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Abstract

Diversity in the distribution of the refractive index in biological samples causes phase aber-
rations in imaging systems [1, 2]. These phase aberrations will result in degradation of the
image quality. Post processing algorithms try to reconstruct the object from the obtained
images.

Correction techniques, such as tangential iterative projections (TIP) [3], were developed to
reconstruct the image for the whole field of view. However, due to the three dimensional
nature of biological tissues, induced aberrations are different throughout the field of view.
This Master of Science thesis shows the development of four algorithms. These algorithms
apply TIP to deconvolve images locally. Thereafter, the local results are combined in order
to restore images from anisoplanatic aberrations. The difference between the the algorithms
developed during this research is the complexity in the spatial domain and in the Fourier
domain. It was found that adaptive limited support in the spatial domain increases the im-
age quality of the estimated object. A novel approach for multi-frame deconvolution in the
Fourier domain has shown to be a promising modification. The use of weighted multi-frame
deconvolution in the Fourier domain has lead to improved image quality.

During the research it was found that some image quality metrics, such as Fourier ring cor-
relation and structural similarity, are useful to show the performance of an image restoration
algorithm. Moreover, it was discovered that metrics based around the mean square error are
less useful to compare performance in situations where aberrations are anisoplanatic.

The goal and motivation of this thesis is to contribute to the accessibility of imaging system.
Computational imaging is the joint design of both imaging systems and processing algorithms.
The aim of these algorithms is to reconstruct an object and correct for aberrations induced
by the sample or the imaging system. Nowadays computing power is cheaper than good opti-
cal components. Computational imaging is capable of designing cheap portable microscopes
which can be applied in the field to do disease diagnoses for example.
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Preface

This document is a part of my Master of Science graduation thesis. The idea of doing my
thesis on this subject came during prof. dr. ir. M. Verhaegen’s lectures. He mentioned
the ability to correct for imperfections in low cost imaging systems. He inspired me to elect
courses in the field of imaging and doing my thesis in Computational Imaging. I decided to do
my research on computational approaches to aberration correction, because of the involved
mathematics. My passion for mathematics has always been the motivation for studying in
general. It provides understanding to complex problems and challenges me to come up with
solutions. Besides mathematics, it is biology, physics and ethics that help me to appreciate
life and inspired me to make the world a better place.

This Master of Science thesis shows the development of four new algorithms. These algo-
rithms are designed to handle anisoplanatic aberrations. This thesis will contribute to the
field of computational imaging. By these means I hope to participate in a broader research
in the field of disease diagnoses.

This thesis is written for readers who are interested in the field of Computational Imaging,
Adaptive Optics, Systems and Control and Signal processing. Chapter 1, Introduction, de-
scribes the main problem, aim and outline of this literature survey. Chapters 2 - 6 cover
work that was done in thesis. Finally Chapter 7 concludes the work. This last chapter also
discusses the next step in this research.
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Chapter 1

Introduction

1-1 Problem Description

Microscopes are one of the most important tools in biological research and human understand-
ing of diseases. However, the ability of microscopes to investigate processes inside biological
tissue is limited. It is only possible to see into most biological tissues up to approximately
a hundred microns. Due to the inhomogeneous distribution of refractive index in biological
tissue light is deflected. Because of these deflections light has to travel more distance than
trough vacuum. Since this deviation in path length dependents on the refractive index, the
deviations differ trough the field of view (FOV). Therefore it is necessary to compute the
unique correction for every point in the image [2].

Wu and Cui [13] show that widely adopted isoplanatic correction for a phase aberration in the
pupil plane is outperformed by the multi-conjugate correction methods. For a small FOV the
single-conjugation correction nearly doubles the peak intensity compared to the isoplanatic
correction. Wu and Cui conclude that the isoplanatic pupil plane correction should be used
to handle spatially invariant wavefront distortions, and that the conjugation plane should be
used to correct for anisoplanatic phase aberrations.

Wilding et al. [3] present the tangential iterative projections (TIP) algorithm to perform
the isoplanatic pupil plane correction in imaging scenarios where temporal variation of the
phase aberration occur. This Master of Science thesis takes spacial variation or the three
dimensional nature of the problem into account. In deep tissue microscopy anisoplanatic
phase aberrations occur and therefore it is necessary to apply a correction method that can
handle these variations.

Master of Science Thesis W. van de Ketterij



2 Introduction

1-2 Aim of the Research

Research was conducted to design an algorithm that is able to perform a correction for aniso-
planatically deteriorated images. This is the case in deep tissue microscopy. The aim of
this research is to expand theoretical knowledge in literature about computational correction
methods. Furthermore it is desirable to design an algorithm that outperforms similar state-
of-the-art algorithms. In order to achieve this design the problem was divided into smaller
problems. First, image deterioration is studied in order to understand why images are de-
graded and what models can be used to describe this phenomenon mathematically. Secondly,
other computation correction algorithms are studied. New insight can lead to improvement
of current state-of-the-art algorithms or can even lead to the development of a new algo-
rithm. Thirdly, a metric must be chosen such that different approaches can be compared
quantitatively. Finally the performance of the algorithm will be evaluated in experiments.
Simulations with empirical data and real data will be conducted and the performance of the
algorithm will be compared to another algorithm.

1-3 Outline

In order to understand the physics behind optical systems and the correction methods this
thesis starts with a brief introduction to imaging. In Chapter 2, some basic optical con-
cepts are introduced and the reader becomes familiar with terminology. Chapter 2 covers
the formation of images in the presence of a phase aberration. Chapter 3 is dedicated to
correction methods known in literature. First correction methods for isoplanatic aberrations
are discussed. These isoplanatic methods form the basis for the correction of anisoplanatic
phase aberrations. In the last part of Chapter 3, efficient image models for anisoplanatic cor-
rection methods are presented and a correction framework is described. Chapter 4 describes
the development of the first algorithm called TIP3A. It provides the reader with a detailed
description of the algorithm. In Chapter 5 is discussed what image metric represents the
image quality the best. This metric will be used throughout the thesis to compare the con-
vergence and performance of the algorithms. Chapter 6 shows that improvements to the first
algorithm can be made. Improvements in the spatial domain and Fourier domain lead to the
development of three other algorithms. The end of Chapter 6 demonstrates the performance
of the algorithm, TIP4A-W, when much noise is present in the images. This algorithm is also
tested on real images and compared to another algorithm. Chapter 7 is the final chapter.
Chapter 7 will conclude the work and formulate a future outlook.

W. van de Ketterij Master of Science Thesis



Chapter 2

Image formation and deterioration in
Fourier Optics

Light can be used to gather information of a scientific object. This chapter provides math-
ematical models for the image of a point source and models for deteriorated images of an
extended object. This knowledge is required to understand the way images are formed and
deteriorated, such that a correction method can be developed. This chapter has two sections.
In the first section, some basic optical concepts are explained. The reader is introduced to
wavefronts, the wave-like nature of light the image of a point source. In the second section
the formation and degradation of images of an extended object is described.

2-1 Image of a Point Source in Fourier Optics

A point source emits light in all direction. When this light is captured by an imaging system
to form an image, it will not be a perfect point. The wave-like nature of light, or electromag-
netic radiation, will cause deterioration of an image. Moreover, if light waves travel trough
imperfect medium the image quality will decrease further.

2-1-1 Basic Optical Concepts

The Maxwell’s equations are derived from basic concepts in electricity and magnetism. From
the Maxwell’s equations in vacuum can be shown [14, 15] that each Cartesian component of
electric field and magnetic field must satisfy the three-dimensional scalar wave equation,

∇2u = 1
ν2
∂2u

∂t2
, (2-1)

where, ν = (µ0ε0)−
1
2 , equal to the speed of light c.
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4 Image formation and deterioration in Fourier Optics

With the current hardware, it is not possible to detect the temporal fluctuations of the
electromagnetic field [2]. Since the time dependence is known a priori, it can be shown [15]
that time averaged electromagnetic waves, U(r) = A(r)e−iφ(r) at location r ∈ R3, must obey
the Helmholtz equation:

(∇2 + k2)U = 0 (2-2)

Resulting in the following expressions for spherical and plane waves respectively:

Us(r) = A

|r − r0|
e−ik|r−r0|−iφ0 , (2-3)

Up(r) = Ae−ik·r−iφ0 . (2-4)

Intensity

The energy of a wave is proportional to its amplitude. The intensity, measured by a charge-
coupled device (CCD) for example, is given by the amplitude squared of the electromagnetic
waves. The intensity of a spherical wave at r is given by

Is(r) = |Us(r)|2 = A2

|r − r0|2
. (2-5)

In general, the intensity at a point r is given by the amplitude squared of the electromagnetic
waves:

I(r) = |U(r)|2 = |A(r)|2. (2-6)

Wavefront Aberrations

Imperfections in the shape of optical components or misalignment in imaging systems cause
aberrations in the wavefronts. Hence it is almost impossible to reach resolutions close to the
refraction limit. Beside these inherent imperfections, imaging systems suffer from external
conditions, such as thermal effects, atmospheric turbulence or inhomogeneous medium. Phase
aberrations are changes in the wavefront. Since the wavefront is given by a surface of constant
phase of a complex electromagnetic wave, U(r) = A(r)e−iφ(r), the wavefront distortion or
phase aberration is a deviation from the perfect wave shape.
Phase aberrations cause deterioration of images obtained from imaging systems. Therefore,
it is of high importance to correct these distorted wavefronts.

Zernike Polynomials

A commonly used method in optics to describe a wavefronts is to represent it as a weighted sum
of Zernike Polynomials. Those are predefined functions, called modes. Zernike polynomials
are defined for any two non-negative integers of the same parity m,n:

m,n ∈ Z ≥ 0, n ≥ m, n−m ∈ 2Z.

Noll [16] (cited in [4]) introduced a different numbering, using a single index for Zernike
Polynomials ZN . Although Zernike polynomials are defined in polar coordinates, their Carte-
sian representation as given in Figure 2-1 looks very harmless. This figure shows the first
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2-1 Image of a Point Source in Fourier Optics 5

15 Zernike polynomials. Considering Noll’s order, the phase, for instance in the pupil plane
z = zp, can be represented as:

φ(x, y) =
∑
i

aiZi. (2-7)

Representing the wavefront in such a way comes with some advantages. First of all, Zernike
polynomials are orthogonal on a unit disk. They always reach 1 at the aperture boundary.
The main optical aberrations are easily expressed in Zernike polynomials. In order to reduce
algorithm stagnation it is often better to estimate low order Zernike polynomials first [17].

2-1-2 The Image of a Point Source

As a result of the thin lens equation, it is known that a lens converts a plane wave onto a
spherical wave converging to a point in the focal plane. And the other way around, a spherical
wave originating from the focal plane will be converted into a plane wave.

physical optics has shown that a lens performs a Fourier transform. A wave, ae−iφ(x,y), with
aberration, φ(x, y), at the pupil, will result in a field distribution in the back focal plane

A(x, y) ≈ ei
2πf
λ e

i π
λf (x2+y2)

iλf

∫∫
R2
P (x, y)ae−iφ(x,y)e−i

2π
λf

(xox+yoy)
dxodyo, (2-8)

where P (x, y) is called the pupil function. The pupil function is typically 1 inside the lens
aperture and 0 outside. f is the focal length of the lens and λ is the wave length. xo and yo
are the spacial coordinates in the pupil plane.

Point Spread Function

Since the image is given by the intensity of the field distribution, the image of a point source
in the far field is given by

I(x, y) = a2

λ2f2

∣∣∣∣∫∫
R2
P (x, y)e−iφ(x,y)e−i

2π
λf

(xox+yoy)
dxodyo

∣∣∣∣2 . (2-9)

This integral can be recognized as a two-dimensional Fourier transform. The point spread
function (PSF) of a unit point source can be written as

I(x, y) = c
∣∣∣F {P (x, y)e−iφ(x,y)

}∣∣∣2 , (2-10)

where c is a normalization constant. Figure 2-2 shows a normalized intensity distribution
for a point source in the far field. This intensity distribution for an imaging system without
aberration is diffraction limited. The shape of this intensity distribution is called an Airy
disk. The smallest ring around the origin at zero intensity is given by the Rayleigh resolution
criterion. The angular distance of this ring is given by 1.22λ/D = 1.54 · 10−4rad. The radius
of this ring is given by 1.22λf/D = 7.72 · 10−6m.

The image of a point source in the far field obtained from an imaging system with an aber-
ration in the pupil will differ from the Airy disk. The last column in Figure 2-1 shows the
images for different aberrations. The image of a point source is called the PSF. The PSF
does not depend on the position of the point in the object plane.
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6 Image formation and deterioration in Fourier Optics

Figure 2-1: The first 15 Zernike polynomials sorted by Noll’s order. The expression is given
in Cartesian coordinates, followed by the corresponding shape. For some aberrations the name
is given. The last column shows an image of a point source deteriorated by the corresponding
aberration. (Source: [4])
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2-1 Image of a Point Source in Fourier Optics 7

Figure 2-2: The Airy disk is the intensity distribution of a point source in the far field obtained
from an imaging system with no aberration. Here the wavelength λ = 633nm, the lens aperture
diameter D = 5mm and the focal length f = 5cm.
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8 Image formation and deterioration in Fourier Optics

Resolution of an imaging system

The quality of an imaging system is determined by the width of the PSF. The highest res-
olution that can be achieved is called the diffraction limit. The Airy disk is the PSF of an
imaging system without any aberration. In practise the resolution is lower than the diffraction
limit.

Three different measures that characterize the resolution of an imaging system are:

1. Full Width at Half Maximum (FWHM), the width of the PSF at half its maximum
intensity.

2. Strehl ratio is the ratio between the peak intensity of the PSF and the peak intensity
of the Airy disk.

3. Encircled Energy is the fraction of the total integrated flux in the image contained
within a circle of given radius.

2-2 Image of an Extended Object in Fourier Optics

The image of a point source is described by its PSF. However, any two point sources will
interfere, so one can only assume the PSF as a space invariant impulse response function,
h(x, y), in case of no interference. Assuming incoherent illumination of an extended source,
each point in the image is given as a linear super position of the contribution of point sources
in the object [2].

i(x, y) =
∫∫

R2
o(x̃, ỹ)h(x− x̃, y − ỹ)dx̃dỹ = o(x, y) ∗ h(x, y). (2-11)

Equation (2-11) is known as the convolution integral. The image of an extended source in
incoherent imaging is given by the convolution of the intensity distribution of the object and
the incoherent PSF. On the other hand, in case of coherent illumination, image formation is
described by the square of convolved field information. For further reading about coherent
and incoherent illumination, see Ref. [15]. For the rest of this thesis incoherent illumination
is assumed.

2-2-1 Anisoplanatic Phase Aberrations

Aberrations cause image deterioration in microscopy, especially in deep tissue microscopy. It
is the three-dimensional nature of biological tissue, where variation in the distribution of the
refractive index causes phase aberrations and therefore image degradation [1, 2]. Equation
(2-9) shows that the PSF depends on the Fourier transform of the phase aberration, φ(x, y),
inside the pupil. The three-dimensional nature of biological tissue causes the aberrations
to differ throughout the field of view (FOV). Therefore, the aberration inside the pupil,
ϕ(x, y|x̄, ȳ), depends on the location of the corresponding point source in the object plane,
o(x̄, ȳ). Aberrations induced outside the pupil plane are referred to as anisoplanatic phase
aberrations.
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2-2 Image of an Extended Object in Fourier Optics 9

Phase Screen Models

Phase screens or phase masks are used to simulate different distortion layers in imaging
systems [13]. A fixed number of two dimensional distortion layers are used to model the
effect that three dimensional tissue has on the phase aberrations in the optical system. Wu
and Cui [13] simulated this three-dimensional effects by using 96 distortion layers and a
Fourier space propagator method to calculate the effect on the wavefront from layer to layer.
Simplification of the model allows calculations of the PSF for every pixel from a single phase
screen. Figure 2-3 shows an experimental setup where a single phase screen is used outside the
pupil plane. A projection method is used to calculate the space-dependent phase aberration,
ϕ(x, y|x̄, ȳ), in the pupil plane.

Phase Aberrations outside the Pupil Plane

Suppose the situation in Figure 2-3. An object is placed at zo = l1 + l2 from the pupil plane.
In between the object plane and the pupil plane, at distance l2 from the pupil plane, a phase
aberration is induced. The magnitude of the phase aberration is depicted schematically by
the black curve in Figure 2-3. In Figure 2-3 can be seen that only a section of the phase
aberration in the phase plane has effect on the wavefronts originating from a specific location
in the object plane. The object corresponding to the blue optical path passes only through
the upper section of the phase plane. It is assumed that the effects of the phase plane can
be projected onto the pupil plane, such that the intersection in the phase plane is present
inside the pupil. The effect of the phase aberration in the pupil plane for a specific point in
the object is given by scaling the intersection between the corresponding optical path and the
phase plane. The intersection is scaled in the x and y direction to fit exactly inside the pupil.
This projection method allows the use of Equation (2-9) to calculate the PSF.
In this thesis the phase screen model with single phase screen and a projection method is
used in simulations in order to create sets of input images with anisoplanatic aberrations.
Appendices A and C contain a set of input images that were used in experiments to test the
performance of some of the algorithms that are covered in this thesis. Since the phase screen is
continuous, the space-dependant phase aberration in the pupil plane is also continuous. This
insights is one of the motivations for the development of the TIP3A algorithm in Chapter 4.
Explicit use of this phase screen model was not used during the development or design of new
algorithms. Explicit use of a phase screen model would require an extra phase retrieval step
in the algorithm. This is a potential direction for future research. More information is given
in Chapter 6 and in the future outlook in Chapter 7.

Spatially Dependent Point Spread Function

Since every point in the object plane has a corresponding phase aberration in the pupil plane,
the PSF for every point can be calculated separately by Equation (2-9). Let the phase screen
be given by φ(x, y) and the projected phase screen in pupil plane is given by ϕ(x, y|x̃, ỹ). The
intensity distribution of for the space-variant (SV) PSF is then

h(x, y|x̃, ỹ) = c(x̃, ỹ)
∣∣∣F{P (x, y)e−iϕ(x,y|x̃,ỹ)}

∣∣∣2 , (2-12)

where c(x̃, ỹ) is proportionality constant such that
∫∫

R2 h(x, y|x̃, ỹ)dxdy = 1.
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10 Image formation and deterioration in Fourier Optics

Phase Plane Pupil Plane

Optical Path 1 Optical Path 2

Phase Aberration 1 Phase Aberration 2

Object Plane

l1 l2

Figure 2-3: A phase aberration induced outside the pupil plane is projected onto the pupil plane.
The space-variant point spread function can be calculated from the projected phase aberration
inside the pupil. For every point in the object the phase aberration in the pupil plane is the
intersection of the phase plane and the optical path corresponding to that point in the object.
This intersection is scaled in the x and y direction to be exactly inside the pupil. This figure
shows the projected phase aberration for two points in the object.
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2-2 Image of an Extended Object in Fourier Optics 11

2-2-2 Anisoplanatic Image Formation

For an incoherent imaging system the image is formed from the contribution of all point
sources in the object. Equation (2-12) shows the contribution of a point source with unit
intensity. Therefore the total contribution of all point sources, or image, can be written as
[18, 19]

i(x, y) =
∫∫

R2
o(x̃, ỹ)h̃(x, y|x̃, ỹ)dx̃dỹ, (2-13)

where h̃(x, y|x̃, ỹ) = h(x− x̃, y− ỹ|x̃, ỹ) are shifted PSFs to match their corresponding object
location. Moreover, an image is generally sampled discretely by an imaging sensor, such as a
CCD. Let in,m ∈ RN×N be a discrete N by N image. Then in,m can be written as

in,m =
N∑
k=1

N∑
l=1

ok,lh̃n,m,k,l, n,m, k, l = 1, 2, ..., N, (2-14)

where ok,l ∈ RN×N and h̃n,m,k,l ∈ RN×N×N×N are the discrete samples of the object and SV
PSF respectively.

Equation (2-14) can be formulated as convolution in four dimensions. An approach where
this 4D convolution is used was researched for this thesis, information about this research can
be found in Appendix D.

Effects of Anisoplanatic Phase Aberrations

The left picture in Figure 2-4 shows a picture of the object that was used in a simulation
to show the effects of SV PSF on image deterioration. This simulation was conducted for
an imaging system with numerical aperture NA = 0.7. The phase screen was placed at
l1 = 0.2zo, according to the notation used in Figure 2-3. Furthermore, the phase screen was
created by addition of the first 40 Zernike polynomials with random coefficients −1 ≤ aN ≤ 1,
and scaled by an amplitude of 90

φ(x, y) = 90
40∑
N=4

aNZN . (2-15)

Piston, tip and tilt are neglected, as they increase translations in the SV PSF. The amplitude
of 90 was chosen to reach sufficient degradation in the obtained images. Figure 2-5 shows the
phase screen that was used for the simulation. In order to compare the effects of anisoplanatic
aberrations outside the pupil plane with isoplanatic aberrations inside the pupil, the same
phase screen was used. However, for the anisoplanatic aberration the phase screen was placed
at l1 = 0.2zo and projected into the pupil plane for every pixel independently, while for the
isoplanatic aberration the projection with respect to the centre of the object was used.

The picture in the right in Figure 2-4 is blurred due to an isoplanatic aberration. It is clear
that the image is blurred. The middle picture is degraded by a SV PSF, i.e., All pixels are
blurred individually. On top of the SV blur, points in the image are translated individually.
This leads to morph of the image. Figure 2-6 shows the PSFs of 49 uniformly placed point
sources. The phase screen as shown in Figure 2-5 was used for this simulation. In Figure 2-6
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12 Image formation and deterioration in Fourier Optics

Figure 2-4: The picture on the left shows the non-degraded object. The middle picture shows
the degraded object due to a phase screen at 0.2zo in front of the object. The phase screen
used during the simulation is depicted in Figure 2-5 and the numerical aperture, NA = 0.7. The
picture on the right shows the degraded object due to the same phase screen. However, for the
middle picture the phase screen was projected onto the pupil plane for every pixel independently,
while for the picture in the right the phase screen was projected onto the pupil plane with respect
to the centre of the object. This was done to compare the effects of anisoplanatic aberrations
with isoplanatic aberrations. The amplitude of the aberration was chosen sufficiently large to
demonstrate the effects of anisoplanatic aberrations.

can be seen that the PSFs are spatially dependent and that they are translated. The red
crosses show the locations of the point sources. Anisoplanatic aberrations cause SV blur and
morph in the obtained image. As a result, every pixel has to be corrected individually to
reach high image quality.
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2-2 Image of an Extended Object in Fourier Optics 13

Figure 2-5: This phase screen was ob-
tained from the summation of the first 40
Zernike polynomials, neglecting piston, tip
and tilt, φ(x, y) = 90

∑40
N=4 aNZN . The

coefficients aN are randomly chosen on the
interval [−1, 1] and the amplitude was cho-
sen to achieve sufficient image deteriora-
tion.

Figure 2-6: 49 point sources are placed
uniformly. The locations of the point
sources is indicated by the red crosses. It
can be seen that the point spread functions
are dependent on their spatial location. All
point spread functions are individually cal-
culated. They are different from shape and
each point spread function is translated
individually. This results in space-variant
blur and morph of the image.
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Chapter 3

Methods in Literature for Correcting
Space Invariant and Space-Variant

Blur

The effects of induced aberrations outside the pupil plane cause deterioration of images by a
space-variant (SV) point spread function (PSF). The first section reviews some widely used
devolution methods for known space invariant PSFs. A method is demonstrated that can
estimate the object for a given set of images for which the PSFs are unknown. The second
section reviews computationally efficient models for SV PSFs. In order to correct for the
SV PSF, these efficient models are combined with isoplanatic, or space invariant, correction
methods.

3-1 Correction Methods

Numerous correction methods have been developed in order to improve image quality. Al-
though, this research aims at computational methods to correct images, physical correction
methods are widely used. In general, adaptive optical systems use a sensor, corrector and
a controller. A pupil plane wavefront sensors, such as the shack-Hartman sensor, is used
to determine the wavefront. A controller calculates the optimal corrector input. A phase
modulator, most often a deformable and reflective surface, is used to correct aberrations in
the wavefront. Other methods use a focal plane sensor and the optimization of a non-convex
metric in order to calculate the optimal input to the corrector [20].

Physical correction methods try to correct for aberrations in the wavefront. In other words,
physical methods optimize the PSF. On the other hand, computational methods work with
the imperfect PSFs and apply inverse filters to perform the correction.
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16 Methods in Literature for Correcting Space Invariant and Space-Variant Blur

3-1-1 Isoplanatic Correction Methods

Equation (2-14) describes the formation of images with anisoplanatic aberration. In practice
there is some model mismatch and measurement noise. A general model for image formation
is given by

in,m =
N∑
k=1

N∑
l=1

ok,lh̃n,m,k,l + en,m, n,m, k, l = 1, 2, ..., N, (3-1)

where en,m contains the noise and model mismatch. This model for image formation takes
the anisoplanatic aberration into account. Often in literature the PSF can be assumed to be
space invariant. Taking only an isoplanatic aberration into account, Equation (3-1) can be
written as a discrete convolution and noise,

in,m =
N∑
k=1

N∑
l=1

ok,lhn−k,m−l + en,m, n,m, k, l = 1, 2, ..., N. (3-2)

The discrete convolution in Equation (3-2) is denoted by in,m = on,m∗hn,m+en,m. An advan-
tage of this isoplanatic model is the applicability of the convolution theorem. In the spatial
frequency domain, the convolution in Equation (3-2) becomes a point-wise multiplication

In,m = On,m ×Hn,m + En,m. (3-3)

where the capital letter describes the two dimensional discrete Fourier transform, In,m =
F{in,m} =

∑N−1
ñ=0

∑N−1
m̃=0 iñ+1,m̃+1e

−j2π(nñN +mm̃
N ). Similar definition holds for the object and

the PSF. Equation (3-3) is referred to as the optical transfer function.

Deconvolution with Known Point Spread Function

A naive approach to deconvolution with a known PSF is to perform point-wise division in the
spatial frequency domain or Fourier domain [12].

ôn,m = F−1
{

In,m
Hn,m + ε

}
, (3-4)

where ε is a small constant to avoid division by zero. F−1 is the inverse two dimensional
discrete Fourier transform given by F−1{in,m} = 1

N2
∑N−1
ñ=0

∑N−1
m̃=0 iñ+1,m̃+1e

j2π(nñN +mm̃
N ). This

approach can be seen as a solution to the least-squares optimization problem,

ôn,m = arg min
on,m
||in,m − on,m ∗ hn,m||2F , (3-5)

where || · ||F denotes the Frobenius norm. Unfortunately, naive inverse filtering amplifies the
measurement noise. Figure 3-1 shows the results of a simulation wherein some deconvolution
methods are compared. Figure 3-1 (a) shows the object that was used during the simulation.
In the top right corner of Figure 3-1 (a) the PSF is shown. Convolution of the object and
the PSF, results in the image that is shown in Figure 3-1 (b). Besides convolution with a
blurring kernel, white Gaussian noise with standard deviation, σ = 10−2, was added to the
image. A point in the image is a number between 0 and 1. This image is deconvolved with
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Figure 3-1: The (a) Object and PSF were convolved and white Gaussian noise with standard
deviation, σ = 10−2, was added, resulting in the (b) degraded Image. various deconvolution
methods were used to deconvolve the Image with the known PSF. The following methods were
used: (c) naive inverse filter, (d) modified naive inverse filter, (e) modified Wiener filter, (f)
Richardson-Lucy algorithm. Table 3-1 shows a quantitative comparison between the methods.

the known PSF by four different algorithms. Figure 3-1 (c) is the result of deconvolution by
naive inverse filtering (3-4) with ε = 0.005.
When a small number, |Hn,m| < ε, occurs, it will result in a large number in the object’s
spatial frequency due to the division. However, a zero in Hn,m or On,m should result in a zero
in the image Im,n. Replacing all elements in Hn,m smaller than ε by a very large number, will
avoid noise amplification. This modified naive inverse filter can be denoted by

ôn,m = F−1
{

In,m
Hn,m(|Hn,m| < ε) =∞

}
, (3-6)

where the notation in the denominator describes that point wise division by a complex number,
in absolute value smaller than ε, is replaced by division by infinity. Figure 3-1 (d) shows
the result of deconvolution with known PSF by modified naive inverse filtering (3-6) with
ε = 0.067. The choice of ε is noted in Table 3-1.
Helstrom [21] has shown that an optimum solution in the least-squares sense (3-5) is a Wiener
filter of the form

ôn,m = F−1
{

(Hn,m)∗In,m
|Hn,m|2 + 1

SNR

}
, (3-7)

where H∗n,m denotes the complex conjugate of Hn,m and SNR is the signal-to-noise ratio. In
case the signal-to-noise ratio is unknown a modified Wiener filter [22] (cited in [18]) can be
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18 Methods in Literature for Correcting Space Invariant and Space-Variant Blur

used.

ôn,m = F−1
{

(Hn,m)∗In,m
|Hn,m|2 + ε

}
, (3-8)

Figure 3-1 (e) shows the result after deconvolution by the modified Wiener filter with ε =
0.008.

Finally, deconvolution by the Richardson-Lucy method will result in Figure 3-1 (f). The
Richardson-Lucy algorithm assumes noise following a Poisson distribution. The result is an
iterative algorithm that has an optimal number of iterations. This optimum should be set
heuristically [12]. A threshold to avoid devising by zero was included, ε = 0.072, and the
number of iterations was chosen at 63.

ô(k+1)
n,m = ô(k)

n,m × hTn,m ∗
in,m

max{ô(k+1)
n,m ∗ hn,m, ε}

, (3-9)

where max{·}, multiplication and division are point-wise. Beside methods that solve the
deconvolution problem in the least-squares sense (3-5), there are methods that solve a cost
function with additional regularization term, J(o) = ||in,m−on,m∗hn,m||2 +λoQ(o), or similar
cost function in the Fourier domain. ||·|| can denote any matrix norm, most often the Fobenius
norm. Methods derived from these cost functions are not shown here. For readers interested
in deconvolution with a known PSF, Ref. [12] is recommended.

Table 3-1 shows a quantitative comparison between the deconvolution methods introduced in
this section: naive inverse filter, modified naive inverse filter, modified wiener filter and the
Richardson-Lucy algorithm. The results in Table 3-1 are obtained from the same experiment
as in Figure 3-1. The performance metric that is used is the peak signal-to-noise ratio (PSNR),

PSNR = −10 log10

(
||o− ô||2F /N2

)
, (3-10)

where o, ô and N2 are the object, estimated object and number of pixel respectively. The
PSNR is measured in decibels (dB). Since Gaussian noise was used during the experiment, it
was expected that the modified Wiener filter performed the best. Within 0.8% difference in
performance, the modified naive inverse filter performed second best. The Richardson-Lucy
method assumes Poisson noise while Gaussian noise was used during the experiment. For this
reason it was expected that the Richardson-Lucy method performs worse than the modified
Wiener filter. Lastly, the naive inverse filter has negative performance. The naive inverse
filter is known to amplify noise.

Deconvolution with Unknown Point Spread Function

In microscopy of biological samples the aberrations and PSF could be unknown. In blind
deconvolution, both the object and the PSF are estimated. There are two main classes
of blind deconvolution methods. In the first class of methods the PSF is identified prior
to the deconvolution step. Cannon [23] shows that the log power spectrum of the image,
Pi(x, y) = F{log φb(x, y)}, contains sufficient information for PSF identification. However,
methods of this kind work only to identify simple PSFs [24]. The second and larger class
of blind deconvolution methods, contains methods that jointly identify object and PSF. The
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Table 3-1: A quantitative comparison between deconvolution methods with known point spread
function. The compared deconvolution methods are: naive inverse filter (NIF), modified naive
inverse filter (MNIF), modified Wiener filter (MWF) and Richardson-Lucy method (RL). For
NIF, ε = 0.05 is chosen to be relatively low, as suggested in [12]. The parameter ε for the
methods MNIF, MWF and RL chosen op optimize the resulting peak signal-to-noise ratio (PSNR).
PSNR = −10 log10

(
||o− ô||2F /N2), where o, ô and N2 are the object, estimated object and

number of pixel respectively. Since the NIF method is known to amplify noise, it is expected to
perform the least. MNIF and MWF perform the best. These methods outperform the RL method
in this experiment, because Gaussian noise was used. The RL methods performs the best when
Poisson noise is used [12]. Performance is measured in terms of PSNR. A visual comparison is
shown in Figure 3-1.

Algorithm NIF MNIF MWF RL
ε 0.005 0.067 0.008 0.072

PSNR(dB) −1.16 25.5 25.7 23.8

majority of this class uses an alternating approach. Methods from the second class rely on
prior knowledge about the object and PSF [25].

In general these alternating methods that estimate both the object and the PSF can be
formulated as regularized least-squares optimization problem [24, 3],

{ĥn,m, ôn,m} = arg min
h,o
||in,m − on,m ∗ hn,m||2 + λoQ(o) + λhR(h), (3-11)

or a similar cost function in the Fourier domain. For readers interested in methods in this
class (3-11), see Ref. [24]. The rest of this chapter demonstrates methods that belong to a
subsection of this class. Consider the following least-squares optimization problem.

{Ĥn,m, Ôn,m} = arg min
H,O
||In,m −On,m ∗Hn,m||2F . (3-12)

This problem is a classic ill-posed inverse problem [3], there are infinite solution to the opti-
mization problem. The infinite set of solutions to this problem contains also trivial solutions
such as, on,m = in,m and hn,m = δn−ñ,m−m̃, where δn−ñ,m−m̃ is the discrete Delta function,
that is 0 everywhere, but 1 at n = ñ, m = m̃. Convergence of the methods towards the real
solution relies on prior knowledge about the object and PSF.

The pioneering work of Gerchberg and Saxton [26] in 1972 demonstrated the use of an al-
ternating projection framework to solve inverse problems. In 1988, Ayers and Dainty [27]
applied this alternating projection framework to the deconvolution problem. The algorithm
proposed by Ayers and Dainty consists of eight steps that result in an iterative loop. The
loop is initialized by a non-negative initial estimate, h̄(0)

n,m. The kth iteration has the following
steps:
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• Step 1: H̄(k)
n,m = F{h̄(k)

n,m}.

• Step 2: O(k)
n,m is calculated by deconvolution of in,m with known function h̄(k)

n,m in the
Fourier domain. This deconvolution method will be defined in the next paragraph.

• Step 3: o(k)
n,m = F−1{O(k)

n,m}.

• Step 4: Non-negativity constraint in the image domain is imposed by setting negative
values of o(k)

n,m to zero. ō(k)
n,m > 0.

• Step 5: Ō(k)
n,m = F{ō(k)

n,m}.

• Step 6: H(k+1)
n,m is calculated by deconvolution of in,m with known function ō(k)

n,m in the
Fourier domain. This deconvolution method will be defined in the next paragraph.

• Step 7: h(k+1)
n,m = F−1{H(k+1)

n,m }.

• Step 8: Non-negativity constraint in the image domain is imposed by setting negative
values of h(k+1)

n,m to zero. h̄(k+1)
n,m > 0. Go back to step 1.

The deconvolution steps 2 and 6 are conducted by an inverse filter. The following inverse
filter shows the filter that is used in step 2. The filter in step 6 can be found by inverting the
roles of H(k)

n,m and O(k)
n,m.

• if |In,m| < noise level,
O(k+1)
n,m = Ō(k)

n,m, (3-13a)

• if |H̄(k)
n,m| ≥ |In,m|,

O(k+1)
n,m = (1− β)Ō(k)

n,m + β
In,m

H̄
(k)
n,m

, (3-13b)

• if |H̄(k)
n,m| < |In,m|,

1
O

(k+1)
n,m

= (1− β)
Ō

(k)
n,m

+ β
H̄

(k)
n,m

In,m
, (3-13c)

where 0 ≤ β ≤ 1. The constant β is set initially. This inverse filter was proposed in [27] to
deal with values close or equal to zero in spectra of the object or PSF.

Blind Multi-Frame Deconvolution

Other blind deconvolution methods use more than one image to reconstruct the object and
PSF. Such methods are referred to as blind multi-frame deconvolution (BMFD) or blind
multi-channel deconvolution. In BMFD a set of S images {im,n|s}, with S corresponding
unknown PSFs {hn,m|s}, are deconvolved. All images are obtained from the same object,

in,m|s =
N∑
k=1

N∑
l=1

ok,lhn−k,m−l|s + en,m, (3-14)
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where n,m, k, l = 1, 2, ..., N and s = 1, 2, .., S.

Different images from the same object can be obtained if the aberration is time-variant. This
is often the case in in vivo microscopy [2]. Schulz [28] demonstrated in 1993 a practical
implementation of an algorithm that uses more than one image. A year later, Yaroslavsky et
al. [29] showed that a Wiener filter,

ôn,m = F−1
{∑S

s=1(Hn,m|s)∗In,m|s∑S
s=1 |Hn,m|s|2

}
, (3-15)

can be used to estimate the object from more than one image. In 2017, Wilding et al. [3]
demonstrates a fast and robust algorithm that uses iterative projections of the object and PSF
into their corresponding feasible set. Those constrained sets are non-negative and normalized.
Furthermore, the feasible set of PSFs is constrained by a finite support constraint. The method
in [3], called tangential iterative projections (TIP), consists of four projection steps:

• Step 1: Object ō(k)
n,m is calculated by multi-frame linear deconvolution, Equation (3-15).

• Step 2: Object spectrum O
(k)
n,m is obtained by applying the image domain constraints;

o
(k)
n,m = 0 if o(k)

n,m < 0 and
∑
o(k) = 1. Followed by taking the Fourier transform.

• Step 3: PSFs h̄(k+1)
n,m|s are calculated by the modified naive inverse filter, Equation (3-6).

• Step 4: PSF spectra H(k+1)
n,m|s are obtained by applying the image domain constraints;

h
(k+1)
n,m|s = 0 if h(k+1)

n,m|s < 0, h(k+1)
n,m|s = 0 if (n,m) 6∈ X and

∑
h

(k+1)
s = 1. Followed by taking

the Fourier transform.

Where X denotes the finite support constraint for the PSFs. Any PSF is limited by this
constraint, hn,m|s ∈ {h|hn,m = 0, (n,m) 6∈ X}. This support constraints the size on the PSFs.

A simulation of Blind Multi-Frame Deconvolution

Two experiments were conducted wherein TIP was used to deconvolve images with space
invariant blur and images with space-variant blur separately. The images were made in a
simulation with a phase screen. This phase screen was place outside the pupil plane at
l1 = 0.4zo, see Figure 2-3. The phase screen was created by the addition of the first 40
Zernike polynomials with random coefficients between −1 and 1. The obtained phase screen
was multiplied by an amplitude of 40 to reach sufficiently large aberrations. The numerical
aperture, NA, during the experiment was 0.7. The images that were blurred with a space
invariant PSF are formed by convolution of the object, the first sub-figure in Figure 3-2, with
PSF that corresponds to the projected phase aberration onto the pupil plane with respect to
the centre of the object, see Figure 2-3. The PSF for each deteriorated image is shown in the
top right corner of the sub-figures in Figure 3-2. The images that were deteriorated with SV
PSF are shown in Figure 3-3, again the object in shown in the first sub-figure. Every pixel is
a number between 0 and 1. White Gaussian noise, with standard deviation, σ = 10−3, was
used during the simulations. TIP with a finite support, a circle with radius 15, was run for

Master of Science Thesis W. van de Ketterij



22 Methods in Literature for Correcting Space Invariant and Space-Variant Blur

Figure 3-2: The object in the first sub-figure is deteriorated by different point spread function and
with the addition of white Gaussian noise with standard deviation, σ = 10−3. This deterioration
is performed by convolution. Convolution can be calculated efficiently in the frequency domain.
The resulting images are shown in the other sub-figures. The top right corner of the blurred
images shows the corresponding point spread function.
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Figure 3-3: The object in the first sub-figure is deteriorated by different space-variant point
spread functions and with the addition of white Gaussian noise with standard deviation, σ = 10−3.
Space-variant point spread functions are calculated in a simulation with a single phase screen in
between the object plane and the pupil plane. Figure 2-3 shows how a phase screen models the
induced phase aberration outside the pupil plane and how the aberration is projected onto the
pupil plane. This allows the calculation of a point spread function that depends on the location
of a point in the object. These space-variant point spread functions are used to deteriorate the
object. The resulting images are shown in the other sub-figures.
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Figure 3-4: The tangential iterative pro-
jections (TIP) algorithm was used to esti-
mate the object from 5 isoplanatically dete-
riorated images with additional white Gaus-
sian noise with σ = 10−3. These images
are shown in Figure 3-2. The finite support
constraint for the point spread function was
set to a radius of 15 pixels. The TIP al-
gorithm ran for 30 iterations and a visual
comparison shows that TIP succeeded in
estimating the object.

Figure 3-5: The tangential iterative pro-
jections (TIP) algorithm was used to es-
timate the object from 5 anisoplanatically
deteriorated images with additional white
Gaussian noise with σ = 10−3. These
images are shown in Figure 3-2. The fi-
nite support constraint for the point spread
function was set to a radius of 15 pixels.
The TIP algorithm ran for 30 iterations and
a visual comparison shows that TIP fails in
estimating the object.
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30 iterations. The obtained estimated object for the set of images with space invariant PSF
is shown in Figure 3-4 and the estimated object for the set that was deteriorated images with
SV PSF is shown in Figure 3-5. Figure 3-4 shows from visual comparison that TIP is able
to estimate the object that was deteriorated by a space invariant PSF and Figure 3-5 shows
that TIP cannot handle SV PSFs properly. As expected the spatial variations in the PSF
cannot be corrected by a space invariant PSF.

3-1-2 Anisoplanatic Correction Methods

An anisoplanatic image formation model, as in equation (3-1), where a SV PSF is calculated
for every individual pixel cannot be efficiently implemented, especially in iterative algorithms
[30, 7, 31]. Computationally efficient methods are summarized in [6]. Trussel and Hunt [32]
proposed a method, where the image is divided into isoplanatic subsections. This method
was later used by Costello and Mikhael [18] in combination with modified Wiener filtering,
Equation (3-8), in order to correct the anisoplanatic aberration. The advantage of dividing
the image into isoplanatic subsections is the ability to perform efficient deconvolution via the
Fourier transform. A disadvantage of such methods is the occurring of boundary artifacts [6].

Alternative models for Space-Variant Point Spread Functions

Division of an image into subsections can be performed by multiplication of the image with
a mask that is one inside the subsection and zero outside. This approach leads to boundary
artifacts [6]. In stead of multiplication with a mask that is constant inside a subsection,
the weights of those masks can be chosen differently. Nagy and O’leary [5] use a bi-linear
interpolation mask for the image. Hirsch et al. [7] apply the bi-linear mask to interpolate a
limited number of PSFs to model a SV PSF. Flicker and Rigaut [8] perform decomposition of
PSF modes. Denis et al. [6] calculate optimal local weights for the mask and locally optimal
PSFs.

Image Interpolation

The method in [5] uses bi-linear interpolation masks to interpolate the local results. The object
is convolved with a local space invariant PSF. Thereafter, the local results are interpolated
via multiplication with interpolation masks. Figure 3-6 summarizes this method. The masks
weights are chosen to performs bi-linear interpolation, therefore the mask is positive and the
positivity constraint on the PSF is conserved.

Point Spread Function interpolation

Another approach is to first apply the interpolation mask on the object and then perform
convolution with space invariant PSF. Denis et al. [6] shows that this approach is similar to
the model in [7]. Denis et al. conclude that this method preserves positivity and normalization
of the PSF. Figure 3-7 shows a schematic representation of this method. According to Denis
et al. [6] this method is the most natural model. More importantly, according to their
experiments and between the methods they considered, PSF interpolation as in [7, 31] is
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Figure 3-6: The approach of Nagy and O’Leary [5] approximates the space-variant point spread
function by interpolating the images that are a result of convolution of the object and the local
space invariant point spread function. Bi-linear interpolation is performed by multiplication with
a mask that has the correct interpolation weight. (Source: [6])

Figure 3-7: The approach of Hirsch et al. [7] approximates the space-variant point spread
function by multiplication with bi-linear interpolation masks. First the object is multiplied by
a mask that performs bi-linear interpolation of the point spread functions. Then the result is
convolved with a local space invariant point spread function. (Source: [6])

the second best approximation model, after their optimal local approximation method. The
advantage of this method over the optimal local approximation method is that only four
interpolation masks have to be created. These predetermined interpolation masks have to
be calculated only once. This is a huge advantage in terms of computational load, especially
when this method is applied in an iterative loop to perform blind multi-frame deconvolution.

Optimal Local Approximation

Denis et al. [6] proposed a method similar to the method in [7]. In [7] bi-linear interpolation
masks are used to interpolate the PSFs in order to approximate the SV PSF. In [6] the local
PSFs and interpolation weights are chosen to minimize the approximation error. This method
can be represented by the schematic drawing in figure Figure 3-8.

Point Spread Function Decomposition Methods

Besides the methods that use a locally nonzero mask to handle with subsection individually,
there is a group of methods that uses a limited number of space invariant PSFs and global
masks that weights the influence of the space invariant PSFs to model the SV PSF. Figure
3-9 shows a schematic representation for the group of methods that use global masks and a
set of space invariant PSFs to approximate the SV PSF. Flicker and Rigaut [8] approximate
the SV PSF by decomposition into space invariant modes. before convolution the image is
weighed for every space invariant PSF by a global mask. Miraut and Portilla [9] and later
Sroubek et al. [10] decompose the the SV PSF into space invariant modes by means of the
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Figure 3-8: The approach of Denis et al. [7] approximates the space-variant point spread function
by multiplication with optimal interpolation masks. First the object is multiplied by a mask that
performs bi-linear interpolation of the point spread functions. Then the result is convolved with
a local optimal space invariant point spread function. (Source: [6])

Figure 3-9: The methods used in [8, 9, 10] use a limited number of space invariant point
spread functions and a set of global masks to weight the image according to the influence of
each space invariant point spread function. These decomposition methods are approximating the
space-variant point spread function. (Source: [6])

singular value decomposition. An advantage of decomposition of the SV PSF by the singular
value decomposition is that it is globally optimal with respect the the approximation error
[6]. On the other hand, according to Denis et al. [6], the use of global methods comes with
large computational load.

Blind Anisoplanatic Correction

In order to correct a deteriorated image without knowing the aberration of SV PSF, blind
correction methods are required. An anisoplanatic correction method that is blind, estimates
both the object and the aberration or SV PSF. Most blind anisoplanatic correction methods
[32, 33, 34] use the assumption that the image can be divided into isoplanatic subsections.
For every subsection the corresponding object is estimated by conventional blind isoplanatic
deconvolution.

Hirsch et al. [7] demonstrates a framework to perform blind anisoplanatic correction. In their
framework they assume an image formation model as presented in Figure 3-7. First the object
is divided in subsections by multiplication with local nonzero masks. These masks are chosen
to perform interpolation of the local PSFs. The condition for these masks, is that they add up
to 1. This property is always satisfied after normalization. After multiplication with a mask,
the weighted object is convolved with a local space invariant PSF. All subsections are added
to form the image. The object and local space invariant PSFs are estimated alternately. In
the experiment conducted by Hirsch et al., they used 100 images to perform the correction.
First the local space invariant PSFs are estimated by parameterizing the PSF and using
constrained optimization. Then the estimated object is updated by deconvolution with a
local space invariant point spread function. These two steps form an iterative loop. In every
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iteration a new image is used to calculate the corresponding local PSFs and to update the
estimated object.
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Chapter 4

A New Computational Approach to
Correct Space-Variant Phase

Aberrations

The methods and theory known in literature regarding to the correction of deteriorated images
motivated the development of a new algorithm. The work of Denis et al. [6] suggests the use
of a computational efficient image formation model where local deconvolution can be applied.
Wilding et al. [3] demonstrated blind multi-frame deconvolution by means of tangential
iterative projections (TIP). This first part of this chapter provides a motivation for the
use of both methods in one algorithm in order to correct for anisoplanatic aberrations in
microscopic images. The second part demonstrates the use and limitation of the algorithm.
Further improvements to the algorithm are discussed in Chapter 6.

4-1 Efficient Restoration by Local Deconvolution

A general approach to model image formation is given by Equation (3-1), where is assumed
that a point on the object, ok,l, will spread out in the image by a space-variant (SV) point
spread function (PSF), h̃n,m,k,l. Without any assumptions on the SV PSF a correction method
must be developed to correct for all pixels in the image individually. As suggested by Trussel
and Hunt [32] and Nagy and O’leary [5], image formation can be modelled in a computational
efficient way. It is assumed that images are locally the result of convolution. This assumption
is supported by Equation (2-12). Assuming that the SV PSF is changing continuously and
assuming small changes in the PSF on an ε-neighbourhood, image formation is locally the
result of convolution of the object with a local space invariant PSF and the addition of noise.

ik,l = ok,l ∗ hk,l + ek,l, ik,l ∈ Vε (4-1)

where Vε is the ε-neighbourhood around a point p, where hk,l is the exact local PSF. Assuming
the imaging model Equation (3-1), Equation (4-1) is true for any ε, since all errors are
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contained in ek,l.
ek,l = i∗k,l − ik,l = i∗k,l − ok,l ∗ hk,l, (4-2)

where i∗k,l is the true image. Considering continuous changes in the PSF it follows that the
error becomes smaller for smaller values for ε.

4-1-1 Local Deconvolution by Tangential Iterative Projections

As convolution between an object and PSF can be used to describe the formation of an
image locally, local deconvolution can be used to correct for anisoplanatic aberrations in the
image. In blind anisoplanatic deconvolution the SV PSF is unknown. Therefore, the size of
the error is unknown. For this reason a robust blind deconvolution algorithm is applied to
perform this local blind deconvolution. TIP is a robust algorithm to perform blind multi-
frame deconvolution. Another advantage of TIP is the use of multiple images. Wilding et al.
[3] describe that more images should be used, because some frequency content in the object
might not be captured by the camera in a single image.

Interpolation of Local Results

A known disadvantage of local deconvolution is the formation of edge artifacts near the edges
of the corrected region in the image. This effect is demonstrated in [6]. The work of Denis et
al. [6], Hirsch et al. [7] and Nagy and O’leary [5] motivate the use of interpolation. In their
works, interpolation is used to model image formation by local convolution between object
and PSF. Here bi-linear interpolation masks will be applied to combine local deconvolution
results in order to reduce edge artifacts.

4-1-2 Tangential Iterative Projections Algorithm for Anisoplanatic Aberrations

The new method to correct for anisoplanatic aberrations in microscopic images requires mul-
tiple images of the same object. These images will be divided in overlapping subsections
such that interpolation can be applied after deconvolution. Let IS be the set containing S
images, {i1, i2, · · · , iS}, and let ip,q|s denote subsection p, q of image is. Figure 4-1 shows an
image that is divided in subsections. The subsection ip,q is shaded in red. Every subsection
in Figure 4-1 has four quadrants. Subsections ip,q and ip,q+1 have two overlapping quadrants.
On every subsection, image formation by local convolution of the object and local PSF is
assumed. The local PSF for subsection ip,q in image s is denoted by hp,q|s.

Similar to the TIP algorithm, tangential iterative projections algorithm for anisoplanatic
aberrations (TIP3A) has 4 main steps, or projections. In the first step the object is estimated
by multi-frame linear deconvolution. In TIP3A, multi-frame linear deconvolution is used to
estimate the object within all subsections, thereafter bi-linear interpolation is used to combine
all local results. The second step projects the object on the feasible set of all possible objects.
In the third step all local PSFs are estimated by single-frame linear deconvolution. Isolation of
the corresponding subsection in this step is performed by multiplication with an apodization
kernel. The fourth and last step is the projection of the estimated local PSF on the feasible
set of all possible PSFs.
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Figure 4-1: The deteriorated image is divided in M by N overlapping subsections. subsection
ip,q is highlighted in red. Every subsection has four quadrants. The next subsection to the right,
ip,q+1, has two overlapping quadrants with subsection ip,q.

Object Step in Fourier Domain

The algorithm is initialized by assuming that all local PSFs are delta functions, hp,q|s =
δ[m,n]. As a result, the first estimated object is pixel-wise average of all images. During the
kth iteration, multi-frame linear deconvolution is used to estimate the object subsection

ō(k)
p,q = F−1


∑S
s=1

(
H

(k)
p,q|s

)∗
Is∑S

s=1 |H
(k)
p,q|s|2

 , (4-3)

where capital letters are used to denote the two dimensional Fourier transform and H∗ is
the complex conjugate of H. As the subsections are overlapping, weights are applied to
every object subsection. Every object subsection is multiplied element-wise by a weight or
mask, Wp,q. The weights are chosen such that

∑M
p=1

∑N
q=1Wp,q is one for every pixel. Here,

the weights are congruent to a bi-linear interpolation mask, as in [7]. Figure 4-2 shows the
weight of a bi-linear interpolation mask. After multiplication of the object subsection with
the corresponding weight, the weighted object subsection is formed, Figure 4-3. Summation
of these weighted object subsection creates the estimated object

ō(k) =
M∑
p=1

N∑
q=1

ō(k)
p,qWp,q. (4-4)
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32 A New Computational Approach to Correct Space-Variant Phase Aberrations

Figure 4-2: The bi-linear interpolation
masks is used to create one object from all
overlapping subsections. Every subsection
is multiplied with a corresponding mask.
The sum of these masks is one uniformly.
The weight of these masks represents the
contribution to a point as in bi-linear inter-
polation.

Figure 4-3: The weighted object subsec-
tion is the object multiplied with the inter-
polation mask, Figure 4-2. The estimated
object is the sum of all weighted object sub-
sections.

Object Step in Spatial Domain

This step is similar to the second projection step in TIP. The object is project on the feasible
set of all possible object. This is done by applying the following object constraints. The
intensity of the estimated object must be positive

o(k) = 0, if ō(k) < 0 (4-5)

and the object is normalized ∑
o(k) = 1. (4-6)

The object spectrum is given by the Fourier transform of the object

O(k) = F
{
o(k)

}
. (4-7)

PSF Step in Fourier Domain

The local PSF can be estimated by local single-frame linear deconvolution. The object can
be deconvolved with the image locally by isolating the correct part in the object. A Gaus-
sian apodization kernel is used to isolate the corresponding part of the object. Apodization
also reduces edge effects, such as ringing and ghosts [12]. Apodization around point pi,j is
performed by multiplying the object with kernel

K[m,n] = e−
(m−i)2+(n−j)2

w , (4-8)
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where w is the width parameter of the Gaussian apodization kernel. Let Kp,q denote the
apodization kernel corresponding to object subsection, op,q, and local PSF, hp,q|s. Then the
estimated local PSF is give by linear single-frame deconvolution of the apodized object and
image.

h̄
(k+1)
p,q|s = F−1

 Is

O
(k)
Kp,q

(|O(k)
Kp,q
| < ε) =∞

 , (4-9)

where O(k)
Kp,q

= F{o(k)Kp,q}.

PSF Step in the Spatial Domain

The final step ensures that the properties of a PSF are satisfied. The estimated PSF, h̄(k+1)
p,q|s , is

projected on the feasible set of possible PSFs. Similar to TIP, Let X denote the limited support
constraint for the PSFs. The set of all possible PSFs, H = {h|hp,q|s[i, j] = 0, [i, h] 6∈ X}, is
limited to the size of the support constraint. Furthermore, the PSF is an intensity distribution
that contains only non-negative real values and is normalized.

h
(k+1)
p,q|s = 0, if h̄

(k+1)
p,q|s < 0 (4-10)

and ∑
h

(k+1)
p,q|s = 1. (4-11)

As a result any PSF, h, can be written as the sum of two components. The tangential
component of h, denoted as h‖, is contained in H. The normal component h⊥ are the pixels
of the PSF that are not contained in H.

h = h‖ + h⊥, h‖ ∈ H, h⊥ = 0. (4-12)

Finally, the PSF sectrum is given by the Fourier transform of the estimated PSF

H
(k+1)
p,q|s = F

{
h

(k+1)
p,q|s

}
. (4-13)

In TIP3A, these four steps are repeated consecutively.

4-2 Experiments with TIP3A

TIP3A is an algorithm that can handle spatial and temporal variations in the PSF. Since
local deconvolution of aberrated images is used, it can be expected that the total number
of subsection has an influence on the image quality of the estimated object. Furthermore,
the algorithm parameters such as the threshold of division, ε, the apodization width, w, the
radius of the limited support constraint, rX, and the number of iterations can influence in the
quality of the estimated object. Besides the algorithm parameters, external parameters such
as variations in the PSF and noise are affecting the outcome of the algorithm. The purpose
of the section is to tune the algorithm parameters and demonstrate some limitations of the
algorithms. Chapter 5 will elaborate different image quality metrics such that quantitative
results and empirical convergence can be shown. Further fine-tuning of the algorithm can be
done after an adequate image quality metric is selected.
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34 A New Computational Approach to Correct Space-Variant Phase Aberrations

4-2-1 Obtaining Test Images From Simulations

Simulations with a single phase screen were performed to obtain sets of images with anisopla-
natic aberrations. The projection method as shown in Figure 2-3 was used to calculate the
SV phase aberration. This method allows the calculation of every individual PSF for every
point in the object.

Defining the System Geometry

The imaging system geometry is demonstrated in Figure 2-3. A phase plane is placed at
distance l1 to the right of the object plane. The pupil plane is at distance l2 tot he right of
the phase plane. Therefore, the object distance zo = l1 + l2. A thin lens is with numerical
aperture, NA, is located in the pupil.

Creating the Phase Screen

A phase screen, φ, is placed in the phase plane. This phase screen is the sum of NZ Zernike
polynomials with maximum amplitude AZ

φ = AZ

NZ∑
N=1

aNZN , (4-14)

where −1 < aN < 1 is a random number.

Creating an Image

The object in Figure 4-4 was placed in the object plane. The PSF for every pixel can be
calculated by the projection method in Figure 2-3. By geometry, the optical path from a
point in the object to the pupil has an intersection plane in the phase plane. This intersection
plane is unique for that point in the object. The phase aberration in the intersection plane
is scaled in the x and y direction to fit exactly inside the pupil. As a result Equation (2-12)
can be used to calculate the PSF. Equation (2-14) can be used to form the noiseless image
with anisoplanatic aberrations.

The Addition of Noise

Noiseless sets of images were saved such that noise with different amplitudes could be added
to the images later. In the noiseless images every pixel is a value between 0 and 1. White
Gaussian noise with a standard deviation, σ, was later added to the images.

4-2-2 Comparison with Varying Number of Subsections

In this section 256 by 256 images are used. The imaging system’s geometry is given by l1 = 2,
l2 = 3, NA = 0.7. The Phase screens are given by AZ = 40 and NZ = 40. The set consists
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Figure 4-4: Ground truth or scientific object.

of 10 images for 10 random realizations of the phase screens. The set of anisoplanatic images
is shown in Appendix A. Besides the set of images with anisoplanatic aberrations, there is a
set of images with isoplanatic aberrations. This set of formed by convolution of the object
and the central local PSF of the anisoplanatic images. The performance of the TIP3A is
compared visually to the performance of TIP. This is done by comparing visual details in the
images. The noise in the images is white Gaussian noise with standard deviation σ = 10−5.

The ground truth or scientific object used during the simulations is given in Figure 4-4.

Algorithm Comparison with Isoplanatic Aberrations

The TIP algorithm is designed to correct isoplanatic aberrations. TIP3A with 1 subsection
and a large apodization width is equivalent to the TIP algorithm. In order to show the relation
between TIP and TIP3A, the TIP algorithm is compared to TIP3A with apodization width,
w = 2000, limited support radius, rX = 6, threshold, ε = 10−4.4, and varying number of
subsections. These algorithm parameters were found by tuning the algorithm first. Variation
should only be possible due to variations in the local frequency content of the images. If
an image is locally flat, then after apodization the input signal is not persistently exciting
for identification of the local PSF. Therefore, only for sufficiently large apodization it is
hypothesized that for isoplanatically deteriorated images TIP and TIP3A will produce similar
results regardless of the number of subsections in TIP3A.

An experiment was conducted where 10 images with isoplanatic aberrations were the input for
the TIP algorithms and for TIP3A with M by N subsections. This algorithm was repeated
for M = N equal to 1, 3, 7 and 15. This corresponds to a total number of 1, 9, 49 and 225
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36 A New Computational Approach to Correct Space-Variant Phase Aberrations

subsections respectively. The estimated object after 1, 5, 10, 15, 20 and 25 iterations of the
algorithm are depicted in Appendix B.

Visual comparison of the Figures B-1 - B-5 in Appendix B show that input images with
isoplanatic aberrations will lead to similar output for TIP and TIP3A.

Algorithm Comparison with Anisoplanatic Aberrations

TIP3A differentiates from TIP when the input images contain anisoplanatic aberrations. If
anisoplanatic aberrations occur, the PSF is space variant. If the PSF is space variant, it is
favorable to use a small apodization, such that a constant local PSF can be assumed. On the
other hand, if the apodization is too small, the input signal might not be persistently exciting
for PSF identification. Apodization and location influence the persistence of excitation of
the input signal. Therefore, the maximum performance of the algorithm is always a trade-off
between the number of subsection, M,N , apodization width, w, and limited support radius
rX.

A similar experiment was conducted with 10 images that were deteriorated with anisopla-
natic aberrations. The images were used as input for TIP and TIP3A with 1, 9, 49 and 225
subsections. The results are presented in Appendix B.

Visual comparison of the Figures B-6 - B-10 in Appendix B show that the performance of
the TIP3A algorithm is clearly dependent on the number of subsections. Close inspections of
visual details, such as the edge of the hat, the straw hair, the plant in the background or the
puppet’s collar, show that the restoration quality becomes higher as the number of subsection
increases from 1 to 9 to 49. However, the restoration quality of the estimated object is lower
for 225 subsections than for 49 subsections.

4-2-3 Limitations of the Algorithm

Large variations in the SV PSF form a limitation of this computationally efficient algorithm.
If the variations in the SV PSF increase, the error in Equation (4-2) becomes larger. Conse-
quently, the image quality of the estimated object goes down. TIP3A is an algorithm that
can handle anisoplanatic aberrations, but it relies on isoplanatic regions throughout the im-
ages. An other limitation of the algorithm is formed by the limited support constraint. This
constraint is necessary for the convergence of the algorithm. However, if the limited sup-
port radius is chosen too small, the estimated PSF will be smaller than the true PSF. If the
estimated PSF is too small, deconvolution is performed with only a part of the true PSF.
This will leave fragments in the estimated object that were visible in the deteriorated images.
These residuals are unwanted.

In this chapter is shown that TIP3A can handle anisoplanatic aberrations or SV PSFs. TIP3A
is used in Chapter 5 to compare different image quality metrics. The image quality of the
estimated object can be measured by different metric. In Chapter 5 a metric is selected that
will be used throughout the thesis. In Chapter 6, an algorithm will be designed that overcomes
the limitations of TIP3A. The chosen metric will be used to show that this improved algorithm
performs better than TIP3A.
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Chapter 5

Measuring the Image Quality of the
Estimated Object

A new computational method that can reconstruct images with anisoplanatic phase aber-
rations is demonstrated in Chapter 4. From visual inspection can be concluded that the
tangential iterative projections algorithm for anisoplanatic aberrations (TIP3A) algorithm
can handle anisoplanatic aberrations, while tangential iterative projections (TIP) [3] can only
correct for isoplanatic aberrations. The performance of TIP3A can be compared to other
algorithms if an adequate quality measure is used. In this chapter, different quality metrics
will be compared. The aim of this chapter is to select a metric that can be used to compare
the performance of image reconstruction algorithms.

5-1 Method

The selection of an adequate measurement for image quality is done in three main steps. The
first step is a discussion of metrics commonly used in imaging. Thereafter, in the second step
experiments are conducted. In these experiments TIP3A is used and the convergence of the
algorithm is measured with different metrics. In the last step, the convergence curves will
be compared to the visual results. This will lead to a conclusion, what metric represents the
image quality of the estimated object the best.

5-1-1 Image Quality Measurements

Image quality in this section is the resemblance between the estimated object and the ground
truth. It is important to note that the original image is used as a reference image. Let o
denote the true scientific object and ô denote the estimated object.
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38 Measuring the Image Quality of the Estimated Object

Mean Squared Error

The mean squared error (MSE) is used as an error metric in all types of engineering and
research. The sum of squared errors or the mean of squared errors form also the building
block for many other error metrics [35].

MSE = ||o− ô||2F /n2, (5-1)

where n2 is the number of pixels for an n by n image. Note that the Frobenius norm squared,
||o− ô||2F , of an image is the sum over all squared errors.

Peak Signal-to-Noise Ratio

The peak signal-to-noise ratio (PSNR) is used as a comparison metric between the ground
truth and the estimated object in the original publication of TIP [3]. PSNR is the ratio
between the maximum intensity and the MSE on a logarithmic scale. The PSNR is therefore
measured in decibels (dB).

PSNR = 10 log10

(
max{o}2

MSE

)
(5-2)

Therefore, the PSNR for an object with maximum intensity, max{o} = 1, is given by

PSNR = −10 log10

(
||o− ô||2F /n2

)
. (5-3)

Normalized Root Mean Square Error

Close related to the MSE is the normalized mean squared error (NMSE). This metric is
specifically designed for the comparison of image-reconstruction algorithms [35].

NMSE = ||o− ô||
2
F

||o||2F
(5-4)

Fourier Ring Correlation

Fourier ring correlation (FRC) measures the normalized cross-correlation between the scien-
tific object and the estimated object on a ring in the Fourier domain. FRC is originally a
method to determine the resolution reconstructed images in electron microscopy [36] (cited
in [37]). In this thesis FRC will be used to to measure the similarity between the original
object and the estimated object at a specific set of spatial frequencies.

FRC =
∑
ri∈r O[ri] · Ô∗[ri]√∑

ri∈r |O[ri]|2 ·
∑
ri∈r

∣∣∣Ô[ri]
∣∣∣2 , (5-5)

where capital letters are used to denote the Fourier transform and O∗ is the complex conjugate
of O.
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Structural Similarity

Structural similarity (SSIM) is a metric inspired be the human visual system [38]. SSIM is a
method designed to measure the visual similarity of two images.

SSIM = (2µoµô + c1)(2σoô + c2)
(µ2
o + µ2

ô + c1)(σ2
o + σ2

ô + c2)
, (5-6)

where µo, µô, σo, σô and σoô are the local means, standard deviations and cross-covariance
for the object and estimated object respectively. c1 and c2 are constants.

Conclusion

MSE and PSNR and often used for the evaluation of the performance of image reconstruction
algorithms. The NMSE is considered an improvement of the MSE. Since the MSE, PSNR
and NMSE are all three based on the Frobenius norm of the error between the original object
and the estimated object, only one metric will be considered. As PSNR was used to measure
the performance of TIP, it will be considered here. PSNR, FRC and SSIM will be used as
error metrics in the experiments.

5-1-2 Comparing Measurements

The estimated object will be compared to the ground truth or scientific object. In [3] is
demonstrated that TIP is empirically convergent if the input image has only isoplanatic
phase aberrations. In Section 4-2 is shown that TIP does not converge necessarily when
the images have anisoplanatic aberrations. From the figures in Appendix B can also be
concluded visually, that the final image quality is better if the input images were deteriorated
isoplanatically.

The experiment in Section 4-2 was repeated for TIP with isoplanatic input images, TIP with
anisoplanatic input images and TIP3A with anisoplanatic input images. The images with
anisoplanatic aberration that were used in this experiment are shown in Appendix A. The
images with isoplanatic aberrations are made by convolution of the scientific object and the
central local PSF of the anisoplanatic images. The algorithm parameters that were used are:
rX = 6, ε = 10−4.4 for both TIP and TIP3A and w = 2000, M = N = 7 for TIP3A. The
image quality is measured with PSNR, FRC and SSIM. The visual results are depicted in
Figures B-1, B-6 and B-9 in Appendix B.

The results for TIP with input images that were deteriorated with isoplanatic phase aberra-
tions will be used as a reference measurement for the image quality of the estimated object.
Since empirical convergence was shown for TIP for images with isoplanatic aberrations, this
reference line gives an empirical optimum. As the input in the reference case has only isopla-
natic aberrations, the image quality of the reference case must be the best. If images with
anisoplanatic phase aberrations were used as input for the TIP algorithm, it can be seen in
Figure B-6 that the image quality is low. In Figure B-9 can be seen that TIP3A can handle
the isoplanatic phase aberrations. The image quality of estimated object for TIP3A is better
compared to TIP. An adequate image quality metric can represent these visual properties.
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Figure 5-1: The image quality of the estimated object over 25 iteration, measured with PSNR.
The reference case is the result after feeding 10 images with isoplanatic aberrations in the TIP
algorithm. Since the input is isoplanatic, it must hold the best result. In this figure TIP and
TIP3A for 10 images with anisoplanatic phase aberrations are compared to the reference case.

Results

The image quality during the experiment was measured with PSNR, FRC and SSIM. Quan-
titative results are shown in Figures 5-1, 5-2 and 5-3.

5-2 Conclusion

Figure 5-1 shows that the image quality in TIP and TIP3A is similar, this does not correspond
to the visual results. Therefore, PSNR does not represent the image quality adequately.
Both FRC and SSIM represent the visual properties that were discussed. The reference
measurement shows the best image quality and after some iterations the image quality of the
estimated object is better in TIP3A than in TIP.

In Figure 5-2 can be seen that the reference case has the highest FRC for all iterations.
More importantly, it shows that TIP3A has a better image quality for the estimated object
compared to TIP.

Figure 5-3 shows the same characteristics for SSIM. It shows that the reference case has the
best results and that TIP3A performs better in handling anisoplanatic aberrations than TIP.
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Figure 5-2: The image quality of the estimated object over 25 iteration, measured with FRC.
The reference case is the result after feeding 10 images with isoplanatic aberrations in the TIP
algorithm. Since the input is isoplanatic, it must hold the best result. In this figure TIP and
TIP3A for 10 images with anisoplanatic phase aberrations are compared to the reference case.
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Figure 5-3: The image quality of the estimated object over 25 iteration, measured with SSIM.
The reference case is the result after feeding 10 images with isoplanatic aberrations in the TIP
algorithm. Since the input is isoplanatic, it must hold the best result. In this figure TIP and
TIP3A for 10 images with anisoplanatic phase aberrations are compared to the reference case.
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discussion

Both FRC and SSIM were able to show that TIP3A performs better in handling anisoplanatic
aberrations than TIP. It was not shown how TIP3A and TIP handle noise. If the same
experiments were conducted with the addition of noise, FRC would have shown a similar
graph to Figure 5-2. SSIM is more sensitive to noise than FRC. For this reason, FRC will be
used in this thesis as a metric for image quality of the estimated object. In order to measure
the influence of noise, both FRC and SSIM will be used.
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Chapter 6

An Improved Computational Approach
to Correct Space-Variant Phase

Aberrations

In Chapter 4 tangential iterative projections algorithm for anisoplanatic aberrations (TIP3A)
was presented as a methodology for retrieving the unknown scientific object. Some quanti-
tative results are shown in Chapter 5. The aim of this chapter is to improve the method
presented in Chapter 4. This is done by testing the proposed improvements in experiments.

6-1 Spatial Domain Constraints

two steps in TIP3A are the object and point spread function (PSF) step in the spatial domain.
In this section, changes to the steps in the spatial domain and considered. In experiments is
shown if the proposed changes results in increased image quality of the estimated object.

6-1-1 Object Step in the Spatial Domain

In TIP3A the estimated object must satisfy some object constraints. One of these a priori
is non-negativity of the object’s intensity measurement. The estimated object is given by
discrete intensity measurements. It is known that the intensity is non-negative. In TIP3A,
the object is formed by summation of all weighted object subsections, Equation (4-4).

In TIP3A, the object constraints are applied after the object is formed. It can be considered
to apply the non-negativity constraint to the object subsections first. Both methods are
compared in an experiment. TIP3A was used with rX = 6, ε = 10−4.4, w = 2000 and
M = N = 7. Thereafter the same simulation was performed, however the non-negativity
constraint was applied on the object subsections in stead of on the estimated object. The
experiment was conducted with the images in Appendix A with white Gaussian noise having a
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Figure 6-1: The image quality of the estimated object over 25 iterations, measured with FRC. In
this figure can be seen that applying the non-negativity constraint on either the estimated object
or estimated object subsection, does not make difference in image quality.

standard deviation σ = 10−5. The same experiment was repeated under high noise conditions,
σ = 10−2. Both experiments shows the same results. The result for the first experiment is
shown in Figure 6-1. In Figure 6-1 can be seen that the image quality for all iterations is
almost similar. Applying the non-negativity constraint on the object in the spatial domain
results in a similar image quality of the estimated object compared to applying this constraint
on the estimated object subsection.

6-1-2 PSF Step in the Spatial Domain

The limited support constraint is important for the convergence of TIP [3] and TIP3A. When
anisoplanatic aberrations play a role, the PSF is space-variant (SV). Therefore, it is proposed
to use a SV limited support region called adaptive limited support. A SV limited support
region is a circular region where the location of the centre is dependent on the estimated
local PSF. Two suggestions are considered to make this support region adaptive. The first is
adaptation of the centre of the limited support region to the centre of gravity of the estimated
PSF. In the second method, the point of maximum intensity is used as centre for the limited
support region. Both methods are aimed at translating the centre of the limited support
region, such that most of the local PSF is inside the limited support region.

Adaptation to Centre of Gravity of the Intensity Distribution

In an experiment, two simulations are conducted. TIP3A was used with rX = 6, ε = 10−4.4,
w = 2000 andM = N = 7. In the first simulation TIP3A was used without any modifications.
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Figure 6-2: The image quality of the estimated object over 25 iterations, measured with FRC. In
this figure can be seen that adaptive limited support with the centre of the limited support region
set to the centre of gravity of the estimated PSF, increases the image quality of the estimated
object.

Adaptive limited support was used during the second simulation. The centre of the limited
support region was set to be the centre of gravity of the estimated local PSF. Figure 6-2
shows that the use of adaptive limited support increases the image quality of the estimated
object.

Adaptation to Point of Maximum Intensity

A second approach is to make the centre of limited support region equal to the point of
maximum intensity of the estimated PSF. The same experiment was performed. In a first
simulation TIP3A was used without adaptive limited support and the adaptive limited sup-
port was turned on during the second simulation. Figure 6-3 shows that using the point of
maximum intensity as the centre of the adaptive limited support region does not increase the
image quality of the estimated object.

The outcome of this section is that adaptive limited support where the centre of the limited
support area is set to the centre of gravity of the estimated PSF increases the image quality
of the estimated object. Figure 6-2 shows an example of an experiment where the FRC of the
estimated object has improved from 0.45 to 0.75 by using adaptive limited support. TIP3A
with adaptive limited support called TIP4A.
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Figure 6-3: The image quality of the estimated object over 25 iterations, measured with FRC.
In this figure can be seen that adaptive limited support with the centre of the limited support
region set to the point of maximum intensity of the estimated PSF, does not increase the image
quality of the estimated object.

6-2 Fourier Domain Modification

TIP3A and TIP4A are designed for images that are locally the result of convolution. This
model is closer to nature than assuming one global PSF, especially in deep tissue microscopy.
However, in highly anisoplanatic imaging systems, the image model that assumes local con-
volution between the object and local PSF, can be violated.

For computationally efficient deconvolution algorithms, this assumption is of immense im-
portance. Assuming local convolution in the images, allows the use of local deconvolution in
the Fourier domain. Deconvolution in the Fourier domain is performed via the Fast Fourier
Transform, a computationally efficient approach to deconvolution.

In order to design a computational approach that is yet in the line of local deconvolution
in the Fourier domain, it is favorable that images are truly the result of local convolution.
As this assumption might be violated for some image subsection, it can still be a very good
approximation on others. This motivates the use of weighted multi-frame deconvolution.

6-2-1 Weighted Multi-Frame Deconvolution

This novel approach to multi-frame deconvolution uses isoplanatic weights, ap,q|s ∈ [0,∞), to
measure the level of isoplanatism in the image. If the image subsection within the apodization
region is isoplanatic the weight is large, if the PSF is space-variant the the weight is small.
The way these weights are determined is described in the next section.
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The estimated object subsection by weighted multi-frame linear deconvolution in the Fourier
domain is given by

ō(k)
p,q = F−1


∑S
s=1 ap,q|s

(
H

(k)
p,q|s

)∗
Is∑S

s=1 ap,q|s|H
(k)
p,q|s|2

 . (6-1)

6-2-2 Measuring Isoplanatism in Images

The weights, ap,q|s, reflect the level of isoplanatism, or PSF variation, in an image subsection
ip,q|s. To determine the PSF variation in the image subsection ,ip,q|s, the estimated local
PSF, hp,q|s, is used. The estimated local PSF depends on the apodization kernel that is
applied on the object. The object subsection is determined by multiplication of the object
with an apodization kernel. The width of this kernel influences the estimated local PSF. As
the estimated local PSF represents the SV PSF in the object subsection, the estimated local
PSF changes when the apodization is changed. If the variation in the SV PSF is small, the
estimated local PSF is less variant under changes in the apodization. On the other hand,
when the variation in the SV PSF is large, the local estimated PSF changes much more with
changes in the apodization.
Let Kp,q be the apodization kernel for object subsection, op,q, and hp,q|s is the estimated local
PSF as a result of the kernel, Kp,q. Similarly, let K̃p,q be a larger apodization kernel and h̃p,q|s
the corresponding estimated local PSF. Kp,q and K̃p,q are chosen initial to the algorithm. Kp,q

is only dependant on the apodization width w and K̃p,q can be calculated from w+ ∆w. The
local PSF variation is represented by

ap,q|s(hp,q|s, h̃p,q|s). (6-2)

PSF Variation

The PSF variation is a measurement for the difference or distance between the estimated local
PSF, hp,q|s, and local complementary PSF, h̃p,q|s. This measurement must be chosen, such
that the image quality of the estimated object is optimized. This thesis mainly shows PSF
variation is a good approach to weighted multi-frame deconvolution. Optimizing a metric for
PSF variation is still an open question.
In this thesis, three basic metrics are considered to determine the weights, ap,q|s. Other
measurements are derived from from these three. The three basic metrics are chosen such
that bi ∈ [0, 1]. If the metric is zero the estimated local PSF does not overlap the local
complementary PSF. When both PSFs are equal, the image is locally isoplanatic and the
metric will be 1.
The first metric is the Bhattacharyya coefficient, that is used in patter recognition [39]. The
first metric is given by

b1 =
∑√

hp,q|sh̃p,q|s, (6-3)
where is sum is taken over all pixels. The second metric is a linear mapping from the total
absolute error to the interval [0, 1].

b2 = 1− 1
2 ||hp,q|s − h̃p,q|s||1 (6-4)
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Figure 6-4: The image quality of the estimated object over 25 iterations, measured with FRC.
This figure shows a comparison between TIP3A and TIP3A-W with 3 different metrics for the
PSF variation. Metric 1 is given by b1 =

∑√
hp,q|sh̃p,q|s, metric 2 is given by b2 = 1− 1

2 ||hp,q|s−
h̃p,q|s||1 and metric 3 is given by b3 = 1− 1

4 ||hp,q|s − h̃p,q|s||22.

Finally, the last metric is a linear mapping from the total squared error to the interval [0, 1].

b3 = 1− 1
4 ||hp,q|s − h̃p,q|s||

2
2 (6-5)

6-2-3 Results

Weighted multi-frame deconvolution was applied in an experiment. TIP3A with weighted
multi-frame deconvolution, denoted by TIP3A-W, was used in a simulation. The algorithm
parameters are rX = 6, ε = 10−4.4, w = 2000 and M = N = 7. First the algorithm was
conducted with the images in Appendix C with white Gaussian noise having a standard
deviation σ = 10−5. The weights, ap,q|s, are given by the basic metrics, bi. The results are
given in Figure 6-4. Another result is that TIP3A-W requires more input images than TIP3A
for convergence. The same experiment was conducted with the first 10 images in Appendix
C. TIP3A-W did not converge with 10 input images.

The sensitivity of the basic metrics can be increased. This can be done by remapping of
the basic metrics, bi, to the more sensitive metrics. Here was chosen for remapping in two
different ways. The first remapping is performed by the natural logarithm, mi = − log(1−bi).
The same experiment was repeated and the results are shown in Figure 6-5.

The second method of mapping the basic metric, bi, is done via the multiplicative inverse.
Let the metric m̄i = 1

1−bi . The main difference between mapping via the natural logarithm
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Figure 6-5: The image quality of the estimated object over 25 iterations, measured with FRC.
This figure shows a comparison between TIP3A and TIP3A-W with 3 different metrics for the
PSF variation. Metric 1 is given by m1, metric 2 is given by m2 and metric 3 is given by m3,
where mi = − log(1− bi).

and mapping via the multiplicative inverse is that mi ∈ [0,∞) and m̄i ∈ [1,∞). The results
are shown in Figure 6-6

The choice of the metric for the PSF variation influences the image quality of the estimated
object significantly. In Figure 6-4 can be seen that metrics b2 and b3 will result in almost
similar image quality. However, in Figure 6-6 can be seen that for all metrics m̄i the image
quality from 0.58 to 0.65 − 0.70. To put this result into perspective, the image quality was
0.71 after 25 iteration in TIP4A for the same input images and global algorithm parameters.
On the other hand, TIP3A-W is of order 10 times faster than TIP4A.

It is possible to achieve better image quality with further tuning of the metrics. Figure 6-7
shows the results after the same simulation as in Figure 6-6, only metric 3 was raised to the
power, ps = 1.5, and ap,q|s was set to zero if it was under a threshold, tr = 20. The metric is
then given by m̄∗3 = (1− b3)−1.5, m̄∗3 = 0 if m̄3 < 20.

6-3 TIP4A-W

Naturally, a new algorithm is formed when TIP3A is modified with both adaptive limited
support and weighted multi-frame deconvolution. This modified algorithm is called TIP4A-
W. It was hypothesized that TIP4-W would outperform TIP4A and TIP3A-W. In order
to demonstrate the performance of TIP4A-W, the same experiment as in Section 6-2 was
conducted with the addition of adaptive limited support.

Master of Science Thesis W. van de Ketterij



50 An Improved Computational Approach to Correct Space-Variant Phase Aberrations

Iteration
0 5 10 15 20 25

FR
C

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75
Fourier Ring Correlation

TIP3A
TIP3A-W metric 1
TIP3A-W metric 2
TIP3A-W metric 3

Figure 6-6: The image quality of the estimated object over 25 iterations, measured with FRC.
This figure shows a comparison between TIP3A and TIP3A-W with 3 different metrics for the
PSF variation. Metric 1 is given by m̄1, metric 2 is given by m̄2 and metric 3 is given by m̄3,
where m̄i = 1

1−bi
.
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Figure 6-7: The image quality of the estimated object over 25 iterations, measured with FRC.
This figure shows a comparison between TIP3A and TIP3A-W with metric given by m̄∗3.
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Figure 6-8: The image quality of the estimated object over 25 iterations, measured with FRC.
This figure shows a comparison between TIP3A and TIP4A-W with 3 different metrics for the
PSF variation. Metric 1 is given by m1, metric 2 is given by m2 and metric 3 is given by m3,
where mi = − log(1− bi).

6-3-1 Results

Figure 6-8 shows the result of an experiment where the same three basic metrics, bi, as
in Figure 6-4 are used. Metrics bi are given in Equations (6-3), (6-4) and (6-5). Comparing
Figure 6-8 with Figure 6-4 shows that for the basic metrics TIP4A-W is superior to TIP3A-W
in this experiment.

When three other, more sensitive, metrics are used, it is expected that the image quality of
the estimated object becomes better. Similar to the experiment in Section 6-2, the sensitivity
of the basic metrics, bi, is increased by remapping into three mew metrics, mi = − log(1− bi).
The result of this experiment is given in Figure 6-9. Compare this to the result in Figure 6-5,
it can be seen that TIP4A-W with metrics, mi, performs better than TIP3A-W. Figure 6-
9 also shows that TIP4A-W with metric, b2, performs equal to TIP4A with similar input
images. Both TIP4A-W and TIP4A achieve an FRC of0.71 after 25 iterations.

During the experiment in Section 6-2, the metric ,m̄i = 1
1−bi , performed the best. Figure 6-10

shows the result of TIP4A in combination with metrics, m̄i. In this figure can be seen that
the results with TIP4A-W are better than the results shown in Figure 6-6, where TIP4A was
used.

The best result was found after tuning the parameters of TIP4A. Metric 3 was selected for
measuring the PSF variation. This metric was changed by two parameters. Tuned metric 3
is given by

m̄∗3 =
(1

4 ||hp,q|s − h̃p,q|s||
2
2

)−ps
, m̄∗3 = 0 if m̄3 < tr. (6-6)
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Figure 6-9: The image quality of the estimated object over 25 iterations, measured with FRC.
This figure shows a comparison between TIP3A and TIP4A-W with 3 different metrics for the
PSF variation. Metric 1 is given by m1, metric 2 is given by m2 and metric 3 is given by m3,
where mi = − log(1− bi).
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Figure 6-10: The image quality of the estimated object over 25 iterations, measured with FRC.
This figure shows a comparison between TIP3A and TIP4A-W with 3 different metrics for the
PSF variation. Metric 1 is given by m̄1, metric 2 is given by m̄2 and metric 3 is given by m̄3,
where m̄i = 1

1−bi
.
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Figure 6-11: The image quality of the estimated object over 25 iterations, measured with FRC.
This figure shows a comparison between TIP3A and TIPWA-W with metric given by m̄∗3.

After tuning was found that ps = 1.5 and tr = 5. The image quality of the estimated object
over 25 iteration is given in Figure 6-11.

6-3-2 Experiments with Additional Noise

In the experiments with TIP4A-W in the previous section, noise was added to the images.
The pixels in the images have a range from 0 to 1 and the additional Gaussian white noise
in the images has standard deviation σ = 10−5. The simulation with TIP4A-W and tuned
metric, m̄∗3, was repeated with different noise levels. Table 6-1 shows the image quality of
the estimated object measured with Fourier ring correlation (FRC) and structural similarity
(SSIM) after 25 iterations of TIP4A-W. The effects of noise on the image quality is represented
by the decreasing value of the SSIM as the noise increases.

Table 6-1: Image quality of the estimated object after 25 iterations of TIP4A-W using tuned
metric m̄∗3 for the PSF variation. White Gaussian noise with different standard deviations (st.
dev.) was added to the set of images. The image quality is measured with FRC and SSIM.

Noise st. dev. σ = 10−5 σ = 10−4 σ = 10−3 σ = 10−2 σ = 10−1

FRC 0.74 0.73 0.72 0.72 0.72

SSIM 0.55 0.55 0.54 0.33 0.08

The estimated objects after 25 iterations for a set of input images with different standard
deviation are shown in Figure 6-12. The images from left to right are the result of TIP4A-W
with input images with addition white Gaussian noise with increasing standard deviation.
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Figure 6-12: In an experiment TIP4A-W was used to estimate the original object from sets of
input images with different noise levels. White Gaussian noise with varying standard deviations,
σ = 10−5, 10−4, 10−3, 10−2, 10−1, was added to the images. The estimated object corresponding
to the sets of input images with different noise levels are depicted in this figure. The quality of
the estimated objects can be found in Table 6-1 in the same order.

6-3-3 Experiments with Real Images

The performance of TIP4A-W was tested on a set of real images. 40 image with unknown
aberrations were acquired and TIP4A-W was used to improve the image quality. In this
experiment the aberrations are not simulated and the scientific object is unknown. Therefore,
it is not possible to compare the result of TIP4A-W with a ground truth. In this experiment a
sharpness metric will be used to compare the performance of TIP4A-W with the performance
op TIP3A and TIP. Let the sharpness of a normalized image, ī, be

I2 =
∑

ī2, (6-7)

where the sum is over all pixels.

In the experiment 25 iterations of each algorithm was run. One of the initial images is shown
in Figure 6-13. The sharpness of the initial images is approximately I2 = 6.29 ·10−5. After 25
iterations of TIP, TIP3A and TIP4A-W the sharpness of the estimated object was calculated
again. The results are shown in Table 6-2 and the estimated object with TIP4A-W is given
in Figure 6-14.

According to the sharpness metric the image quality has improved with only 1% when TIP4A-
W is used, however the optimum value for the sharpness or the sharpness of the true object is
unknown. From a visual comparison between Figure 6-13 and Figure 6-14 can be concluded
that some of the details that were not visible in the original image are visible in the estimated
object with TIP4A-W. Comparing the contrast, especially on the left side in both images,
it can be seen that three adjacent lines are more distinguishable. Even the smaller lines are
now more separated and are visible as individual lines.

Table 6-2: The performance of TIP, TIP3A and TIP4A-W is compared in an experiment. The
image quality given by the sharpness metric.

Image original TIP TIP3A TIP4A-W

I2 6.29 · 10−5 6.31 · 10−5 6.31 · 10−5 6.34 · 10−5
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Figure 6-13: One of the obtained images
that was used as an input for the TIP4A-W
algorithm during an experiment with real
images. The aberrations in this image are
unknown. Moreover, the scientific object is
unknown. The sharpness of the normalized
image as given by Equation (6-7) is given
I2 = 6.29 · 10−5.

6.3524e-05

Figure 6-14: The estimated object given
after 25 iteration of TIP4A-W is shown in
this figure. The image quality given by the
sharpness, Equation (6-7), has improved by
only 1%. The sharpness of this image is
I2 = 6.35 · 10−5

6-3-4 Algorithm Comparison

The performance of TIP4A-W was compared to a method by Hirsch et al. [11]. Three
experiments were conducted to perform this comparison. In the first experiment the images
in Appendix A are used as an input for TIP4A-W and the method by Hirsch et al. [11]. In
the second experiment the images in Appendix C are used as an input for both algorithms.
For the third experiment, astronomical images provided in [11] were used an an input for
both algorithms.

Results

The images in Appendix A have anisoplanatic aberrations. They are used as an input for
TIP4A-W and the method by Hirsch et al. [11]. Figure 6-15 shows the estimated object given
by the method in [11]. The estimated object after 40 iterations of TIP4A-W is shown in Fig-
ure 6-16. Comparing both results in Figures 6-15 and 6-16 it can seen that the reconstruction
for TIP4A-W is sharper. Details in the straw hair or in puppet’s Collar are more visible in
the TIP4A-W reconstruction than in the reconstruction by Hirsch et al..

The images in Appendix C show large aberration, especially in the form of morph. The
method in [11] was used to estimate the true object from the images in Appendix C, the
result is given in Figure 6-17. Furthermore, 40 iterations of TIP4A-W were used in order to
estimate the object. Figure 6-18 shown the results of TIP4A-W with the images in Appendix
C as input. This experiment demonstrates that TIP4A-W can handle large anisoplanatic
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Figure 6-15: The estimated object given
by the method of Hirsch et al. [11]. The
images in Appendix A were used as input.

Iteration 40

Figure 6-16: The estimated object after
40 iterations of TIP4A-W with the images
in Appendix A as input.

aberrations. When Figure 6-18 is compared to Figure 6-17 it becomes clear that TIP4A-W
can handle anisoplanatic aberrations much better.
A set of 40 astronomical images were provided in [11]. One of these images is shown in
Figure 6-19. Figure 6-20 shows the estimated object given by the method of Hirsch et al. for
the set of astronomical images. The object was also estimated by TIP4A-W. The result after
40 iterations of TIP4A-W is given in Figure 6-21. Comparing Figure 6-20 with Figure 6-21
can be seen that for these astronomical images the method by Hirsch et al. performs better
than TIP4A-W.

6-3-5 Discussion

Since TIP4A-W and the other TIP-based algorithms use TIP for local deconvolution. Some
of the limitations of TIP are directly related to the limitations of these algorithms. Wilding
et al. [3] describe that TIP does not fit into a mathematical framework yet. The results are
observed in experiments and the convergence of the algorithm was shown empirically.
TIP was designed for situations where the signal-to-noise ratio is low and where temporal
dynamics of the aberrations is much faster than the object’s. This limitation also holds for
the TIP-based algorithms described in this thesis. Temporal dynamics are important because
more than one image is required for these kind of algorithms.
Optimal performance of the algorithm can be achieved when the sum of local PSF spectra
covers all frequency within the bandlimit of the system. In practice it is favorable to collect
as much images of the same static object as possible, while the aberrations are induced by
the environment. Furthermore, when only a part of the aberrations is dynamic and some of
the aberrations are static, TIP-based algorithms are not able to remove the static aberration
from the images.
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Figure 6-17: The estimated object given
by the method of Hirsch et al. [11]. The
images in Appendix C were used as input.

Iteration 25

Figure 6-18: This image is the result after
40 iterations of TIP4A-W with the images
in Appendix C as input.

Figure 6-19: One of
the forty input images
provided by Hirsch et
al. [11].

Figure 6-20: The es-
timated object given
by the method of
Hirsch et al. [11] with
the images provided in
[11] as input.

0.0015072

Figure 6-21: This im-
age is the result af-
ter 40 iterations of
TIP4A-W with the im-
ages provided in [11]
as input.
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Especially when the aberrations are anisoplanatic it is highly favorable to use as many images
as possible. TIP3A-W and TIP4A-W are designed specifically to use parts of the image where
the PSF variation is low. In other words, local regions with almost isoplanatic aberrations
are used to calculate the estimated object. When more images are collected it is more likely
for such regions to occur.

In TIP3A-W and TIP4A-W PSF variation is used to calculate the weights for weighted
multi-frame deconvolution. It was only shown empirically that PSF variation improves the
image quality when an adequate metric was used. It is unknown how PSF variation can be
measured optimally in a sense that the image quality of the estimated object will be optimal.
Moreover, PSF variation was only used to show the positive effect of weighted multi-frame
deconvolution. Further research must be conducted to expand the theoretical knowledge
about weighted multi-frame deconvolution.
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Chapter 7

Conclusion and Future Outlook

Research has been conducted on correction methods for anisoplanatic aberrations. In living
biological tissue the phase aberrations are time-variant and anisoplanatic. This thesis shows
the development of an algorithm that can handle these type of aberrations. Despite the fact
that this algorithm is so innovative, the algorithm can still be improved.

7-1 Conclusion

It was discovered in literature study that local deconvolution in an efficient filter flow frame-
work [6] is a computational efficient approach to blind deconvolution of anisoplanatic aberra-
tions. As this computational efficiency comes with a small cost in model accuracy, a robust
algorithm was selected to perform local deconvolution. Tangential iterative projections (TIP)
[3] is fast and robust algorithm that was designed specifically for situations where the aber-
rations are time-variant.

Tangential iterative projections algorithm for anisoplanatic aberrations (TIP3A) is a new
method where TIP is applied to the computational efficient framework. The estimated ob-
ject is formed by interpolation of local results. Local deconvolution is performed by TIP.
Thereafter, the results are interpolated similar to the ideas in [6, 7, 5].

Since TIP was designed to handle time-variant, but space invariant point spread functions
(PSF), it was expected that TIP3A can handle time- and space-variant aberrations better.
The metrics Fourier ring correlation (FRC) and structural similarity (SSIM) were able to
show that in situations where the PSFs were space-variant, indeed TIP3A outperformed TIP.

Furthermore, during research was discovered that modifications can be made in both the
spatial domain and the Fourier domain. It was shown that adaptive limited support in the
spatial domain increases the image quality of the estimated object.

Moreover, the Fourier domain modification called weighted multi-frame deconvolution has
shown to improve image quality of the estimated object. This novel approach was applied in
conjunction with PSF variation.

Master of Science Thesis W. van de Ketterij



60 Conclusion and Future Outlook

Both modification have resulted in new algorithms. The addition of adaptive limited support
to TIP3A forms a new algorithm called tangential iterative projections algorithm for anisopla-
natic aberrations with adaptive limited support (TIP4A). The Fourier domain modification
called weighted multi-frame deconvolution can be added to both TIP3A and TIP4A resulting
in two new algorithms called TIP3A-W and TIP4A-W respectively.

In addition, a whole different approach was researched. This research has not lead to the
development of a new algorithm. More information about this approach can be found in
Appendix D.

7-2 Future Outlook

The next step in this research might take the global algorithm parameters to local algorithm
parameters. Global parameters such as limited support radius, rX, threshold of division, ε,
and apodization width, w, can be considered as local parameters. Tuning those parameters
for every object subsection individually can be a task for an artificial intelligence.

In the current state of the algorithms, the object subsections are distributed on an M by N
rectangular. This might, however, not be the most optimal distribution. Furthermore, the
object subsections do not have to be all the same size. Finding the optimal object subsection
distribution and size, combined with finding optimal local parameters, is a task that can be
performed by an artificial intelligence.

In this research weighted multi-frame deconvolution is applied in conjunction with PSF vari-
ation. It was shown that this modification improves the image quality of the estimated
object. However, weighted multi-frame deconvolution is a novel approach that should be
researched further for optimal results. Moreover, in weighted multi-frame deconvolution con-
stant weights, ap,q|s, are used, it is possible that matrix weights must be used for optimal
performance.

ε, the threshold of division was also considered a constant during this research. As the error in
the image model is more likely to be larger at the edges of an image subsection, it is possible
that using a non-constant threshold of division performs better.

Al the algorithms developed in this thesis use the shape of the local PSFs for reconstruction of
the underlying physical object. A next step in this research could include the phase aberration.
Assuming a single conjugation plane outside the pupil plane leads to a phase retrieval problem.
Explicit use of the anisoplanatic phase aberration might lead to more coherence between the
local PSFs.
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Appendix A

Images with Anisoplanatic Aberrations

The images in Figure A-1 are used in section 4-2-2. These images are used an a set of input
images for TIP and TIP3A with varying number of subsections.

The projection method as shown in Figure 2-3 with a single phase screen was used to calculate
the SV phase aberration. A phase plane is placed at distance l1 to the right of the object
plane. The pupil plane is at distance l2 tot he right of the phase plane. Therefore, the object
distance zo = l1 + l2. A thin lens is with numerical aperture, NA, is located in the pupil.

A phase screen, φ, is placed in the phase plane. This phase screen is the sum of NZ Zernike
polynomials with maximum amplitude AZ

φ = AZ

NZ∑
N=1

aNZN , (A-1)

where −1 < aN < 1 is a random number.

An object, Figure 4-4, was placed in the object plane. By geometry, the optical path from a
point in the object to the pupil has an intersection plane in the phase plane. This intersection
plane is unique for that point in the object. The phase aberration in the intersection plane
is scaled in the x and y direction to fit exactly inside the pupil. As a result Equation (2-12)
can be used to calculate the PSF. Equation (2-14) can be used to form the noiseless image
with anisoplanatic aberrations.

In this Appendix 256 by 256 deteriorated images are formed. The imaging system’s geometry
is given by l1 = 2, l2 = 3, NA = 0.7. The Phase screens are given by AZ = 40 and NZ = 40.
The set consists of 10 images for 10 random realizations of the phase screens.
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62 Images with Anisoplanatic Aberrations

Figure A-1: These images are used as input for TIP and TIP3A in section 4-2-2.
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Appendix B

Results of Visual Experiments

The images in Appendix A are used as input images for TIP and TIP3A. The results of
these algorithms are depicted in this Appendix. All figures display the estimated object
after 1, 5, 10, 15, 20 and 25 iterations, from left to right, top to bottom. In the caption of
the images is described what algorithm was used and what the settings were during the
experiment. These figures are used for visual comparison, to compare the performance of for
different settings of the algorithms. A description of this experiment can be found in Section
4-2-2. The algorithm parameters are: Number of subsections, M,N , limited support radius,
rX, apodization width, w and threshold of division, ε.
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64 Results of Visual Experiments

Figure B-1: Estimated object after 1, 5, 10, 15, 20 and 25 iterations. The algorithm used is: TIP,
rX = 6, ε = 10−4.4. Images with isoplanatic aberrations are used as an input here.

Figure B-2: Estimated object after 1, 5, 10, 15, 20 and 25 iterations. The algorithm used is:
TIP3A, M = N = 1, rX = 6, w = 2000, ε = 10−4.4. Images with isoplanatic aberrations are
used as an input here.
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Figure B-3: Estimated object after 1, 5, 10, 15, 20 and 25 iterations. The algorithm used is:
TIP3A, M = N = 3, rX = 6, w = 2000, ε = 10−4.4. Images with isoplanatic aberrations are
used as an input here.

Figure B-4: Estimated object after 1, 5, 10, 15, 20 and 25 iterations. The algorithm used is:
TIP3A, M = N = 7, rX = 6, w = 2000, ε = 10−4.4. Images with isoplanatic aberrations are
used as an input here.

Master of Science Thesis W. van de Ketterij



66 Results of Visual Experiments

Figure B-5: Estimated object after 1, 5, 10, 15, 20 and 25 iterations. The algorithm used is:
TIP3A, M = N = 15, rX = 6, w = 2000, ε = 10−4.4. Images with isoplanatic aberrations are
used as an input here.

Figure B-6: Estimated object after 1, 5, 10, 15, 20 and 25 iterations. The algorithm used is: TIP,
rX = 6, ε = 10−4.4.
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Figure B-7: Estimated object after 1, 5, 10, 15, 20 and 25 iterations. The algorithm used is:
TIP3A, M = N = 1, rX = 6, w = 2000, ε = 10−4.4.

Figure B-8: Estimated object after 1, 5, 10, 15, 20 and 25 iterations. The algorithm used is:
TIP3A, M = N = 3, rX = 6, w = 2000, ε = 10−4.4.
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Figure B-9: Estimated object after 1, 5, 10, 15, 20 and 25 iterations. The algorithm used is:
TIP3A, M = N = 7, rX = 6, w = 2000, ε = 10−4.4.

Figure B-10: Estimated object after 1, 5, 10, 15, 20 and 25 iterations. The algorithm used is:
TIP3A, M = N = 15, rX = 6, w = 2000, ε = 10−4.4.
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Appendix C

Images with Anisoplanatic Aberrations

The images in Figure C-1 are used in section 6-2.

The projection method as shown in Figure 2-3 with a single phase screen was used to calculate
the SV phase aberration. A phase plane is placed at distance l1 to the right of the object
plane. The pupil plane is at distance l2 tot he right of the phase plane. Therefore, the object
distance zo = l1 + l2. A thin lens is with numerical aperture, NA, is located in the pupil.

A phase screen, φ, is placed in the phase plane. This phase screen is the sum of NZ Zernike
polynomials with maximum amplitude AZ

φ = AZ

NZ∑
N=1

aNZN , (C-1)

where −1 < aN < 1 is a random number.

An object, Figure 4-4, was placed in the object plane. By geometry, the optical path from a
point in the object to the pupil has an intersection plane in the phase plane. This intersection
plane is unique for that point in the object. The phase aberration in the intersection plane
is scaled in the x and y direction to fit exactly inside the pupil. As a result Equation (2-12)
can be used to calculate the PSF. Equation (2-14) can be used to form the noiseless image
with anisoplanatic aberrations.

In this Appendix 256 by 256 deteriorated images are formed. The imaging system’s geometry
is given by l1 = 1, l2 = 3, NA = 0.7. The Phase screens are given by AZ = 55 and NZ = 40.
The set consists of 30 images for 30 random realizations of the phase screens.
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70 Images with Anisoplanatic Aberrations

Figure C-1: These images are used as input for TIP3A and TIP3A-W in section 6-2.
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Appendix D

Blind Multi-Frame Anisoplanatic
Deconvolution in a Higher Dimension

A blind multi-frame deconvolution (BMFD) method to estimate both object and space-variant
point spread function is described. This method is based on conventional BMFD methods.
However the conventional methods deal with a space invariant point spread function. Con-

Figure D-1: Image formation is considered as a convolution of the object and point spread
function. For a space-variant point spread function, image formation can still be considered to be
a convolution, but in a higher dimension. Expansion of the 1D object to a diagonal matrix and
stacking the 1D space-variant point spread function in reverse order, allows the computation of
the 1D space-variant blurred image.

sider the discrete one dimensional extended object o = [o1, o2, · · · , on], where oi are scalar
intensities. Let H be the matrix containing point spread functions (PSF), hi, corresponding
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72 Blind Multi-Frame Anisoplanatic Deconvolution in a Higher Dimension

to the pixels oi:

H =


h(on)

...
h(o2)
h(o1)

 (D-1)

and Let O be the matrix containing object pixels on its diagonal:

O =


o1 0 0 0
0 o2 0 0

0 0 . . . 0
0 0 0 on

 (D-2)

Then image formation with space-variant point spread function can be written as

Ii,j =
n∑
k=1

n∑
l=1
Ok,lHi−k,j−l, i, j, k, l = 1, 2, ..., n. (D-3)

Equation (3-2) can be recognized as a discrete convolution, demoted by I = O ∗ H. This
calculation can be done very efficiently by application of the convolution theorem and the
Fast Fourier Transform (FFT). The result of convolution is a matrix, I, that contains the
anisoplanatically deteriorated image in its nth row. Figure D-1 demonstrates the formation
of a discrete image by convolution.

In the Fourier domain, Equation (3-2) can be written as

Ii,j = Oi,jHi,j (D-4)

where, capital letters denote the FFT of their corresponding ornamental letters in Equation D-
3. In blind deconvolution H and O are unknown. Blind Multi-Frame Deconvolution (BMFD)
uses S images and S corresponding PSFs. This leads to the minimization problem:

{Ô, Ĥs} = arg min
Hs,O

S∑
s=1
||Ii,j|s −Oi,jHi,j|s||2, (D-5)

where || · || represents the L2 norm. This problem is conventionally solved by an alternating
projection (AP) method. AP methods solve the equation for O from an initial PSF and then
project the solution to a feasible set for all objects. Then the solution for H is calculated and
projected on the feasible set of PSFs. This loop is iterated until convergence. In this method,
an optimal solution to equation (D-5) was calculated with the same projections steps as in
TIP [3].

In case of anisoplanatic aberrations, the extended image matrix Ii,j is not measured com-
pletely. The set of anisoplanatic images form the nth row in this matrix, therefore only
the nth row is known. This problem was solved by simulating the unknown rows in Ii,j by
convolution of the estimated object with the estimated space-variant PSF.

This method was implemented in MATLAB for S = 1, S = 4 and S = 10. Unfortunately,
the algorithm did not converge to a solution. Figure D-2 shows the result of an experiment
where 10 input images were used with anisoplanatic phase aberrations.
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Figure D-2: The image quality of the estimated object measured with the PSNR is decreasing
for this method. Here 10 images were used as input.
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Glossary

List of Acronyms

PSF point spread function

TIP tangential iterative projections

FOV field of view

FWHM Full Width at Half Maximum

SV space-variant

CCD charge-coupled device

PSNR peak signal-to-noise ratio

BMFD blind multi-frame deconvolution

TIP3A tangential iterative projections algorithm for anisoplanatic aberrations

MSE mean squared error

NMSE normalized mean squared error

FRC Fourier ring correlation

SSIM structural similarity

TIP4A tangential iterative projections algorithm for anisoplanatic aberrations with
adaptive limited support
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