classification of large scale outdoor point clouds using convolutional neural networks

Tom Hemmes.

At the TNO office...

Laser scanning

Point cloud

To what extent is deep learning suitable for classification of raw point clouds of a highway scene?

Deep learning on images

→ A lot of training data available

Images are structured

2D → 3D

Structure

Point set learning

X Engineering manual features

- Transform representation to use existing deep learning algorithms
- Deep learning directly on point clouds

PointNet

Charles Qi, et al. 2016

PointNet

Charles Qi, et al. 2016

Indoor to outdoor

To what extent can usable training data be automatically created from point clouds and known object locations?

What is the best way to represent 3D points for deep learning?

What is the optimal sampling of points for classification of road side objects?

Train

Test

Does the model generalize so it can be used at other locations?

Overview

Topic

Relevance

Method

Results

Conclusion

Recommendations

Method

Create training data

Prepare, train and apply model

Cluster and map predictions

Grid partitioning

Grid partitioning

Spatial join

Overlay

Buffer

Intersect

Ground filter

Flatness

Filter

Spatial reference

Global

Spatial reference

Trajectory

Zonal arrangement

Lamppost

Hectometer sign

Road sign

Traffic light

Method

Create training data

Prepare, train and apply model

Cluster and map predictions

Data split

Data set

Train

Validation

Test

Sampling method

Random

Grid preserve density

Grid flatten density

* actually in 3D

Multi sampling

Train and apply

Train and apply

Method

Create training data

Prepare, train and apply model

Cluster and map predictions

Cluster

Map

Overview

Topic

Relevance

Method

Results

Conclusion

Recommendations

Results

Training data

Represent a point

Select points

Generalization

Overall suitability

Types of objects

Objects

counts for Ring Groningen

Lamppost

Road sign Hectometer sign Traffic light

Points

counts for Ring Groningen

Lamppost

Road sign Hectometer sign Traffic light

Training data quality

Ground truth Prediction Difference

Training data

spatial intersection

Inaccuracy of CAD map Non-identical objects in one class Combined objects

ground filter

Grass or low vegetation Sloped surface

Usable training samples with ~15% inaccuracy can be created

Results

Training data

Represent a point

Select points

Generalization

Overall suitability

Attributes

MIOU for different attribute combinations

Trajectory

Distance to trajectory for different classes

Represent 3D point

spatial reference

Global spatial reference is unique Trajectory reference is too similar

other attributes

Intensity value contributes to classification accuracy

Best representation is local spatial reference with intensity

Results

Training data

Represent a point

Select points

Generalization

Overall suitability

Grid size

MIOU for multiple grid sizes

Number of points

MIOU for number of points

Sampling

MIOU for sampling methods with 4000 points

Random

Grid preserve density

Grid flatten density

Sampling

MIOU for sampling methods with 100 points

Random

Grid preserve density

Grid flatten density

Sampling of points

grid size

edge cases versus classes per sample

number of points

unique points versus class balance

sampling method

only for small number of points

Results

Training data

Represent a point

Select points

Generalization

Overall suitability

Generalization

MIOU for Ring Groningen train and test

Generalization

MIOU for train Ring Groningen and test Badhoevedorp

Generalization

global reference does not generalize, is unique

local reference

does generalize, decrease in performance due to moment of acquisition

Results

Training data

Represent a point

Select points

Generalization

Overall suitability

Suitability

Lamppost

IOU per class

Road sign Hectometer sign Traffic light

Suitability

Confusion matrix point classification percentage

Lamppost	.5M	78				
Road sign	.2M	3	81	1	4	
Hectometersign	63K	0	22	38	1	37
Traffic light	28K	13			41	37
Background	1.6M					90

Lamppost Road sign raffic light Road Fraffic light Rackground

Suitability

Confusion matrix final mapping counts

Overview

Topic

Relevance

Method

Results

Conclusion

Recommendations

Summary

- Usable training samples can be created
- Best representation is local spatial reference with intensity
- Best take samples of 5 by 5 meters, 4000 points and random sampling
- Local reference generalizes to other locations

Conclusion

To what extent is PointNet suitable for classification of raw point clouds of a highway scene?

With the presented methodology PointNet is able to predict 50% MIOU point-wise and 60% of object locations.

A successful exploration of PointNet directly on outdoor point clouds with many opportunities for improvement.

Overview

Topic

Relevance

Method

Results

Conclusion

Recommendations

Recommendations

- Refine the current methodology
- 2 Broaden research and results
- 3 Upgrade the model

Refine

- Divide classes into hierarchy of more specific classes
- Ground filtering

- Additional "augmentation", like multi-sampling
- Clustering

Broaden

- Tune the model architecture and learning hyper-parameters
- Use of additional attributes (e.g. RGB)

Apply methodology to open data sets

Upgrade

- new deep learning models implement multiple scales of local neighbourhoods
- Semi-supervised learning

Thanks!

. Tom Hemmes

Mathias Lemmens

TU Delft, Geomatics

Peter van Oosterom

TU Delft, Geomatics

Kaixuan Zhou

TU Delft, Remote sensing

Maarten Kruithof

TNO, Intelligent Imaging

Algorithm

Learning algorithm

Input Parameter Output

Deep learning

Hidden layers

Convolutional Neural Network

Random split

Data set

Train

Validation

Test

Spatial split

Data set

Train

Validation

Test

Accuracy measure

10U

for a specific class

correct labels

***** 100

all points

MIOU

average of all classes

IOU1 + IOU2 ...

number of classes

Classification

Point-wise

Classification

Point-wise

Object

+ directly on point cloud

requires
segmentation

poor neighbourhood definition

+ use of all points for classification

PointNet kernels

Kernel with activation region

Charles Qi, et al. 2016

Time of acquisition

Season

Weather

lower density of vegetation during winter

backscatter from snowflakes or water droplets

Rasshofer, et al. 2011

Artificial Intelligence

Machine Learning

Deep Learning