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Linear cotangential transfers and safe orbits for elliptic orbit 

rendezvous 

Thomas V. Peters* 

GMV, Tres Cantos, E-28760, Spain 

Ron Noomen† 

TU Delft, Delft, 2629 HS, The Netherlands 

This article presents the theory for linear cotangential transfers and safe orbits for elliptic 

orbit rendezvous. Expressions for the transfer angle and the required ΔV’s are derived. 

Singularities in the algorithm can occur if the two orbits intersect. Alternative maneuvers for 

such singular cases are developed. The linear cotangential transfer algorithm is compared to 

the non-linear cotangential transfer and the algorithm is found to be very similar. The 

development of the linear cotangential transfer leads to a new set of relative orbital elements 

that are well suited for defining safe trajectories. The characteristics of safe trajectories are 

discussed and a linear safety checking algorithm is developed. Finally, the combination of the 

cotangential transfers and safe orbits is used to define safe rendezvous trajectories for 

elliptical orbit rendezvous. 

Nomenclature 

𝑎 = semi-major axis (m) 

𝑩 = matrix of partial derivatives of the state vector to the orbital elements 

𝑒 = eccentricity 

𝑖 = inclination (°, rad) 

𝑀 = mean anomaly (°, rad) 

𝑛 = orbital rate (°/s, rad/s) 
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† Assistant professor, Faculty of Aerospace Engineering, Delft University of Technology, Delft, the Netherlands. 



𝑟 = orbital radius (m) 

𝑡 = time (s) 

𝑻 = state vector transformation matrix 

𝑇 = orbital period (s) 

𝑽 = velocity vector (m/s) 

𝑉 = orbital velocity (m/s) 

𝒙 = state vector (m; m/s) 

𝛼 = trajectory in-plane phase angle (°, rad) 

𝜹𝜶 = relative orbital element vector 

𝜱 = state transition matrix 

𝜑 = transfer angle (°, rad) 

𝛾 = flight-path angle (°, rad) 

𝜆 = ratio of in-plane and out-of-plane oscillation 

𝜔 = argument of perigee (°, rad) 

𝛺 = right ascension of the ascending node (°, rad) 

𝜗 = true anomaly (°, rad) 

𝜏 = trajectory phase angle (°, rad) 

I. Introduction 

ENDEZVOUS and formation flying mission studies in recent years have been characterized by a greater drive 

towards on-board autonomy, and a desire to extend rendezvous capabilities to non-cooperative targets such as space 

debris. There is also an increasing interest in performing rendezvous and formation flying in elliptic orbits. These 

developments would extend the range of possible rendezvous missions from controlled, circular orbits with a 

cooperative target to uncontrolled, eccentric orbits with an uncooperative target. 

R 



Safe rendezvous trajectories are of great importance to mid-range rendezvous scenarios that feature limited 

navigation capabilities, limited ground contact opportunities, a high drive for on-board autonomy or a combination of 

these three. The mid-range rendezvous phase starts when the chaser switches from absolute navigation to relative 

navigation based on a camera sensor. The linear relative navigation problem based on angles-only navigation during 

the long-range phase is not fully observable unless maneuvers are performed [1] or individual features on the target 

can be distinguished [2]. To aid the angles-only navigation in achieving fast convergence, the relative trajectory of the 

chaser needs to include some variation in relative altitude with respect to the target. Some relative drift between the 

chaser and the target also improves performance of the navigation [3], as does the inclusion of the J2 perturbation into 

the linear model [3] or the use of a non-linear approach [4], [5]. The Gauss [6] or Laplace method and a differential 

correction algorithm [7] could be used to initialize the filter, but ground tracking data can also be used to initialize the 

relative navigation filter [5]. The accuracy that can be achieved by means of ground tracking is lower than the accuracy 

that can be achieved by means of relative camera sensors [8], [9]. Passively safe, collision-free trajectories can 

facilitate the transition between ground-based tracking and relative navigation. Safe trajectories may also be required 

during the initial formation deployment and acquisition, or to return from non-nominal situations. For example, 

formation deployment based on eccentricity / inclination vector separation is proposed for the PROBA-3 mission [10], 

a precision formation flying mission in a highly eccentric orbit with eccentricity 0.81. In the case of PROBA-3, the 

relative sensors are only available at a relatively close range, such that the formation deployment and acquisition needs 

to be performed using maneuvers uploaded by ground command. The trajectory needs to remain safe for a longer 

period of time, because no on-board autonomy is present during this phase, and ground commands are expected to be 

available only once per day. 

In a circular reference orbit scenario the Hohmann transfer and eccentricity / inclination vector separation [11] are 

considered important building blocks for constructing a guidance profile or reference trajectory for the mid-range 

rendezvous. The linear Hohmann transfer in circular orbit rendezvous is a transfer maneuver to an orbit with a different 

altitude for which the first and the second ΔV are equal in magnitude and direction [12]. A recent article describes 

how the eccentricity / inclination separation was used to define the trajectories for an un-cooperative rendezvous [13]. 

Both elements can be generalized for use in eccentric orbits, but there is some freedom in the choice of parameters or 

conditions that are kept invariant when the eccentricity is non-zero. The cotangential transfer is a generalization of the 

Hohmann transfer in circular orbit rendezvous. The condition that is kept invariant is the tangency at the initial and 



terminal points. The generalization of eccentricity / inclination vector separation leads to families of collision-free 

relative trajectories when the eccentricity is larger than zero. 

The non-linear cotangential transfer algorithm was developed in the early 1960’s [14], but recently a new 

derivation of the algorithm has been presented [15]. The cotangential transfer is a type of transfer that is extremely 

useful for safe impulsive rendezvous. The cotangential transfer is near-optimal for transfers between elliptical orbits 

[16]. The transfer orbit has only a single intersection point with the terminal orbit, which enhances the safety of the 

transfer. Finally, the direction of the ΔV is tangential to the reference orbital velocity vector, which means that the 

spacecraft attitude can remain stationary in the tangential or flight-path reference frame, pointing in the general 

direction of the target. The ΔV for the cotangential transfer exceeds the ΔV of the optimal transfer by only 1% if the 

eccentricity is less than 0.2 [17]. A more extensive comparison shows that the cotangential transfer performs well over 

a wide range of true anomalies, if the orbits do not intersect [18]. If the orbits do intersect, singularities appear in the 

algorithm [19]. An iterative algorithm for linear, cotangential transfers between J2 perturbed relative orbits is presented 

in [20]. An analytical algorithm for the linear cotangential transfer has been concisely described in [21] in the context 

of the development of a linear rendezvous guidance system. Another description of linear cotangential transfers is 

provided in [22], but the solution for the transfer angle is not provided. 

The problem of optimal formation reconfiguration has been addressed in several recent papers [23], [24], [25]. 

Gaias and D’Amico [23] provide maneuvering schemes for circular orbits and identifies the cotangential transfer case 

that is currently studied as the tangent-tangent bi-impulsive maneuver with zero or non-zero difference in semi-major 

axis. If the relative semi-major axis is zero, the solution is identified as requiring numerical solution of the transfer 

angle, and if the relative semi-major axis is non-zero, the solution is identified as requiring numerical solution of both 

the location of the first maneuver and the transfer angle. Gaias and D’Amico [23] also provide lower bounds for the 

ΔV for formation reconfigurations in circular orbits. Chernick and D’Amico [24], [25] extend the analysis of the lower 

bounds for the ΔV for formation reconfigurations in eccentric orbits and provide maneuvering schemes based on 

reachable set theory. Lower bounds for the ΔV and a three-impulse maneuver scheme are provided by Chernick and 

D’Amico [24]. Gaias and D’Amico [23] and Chernick and D’Amico [24] point out that bi-impulsive maneuvering 

schemes generally must be solved numerically, and cannot achieve the absolute ΔV minimum because they lack extra 

degrees of freedom to allow optimization of the ΔV. Closed form expressions for bi-impulsive maneuvers have been 

used in flight demonstrations in near circular orbits. These closed-form bi-impulsive maneuver solutions can only 



establish three desired ROE after execution [24]. In the relative motion problem the out-of-plane coordinate is 

decoupled from the in-plane motion and can be controlled separately. Chernick and D’Amico [24], [25] provide a 

maneuvering scheme for the out-of-plane motion. 

Linear relative motion theories can be derived either by solving the linearized equations of relative motion [26], 

or by finding the matrices of partial derivatives of the orbital elements to the Cartesian state [27], [28]. The equivalence 

of both approaches can be demonstrated [29]. For circular orbit rendezvous the equations that describe the relative 

motion are known as the Clohessy-Wiltshire or Hill-Clohessy-Wiltshire equations [30]. These equations can be recast 

in terms of relative orbital elements [31]. Relative motion theories that include perturbations can be obtained relatively 

easily from (semi-)analytical satellite theories. The state transition matrix is often generated for use in differential 

correction orbit determination schemes [27], [32]. Gim and Alfriend derived a relative motion theory that includes J2 

from Brouwer’s theory [33]. An overview of different state transition matrices is provided by Alfriend et al [34]. 

Recent work provides a number of methods for including J2 and drag for short-term and long-term propagation [35], 

[36], [37], [38]. Note that theories that include J2 and drag apply to central bodies that possess an equatorial bulge and 

an atmosphere, such as the Earth. The perturbation due to J2 is of the order of J2, times the mean orbital rate, times the 

propagation time, or O(10-3) for transfer durations of about half an orbit in low Earth orbit. Relative drag can have a 

major impact on the long-term evolution of relative trajectories, and it depends on multiple factors such as the ambient 

density, orbital velocity and the ratio of the ballistic coefficients of the chaser and the target. In this article it is assumed 

that the ballistic coefficients of the chaser and the target are comparable in magnitude, and that relative drag is 

negligible. Perturbations are excluded in this analysis of guidance algorithms, because maneuvers are expected to 

occur frequently during the rendezvous, and thrust errors can be as large as a few percent of the nominal ΔV [39]. 

Thrust errors can have out-of-plane components, and for this reason safe trajectories such as the eccentricity / 

inclination vector separation are designed to take into account margins for these and other perturbations. Guidance 

algorithms based on unperturbed relative motion can still be used even if the perturbations are not negligible or the 

propagation time is long. In such cases guidance strategies that divide the guidance problem into long-term evolution 

and short-term maneuvering can be applied in a scheme referred to as precompensation [24]. In this scheme the long-

term evolution model (which includes J2, drag and other perturbations) is used to plan a sequence of changes in the 

relative orbital elements. These changes in the relative orbital elements are realized by means of impulsive ΔV’s that 



are planned for a short time interval of up to a few revolutions during which the effect of the perturbations is negligible, 

and the impulsive ΔV’s are calculated using the unperturbed relative motion model. 

This article presents a novel set of algorithms for cotangential transfer maneuvers and trajectories that can be used 

for rendezvous problems in eccentric orbits. An important driver in the development of the algorithms presented in 

this article has been to try to link the theory of elliptic rendezvous to elementary treatments of circular orbit 

rendezvous, such that rendezvous in elliptic orbits can be seen as a straightforward extension of circular orbit 

rendezvous. Many elementary discussions are available for circular orbit rendezvous and most aspects of these 

treatments can directly be applied to elliptic orbits when suitable assumptions are made. In this paper the relative 

dynamics are described using linearized relative motion around an unperturbed, eccentric Keplerian orbit to ensure 

that the connection with maneuvers developed for linearized relative motion around an unperturbed, circular Keplerian 

orbit (the Clohessy Wiltshire equations) is as clear as possible. A previous article detailed the development of an 

analytical algorithm for non-drifting transfers that can be compared to the radial hop trajectory in circular orbit 

rendezvous [40]. The present article discusses the cotangential transfer and eccentricity / inclination vector separation 

[11] (also referred to as the projected circular orbit [34]) as the basic building blocks of a rendezvous strategy for 

elliptic orbit rendezvous. These two concepts seem unrelated at first sight but a deep connection exists between the 

two upon closer investigation. This connection is exploited to develop a set of related algorithms that taken together 

can be used to design a rendezvous strategy. The cotangential transfer maneuver presented in this article is a closed-

form bi-impulsive in-plane transfer solution that can establish the desired relative semi-major axis, eccentricity and 

argument of perigee. The solution presented in this paper provides the transfer angle if the location of the first 

maneuver is given, and is valid for eccentric orbits. Intersecting initial and final trajectories can cause singularities in 

the linear cotangential maneuver computation algorithm, and the singularities occur at the intersection points. Seen in 

another way, the study of the singularities in the linear cotangential maneuver algorithm reveals a connection with 

trajectory safety features. Specifically, a linear trajectory crossing algorithm can be derived from the cotangential 

transfer algorithm [41]. The present article shows that the trajectory crossing algorithm can be used not only to reveal 

the singularities in the cotangential transfer, but also to establish short-term in-plane trajectory safety and to generalize 

the eccentricity / inclination vector separation to eccentric orbits. The development of the cotangential transfer 

algorithm leads to a new set of relative orbital elements (ROE) that can be used to define these families of relative 



trajectories that generalize the eccentricity / inclination vector separation. Appendix B provides the relationship 

between the ROE defined in this paper and other sets of ROE [26], [28]. 

This paper is the result of an investigation into the operational aspects of the cotangential transfer algorithm. 

Section II provides a brief description of the linearized motion model. Section III provides the full derivation and a 

comprehensive analysis of the linear cotangential transfer algorithm, to examine singularities in the algorithm and to 

develop maneuvers for the singular case. Section IV defines families of relative trajectories that generalize the 

eccentricity / inclination vector separation strategy based on relative orbital elements (ROE) that follow naturally from 

the derivation of the cotangential transfer and to examine the safety of these families of trajectories. Section V develops 

a rendezvous strategy based on the cotangential transfer and the eccentricity / inclination vector separation generalized 

to eccentric orbits. The novel contribution of this investigation is a set of algorithms for cotangential maneuver 

computation, safe orbit definition and rendezvous trajectory design that generalize circular orbit rendezvous design 

concepts and as such simplify the design of elliptic orbit rendezvous trajectories. 

II. Linearized Relative Motion Model 

The orbit of the target spacecraft is taken as the reference orbit. The reference orbit is assumed to be an unperturbed 

elliptical Keplerian orbit for the purpose of developing the maneuvering scheme. Figure 1 shows the local vertical, 

local horizontal (LVLH) and the tangential or flight-path (TAN) reference frames. The Cartesian state vector is defined 

as 𝐱 = [𝑥 𝑦 𝑧 �̇� �̇� �̇�]𝑇. A subscript is used to indicate whether the relative state is in the LVLH frame or in 

the TAN frame. Because the principal focus of this analysis is aimed at non-equatorial, eccentric orbits (far away from 

the singularities at e = 0 and i = 0), the familiar Keplerian orbital elements are used to define the vector of ROE as 

𝛅𝛂 = [𝛿𝑎 𝛿𝑒 𝛿𝑖 𝛿𝛺 𝛿𝜔 𝛿𝑀]T. 

 

Fig. 1 LVLH and TAN frames with respect to the perifocal frame. 



The derivation of the state transition matrix in terms of the Keplerian elements is provided by Montenbruck and 

Gill [27] for relative motion in the inertial frame and by Schaub and Junkins [28] for relative motion in the LVLH 

frame and is not repeated here. The details of the transformation and the mapping matrices for the TAN frame 

coordinates are given in Appendix A. In a linearized setting the cotangential transfer is based on two impulses parallel 

to the velocity vector of the reference orbit. The general expression for a two-pulse maneuver is given by Gaias and 

D’Amico [23] and Chernick and D’Amico [24]: 

 𝛅𝛂+(𝑡2) = 𝚽𝛼(𝑡2, 𝑡1){𝛅𝛂−(𝑡1) + 𝚪𝐿𝑉𝐿𝐻(𝑡1)𝐑𝛾(𝑡1)𝚫𝐕𝑇𝐴𝑁.1} + 𝚪𝐿𝑉𝐿𝐻(𝑡2)𝐑𝛾(𝑡2)𝚫𝐕𝑇𝐴𝑁,2 (1) 

The superscripts “+” and “-“ indicate the state vector immediately before and immediately after the application of 

a ΔV. The matrix 𝚪 is the control-input matrix or Gauss’ variational equations in matrix form. The rotation matrix 𝐑𝛾 

indicates a rotation around the y-axis by flight-path angle 𝛾, see also Appendix A. 

III. Linear Cotangential Transfer 

A. Cotangential Transfer Problem Solution 

The first step in developing the linear cotangential transfer algorithm is to write Eq. (1) explicitly in terms of the 

cotangential impulses and the ROE. Battin [42] provides expressions for Gauss’ variational equations for the Keplerian 

elements and for components of the ΔV along the velocity vector and perpendicular to it. The perpendicular component 

of the ΔV is dropped and only the column of the matrix is used which relates the parallel component of the ΔV to 

changes in the ROE. 
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where η is equal to √1 − 𝑒2, 𝜌 = 1 + 𝑒 cos 𝜗 , 𝜃 = √2𝜌 − 𝜂2, and 𝑛 is the orbital rate. The expression for the 

local orbital velocity appearing in the matrix in equation (2) can be derived from the vis-viva law [6]: 

 𝑉 = 𝑎𝑛𝜂−1𝜃 (3) 



The scaling functions 𝜌 and 𝜃, which govern the behavior of the orbital radius and the orbital velocity, respectively, 

form part of many expressions that are derived in this article. The equations for the relative semi-major axis, 

eccentricity and argument of perigee are required for the solution of the transfer angle, while the equation for the 

relative mean anomaly is required to find the along-track motion during the transfer. The first three equations can be 

simplified to: 

 

𝑎−1𝛥𝑎 = 𝑎−1(𝛿𝑎2
+ − 𝛿𝑎1

+) = 𝜂−2𝜃1
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∗ + sin 𝜗2 𝛥𝑉∥,2

∗

 (4) 

The velocity impulses have been normalized according to 𝛥𝑉∗ = 2𝑉−1𝛥𝑉. The solution strategy is as follows. 

First, the transfer angle is found as a function of the initial true anomaly and the differences in relative semi-major 

axis, eccentricity and argument of perigee. Second, the velocity impulses are found. Finally, the equation for the 

relative mean anomaly is used to determine the along-track distance after the maneuver. To solve Eq. (4) the system 

is rewritten as: 

 

𝑎−1𝛥𝑎 − 2𝜂−2𝑒𝛥𝑒 = 𝛥𝑉∥,1
∗ + 𝛥𝑉∥,2

∗

𝑒(𝑎−1𝛥𝑎 − 2𝜂−2𝑒𝛥𝑒) − 𝛥𝑒 = −cos 𝜗1 𝛥𝑉∥,1
∗ − cos 𝜗2 𝛥𝑉∥,2

∗

𝑒𝛥𝜔 = sin 𝜗1 𝛥𝑉∥,1
∗ + sin 𝜗2 𝛥𝑉∥,2

∗

 (5) 

The left-hand sides of these equations are functions of the ROE only, and not of the true anomaly. This means that 

these elements are ROE in their own right. To define the new set, Eq. (5) is multiplied by the semi-latus rectum. The 

left-hand-side of the first of Eq. (5) can now be compared to the variation of the semi-latus rectum 𝛿𝑝 = 𝜂2𝛿𝑎 −

2𝑎𝑒𝛿𝑒 [28]. The new relative orbital elements replacing the relative semi-major axis, eccentricity and argument of 

perigee (and their inverse relations) are defined as follows: 

 

𝐶1 = 𝛿𝑝 = 𝜂2𝛿𝑎 − 2𝑎𝑒𝛿𝑒 𝛿𝑎 = 𝜂−4((1 + 𝑒2)𝐶1 − 2𝑒𝐶2)

𝐶2 = 𝑒𝛿𝑝 − 𝑝𝛿𝑒 𝛿𝑒 = 𝑝−1(𝑒𝐶1 − 𝐶2)

𝐶3 = −𝑒𝑝(𝛿𝜔 + cos 𝑖 𝛿Ω) 𝛿𝜔 = −𝑒−1𝑝−1𝐶3

 (6) 

The term cos 𝑖 𝛿Ω has been added to the definition of C3 to decouple the in-plane and out-of-plane motion, see 

Appendix B. For in-plane transfers such as the cotangential transfer, there is no change in the right ascension of the 

ascending node Ω such that Δ𝐶3 = 𝑒𝑝Δ𝜔 for in-plane transfers. 



Eq. (5) can be rewritten using angle sum identities for ϑ2 to yield a set of equations in terms of the initial true 

anomaly, the transfer angle 𝜑 and the scaled velocity impulses. The transfer angle 𝜑 is the difference between the 

initial true anomaly and the final true anomaly. 

 

𝛥𝐶1 = 𝑝(𝛥𝑉∥,1
∗ + 𝛥𝑉∥,2

∗ )

𝛥𝐶2 = 𝑝(− cos𝜗1 𝛥𝑉∥,1
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∗ )

𝛥𝐶3 = 𝑝(− sin ϑ1 𝛥𝑉∥,1
∗ − sin ϑ1 cosφ𝛥𝑉∥,2

∗ − cos ϑ1 sinφ 𝛥𝑉∥,2
∗ )

 (7) 

After elementary manipulation of these equations the following result is obtained: 

 
𝛥𝐶1 + cos 𝜗1 𝛥𝐶2 + sin 𝜗1 𝛥𝐶3 = 𝑝𝛥𝑉∥,2

∗ (1 − cos𝜑)

sin 𝜗1 𝛥𝐶2 − cos𝜗1 𝛥𝐶3 = 𝑝𝛥𝑉∥,2
∗ sin𝜑

 (8) 

The left-hand sides of this equation are real-valued trigonometric polynomials of the initial true anomaly with the 

new ROE as coefficients. The polynomials are labeled P1 and P2. P1 (i.e., a ΔP1) depends on C1, C2 and C3, while P2 

only depends on C2 and C3. 

 
𝑃1 = 𝐶1 + 𝐶2 cos 𝜗1 + 𝐶3 sin 𝜗1

𝑃2 = 𝐶2 sin 𝜗1 − 𝐶3 cos 𝜗1
 (9) 

Eq. (8) now becomes: 

 
𝛥𝑃1 = 𝑝𝛥𝑉∥,2

∗ (1 − cos𝜑)

𝛥𝑃2 = 𝑝𝛥𝑉∥,2
∗ sin𝜑

 (10) 

The solution for the transfer angle can be found by performing the Weierstrass substitution, and is given by: 

 𝜑 = 2 tan−1 (
𝛥𝑃1

𝛥𝑃2
) (11) 

Care should be taken when ΔP2 is equal to 0 as the argument of the arctangent function becomes infinitely large; 

in this case the transfer angle is equal to 180°. Next, the velocity impulses are determined. Squaring Eq. (10) and 

summing them leads to the following expression for the second velocity impulse (where it is noted that Eq. (10) is 

used twice to obtain the expression for ΔP1 and simplify the result): 

 𝛥𝑉∥,2
∗ =

1

2

(𝛥𝑃1)2+(𝛥𝑃2)2

𝑝𝛥𝑃1
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To find the simplest possible expressions for the ∆V’s, note that the sum of the squares of polynomials P1 and P2 

is equal to: 
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To simplify expressions the parameter Cs is defined by: 
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This means that the second velocity impulse can also be written as: 
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+ 𝛥𝐶1} (15) 

Using the first of Eq. (7) a simple expression for the normalized velocity impulses can be found: 

 
𝛥𝑉∥,1

∗ = −
(𝛥𝐶𝑠)

2

2𝑝𝛥𝑃1

𝛥𝑉∥,2
∗ =

1

𝑝
𝛥𝐶1 − 𝛥𝑉∥,1

∗
 (16) 

This completes the derivation of the cotangential transfer algorithm. In this derivation the ROE C1, C2, C3 and Cs 

have been defined. The ROE C1, C2 and C3 are alternatives to the semi-major axis, eccentricity and argument of 

perigee. The constant Cs does not form part of this new set. The set of alternative elements is completed by defining 

element C4 based on the mean anomaly. Chernick and D’Amico [24] and Riggi and D’Amico [43] refer to this orbital 

element as the modified relative mean longitude. In the current treatment the modified relative mean longitude is 

scaled by a·η-1: 

 𝐶4 = 𝑎(𝛿𝜔 + cos 𝑖 𝛿Ω + 𝜂−1𝛿𝑀) (17) 

The C set of ROE is non-singular when the eccentricity goes to zero, and can be seen as a generalization of the 

travelling ellipse formulation that is in use in circular orbit rendezvous, see Appendix B. Using this new element the 

equation for the relative mean anomaly from Eq. (2) can be rewritten as follows: 

 Δ𝐶4 = −
3

2
𝜂−1𝑛(𝑡2 + 𝑘𝑇)𝛿𝑎1—

3

2
𝜂−3𝑎𝑛(𝑡2 − 𝑡1 + 𝑘𝑇)𝜃1

2𝛥𝑉∥,1
∗ − 𝑎𝑒 sin 𝜗1 𝜌1

−1𝛥𝑉∥,1
∗ − 𝑎𝑒 sin 𝜗2 𝜌2

−1𝛥𝑉∥,2
∗ , ⤶   𝑘 ∈

ℤ  (18) 

Allowance has been made for a coasting arc in the initial orbit and a longer coasting time in the transfer orbit, 

where the coasting time in the transfer orbit can be extended by integer multiples of the orbital period. In principle it 

would be possible to solve this equation for the initial true anomaly. However, like Kepler’s equation, this equation 

does not have a closed-form solution, and a numerical method would need to be used. In section V an alternative 

approach is used to ensure that the chaser arrives at the correct along-track distance. 



The ΔV required for the linear cotangential maneuver can be compared to the ΔV lower bounds provided by 

Chernick and d’Amico [24]. Chernick and d’Amico [24] show that a lower bound for the ΔV can be established that 

is based on the ROE that requires the largest ΔV to change, and this ROE change is referred to as the dominant ROE 

change. The lower bound for in-plane transfers is given by the largest of the ΔV’s required to change the semi-major 

axis, the modified relative mean longitude and the eccentricity vector. 

 (𝑛𝑎𝜂)−1𝛥𝑉𝐿𝐵 = max (
𝑎−1‖Δ𝛿𝑎‖

2(1+𝑒)
,

‖Δ𝛿𝜆𝑒‖

3(1+𝑒)Δ𝑀
,

‖Δ𝛿𝐞‖

√3𝑒4−7𝑒2+4 
) (19) 

In equation (19), 𝑎𝜂𝛿𝜆𝑒 = 𝐶4 and the relative eccentricity vector is given by [28]: 

 𝛿𝐞 = [
𝛿𝑞1

𝛿𝑞2
] = [

cos𝜔 −𝑒 sin𝜔
sin𝜔 𝑒 cos𝜔

] [
𝛿𝑒
𝛿𝜔

] (20) 

The ΔV required for the linear cotangential maneuver can be solved for the special case of co-apsidal transfers to 

compare expressions for the case of dominant ‖Δ𝛿𝑎‖ and dominant ‖Δ𝛿𝐞‖. The cotangential maneuver (like the 

Hohmann transfer in circular orbit rendezvous) is not designed for solving changes in the modified relative mean 

longitude, and the case of dominant ‖Δ𝛿𝜆𝑒‖ is not considered for comparison here. The total ΔV for the general linear 

cotangential transfer is given by: 

 𝛥𝑉𝑡𝑜𝑡 = 𝛥𝑉∥,1 + 𝛥𝑉∥,2 =
1

2
𝑎𝑛𝜂−1 {𝜃1 ‖

(𝛥𝐶𝑠)
2

2𝑝𝛥𝑃1
‖ + 𝜃2 ‖

1

𝑝
𝛥𝐶1 +

(𝛥𝐶𝑠)
2

2𝑝𝛥𝑃1
‖} (21) 

If the change in the relative argument of perigee is equal to zero, and the transfer is started at apogee or at perigee, 

then the transfer angle is 180° and the ΔV can be rewritten in terms of changes in the relative semi-major axis and 

relative eccentricity. 

 𝛥𝑉𝑡𝑜𝑡 = {

1

2
𝑛{𝜂𝛥𝛿𝑎 − 𝑎𝑒𝜂−1𝛥𝛿𝑒},

−(1−𝑒)𝜂2

2−2𝑒−𝜂2 <
𝑎𝛥𝛿𝑒

𝛥𝛿𝑎
<

(1+𝑒)𝜂2

2+2𝑒−𝜂2

1

2
𝑛𝑎𝜂−1𝛥𝛿𝑒,

𝑎𝛥𝛿𝑒

𝛥𝛿𝑎
≤

−(1−𝑒)𝜂2

2−2𝑒−𝜂2 ∨
𝑎𝛥𝛿𝑒

𝛥𝛿𝑎
≥

(1+𝑒)𝜂2

2+2𝑒−𝜂2

 (22) 

The nature of the total ΔV changes depending on whether the initial and final orbit intersect or not. The limit cases 

can be derived from the control input matrix (explicitly given in equation (2)), determining the ratio of the change in 

semi-major axis and the change in eccentricity that can be achieved by means of a single impulse. Intersecting initial 

and final orbits are further discussed in section III.C. 

If the cotangential maneuver only changes the semi-major axis, then the total ΔV is related to the lower bound as: 



 
𝛥𝑉𝑡𝑜𝑡

𝛥𝑉𝐿𝐵
=

1

2
𝑛𝜂𝛥𝛿𝑎
𝑛𝜂

2(1+𝑒)
Δ𝛿𝑎

= 1 + 𝑒 (23) 

Equation (23) shows that the ΔV is higher than the lower bound by a factor equal to the eccentricity. The lower 

bound is obtained by examining the effect of a single, tangential maneuver performed at perigee. Such a maneuver 

achieves the maximum change in semi-major axis, but it also changes the eccentricity. This is a strong indication that 

the ΔV lower bound for dominant ‖Δ𝛿𝑎‖ is unlikely to be achievable. 

On the other hand, if the cotangential maneuver changes the eccentricity and the change in eccentricity is larger 

than the limits identified in (22), then the total ΔV is related to the lower bound as: 

 
𝛥𝑉𝑡𝑜𝑡

𝛥𝑉𝐿𝐵
=

1

2
𝑛𝑎𝜂−1𝛥𝛿𝑒

𝑛𝑎𝜂𝛥𝛿𝑒

√3𝑒4−7𝑒2+4 

=
1

2
𝜂−2√3𝑒4 − 7𝑒2 + 4 (24) 

Equation (24) shows that the total ΔV is less than 4.1% above the lower bound if the eccentricity of the reference 

orbit is smaller than 0.5, and less than 11.4% above the lower bound if the eccentricity of the reference orbit is smaller 

than 0.7. 

B. Geometrical Representation of the Transfer 

The cotangential transfer can be represented geometrically in terms of the C set of ROE and the normalized velocity 

impulses in a diagram. This diagram is a phase portrait of the scaled z-coordinate in the TAN frame and facilitates the 

identification of key points and relevant angles in the transfer problem. The geometrical representation provides a 

direct connection between the key ROE C1, C2 and C3, and the behavior of the z-coordinate in the tangential frame. It 

ensures that the phase angles of the transfer trajectory can be identified by inspection, and it allows for a 

straightforward identification of the singularities in the algorithm as crossing points with the reference trajectory. The 

tangency condition at the end of the trajectory can be verified in the diagram in Fig. 2 as the transfer ends at zero 

altitude (z = 0) with zero vertical velocity (z’ = 0). The diagram therefore captures all important geometrical features 

of coplanar elliptic trajectories with respect to a reference orbit. 

First note that the z-coordinate in the TAN frame can be expressed as (see Appendix B): 

 𝜌𝜃𝑧𝑇𝐴𝑁 = −(𝐶1 + 𝐶2 cos 𝜗 + 𝐶3 sin 𝜗) = −𝑃1 (25) 

The z-coordinate depends on the same polynomial P1 that was identified in the solution of the cotangential transfer 

angle, Eq. (9). The z-coordinate is scaled by 𝜌 and by 𝜃 as follows: 



 �̂�𝑇𝐴𝑁 = 𝜌𝜃𝑧𝑇𝐴𝑁 =
𝑉𝜂3

𝑛𝑟
𝑧𝑇𝐴𝑁 (26) 

In other words, the scaling depends both on the local orbital velocity and on the local orbital radius. The rate of 

change of the scaled coordinate with respect to the true anomaly is given by: 

 �̂�𝑇𝐴𝑁
′ =

𝑑

𝑑𝜗
�̂�𝑇𝐴𝑁 = −

𝑑

𝑑𝜗
𝑃1 = 𝑃2 (27) 

The behavior of the scaled z-coordinate is affected by tangential velocity impulses and it has been shown in Eq. 

(25) that a simple relation exists between the scaled z-coordinate and the C set of ROE. The effect of the normalized 

tangential and radial velocity impulses on the C set of ROE is derived from Eq. (1) and (6) (see also Appendix B): 

 
𝜕𝐂

𝜕𝐕𝑇𝐴𝑁
∗ = 𝑝

[
 
 
 
 

1 𝑒 sin 𝜗 𝜌−1

−cos 𝜗
1

2
(1 + 𝑒2) sin 𝜗 𝜌−1

−sin 𝜗 −
1

2
{2𝑒 + (1 + 𝑒2) cos 𝜗}𝜌−1

−𝑒 sin 𝜗 𝜌−1𝜂−2 𝜂−2 ]
 
 
 
 

 (28) 

The effect of a normalized tangential velocity impulse on the elements C1, C2 and C3 is expressed in terms of 

simple trigonometric functions. To complete the diagram, define the parameter 𝐶𝑚 and the phase angle 𝛼 as follows: 

 
𝐶𝑚 = √(𝐶2)

2 + (𝐶3)
2

𝛼 = tan−1(𝐶3, 𝐶2)
 (29) 

The geometry of the cotangential transfer can now be summarized in a diagram. Figure 2 shows the geometry of 

a generic cotangential transfer. 

 

Fig. 2 Cotangential transfer diagram. 



The transfer starts in the relative orbit represented by the circle at the top, parameterized by the three ROE C1,0, 

C2,0 and C3,0. The scaled z-coordinate traces out a circle in the phase portrait diagram, with a phase angle 𝛼 determined 

by the relative magnitudes of the ROE C2 and C3. A tangential velocity impulse changes the altitude of the circle of 

the scaled z-coordinate and the ROE C2 and C3 change in such a way as to match the derivative of the scaled z-

coordinate at the point of application. The z-coordinate now traces out a circular arc equal to the transfer angle 𝜑 to 

reach the target orbit. The transfer arc is indicated by the set of ROE C1,1, C2,1 and C3,1. The second tangential velocity 

impulse ends the transfer at the origin. The scaled z-coordinate in the TAN frame with respect to an elliptic reference 

orbit behaves in a manner similar to the z-coordinate in the LVLH frame with respect to a circular orbit. The scaled 

z-coordinate in the TAN frame follows a simple harmonic oscillation around a fixed mean altitude and it is 

independent of the modified relative mean longitude. All these aspects are the same as the behavior of the z-coordinate 

in the LVLH frame in circular orbit rendezvous. 

C. Singularities in the Algorithm and Alternative Maneuvers 

The cotangential algorithm contains singularities for certain sets of initial and final conditions. Inspection of the 

cotangential transfer diagram for the singular cases shows that singularities in the cotangential transfer algorithm occur 

when the initial orbit intersects the final orbit. Figure 3 shows this situation in the cotangential transfer diagram. The 

shaded region in Fig. 3 represents the portion of the trajectory below the reference orbit, with the intersections 

occurring at S1 and S2. This diagram allows determining of the location of the singularities, namely, the true anomalies 

of the intersection points. Intersections occur when the scaled z-coordinate can become zero. By inspection of Fig. 3 

and Eq. (25) the intersection criterion is deduced, namely that the absolute value of 𝛥𝐶1 needs to be smaller than 𝛥𝐶𝑚. 

The true anomalies of the intersections can be found by finding the zeros of Eq. (25). 

 

Fig. 3 Location of singularities in the cotangential transfer algorithm. 



The geometrical relations of Fig. 3 can be analyzed to help find the solution for the true anomalies of the 

intersections: 

 
sin 𝜗0,1 = −

Δ𝐶2Δ𝐶𝑠+Δ𝐶1Δ𝐶3

(Δ𝐶𝑚)2
, cos 𝜗0,1 =

Δ𝐶3Δ𝐶𝑠−Δ𝐶1Δ𝐶2

(Δ𝐶𝑚)2

sin 𝜗0,2 =
Δ𝐶2Δ𝐶𝑠−Δ𝐶1Δ𝐶3

(Δ𝐶𝑚)2
, cos 𝜗0,2 = −

Δ𝐶3Δ𝐶𝑠+Δ𝐶1Δ𝐶2

(Δ𝐶𝑚)2

   (30) 

The behavior of the cotangential transfer algorithm near the singularity can be understood graphically by 

comparing Fig. 2 and Fig. 3, approaching the singularity from below or above. In both cases, the algorithm fits a circle 

of infinite radius through the point S and point B, and as the center of the circle of the transfer orbit moves further 

away from the target orbit the ΔV increases. When approaching the singularity from above the transfer angle 

approaches 0 as the true anomaly approaches the true anomaly of the intersection. When approaching the singularity 

from below the transfer angle approaches 2π as the true anomaly approaches the true anomaly of the intersection. If 

the orbits intersect the first and the second ΔV are in opposite directions, while if the orbits do not intersect (as depicted 

in Fig. 2) both ΔV’s are in the same direction. The first condition of Eq. (7) still applies, which states that for linearized 

dynamics the sum of the normalized ΔV’s needs to be equal to the change in semi-latus rectum. If the ΔV’s have 

opposite sign, then they can become unbounded, while if the ΔV’s have the same sign, then the first condition of Eq. 

(7) provides an upper limit to the size of each of the ΔV’s. Clearly, the singularity in the algorithm needs to be avoided 

to limit the ΔV. Three alternatives to the cotangential transfer are explored when the initial and final orbit intersect. 

The first option is to perform the transfer from points that are as far removed from the singularity as possible, 

starting either above (1) or below (2) the target orbit. In Fig. 3 these points are labelled A1 and A2. The ΔV’s have 

opposite sign even if the transfer starts as far from the singularity as possible. The transfer angle φ is equal to 180°. 

The transfer for case 1 is developed below. The transfer for case 2 can be developed in an analogous manner. Eq. (16) 

shows that the ΔV depends on the polynomial P1. At point A the polynomial P1 becomes: 

 Δ𝑃1,𝛼 = Δ𝐶1 + Δ𝐶2 cos 𝛼 + Δ𝐶3 sin 𝛼 = Δ𝐶1 + Δ𝐶𝑚 (31) 

This expression is inserted into Eq. (16) to obtain the normalized ΔV’s: 

 
𝛥𝑉∥,1,α

∗ =
1

2
𝑝−1(𝛥𝐶1 − 𝛥𝐶𝑚)

𝛥𝑉∥,2,𝛼
∗ =

1

2
𝑝−1(𝛥𝐶1 + 𝛥𝐶𝑚)

 (32) 



The second option is to use a single maneuver performed at the crossing point. The ΔV needs to satisfy the 

following equation: 

 [

Δ𝐶1

Δ𝐶2

Δ𝐶3

] + 𝑝

[
 
 
 

1 𝑒 sin 𝜗 𝜌−1

−cos 𝜗
1

2
(1 + 𝑒2) sin 𝜗 𝜌−1

−sin 𝜗 −
1

2
{2𝑒 + (1 + 𝑒2) cos 𝜗}𝜌−1

]
 
 
 
[
Δ𝑉∥

∗

Δ𝑉⊥
∗] = [

0
0
0
] (33) 

This equation can be solved by inserting the true anomaly of one of the two crossing points from Eq. (30), and 

solving the overdetermined system. Alternatively, it can be observed that the tangential component of the ΔV needs 

to nullify the difference in semi-major axis; only the tangential component of the ΔV can change the semi-major axis. 

The tangential ΔV is found to be equal to: 

 𝛥𝑉∥
∗ =

𝜂2

𝜃2 (
𝛿𝑎+−𝛿𝑎−

𝑎
) (34) 

The ΔV is rewritten in terms of the C set of ROE: 

 𝑝𝛥𝑉∥
∗ =

𝜂2

𝜃2 (
(1+𝑒2)Δ𝐶1−2𝑒Δ𝐶2

𝜂2 ) =
(1+𝑒2)Δ𝐶1−2𝑒Δ𝐶2

𝜃2  (35) 

The radial ΔV can be found by inserting the tangential ΔV into the first line of Eq. (33) and solving for the radial 

component. (Of course, line two and three lead to the same result.) 

 𝑝𝛥𝑉⊥
∗ =

𝜌(Δ𝐶1−𝑝𝛥𝑉∥
∗)

𝑒 sin 𝜗
=

2𝜌

𝜃2

cos𝜗Δ𝐶1−Δ𝐶2

sin 𝜗
 (36) 

The true anomaly of the first intersection from Eq. (30) is inserted to find the radial ΔV at this point: 

 
cos𝜗0,1Δ𝐶1−Δ𝐶2

sin 𝜗0,1
= −

(Δ𝐶2Δ𝐶𝑠+Δ𝐶1Δ𝐶3)Δ𝐶𝑠

Δ𝐶2Δ𝐶𝑠+Δ𝐶1Δ𝐶3
= −Δ𝐶𝑠 (37) 

The radial component of the ΔV at the first intersection is equal to: 

 𝑝𝛥𝑉⊥
∗ = −

2𝜌0,1

𝜃0,1
2 Δ𝐶𝑠 (38) 

At the second crossing the radial component switches sign; the tangential component of the ΔV is the same as for 

the first crossing. This maneuver is performed at the intersection point, which achieves the desired change in relative 

orbital elements with a single impulse. This means that transfer is optimal under the assumption that a single ΔV is 

used. 



For the third alternative there is only a single point of intersection (so 𝛥𝐶𝑚 = 𝛥𝐶1). The tangential ΔV to be applied 

at the intersection point can be found by means of Eq. (35). The intersection occurs at ϑ = π + α, so, using the definition 

of α from Eq. (29) and the fact that 𝐶𝑚 = 𝛥𝐶1, Eq. (35) can be rewritten as: 

 𝛥𝑉∥
∗ =

1

𝑝
𝛥𝐶1 (39) 

This means that a tangential impulse at the single point of intersection that is aimed to remove the semi-major axis 

is basically the same as the second maneuver of the cotangential transfer, and therefore also corrects the relative 

eccentricity and argument of perigee. 

 cos 𝜗 = − sgn(Δ𝐶1)
Δ𝐶2

Δ𝐶𝑠
, sin 𝜗 = − sgn(Δ𝐶1)

Δ𝐶3

Δ𝐶𝑠
 (40) 

The formulation for the crossing maneuver cannot be simplified as readily for specific cases as the cotangential 

maneuver. The crossing maneuver can achieve the desired set of ROE in a single impulse, but the same change can 

be achieved more efficiently in a multi-impulse scheme. To show this, consider the following example comparing the 

ΔV for the cotangential transfer and the crossing maneuver to the lower bound. Assume the target spacecraft is orbiting 

in a reference orbit around Earth with a semi-major axis of 20000 km and an eccentricity of 0.2. The chaser performs 

the following change in relative orbital elements: 

 Δ𝛅𝛂 = [Δ𝛿𝑎 Δ𝛿𝑒 Δ𝛿𝜔] = [200 𝑚 1 ⋅ 10−5 0°] (41) 

Equation (22) states that if the change in relative eccentricity is larger than 8 · 10-6, then the initial and final relative 

orbits intersect, and the change in relative eccentricity dominates. For this transfer the change in parameter 𝐶1 is -208 

m, the change in parameter 𝐶2 is -233.6 m, and the change in 𝐶3 is zero. Equation (19) is used to find the lower bound 

for the ΔV as 22.7 mm/s, and equation (22) is used to find the ΔV for the cotangential transfer from perigee to apogee 

as 22.8 mm/s, or 0.5% above the lower bound. Using equation (30) the two crossings are found to be symmetric with 

respect to apogee, and occur at a true anomaly of 48.7° and 311.3°. According to equations (35) and (38) the ΔV to 

be applied at the crossing has a magnitude of 35.6 mm/s, or 56.9% above the lower bound. This example illustrates 

that the cotangential maneuver, performed far away from the singularities at the crossing points, is generally more 

efficient in terms of ΔV than the crossing maneuver if the cotangential maneuver is performed far away from the 

intersection points. 



D. Comparison with Non-Linear Cotangential Transfer Solution 

The non-linear coplanar cotangential transfer problem can be stated as follows: Given the semi-major axes, 

eccentricities and arguments of perigee of the initial and final orbits and the true anomaly at which the transfer starts, 

find the transfer angle of the transfer orbit. The orbital parameters of the transfer orbit and the transfer time can then 

easily be calculated. This derivation follows Zhang [15], [44], with some modifications. The derivation starts from 

the following relationship between the terminal radii, flight-path angles and the transfer angle given in [45 p. 240]. 

 𝑟2 tan 𝛾1 + 𝑟1 tan 𝛾2 = (𝑟2 − 𝑟1) cot
1

2
𝜑 (42) 

The first step to solve Eq. (42) is to multiply by 𝜌1𝜌2 and by tan
1

2
𝜑 to remove the devisors: 

 (𝑝1𝑒2 sin 𝜗2 + 𝑝2𝑒1 sin 𝜗1) tan
1

2
𝜑 = 𝑝2𝜌1 − 𝑝1𝜌2 (43) 

Unlike [15], the departure point or initial true anomaly is considered as given, such that the unknowns in equation 

(43) are the transfer angle and the true anomaly of the arrival point. The transfer angle is defined as the difference in 

true latitude, that is, 𝜑 = 𝜔2 − 𝜔1 + 𝜗2 − 𝜗1. The transfer angle is used to eliminate the true anomaly of the arrival 

point: 

 {𝑝1𝑒2 sin(𝜗1 − Δ𝜔 + 𝜑) + 𝑝2𝑒1 sin 𝜗1} tan
1

2
𝜑 = 𝑝2(1 + 𝑒1 cos 𝜗1) − 𝑝1{1 + 𝑒2 cos(𝜗1 − Δ𝜔 + 𝜑)} (44) 

Then angle sum and difference operations on the sine and cosine terms of the compound angle can be performed, 

followed by the Weierstrass substitution on the sine and cosine terms of the transfer angle 𝜑. Simplification leads to 

the following expression for the transfer angle: 

 tan
𝜑

2
=

𝑝2−𝑝1+(𝑝2𝑒1−𝑝1𝑒2 cosΔ𝜔) cos𝜗1−𝑝1𝑒2 sin Δ𝜔 sin 𝜗1

(𝑝2𝑒1−𝑝1𝑒2 cos Δ𝜔) sin 𝜗1+𝑝1𝑒2 sin Δ𝜔 cos𝜗1
 (45) 

In equation (45) the following expressions for the ROE C1, C2 and C3 can be identified that are the non-linear 

counterpart to the definition in Eq. (6): 

 

Δ𝐶1,𝑛𝑙 = Δ𝑝 = 𝑝2 − 𝑝1

Δ𝐶2,𝑛𝑙 = 𝑝1𝑒1(1 − cos Δ𝜔) + 𝑒1Δ𝑝 − 𝑝1Δ𝑒 cos Δ𝜔 = 𝑝2e1 − 𝑝1𝑒2 cos Δ𝜔

Δ𝐶3,𝑛𝑙 = −𝑝1(𝑒1 sin Δ𝜔 + Δ𝑒 sin Δ𝜔) = −𝑝1𝑒2 sin Δ𝜔

 (46) 

Eq. (45) can now be written in the same form as Eq. (11), the only difference being that non-linear analogues of 

the parameters C1, C2 and C3 are used: 



 𝜑 = 2 tan−1 (
𝛥𝑃1,𝑛𝑙

𝛥𝑃2,𝑛𝑙
) (47) 

The singularities in the algorithm are the same as those given by Eq. (30). To show this, the condition for 

intersection is examined. The intersection can be found by letting the radius of the initial orbit be equal to radius of 

the second orbit, and solving for the true anomaly of the initial orbit. 

 
𝑝1

1+𝑒1 cos(𝑙−𝜔1)
=

𝑝2

1+𝑒2 cos(𝑙−𝜔2)
 (48) 

The true longitude 𝑙 is equal to 𝜗1 + 𝜔1, so the following equation can be found from Eq. (48): 

  𝑝1 + 𝑝1𝑒2 cos(𝜗1 − Δ𝜔) = 𝑝2 + 𝑝2𝑒1 cos 𝜗1 (49) 

Using the cosine difference formula and collecting terms in the sine and cosine of the true anomaly of the first 

orbit leads to the following expression: 

 𝑝2 − 𝑝1 + (𝑝2𝑒1 − 𝑝1𝑒2 cos Δ𝜔) cos 𝜗1 − 𝑝1𝑒2 sin Δ𝜔 sin 𝜗1 = Δ𝐶1,𝑛𝑙 + Δ𝐶2,𝑛𝑙 cos 𝜗1 + Δ𝐶3,𝑛𝑙 sin 𝜗1 =
0  (50) 

This is indeed the non-linear equivalent of setting Eq. (25) to zero. 

The determination of the non-linear ROE C1, C2 and C3 shows that this set of ROE is defined with respect to a 

certain reference orbit, unlike the set of Kepler elements. These ROE show up in the determination of whether orbits 

intersect and the determination of the required tangential ΔV’s to transfer between orbits. In the linear case, the new 

ROE can be also be used as alternatives to the classical ROE to simplify the description of the relative motion in the 

TAN frame. The fact that there is a close correspondence between the linear and the non-linear cotangential transfer 

means that the orbit intersection checks and the identification of the correct initial true anomaly for the cotangential 

transfer between intersecting orbits from section III.C can be used in the case of non-linear transfers as well. This 

approach was followed in [46] to create a non-linear guidance function for the long-range rendezvous phase of an 

MSR type mission. 

IV. Trajectory Safety and Safe Orbits 

Trajectory safety is an important design consideration, especially in the presence of trajectory uncertainty. Along-

track uncertainty tends to be much larger than the uncertainty in the radial and cross-track directions, because small 

errors in the estimation of the semi-major axis lead to uncertainty in mean anomaly that grows with time due to the 

coupling between these elements [11]. The eccentricity / inclination vector separation strategy was developed to 



exploit this fact; eccentricity vector separation leads to a separation in the radial direction and inclination vector 

separation leads to a separation in the cross-track direction. If the angle between the relative eccentricity vector and 

the relative inclination vector (or, alternatively, the phase angle between the radial and cross-track oscillations) is 

selected properly, then the trajectory remains collision-free even in the presence of trajectory uncertainty. 

A. Eccentric Safe Orbits from Generalized Inclination / Eccentricity Vector Separation 

Eccentricity / inclination vector separation is a strategy used in circular reference orbits to define trajectories that 

are safe from collisions. The resulting trajectory is referred to as eccentricity / inclination vector separation, projected 

circular orbit or safe orbit if the in-plane and out-of-plane oscillations have the same amplitude. In this document the 

name “safe orbit” will be used. The eccentricity / inclination vector separation strategy is used for collocating 

geostationary communications satellites [47] and has recently been used in several formation flying missions in low 

Earth orbit [48], [49], [50] .The reason this type of trajectory is safe is that the projection on the y-z plane of the LVLH 

frame can be shaped such that the chaser never comes close to the origin. If the amplitudes of the in-plane and out-of-

plane oscillations are equal, the projection on the y-z plane is a circle. The center of the circle always lies on the z-

axis, but it can have a certain non-zero altitude with respect to the origin. If the altitude is not equal to zero, then the 

trajectory experiences some along-track drift.  

The concept of the safe orbit is generalized to eccentric reference orbits. Trajectories are discussed in a general 

setting first and a phase angle is included to shift from safe to other types of trajectories such as the halo formation 

[47]. The specific case of non-drifting safe orbits is treated. Finally, a method is derived to generate safe orbits that 

pass through a specified point at a specified true anomaly of the reference orbit. Specific geometric conditions at 

particular points along the orbit are of interest, for example, for satisfying geometric constraints such as ground station 

visibility, illumination conditions or alignment with astronomical objects. Target observation by means of visual 

cameras could for example be performed from a safe orbit if the Sun-target-chaser geometry is favorable. 

Jiang et al [51] show that drift-free relative trajectories in the LVLH frame lie on a quadric surface in three-

dimensional space, and that the quadric surface can be a one-sheet hyperboloid, an elliptic cone or an elliptic cylinder. 

The idea of embedding the rather complicated relative trajectory into a simpler geometric shape is very interesting. 

Instead of examining a single trajectory, the whole family of trajectories that lie on the surface can be examined at 

once. The geometric shape of the surface is simpler, so the analysis to determine whether the shape satisfies certain 

constraints (such as the trajectory being free from collisions) becomes simpler. If the entire shape satisfies the 



constraint, then the analysis can stop after this first step. If it does not, then the more complex geometry of the 

individual trajectory can be analyzed to determine whether that specific trajectory at least satisfies the constraint. The 

approach of Jiang et al [51] cannot be applied directly to generate general safe trajectories because Jiang et al [51] do 

not include the semi-major axis difference (and therefore trajectory drift) into the analysis. The analysis is performed 

in the LVLH frame, and the LVLH z-coordinate is dependent on the relative mean anomaly which makes the LVLH 

z-coordinate dependent on the along-track drift if the relative semi-major axis is non-zero. In other words, if along-

track drift is present, then the principal assumption in Jiang et al [51] is violated and the simple geometrical relations 

identified by Jiang et al no longer apply. Dang et al in [52], [53] base their analysis on the work of Jiang et al [51] and 

provide analytical bounds on the inter-satellite distance, but their approach does not retain the simplicity of the 

geometrical bounds provided by Jiang et al [51]. In this section geometrical relations are sought that are similar to 

those found by Jiang et al [51] and that enable fast analysis of families of trajectories. The TAN frame is used instead 

of the LVLH frame, and simple geometrical relations are defined between the elements C and families of trajectories 

in the TAN frame. This allows for a straightforward definition of safe orbits that generalize the concept of eccentricity 

/ inclination vector separation, and for simple and fast checks of the trajectory safety. The focus lies on the 

perpendicular and out-of-plane coordinates, and safe orbits are defined in such a way that the larger uncertainty in the 

along-track direction does not influence the overall safety of the trajectory, similar to the approach in [11] for circular 

orbit rendezvous. 

In section III.B it has been observed that the z-coordinate in the TAN frame is independent of the modified relative 

mean longitude and that the behavior of the scaled z-coordinate is a simple trigonometric function. In the following 

sections the idea to identify simple geometries for trajectory families is applied to identify safe trajectories in the TAN 

frame. Because the z-coordinate in the TAN frame is independent of the modified relative mean longitude, only the 

projection on the y-z plane needs to be examined to determine whether the possibility of a collision exists or not. This 

means that the number of dimensions that need to be analyzed in the first step of the analysis is reduced from 3 to 2. 

Both the y-coordinate and the z-coordinate in the TAN frame are fairly simple trigonometric functions of the true 

anomaly, and no secular terms are present. The collision analysis becomes correspondingly simpler. 

B. General Trajectories and Safe Orbits 

The out-of-plane motion is parameterized in terms of the elements C5 and C6, which relate to the relative orbital 

elements 𝛿𝑖 and 𝛿Ω as follows: 



 
𝐶5 = −𝑝(cos𝜔 𝛿𝑖 + sin 𝑖 sin 𝜔 𝛿Ω)

𝐶6 = 𝑝(sin𝜔 𝛿𝑖 − sin 𝑖 cos𝜔 𝛿Ω)
 (51) 

To fully decouple the in-plane and out-of-plane motion the in-plane element 𝐶3 is redefined as 𝐶3 =

−𝑒𝑝(𝛿𝜔 + cos 𝑖 𝛿Ω). The out-of-plane coordinate in the TAN frame can be expressed as a function of C5 and C6: 

 �̂�𝑇𝐴𝑁 = 𝜌𝑦𝑇𝐴𝑁 = 𝐶5 sin 𝜗 − 𝐶6 cos 𝜗 (52) 

In equation (52) �̂�𝑇𝐴𝑁 is the out-of-plane coordinate scaled by 𝜌. Next Eq. (25) is reparametrized using Eq. (29) 

and Eq. (52) is re-parameterized using the following definitions: 

 𝐶5 = 𝜆𝐶𝑚 cos 𝛽 , 𝐶6 = 𝜆𝐶𝑚 sin 𝛽 (53) 

The parameter λ is the ratio of the amplitude of the out-of-plane oscillation with respect to the amplitude of the in-

plane oscillation and 𝛽 is the true anomaly at which the chaser crosses the orbital plane of the target in ascending 

direction (i.e., the relative ascending node). Note that the oscillation in the out-of-plane direction can also be inverted 

by changing the sign of the elements 𝐶5 and 𝐶6. The scaled motion in the y-z plane of the TAN frame can now be 

written in the following form: 

 
�̂�𝑇𝐴𝑁 = 𝜆𝐶𝑚 sin(𝜗 − 𝛽) = 𝜆𝐶𝑚 sin(𝜏 − 𝜏0)

�̂�𝑇𝐴𝑁 = −{𝐶1 + 𝐶𝑚 cos(𝜗 − 𝛼)} = −{𝐶1 + 𝐶𝑚 cos 𝜏}
 (54) 

In equation (54) 𝜏 = 𝜗 − 𝛼 and 𝜏0 = 𝛽 − 𝛼. For non-zero Cm and λ the scaled coordinates in the y-z plane traces 

a line if τ0 is equal to ½π, a circle if τ0 is equal to 0 and λ = 1 and an ellipse otherwise. The case of τ0 equal to 0 is of 

interest for generalizing the safe orbit to an eccentric reference orbit. Of course many different generalizations of the 

projected circular orbit are now possible that all approach a circular projection when the eccentricity goes to zero, due 

to the presence of the amplitude ratio λ. That is to say, one could assign whichever function of the eccentricity to the 

parameter λ, as long as it approaches to 1 when the eccentricity goes to zero. If no restrictions are placed on the 

amplitude ratio, then the parameter λ can be set to any value. Equation (54) indicates that if |𝐶1| < |𝐶𝑚 cos 𝜏0|, the 

trajectories wind around the origin. 

One-parameter families of curves can now be identified that depend on the parameter α and that have the same 

value for the parameters C1, Cm, λ and τ0. The parameter α is a phase angle, C1 is the relative altitude, Cm the dimension 

or size, λ the ratio of amplitudes of the out-of-plane to the in-plane oscillations and τ0 the angle between the relative 

eccentricity and inclination vectors. For the definition of eccentricity / inclination vector separation with a circular 



reference orbit similar parameters are used. In case of a circular reference orbit the in-plane phase angle α can be 

varied without altering the shape of the relative trajectory: the projection of the trajectory on the x-z plane of the 

LVLH frame remains a 2:1 ellipse, and the projection of the trajectory on the y-z plane remains a circle (only if λ is 

equal to 1, of course). In the case of an elliptic reference orbit the shape of trajectories is more complicated because 

of the scaling factors acting on the y and z coordinates, and each member of the family of trajectories is scaled 

differently. On the other hand, the boundary of a family of trajectories as a whole (defined by means of Eq. (54) in 

terms of the parameters C1, Cm, λ and τ0) is reasonably simple. The boundary can be obtained by examining the 

envelope of the family of curves parameterized by τ and the extreme values of the scaling function 𝜌. The point of the 

boundary closest to the origin always lies on the ellipse for which 𝜌 is equal to 1 + e, that is to say, the closest approach 

of the trajectory family as a whole always occurs at perigee, because in this case both the y and z coordinates are 

scaled by the largest value. The closest approach of the family evaluated at perigee therefore provides a conservative, 

lower bound estimate of the closest approach of any individual member of that family. 

Following this general discussion the eccentricity / inclination vector separation is examined. Eccentricity / 

inclination vector separation occurs when τ0 is equal to 0. If τ0 is equal to 0, then the scaled coordinates behave as 

follows: 

 
�̂�𝑇𝐴𝑁 = 𝜆𝐶𝑚 sin 𝜏

�̂�𝑇𝐴𝑁 = −(𝐶1 + 𝐶𝑚 cos 𝜏)
 (55) 

This is the parametric equation of an ellipse with center (0,-C1), major axis Cm along the z-axis and minor axis λ· 

Cm along the y-axis. Figure 4 shows the families of safe orbits that Eq. (55) generates. The value of the parameter λ is 

1, Cm is equal to 10. On the left of Fig. 4 C1 = 0 and on the right C1 = Cm. The scaled coordinates (that is, y is scaled 

by ρ and z is scaled by ρθ) are the same for all members of the trajectory family. 



(a) C1 = 0 (b) C1 = Cm 

Fig. 4 Boundaries for safe trajectories. 

Figure 4 shows that the inner boundary of the family of trajectories around the origin is determined by the inner 

elliptical boundary that results from 𝜌 = 1 + 𝑒 if |𝐶1| < |𝐶𝑚|. This family of trajectories encloses the origin and 

contains both drifting and non-drifting trajectories. To ensure drift-free trajectories, the difference in semi-major axis 

must be equal to zero. In terms of the ROE C1 and C2 this means: 

 𝐶1 =
2𝑒

1+𝑒2 𝐶2 =
2𝑒

1+𝑒2 𝐶𝑚 cos 𝛼 (56) 

The drift-free safe orbit encloses the origin. Finally, for drift-free trajectories centered on the origin 𝐶4 = 0. 

The safe orbit formulation in this article can be compared to the formulations of the eccentricity / inclination vector 

separation found in literature. D’ Amico and Montenbruck [11] define the eccentricity / inclination vector separation 

using the eccentricity vector and the inclination vector. In near-circular orbits the eccentricity vector is usually 

parameterized in terms of small differences in the parameters 𝑞1 = 𝑒 cos𝜔 and 𝑞2 = 𝑒 sin𝜔 [28], and the inclination 

vector is parameterized in terms of 𝛿𝑖 and 𝛿Ω sin 𝑖. The ROE defining the eccentricity and inclination vectors are 

multiplied by the argument of latitude 𝑢 = 𝜗 + 𝜔. The elements C can be recovered from the elements used by 

Chernick and D’Amico [24] using: 

 

[
 
 
 
 
 
𝐶1

𝐶2

𝐶3

𝐶4

𝐶5

𝐶6]
 
 
 
 
 

= 𝑝

[
 
 
 
 
 
1 0 −2𝜂−2𝑒 cos𝜔 −2𝜂−2𝑒 sin𝜔 0 0

𝑒 0 −𝜂−2(1 + 𝑒2) cos𝜔 −𝜂−2(1 + 𝑒2) sin𝜔 0 0
0 0 sin𝜔 − cos𝜔 0 −𝑒 cot 𝑖
0 𝜂 0 0 0 0
0 0 0 0 − cos𝜔 − sin 𝜔
0 0 0 0 sin𝜔 − cos𝜔]

 
 
 
 
 

[
 
 
 
 
 
𝑎−1𝛿𝑎
𝛿𝜆𝑒

𝛿𝑞1

𝛿𝑞2

𝛿𝑖
𝛿Ω sin 𝑖]

 
 
 
 
 

 (57) 



The formulation in terms of elements C conveniently decouples the in-plane and out-of-plane motions. The main 

difference with the formulation for circular orbits is that the semi-latus rectum is used as the basis for elements C1 and 

C2. 

C. Trajectories with Alignment 

This section discusses trajectories that pass through a user-specified position vector in the TAN frame at a specified 

true anomaly. This can be useful for example for ensuring proper lighting conditions of the target spacecraft. The 

relative semi-major axis δa, the amplitude ratio λ and the out-of-plane phase angle τ0 are given as design parameters. 

The y and z coordinates of the trajectory are given as a function of C2 and C3 by Eq. (54). The value of C1 in the 

equation for the z-coordinate as a function of C2 and the relative semi-major axis can be obtained from equation (6). 

 𝐶1 = (1 + 𝑒2)−1(𝜂4𝛿𝑎𝑑𝑒𝑠 + 2𝑒𝐶2) (58) 

The equations for the y- and z-coordinate can then be written as the following system of equations: 

 [
𝑦𝑇𝐴𝑁

𝑧𝑇𝐴𝑁 + 𝜌−1𝜃−1 𝜂4

1+𝑒2 𝛿𝑎𝑑𝑒𝑠
 ] = 𝜌−1𝜃−1 [

𝜆𝜃 sin(𝜗 − 𝜏0) −𝜆𝜃 cos(𝜗 − 𝜏0)

− (
2𝑒

1+𝑒2 + cos 𝜗) − sin 𝜗
] [

𝐶2

𝐶3
] (59) 

The solution for this system of equations is: 

 [
𝐶2

𝐶3
] = 𝜌 {cos 𝜏0 +

2𝑒

1+𝑒2 cos(𝜗 − 𝜏0)}
−1

×

[
𝜆−1 sin 𝜗 −𝜃 cos(𝜗 − 𝜏0)

−𝜆−1 (
2𝑒

1+𝑒2 + cos𝜗) −𝜃 sin(𝜗 − 𝜏0)
] [

𝑦𝑇𝐴𝑁

𝑧𝑇𝐴𝑁 + 𝜌−1𝜃−1 𝜂4

1+𝑒2 𝛿𝑎𝑑𝑒𝑠
 ] (60) 

The constant C4 is obtained from the x-coordinate in the tangential frame, which is given by (Appendix B): 

 𝑥𝑇𝐴𝑁 = 𝜌−1𝜂−2𝜃−1{𝑒(𝜃2 + 2) sin 𝜗 𝐶1 − 2(𝜌 + 𝑒2) sin 𝜗 𝐶2 + 2(𝑒 + cos 𝜗)𝜌𝐶3} + 𝜃𝐶4 (61) 

The constant C1 as a function of C2 and the relative semi-major axis is inserted, and the equation is solved: 

 𝐶4 = 𝜃−1𝑥𝑇𝐴𝑁 − 𝜂2𝜃−2 𝑒 sin 𝜗

𝜌
(

2

1+𝑒2 𝜌 + 1) 𝛿𝑎𝑑𝑒𝑠 + 2𝜃−2 (
sin𝜗

1+𝑒2 𝐶2 −
𝑒+cos 𝜗

𝜂2 𝐶3) (62) 

Finally, the elements C5 and C6 are found from: 

 
𝐶5 = 𝜆(𝐶2 cos 𝜏0 − 𝐶3 sin 𝜏0)

𝐶6 = 𝜆(𝐶2 sin 𝜏0 + 𝐶3 cos 𝜏0)
 (63) 



The procedure to obtain a trajectory that passes through a point (x, y, z) in the TAN frame, with the relative semi-

major axis δa, the amplitude ratio λ and the out-of-plane phase angle τ0 given as design parameters, is as follows. First, 

Eq. (60) is used to obtain C2 and C3. Eq. (58) is used to obtain C1 and Eq. (62) is used to obtain C4. Finally, Eq. (63) 

is used to obtain the elements C5 and C6. The state in the TAN frame can be found using the matrices defined in 

Appendix B. Alternatively, the C set of ROE can be converted to Keplerian ROE. 

Some limitations of this procedure need to be pointed out. The procedure obviously does not work if the amplitude 

ratio λ is set to zero, because in this case the relative motion occurs in the orbital plane of the reference orbit. Second, 

if the out-of-plane phase angle τ0 is smaller than sin−1 (
2𝑒

1+𝑒2), then the divisor in Eq. (60) can become zero for certain 

values of the true anomaly, which leads to singular trajectories that may have infinite size. 

V. Rendezvous Strategy Based on Cotangential Transfers and Safe Orbits 

In this section an example of a rendezvous strategy is presented that incorporates the ideas developed in the 

previous sections. Perturbations are excluded from this analysis. The perturbation-free maneuvering strategy described 

here can be incorporated into a guidance function that does consider perturbations using the precompensation 

technique described by Chernick and D’Amico [24]. 

The initial conditions for the rendezvous strategy are a drift orbit at a given altitude below the target orbit. The 

terminal conditions for the strategy are a safe orbit with specific properties, namely, arriving at a specific point at a 

specific true anomaly. Tangential and out-of-plane maneuvers are used to reach the terminal conditions. Figure 5 

shows a diagram of the rendezvous strategy. 

 

Fig. 5 Rendezvous strategy. 

Before maneuver M1 the chaser is a co-elliptic orbit below the target orbit. Maneuver M1 is a cotangential transfer 

that raises the relative apogee to H1. Between maneuvers M2 and M4 the chaser is in a drifting orbit with a relative 

perigee below H1. The drift orbit with altitude variations ensures that the chaser arrives at the proper distance from 



the target when performing maneuver M4. Maneuver M3 is an out-of-plane maneuver. Maneuver M4 inserts the chaser 

into a co-elliptic orbit. Finally, maneuver M5 inserts the chaser into a safe orbit. To complete the definition of this 

strategy, two additional aspects need to be examined. First, the lowest possible co-elliptic drift orbit that connects to 

the safe orbit needs to be found. This co-elliptic orbit is tangent to the safe orbit. In addition, the drift rate between 

M2 and M4 needs to be modulated to ensure proper phasing. 

A. Co-elliptic Orbits Connecting to Safe Orbits 

A co-elliptic orbit is defined with respect to a reference orbit. It is coplanar with the reference orbit and has the 

same argument of perigee. The value of the eccentricity is such that the altitude variation with respect to the reference 

orbit is as small as possible [54]. The linear co-elliptic orbit is defined in terms of the ROE as follows: 

 𝛿𝑒 = −𝑒a−1𝛿𝑎, 𝛿𝜔 = 0 (64) 

The co-elliptic orbit in terms of the parameters C1, C2 and C3 is found from equation (6). The equation for the z 

coordinate in the co-elliptic orbit can now be found from equations (6), (25) and (64): 

 𝑧𝑇𝐴𝑁 = −𝜌−1𝜃𝛿𝑎 = −
1

cos𝛾
𝛿𝑎 (65) 

The range of the z-coordinate of the co-elliptic orbit is determined by the flight path angle. At apogee and at 

perigee, the flight path angle is zero and 𝑧𝑇𝐴𝑁 = −𝛿𝑎. The maximum flight path angle occurs at 𝜗 = cos−1(−𝑒), and 

at this point the z-coordinate reaches its extremum 𝑧𝑇𝐴𝑁 = −𝜂−1𝛿𝑎. The minimum distance between the co-elliptic 

orbit and the reference orbit is always greater than 𝛿𝑎. 

The crossing condition (𝛥𝐶1)
2 = (𝛥𝐶2)

2 + (𝛥𝐶3)
2 is used to determine the relative semi-major axis of the co-

elliptic orbit connecting to a particular safe orbit. The differences in C1, C2 and C3 are taken between the co-elliptic 

orbit and the safe orbit. The crossing condition leads to a second degree polynomial in the relative semi-major axis, 

meaning that there are two co-elliptic orbits that connect to a particular safe orbit: 

 𝜂4(𝛿𝑎𝑐𝑜𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐)
2
+ 2{−(1 + 𝑒2)𝐶1,𝑠𝑎𝑓𝑒 + 2𝑒𝐶2,𝑠𝑎𝑓𝑒}𝛿𝑎𝑐𝑜𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐 + (𝐶1,𝑠𝑎𝑓𝑒)

2
− (𝐶2,𝑠𝑎𝑓𝑒)

2
− (𝐶3,𝑠𝑎𝑓𝑒)

2
= 0 (66) 

For a non-drifting safe orbit there is a positive and a negative root. The true anomaly of the intersection is found 

from Eq. (30). The value of the parameter C4 is found by equating the x-coordinate at the connection point using Eq. 

(61) for both possible values of the semi-major axis. 



 𝜌𝑖𝜂
2𝜃𝑖

2𝐶4,𝑐𝑜𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐,𝑖 = 𝑒(𝜃𝑖
2 + 2) sin 𝜗𝑖 {𝐶1,𝑠𝑎𝑓𝑒 − (1 + 𝑒2)𝛿𝑎𝑐𝑜𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐,𝑖} − 2(𝜌𝑖 + 𝑒2) sin 𝜗𝑖 {𝐶2,𝑠𝑎𝑓𝑒 −

2𝑒𝛿𝑎𝑐𝑜𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐,𝑖} + 2𝜌𝑖(𝑒 + cos 𝜗𝑖)𝐶3,𝑠𝑎𝑓𝑒 + 𝜌𝑖𝜂
2𝜃𝑖

2𝐶4,𝑠𝑎𝑓𝑒 , 𝑖 = 1,2 (67) 

B. Altering the Drift Rate 

Altering the drift rate is performed by means of tangential maneuvers. A two-impulse transfer that lasts one 

revolution alters the relative mean anomaly without changing any of the other ROE. The first impulse of such a transfer 

is given by: 

 𝛥𝑉 =
𝑎𝑛𝜂

6𝜋𝜃𝑁𝑜𝑟𝑏
𝛥𝑀 (68) 

In equation (68) 𝛥𝑀 = 𝛿𝑀4 − 𝛿𝑀2 − 3𝜋𝑁𝑜𝑟𝑏𝑎
−1𝛿𝑎𝑐𝑜𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐 , and the term 3π·Norb·a-1·δa represents the drift in 

the co-elliptic orbit that would have occurred if no maneuvers would have been performed. The second impulse has 

the same magnitude as the first impulse but opposite in sign. 

Equation (68) can be used to set bounds on the number of orbits spent in the drift orbit and determine whether the 

strategy is feasible for the given initial conditions. The upper bound is found by assuming that the chaser can directly 

enter the co-elliptic drift orbit and that no ΔV is required to alter the drift rate. 

 𝑁𝑜𝑟𝑏,max = ⌊
𝛿𝑀2−𝛿𝑀4

3𝜋𝑎−1𝛿𝑎𝑐𝑜𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐
⌋ (69) 

The floor function is used to ensure that an integer number of orbits is spent in the drift orbit. The minimum number 

of orbits spent in the drift orbit is found by assuming that the ΔV required to initiate the drift is equal in magnitude 

and opposite in sign to the second ΔV of the cotangential maneuver. 

 𝑁𝑜𝑟𝑏,min = ⌈
𝛿𝑀2−𝛿𝑀4

3𝜋𝑎−1(𝛿𝑎𝑐𝑜𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐−2𝜃𝑛−1𝜂−1Δ𝑉𝐶𝑇𝐺,2)
⌉ (70) 

The ceiling function is used to ensure that an integer number of orbits is spent in the drift orbit. Note that for the 

strategy discussed here, 𝛿𝑎𝑐𝑜𝑒𝑙𝑙𝑖𝑝𝑡𝑖𝑐 < 0 and Δ𝑉𝐶𝑇𝐺,2 > 0, such that the absolute magnitude of the denominator 

increases. Equation (69) ensures that the chaser does not move above the co-elliptic orbit, while equation (70) ensures 

that the chaser does not move below the original orbit. The condition expressed in equation (69) potentially affects 

the safety of the trajectory, while the condition expressed in equation (70) ensures that the total ΔV required for 

maneuvers M1, M2 and M4 is equal to the ΔV required for the cotangential maneuver. Equation (70) ensures that the 



second impulse of the cotangential maneuver is effectively split to correct the along track distance in the drift orbit. If 

the condition in equation (70) is violated, then the correcting the along-track distance requires additional ΔV. 

Equation (69) establishes a relationship between the altitude of the initial orbit and the along-track distance, and 

determines whether the rendezvous strategy is feasible given the initial altitude and along-track distance. Equation 

(69) implies that the difference in mean anomaly at maneuver M2 and maneuver M4 either needs to be equal to zero 

(in which case M2 and M4 coincide) or greater than or equal to the along-track drift during one orbit to ensure that 

the chaser can spend at least one orbit in the co-elliptic drift orbit. 

C. Drift-Based Rendezvous Strategy Ending in Safe Orbit 

The rendezvous strategy shown in Fig. 5 can now be created and simulated. The strategy consists of a cotangential 

maneuver, a phasing element, and an insertion into a safe orbit. The target state is a (drift-free) safe orbit with 

alignment. For this safe orbit the elements C2 and C3 are computed using Eq. (60), element C4 using Eq. (62) and C1 

using Eq. (58). The out-of-plane elements C5 and C6 are found from Eq. (63). The first step to define the maneuver 

strategy is to compute a cotangential transfer using Eq. (11), (16) and (18). The cotangential maneuver algorithm 

provides the true anomaly ϑ2 at which the second impulse (corresponding to M2 in Fig. 5) needs to be executed and 

the along-track position C4 at the end of the transfer. Next, the intersection point of the safe orbit with a co-elliptic 

drift orbit is obtained from Eq. (66), picking the root that has the same sign as the initial drift orbit. The true anomaly 

of the intersection is found from Eq. (30). The result is a co-elliptic orbit with elements C1, C2 and C3 found from Eq. 

(6) and (64) and the along-track element C4 of the intersection point with the safe orbit given by Eq. (67). The ΔV at 

the connection point M5 is found by converting the change in C elements to a change in Cartesian state. The difference 

in the position components are of course equal to zero by definition. The drift orbit is propagated backwards from the 

true anomaly of the intersection point to the first occurrence of the true anomaly of the second impulse of the 

cotangential maneuver. This ensures that there are an integer number of orbits between maneuvers M2 and M4. The 

drift rate between maneuvers M2 and M4 is corrected using tangential maneuvers derived from Eq. (68). The number 

of orbits spent in the drift orbit is constrained by (1) ensuring that the trajectory remains below a co-elliptic orbit of 

altitude H1 and (2) that the ΔV at M2 is greater than 0. Condition (1) and (2) together ensure that the total ΔV required 

for maneuvers M1, M2 and M4 does not exceed the total ΔV for a cotangential maneuver between the initial orbit and 

the co-elliptic orbit. The final maneuver to be computed is the out-of-plane maneuver M3. The intersection points 



with the orbital plane can be found by setting Eq. (52) to zero. The ΔV is then equal in magnitude and opposite in sign 

to the out-of-plane velocity. All maneuvers are now known. 

The strategy is simulated for different values of the eccentricity. Table 1 lists the parameters used for simulation 

of the approach strategy. The selected safe orbit is drift-free with equal amplitude in the y- and z-directions. 

Table 1 Simulation parameters  

Parameter Value 

Reference orbit  

Gravitational parameter 398600.61 km3/s2 

Semi-major axis 13394 km 

Eccentricity 0 – 0.5 

True anomaly 50° 

Initial conditions  

Initial C4 (along track distance) -2000 m 

Initial co-elliptic orbit altitude H0 100 m 

Safe orbit terminal conditions  

Alignment point [-80 43.3 -25] m 

δa 0 m 

Out-of-plane motion ratio λ 1 

Phase angle τ0 0° 

True anomaly at alignment 130° 

Figure 6 shows the rendezvous strategy for several values of the eccentricity. The number of revolutions spent in 

the drifting orbit has been set to 2 for all cases. At zero eccentricity the trajectory is very similar to the conceptual 

sketch shown in Fig. 5. When the eccentricity increases, the trajectory starts to deform more and more with respect to 

the familiar circular orbit rendezvous trajectory. At the same time, all trajectories successfully intercept the alignment 

point irrespective of the eccentricity. Figure 6 also shows that as the eccentricity increases, the safe orbit expands 

outwards. The exact evolution of the shape of the safe orbit with eccentricity is strongly dependent on the details of 

the geometry (e.g. the true anomaly and the position of the alignment point), meaning that the suitability of the 

trajectory for a reference orbit of a given eccentricity needs to be examined using the procedures outlined in section 

IV.B. The same is also true for the co-elliptic drift orbit that connects to the safe orbit. 



  

Fig. 6 Simulated rendezvous trajectory in the tangential frame. 

Figure 6 shows that at eccentricities of 0.4 and 0.5, the co-elliptic drift orbit that connects to the safe orbit actually 

enters the circle with radius 50 m centered on the origin in the YZ-projection. This is not necessarily a problem as 

long as the trajectory does not enter the stay out zone or safety sphere. In this case, if the safety sphere has a radius of 

30 m, then the trajectory could still be considered safe. The issue is examined further by examining the calculated 

parameters of the rendezvous algorithm in Table 2. 

Table 2 Calculated parameters for rendezvous strategy 

 e = 0 e = 0.1 e = 0.2 e = 0.3 e = 0.4 e = 0.5 

C4 at M2, m -1609,9 -1604,9 -1593,8 -1575,7 -1548,6 -1508,4 

C4 at M4, m -331,5 -345,7 -364,4 -388,3 -418,8 -460,3 

C4 at M5, m -166,6 -175,8 -186,9 -199,5 -213,7 -233,2 

δa, (equation (69)), m -50,0 -51,2 -53,2 -56,0 -59,8 -65,2 

δa, (equation (70)), m -75,0 -75,6 -76,6 -78,0 -79,9 -82,6 

Norb,max, (equation (69)) 2 2 2 2 1 1 

Norb,min, (equation (70)) 2 2 2 2 2 2 

Table 2 shows the calculated parameters for the rendezvous strategy for different values of the eccentricity. The 

first three rows provide the along-track element C4 for maneuvers M2, M4 and M5. Rows 4 to 7 evaluate the bounds 

on the number of orbits spent drifting between M2 and M4 that are provided in equations (69) and (70). The maximum 

number of orbits in the drift orbit is equal to 1 for eccentricities of 0.4 and 0.5, while the minimum number of orbits 

to be spent in the drift orbit is equal to 2. For all other values of the eccentricity, the minimum and the maximum 

number of orbits in the drift orbit is equal to 2. Condition (69) is not fulfilled for eccentricities of 0.4 and 0.5, and as 

a result the drift orbit between maneuver M2 and M4 has its highest point above the co-elliptic drift orbit. In fact, 

Table 2 shows that for eccentricities of 0.4 and 0.5 either condition (69) or condition (70) needs to be broken. It can 

be verified that with an initial value of C4 = 2400 m, the rendezvous can be completed at eccentricities of 0.4 and 0.5 



while fulfilling condition (69), but that the lower eccentricity cases would need 3 orbits for completing the drift. For 

the sake of maintaining the number of drift orbits the same across all values of the eccentricity, the non-fulfilment of 

condition (69) is deemed acceptable in this example, because maintaining the number of drift orbits facilitates the 

visual comparison of the trajectories and also illustrates the consequences of non-fulfilment of these conditions. 

The algorithms work for any arbitrary eccentricity; however, Fig. 6 and 7 show that the rendezvous trajectory 

progressively deviates from the familiar circular rendezvous trajectory as the eccentricity increases. The reason for 

this is that the scaling factors 𝜌 and 𝜃 depend on the eccentricity. Note that the scaling factors also depend on the true 

anomaly. This causes the geometry of particular rendezvous trajectories to be dependent on the true anomaly of key 

points of the trajectory such as the alignment point and the starting point. It also means that the geometry of the 

trajectory is not fully known a priori, especially for high-eccentricity orbit rendezvous. From a practical point of view 

this means that for high-eccentricity orbit rendezvous the safety and feasibility of the rendezvous trajectory needs to 

be analyzed during the mission design. During mission design, trajectory design parameters such as the altitude of 

drift orbits and the dimensions of safe orbits need to be adjusted according to a trajectory safety and feasibility analysis. 

 

Fig. 7 Simulated rendezvous trajectory in the LVLH frame. 

Figure 7 shows the same set of rendezvous trajectories in the LVLH frame. In Fig. 7 the locus of the locations of 

the maneuvers as they evolve with increasing eccentricity is indicated by means of a dotted line. Figure 7 shows that 

it is not obvious how to generate such a trajectory given only Cartesian coordinates in the LVLH frame. Trajectory 

safety of rendezvous trajectories in elliptic orbit rendezvous cannot be established as easily by inspecting the trajectory 

in the LVLH frame as it is in the tangential frame of Fig. 6, because the z-coordinate shows a much greater variation. 



Of course the trajectory for zero eccentricity in the LVLH frame corresponds exactly to the trajectory for zero 

eccentricity in the tangential frame. 

Table 3 shows the maneuver times for the rendezvous strategy expressed as multiples of the orbital period. Table 

3 shows that the time at which the in-plane maneuvers M1, M2, M4 and M5 occur remains fairly constant over the 

different values of the eccentricity. The out-of-plane maneuver M3 occurs almost half an hour earlier in the case of e 

= 0.5 with respect to the circular orbit. 

Table 3 Maneuver times for rendezvous strategy 

 e = 0 e = 0.1 e = 0.2 e = 0.3 e = 0.4 e = 0.5 

man. no. time, h time, h time, h time, h time, h time, h 

M1 0.167 0.167 0.167 0.167 0.167 0.167 

M2 2.309 2.309 2.306 2.301 2.294 2.286 

M3 5.952 5.954 5.901 5.800 5.664 5.501 

M4 10.880 10.879 10.877 10.872 10.865 10.857 

M5 12.380 12.379 12.363 12.335 12.294 12.230 

Table 4 shows the ΔV required to perform this rendezvous strategy for various values of the eccentricity. Only the 

magnitude of the ΔV is given. The in-plane maneuvers M1, M2, M4 and M5 are performed in the direction of the 

local orbital velocity vector, and the out-of-plane maneuver M3 is performed in the out-of-plane direction. The second 

ΔV of the cotangential maneuver is modified to alter the drift rate, and the sum of the ΔV’s required for maneuvers 

M1, M2 and M4 (the sequence of orbit raising and drift correcting maneuvers) is equal to the ΔV required for a 

cotangential maneuver from the original orbit to the co-elliptic orbit. The cases for which the eccentricity is 0.4 and 

0.5 do not fulfil condition (69). As a consequence, additional ΔV is spent to correct the in-plane element C4. The ΔV 

for the cotangential maneuver alone is given in brackets for these cases. The total ΔV required for M1, M2 and M4 

can be compared to the ΔV lower bound [24] given by equation (19). The dominant change is the change in relative 

semi-major axis. As in the work of Chernick and D’Amico [24], the out-of-plane maneuver M3 is performed at the 

relative node and therefore optimally changes the out-of-plane motion. Maneuver M5 is performed at the intersection 

of the safe orbit with the co-elliptic orbit by design. 

Table 4 ΔV required for rendezvous strategy 

 e = 0 e = 0.1 e = 0.2 e = 0.3 e = 0.4 e = 0.5 

man. no. ΔV, mm/s ΔV, mm/s ΔV, mm/s ΔV, mm/s ΔV, mm/s ΔV, mm/s 

M1 5.09 4.73 4.28 3.77 3.21 2.59 

M2 1.46 1.99 3.02 4.73 7.45 11.73 

M3 20.36 19.26 19.18 20.04 21.77 24.31 

M4 3.63 3.30 2.54 1.09 1.45 5.80 

M5 10.18 9.44 8.87 8.59 8.92 10.46 



M1+M2+M4 10.18 10.01 9.84 9.60 12.11 

(9.21) 

20.12 

(8.53) 

Lower bound 10.18 8.98 7.78 6.58 5.36 4.10 

Total 40.73 38.71 37.89 38.23 42.80 

(39.90) 

54.89 

(43.30) 

Table 4 shows that there is considerable variation in the ΔV associated with each of the maneuvers depending on 

the eccentricity of the reference orbit. The order of magnitude of maneuvers is similar for most maneuvers apart from 

the second maneuver, which grows from 1.46 mm/s to 11.73 mm/s as the eccentricity grows from 0 to 0.5. The 

evolution of the ΔV for each of the maneuvers strongly depends on the local geometry of the trajectory at the time of 

the maneuver, and there is no particular pattern in the dependency on the eccentricity of the reference orbit. It should 

be noted that the sequence of maneuvers generated here is quite artificial; as Fig. 7 shows the initial conditions have 

been idealized over the different values of the eccentricity in order to facilitate easy visual comparison of the 

trajectories and to demonstrate the general applicability of the trajectory and maneuver definition strategy. It should 

be stressed that this selection of the initial conditions is purely for this reason. The strategy is applicable in general for 

different initial values of the true anomaly and variation in the initial conditions, as long as sufficient along-track 

distance (as established by equations (69) and (70)) is available to perform the strategy. More explicitly, for a given 

safe orbit, the procedure to check the along-track distance is as follows. First, equation (11) provides the transfer angle 

of the cotangential transfer and with that the true anomaly 𝜗2 of maneuver M2. Equation (18) provides C4 at the end 

of the cotangential transfer. Equation (30) and (67) provide the true anomaly and C4 at the maneuver M5. Back-

propagation of the co-elliptic drift orbit from maneuver M5 to the first occurrence of 𝜗2 before maneuver M5 leads to 

C4 of maneuver M4. The values of C4 need to be converted to relative mean anomaly, and equation (66) needs to be 

used to find the relative semi-major axis of the co-elliptic orbit. Now, equation (69) can be used to establish whether 

sufficient along-track distance is available to perform the strategy. 

VI. Conclusion 

This paper has created a clear connection between the traditional strategies for rendezvous in circular orbits and 

corresponding strategies in elliptical orbits. The cotangential transfer for elliptic orbit rendezvous is conceptually 

similar to the Hohmann transfer in circular orbit rendezvous. In both cases, the ΔV is applied in the direction of the 

local orbital velocity vector and the z-coordinate or its equivalent in an elliptic reference orbit responds with a change 

of mean altitude and amplitude of the motion. Some differences do exist. For the linear Hohmann transfer in circular 

orbit rendezvous, the first and the second ΔV are exactly equal, while in elliptic orbit rendezvous the two ΔV’s are 



generally different in magnitude. The solution of the cotangential transfer leads to a natural definition of a new set of 

relative orbital elements. The representation of the trajectory in terms of these elements creates a connection to the 

travelling ellipse formulation in circular orbits, and this concept can aid in the development and analysis of rendezvous 

strategies. This representation also facilitates the determination of whether two trajectories intersect. Finally, the new 

set of relative orbital elements can be used to define safe trajectories with and without drift. These safe orbits represent 

a generalization to non-circular orbits of the safe orbits based on eccentricity / inclination vector separation that are 

used in circular orbit rendezvous and formation flying. 

The combination of the cotangential transfers and safe orbits leads to a useful conceptual approach to defining 

rendezvous trajectories for elliptical orbits. An analysis of a drift-based rendezvous strategy shows that the same 

strategy can be applied for both circular and eccentric reference orbits with similar results in terms of maneuver 

application times and ΔV magnitudes. In this sense, classical rendezvous strategies developed for circular orbit 

rendezvous can be fully generalized following the procedures outlined in this paper. 
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Appendix A: Details of TAN frame 

The transformation matrix Tγ takes a vector from the TAN frame to the LVLH frame, that is to say: 

 𝐱𝐿𝑉𝐿𝐻 = 𝐓𝛾𝐱𝑇𝐴𝑁 (71) 

The matrix Tγ and its inverse are composed of a rotation matrix and an angular velocity matrix. 

 𝐓𝛾 = [
𝐑𝛾 𝟎

−𝛀𝛾𝐑𝛾 𝐑𝛾
] , 𝐓𝛾

−1 = [
𝐑𝛾

𝑇 𝟎

𝐑𝛾
𝑇𝛀𝛾 𝐑𝛾

𝑇] (72) 

The rotation matrix for the flight-path angle is given by: 

 𝐑𝛾 = [
cos 𝛾 sin 𝛾

− sin 𝛾 cos 𝛾
] = 𝜃−1 [

𝜌 𝑒 sin 𝜗
−𝑒 sin 𝜗 𝜌

] (73) 



The angular velocity matrix is given by: 

 𝛀𝛾 = [
0 −�̇�
�̇� 0

] = 𝜂−3𝑛𝜌2𝜃−2(𝜌 − 𝜂2) [
0 −1
1 0

] (74) 

Appendix B: Details of element set C 

This appendix summarizes the relationships between the C elements, the relative Kepler elements, the Yanamaka-

Ankersen integration constants and the state vector in the tangential frame. Linear transformations between different 

sets of ROE can be represented as matrices of partial derivatives. The transformation from Kepler elements to C 

elements is given by the matrix of partials from the C elements to the Kepler orbital elements. 

 
𝜕𝐂

𝜕𝐤
= 𝑝

[
 
 
 
 
 
𝑎−1 −2𝑒𝜂−2 0 0 0 0

𝑒𝑎−1 −(1 + 𝑒2)𝜂−2 0 0 0 0
0 0 0 −𝑒 cos 𝑖 −𝑒 0
0 0 0 𝜂−2 cos 𝑖 𝜂−2 𝜂−3

0 0 − cos𝜔 − sin 𝑖 sin𝜔 0 0
0 0 sin𝜔 − sin 𝑖 cos𝜔 0 0 ]

 
 
 
 
 

 (75) 

The matrix of partials from the Kepler orbital elements to the C elements is given by: 

 
𝜕𝐤

𝜕𝐂
=

1

𝑝

[
 
 
 
 
 
 
𝑎𝜂−2(1 + 𝑒2) −2𝑎𝑒𝜂−2 0 0 0 0

𝑒 −1 0 0 0 0
0 0 0 0 − cos𝜔 sin 𝜔

0 0 0 0 −
sin 𝜔

sin 𝑖
−

cos𝜔

sin 𝑖

0 0 −𝑒−1 0 cot 𝑖 sin𝜔 cot 𝑖 cos𝜔
0 0 𝑒−1𝜂 𝜂3 0 0 ]

 
 
 
 
 
 

 (76) 

The elements C can also be related to the Yamanaka-Ankersen set of trajectory integration constants [26]. The 

order of the integration constants is the same as in the original paper by Yamanaka and Ankersen. The linear 

transformation matrix from the Yamanaka-Ankersen integration constant to the elements C is given by: 

 
𝜕𝐂

𝜕𝐲
=

[
 
 
 
 
 

0 0 −2𝑒 −2 0 0
0 0 −(1 + 𝑒2) −2𝑒 0 0

−𝑒 −1 0 0 0 0
𝜂−2 𝑒𝜂−2 0 0 0 0
0 0 0 0 0 1
0 0 0 0 −1 0]

 
 
 
 
 

 (77) 

The linear transformation matrix from the elements C to the Yamanaka-Ankersen integration constant is given by: 



 
𝜕𝐲

𝜕𝐂
=

[
 
 
 
 
 
 

0 0 𝑒𝜂−2 1 0 0

0 0 −𝜂−2 −𝑒 0 0

𝑒𝜂−2 −𝜂−2 0 0 0 0

−
1

2
(1 + 𝑒2)𝜂−2 𝑒𝜂−2 0 0 0 0

0 0 0 0 0 −1
0 0 0 0 1 0 ]

 
 
 
 
 
 

 (78) 

The Yamanaka-Ankersen equations are non-singular if the eccentricity goes to zero [26]. Equations (77) and (78) 

do not contain any divisors of the eccentricity, indicating that the transformation from the C elements and the 

Yamanaka-Ankersen set of trajectory integration constants is non-singular if the eccentricity goes to zero. 

To obtain the linear mapping matrix from the C element vector to the Cartesian state in the TAN frame, the 

following expression needs to be evaluated: 

 𝐁𝐶,𝑇𝐴𝑁 = 𝐓𝛾
−1𝐁

𝜕𝐂

𝜕𝐤
 (79) 

The elements of the linear mapping matrix from the C element vector to the Cartesian state in the TAN frame can 

then be found as: 

 

𝐁𝐶,𝑇𝐴𝑁(1,1) = 𝜌−1𝜂−2𝜃−1{𝑒(𝜃2 + 2) sin 𝜗}, 𝐁𝐶,𝑇𝐴𝑁(2,1) = −𝜌−1𝜃−1,

𝐁𝐶,𝑇𝐴𝑁(1,2) = 𝜌−1𝜂−2𝜃−1{−2(𝜌 + 𝑒2) sin 𝜗}, 𝐁𝐶,𝑇𝐴𝑁(2,2) = −𝜌−1𝜃−1 cos 𝜗 ,

𝐁𝐶,𝑇𝐴𝑁(1,3) = 𝜌−1𝜂−2𝜃−1{2(𝑒 + 𝑐𝑜𝑠 𝜗)𝜌}, 𝐁𝐶,𝑇𝐴𝑁(2,3) = −𝜌−1𝜃−1 sin 𝜗 ,

𝐁𝐶,𝑇𝐴𝑁(1,4) = 𝜃, 𝐁𝐶,𝑇𝐴𝑁(2,4) = 0,

𝐁𝐶,𝑇𝐴𝑁(3,1) = 𝑛𝜂−5𝜃−3 {
1

2
(1 + 𝑒2)𝜃2 + 𝜌3(𝜃2 − 2)} ,

𝐁𝐶,𝑇𝐴𝑁(3,2) = 𝑛𝜂−5𝜃−3{(4𝑒2[𝑒2 + 𝜌] − 2𝜌3) cos 𝜗 + 𝑒(1 + 𝑒2)},

𝐁𝐶,𝑇𝐴𝑁(3,3) = 𝑛𝜂−5𝜃−3{−2𝜌3 sin 𝜗},

𝐁𝐶,𝑇𝐴𝑁(3,4) = 𝑛𝜂−3𝜃−1{−𝜌2𝑒 sin 𝜗},

𝐁𝐶,𝑇𝐴𝑁(4,1) = 𝑛𝜂−3𝜃−3{−(𝜃2 + 𝜌)𝑒 sin 𝜗},

𝐁𝐶,𝑇𝐴𝑁(4,2) = 𝑛𝜂−3𝜃−3{(𝜃2 + 𝜌[1 − 𝜌]) sin 𝜗},

𝐁𝐶,𝑇𝐴𝑁(4,3) = 𝑛𝜂−3𝜃−3{(4𝜂2 + 𝜌2 − 3[𝜌 + 1]) cos 𝜗 − 𝑒(2 + 𝑒2)},

𝐁𝐶,𝑇𝐴𝑁(4,4) = 0

 (80) 

Similarly, the inverse mapping can be found from: 

 𝐁𝐶,𝑇𝐴𝑁
−1 = (

𝜕𝐂

 𝜕𝐤
)

−1

𝐁−1𝐓𝛾 (81) 

The elements of the linear mapping matrix from the Cartesian state in the TAN frame to the C element vector can 

then be found as: 



 

𝐁𝐶,𝑇𝐴𝑁
−1 (1,1) = 𝜃−3{2𝑒𝜌2 sin 𝜗},

𝐁𝐶,𝑇𝐴𝑁
−1 (2,1) = 𝜃−3{−2𝑒𝜌2 sin 𝜗 cos 𝜗},

𝐁𝐶,𝑇𝐴𝑁
−1 (3,1) = 𝜃−3{−2𝑒𝜌2 sin2 𝜗},

𝐁𝐶,𝑇𝐴𝑁
−1 (4,1) = 𝜂−2𝜃−3{2𝜌3 − 𝜃2},

𝐁𝐶,𝑇𝐴𝑁
−1 (1,2) = 𝜃−3{−2(𝜌3 + 𝜃2)},

𝐁𝐶,𝑇𝐴𝑁
−1 (2,2) = 𝜃−3 {

[4𝜌3 + (1 + 𝑒2)𝜌2 − 3(1 + 𝑒2)𝜌 − 4(1 + 𝑒2)2 + 5(1 + 𝑒2)] cos 𝜗

−𝑒(1 + 𝑒2)(2 + 𝑒2)
} ,

𝐁𝐶,𝑇𝐴𝑁
−1 (3,2) = 𝜃−3{𝜃2 + 𝜌(𝜂2 + 𝜌[𝜃2 + 2𝑒 cos 𝜗])} sin 𝜗 ,

𝐁𝐶,𝑇𝐴𝑁
−1 (4,2) = 𝜂−2𝜃−3{2𝑒𝜌2 sin 𝜗},

𝐁𝐶,𝑇𝐴𝑁
−1 (1,3) = 𝑛−1𝜂3𝜃−1{2},

𝐁𝐶,𝑇𝐴𝑁
−1 (2,3) = 𝑛−1𝜂3𝜃−1{−2 cos 𝜗},

𝐁𝐶,𝑇𝐴𝑁
−1 (3,3) = 𝑛−1𝜂3𝜃−1{−2 sin 𝜗},

𝐁𝐶,𝑇𝐴𝑁
−1 (4,3) = 𝑛−1𝜂𝜌−1𝜃−1{−2𝑒 sin 𝜗},

𝐁𝐶,𝑇𝐴𝑁
−1 (1,4) = 𝑛−1𝜂3𝜌−1𝜃−1{2𝑒 sin 𝜗},

𝐁𝐶,𝑇𝐴𝑁
−1 (2,4) = 𝑛−1𝜂3𝜌−1𝜃−1{(1 + 𝑒2) sin 𝜗},

𝐁𝐶,𝑇𝐴𝑁
−1 (3,4) = 𝑛−1𝜂3𝜌−1𝜃−1{−[(1 + 𝑒2) cos 𝜗 + 2𝑒]},

𝐁𝐶,𝑇𝐴𝑁
−1 (4,4) = 𝑛−1𝜂𝜃−1{2},

 (82) 

Neither the linear mapping matrix from the C element vector to the Cartesian state in the TAN frame nor its inverse 

contains the eccentricity as a divisor. This implies that the C elements do not become singular when the eccentricity 

goes to zero. In fact, if the eccentricity approaches zero, the expressions in the matrices 𝐁𝐶,𝑇𝐴𝑁 and 𝐁𝐶,𝑇𝐴𝑁
−1  can be 

compared to the travelling ellipse formulation used in circular orbit rendezvous [55]. If the eccentricity approaches 

zero, the matrix BC,TAN becomes: 

 lim
𝑒↓0

𝐁𝐶,𝑇𝐴𝑁 =

[
 
 
 

0 −2 sin 𝜗 2 cos 𝜗 1
−1 − cos 𝜗 − sin 𝜗 0

−
3

2
𝑛 −2𝑛 cos 𝜗 −2𝑛 sin 𝜗 0

0 𝑛 sin 𝜗 −𝑛 cos 𝜗 0]
 
 
 
 (83) 

And the matrix B-1
C,TAN: 

 lim
𝑒↓0

𝐁𝐶,𝑇𝐴𝑁
−1 = [

0 −4 2𝑛−1 0
0 3 cos 𝜗 −2𝑛−1 cos 𝜗 𝑛−1 sin 𝜗
0 3 sin 𝜗 −2𝑛−1 sin 𝜗 −𝑛−1 cos 𝜗
1 0 0 2𝑛−1

] (84) 

The parameter C1 represents the altitude of the center of the ellipse, the parameter C4 represents the along-track 

distance of the center of the ellipse and the parameters C2 and C3 parameterize the 2 x 1 travelling ellipse. 

For completeness, the ROE transition matrix for the C elements is given by: 



 𝚽𝐶 =
𝜕𝐂

𝜕𝛅𝛂
𝚽𝛼 (

𝜕𝐂

𝜕𝛅𝛂
)

−1

=

[
 
 
 

1 0 0 0
0 1 0 0
0 0 1 0

−
3

2
𝜂−5(1 + 𝑒2)𝑛 𝑡 −3𝑒𝜂−5𝑛𝑡 0 1]

 
 
 

 (85) 
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