

Theorem 4. Consider a directed network with k-regular out-degree and Poisson in-degree
with average k. Then, after removing uniformly at random a fraction p of the links, the
fraction of minimum number of driver nodes is given by

nD = (p + (1−p)(1−e−k(1−p)(1−w2)))k −1+e−k(1−p)(1−w2)+
k(1−p)(1−w2)e−k(1−p)(1−w2),

(3.39)

where w2 satisfies
1−w2 = (p + (1−p)(1−e−k(1−p)(1−w2)))k−1. (3.40)

The asymptotic behaviour of nD for large k is given by

nD ≈ e−k(1−p). (3.41)

For the case without link removals, i.e. p = 0, Eqs.(3.39)-(3.40)-(3.41) reduce to
Eqs.(3.30)-(3.26)-(3.31), respectively. The proof of Theorem 4 is given in Appendix A.

Table 3.2 shows the comparison between the approximations in Eqs.(3.39) and (3.41)
and simulations, for the cases p = 0.2 and p = 0.5.

We generated 1000 directed networks with N = 10000 with out-degree k, wherek ∈
{1,2,3,4,5,6,7,8}. For each network with the same out-degree k, we randomly removed a
fraction p of links and get the value of nD , and then repeat this process for 1000 times.
Thus, the fraction of driver nodes nD for a combination (k, p) is the average fraction of
driver nodes in 106 realizations.

As shown in Table 3.2, the absolute relative errors r of our approximation Eq.(3.39)
are small which are less than 4% for all considered k values when p = 0.2 or p = 0.5. By
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Table 3.2: Comparing Eqs.(3.39)-(3.41) with simulation results.

k
Eq.(3.39) Eq.(3.41) Simulation

p = 0.2 r p = 0.5 r p = 0.2 r p = 0.5 r p = 0.2 p = 0.5
1 0.442926 1.41% 0.584101 3.72% 0.449329 0.019% 0.606531 0.021% 0.449321 0.606622
2 0.238827 0.30% 0.410116 0.12% 0.201897 15.21% 0.367879 10.20% 0.238905 0.410229
3 0.116278 0.30% 0.279218 0.24% 0.090718 21.75% 0.22313 19.89% 0.116176 0.279108
4 0.050341 0.38% 0.183439 0.19% 0.040762 18.72% 0.135335 26.08% 0.050167 0.183421
5 0.021143 0.96% 0.112696 0.29% 0.018316 12.53% 0.082085 26.95% 0.021215 0.112680
6 0.009002 0.13% 0.065394 0.55% 0.00823 8.70% 0.049787 23.45% 0.009041 0.065339
7 0.003902 0.20% 0.037384 1.18% 0.003698 5.41% 0.030197 18.92% 0.003915 0.03736
8 0.001714 2.50% 0.021502 0.20% 0.001662 5.5% 0.018316 14.65% 0.001706 0.021533

contrast, the relative errors of the asymptotic approximation Eq.(3.41) are large for most
cases.

We conclude from Table 3.2 that the simulations are an excellent fit with our approxi-
mation Eq.(3.39). Also, the asymptotic approximation Eq.(3.41) is increasingly accurate
for increasing k, as expected .

Finally, Figure 3.2 shows the fraction of driver nodes nD as function of the out-degree
k for several values of p. The value of nD decreases as the average degree of networks
increases for a specific p. For the same k value, a larger value of p leads to a larger value
of nD .
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Figure 3.2: Fraction of driver nodes as function of the out-degree k for several values of the fraction of removed
links p.

3.5. SSNS WITH BI-MODAL OUT-DEGREE
In this section we generalize the results of one of the previous sections by considering
SSNs with bi-modal out-degree, i.e. we assume that for a fraction α of nodes the out-
degree is k1, while for the remaining 1−α fraction of nodes, the out-degree equals k2. We
will assume k1 ̸= k2 and both k1 and k2 are larger than 0.

Theorem 5. Consider a directed network with bi-modal out-degree αδ(kout −k1)+ (1−
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α)δ(kout −k2), with average out-degree

k =αk1 + (1−α)k2 (3.42)

and a Poisson in-degree distribution with average k. The generating functions Ĝout (x) and
Ĝi n(x) of the out- and in-degree, respectively, satisfy

Ĝout (x) =αxk1 + (1−α)xk2 , (3.43)

Ĝi n(x) = e−k(1−x). (3.44)

The proof of Theorem 5 is given in Appendix B.

Theorem 6. Consider a directed network with bi-modal out-degree αδ(kout −k1)+ (1−
α)δ(kout −k2), with average out-degree

k =αk1 + (1−α)k2 (3.45)

and a Poisson in-degree distribution with average k. Then, the generating functions Ĥout (x)
and Ĥi n(x) of the excess out- and in-degree, respectively, satisfy

Ĥout (x) = αk1xk1−1 + (1−α)k2xk2−1

k
, (3.46)

Ĥi n(x) = e−k(1−x). (3.47)

The proof of Theorem 6 is given in Appendix B. The proof also can be established by
applying Eq.(3.5) directly to Eqs.(3.43)-(3.44). Note for the case k1 = k2 = k, where the
out-degree reduces to a Dirac function, Eqs.(3.43)-(3.47) reduce to Eqs.(3.17)-(3.20).

Theorem 7. Consider a directed network with bi-modal out-degree αδ(kout −k1)+ (1−
α)δ(kout −k2), with average out-degree k = αk1 + (1−α)k2 and Poisson in-degree with
average k. Then, the fraction of minimum number of driver nodes is given by

nD =α(1−e−k(1−w2))k1+(1−α)(1−e−k(1−w2))k2−1+e−k(1−w2)+ke−k(1−w2)(1−w2), (3.48)

where w2 satisfies

1−w2 = αk1(1−e−k(1−w2))k1−1 + (1−α)k2(1−e−k(1−w2))k2−1

k
. (3.49)

The asymptotic behaviour of nD for large k is given by

nD ≈ e−k . (3.50)

Note for the case k1 = k2 = k, where the out-degree reduces to a Dirac function, Eqs.
(3.48)-(3.49)-(3.50) reduce to Eqs.(3.30)-(3.26)-(3.31), respectively.

The proof of Theorem 7 is given in Appendix B.
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Table 3.3 shows the comparison between the approximations in Eqs.(3.48) and (3.50)
and simulations.

We generate 1000 directed networks with N = 10000 for each out-degree combination
(k1,k2,α). For each network with the same out-degree combination (k1,k2,α), we ran-
domly remove a fraction p of links and get the value of nD , and then repeat this process
for 1000 times. Thus, the fraction of driver nodes nD for a combination (k1,k2,α) is the
average fraction of driver nodes from 106 realizations. As shown in Table 3.3, the absolute
relative errors r of our approximation Eq.(3.48) are small indicating a good fit with simu-
lations. The absolute relative errors of Eq.(3.50) are larger, especially for small average
degree.

Table 3.3: Comparing Eqs.(3.48)-(3.50) with simulation results.

k1 k2 k α
Eq.(3.48) Eq.(3.50)

Simulation
value r value r

1 3 2.5 0.25 0.107746 0.51% 0.082085 23.43% 0.107795
1 3 2 0.5 0.183062 0.020% 0.135335 26.09% 0.181395
1 3 1.5 0.75 0.273670 0.040% 0.223130 18.44% 0.273455
2 4 3.5 0.25 0.036402 0.56% 0.030197 16.58% 0.036705
2 4 3 0.5 0.063648 0.27% 0.049787 21.57% 0.06352
2 4 2.5 0.75 0.106955 0.25% 0.082085 23.44% 0.106735
2 6 5 0.25 0.007355 1.04% 0.006738 9.30% 0.007315
2 6 4 0.5 0.022172 0.76% 0.018316 16.76% 0.022335
2 6 3 0.75 0.071349 0.19% 0.049787 30.09% 0.071875
2 8 6.5 0.25 0.001555 3.81% 0.001503 0.33% 0.001595
2 8 5 0.5 0.007556 2.20% 0.006738 8.86% 0.007745
2 8 3.5 0.75 0.045382 0.35% 0.030197 33.69% 0.04665
4 6 5.5 0.25 0.004324 0.68% 0.004087 4.84% 0.004362
4 6 5 0.5 0.007293 0.97% 0.006738 6.71% 0.007181
4 6 4.5 0.75 0.012357 1.40% 0.011109 8.34% 0.01228
4 8 7 0.25 0.000931 3.22% 0.000912 5.20% 0.000962
4 8 6 0.5 0.002593 4.18% 0.002479 4.36% 0.002706
4 8 5 0.75 0.007354 1.17% 0.006738 7.56% 0.007269

We conclude from Table 3.3 that the simulations are an excellent fit with our approxi-
mation Eq.(3.48). Also, the asymptotic approximation Eq.(3.50) is increasingly accurate
for increasing k.

3.6. SSNS WITH BI-MODAL OUT-DEGREE AND RANDOM LINK

FAILURES
In this section we generalize the results of the previous section by considering again SSNs
with bi-modal out-degree, but now we assume that a fraction p of the links is removed at
random. We will show that the analysis that led to our implicit approximations can also
be conducted for this case. Similar to the case for regular out-degree, a crucial step is to
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find expressions for the generating functions Eqs.(1)-(4) for this case.
Based on Lemma 1, we get:

Theorem 8. Consider a directed network with bi-modal out-degree αδ(kout −k1)+ (1−
α)δ(kout −k2), with average out-degree

k =αk1 + (1−α)k2 (3.51)

and Poisson in-degree with average k. Then, after removing uniformly at random a fraction
p of the links, the generating functions G̃out (x) and G̃i n(x) of the out- and in-degree,
respectively, satisfy

G̃out (x) =α(p + (1−p)x)k1 + (1−α)(p + (1−p)x)k2 (3.52)

G̃i n(x) = e−k(1−p)(1−x) (3.53)

By applying the generating function Ḡ(x) for the resulting network after a fraction
p of links are randomly removed [70], the theorem also follows directly from G̃out (x) =
Ĝout (p + (1− p)x) and G̃i n(x) = Ĝi n(p + (1− p)x). Note that for the case without link
removals, i.e. p = 0, Eqs.(3.52)-(3.53) reduce to Eqs.(3.43)-(3.44). Also, we can deduce
from Eqs.(3.52)-(3.53) directly that both the average out- and in-degree after link removals,
which we will denote by k̃, equal

k̃ = k(1−p) (3.54)

Theorem 9. Consider a directed network with bi-modal out-degree αδ(kout −k1)+ (1−
α)δ(kout −k2), with average out-degree

k =αk1 + (1−α)k2 (3.55)

and Poisson in-degree with average k. Then, after removing uniformly at random a fraction
p of the links, the generating functions H̄out (x) and H̄i n(x) of the excess out- and in-degree,
respectively, satisfy

H̃out (x) = αk1(p + (1−p)x)k1−1 + (1−α)k2(p + (1−p)x)k2−1

k
(3.56)

H̃i n(x) = e−k(1−p)(1−x) (3.57)

The proof of Theorem 9 can be obtained by combining the proofs of Theorems
3 and 6. By applying the generating function Ḡ(x) for the resulting network after a
fraction p of links are randomly removed [70], the theorem also follows directly from
H̃out (x) = Ĥout (p+(1−p)x) and H̃i n(x) = Ĥi n(p+(1−p)x). Note that for the case without
link removals, i.e. p = 0, Eqs.(3.56)-(3.57) reduce to Eqs.(3.46)-(3.47).

After obtaining expressions for all required generation functions, we are now in a
position to state the following result.
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Theorem 10. Consider a directed network with bi-modal out-degree αδ(kout −k1)+ (1−
α)δ(kout −k2), with average out-degree k = αk1 + (1−α)k2 and Poisson in-degree with
average k. Then, after removing uniformly at random a fraction p of the links, the fraction
of minimum number of driver nodes is given by:

nD =α(p + (1−p)(1−e−k(1−ω2)))
k1 + (1−α)(p + (1−p)(1−e−k(1−ω2)))k2

−1+e−k(1−p)(1−ω2) +k(1−p)e−k(1−ω2)(1−ω2)
(3.58)

where ω2 satisfies

1−ω2 =
αk1(p + (1−p)(1−e−k(1−p)(1−ω2)))k1−1 + (1−α)k2(p + (1−p)(1−e−k(1−p)(1−ω2)))k2−1

k
(3.59)

The asymptotic behaviour of nD for large k is given by

nD ≈ e−k(1−p) (3.60)

For the case without link removals, i.e. p = 0, Eqs.(3.58)-(3.60) reduce to Eqs.(3.48)-
(3.50).

The proof of Theorem 10 is given in Appendix B.

To verify our approximation Eq.(3.58), we generate 1000 directed networks with N =
10000 for each out-degree combination (k1,k2,α). For each network with the same out-
degree combination (k1,k2,α), we randomly remove a fraction p of links and get the value
of nD , and then repeat this process for 1000 times. Thus, the fraction of driver nodes nD

for a combination (k1,k2,α, p) is the average fraction of driver nodes in 106 realizations.
Table 3.4 shows the comparison between Eq.(3.58) and simulations. In most cases,

the relative errors between Eq.(3.58) and simulations are small. We conclude from Table
3.4 that the simulations are an excellent fit with our approximation Eq.(3.58).

3.7. DISCUSSION
In this chapter, we correct the formula given in [68] for the minimum number of driver
nodes for a specific class of swarm signalling networks, which are characterised by a
regular out-degree. We then generalize the results by considering SSNs with a regular out
degree k where a fraction p of the links is unavailable. For this case we derive an implicit
equation, whose solution leads to the minimum number of driver nodes. We find that our
approximation fits well with simulation results. Finally, we relax the condition that the
out-degree is regular and look into bi-modal out-degree distributions. For this case we
also consider scenarios with unavailable links. We derive an implicit equation and verify
its accuracy. We find that our approximation for bi-modal out-degree distribution fits
well with simulation results.
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Table 3.4: Comparing the approximation Eq.(3.58) with simulation results.

k1 k2 k α
Eq.(3.58) Simulation

p = 0.2 r p = 0.5 r p = 0.2 p = 0.5
1 3 2.5 0.25 0.251484 0.50% 0.541569 0.19% 0.252746 0.540569
1 3 2 0.5 0.340662 0.41% 0.627028 1.29% 0.342065 0.619028
1 3 1.5 0.75 0.431100 0.29% 0.709013 2.21% 0.432370 0.693714
2 4 3.5 0.25 0.122113 0.25% 0.410770 0.29% 0.121813 0.409569
2 4 3 0.5 0.183813 1.32% 0.476848 0.43% 0.186273 0.474822
2 4 2.5 0.75 0.247667 0.80% 0.535501 0.43% 0.245692 0.537824
2 6 5 0.25 0.033257 0.87% 0.299464 0.52% 0.033549 0.297913
2 6 4 0.5 0.094631 1.86% 0.435961 1.48% 0.096426 0.429607
2 6 3 0.75 0.216405 0.93% 0.514376 3.06% 0.218443 0.499125
2 8 6.5 0.25 0.008650 0.06% 0.101497 17.49% 0.008655 0.123010
2 8 5 0.5 0.037450 0.81% 0.406573 0.15% 0.037150 0.405974
2 8 3.5 0.75 0.204397 0.017% 0.505728 1.00% 0.204363 0.510815
4 6 5.5 0.25 0.020441 5.68% 0.163736 0.14% 0.021671 0.163504
4 6 5 0.5 0.032167 4.57% 0.229064 0.44% 0.033706 0.228061
4 6 4.5 0.75 0.050380 1.00% 0.288043 0.80% 0.049880 0.285759
4 8 7 0.25 0.005504 1.47% 0.058532 0.33% 0.005586 0.058338
4 8 6 0.5 0.013368 0.077% 0.135230 0.42% 0.013357 0.134664
4 8 5 0.75 0.033187 0.27% 0.265665 0.93% 0.033275 0.263211



4
USING MACHINE LEARNING TO

QUANTIFY THE ROBUSTNESS OF

NETWORK CONTROLLABILITY

This chapter presents machine learning based approximations for the minimum number of
driver nodes needed for structural controllability of networks under link-based random and
targeted attacks. We compare our approximations with existing analytical approximations
and show that our machine learning based approximations significantly outperform the
existing closed-form analytical approximations in case of both synthetic and real-world
networks. Apart from targeted attacks based upon the removal of so-called critical links,
we also propose analytical approximations for out-in degree-based attacks.

4.1. INTRODUCTION
In the modern world, we see networks everywhere such as the Internet, transportation
networks, and communication networks [72]. It is important that these networks perform
their desired functions properly. Naturally, we need to control these networks to ensure
their proper functioning and maintenance. Network science offers a way to study and
analyze these networks using graph theory. The entities in a network are represented by
the nodes and interconnections between the nodes are represented by links. For example,
in an air-transportation network, the nodes represent different airports and the links
represent the flight paths that connect these airports. Network controllability is the ability
to drive a system from an initial state to any other state in a finite time by application
of external inputs on certain nodes [26]. For directed networks, Liu et al. [39] showed
that the minimum number of nodes required to control a network can be identified
through the maximum matching of the network. However, Cowan et al. [73] pointed
out that the results of Liu et al. [39] are based on the assumption of no self-links. In

This chapter is based on the published paper [71].
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other words, a state of a node can only be changed through interacting with its adjacent
nodes. In Chapter 2, we derived closed-form analytical approximations for the minimum
number of driver nodes as a function of the fraction of removed links for both random
and targeted attacks [36]. However, the approximations sometimes do not fit well with the
simulations, especially when the fraction of removed links is not small. Figure 4.1 shows
the performance of Sun’s approximation as compared to simulation for a Erdős-Rényi
network under targeted attack.

The objective of this work is to improve the analytical approximations for both ran-
dom and targeted attacks using machine learning methods. We will compare our ma-
chine learning based approximations with the existing analytical approximations and
simulations. Furthermore, we will also derive an analytical approximation for out-in
degree-based attacks and evaluate its performance on both synthetic and real-world
networks.

Figure 4.1: Performance comparison of Sun’s approximation for the normalized minimum number of driver
nodes as a function of the fraction of removed links in a Erdős-Rényi network under targeted attack.

In the remainder of this chapter, in Section 4.2 we describe the concept of network
robustness. In Section 4.3, we discuss the closed-form analytical approximations for
the minimum number of driver nodes given in [36]. Machine learning methods and
information related to training and testing data are discussed in Section 4.4. Machine
learning based approximations for both random and targeted attacks are presented in
Section 4.5. An analytical approximation for out-in degree-based attacks is also derived
in this section. Additionally, we also analyze and compare our machine learning based
approximations with the approximations and simulation results obtained in Chapter 2.
Finally, in Section 4.6 we conclude this chapter.

4.2. NETWORK ROBUSTNESS
Network robustness is the ability of a network to deal with failures and errors. In real-
world networks, we encounter various failures such as power transmission line failures
in an electrical network and network disruption due to natural disasters. It is important
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to make networks robust to deal with such failures. A generic quantitative definition
of network robustness does not exist but there are various metrics to assess network
robustness depending on the type of network and its purpose. In this work, we assess
network robustness in terms of controllability. Network robustness under perturbations
has been studied extensively. Socievole et al. [49] studied network robustness in case of
epidemic spreads. They investigated Susceptible-Infected-Susceptible (SIS) spreads with
N-Intertwined Mean-Field Approximation (NIMFA) epidemic threshold as the robustness
metric. Trajanovski et al. [52] considered node removals in both random and targeted
attacks to study network robustness. They used two metrics to evaluate the network
robustness, the size of the giant component and efficiency. Wang et al. [20] considered
effective graph resistance as the robustness metric to investigate network robustness in
case of both synthetic and real-world networks. Koç et al. [74] studied the robustness of
networks in terms of cascading failures that lead to blackouts in electrical power grids.

Real-world networks are often challenged by perturbations in the form of random
and targeted attacks [75]. In this work, we simulate these attacks by removing links. We
do not consider node removals. Random attacks are the unintentional failures such as
disruption of networks due to natural disasters and failures due to exhausted mechanical
parts [15]. Targeted attacks are carried out by people with malicious intent to maximize
the damage [47] [76] [22] [77]. In targeted attacks, it is assumed that the attacker has the
information related to network topology, functions and vulnerabilities.

4.3. ANALYTICAL APPROXIMATIONS
The analytical approximations for random and targeted link removals [36] in Chapter
2 are based on the concept of critical links. If the number of driver nodes required to
control a network increases when removing a specific link, then that link is called a critical
link. A link that does not belong to any maximum matching is dubbed a redundant link. A
link that is neither critical nor redundant is an ordinary link. The initial number of driver
nodes NDO i.e. the number of driver nodes before any attack, is calculated using the
Hopcroft-Karp algorithm [28]. To find the number of critical links, each link in a network
is removed one by one and the Hopcroft-Karp algorithm [28] is applied simultaneously.
If the current number of driver nodes ND exceeds the initial number of driver nodes
NDO , then the removed link is a critical link. In a network with N nodes and L links, the
Hopcroft-Karp algorithm [28] is applied L times to identify all the critical links.

4.3.1. NUMBER OF DRIVER NODES UNDER RANDOM ATTACKS
As discussed in Chapter 2, for random attacks, the normalized minimum number of driver
nodes is expressed as,

nD,r and =
{

NDO+lLC
N , l ≤ lC

al 2 +bl + c, l ≥ lC
(4.1)

where nD,r and represents the normalized value of the minimum number of driver nodes
required to fully control a network, LC represents the number of critical links, l represents
the fraction of removed links and lC = LC

L represents the fraction of critical links. The
values of a, b and c are derived from the boundary conditions described in [36] such that
a = N−NDO−LC

N (lC−1)2 , b = LC
N −2alC and c = 1− LC

N +a(2lC −1).
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4.3.2. NUMBER OF DRIVER NODES UNDER TARGETED ATTACKS
In targeted attacks, first we randomly remove all the critical links and then the remaining
links. Sun et al. [36] derived the following analytical approximation for targeted attacks.

nD,cr i t =
{

NDO+lL
N , l ≤ lC

dl 2 +el + f , l ≥ lC
(4.2)

where d , e and f are derived from the boundary conditions described in [36] such that

d = N−NDO−lC L
N (lC−1)2 , e =−2dlC and f = 1+d(2lC −1).

4.4. MACHINE LEARNING
Machine learning is a technique to predict the outcome of a certain event by learning
from data. The data could already be available from experiments, data centers or it
can be generated through proper simulations. There are numerous applications of ma-
chine learning such as predicting customer’s buying habits based on historical data in
e-Commerce, weather forecasts and Virtual Personal Assistants such as Siri and Alexa.
In broader terms, machine learning is classified as supervised learning, unsupervised
learning and reinforcement learning. Furthermore, supervised machine learning is di-
vided into classification and regression problems. In this work, we use various supervised
learning methods for regression problems to predict the number of driver nodes under
various attacks. Specifically, we use Linear Regression, Random Forest and Artificial
Neural Networks. Recently, Lou et al. [78] also investigated the use of neural networks for
network controllability. However, they used another type of neural networks, Convolution
Neural Networks.

To develop our machine learning models, various hyper-parameters are used. Table
4.1 and Table 4.2 shows the number of hidden layers and other hyper-
parameters that are used to develop our ANN models. For our linear regression model,
we use the least-squares to minimize the errors. Additionally, we also use k-fold cross-
validation with k = 10 to check for over-fitting. In our Random-Forest model, we select
the number of trees as 50. Moreover, we also use feature importance scores to determine
the features that contribute more to the output. A detailed explanation of the choice of
hyper-parameters is presented in the master thesis report [79].

Table 4.1: Selection of ANN size for different networks under targeted, random and out-in degree-based attacks.

Attack
Number of hidden layers

Real-world Erdős-Rényi Barabási-Albert
Targeted critical link attack 512/512/512 128 512/512/512

Random attack 512/512/512 128/512/512/512 128/512/512/512
Out-in degree based attack 512/512/512 128 512/512/512

4.4.1. DATASET FOR REAL-WORLD NETWORKS
Now we discuss the real-world dataset that we consider to construct our models. For
synthetic networks, we generate data through simulations. We use the dataset available
at The Internet Topology Zoo [80] for real-world networks. It is a collection of a publicly
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Table 4.2: ANN hyper-parameters selection.

Hyper-
parameters

Activation
Function

Loss
Function

Dropout
rate

Early
Stopping

Patience Epochs
Batch

size
Selection ReLU MSE 0.2 Yes 50 300 32

Table 4.3: Properties of 10 real-world networks used for testing our models.

Network N L LC NDO

Colt 153 177 38 81
Surfnet 50 68 23 15

EliBackbone 20 30 12 5
Garr200912 54 68 9 30
GtsPoland 33 37 12 14

Ibm 18 24 6 6
Arpanet19706 9 10 6 2
GtsHungary 30 31 8 18
BellCanada 48 64 17 16

Uninet 69 96 19 4

accessible dataset provided by different network operators. As the networks evolve and
change, the dataset is updated and in this sense, it is not fixed. Network operators
provide maps of their networks and this dataset is interpreted from those maps. However,
there are various ambiguities in the dataset as the interpretations are not accurate for
some networks. The dataset is available in Graph Markup Language (GML) [81] and
GraphML [82] formats. In this work, we consider the dataset that is available in GraphML
format as it is easy to parse using python’s NetworkX library. We pre-process the data to
remove any disconnected networks and multigraphs. After pre-processing of the dataset,
we have 232 networks out of which we use 192 networks for training and the remaining
40 networks for testing. The networks in the dataset are not directed, however, we use the
information available in two attributes of the GraphML format, edge source and target, to
make these networks directed.

The networks in the dataset have small average degrees. The smallest network is the
Arpanet196912 network with 4 nodes and 4 links. Cogentco network is the largest network
with 197 nodes and 243 links. Additionally, there are some networks that have zero critical
links. We conclude that the networks in this dataset vary a lot and machine learning
models might have difficulties in learning from such a varying dataset. Table 4.3 lists the
properties of some of the real-world networks we use for testing.

4.4.2. DATASETS FOR SYNTHETIC NETWORKS
We generate data for synthetic networks using simulations. We consider two types of
synthetic networks, Erdős-Rényi and Barabási-Albert networks. These networks come
under the class of random graphs [83]. In Erdős-Rényi (ER) random graphs G(N , p) [84],
N denotes the number of nodes and p denotes the probability of an outbound link from
a node to another node. For Erdős-Rényi networks, we generate networks with different
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values of N and p. For each such network, we generate 100 corresponding networks and
determine the average values of network characteristics such as the average degree, the
average number of links, the number of critical links and graph metrics such as diameter
and clustering coefficient.

In the Barabási-Albert (BA) scale-free model G(N , M) [85] [86], N indicates the number
of nodes and M indicates the number of links of a new node that attaches itself to the
original network. To generate a BA network, we assume a complete digraph of MO nodes
where MO equals M . Then we add new nodes one by one with a probability proportional
to the number of links of the existing nodes. We generate BA networks with different values
of N and M using simulations. For each BA network, we also generate 100 corresponding
networks to get the average values of the network characteristics such as the average
degree, the average number of links, the average number of critical links and graph metrics
such as diameter and clustering coefficient. Moreover, it is to be noted that in a targeted
critical link attack, first, the critical links are removed randomly and then the remaining
links. For such random removal of links, we use 10000 simulations. Furthermore, in
random attacks, all the links are removed uniformly at random and we also use 10000
simulations to get the average values of the minimum number of driver nodes.

4.5. MEASURING THE ROBUSTNESS OF NETWORK CONTROLLA-
BILITY USING MACHINE LEARNING

4.5.1. TARGETED CRITICAL LINK ATTACK
To develop a machine learning based approximation for targeted critical link attack, we
predict the difference in the normalized minimum number of driver nodes between the
simulation value and the analytical approximation Eq.(4.2) at l = lC . We use various input
features such as the number of nodes N , number of links L, number of critical links LC ,
clustering coefficient, average degree and diameter. We choose to estimate the difference
at lC as the original approximation fits well with the simulation for l ≪ lC [36], while the
difference can be significant at l = lC , see also Figure 4.1 , where lc = 0.2. We subtract this
predicted difference to get a new value nD X that is closer to the simulation. We assume a
linear relationship similar to the analytical approximation Eq.(4.2) for l ≤ lC . The value of
the normalized minimum number of driver nodes at l = 0 is nDO where, nDO = NDO

N and
at l = lC , the value is assumed to be nD X . From these two conditions we get,

nD,cr i t ,ML = nDO + nD X −nDO

lC
l , (4.3)

where nD,cr i t ,ML gives us the new machine learning based normalized minimum
number of driver nodes for l ≤ lC . When the fraction of removed links l is greater than
or equal to the fraction of critical links lC i.e. for l ≥ lC , we estimate the normalized
minimum number of driver nodes using a parabolic approximation of the form,

nD,cr i t ,ML = dMLl 2 +eMLl + fML , (4.4)

where dML , eML and fML are derived from the boundary conditions. For the first
boundary condition, nD,cr i t ,ML equals nD X at l = lC . When all the links are removed, we
need to control all the nodes. Hence, at l = 1, nD,cr i t ,ML equals one. Finally, for the third
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boundary condition, we assume the derivative of the parabola is zero at l = lC . Using these
boundary conditions, we get dML = 1−nD X

l 2
C−2lC+1

, eML =−2dMLlC and fML = 1+dML(2lC −1).

Finally, the machine learning based approximation for targeted attacks can be expressed
as,

nD,cr i t_ML =
{

nDO + nD X −nDO
lC

l , l ≤ lC

dMLl 2 +eMLl + fML , l ≥ lC
(4.5)

Figure 4.2: Comparison of different methods to get the normalized values of minimum number of driver nodes
nD needed to control the network as a function of the fraction of removed links in synthetic networks under
targeted attacks. Simulations are based on 10,000 realizations of attacks.

In Figure 4.2, we compare the performance of linear regression, random forest and
artificial neural network models with simulation and analytical approximation Eq.(4.2)
for synthetic networks under targeted attacks. We notice that the machine learning based
approximation fits better with the simulations than the analytical approximation Eq.(4.2).
To further quantify the performance, we use mean absolute errors and mean relative
errors to compare the performance of different approximations. Table 4.4 compares
the performance of ANN with the analytical approximation Eq.(4.2) for a few synthetic
networks. We observe that the mean relative error decreases from 19.07 % to 2.13 % using
the ANN-based approximation for ER network with N = 100 and p = 0.019. For BA network
with N = 100 and M = 2, we see an improvement from 7.04 % to 4.67 %. Furthermore, the
mean relative errors are larger for Barabási-Albert networks as compared to Erdős-Rényi
networks. This is because, in BA networks, there are a few nodes with high degrees, so
even after removal of some links, the minimum number of driver nodes does not change
significantly and hence, the curve is less steep in BA networks as compared to ER networks
as also evident from Figure 4.2.

Next, we evaluate the performance of machine learning based approximation for
real-world networks under targeted attacks. The model is trained on 192 real-world
networks and tested on 40 networks. Figure 4.3 shows that machine learning based curves
fit better with the simulations than the analytical approximation Eq.(4.2) for Colt and
Surfnet network. We also compare the performance of different machine learning models
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Table 4.4: Performance indicators for synthetic networks under targeted attacks.

Network Mean Absolute Error Mean Relative Error
Approximation ANN Approximation ANN

ER(100, 0.019) 0.1000 0.0124 0.1907 0.0213
ER(200, 0.0063) 0.0663 0.0115 0.1008 0.0175
ER(400, 0.0026) 0.0472 0.0046 0.0659 0.0071

BA(50, 2) 0.0590 0.426 0.0821 0.0582
BA(100, 2) 0.051 0.0351 0.0704 0.0467

based on the root mean squared errors (RMSE). The RMSE values are found to be 0.0723,
0.0550 and 0.0430 for linear regression, random forest and artificial neural network model
respectively. We observe that the ANN model performs slightly better than the random
forest model. The linear regression model performs the least amongst the three machine
learning models. This can be explained based on the non-linear relationship between the
input features and the difference that we predict.

In Table 4.5, we compare the performance of the ANN-based approximation and the
analytical approximation Eq.(4.2) for 10 real-world networks. We notice that machine
learning based approximation performs the best in the case of the Colt network with a
mean relative error of 1.46 % and the worse in Ibm network with a mean relative error of 8.3
%. Furthermore, we observe that 9 out of 10 networks have mean relative errors of less than
5 %. Among the 40 test networks, the machine learning based approximation performs
better than the analytical approximation Eq.(4.2) in 30 networks. For the remaining 10
networks, the analytical approximation performs only slightly better with a difference of
less than 2 %.

Figure 4.3: Comparison of different methods to get the normalized values of minimum number of driver nodes
nD needed to control the network as a function of the fraction of removed links in real-world under targeted
attacks. Simulations are based on 10,000 realizations of attacks.
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Table 4.5: Performance indicators for real-world networks under targeted attacks.

Network Mean Absolute Error Mean Relative Error
Approximation ANN Approximation ANN

Colt 0.0393 0.0116 0.0512 0.0146
Surfnet 0.0597 0.0095 0.0866 0.0151

EliBackbone 0.1468 0.0201 0.2471 0.0376
Garr200912 0.0223 0.0202 0.0277 0.0251
GtsPoland 0.0266 0.0171 0.0335 0.0235

Ibm 0.0595 0.0519 0.0956 0.0832
Arpanet19706 0.0440 0.0255 0.0588 0.0434
GtsHungary 0.0269 0.0321 0.0311 0.0373
BellCanada 0.0502 0.0135 0.0757 0.0230

Uninet 0.1195 0.0309 0.184 0.0485

4.5.2. RANDOM ATTACK

In this section, we develop a machine learning based approximation for the normal-
ized minimum number of driver nodes as a function of the fraction of removed links
for random attacks. Furthermore, we compare our approximation with the analytical
approximation Eq.(4.1) and simulations. We also evaluate the performance of different
machine learning algorithms. For real-world networks, the RMSE comes out to be 0.0165
for the ANN model and 0.0192 for the random forest model. Again, the ANN model
performs slightly better in terms of RMSE. In the remainder of this section, we will only
consider ANN. For random attacks, we predict the normalized minimum number of driver
nodes for different values of the fraction of removed links starting with l = 0 to l = 1 in
steps of 0.05. In other words, for each value of N and p in ER networks, 21 data points
are generated for training. The same approach is followed for BA networks for each N
and M value. The reason for such an approach is that at lC , the difference between the
approximation value and the simulation value is not significant as the approximation fits
well for l ≤ lC [36].

Next, we compare our machine learning based approximation for random attacks
with the analytical approximation Eq.(4.1) and simulation. Figure 4.4 shows that the ANN
curves fit better with the simulations for both Erdős-Rényi and Barabási-Albert networks.
To quantify this improvement, Table 4.6 compares the performance of ANN and analytical
approximation Eq.(4.1) based on the mean absolute errors and mean relative errors. We
notice a significant improvement in mean relative error from 30.80 % to 6.75 % for ER
network with N = 50 and p = 0.082 using ANN. Similarly, we see an improvement from
13.70 % to 0.44 % in the mean relative error in ER network with N = 100 and p = 0.016.
Furthermore, for BA network with N = 100 and M = 2, the mean relative error improves
from 4.55 % to 0.49 %.

Specifically for ER networks under random attacks, Liu et al. [39] also derived an
approximation based on generating functions. According to Liu et al. [39], the normalized
minimum number of driver nodes is given by,
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Table 4.6: Performance indicators for synthetic networks under random attacks.

Network Mean Absolute Error Mean Relative Error
Approximation ANN Approximation ANN

ER(50, 0.082) 0.0712 0.0105 0.3080 0.0675
ER(100, 0.016) 0.0085 0.0024 0.0137 0.0044

BA(50, 2) 0.035 0.0032 0.0517 0.0051
BA(100, 2) 0.032 0.0030 0.0455 0.0049

nD = w1 −w2 +k(1− l )w1(1−w2), (4.6)

where k is the average out-degree of an ER network expressed as k = p(N −1). The

solution of the implicit equation w1 = e−k(1−l )e−k(1−l )w1 gives us the value of w1 and w2 is
given by, w2 = 1−e−k(1−l )w1 .

Table 4.7: Performance indicators for all three approximations for ER networks under random attacks.

Network Mean Relative Error
Approximation

by Sun et al. Eq.(4.1)
ANN

Approximation
by Liu et al. Eq.(4.6)

ER(100, 0.015) 0.0162 0.0084 0.0045
ER(100, 0.017) 0.0156 0.0097 0.0020
ER(200, 0.006) 0.0117 0.0059 0.0018

Now we will compare our ANN-based approximation with Sun’s approximation Eq.(4.1),
Liu’s approximation Eq.(4.6) and simulations. From Table 4.7, it is evident that Liu’s ap-
proximation Eq.(4.6) outperforms both ANN based approximation and Sun’s approxima-
tion Eq.(4.1). In ER(100,0.015) network, the mean relative error using Sun’s approximation
Eq.(4.1) comes out to be 1.62 %. Our ANN based approximation and Liu’s approximation
Eq.(4.6) both performs better than Sun’s approximation Eq.(4.1) with mean relative errors
of 0.84 % and 0.45 % respectively.

We note that Liu’s approximation is based upon the use of generating functions for
the degree and excess degree distribution, whose expressions are not known for targeted
link removals.

For real-world networks under random attacks, we follow a different approach. Here
we do not predict the normalized minimum number of driver nodes for the entire range
of the fraction of removed links. This is because of the availability of a limited dataset
for training and hence, the model always performs worse than the analytical approxima-
tion. Moreover, difference estimation at lC is also not a suitable choice as the original
analytical approximation is already good for l ≤ lC [36]. For larger values of the fraction of
removed links, the difference in nD values between the approximation and simulation is
significant. So, we choose a point l = 0.4 to predict the difference and subtract it from the
approximation value to get a new value nD X . Let the value at l = 0.4 be lX . At l = 0, the
normalized minimum number of driver nodes equals nDO and at l = 0.4, nD equals nD X .
From these two points we get,
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Figure 4.4: Comparison of different methods to get the normalized values of minimum number of driver nodes
nD needed to control the network as a function of the fraction of removed links in synthetic networks under
random attacks. Simulations are based on 10,000 realizations of attacks.

nD,r and ,ML = nDO + nD X −nDO

lX
l , (4.7)

where, nD,r and ,ML gives the normalized minimum number of driver nodes as a func-
tion of the fraction of removed links for l ≤ lX . For l values greater than or equal to
lX , we calculate the normalized minimum number of driver nodes using a parabolic
approximation,

nD,r and ,ML = aMLl 2 +bMLl + cML , (4.8)

where we derive the values of aML , bML and cML from the boundary conditions.
At l = lX , the value and derivative of Eq.(4.8) equals that of Eq.(4.7). Hence, we get
aMLl 2

X +bMLlX + cML = nD X and 2aMLlX +bML = nD X −nDO
lX

. At l = 1 i.e. when all the
links are removed, we need to control all the nodes. Hence, nD equals one and we get,

aML +bML + cML = 1. Using these boundary conditions we get, aML = nDO−1+ nD X −nDO
lX

−l 2
X +2lX −1

,

bML = nD X −nDO
lX

− 2aMLlX and cML = 1+ aML(2lX − 1)− nD X −nDO
lX

. Finally, we express
machine learning based normalized minimum number of driver nodes for real-world
networks under random attacks as,

nD,r and ,ML =
{

nDO + nD X −nDO
lX

l , l ≤ lX

aMLl 2 +bMLl + cML , l ≥ lX
(4.9)

Figure 4.5 compares our ANN-based approximation and Sun’s approximation Eq.(4.1)
with simulations for two real-world networks. We observe that ANN-based approximation
fits better with the simulations. To analyze this comparison, Table 4.8 quantifies the
performance using mean absolute and mean relative errors for 10 considered real-world
networks. It can be noticed that our ANN-based approximation performs the best in the
Colt network with a mean relative error of 0.58 % and the least in the Uninet network with
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Figure 4.5: Comparison of different methods to get the normalized values of minimum number of driver nodes
nD needed to control the network as a function of the fraction of removed links in real-world networks under
random attacks. Simulations are based on 10,000 realizations of attacks.

a mean relative error of 2.75 %. Moreover, the ANN-based model does not always perform
better than the analytical approximation. For example, in Ibm and Arpanet19706, the
mean relative errors using ANN-based model are larger than the analytical approximation
based mean relative errors. This can be explained based on the availability of a limited
amount of training dataset for real-world networks. Among the 40 test real-world net-
works, the machine learning based approximation performs better than the analytical
approximation in 28 networks.

Table 4.8: Performance indicators for real-world networks under random attacks.

Network Mean Absolute Error Mean Relative Error
Approximation ANN Approximation ANN

Colt 0.0079 0.0043 0.0106 0.0058
Surfnet 0.0072 0.0052 0.0128 0.0090

EliBackbone 0.0256 0.0160 0.0454 0.0274
Garr200912 0.0121 0.0094 0.0156 0.0130
GtsPoland 0.0081 0.0046 0.0127 0.0068

Ibm 0.0072 0.0086 0.012 0.015
Arpanet19706 0.0046 0.0062 0.0073 0.0123
GtsHungary 0.0082 0.0072 0.0098 0.0088
BellCanada 0.0105 0.0071 0.0197 0.0122

Uninet 0.0207 0.0166 0.0338 0.0275

4.5.3. OUT-IN DEGREE-BASED ATTACK
In this section, we will derive an analytical approximation for the normalized minimum
number of driver nodes nD as a function of the fraction of removed links l for out-in
degree-based attacks. Out-in degree of a link is defined as the sum of the out-degree
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of a source node and the in-degree of a target node. First, we compare different out-in
based-attack strategies to select the most efficient one. In the first strategy, we remove
links based on the increasing order of out-in degrees, second, if the out-in degrees are the
same then links are removed based on the increasing order of out-degrees and finally, in
the third strategy, we remove the links based on the decreasing order of out-in degrees.
Based on simulations, we found that the first two strategies overlap and are the most
efficient ones. So, for the remainder of this section, we will use the first strategy in which
we remove links based on the increasing order of out-in degrees. It is to be noted that
after removing a link, we re-calculate the out-in degrees in order to determine the next
link to be removed.

CASE 1: l ≤ lC

Similar to [36], when the fraction of removed links is less than or equal to the fraction of
critical links, we assume a linear relationship between the minimum number of driver
nodes and the fraction of removed links such that,

nD,out_i n = NDO + lL

N
. (4.10)

CASE 2: l ≥ lC

When the fraction of removed links is greater than or equal to the fraction of critical links,
we approximate the minimum number of driver nodes using a quadratic equation,

f (l ) = nD = g l 2 +hl + i , (4.11)

where g , h and i can be derived from the boundary conditions. For the first boundary

condition we assume , at l = lC , nD equals NDO+lC L
N . Second, at l = 1, nD equals one. Third,

we assume that the derivative equals zero at l = 1. Using these boundary conditions we get,

g = x−1
l 2
C−2lC+1

, h =−2g and i = 1−g−h where x = NDO+lC L
N . Finally, for out-in degree-based

attacks we can write,

nD,out_i n =
{

NDO+l L
N , l ≤ lC

g l 2 +hl + i , l ≥ lC
(4.12)

Figure 4.6 shows the performance of our analytical approximation Eq.(4.12) for Erdős-
Rényi and Barabási-Albert networks. We notice that the analytical approximation fits
better with the simulations for Barabási-Albert networks. The same is also evident from
Table 4.9 in which we show the performance of some synthetic networks. We notice
that the mean relative errors are less than 3 % for BA networks and greater than 10 %
for ER networks. We also analyze the performance of our approximation in real-world
networks. Figure 4.7 shows the performance of our approximation for the Colt and Surfnet
networks. It can be observed that the approximation fits fairly well with the simulations.
Furthermore, we analyze the performance of 10 considered real-world networks in Table
4.10. We notice that the mean relative errors are less than 10 % in 8 out of 10 real-world
networks. Moreover, the approximation performs the best in the GtsHungary network
and the least in the Uninet network with mean relative errors of 1.53 % and 13.61 %
respectively.
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Figure 4.6: Performance comparison of the machine learning based approximation Eq.(4.15) with the analytical
approximation Eq.(4.12) to get the normalized values of minimum number of driver nodes nD needed to control
the networks as a function of the fraction of removed links in synthetic networks under out-in degree-based
attacks.

Next, we use ANN to further improve the performance of the analytical approximation
Eq.(4.12). We will use ANN to predict the difference in the values of the normalized
minimum number of driver nodes between the approximation value and the simulation
value at lC . We will then subtract this difference from the approximation value to get a
new value nD X that is closer to the simulation. At l = 0, the minimum number of driver
nodes can be found from Eq.(4.12) and at l = lC , the value is nD X . From these two points,
we get,

nD,out_i n,ML = nDO + nD X −nDO

lC
l , (4.13)

where nD,out_i n,ML gives us the machine learning based normalized minimum number of
driver nodes for l ≤ lC . For l ≥ lC , we assume a quadratic relationship for the normalized
minimum number of driver nodes such that,

fML(l ) = nD,out_i n,ML = gMLl 2 +hMLl + iML , (4.14)

To get the values of gML , hML and iML , we again use three boundary conditions. nD

equals nD X at l = lC . At l = 1, nD equals one. The derivative f ′
ML(1) is assumed to be equal

to zero at l = 1. Using these boundary conditions we get, gML = nD X −1
l 2
C−2lC+1

, hML =−2gML

and iML = 1− gML −hML . Hence, the machine learning based approximation for the
minimum number of driver nodes can be expressed as,

nD,out_i n,ML =
{

nDO + nD X −nDO
lC

l , l ≤ lC

gMLl 2 +hMLl + iML , l ≥ lC
(4.15)

In Figure 4.6, we compare the performance of ANN-based approximation Eq.(4.15)
with the analytical approximation Eq.(4.12) and simulations in case of synthetic networks.
While we notice that the ANN-based approximation improves the performance in case of
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Figure 4.7: Performance comparison of the machine learning based approximation Eq.(4.15) with the analytical
approximation Eq.(4.12) to get the normalized values of minimum number of driver nodes nD needed to control
the networks as a function of the fraction of removed links in real-world networks under out-in degree-based
attacks.

Erdős-Rényi networks, it does not always improve the performance of Barabási-Albert
networks as the original analytical approximation Eq.(4.12) already fits well. In terms
of mean absolute errors and mean relative errors, Table 4.9 compares the performance
of both approximations. We observe that for ER(100,0.02) network, the mean relative
error decreases from 13.80 % to 6.80 % with ANN-based approximation. We notice similar
improvements for other ER networks as shown in Table 4.9. For BA networks, we do not
always see an improvement which is also evident in B A(100,4) network in which the
mean relative error increase from 2.76 % to 4.0 % as the original approximation already
fits well with the simulations.

Table 4.9: Performance indicators for synthetic networks under out-in degree-based attacks.

Network Mean Absolute Error Mean Relative Error
Approximation ANN Approximation ANN

ER(50, 0.048) 0.0959 0.0568 0.1786 0.0924
ER(100, 0.02) 0.0828 0.0463 0.1380 0.0680

BA(50, 4) 0.0193 0.0189 0.0278 0.0266
BA(100, 4) 0.0201 0.0308 0.0276 0.0400

Figure 4.7 compares the performance of ANN based approximation Eq.(4.15) with
the analytical approximation Eq.(4.12) and simulations for real-world networks. The
performance of all the considered 10 real-world networks is shown in Table 4.10. We
notice that the ANN-based approximation Eq.(4.15) performs better than the analytical
approximation Eq.(4.12) in 7 out of 10 considered real-world networks.

All the simulations are performed on a PC with the following specifications - 8 GB
RAM and Intel Core i5 processor with 2 cores. With these specifications, for a dataset
consisting of 232 networks, it costs less than 0.6 seconds to train the linear regression
and random forest models whereas, it costs approx. 2-3 seconds to train the artificial
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Table 4.10: Performance indicators for real-world networks under out-in degree-based attacks.

Network Mean Absolute Error Mean Relative Error
Approximation ANN Approximation ANN

Colt 0.0210 0.0102 0.0267 0.0129
Surfnet 0.0469 0.0280 0.0609 0.0395

EliBackbone 0.0846 0.0373 0.1188 0.0539
Garr200912 0.0229 0.0213 0.0262 0.0242
GtsPoland 0.0256 0.0357 0.0309 0.0447

Ibm 0.0665 0.0682 0.0922 0.0951
Arpanet19706 0.0416 0.0340 0.0522 0.0519
GtsHungary 0.0140 0.0135 0.0153 0.0148
BellCanada 0.0546 0.0657 0.0742 0.0917

Uninet 0.0956 0.0586 0.1361 0.0829

neural network model. Once the models have been trained, after getting the average
values of 10,000 simulations as inputs to the models, it costs less than 0.5 seconds to get
the predictions.

4.6. CONCLUSION
In this chapter, we used various machine learning methods to quantify the minimum
number of driver nodes ND as a function of the fraction of removed links l . We studied
the robustness of network controllability using machine learning based approximations
on both synthetic and real-world networks under random and targeted attacks. We
also derived an analytical approximation for out-in degree-based attacks. In case of
targeted critical link attack, we first compared the performance of ANN, RF and LR models
and conclude that the LR model performs the least due to the nonlinear relationship
between the input features and the output difference. ANN model performed slightly
better than the RF model. Our machine learning based approximation outperformed
the analytical approximation in both synthetic and real-world networks. However, for
real-world networks, our approximation performed better than the original analytical
approximation in 75 % of the networks. For random attacks our approximation performed
better than the analytical approximation in 70 % of the real-world networks. We also
compared our machine learning based approximation with Liu’s approximation and
the approximation provided in Chapter 2 for ER networks under random attacks. Liu’s
approximation performed better than both machine learning based approximation and
the approximation in Chapter 2. We also derived an analytical approximation for out-in
degree-based attacks. For synthetic networks, the approximation performed better in
case of BA networks than ER networks. Furthermore, in 8 out of 10 considered real-world
networks, the mean relative errors are less than 10 %. We further improved our analytical
approximation for out-in degree-based attacks using ANN and the mean relative errors
reduced to less than 6 % in 7 out of 10 real-world networks.
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In this chapter, we propose closed-form analytic approximations for the number of con-
trollable nodes in sparse communication networks, considering link-based random attack,
targeted attack, as well as random attack under the protection of critical links. We first
compare our approximations with simulation results on communication networks. Re-
sults show that our approximations perform well for all three attack strategies as long as
the fraction of removed links is small. Only when the fraction of removed links is large,
our approximation for targeted attacks does not fit well with simulation results. Finally,
we validate our approximations using 200 communication networks and some synthetic
networks. Results show that our approximations perform well in most cases.

5.1. INTRODUCTION
In recent years, the analysis of network controllability from a graph theoretic point of
view has become an active area of research. Through the control of external inputs [39], a
controllable system can be driven from any arbitrary state to any desired state in finite
time . For example, a communication network can be controlled externally through input
signals such as commands from control units connected to some of the work stations [88].

Most work regarding the robustness of controllability has focused on the number of
controls required to maintain network controllability after link or node failures. Lou et
al. [89] proposed a complex network model called q-snapback network which has the
strongest robustness of controllability due to its advantageous inherent structure with
many chain and loop motifs, when compared with the multiplex congruence network
and the generic scale-free network. Pu et al. [54] found that the degree-based node

This chapter is based on the published paper [87].
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attack is more efficient than a random failure for degrading the controllability in random
and scale-free networks. Nie et al. [55] found that the controllability of Erdős-Rényi
random graphs with a moderate average degree is not very robust, whereas a scale-free
network with moderate power-law exponent shows a stronger ability to maintain its
controllability, when these networks are under intentional link attack. Thomas et al. [56]
identified that the potency of a degree-based attack is directly related to the betweenness
centrality of the edges being removed. Chen et al [90] evaluated the effect of the number
of control inputs on the controllability for random networks and scale-free networks
in the process of cascading failure. Lou et al [91] proposed a framework of hierarchical
attack by means of link- or node-removal attacks and suggest to protect the critical
links and nodes to maintain network controllability. Xiao et al. [92] proposed a method
that modifies any given network with strict structural perturbation to make the network
homogenous and effectively enhance its robustness against malicious attacks. Zhang et
al. [93] optimized the robustness of interdependent network controllability by redundant
design including node backup and edge backup. In Chapter 2, we proposed closed-
form analytic approximations for the number of controls that are needed to maintain
network controllability, where links are removed according to both random and targeted
attacks [36].

The above work regarding the robustness of controllability assumes that the network
operator has the capability to add additional controls at any location in the network
in order to maintain the current network controllable after attacks or failures. In other
words, the basic assumption of previous work mentioned above is that network operators
have sufficient budget and quantity of resources that can be deployed in response to an
attack or failure. However, a more realistic assumption is that network operators have
a fixed budget and a limited quantity of resources. Moreover, the increase in additional
controls is only a proxy for the most relevant information - how much of the network is still
controllable (reachable) after an attack or failure. Parekh et al. [94] proposed the number
of controllable nodes as a new metric to quantify the robustness of controllability under
network perturbations. Thomas et al. [56] analyzed the changes in the controllability of
synthetic networks from the perspective of reachability and found that scale-free networks
evidence higher robustness to random failures than Erdős-Rényi networks. In this chapter,
we analyse and measure the robustness of network controllability in terms of reachability.
In particular, we determine the maximum number of nodes that are still controllable
when the number of driver nodes remains the same during the failure or attack process.
Here, the driver nodes are the nodes into which the external control signals are directly
injected.

This chapter is organized as follows. In Section 5.2, we introduce some basic con-
cepts and definitions in reachability-based network controllability. In Section 5.3, we
analyse the role of critical links in network controllability. In Section 5.4, we compare
the robustness of controllability for three cases: random attack, random attack under
protection and targeted attack. In Section 5.5, we propose analytic approximations for
the number of controllable nodes Nc in these three cases and measure the accuracy of
our approximations. Section 5.6 concludes the chapter.
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5.2.1. REACHABILITY-BASED CONTROLLABILITY

So far, most of the existing studies on the robustness of controllability have measured the
increase in the minimum number Nd of driver nodes required as a proxy for the reduction
in controllability due to a failure. This indirect approach of measuring robustness is
referred to as control-based robustness. The robustness of network controllability from
the perspective of reachability is also considered by a few authors, see [56] and [94].
Besides, the control-based robustness analysis of network controllability assumes that
the network operator has the capability to attach any amount of additional control signals
to the nodes in the network. However, network operators normally have limited budget
and resources in real life, which constrains the ability to deploy external controls. Based
on these considerations, we focus on the reachability-based robustness of controllability,
which determines the maximum number Nc of nodes that are still under control when
failure or attack occurs, during which the number Nd0 of driver nodes remains the same
[94]. For the reachability-based controllability, there are two cases, namely free control
and fixed control [56]. In the free control case, only the number Nd0 of driver nodes
remains the same, but the set of driver nodes can vary. In the fixed control case, both the
number and the set of driver nodes are fixed during attacks or failures. In this chapter, we
only consider the free control case and delegate the fixed control to future research. For
convenience, we use the term reachability to represent reachability-based controllability.

5.2.2. R-VALUE AND CHALLENGES

We inherit the framework and some definitions proposed for network robustness [52,75] to
investigate the robustness of reachability. The robustness of a given network determined
by a service and an underlying topology is quantified by a robustness value, referred
to as the R-value [75]. The R-value is normalized to the interval [0,1]. Thus, R = 1
reflects complete functionality in an network without failures, and R = 0 corresponds
to the complete absence of functionality in a severely damaged network. The R-value
can be a metric, which is related to network topology and service, such as the size of
the giant component [47], the effective graph resistance [20] and network efficiency
[95]. In this chapter, we use the normalized maximum number of controllable nodes
nc = Nc /N as the R-value. The number Nc of controllable nodes satisfies Nd0 ≤ Nc ≤ N ,
thus Nd0/N ≤ nc ≤ 1.

An elementary challenge is an event that changes the network and thus changes the
R-value. We assume that a sequence of changes does not coincide in time. In this chapter,
we confine an elementary challenge to a link removal in a failure process. A perturbation
is a series of m elementary changes, characterized by a sequence of m corresponding
R-values {R[k]}0<k≤1, where k = m/L is the fraction of removed links, m ∈ {1, . . . ,L} is the
number of removed links and L is the number of links in the network. In this chapter,
we choose the maximum number nc of controllable nodes as the R-value and observe
the impact of link removal on nc . As shown in Figure 5.1, the maximum number nc of
controllable nodes has a decreasing trend as links are removed one by one.
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5.2.3. ROBUSTNESS ENVELOPES
As discussed in the previous part, any realization of failure processes can be expressed
as a sequence of R-values denoted {R[k]}0<k≤1 where k is the fraction of removed links
and k ∈ {1/L,2/L, . . . ,1}. Assuming that the nature of the failures is unknown and they
occur independently, R[k] is a random variable and can be described by its probability
density function (pdf). The pdf of this R[k] is computed using all subsets of ⌊kL⌋ links in
all possible perturbations. The envelope for a network G is constructed using all R[k] for
k ∈ {1/L,2/L, . . . ,1}, where boundaries are given by the extreme R-values

Rmin[k] ∈ {min(R[1/L]),min(R[2/L]) . . . ,min(R[1])}, (5.1)

Rmax[k] ∈ {max(R[1/L]),max(R[2/L]) . . . ,max(R[1])}, (5.2)

which gives the worst- and best-case of robustness metrics for a network after a given
number of challenges [52]. Besides, the expected R-value resulting from ⌊kL⌋ perturba-
tions

Rav g [k] ∈ {E(R[1/L]),E(R[2/L]) . . . ,E(R[1])}. (5.3)

Since R[k] defines a probability density function, we are interested in the percentiles
of R[k]

Rθ%[k] ∈ {Rθ%[1/L],Rθ%[2/L] . . . ,Rθ%[1]} (5.4)

where Rθ%[k] are the points at which the cumulative distribution of R[k] crosses θ
100 ,

namely if Rθ%[k] = t , then Pr[R[k] ≤ t ] = θ
100 . We refer to Rθ%[k] as a θ-percentile and

define R0%[k] = Rmi n[k], R100%[k] = Rmax [k].
We apply the envelope to present the influence of the failure process on a network

[52, 75]. The envelope profiles the pdf of the random variables of the R-value, which is
the probability of a random variable to fall within a particular region. The area of the
envelope can be regarded as the variation of the robustness impact of a certain series of
challenges, which quantifies the uncertainty or the amount of risk due to perturbations.
The effectiveness of attack strategies can also be measured by comparing with the worst-,
best- and average performance provided by robustness envelopes.

5.3. ANALYSIS OF CRITICAL LINKS
Liu et al. [39] proved that the minimum number Nd of driver nodes needed for structural
controllability, where the external signals are injected to control the directed network, can
be obtained through the “maximum matching” of the network. Define the source node of
a directed link as the node from which the link originates and the target node as the node
where the link terminates. A maximum matching of a directed network is a maximum set
of links that do not share source or target nodes [27], which is illustrated in Figure 1.1(a).
Such links are coined “matching links”. Target nodes of matching links are matched nodes
and the other nodes are unmatched nodes. In order to find the maximum number of
matching links, so as to determine the minimum number Nd of driver nodes, a directed
network G with N nodes and L links can be converted into a bipartite graph BN ,N with 2N
nodes and L links, as shown in Figure 1.1(b). A maximum matching in a bipartite graph
can be obtained efficiently by the Hopcroft-Karp algorithm [28]. The unmatched nodes
in a maximum matching constitute a minimum set of driver nodes.
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Figure 5.1: The impact of link removal on the normalized maximum number nc of controllable nodes in a
communication network DFN (German optical backbone X-WiN network) with N = 58 and L = 87.

5.3.1. THE ROLE OF CRITICAL LINKS IN MAXIMUM MATCHING
Links in a network can be classified into three categories: critical, redundant, and ordinary
[39]. A link is critical if its removal increases the minimum number of driver nodes Nd

by 1 to remain in full control of the system. A link is redundant if it never belongs to a
maximum matching. A link is ordinary if it is neither critical nor redundant. In Figure
1.1(a), link a, b, c and d (highlighted in red) are critical links, the removal of any one
of them will increase the number of driver nodes by 1, while link e is redundant. The
influence of the removal of critical links can be explained by the maximum matching. As
shown in Figure 1.1(b), all the critical links a, b, c , d belong to the maximum matching of
size 4. If any one of them is removed, there is no alternative link to take its place in the
maximum matching. Thus, a new unmatched node will appear and the number of driver
nodes will increase by 1. Besides, critical links are conditional and should be updated
during attacks. For example, link c is no longer a critical link in the resulting network after
link b is removed.

In our previous work [36], we proposed closed-form analytic approximations for the
minimum number Nd of driver nodes needed to fully control networks, where links are
removed according to both random and targeted attacks.

5.3.2. THE ROLE OF CRITICAL LINKS IN THE STRUCTURE OF CONTROL
In the research concerning reachability-based controllability, Parekh et al. [94] found
the control structure which consists of a backbone of directed paths, called stems, each
driven by an independent control . These paths can then control cycles that are inherently
self-regulatory. However, ultimately these stems dictate the need for controls: There must
be one control node for each stem in the system in order to guarantee that all nodes in
the network are controllable (reachable). In this chapter, we use the algorithm proposed
in [56] to find the control structure in the network:

1. Determine the number M of control nodes by the maximum matching introduced
in Section III.A.
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2. Preprocess the network by adding the fixed number of control nodes and then
placing links from each control node to every state node, after which there are N
nodes and E links in the network. Then, for all i , j = 1, ..., N and k = 1, ..., M :

(a) Split the nodes into a pair of positive and negative nodes xi ⇒ x+
i , x−

i , uk ⇒
u+

k ,u−
k .

(b) Add unit-weight links (x+
i , x−

j ) and (u+
k , x−

j ) if the link (xi , x j ) and (uk , x j ) exist

in the network, respectively.

(c) Add zero-weight links (x+
i , x−

i ) and (u+
k ,u−

k ).

(d) Add zero-weight links (x+
i ,u−

k ).

(e) Add an extra weight W ≥ E to all links.

3. Run the weighted maximum matching algorithm on the bipartite graph generated
by step 2 to find the set of matched links. Thus, the total weights of all matched links
are maximized. The control structure is then formed by mapping the matched links
in the original network. In the implementation, the Fibonacci Heap algorithm [96] is
used in the weighted maximum matching, of which the computational complexity
of finding the set of matched links is O(N L+mN 2 +4n2log 2N ).

Finally, the number of controllable nodes equals the number of matched nodes in
the control structure. Although the concept of critical links was first proposed in control-
based controllability analysis which focuses on the number Nd of driver nodes, critical
links also play an important role in reachability-based controllability. We found that the
removal of a critical link usually decreases the number of controllable nodes by 1 in most
cases when the network is sparse. The influence of the removal of critical links can also be
explained by the control structure in the network. As shown in Figure 1.1(a), the control
structure only consists of one directed path 1 → 2 → 3 → 4 → 5. This path is also formed by
four critical links a, b, c, d , which are defined in control-based controllability. Removing
each of these critical links will break the path and decrease the number of controllable
nodes by 1. However, in some cases, removing a critical link can increase the number
of controllable nodes by more than 1. For example, the network constructed by a single
path 1 → 2 → 3 → 4 → 5 → 6, the number Nc of controllable nodes decreases by 3 after
removing the critical link between node 3 and 4. In this chapter, we use the concept of
critical links to derive analytical approximations for the decrease in the number Nc of
controllable nodes upon link removal.

5.4. NUMBER OF CONTROLLABLE NODES UNDER ATTACKS
In this section, we analyze the normalized number of controllable nodes for three different
attack scenarios: (a) random attack, (b) targeted attack and (c) random attack under
protection. In a random attack, links are removed from the network uniformly at random.
In a targeted attack, we assume that the attacker knows the location of critical links and
removes critical links uniformly at random. After all critical links are removed, the attacker
randomly removes other links. In a random attack under protection, the network operator
takes measures to protect the critical links such that only non-critical links are removed
randomly.
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We compare the normalized number nc of controllable nodes for these three attacks
in 10 sparse communication networks [80] [97]. Table 5.1 presents the properties of
the 10 communication networks: the number N of nodes, the number L of directed
links, the initial minimum number Nd0 of driver nodes and the number Lc of critical
links. For a directed network, the average degree E [D] = 2L/N , which also equals the
sum of the mean out- and in-degree per node. The first 8 networks are small. The other
two networks are relatively large, which are an order larger than the average size of the
other 8 communication networks. Besides, the last network has a higher average degree,
which is more than twice that of the other networks. The number Lc of critical links can
be determined by applying the Hopcraft-Karp algorithm L times, by considering all L
networks that are obtained by removing exactly one link from the original network. As
expected, Figure 5.2 shows that random attack under protection performs the best among
the three attack scenarios in maintaining the reachability of the networks. Moreover, we
also conclude from Figure 5.2:

1) In the case of random attack under protection, the slope of the decrease in nc is
almost 0 in the beginning for all networks. This emphasizes the importance of protecting
critical links.

2) The targeted attack is the most harmful: when the fraction of removed links is
smaller than the fraction of critical links, the decrease in nc is almost linear in the fraction
of removed links. When all the critical links are removed, the slope of the decrease in
nc is almost 0 in all 8 networks. Considering that the set of critical links is determined
from the initial network, this indicates that the set of critical links of a network does not
significantly change during the attack process when the fraction of removed links is small.

3) The performance of random attack is between targeted attack and random attack
under protection. After all links are removed, the normalized number of controllable
nodes equals Nd0/N .

4) Critical links have a significant impact on the number Nc of controllable nodes
upon link removal, which plays a key role to derive analytical approximations for the
number Nc of controllable nodes.

We also use robustness envelopes to evaluate the effectiveness of the three attack
strategies. As shown in Figure 5.2, the curves for random attack under protection are quite
close to the boundaries represented by the 90-percentile R90%[k] among all networks,
which means that random attack under protection outperforms 90% realizations of
random attack. The curves for targeted attack are much lower than the lower bound of
envelopes especially when the fraction of removed links is small in all networks, which
again underlines the harm of targeted attack.

5.5. APPROXIMATIONS FOR THE NUMBER OF CONTROLLABLE

NODES
In the previous section, we compared the number of controllable nodes for the three
attack scenarios by using a large amount of simulations. In this section, we deduce analyt-
ical approximations to quantify the robustness of reachability, expressed in terms of the
normalized number nc of controllable nodes, for the three attack scenarios. Then, we eval-
uate the accuracy of the analytical approximations in 8 small networks, 2 large networks
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Figure 5.2: Performance of the normalized number nc of controllable nodes as a function of the fraction of
removed links l for three attack scenarios. The results for each fraction l is based on 1000 simulations. Each
envelope of the challenges for the normalized number nc of controllable nodes is based on 104 realizations. In
order to compare the scenario for random attack under protection with the other two scenarios in the same
sub-figure, we remove critical links uniformly at random after all the other links are removed.
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Table 5.1: Properties of the 10 considered communication networks

Networks N L E [D] Nd0 Lc

DFN 58 87 3.0 25 14
Colt 153 177 2.3 81 38

Deltacom 113 161 2.8 37 43
GtsCe 149 193 2.6 58 49

TataNld 145 186 2.6 52 48
UsCarrier 158 189 2.4 53 66
Cogentco 197 243 2.5 71 72

Uninett2010 74 101 2.7 26 27
Kdl 754 895 2.4 272 287

Web [97] 643 2280 7.0 324 108

as well as more sparse communication networks. Lastly, we also use synthetic networks
to measure the performance of our analytical approximations. Our approximations will
be based upon the concept of critical links introduced in [39].

5.5.1. NUMBER OF CONTROLLABLE NODES UNDER RANDOM ATTACKS

1) The fraction l of removed links is less than the fraction lc of critical links
Given a network with N nodes and L links, the initial number Nc of controllable nodes
equals N . The number Lc of critical links can be determined by the method we introduced
in Section 5.4.

As discussed in Section 5.3.2, the number Nc of controllable nodes decreases by at
least one when a critical link is removed. However, we found that the number Nc of
controllable nodes only decreases by one for every critical link that is removed in each of
the 10 sparse communication networks in Table 5.1. Thus, we heuristically assume that
after removing a critical link, the number Nc of controllable nodes decreases by one. If we
denote the number of removed links by m, then the fraction of removed links l = m

L , while

the fraction of critical links lc satisfies lc = Lc
L . We consider the case l ≤ lc , where m links

are removed uniformly at random under the condition that the number of removed links
obeys m ≤ Lc . Now assume that of these m links i links are critical (i ≤ m) and, hence,
m − i links are non-critical. We assume that the set of critical links is nearly unchanged
when the fraction of removed links is small. Invoking the fact that after removing a
critical link, the number Nc of controllable nodes decreases by one, thus, when i critical
links are iteratively removed one by one, the number Nc of controllable nodes decreases
by one in each iteration. For the m − i removed non-critical links, the number Nc of
controllable nodes remains the same based on our assumption that the set of critical links
is unchanged when the fraction of removed links is small. Since there are

(Lc
i

)
possible

ways to choose i critical links from Lc critical links and there are
(L−Lc

m−i

)
possible ways

to choose m − i non-critical links from L−Lc non-critical links, the contribution to the
decrease in Nc is i

(Lc
i

)(L−Lc
m−i

)
. The average decrease N∗

c of the number Nc of controllable
nodes after randomly removing m links, is the sum of this expression for all i = 1,2, . . . ,m
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divided by
( L

M

)
.

N∗
c =

∑m
i=1 i

(Lc
i

)(L−Lc
m−i

)( L
m

) (5.5)

Using i
(Lc

i

)= Lc
(Lc−1

i−1

)
and Vandermonde’s formula

∑k
j=0

(a
j

)( b
k− j

)= (a+b
k

)
for any number

a and b, we obtain Lc
∑m−1

i=0

(Lc−1
i

)( L−Lc
m−1−i

)= Lc
( L−1

m−1

)
. Finally, dividing this expression by( L

m

)
, leads to the average decrease of controllable nodes

N∗
c = lLc (5.6)

When the fraction of removed links is less than, or equal to lc , we obtain

Nc = N − lLc (5.7)

We then normalize the number Nc of controllable nodes to the fraction Nc
N of the

minimum number of controllable nodes and denote the obtained approximation as
nc,r and ,

nc,r and = N − lLc

N
(5.8)

2) The fraction l of removed links is larger than the fraction lc of critical links
Considering that in most cases lc is quite small, we also estimate the normalized maxi-
mum number nc of controllable nodes when the fraction l of removed links is larger than
the fraction lc of critical links. For l ≥ lc , we heuristically propose a simple closed-form
approximation for nc,r and :

nc,r and = al 2 +bl + c (5.9)

where the parameters a, b and c will be determined by boundary conditions. For the
first two boundary conditions we assume that, for l = lc , Eq.(5.9) has the same value and
the same derivative as Eq.(5.8). This leads to the equations N − lc Lc = N (al 2

c +blc + c)
and −Lc = N (2alc +b), respectively. Finally, if we remove all links, i.e. l = 1, only Nd0

nodes can be controlled. This gives the boundary condition Nd0/N = a +b + c. Solving
for a, b and c and combining with the approximation Eq.(5.8), we obtain the following
approximation for nc,r and for all values of l :

nc,r and =
{

N−l Lc
N l ≤ lc

al 2 +bl + c l ≥ lc
(5.10)

with, a = −N−Nd0−Lc

N (lc−1)2 , b = −Lc /N −2alc , and c = (Nd0 +Lc )/N + a(2lc −1). Eq.(5.10) re-

spresents a closed-form approximation for nc , which only depends on N ,L, Nd0 and LC .
The computational complexity of the approximation is O(

p
N L2), which is needed for the

computation of Lc .

We compare the approximation Eq.(5.10) with simulation results for the 8 relatively
small communication networks. Since the simulation settings for large networks are
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slightly different, we will evaluate the performance of our approximations for the large
networks in Section 5.5.4. Figure 5.3 illustrates that the approximation both under- and
overestimates the value of nc . For moderate values of the fraction of removed links, the
approximation exhibits a very good fit for the communication networks. For some net-
works, such as Deltacom, GtsCe, TataNld and Uninett2010, our approximation Eq.(5.10)
fits well with the simulation results regardless of the fraction of removed links.

The performance of our approximations are also measured by three performance
indicators:

1) r∗ denotes the absolute value of the relative error at l = 0.2. We choose the value
0.2 reflecting a relatively large fraction in terms of link-based failures or attacks.

2) l∗ represents the smallest value of l , where the relative error between the approxi-
mation and the simulated mean exceeds 5%.

3) γ denotes the fraction of the interval [0, lc ] for which the absolute value of the
relative error between the approximation and the mean simulated value does not exceed
5%. The value of γ is computed by K different values of the fraction of removed links, i.e.,
v1, v2, ..., vK , are evenly determined in the interval [0, lc ]. Let n∗

c (vi ) and nc (vi ) denote the
mean simulated nc and the approximation (5.8) at the fraction of removed links l = vi ,
respectively. Thus, in terms of the indicator function 1x that equals 1 if the condition x is
true, otherwise it is zero,

γ=

∑K
i=1 1∣∣ n∗c (vi )−nc (vi )

n∗c (vi )

∣∣≤5%

K
.

Table 5.2 gives the three performance indicators for Eq.(5.10). As shown in the table,
when the fraction of removed links is less than 0.2, the absolute relative error between
Eq.(5.10) and the simulated mean is less than 5% for all 8 networks. For most networks,
such as Deltacom, GtsCe, TataNld, UsCarrier, Cogentco and Uninett2010, Eq.(5.10) still
fits well with simulation results regardless of the fraction of removed links. For the worst
performing networks, DFN and Colt, 87% and 81% of the links can be removed before the
absolute relative error exceeds 5%, respectively. When the fraction of removed links is less
than the fraction lc of critical links, the absolute value of the relative error between the
approximation and the mean simulated value is always less than 5%. Thus, γ equals 100%
for all networks.

Table 5.2: Performance indicators for the approximation nc,r and for the 8 communication networks

Networks r∗ l∗ γ

DFN 0.78% 0.87 100%
Colt 1.23% 0.81 100%

Deltacom 1.08% 1.00 100%
GtsCe 1.20% 1.00 100%

TataNld 0.45% 1.00 100%
UsCarrier 1.17% 1.00 100%
Cogentco 0.98% 1.00 100%

Uninett2010 1.24% 1.00 100%
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Figure 5.3: The normalized maximum number of controllable nodes nc as a function of the fraction of removed
links l in communication networks under random attacks. The results for each fraction l is based on 1000
simulations. In each sub-figure, the vertical dashed line marks the position where l = lc .



5.5. APPROXIMATIONS FOR THE NUMBER OF CONTROLLABLE NODES

5

67

5.5.2. NUMBER OF DRIVER NODES UNDER TARGETED ATTACKS

1) The fraction l of removed links is smaller than the fraction lc of critical links
We assume that, as long as the number of removed links m ≤ Lc , the removal of each link
decreases the number Nc of controllable nodes by one. Consequently, when the number
of removed links is smaller than Lc (the fraction l of removed links is smaller than lc ), the
approximation for the minimum number Nc of driver nodes decreases linearly with the
fraction l of removed links. When the number of removed links equals the number Lc of
critical links, the minimum number Nc of driver nodes equals N −Lc . Thus, when the
fraction l of removed links is no more than the fraction lc of critical links, we obtain the
following approximation for nc :

nc,cr i t = N − lL

N
(5.11)

2) The fraction l of removed links is larger than the fraction lc of critical links
We now construct an approximation when the number of removed links is larger than
Lc (the fraction l of removed links is larger than lc ), in a similar way as in the previous
section. Again assuming that for l ≥ lc it holds that nc is quadratic in l , we obtain
nc,cr i t = dl 2 +el + f . Boundary conditions are now obtained from the assumptions that
the parabola passes through (1, Nd0/N ) and (lc , (N −Lc )/N ) and has a zero derivative at
the latter point. This leads to the following approximation for nc for all values of l :

nc,cr i t =
{

N−lL
N l ≤ lc

dl 2 +el + f l ≥ lc
(5.12)

with, d =−N−Nd0−lc L
N (lc−1)2 , e =−2dlc , and f = Nd0/N +d(2lc −1).

In Figure 5.4, we compare our approximation Eq.(5.12) with simulation results. Sim-
ulation results show that the difference in the curve trend at l = lc , is due to the fact
that until l = lc only critical links are targeted causing a faster descent in the number of
controllable nodes. We observe that the approximation Eq.(5.12) fits well with simulation
results when the fraction of removed links is sufficiently small in these communication
networks. In some networks, such as DFN and UsCarrier, Eq.(5.12) is close to simulation
results even when the fraction of removed links is relatively large. When the fraction of
removed links is getting larger, the difference between our approximation Eq.(5.12) and
simulation results is relatively large. However, approximation Eq.(5.12) always seems
to overestimate the impact of targeted attack on the normalized maximum number nc

of controllable nodes, hence, approximation Eq.(5.12) can be considered a worst-case
approximation.

Comparing with the targeted attack, we quantify the performance of the approxima-
tion Eq.(5.12) in Table 5.3. For DFN and Colt, Eq.(5.12) is a very good approximation when
the fraction of removed links is less than lc . Eq.(5.12) performs the best for DFN, 23% of
the links can be removed before the absolute relative error exceeds 5%. Eq.(5.12) does not
perform well for TataNld.
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Figure 5.4: The normalized maximum number of controllable nodes nc as a function of the fraction of removed
links l in communication networks under targeted attacks. The results for each fraction l is based on 1000
simulations. In each sub-figure, the vertical dashed line marks the position where l = lc .



5.5. APPROXIMATIONS FOR THE NUMBER OF CONTROLLABLE NODES

5

69

Table 5.3: Performance indicators for the approximation nc,cr i t for the 8 communication networks

Networks r∗ l∗ γ

DFN 4.53% 0.23 100%
Colt 4.88% 0.21 97.81%

Deltacom 7.52% 0.18 67.42%
GtsCe 5.06% 0.19 74.80%

TataNld 10.11% 0.12 46.51%
UsCarrier 3.26% 0.22 63.04%
Cogentco 8.75% 0.18 60.81%

Uninett2010 8.86% 0.19 71.08%

5.5.3. NUMBER OF DRIVER NODES UNDER RANDOM ATTACKS WITH PROTEC-
TION

For this scenario, we assume that a fraction of links lc is protected, then we can only attack
a fraction 1− lc of the links. We now construct an approximation for the number Nc,pr ot

of controllable nodes when the attack is random under protection. We heuristically
assume that the fraction nc,pr ot of controllable nodes is quadratic in l , we obtain nc,pr ot =
pl 2 + ql + r . Boundary conditions are now obtained from the assumptions that the
parabola passes through (1, Nd0/N ) and (0,1) and has a zero derivative at the latter point.
This leads to the following approximation for nc for all values of l :

nc,pr ot = pl 2 +ql + r (5.13)

with, p = Nd0/N −1, q = 0, and r = 1.
We compare the approximation Eq.(5.13) with simulation results for the 8 communi-

cation networks. The fraction l of removed links in our approximation Eq.(5.13) is from 0
to 1. However, only a fraction 1−lc of links are removed in the simulation for this scenario.
Thus, we still remove critical links uniformly at random after all non-critical links are
removed, in order to compare the simulation results and our approximation Eq.(5.13)
in the same interval [0,1]. Figure 5.5 shows that for moderate values of the fraction of
removed links, the approximation exhibits an excellent fit for simulation results. For some
networks, such as TataNld, UsCarrier and Cogentco, our approximation Eq.(5.13) fits well
with the simulation results regardless of the fraction of removed links.

Similarly, the performance of our approximation Eq.(5.13) is measured by three per-
formance indicators. As shown in Table 5.4, when the fraction of removed links is less
than 0.2, the absolute relative error between Eq.(5.13) and the simulated mean is less than
5% for all 8 sparse communication networks. For some networks, such as UsCarrier and
Cogentco, even when the fraction of removed links is large (0.62 and 0.58, respectively),
Eq.(5.13) still fits well with simulation results. Even for the worst performing network,
DFN, 28% of the links can be removed before the absolute relative error exceeds 5%.

5.5.4. VERIFICATION BY LARGE NETWORKS
We use the last two large networks, Kdl and Web, from Table 5.1 to further evaluate
the accuracy of our approximations. The simulations setting is slightly different from
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Figure 5.5: The normalized maximum number of controllable nodes nc as a function of the fraction of removed
links l in communication networks under random attacks under protection. The results for each fraction l is
based on 1000 simulations. In each sub-figure, the vertical dashed line marks the position where l = 1− lc . In
order to compare the simulation results for random attack under protection with our approximation in the
same sub-figure, we remove critical links uniformly at random after all the other links are removed.
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Table 5.4: Performance indicators for the approximation nc,pr ot for the 8 communication networks

Networks r∗ l∗ γ

DFN 2.65% 0.28 100%
Colt 1.89% 0.32 100%

Deltacom 1.15% 0.37 100%
GtsCe 1.09% 0.38 100%

TataNld 0.84% 0.42 100%
UsCarrier 0.32% 0.62 100%
Cogentco 0.56% 0.58 100%

Uninett2010 1.22% 0.47 100%

the previous part. The fraction l of removed links is ranging from 0.1 to 1 with a step
size 0.1, considering the high computational complexity. As shown in Figure 5.6, the
approximation Eq.(5.10) for the random attack and Eq.(5.13) for the random attack with
protection perform well in estimating the fraction nc of driver nodes. We also find that
the approximation Eq.(5.12) for targeted attack fits well with simulation results when the
fraction of removed links is sufficiently small. Though the approximation Eq.(5.12) does
not perform well when the fraction of removed links is large, approximation Eq.(5.12)
can be considered a worst-case approximation. Considering the Kdl network and the 8
small networks have similar average degree, the above observation implies that the size
of the network does not significantly influence the performance of our approximations.
By contrast, Figure 5.7(a) and (c) show that the approximation Eq.(5.10) for the random
attack and Eq.(5.13) for the random attack with protection do not perform well for the Web
network which has a larger average degree than the above networks. In a network with a
higher average degree, there are more alternate matchings which make it more likely for
the critical links to change as links are removed. As a result, our approximations do not
perform well since our assumption is that the set of critical links is nearly unchanged when
the fraction of removed links is small. However, since most communication networks
are sparse [98] [99] [100], we can expect that our approximations are applicable for most
communication networks.

We then quantify the performance of the approximations for the network Kdl and Web
in Table 5.5 and 5.6, respectively. Results show that the network Web has larger r∗ values
than the network Kdl in all three attacks, which also indicates that our approximation
performs better in networks with lower average degree.

Table 5.5: Performance indicators for the approximation nc for Kdl

Types of attacks r∗ l∗ γ

Random attack 2.36% 0.46 100%
Targeted attack 7.54% 0.16 53.65%

Random attack with protection 3.67% 0.38 92.84%
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Figure 5.6: Performance of the normalized number nc of controllable nodes as a function of the fraction of
removed links l for three attack scenarios in the Kdl network. The results for each fraction l is based on 1000
simulations. For random attack and targeted attack, the vertical dashed line marks the position where l = lc .
For random attack with protection, the vertical dashed line marks the position where l = 1− lc .
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Figure 5.7: Performance of the normalized number nc of controllable nodes as a function of the fraction of
removed links l for three attack scenarios in the Web network. The results for each fraction l is based on 1000
simulations. For random attack and targeted attack, the vertical dashed line marks the position where l = lc .
For random attack with protection, the vertical dashed line marks the position where l = 1− lc .

Table 5.6: Performance indicators for the approximation nc for Web

Types of attacks r∗ l∗ γ

Random attack 13.78% 0.11 100%
Targeted attack 9.21% 0.04 54.16%

Random attack with protection 5.25% 0.19 100%

5.5.5. VERIFICATION BY MORE COMMUNICATION NETWORKS

We further use the dataset available at a specialized database - the Internet Topology
Zoo [80] to select more communication networks and verify the accuracy of our approx-
imations. The networks in the dataset initially are not directed, however, we use the
information available in two attributes, i.e., source node and target node, to make these
networks directed. After excluding networks with extremely small size N < 20, we have
200 communication networks.

For each attack strategy, we calculate the values of the three performance indicators
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for all 200 communication networks and then get the average value for each indicator. As
shown in Table 5.7, the approximation Eq.(5.10) for the random attack and Eq.(5.13) for
the random attack with protection performs well in estimating the fraction nc of driver
nodes. For the targeted attack, the approximation Eq.(5.12) fits well with simulation
results when the fraction of removed links is sufficiently small.

Table 5.7: Performance indicators for the approximation nc for 200 communication networks

Types of attacks r∗ l∗ γ

Random attack 4.26% 0.47 98.47%
Targeted attack 10.44% 0.11 47.81%

Random attack with protection 3.52% 0.23 99.36%

5.5.6. VERIFICATION BY SYNTHETIC NETWORKS

In this section, we test our approximations on two types of synthetic networks, the directed
Erdős-Rényi (ER) random network Gp (N ) and the Barabási-Albert (BA) scale-free network
B A(N , M0, M). When generating the directed Erdős-Rényi random network Gp (N ) with
N nodes, the probability that every node has an outbound link to the other nodes is p. We
generate the scale-free network B A(N , M0, M) by using the Barabási-Albert (BA) model,
where N is the number of nodes, M is the number of out-going links for each new node
added to the current network. We assume that initially the network consists of a complete
digraph on M0 nodes, where M0 equals M . In the initial complete digraph, every pair of
distinct nodes is connected by a pair of unique links (one in each direction). New nodes
are added to the network one at a time. Each new node is connected to M existing nodes
with a probability that is proportional to the number of links that the existing nodes
already have.

In our simulations, we generate Erdős-Rényi (ER) random networks Gp (N ) with N =
100, p = 0.05 and N = 10000, p = 0.0003, Barabási-Albert (BA) networks with N = 200,
M = M0 = 2 and N = 10000, M = M0 = 1. Figure 5.8 shows that the approximation
Eq.(5.10) for the random attack performs well in estimating the fraction nc of controllable
nodes in both types of synthetic networks when the fraction of removed links is small.
Figure 5.9 shows that the approximation Eq.(5.12) for the targeted attack performs well as
long as the fraction of removed links is sufficiently small. Figure 5.10 shows that Eq.(5.13)
for the random attack with protection performs well in both types of synthetic networks
when the fraction l of removed links is less than the fraction lc of critical links. For the large
ER and BA networks, Eq.(5.13) fits well with simulation results even when the fraction l of
removed links is large. The approximation Eq.(5.12) does not perform well if the fraction
l of removed links is large. However, Eq.(5.12) can be considered an approximation for
the worst-case scenario.

Next we quantify the performance of each approximation for synthetic networks. As
shown in Table 5.8, 5.9 and 5.10, the approximation Eq.(5.10) for random attack and
Eq.(5.13) for random attack with protection fit well with simulation results even when the
fraction l of removed links is relatively large (l = 0.2).
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Figure 5.8: The normalized maximum number of controllable nodes nc as a function of the fraction of removed
links l in synthetic networks under random attacks. The results for each fraction l is based on 10000 simulations.
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Figure 5.9: The normalized maximum number of controllable nodes nc as a function of the fraction of removed
links l in synthetic networks under targeted attacks. The results for each fraction l is based on 10000 simulations.
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Table 5.8: Performance indicators for the approximation nc,r and for synthetic networks

Types of networks r∗ l∗ γ

ER: G0.05(100) 3.27% 0.34 100%
BA: N =200, E [D]=4 6.78% 0.18 100%
ER: G0.0003(10000) 8.95% 0.14 85.54%

BA: N =10000, E [D]=2 7.63% 0.17 96.23%

Table 5.9: Performance indicators for the approximation nc,cr i t for synthetic networks

Types of networks r∗ l∗ γ

ER: G0.05(100) 12.64% 0.03 71.97%
BA: N =200, E [D]=4 17.36% 0.04 63.91%
ER: G0.0003(10000) 23.56% 0.07 34.28%

BA: N =10000, E [D]=2 16.28% 0.05 46.76%

Table 5.10: Performance indicators for the approximation nc,pr ot for synthetic networks

Types of networks r∗ l∗ γ

ER: G0.05(100) 5.21% 0.19 100%
BA: N =200, E [D]=4 8.63% 0.17 100%
ER: G0.0003(10000) 4.16% 0.23 100%

BA: N =10000, E [D]=2 6.94% 0.19 100%

5.6. CONCLUSION
In this chapter, we analyzed the role of critical links in reachability-based network con-
trollability. Simulation results on communication networks have suggested analytical
closed-form approximations for the number Nc of controllable nodes. We derived closed-
form approximations for the number Nc of controllable nodes as a function of the fraction
of removed links, for random attacks, targeted attacks and random attack under protec-
tion. Both for random and targeted attacks, our approximation is linear in the fraction
l of removed links when this fraction is smaller than the fraction of critical links. When
the fraction of removed links is larger than the fraction of critical links, our approxima-
tion is quadratic in l . We validated our approximation through simulations on sparse
communication networks and synthetic networks. Both for random attacks and random
attacks under protection, our approximations for these two cases are always very good,
as long as the fraction of removed links is smaller than the fraction of critical links. For
some cases, the approximation is still accurate for larger fractions of removed links. For
targeted attack, our approximation performs well as long as the fraction of removed links
is sufficiently small, whereas our approximation does not perform well when the fraction
of removed links is large. However, the approximation for the targeted attack always
serves as a worst-case estimate.
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Figure 5.10: The normalized maximum number of controllable nodes nc as a function of the fraction of removed
links l in synthetic networks under random attacks with protection. The results for each fraction l is based on
10000 simulations. In each sub-figure, the vertical dashed line marks the position where l = 1− lc .



6
THE RECOVERABILITY OF OPTICAL

NETWORKS

Optical networks are vulnerable to failures due to targeted attacks or large-scale disasters.
The recoverability of optical networks refers to the ability of an optical network to return to
a desired performance level after suffering topological perturbations such as link failures.
This chapter proposes a general topological approach and recoverability indicators to
measure the network recoverability for optical networks for two recovery scenarios: 1)
only the links which are damaged in the failure process can be recovered and 2) links
can be established between any pair of nodes that have no link between them after the
failure process. We use the robustness envelopes of realizations and the histograms of
two recoverability indicators to illustrate the impact of the random failure and recovery
processes on the network performance. By applying the average two-terminal reliability
and the network efficiency as robustness metrics, we employ the proposed approach to assess
20 real-world optical networks. Numerical results validate that the network recoverability is
coupled to the network topology, the robustness metric and the recovery strategy. We further
show that a greedy recovery strategy could provide a near-optimal recovery performance
for the robustness metrics. We investigate the sensitivity of network recoverability and find
that the sensitivity of the recoverability indicators varies according to different robustness
metrics and scenarios. We also find that assortativity has the strongest correlation with
both recoverability indicators.

6.1. INTRODUCTION
High reliability and robustness in optical network backbones play an important role in
successfully provisioning high service availability of the Internet and communication
systems [102]. In optical networks, disaster-based failures and damages to optical fiber
cables can partially overload data delivery, resulting in unavailability of communication
services [103]. The causes for such massive failures include: human errors, malicious

This chapter is based on the published paper [101].
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attacks, large-scale disasters, and environmental challenges [104]. Calculating the per-
formance of networks under such challenges can provide significant insight into the
potential damage they can incur, as well as provide a foundation for creating more robust
infrastructure networks.

Network robustness is interpreted as a measure of the response of the network to
perturbations, or challenges, imposed on the network [75], which has been studied
extensively in recent years. Van Mieghem et al. [75] propose a framework for computing
topological network robustness by considering both a network topology and a service
for which the network is designed. In communication networks, Cholda et al. [105]
survey various robustness frameworks and present a general framework classification,
while Pašić et al. [106] present the FRADIR framework that incorporates reliable network
design, disaster failure modeling and protection routing. A wide range of metrics based
on the underlying topology have been proposed to measure network robustness [107],
and further a structural robustness comparison of several telecommunication networks
under random nodal removal is presented in [108]. Long et al. [109] propose using
the maximum variation of the Weighted Spectrum (WS) to measure the survivability of
networks to geographic correlated failures. For optical networks applications, Zhu et
al. [110] investigate the control plane robustness in software-defined optical networks
under different link cut attack scenarios and find that control plane enhancements in
terms of controller addition do not necessarily yield linear improvements in control
plane robustness but require tailored control plane design strategies. Ferdousi et al.
[111] propose a rapid data-evacuation strategy to move maximum amounts of data from
disaster regions using survived resources under strict time constraints for optical cloud
networks. Xie et al. [112] come up with a robust and time-efficient algorithm to address
the emergency backup in inter-datacenter networks with progressive disasters.

The work mentioned above focus on measuring and improving the ability of networks
to withstand failures and attacks. However, the recovery process after failures is not
considered and the investigation on the ability of a network to recover from failures is
lacking. In a broad sense, network robustness is also related to the ability of a network
to return to a desired performance level after suffering malicious attacks and random
failures [113]. We define such network capability as network recoverability1 in this chapter.
As shown in Figure 6.1, recovery measures are taken in order to recover the function
or performance of the optical network after the failure process, either by restoring the
damaged links or by building new links. The network performance during this period is
related to many factors, such as topology, recovery strategy, link adding sequence, etc.
Thus, we need an approach to measure the recoverability of optical networks.

Several recovery mechanisms have been investigated under different circumstances
[114], particularly in complex networks applications. For example, Majdandzic et al.
[115] model cascading failures and spontaneous recovery as a stochastic contiguous
spreading process and show the occurrence of a phase switching phenomenon. Chaoqi
et al. [116] construct a dynamic repair model and systematically analyze the energy-
transfer relationships between nodes in the repair process of the failure network. Recovery
strategies based on centrality metrics of network elements (e.g., nodes or links) are
investigated in [113], [117], which show that a centrality metric-based strategy may not

1Sometimes also called network restoration.
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Figure 6.1: Failure and recovery in the DFN (German optical backbone X-WiN network).

exist to improve all the network performance aspects simultaneously.

In optical networks applications, Alenazi et al. [118] propose a heuristic algorithm that
optimises a network by adding links to achieve a higher network resilience by maximising
the algebraic connectivity while decreasing the total cost via selecting cost-efficient links.
Natalino et al. [119] introduce two heuristics to upgrade Content Delivery Networks
(CDNs) and increase content accessibility under targeted link cuts. Hong et al. [120]
propose a recovery strategy to recover the boundary of the failed nodes in interdependent
networks during cascading failures. A progressive recovery approach [121], that consists
in choosing the right sequence of links to be restored after a disaster in communication
networks, proposes to maximize the weighted sum of the total flow over the entire process
of recovery [122], as well as to minimize the total cost of repair under link capacity
constraints [123].

Although the above papers [114]– [123] have contributed to a deep understanding
of recovery processes in networks, a general framework or methodology for quantifying
the recovery capability of a real-world optical network is still lacking. In this chapter, we
propose a topological approach and two recoverability indicators to quantify the network
recoverability for two different recovery scenarios, which we will denote as Scenario A
and Scenario B. For the link-based Scenario A, links can be established between any pair
of nodes that have no link between them, after the failure process. The energy-based
Scenario B assumes that only the links which are damaged in the failure process can be
recovered.

The proposed approach involves three concepts: the network topology, the robustness
metric and the recovery strategy. For an optical network G , we apply the average two-
terminal reliability AT T R and the network efficiency EG as the robustness metrics for
case studies. The average two-terminal reliability AT T R is defined as the probability
that the service between a randomly chosen node pair in the network is available, which
also expresses the level of difficulty to disconnect parts of the network. The network
efficiency EG gives an indication of the efficiency of information exchange on networks
under shortest path routing [124]. Besides a random recovery strategy and some strategies
based on topological properties, we also consider a greedy recovery strategy. In the greedy
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strategy, the damaged element (a node or a link) which improves the network performance
most has the highest priority to be recovered. Our approach is tested on 20 real-world
optical networks, and we verify that the proposed recoverability indicators allow us to
compare the performance of different recovery strategies and assess the recoverability of
different networks.

The rest of this chapter is organized as follows: Section 6.2 introduces the topological
approach for measuring the network recoverability for the two considered recovery sce-
narios. Section 6.3 presents the main concepts in the evaluation of network recoverability.
The experimental results are exhibited in Section 6.4. Section 6.5 discusses the sensitivity
of the network recoverability on different robustness metric thresholds. Section 6.6 an-
alyzes the correlation of topological metrics with recoverability indicators. Section 6.7
concludes the chapter.

6.2. TOPOLOGICAL APPROACH FOR MEASURING NETWORK RE-
COVERABILITY

In this section, we introduce an approach for measuring the network recoverability for
real-world optical networks for two recovery scenarios.

6.2.1. R-VALUE AND CHALLENGES
We inherit the framework and some definitions proposed for network robustness [52, 75]
and extend the methodology for the network recoverability. A given network determined
by a service and an underlying topology is translated into a mathematical object, defined
as the R-value, on which computations can be performed [75]. The R-value takes the
service into account and is normalized to the interval [0,1]. Here, R = 1 reflects complete
functionality in a network without failures, and R = 0 corresponds to the complete lack of
functionality for a sufficiently degraded network.

An elementary challenge is an event that changes the network and thus possibly
changes the R-value. We assume that a elementary changes take place one by one, and
thus do not coincide in time. Considering link-based failures and targeted link cuts as
common threats to optical infrastructure networks, we confine an elementary challenge
to a link removal in a failure process or a link addition in a recovery process. Since every
perturbation has an associated R-value, any realization of such a failure process, followed
by a recovery process, consists of a number M of elementary challenges and hence can
be described by a sequence of R-values denoted {R[k]}1≤k≤M , where k is the sequence
number of elementary challenges.

6.2.2. LINK-BASED SCENARIO A: RECOVERY OF ANY ALTERNATIVE LINK
Let MG0(N ,L) denote the robustness metric value of the original network G0(N ,L), with N
nodes and L links. Assume that during the failure-recovery process, the resulting graph
has L∗ links and is denoted by G(N ,L∗). We define the R-value RG as the normalized
value of the robustness metric MG(N ,L∗), which satisfies

RG = MG(N ,L∗)

MG0(N ,L)
(6.1)
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Thus, the R-value RG0 of the original network G0(N ,L) equals 1.

We assume failures in the network only consist of link removals in the network, ac-
cording to a fixed strategy, such as random failure or targeted link cuts, which usually
degrade the robustness of the network. We assume that links are damaged (removed)
one by one, until we obtain a graph G f , whose R-value RG f first reaches or drops below a
constant ρ, where ρ ∈ [0,1] is a prescribed R-threshold for the robustness metric. Usually
this threshold is chosen in such a way that while the R-value is still above it, the service
quality remains acceptable [75]. The above process is called the failure process. The
number of failure challenges, i.e., the number of damaged links in the failure process, is
denoted by K f . For the same network G0, the smaller the value of K f , the more effective
the failure process is in degrading the R-value [75].

Then we launch the recovery process from the remaining network G f (N ,L −K f ).
Scenario A assumes that the recovery links can be established between any two nodes in
the complement of the graph after failures. The process of one realization is illustrated
in Figure 6.2(a). Specifically, we recover the network by adding links, one by one, to the
damaged network G f by a recovery strategy until the normalized robustness metric RG

first reaches or excesses RGr = 1. The network after the recovery process is denoted by
Gr (N ,L−K f +Kr ), where Kr is the number of recovery challenges (i.e. the number of links
that are added during the recovery process). For a given damaged network G f , the smaller
the value of Kr , the more effective the recovery process is. Ideally, the recovery process
increases the R-value of the current network exactly to 1. However, the R-value RGr of the
resulting network Gr (N ,L−K f +Kr ) is mostly larger than 1, since the robustness metric
value of the resulting network Gr (N ,L−K f +Kr ) is slightly larger than that of the original
network G0(N ,L) in most cases.

We define the Link Ratio ηL as the ratio of the number of failure challenges K f and
the recovery challenges Kr , i.e.,

ηL(G ,ρ) = K f

Kr
, (6.2)

which indicates the efficiency of the recovery process in one realization. A Link Ratio
ηL(G ,ρ) > 1 implies that the network can be recovered by less challenges than the number
K f of failure challenges. Otherwise, the network is more difficult to recover than to
destroy.

Scenario A can characterize the recovery process in a connection oriented network
with logical connections [125], e.g., a virtual circuit for transporting data or a wireless
backhaul network, where the links in a logical network represent the duplex channel
between two devices. For example, after channels are interrupted because of signal fading
or blocking in a mobile network, one should establish several connections or reconfigure
several new channels to maintain the network’s overall performance. Besides, Scenario
A can also apply to the situation where network operator has the capability to build
connections between any node pairs in the network. In this case, the overhead cost of
the recovery measures mainly depends on the total number of dispatched connections,
which corresponds to the number Kr of recovery challenges in Scenario A.
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Scenario A Scenario B

Figure 6.2: Illustration of the failure process and the recovery process in an Erdős-Rényi (ER) random graph
G0.1(100) with link density p = 0.1 and network size N = 100 in one realization. The R-threshold is ρ = 0.8.

6.2.3. ENERGY-BASED SCENARIO B: RECOVERY OF FAILED LINKS
The failure process in Scenario B is the same as in Scenario A. In the recovery process in
Scenario B, we restore one by one, all the links which were removed during the failure
process, until the network is restored to its original topology. Scenario B can be used to
describe recovery processes in physical communication networks, e.g., optical backbone
networks. In such networks, the recovery measure for each connection, e.g., repairing fiber
optic cables, usually requires a relatively long period. During the recovery process, the
network still provides services, albeit with a degraded performance. Thus, for this scenario,
the network recoverability is related to the network performance (or the robustness
metric) throughout the recovery process.

One realization of the failure and recovery process is illustrated in Figure 6.2(b). In
Scenario B, the number of failure challenges and the number of recovery challenges are
the same, i.e., K f = Kr , and hence, ηL = 1 in Eq.(6.2). Therefore, we propose another
recoverability indicator for Scenario B. The robustness energy S(G ,ρ) of a network G is

the sum of the R-values during the failure process, i.e. S(G ,ρ) =∑K f

k=0 R[k], and expresses
the robustness performance of the network under successive failures [52]. Thus, the

energy of failure challenges is computed by S f (G ,ρ) =∑K f

k=0(1−R[k])), which indicates the
cumulative degradation of the network performance during the failure process. During

the recovery process, the energy of the recovery challenges Sr (G ,ρ) = ∑K f

k=0(R[k]−ρ)
represents the impact of the recovery process on the network performance. For Scenario
B we define the Energy Ratio, denoted by ηE , as the ratio between the energy of the
recovery challenges Sr and the energy of the failure challenges S f , in each realization for
a given R-threshold ρ:

ηE (G ,ρ) = Sr

S f
. (6.3)

An Energy Ratio ηE (G ,ρ) > 1 implies the benefit of recovery measures can compensate
the loss of network performance by the failures, which indicates a high network recovery
capability. Conversely, an Energy Ratio ηE (G ,ρ) < 1 implies a low recoverability.

6.2.4. COMPARISON VIA ENVELOPES AND THE RECOVERABILITY INDICATORS
As we discussed in Section 6.2.1, the impact of any realization of failure and subsequent
recovery process on the network’s functionality can be expressed as a sequence of R-
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values {R[k]}, where k is the sequence number of elementary challenges. To investigate
the recoverability of networks, we need to know the number of challenges needed to make
the original R-value (which is normalized to 1) decrease to a predefined R-threshold ρ in
the failure process and also the number of challenges needed to increase the R-threshold
ρ to the original R-value. This confines us to investigate the number of challenges K as a
function of a specific R-value r , i.e., {K [r ]}. Thus, each value in {K [r ]} is the number of
challenges that is needed to change R-value to a specific R-value r for each realization.
Considering that it is impossible to list all values of r between the R-threshold ρ and
the original R-value, we evenly sampled H = 1000 different r values in the interval [ρ,1].

Thus, r j = ρ+ ( j−1)(1−ρ)
H−1 where j is the j th value of r . The envelope is constructed using

all sequences {K [r ]} for r ∈ {r1,r2, . . . ,rH }. The boundaries of the envelope are given by
the extreme number of challenges K

Kmin[r ] ∈ {min(K [r1]),min(K [r2]) . . . ,min(K [rH ])}, (6.4)

Kmax[r ] ∈ {max(K [r1]),max(K [r2]) . . . ,max(K [rH ])}, (6.5)

which gives the best- and worst case values of the robustness metrics for a network after
a given number of recovery challenges. The expected number of challenges K leading to
the topological approach r j is

Kav g [r ] ∈ {E(K [r1]),E(K [r2]) . . . ,E(K [rH ])}. (6.6)

Since K [r ] defines a probability density function (pdf), we are interested in the percentiles
of K [r ]

Km%[r ] ∈ {Km%[r1],Km%[r2] . . . ,Km%[rH ]}, (6.7)

where Km%[r ] are the points at which the cumulative distribution of K [r ] crosses m
100 ,

namely Km%[r ] = t ⇔ Pr[K [r ] ≤ t ] = m
100 .

We apply the envelopes to present the behavior of the failure and recovery processes
on a network [52,75]. The envelope profiles the pdf of the random variables of the number
of challenges K , which is the probability of a random variable to fall within a particular
region. The area of the envelope can be regarded as the variation of the robustness impact
of a certain series of challenges, which quantifies the uncertainty or the amount of risk
due to perturbations.

We propose two recoverability indicators, the Link Ratio ηL(G ,ρ) and the Energy
Ratio ηE (G ,ρ), for different scenarios, respectively. Since a failure process and a recovery
process could be random under the random strategy, the recoverability indicators are
random variables. We compare the recoverability of different networks by the average
recoverability indicators for simplicity. For example, the average Link Ratio E [ηL(G1,ρ)] >
E [ηL(G2,ρ)] for two different networks G1 and G2 implies that the network G1 usually has
a better recoverability than G2 in Scenario A for a given R-threshold ρ.

Besides the average recoverability indicators, we are also concerned about the variance
of the recoverability indicators V ar [η(G ,ρ)]. A smaller variance of the recoverability
indicators V ar [η(G ,ρ)] implies a narrower uncertainty of the recoverability indicators,
thus a better recoverability.

6.3. ROBUSTNESS METRICS AND RECOVERY STRATEGIES
In this section, we introduce the factors which determine specific recovery process,
namely robustness metrics, recovery strategies and network topologies.
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6.3.1. ROBUSTNESS METRICS
We use two metrics: the average two-terminal reliability AT T R and the network efficiency
EG , as the robustness metrics. These two metrics are closely related to service availability
and data delivery on optical networks.

1) Average two-terminal reliability AT T R. In optical networks, the average two-
terminal reliability (ATTR) can assess the resilience and vulnerability of a fiber infrastruc-
ture [126, 127]. The metric is defined as the fraction of pairs of nodes with a path between
them

AT T R(G) =
∑

i ̸= j∈G 1exists a path between(i , j )(N
2

) . (6.8)

The AT T R measures the reachability fraction of any pair of nodes, but ignores the perfor-
mance of the information exchange in a network. AT T R equals 1 when the network is
fully connected; otherwise AT T R is the sum of the number of node pairs in every con-
nected component, divided by the total number of node pairs in the network. At failure
scenarios, the higher the average two-terminal reliability, the higher the robustness [108].

2) Network efficiency EG . We assume that the hopcount h(i , j ), i.e., the number of
links in the shortest path from node i to j , indicates the overhead of data delivery from
end to end. Thus, the reciprocal of the hopcount 1/h(i , j ) implies the amount of packages
for one unit overhead, which can be interpreted as the efficiency of data delivery between
two nodes in optical networks. If there is no path from i to j , h(i , j ) =∞ and 1/h(i , j ) = 0.
The efficiency of a given network is defined as the mean of the reciprocals of all the
hopcounts h(i , j ) in a network, i.e.,

EG =
∑

i ̸= j∈G 1/h(i , j )(N
2

) , (6.9)

see [124]. Network efficiency EG quantifies the efficiency of information exchange across
the whole network under shortest path routing [128], such as the data transmission be-
tween controllers and switches in software-defined optical networks. Network efficiency
monotonically decreases with successive link removals.

6.3.2. FAILURE AND RECOVERY STRATEGIES
For simplicity and generality, we consider a random failure strategy. The random failure
strategy implies that the failures occur independently on links randomly and uniformly,
which is consistent with the random failure stage in a product life cycle. The R-value R[k]
for a determined number of failure challenges k is a random variable. We consider three
different strategies for recovery measures, i.e., random recovery, metric-based recovery
and greedy recovery:

1) Random recovery: The random recovery strategy refers to the strategy that the links
are added randomly and uniformly, one by one, during the recovery process, which can
describe a self-repairing process after failures or recovery measures without scheduling.

2) Metric-based recovery: The metric-based strategy determines the sequence of
adding links by the topological or spectral metrics of links. While there are many relevant
metrics, such as closeness and the effective resistance [129] [130], we use three metric-
based recovery strategies. The selection criteria of the link between nodes i and j for each
strategy are illustrated as follows:
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(a) The minimum product of degrees di d j . For each challenge in a recovery process,
we select and restore the link l∗i j with the minimum di d j . If there are multiple node pairs

with the same minimum product of degrees, one of these pairs is randomly chosen.
(b) The minimum product (x1)i (x1) j of the i th and j th components of the eigenvector

x1 belonging to the largest adjacency eigenvalue [131]. For each challenge in a recovery
process, we restore the link l∗i j with the minimum (x1)i (x1) j .

(c) The maximum absolute difference ∆y = max(|yi − y j |), where |yi − y j | is the
absolute difference between the i th and j th components of the Fiedler vector y [20]. For
each challenge in a recovery process, we restore the link l∗i j with the maximum ∆y .

3) Greedy recovery: The greedy recovery strategy involves adding the link l∗max that
makes the R-value increase the most in each challenge,

l∗max = argmax
l∈Gc

R(G + l )−R(G) (6.10)

where Gc is the complement of the current network G . The greedy strategy is a prac-
tical and intuitive recovery strategy, where the current optimal link for improving the
performance of the network has the priority to be recovered.

4) Worst case recovery: The worst case recovery strategy involves adding the link
l∗mi n that makes the R-value increase the least in each challenge,

l∗mi n = arg min
l∈Gc

R(G + l )−R(G) (6.11)

where Gc is the complement of the current network G . This strategy is supposed to be
an inefficient recovery strategy, where each time the link that contributes the least to the
restoration of the network, is recovered.

6.3.3. OPTICAL NETWORKS

As a case study we select 20 real-world optical communication networks. This set of
networks was selected from the Internet Topology Zoo [132], covering optical backbone
networks located in different regions of the world, see Table 7.1.

The topological properties of the 20 real-world optical networks are described in Table
6.1: the number of nodes N and links L, the average degree E [D], the spectral radius λ1,
the algebraic connectivity µN−1, the diameter ϕ and the assortativity ρD . As shown in
Table 6.1, the average degree E [D] of the 20 optical networks is less than 3. Most of the 20
optical networks have a small value of the algebraic connectivity µN−1. Besides, 18 out
of 20 optical networks have a negative assortativity ρD , which signifies a preference of
high-degree nodes to connect to other low-degree nodes [133].

6.4. RESULTS AND DISCUSSION
In this section, detailed results and analysis on the real-world optical networks via the
proposed approach for assessing network recoverability are presented. For some eval-
uation items, we only present results for a specific network, i.e., US_signal. We set the
R-threshold as ρ = 0.8 in the following simulations. The approach translates easily to
other networks or other robustness metrics.
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Table 6.1: Topological properties of the 20 real-world optical networks.

Networks Location N L E [D] λ1 µN−1 ϕ ρD

Funet Finland 26 30 2.31 2.71 0.12 9 -0.31
Intellifiber US 73 95 2.60 3.55 0.03 15 -0.03
ValleyNet US 39 51 2.62 3.42 0.03 16 0.10
IowaNet US, Iowa 33 41 2.48 2.95 0.11 9 -0.32
LambdaNet Germany 42 46 2.19 2.53 0.04 13 -0.48
Ntelos US, Virginia 47 58 2.47 3.01 0.04 17 -0.002
PionierL1 Poland 36 41 2.28 2.73 0.08 11 -0.30
RoEduNet Romania 48 52 2.17 2.95 0.04 13 -0.32
Shentel US 28 35 2.50 3.14 0.05 13 0.32
US_Signal US 61 78 2.56 2.89 0.04 14 -0.23
Darkstrand US 28 31 2.21 2.34 0.07 11 -0.25
Interoute Europe 110 146 2.67 3.34 0.03 17 -0.20
Missouri US, Missouri 67 83 2.48 3.09 0.04 14 -0.07
NetworkUSA US 35 39 2.23 2.63 0.08 10 -0.13
Oteglobe Europe 83 99 2.39 3.39 0.04 14 -0.22
Palmetto US, Carolina 45 64 2.84 3.36 0.07 12 -0.15
Sunet Sweden 26 32 2.46 2.77 0.08 12 -0.42
Switch Switzerland 74 92 2.49 3.43 0.04 13 -0.37
Syringa US 74 74 2.00 2.91 0.01 31 -0.35
VtlWavenet Europe 88 92 2.09 2.32 0.01 31 -0.12

6.4.1. ENVELOPE EXAMPLES AND COMPARISON

Each realization of processes consists of a failure process and a subsequent recovery
process. Figure 6.3 exemplifies the envelopes [52] of the challenges in US_signal network
for two scenarios and two robustness metrics, AT T R and EG , respectively, under the
random recovery strategy. The envelopes for the failure processes are similar in different
scenarios while link-based Scenario A usually needs more challenges to recover the
robustness metrics than energy-based Scenario B, if the random recovery strategy is
employed. The total number of challenges K f +Kr could cover a wide range of values
since the number of challenges K f +Kr is influenced by two random processes (i.e., failure
and recovery).

Figure 6.3(a) and Figure 6.3(c) also illustrate that the R-value of the average number of
challenges R[Kav g ] for the robustness metric AT T R does not change smoothly with the
number of challenges, in both the failure process and the recovery process, because only
when a new component appears during the failure process or a component disappears
during the recovery process, the AT T R value changes. Furthermore, R[Kav g ] for AT T R
decreases slowly during the initial stage of failure process but increases fast during the
initial recovery process. For the robustness metric EG , the function R[Kav g ] is slightly
concave, illustrated in Figure 6.3(b) and Figure 6.3(d). We will show that the concavity of
the function R[Kav g ] could help to explain the behavior of the recoverability indicators.

6.4.2. COMPARISON OF RECOVERY STRATEGIES

The envelope computation can be applied to compare the performance of different
recovery strategies for a specific realization of failures. Figure 6.4 shows different recovery
strategies (e.g., random, minimum di d j , minimum (x1)i (x1) j , maximum ∆y , worst case
and greedy) for one realization of failure processes under random failure strategy in
the US_signal network. The envelope of recovery processes by random recovery for the
average two-terminal reliability AT T R covers a larger surface than that of the network
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(d) Scenario B: EG

Figure 6.3: Envelopes of the challenges for two scenarios and two robustness metrics (i.e., the average two-
terminal reliability AT T R and the network efficiency EG ) in US_signal network, by random recovery strategy.
Each envelope is based on 104 realizations.

efficiency EG . This implies that the average two-terminal reliability AT T R in different
realizations could deviate more under the random recovery and that the performance of
random recovery is more difficult to guarantee. The average challenge sequence {Kav g }
under the random recovery can be a standard to evaluate the performance of other
recovery strategies. As shown in Figure 6.4(a) and Figure 6.4(c), the Fiedler vector-based
strategy is comparable to the degree-based recovery in Scenario A and the eigenvector-
based strategy in Scenario B, which outperforms the average random recovery.

Figure 6.4 also shows that none of the metric-based strategies, with minimum de-
gree product, minimum eigenvector centrality product or maximum absolute difference
between Fiedler vector components, can always outperform others for both robustness
metrics in both scenarios. Figure 6.4(a) and Figure 6.4(c) exemplify that though the
degree-based recovery performs well in link-based Scenario A for AT T R, it does not ef-
fectively recover the network in energy-based Scenario B. The eigenvector-based strategy
outperforms the average behavior of the random strategy in the initial stage of recovery
processes but degrades for more recovery challenges in Scenario A. As is shown in Figure
6.4(b) and Figure 6.4(d), these three metric-based recovery strategies are close to and
even worse than the average random recovery.

Meanwhile, we notice that the greedy recovery usually upper bounds the random
recovery envelopes. The R-value as a function of the number of challenges k under the
greedy strategy is concave in the recovery process, which demonstrates the diminish-
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Figure 6.4: Comparisons of different recovery strategies for one realization of failures in US_signal network.
Two scenarios and two robustness metrics (i.e., the average two-terminal reliability AT T R and the network
efficiency EG ) are applied. Each envelope is based on 104 realizations.

ing returns property of the recovery measures. The greedy recovery provides the most
effective way to recover the performance for both robustness metrics, AT T R and EG ,
when compared with other listed recovery strategies. The worst case recovery strategy
is usually beneath the random recovery envelopes. Among all recovery strategies, the
greedy/worst case strategy performs the best/worst. In link-based Scenario A, both for
AT T R and EG , the greedy recovery and the worst case recovery loosely bound the random
recovery envelop, because there are much realizations, while envelopes generated by
simulation cannot cover all these realizations. The greedy recovery and the worst case
recovery tightly bound the random recovery envelop because the number of realizations
in energy-based Scenario B is limited.

6.4.3. OVERVIEW OF THE LINK RATIO AND THE ENERGY RATIO

We employ the proposed approach and the recoverability indicators η (including the Link
Ratio ηL and the Energy Ratio ηE ) to evaluate the 20 real-world optical networks. Figure
6.5 shows the recoverability indicators under two different scenarios, two robustness
metrics and two recovery strategies for the 20 considered networks by violin plots. Violin
plots are similar to box plots, except that they show the probability density of the ratios
η at different values, which presents more insights about the ratios η under random
circumstances. Moreover, violin plots can be applied to compare the performance of any
two different strategies, in this case the random and the greedy strategy.
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(c) Scenario B: AT T R
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(d) Scenario B: EG

Figure 6.5: Violin plots of the Link Ratio ηL in Scenario A and the Energy Ratio ηE in Scenario B. The average
ratios x̃ = E [η] and the standard deviations s =√

V ar [η] are presented on the top of each subplot. The blue
surface and values represent the random recovery strategy, and the red surface and values represent the greedy
recovery strategy. The average ratios are marked as triangle markers. Each histogram of η is based on 104

realizations. For convenience, we use Real1 to Real20 to represent the 20 optical networks in table 6.1.
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Figure 6.5 shows that almost all histograms of the ratio η, regardless of the scenarios,
the strategies and the metrics, exhibit heavy-tailed distributions, while the greedy strategy
presents a heavier tail when compared with random recovery strategy. Also, the ratio η
has a wider range of values under the greedy strategy, which implies the greedy strategy
has a higher probability to lead to a large ratio η, as well as a better recovery performance.

For both robustness metrics in Scenario A, Real7 (PionierL1) and Real8 (RoEduNet)
have an average Link Ratio E [ηL] < 1 for the random strategy, which implies a relatively low
recovery capability. By contrast, Real10 (US_Signal), Real16 (Palmetto) and Real17 (Sunet)
have a large average Link Ratio E [ηL] > 1, which clearly outperform other networks, both
for the random strategy and the greedy strategy.

The Energy Ratio ηE exhibits other behaviors than the Link Ratio ηL in Scenario A.
The average Energy Ratios E [ηE ] for the robustness metric AT T R are much larger than 1
under the random strategy, which can be explained by the fact that the function R[Kav g ]
decreases slowly during the initial stage of the failure process but increases fast during the
initial recovery process (illustrated in Section 6.4.1). Thus, the energy Sr is much larger
than S f , i.e., the average Energy Ratios E [ηE ] is much larger than 1 for AT T R. Since the
function R[Kav g ] is concave for the robustness metric EG and thus the energy S f < Sr , the
average Energy Ratios E [ηE ] for different networks are slightly larger than 1. The average
Energy Ratio E [ηE ] in Scenario B under the greedy strategy is usually located in the tail of
the distribution of the Link Ratio ηL under the random strategy, which demonstrates that
the greedy strategy can increase the recoverability of networks significantly.

6.4.4. RELATION BETWEEN SCENARIO A AND SCENARIO B
To compare the recoverability between different networks, we employ so-called Scenario
A-Scenario B plots, which show the Energy Ratio vs. the Link Ratio, under a given recovery
strategy. Scenario A-Scenario B plots are divided into 4 quadrants, by the reference
lines ηL = 1 and ηE = 1, in order to easily assess the recoverability by the location of the
average ratios E [ηL] and E [ηE ]. Figure 6.6 shows the average ratios E [η] and the standard
deviations

√
V ar [η] for the real-world networks in Scenario A-Scenario B plots.

Figure 6.6(a) and Figure 6.6(b) show that when the R-value is the average two-terminal
reliability AT T R, the two recoverability ratios corresponding to two different scenarios
have a positive correlation, e.g., a higher Link Ratio ηL in Scenario A typically leads to a
higher Energy Ratio ηE in Scenario B, both for random recovery and greedy recovery.

Compared with Figure 6.6(a) and Figure 6.6(b), Figure 6.6(c) and Figure 6.6(d) show
that when adopting the network efficiency as the R-value, the two recoverability ratios
have a weak correlation, e.g., a higher Link Ratio ηL in Scenario A typically does not lead
to a higher Energy Ratio ηE in Scenario B both for random recovery and greedy recovery.
This implies that the R-value influences the correlation between Scenario A and Scenario
B.

Figure 6.6 shows that all the average Energy Ratios E [ηE ] are located in the first and the
second quadrant, which demonstrates a good recoverability of tested networks in Scenario
B. However, for the random recovery, the average Link Ratios E [ηL] of some networks
are in the second quadrant, which suggests these networks have low recoverability in
Scenario A.

Both the average Link Ratio E [ηL] and the Energy Ratio E [ηE ] can be increased by
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(b) Greedy recovery: AT T R
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(c) Random recovery: EG
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(d) Greedy recovery: EG

Figure 6.6: Scenario A-Scenario B plots of the Link Ratio ηL and the Energy Ratio ηE for two robustness
metrics (i.e., the average two-terminal reliability AT T R and the network efficiency EG ) based on 20 optical
networks. The solid markers represent the average ratios E [η], and the crosses indicate the value ranges[
E [η]−√

V ar [η],E [η]+√
V ar [η]

]
.

applying the greedy strategy, but the performance can be different. For example, the
average Link Ratio E [ηL] of network Real14 (NetworkUSA) is smaller than that of network
Real11(Darkstrand) under the random strategy but larger than that of network Real11
under the greedy strategy, which implies that the performance of a recovery strategy
strongly depends on the network topology.

6.5. SENSITIVITY ANALYSIS OF NETWORK RECOVERABILITY
In previous sections, the R-threshold was fixed at the vaulue ρ = 0.8. In this section we
investigate the influence of different R-thresholds on the Link Ratio ηL and the Energy
Ratio ηE . Figure 6.7 and Figure 6.8 show the impact of different R-thresholds on recover-
ability indicators η for 4 optical networks, for the average two-terminal reliability AT T R
and the network efficiency EG , respectively.
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Figure 6.7: The impact of thresholds on recoverability indicators for the average two-terminal reliability AT T R
in 4 optical networks.

We conclude from Figure 6.7 that when the R-value is AT T R the following: 1) a
larger R-threshold dramatically increases the average Energy Ratio E [ηE ] in Scenario
B, emphasizing the importance of diagnosing and recovering the network in the early
period. 2) The average Link Ratio E [ηL] in Scenario A increases slightly with a larger
R-threshold (i.e., a lower damage level). Thus, the average Energy Ratio E [ηE ] in Scenario
B is more sensitive than the average Link Ratio E [ηL] in Scenario A. 3) The increase of
the two recoverability ratios, especially for the average Energy Ratio E [ηE ] in Scenario B,
can be explained by the curvature of the function R[Kav g ] in the random failure process.
As illustrated in Figure 6.3(a) and Figure 6.3(c), the function R[Kav g ] is approximatively
concave when the average number of challenges is small (corresponding to a high R-
threshold). As the number of challenges increases in order to degrade the R-value to a
lower R-threshold, the function R[Kav g ] gradually becomes more convex, which is in line
with the results obtained in [108]. Thus, the Energy Ratio ηE , which equals the energy of
recovery challenges Sr divided by the energy of failure challenges S f , tends to become
larger as the R-threshold increases.

Figure 6.8 shows that when the R-value is the network efficiency EG we can conclude
the following: 1) the average Energy Ratio E [ηE ] and the average Link Ratio E [ηL] are not
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Figure 6.8: The impact of thresholds on recoverability indicators for network efficiency EG in 4 optical networks.

always monotonically changing as the R-threshold increases. Specifically, for networks
Darkstrand and Funet, the average Link Ratio E [ηL] for the greedy recovery is slightly
decreasing with a higher R-threshold, while for networks Shentel and US_Signal, the
average Link Ratio E [ηL] is increasing when the R-threshold increases from 0.5 to 0.8.
Nevertheless, the average Energy Ratio E [ηE ] first increases and then decreases with the
increment of the R-threshold, both for random recovery and greedy recovery, which may
imply an optimal R-threshold for Scenario B exists. 2) Compared with Figure 6.7, the
average Energy Ratio E [ηE ] in Scenario B for network efficiency is less sensitive than that
for AT T R . This reveals that the sensitivity of recoverability indicators largely depends on
the choice of the R-value. 3) For both average two-terminal reliability AT T R and network
efficiency EG , the greedy recovery exhibits a better performance than random recovery,
for different R-thresholds. Thus, we propose to use the greedy recovery strategy.

6.6. CORRELATION OF METRICS WITH RECOVERABILITY INDICA-
TORS

In this section, we explore the correlation between recoverability indicators in the random
recovery scenario and 10 widely studied network metrics: the average degree E [D], the
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spectral radius λ1, the diameter ϕ, the algebraic connectivity µN−1, the assortativity ρD ,
the average hopcount E [H ], the clustering coefficient cG , the ratio µ1/µN−1, the effective
graph resistance rG and the global efficiency E [1/H ]. Results are shown in Table 6.2 and
Table 6.3, which are based on 200 optical backbone communication networks in the
specialized database [132].

We use the Spearman’s rank correlation coefficient ρs [133] to evaluate the correlation
between the recoverability indicators and the 10 network metrics. The Spearman’s rank
correlation coefficient ρs is less restrictive than the Pearson’s correlation coefficient ρp

since the latter only estimates the linear correlation between two variables. The Spear-
man’s rank correlation coefficient ρs measures the strength and direction of monotonic
association between two variables X and Y , i.e.,

ρs (X ,Y ) = ρp (FX (X ),FY (Y )) (6.12)

= Cov[FX (X ),FY (Y )]

σFX (X )σFY (Y )
,

where FX (X ) and FY (Y ) are the probability distribution of the variable X and Y , re-
spectively. ρp (FX (X ),FY (Y )) is the Pearson’s correlation coefficient between FX (X ) and
FY (Y ).

Table 6.2 illustrates the Spearman’s rank correlation coefficient ρs between the 10
network metrics and the two recoverability indicators, when the R-value is the average
two-terminal reliability AT T R. As shown in Table 6.2, assortativity ρD has the strongest
positive correlation with both the average Link Ratio E [ηL] and the average Energy Ratio
E [ηE ]. Out of the 200 optical networks, 175 networks have negative assortativity, which
suggests that a negative assortativity value close to 0 corresponds to a large average
Link Ratio E [ηL] and Energy Ratio E [ηE ]. The average hopcount E [H ] has the weakest
correlation with the average Link Ratio E [ηL], while the algebraic connectivity µN−1 has
the weakest correlation with the average Energy Ratio E [ηE ]. In addition, the effective
graph resistance rG has a relatively strong negative correlation for the average Link Ratio
E [ηL].

Table 6.3 illustrates the Spearman’s rank correlation coefficient ρs between the 10
network metrics and the two recoverability indicators, where the R-value is the network
efficiency EG . Assortativity ρD still has the strongest positive correlation with both the
average Link Ratio E [ηL] and the average Energy Ratio E [ηE ]. Since the assortativity ρD of
most backbone networks (175 out of 200) is negative, this finding suggests that optical
networks with an assortativity value closer to 0 has a higher recoverability for random
recovery. The average degree E [D] also has a relatively strong correlation with the average
Energy Ratio E [ηE ], suggesting denser network may have a better recoverability. Further-
more, the effective graph resistance rG has the weakest correlation with the average Link
Ratio E [ηL], while the algebraic connectivity µN−1 still has the weakest correlation with
the average Energy Ratio E [ηE ].

6.7. CONCLUSION
This chapter proposes a topological approach for evaluating the network recoverability in
two scenarios, the link-based Scenario A and the energy-based Scenario B. We found that
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Table 6.2: The Spearman’s rank correlation coefficient ρs between 10 network metrics and the two recoverability
indicators. The R-value considered here is the average two-terminal reliability AT T R . Results are based on 200
real-world optical networks.

Metrics ρs for E [ηL] ρs for E [ηE ]
Average degree E [D] 0.5119 0.4784

Spectral radius λ1 -0.4045 -0.4223
Diameter ϕ 0.1534 0.3239

Algebraic connectivity µN−1 0.1580 -0.0168
Assortativity ρD 0.5460 0.5912

Average hopcount E [H ] 0.0353 0.2326
Clustering coefficient cG 0.3534 0.2616

Ratio µ1/µN−1 -0.4783 -0.2831
Effective graph resistance rG -0.5246 -0.2766

Global efficiency E [1/H ] 0.1552 -0.0764

Table 6.3: The Spearman’s rank correlation coefficient ρs between 10 metrics and two recoverability indicators.
The R-value here is network efficiency EG . Results are based on 200 real-world optical networks.

Metrics ρs for E [ηL] ρs for E [ηE ]
Average degree E [D] 0.4833 0.5380

Spectral radius λ1 -0.3787 -0.3185
Diameter ϕ 0.6297 0.2869

Algebraic connectivity µN−1 -0.3773 -0.0264
Assortativity ρD 0.6677 0.5708

Average hopcount E [H ] 0.5555 0.1930
Clustering coefficient cG 0.2665 0.3593

Ratio µ1/µN−1 0.1181 -0.2190
Effective graph resistance rG 0.1006 -0.2518

Global efficiency E [1/H ] -0.4178 -0.0433

all the optical networks have a healthy recovery capability in Scenario B under the random
recovery strategy, i.e., the average Energy Ratio E [ηE ] > 1, while two of the networks
(PionierL1 and RoEduNet) suggest topological improvements for the recoverability in
Scenario A, i.e., the average Link Ratio E [ηL] < 1. The performance of the recoverability in
Scenario B can be explained by the concavity of the R-value as a function of the number
of challenges. There is also a strong correlation between the network recoverability
and the recovery strategy. The greedy recovery strategy exhibits a good performance
for the investigated robustness metrics and thus improves the network recoverability.
The network efficiency is less sensitive to different R-value thresholds while the Energy
Ratio E [ηE ] for the average two-terminal reliability increases significantly with increasing
thresholds in Scenario B. The assortativity has the strongest correlation with the average
Link Ratio and the average Energy Ratio, when the robustness metric is either the average
two-terminal reliability or the network efficiency.





7
THE RECOVERABILITY OF NETWORK

CONTROLLABILITY

In this chapter, we adopted the framework of network recoverability and investigate the
recoverability of network controllability for two recovery scenarios: 1) only the links which
are damaged in the failure process can be recovered and 2) links can be established between
any pair of nodes that have no link between them after the failure process. By applying
the normalized value of network controllability as the robustness metric, we employ the
proposed approach to assess swarm signalling networks with regular out-degree, and net-
works with bi-modal out-degree distributions. Furthermore, we also deduced the analytical
results of the recoverability indicators by generating functions, which are close to the results
based on simulations.

7.1. INTRODUCTION
The secure, reliable and effective operation of critical infrastructures such as power grids,
telecommunications and the Internet relies on the ability to control the state of a given
system or network. Network controllability offers a graph theoretical interpretation for
control systems as first described by Kalman, which is particularly suitable for studying
sets of nodes offering the ability to control an entire network. Network controllability
has been a hot research topic in recent years [39] [40] [41] [42]. A system is considered
controllable if it can be driven from any initial state to any desired final state by external
inputs in finite time [24]. Let the N×N matrix A represent the wiring diagram of a network
with N nodes, while the connection of M input signals to the network is described by the
N ×M input matrix B , where M ≤ N . The nodes injected by the input signals are called
driver nodes, which steer the state of the network. Then, the system characterized by
(A,B) is structurally controllable, if it is possible to find the non-zero parameters in A and
B in such a way that the obtained system (A,B) is controllable in the classical sense of
satisfying Kalman’s rank condition.

The robustness of the network controllability can be measured by quantifying the

97
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increase in the minimum number of driver nodes ND , under perturbation of the network
topology. The impact of topological perturbations on the controllability of networks has
been investigated extensively in recent years. Pu et al. [54] found that the degree-based
node attack is more efficient than a random attack for degrading the controllability in
directed random and scale-free networks. Nie et al. [55] found that the controllability of
Erdős-Rényi random graphs with a moderate average degree is less robust, whereas a scale-
free network with moderate power-law exponent shows a stronger ability to maintain its
controllability, when these networks are under intentional link attack. Thomas et al. [56]
identified that the potency of a degree-based attack is directly related (on average) to
the betweenness centrality of the edges being removed. Lu et al. [57] discovered that a
betweenness-based strategy is quite efficient to harm the controllability of real-world
networks. Mengiste et al. [58] introduced a new graph descriptor, ‘the cardinality curve’, to
quantify the robustness of the control structure of a network to progressive link pruning.
In Chapter 2, we proposed closed-form analytic approximations for the number of driver
nodes that are needed to maintain network controllability, where links are removed
according to both random and targeted attacks [36].

There is also some research concerning the recovery of controllability in networks.
Alcaraz et al. [134] investigated algorithms for the efficient restoration of controllability
following attacks and attacker-defender interactions in power-law networks. Results
highlighted that the use of a network diameter can be a suitable option to establish control
with low computational and storage costs. In [135], four reachability-based restoration
strategies were presented to find optimal solutions that guarantee control at all times and
without damaging the structural controllability properties. Zhang et al. [136] proposed a
maximum matching-based method to recover the controllability of random digraphs in
linear time.

The work mentioned above either focus on the robustness of the network controllabil-
ity under perturbations or specific methods to restore network controllability. However,
the recovery process after failures is not considered and the investigation on the capability
of a network to recover its controllability from failures is still lacking. We define such
network capability as recoverability of network controllability in this chapter. Recovery
measures are taken in order to recover the controllability of a network after the failure
process, either by restoring the damaged links or by building new links. Considering the
network performance is related to many factors, such as topology, recovery strategy, link
adding sequence [101], we need an approach to measure the recoverability of network
controllability.

Based on our previous work [95], we propose a topological approach and define two
recoverability indicators to quantify the recoverability of controllability for two different
recovery scenarios denoted as Scenario A and Scenario B. For the link-based Scenario
A, links can be established between any pair of nodes that have no link between them,
after the failure process. The energy-based Scenario B assumes that only the links which
are damaged in the failure process can be recovered. Our approach is tested on swarm
signalling networks with regular out-degree, networks with bi-modal out-degree distri-
butions as well as some real-world networks. We verify that the proposed recoverability
indicators allow us to assess the recoverability of controllability in different networks. For
some networks with specific degree distribution, such as regular out-degree and bi-modal
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out-degree, we manage to deduce the analytical approximations of the recoverability
indicators and measure their accuracy using the simulation results as the benchmark.

The rest of this chapter is organized as follows: Section 7.2 provides the estimations for
the recovery of network controllability in Scenario A and Scenario B. Section 7.3 concludes
this chapter.

7.2. RECOVERABILITY OF NETWORK CONTROLLABILITY
In Chapter 3, we proposed analytical expressions to determine the minimum fraction nD

of driver nodes during the random failure process. However, it is natural and common in
real life to consider recovering a network after failures occur in the network. In this section,
we adopt the framework of investigating the recoverability of networks introduced in
Chapter 6 and investigate the recoverability of network controllability.

7.2.1. R-VALUE
As discussed in Chapter 6, the robustness of a network can be expressed in a mathematical
way, through the so-called R-value, which quantifies the robustness of a network [75]. To
normalize the value of nD as the R-value whose value is between 0 and 1, we define the
R-value as:

R = 1−nD

1−nD0

(7.1)

where nD0 is the fraction of driver nodes in the original network, nD is the fraction of
driver nodes during the attack phase and recovery phase. When nD is equal to nD0 , R
equals 1, which reflects the network’s controllability does not change. When the R-value
equals 0, it means that the network controllability is completely destroyed, and all nodes
need to be controlled (nD = 1) to control the whole network.

7.2.2. RECOVERY IN SCENARIO A
As discussed above, the R-value is the controllability metric of a network G(N ,L). Attack-
ing this network would make its minimum fraction nD of driver nodes increase, which
is shown in Chapter 2. Thus, the R-value decreases, which denotes the degradation of
network controllability. The links are removed one by one until the R-value reaches a
predefined threshold Rthr eshol d . The number of removed links that makes the R-value
reach the predefined threshold is denoted as K f . Then the recovery process starts from
the remaining network Gat t acked (N ,L−K f ). Scenario A assumes that the recovered links
can be added between any two nodes in the complement of the graph after attacks if the
elementary challenges are link-based removals and additions.

According to [133], we deduce the degree distribution for randomly removing a frac-
tion p of links in the attack phase, where p = i /L, i is the number of removed links and L
is the initial number of links in the network. By adopting the deduced degree distribution,
we construct the generating function for the resulting network. Given the generating func-
tion G(x) for the initial network, the generating function Ḡ(x) for the resulting network
after removing a fraction of p links satisfies:

Ḡ(x) =G(p + (1−p)x). (7.2)



7

100 7. THE RECOVERABILITY OF NETWORK CONTROLLABILITY

In the resulting network after removing a fraction p of links, a fraction f of links
are randomly recovered, where f = K

N (N−1)−(1−p)L , K is the number of recovered links,
N (N −1)− (1−p)L is the number of all possible links to recover. Then we can deduce that
the generating function for the final network follows:

Ĝ(x) = (1− f (1−x))N−1 ∗Ḡ(
x

1− f (1−x)
)

= (1− f (1−x))N−1 ∗G(p + (1−p)
x

1− f (1−x)
).

(7.3)

The proof of Eq.(7.3) is given in Appendix C. Thus, we obtain the generating functions
for the random attack process and the random recovery process in Scenario A:

Attack process: Ḡ(x) =G(p + (1−p)x),

Recovery process:
Ĝ(x) = (1− f (1−x))N−1 ·Ḡ( x

1− f (1−x) ),

(7.4)

By applying Eq.(7.4) to the general formula Eq.(3.10), we can approximate the fraction
nD of driver nodes and the corresponding R-values in the random attack and recovery
process.

For swarm signalling networks (SSNs), when a fraction p of links is randomly attacked,
the approximation for the fraction nD of driver nodes follows Eq.(3.39). When a fraction
f of links is randomly recovered in the network after attack, the approximation for the
fraction nD of driver nodes in SSNs with regular out-degree k follows:

nD =ω1(1− ω̂2) · (k(1−p∗)+ f (N −1−k(1−p∗)))+Gi n(1−ω1)−1+Gout (ω̂2), (7.5)

where p∗ = K f /L,

Gout (x) = (1− f (1−x))N−1 · (p∗+ (1−p∗)
x

1− f (1−x)
)k , (7.6)

Gi n(x) = (1− f (1−x))N−1 ·e−k(1−p∗)(1− x
1− f (1−x) ). (7.7)

ω1 and ω̂2 can be calculated by solving Eq.(3.11) and Eq.(3.14).
For real-world networks, the original generating function of the degree distribution

satisfies:

G(x) = N (0)+N (1) · x +·· ·+N (n −1) · xn−1

N
(7.8)

where N is the total number of nodes in the network, N (m) is the number of nodes
whose degree equals m.

In our simulation, the R-threshold is set to 0.9. For each SSN (N ,k) with regular
out-degree distribution or SSN (N ,k1,k2,α) with bi-modal out-degree distribution, we
generate 100 corresponding swarm signalling networks. For each network, we repeat
the random attack and random recovery process for 500 times. Thus, the curve for the
random attack and the random recovery in Scenario A is based on the average value of
50000 realizations.
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Figure 7.1: The impact of random attack and random recovery on R-values in Scenario A. In each sub-figure, we
generate 100 corresponding swarm signalling networks. For each network, we repeat the random attack and
random recovery process for 500 times. Thus, the curve for the random attack and Scenario A is based on the
average value of 50000 realizations.

Figure 7.1 shows the impact of random attack and random recovery on R-values in
Scenario A. In each sub-figure, the solid lines are the average simulation results which
consist of R-values of the expected number of challenges R[Kav g ]. Specifically the solid
blue line denotes the decrease of the R-value in the random attack process while the solid
red line shows the increase of the R-value in the random recovery process in Scenario A.
As shown in each sub-figure, the R-value decreases slowly during the initial stage of the
random attack process but increases fast during the initial recovery process.

We also calculate the R-values analytically in the attack and recovery process and
compare with simulation results in Figure 7.1. To get the analytical R-values for a chosen
number of challenges k, we first get the value p = k/L if k belongs to the random attack
process. Then, we obtain the generating function provided by Eq.(7.2). By applying
Eq.(7.2) into Eq.(3.10), we get the fraction nD of driver nodes. Finally, the R-value equals
1−nD
1−nD0

. When k belongs to the random recovery process in Scenario A, we adopt the
generating functions Eq.(7.3) and then follow the same methodology to get the R-value.
As shown in Figure 7.1, the analytical approximations for the R-values fit well with the
simulation results both for the random attack and the random recovery in Scenario A.
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The results show that our analytical method has a high accuracy for calculating net-
work controllability in random attack and random recovery process for swarm signalling
networks.

The top two sub-figures in Figure 7.2 exemplify the envelopes of the challenges in SSN
for the controllability metric R-value in Scenario A, under the random attack and recovery
strategy. The approximation fits very well with the simulation, which indicates again that
the general formula Eq.(7.4) works well. As shown in the bottom two sub-figures of Figure
7.2, our approximation also fits well with the simulation results in real-world networks.
We notice that our analytical approximations for network controllability perform better
for kdl than Cogentco, as the method is based on statistical physics and performs better
for large networks.

Figure 7.2: Envelopes of the challenges for SSNs with 500 nodes and different average out-degree (kout = 2 and
kout = 4) and two real-world networks (Cogentco and kdl) in Scenario A, by random attack and random recovery
strategy. The threshold of the R-value is 0.9. Each envelope is based on 104 realizations.

7.2.3. RECOVERY IN SCENARIO B
The attack process in Scenario B is the same as in Scenario A. In the recovery process
in Scenario B, all the links that are removed in the attack process are randomly added
until the network returns to the original state under the link-based recovery. A symmetric
method is used in Scenario B to express the generating function in the recovery process.
By using the same notation as before, Ḡ(x) and Ĝ(x) refer to the generating functions in
the attack process and the subsequent recovery process, respectively.

Attack process: Ḡ(x) =G(p + (1−p)x),

Recovery process: ¯̄G(x) =G(p∗+ (1−p∗)x)
(7.9)

In the link-based recovery process, p∗ = 2K f −i
L , where K f is the number of removed
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links that makes the R-value reach the R-threshold in the attack process, i is the number
of challenges which is between K f and 2K f . After applying Eq.(7.9) to Eq.(3.10), we can
approximate the fraction nD of driver nodes and the corresponding R-values for Scenario
B.

When a fraction p of links is randomly attacked, the approximation for the fraction
nD of driver nodes in SSNs still follows Eq.(3.39). When the attacked links are randomly
recovered, the approximation for the fraction nD of driver nodes in SSNs with regular
out-degree k follows:

nD =Gi n(1−ω1)−1+Gout (ω̂2)+k(1−p∗) ·ω1(1− ω̂2), (7.10)

where

Gout (x) = (p∗+ (1−p∗)x)k , (7.11)

Gi n(x) = e−k(1−p∗)(1−x). (7.12)

Figure 7.3 shows the impact of random attack and random recovery on R-values in
two types of swarm signalling networks. The failure process is the same as in Scenario A.
However, we found that the average number of challenges needed to restore the R-value
is less than that in Scenario A, which means that the efficiency of recovery in Scenario B
is higher than in Scenario A. Similarly, we also calculate the R-values analytically in the
attack and recovery process in Scenario B and compare with simulation results. As shown
in Figure 7.3, the analytical approximations for the R-values fit well with the simulation
results for the random recovery in Scenario B. The results indicate that our analytical
method has a high accuracy for calculating network controllability in random attack and
random recovery process for swarm signalling networks. Figure 7.4 illustrates that our
method predicts the change of R-value well during the whole process, not only for SSNs,
but also for real-world networks.

7.2.4. ESTIMATIONS FOR RECOVERABILITY INDICATORS
The method using the generating functions to calculate the fraction nD of driver nodes
can also estimate the recoverability indicators in Scenario A and Scenario B. To obtain the
Link Ratio ηL which is the ratio of the number of failure challenges K f and the recovery
challenges Kr , we need to calculate the value of K f and Kr , respectively. Since the R-
threshold ρ is given, the fraction p of removed links is the numerical solution of Eq.(3.10)
after applying Eq.(7.2) into Eq.(3.10). Then we get K f = p ∗L. Similarly, we can also get
the fraction f of added links in the recovery process by solving Eq.(3.10) and calculate
the value Kr = f ∗ (N (N −1)− (1−p)L) for Scenario A. For Scenario B where the Energy
Ratio ηE is the ratio between the energy of the recovery challenges Sr and the energy of
the failure challenges S f , we need to calculate the value of S f and Sr , respectively. Sr

equals the integral of the R-value in the interval [K f , 2K f ] minus ρ∗K f while S f equals
K f minus the integral of the R-value in the interval [0, K f ].

Table 7.1 illustrates the estimations for recoverability indicators and the absolute
relative errors between the estimations and simulation results. As shown in Table 7.1,
all estimations for the average link ratio E [ηL] fit well with simulation results with small
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Figure 7.3: The impact of random attack and random recovery on R-values in Scenario B. In each sub-figure, we
generate 100 corresponding swarm signalling networks. For each network, we repeat the random attack and
random recovery process for 500 times. Thus, the curve for the random attack and Scenario A is based on the
average value of 50000 realizations.
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Figure 7.4: Envelopes of the challenges for SSNs with 500 nodes and different average out-degree (kout = 2
and kout = 4) and two real networks (Cogentco and kdl) in Scenario B, by random attack and random recovery
strategy. The threshold of the R-value is 0.9. Each envelope is based on 104 realizations.

absolute relative errors, which further indicates that our analytical method has a high
accuracy for calculating network controllability for scenario A. Furthermore, we notice
that for the networks with the same size, a higher average out-degree indicates a larger
link ratio ηL . However, the average energy ratio E [ηE ] does not have this trait. Besides,
when the network size is large, our estimation for the average energy ratio E [ηE ] has
relatively large relative error compared with simulation results.

Table 7.1: Estimations for the recoverability indicators

Networks E [ηL] Estimation |RE | E [ηE ] Estimation |RE |
SSN(500,2) 0.8526 0.8247 3.27% 1.2423 1.3678 9.68%
SSN(500,3) 0.9436 0.9382 0.57% 1.5802 1.6932 6.96%
SSN(500,4) 0.9736 0.9682 0.55% 1.6988 1.8714 10.16%

SSN(1000,2) 0.7615 0.7865 3.28% 1.4107 1.3379 5.16%
SSN(1000,3) 0.8352 0.8679 3.92% 1.6174 1.7998 11.28%
SSN(1000,4) 0.9678 0.9831 1.58% 1.8277 1.9654 7.53%

SSN(500,2,3,0.5) 0.8734 0.8807 0.83% 1.4920 1.2516 16.11%
SSN(500,2,4,0.25) 0.9613 0.9842 2.38% 1.8763 1.6482 12.16%
SSN(500,3,4,0.75) 0.9567 0.9809 2.53% 1.7529 1.8374 4.82%

SSN(1000,2,4,0.25) 0.8812 0.9206 4.47% 1.6806 1.9413 15.51%
SSN(1000,2,4,0.5) 0.8256 0.8514 3.13% 1.4673 1.7540 19.53%

SSN(1000,2,4,0.75) 0.8073 0.8398 4.03% 1.6278 1.8334 12.63%
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7.3. CONCLUSION
This chapter applies the framework of network recoverability to evaluate the recover-
ability of network controllability in two scenarios, the link-based Scenario A and the
energy-based Scenario B. We assess the recoverability of two types of swarm signalling
networks and real-world networks. Results show that swarm signalling networks have
low recoverability in Scenario A but have high recoverability in Scenario B. Moreover, we
propose an analytical method to estimate the fraction of driver nodes in face of random
attack and random recovery, which fits well with simulation results. Furthermore, it is
convenient to estimate the values of recoverability indicators with high accuracy, by using
the analytical method without setting up simulations.



8
CONCLUSION

You only live once, but if you do it right, once is enough.

Mae West

8.1. MAIN CONTRIBUTIONS
This thesis provides original methods and new insights into the investigation on network
resilience, encompassing the robustness of controllability and the recoverability of real-
world networks. We are devoted to find analytical approximations to efficiently estimate
the impact of topological perturbations on the performance of the network. Network
topology, structural properties of the network, types of attack and recovery strategy, all
need to be taken into account to investigate the network resilience better. The main
contributions of each chapter are as follows:

In Chapter 2, we derived analytical closed-form approximations for the minimum
number of driver nodes ND needed to control networks, as a function of the fraction
of removed links, both for random and targeted attacks. Both for random and targeted
attacks, our approximation is linear in the fraction of removed links l , as long as this
fraction is smaller than the fraction of critical links. For fractions of removed links larger
than the fraction of critical links, our approximation is quadratic in l . We validated our
approximation through simulations on real-world and synthetic networks. For random
attacks, the approximation is always very good, as long as the fraction of removed links
is smaller than the fraction of critical links. For some cases, the approximation is still
accurate for larger fractions of removed links. The approximation for attacks targeting the
critical links is also accurate, as long as the fraction of removed links is sufficiently small.
The approximation for the targeted attack always serves as a worst-case estimate. Finally,
we found that the critical link attack is the most effective among 4 considered attacks, as
long as the fraction of removed links is smaller than the fraction of critical links.
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In Chapter 3, we correct the formula given in [68] for the minimum number of driver
nodes for a specific class of swarm signalling networks, which are characterised by a
regular out-degree. We then generalize the results by considering SSNs with a regular out
degree k where a fraction p of the links is unavailable. For this case we derive an implicit
equation, whose solution leads to the minimum number of driver nodes. We find that our
approximation fits well with simulation results. Finally, we relax the condition that the
out-degree is regular and look into bi-modal out-degree distributions. For this case we
also consider scenarios with unavailable links. We derive an implicit equation and verify
its accuracy. We find that our approximation for bi-modal out-degree distribution fits
well with simulation results.

In Chapter 4, we show that machine learning is applicable to improve the performance
of the analytical method in measuring the robustness of network controllability. By using
machine learning, we are able to further improve the accuracy of our approximations for
the number of driver nodes. We also derive an analytical approximation for out-in degree-
based attacks. Our machine learning based approximations outperform the analytical
approximations in both synthetic and real-world networks.

In Chapter 5, we analyze the role of critical links in network controllablity. Simulation
results on communication networks have suggested analytical closed-form approxima-
tions for the number Nc of controllable nodes. We derive closed-form approximations for
the number Nc of controllable nodes as a function of the fraction of removed links, for
random attacks, targeted attacks and random attack under protection. We validate our
approximation through simulations on sparse communication networks and synthetic
networks. Both for random attacks and random attacks under protection, our approxima-
tions for these two cases are always very good, as long as the fraction of removed links
is smaller than the fraction of critical links. For some cases, the approximation is still
accurate for larger fractions of removed links. For targeted attack, our approximation
performs well as long as the fraction of removed links is sufficiently small, whereas our ap-
proximation does not perform well when the fraction of removed links is large. However,
the approximation for the targeted attack always serves as a worst-case estimate.

In Chapter 6, we propose a topological approach for evaluating the network recover-
ability in two scenarios, the link-based Scenario A and the energy-based Scenario B. We
found that all the optical networks have a healthy recovery capability in Scenario B under
the random recovery strategy, i.e., the average Energy Ratio E [ηE ] > 1. The performance
of the recoverability in Scenario B can be explained by the concavity of the R-value as
a function of the number of challenges. There is also a strong correlation between the
network recoverability and the recovery strategy. The greedy recovery strategy exhibits
a good performance for the investigated robustness metrics and thus improves the net-
work recoverability. The assortativity has the strongest correlation with the average Link
Ratio and the average Energy Ratio, when the robustness metric is either the average
two-terminal reliability or the network efficiency.

Chapter 7 applies the framework of network recoverability to evaluate the recover-
ability of network controllability in two scenarios, the link-based Scenario A and the
energy-based Scenario B. We assess the recoverability of two types of swarm signalling
networks and real-world networks. Results show that swarm signalling networks have
low recoverability in Scenario A but have high recoverability in Scenario B. Moreover, we
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propose an analytical method to estimate the fraction of driver nodes in face of random
attack and random recovery, which fits well with simulation results. Furthermore, it is
convenient to estimate the values of recoverability indicators with high accuracy by using
the analytical method.

8.2. DIRECTIONS FOR FUTURE WORK
The research questions of this thesis and above insights obtained from the results lead to
several future research directions.

In Chapter 2, we use critical links-based approximations to estimate the number of
driver nodes in face of random attacks and targeted attacks. By analyzing the results, we
found that for dense networks, there are barely critical links in these networks. In this case,
our approximation does not perform well. It is meaningful to propose another method
which is applicable for dense networks to better capture the change of the number of
driver nodes in failures.

In our research on network controllability, we proposed well-performed approxima-
tions in Chapter 2, 3 and 4. However, the exact application of driver nodes in real-world
systems is still not clear, let alone analyzing the dynamic process under the control of
driver nodes. It is promising if we can find real systems or set up test beds to make the
research on network controllability more practical.

In Chapter 4, we use several machine learning models, such as Linear Regression,
Random Forest and Artificial Neural Networks, to learn the gap between our approxi-
mations with simulation results. However, we still need to select different properties of
the network manually which is inefficient. Besides, the properties we choose cannot
fully describes the network. Thus, a lot of information is missing which degrades the
final results obtained. In this case, graph neural network is a promising tool since it is
graph-oriented and sensitive to network structure.

In Chapter 6 and 7, we propose the topological approach and apply it to quantify the
recoverability of networks under perturbations by using recoverability indicators. As the
next step, it is essential to find effective methods to improve the recoverability of networks
and validate the performance in real-world networks.





ACKNOWLEDGEMENTS

First of all, I owe my deepest gratitude to my two promotors, Prof. Piet Van Mieghem and
Prof. Robert Kooij. It has been my honour and luck to have been working with you both.
Piet has always impressed me with his passion and his rigorous attitude towards scientific
research. During the early stage of my research, he always reminded me to improve my
English and emphasized the importance of precise academic writing. I will bear it in mind
and regard it as a dogma for my future career. My sincere gratitude goes to Rob as he has
been daily supervising me from the beginning. He is always helpful and supportive in my
research. He gave me the freedom and encouragement to pursue my ideas and his kind
advises helped me to formulate interesting questions in my research. I am grateful for
his patience and tolerance when I am not working efficiently. He always has innovative
sometimes crazy ideas which inspired me a lot and promoted my research. He is not only
a promotor to me, but also a friend, I really enjoyed listening to his adventure in China
and talking with him in Mandarin. His humours always makes me feel relaxed and shows
me that a professor can be an attractive and interesting person. His passion in life will
always inspire me.

During my Ph.D. studies, I have been fortunate enough to work together and collabo-
rate with some distinguished researchers and master students, Dr. Zhidong He, Ashish
Dhiman, Anqi Chen, Hanshu Yu, and Prof. Roland Bouffanais. I am very grateful for the
experience discussing research issues with them. Dr. Xiangrong Wang helped me a lot
when I was stuck in my research. I feel grateful for Prof. Josep Marzo from University
of Girona, I really enjoyed working together with his group in a short-term project and
I had a great time in Girona. I would also like to express my gratitude to the committee
members of my thesis defence for their time and effort spent on my thesis.

Next, I would like to thank my office mates. Dr. Zhidong He is the office mate with me
for the longest time. He is such a nice person and he is always supportive. In my mind, he
is also the third promotor to me. He taught me a lot and gave me a lot of guidance based
on his research experience, which made my research much easier. His unique attitude
towards life and marriage never failed to make my office life enjoyable. I hope he will
find the one and get married soon. Besides, I also enjoyed sharing my Hi-Fi experience
with him since both of us are Hi-Fi enthusiasts. As a senior colleague, Dr. Hale Çetinay
helped me a lot and gave me many useful ideas at the beginning of my research. I also
enjoyed talking with Misa Taguchi about Japanese culture. Ivan Jokić likes to share his new
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APPENDIX

A. APPENDIX FOR CHAPTER 2
Since there are
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possible ways to choose i critical links from Lc critical links and there
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possible ways to choose m − i non-critical links from L−Lc non-critical links,

the contribution to the increase in ND for each i is i
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i
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)
. The expectation of the

increase N∗
D of the minimum number of driver node ND after randomly removing m links,
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By using Vandermonde’s formula:
∑k

j=0

(a
j

)( b
k− j

)= (a+b
k

)
, we obtain Lc

∑m−1
i=0

(Lc−1
i

)( L−Lc
m−1−i

)=
Lc

( L−1
m−1

)
. Finally, dividing this expression by

( L
m

)
, we obtain

N∗
D = lLc (A2)

When the fraction of removed links is less than, or equal to lc , we obtain

ND = ND0 + lLc (A3)

Normalizing Eq.(A3) we obtain nD,r and in Eq.(2.1).

B. APPENDIX FOR CHAPTER 3
PROOF THEOREMS 2-4
We first give the proof of Theorem 2. The out-degree distribution Pout (·) for the unper-
turbed network is given in Eq.(3.15). Let us denote the out-degree distribution for the
perturbed network by P̄out (·). Then it follows from Lemma 1 and Eq.(3.15) that

P̄out (kout ) = (1−p)kout
N−1∑

j=kout

(
j

kout

)
p j−koutδ(k − j ). (B1)
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Therefore we obtain

P̄out (kout ) = 0, (B2)

if kout > k and

P̄out (kout ) = (1−p)kout

(
k

kout

)
pk−kout (B3)

if kout ≤ k. From this we get

Ḡout (x) =
∞∑

kout=0
P̄out (kout )xkout =

k∑
kout=0

(1−p)kout

(
k

kout

)
pk−kout xkout =

k∑
kout=0

(
k

kout

)
((1−p)x)kout pk−kout = (p + (1−p)x)k .

(B4)

This proves that Eq.(3.33) holds.

We assumed that the in-degree distribution of the original graph follows a Poisson distribu-
tion, see (3.16) but for finite N the actual distribution is binomial. However, for N −→∞
the limiting distribution is indeed Poissonian. Therefore, for proving that Eq.(3.34) holds,
we will use Lemma 1 with N =∞. The in-degree distribution Pi n(·) for the unperturbed
network is given in Eq. (3.16). Let us denote the in-degree distribution for the perturbed
network by P̄i n(·). Then it follows from Lemma 1 and Eq.(3.16) that

P̄i n(ki n) = (1−p)ki n
∞∑

j=ki n

(
j

ki n

)
p j−ki n

k j

j !
e−k . (B5)

From this we get

Ḡi n(x) =
∞∑

ki n=0
P̄i n(ki n)xki n =

∞∑
ki n=0

(1−p)ki n
∞∑

j=ki n

(
j

ki n

)
p j−ki n

k j

j !
e−k xki n =

e−k
∞∑

ki n=0
(

(1−p)x

p
)ki n

∞∑
j=ki n

(
j

ki n

)
(pk) j

j !
=

e−k
∞∑

ki n=0
(

(1−p)x

p
)ki n

∞∑
j=ki n

1

ki n !

(pk) j

( j −ki n)!
=

e−k
∞∑

ki n=0
(

(1−p)x

p
)ki n

1

ki n !

∞∑
j=ki n

(pk) j−ki n (pk)ki n

( j −ki n)!
=

e−k
∞∑

ki n=0
(

(1−p)x

p
)ki n

(pk)ki n

ki n !

∞∑
ĵ=0

(pk) ĵ

ĵ !
=

e−k
∞∑

ki n=0

(k(1−p)x)ki n

ki n !
epk =

e−k ek(1−p)x epk = e−k(1−p)(1−x).

(B6)
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This proves that Eq.(3.34) holds.

Next we will prove Theorem 3. Using the same notation as before, it follows from Eq.(3.8)
that for the perturbed system the generating function H̄out (x) is given by

H̄out (x) =
∞∑

kout=1

kout P̄out (kout )

< kout >
xkout−1 (B7)

Then, using Eqs.(B2)-(B3) we obtain

H̄out (x) =
k∑

kout=1

kout (1−p)kout
( k

kout

)
pk−kout

k(1−p)
xkout−1 =

k∑
kout=1

(
k −1

kout −1

)
pk−kout ((1−p)x)kout−1 =

k−1∑
m=0

(
k −1

m

)
pk−1−m((1−p)x)m = (p + (1−p)x)k−1.

(B8)

Finally, we prove Eq.(3.37).
Using the same notation as before, it follows from Eq.(3.9) that for the perturbed system
the generating function H̄i n(x) is given by

H̄i n(x) =
∞∑

ki n=1

ki n P̄i n(ki n)

< ki n > xki n−1. (B9)

Then, using Eq.(B5) we obtain

H̄i n(x) =
∞∑

ki n=1

ki n(1−p)ki n

k(1−p)

∞∑
j=ki n

(
j

ki n

)
p j−ki n

k j

j !
e−k xki n−1 =

e−k
∞∑

ki n=1

ki n(k(1−p)x)ki n

xk(1−p)ki n !
epk = e−k+pk

∞∑
ki n=1

(k(1−p)x)ki n−1

(ki n −1)!
=

e−k+pk
∞∑

m=0

(k(1−p)x)m

m!
= e−k+pk+k(1−p)x = e−k(1−p)(1−x).

(B10)

This finishes the proof of Theorem 3.

Proof of Theorem 4.
Using Theorem 2 and 3, the set of equations (3.11)-(3.14) becomes

w1 = (p + (1−p)ŵ2)k−1 (B11)

ŵ2 = 1−e−k(1−p)w1 (B12)

w2 = 1− (p + (1−p)(1− ŵ1))k−1 (B13)

ŵ1 = e−k(1−p)(1−w2) (B14)
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By setting ŵ2 = 1− ŵ1 and w1 = 1− w2, it follows that the pair of Eqs.(B11)-(B12) is
equivalent to the pair of Eqs.(B13)-(B14) .
From this it follows that nD in Eq.(3.10) becomes

nD = Ḡout (1− ŵ1)+Ḡi n(w2)−1+k(1−p)ŵ1(1−w2) (B15)

Using Eqs.(3.33), (3.34) and (B14), this leads to Eq.(3.39). Furthermore, Eq.(3.40) follows
from the substitution of ŵ1 given in Eq.(B14) into Eq.(B13).

Finally, we prove that Eq.(3.41) holds. First, we rewrite Eq.(3.39) as

nD = (p + (1−p)(1− ŵ1))k −1+ ŵ1 +k(1−p)(1−w2)ŵ1, (B16)

where ŵ1 satisfies

ŵ1 = e−k(1−p)(p+(1−p)(1−ŵ1))k−1
. (B17)

Therefore, for large k we obtain
ŵ1 ≈ e−k(1−p), (B18)

while from Eq.(B13) we get

1−w2 = (p + (1−p)(1− ŵ1))k−1 ≈ 1− (1−p)(k −1)ŵ1. (B19)

Then plugging Eqs,(B18) and (B19) into Eq.(B16) yields

nD ≈ 1− (1−p)kŵ1 −1+ ŵ1 +k(1−p)(1− (1−p)(k −1)ŵ1)ŵ1 =
1− (1−p)kŵ1 −1+ ŵ1 +k(1−p)ŵ1 − (1−p)2k(k −1)ŵ2

1 ≈ ŵ1 ≈ e−k(1−p).
(B20)

This completes the proof of Theorem 4.

PROOF FOR THEOREM 5 AND 7
Proof of Theorem 5.
Let us denote the out-degree distribution for the considered network by P̂out (·). Then it
holds that

P̂out (kout ) =αδ(kout −k1)+ (1−α)δ(kout −k2). (B21)

Then, denoting the generating function for the out-degree distribution by Ĝout , we get

Ĝout (x) =
∞∑

kout=0
P̂out (kout )xkout =

∞∑
kout=0

(αδ(kout −k1)+ (1−α)δ(kout −k2))xkout =αxk1 + (1−α)xk2 .

(B22)

Let us denote the in-degree distribution for the considered network by P̂i n(·), which
for large N will approach a Poisson distribution with average k =αk1 + (1−α)k2. Then it
holds that

P̂i n(ki n) = kki n

ki n !
e−k . (B23)
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Then, denoting the generating function for the in-degree distribution by Ĝi n , we get

Ĝi n(x) =
∞∑

ki n=0
P̂i n(ki n)xki n =

∞∑
ki n=0

kki n

ki n !
e−k xki n =

e−k
∞∑

ki n=0

(kx)ki n

ki n !
= e−k ekx = e−k(1−x).

(B24)

This finishes the proof of Theorem 5.

Proof of Theorem 6.
Using the same notation as before, it follows from Eq.(3.8) that the generating function
Ĥout (x) is given by

Ĥout (x) =
∞∑

kout=1

kout P̂out (kout )

< kout >
xkout−1 (B25)

Then, using Eqs.(B21) we obtain

Ĥout (x) =
∞∑

kout=1

kout (αδ(kout −k1)+ (1−α)δ(kout −k2))

k
xkout−1 =

αk1xk1−1 + (1−α)k2xk2−1

k
.

(B26)

Finally, we prove Eq.(3.47).
Using the same notation as before, it follows from Eq.(3.9) that for the perturbed system
the generating function Ĥi n(x) is given by

Ĥi n(x) =
∞∑

ki n=1

ki n P̂i n(ki n)

< ki n > xki n−1 (B27)

Then, using Eq.(B23) we obtain

H̄i n(x) =
∞∑

ki n=1

ki nkki n e−k xki n−1

kki n !
= e−k

∞∑
ki n=1

kki n−1xki n−1

(ki n −1)!
−

e−k
∞∑

i=0

(kx)i

i !
= e−k ekx = e−k(1−x).

(B28)

This finishes the proof of Theorem 6

Proof of Theorem 7.
Using Theorems 5 and 6, the set of Eqs.(3.11)-(3.14) becomes

w1 =
αk1ŵk1−1

2 + (1−α)k2ŵ2
k2−1

k
(B29)

ŵ2 = 1−e−kw1 (B30)
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w2 = 1− αk1(1− ŵ1)k1−1 + (1−α)k2(1− ŵ1)k2−1

k
(B31)

ŵ1 = e−k(1−w2) (B32)

By setting ŵ2 = 1− ŵ1 and w1 = 1− w2, it follows that the pair of Eqs.(B29)-(B30) is
equivalent to the pair of equations Eqs.(B31)-(B32).
From this it follows that nD in Eq.(3.10) becomes

nD = Ĝout (1− ŵ1)+Ĝi n(w2)−1+kŵ1(1−w2) (B33)

Using Eqs.(3.43), (3.44) and (B32), this leads to Eq.(3.48). Furthermore, Eq.(3.49) follows
from the substitution of ŵ1 given in Eq.(B32) into Eq. (B31). Finally, we prove that
Eq.(3.50) holds. First, we rewrite Eq.(3.48) as

nD =α(1− ŵ1)k1 + (1−α)(1− ŵ1)k2 −1+ ŵ1 +k(1−w2)ŵ1, (B34)

where ŵ1 satisfies

ŵ1 = e−(αk1(1−ŵ1)k1−1+(1−α)k2(1−ŵ1)k2−1) ≈
e−(αk1+(1−α)k2)+(αk1(k1−1)+(1−α)k2(k2−1))ŵ1 =

e−k e(αk1(k1−1)+(1−α)k2(k2−1))ŵ1

(B35)

Therefore, for large k we obtain

ŵ1 ≈ e−k , (B36)

while from Eq.(B31) we get

w2 ≈ 1− αk1(1− (k1 −1)ŵ1 + (1−α)k2(1− (k2 −1)ŵ1

k
=

1− k − (αk1(k1 −1)+ (1−α)k2(k2 −1))ŵ1

k
=

αk1(k1 −1)+ (1−α)k2(k2 −1)

k
ŵ1 ≡σŵ1.

(B37)

Then plugging Eqs.(B36) and (B37) into Eq.(B34) yields

nD ≈α(1−k1ŵ1)+ (1−α)(1−k2)ŵ1 −1+ ŵ1 +k(1−σŵ1)ŵ1 =
α−αk1ŵ1 +1−α−k2(1−α)ŵ1 −1+ ŵ1 +kŵ1 −kσŵ2

1 ≈ ŵ1 = e−k .
(B38)

This completes the proof of Theorem 7.

PROOF FOR THEOREM 8
Using Theorems 8 and 9, the set of Eqs.(3.11)-(3.14) becomes

ω1 = αk1(p + (1−p)ω̂2)k1−1 + (1−α)k2(p + (1−p)ω̂2)k2−1

k
(B39)
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1−ω2 = αk1(p + (1−p)(1− ω̂1))k1−1 + (1−α)k2(p + (1−p)(1− ω̂1))k2−1

k
(B40)

ω̂1 = e−k(1−p)(1−ω2) (B41)

1− ω̂2 = e−k(1−p)ω1 (B42)

By setting ω̂2 = 1− ω̂1 and ω2 = 1−ω1, it follows that the pair of Eqs.(B40)-(B41) is
equivalent to the pair of Eqs.(B39)-(B42). Then by using Eq.(3.10), we get

nD =α(p + (1−p)(1−e−k(1−ω2)))
k1 + (1−α)(p + (1−p)(1−e−k(1−ω2)))k2

−1+e−k(1−p)(1−ω2) +k(1−p)e−k(1−ω2)(1−ω2)
(B43)

where w2 is the solution of Eqs.(B40)-(B41). This proves that Eq.(3.58) holds.
Finally, we prove that Eq.(3.60) holds. From Eqs.(B40)-(B41) it follows that

ω̂1 = e−(1−p)(αk1(p+(1−p)(1−ω̂1))k1−1+(1−α)k2(p+(1−p)(1−ω̂1))k2−1) ≈
e−k(1−p)e(1−p)2(αk1(k1−1)+(1−α)k2(k2−1))ŵ1

(B44)

Therefore, for large k we obtain

ŵ1 ≈ e−k(1−p), (B45)

Similarly, from Eq.(B40) we can deduce

w2 ≈ (1−p)(αk1(k1 −1)+ (1−α)k2(k2 −1))

k
ŵ1 ≡σŵ1 (B46)

Substitution of Eq.(B45) and Eq.(B46) into Eq.(B43), we obtain

nD ≈ e−k̄(1−p) (B47)

This completes the proof of Theorem 10.

C. APPENDIX FOR CHAPTER 7
As deduced in [70],

Lemma 11. after adding a fraction f of links in a uniform and random way to a network
G0(N ,L), with degree distribution Pr [DG0 = j ], the degree distribution Pr [DG = k] of the
new network G satisfies:

Pr [DG = k] = (1− f )N−1−k
N−1∑
j=0

(
N −1− j

k − j

)
f k− j Pr [DG0 = j ], (C1)
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where f = m
N (N−1)−L denotes the fraction of added links in the original network G0.

Then, the corresponding generating function Ḡ(x) is

Ḡ(x) =
N−1∑
k=0

k∑
j=0

(
N −1− j

k − j

)
(1− f )N−1−k f k− j Pr [DG0 = j ]xk =

N−1∑
j=0

N−1∑
k= j

(
N −1− j

k − j

)
(1− f )N−1−k f k− j Pr [DG0 = j ]xk

(C2)

Let α= k − j , we get

Ḡ(x) =
N−1∑
j=0

N−1− j∑
α=0

(
N −1− j

α

)
(1− f )N−1− j−α f αPr [DG0 = j ]xα+ j =

N−1∑
j=0

N−1− j∑
α=0

(
N −1− j

α

)
(1− f )N−1− j−α( f x)αPr [DG0 = j ]x j =

N−1∑
j=0

(1− f (1−x))N−1− j Pr [DG0 = j ]x j =

(1− f (1−x))N−1G(
x

1− f (1−x)
)

(C3)
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