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Abstract

This study investigates fairness in
knowledge-aware recommender systems by
evaluating their performance across both
accuracy and fairness metrics. Using the
MovieLens 1M dataset, we compare general,
knowledge-aware, and fairness-optimized
models through a custom RecBole-based
pipeline. Results indicate knowledge-aware
models offer some fairness benefits without
major accuracy loss, though no model ex-
cels universally. Adjusting loss component
weights reveals complex trade-offs and
component importance, underscoring the
need for nuanced fairness optimization.

1 Introduction

Recommender systems are tools which can help in-
dividuals and business stakeholders in their decision-
making process. There are a few paradigms that have
gained more popularity since this concept was first in-
troduced - Collaborative filtering and Content-based
filtering. Both aim to capture different aspects of
available information, with the former being focused
on the behaviour of similar users, while the latter
utilizes the features of similar content, but the end
goal is to help the user find desired content. In re-
cent years, another paradigm called Knowledge-Aware
Recommender Systems has gained momentum. This
paradigm not only aims to provide natural explain-
ability of results by exploiting facts from Knowledge
Graphs, but related works have explored the possibility
of combining this with other types of information such
as embeddings derived from textual content, leading to
improved accuracy [13].

However, bias in such recommendation systems re-
mains a prominent concern brought about by already
existing societal bias that is embedded in the data
used for creating the system. It has been shown
that Content-based and Collaborative filtering systems
might exacerbate this bias problem creating unfair re-
sults such as underrepresentation of unpopular items or
social minority groups [18]. Given that recommender
systems are also used for social resource allocation,
such as recommending jobs, this issue is not only re-
lated to the extent to which one perceives the accuracy
of the system but also the ethical complications that
come with using frameworks susceptible to bias [9].
One relevant study has shown that knowledge-aware
models can still pick up on sensitive information em-
bedded within the knowledge graphs fed to the model
[17]. To that end, a new model was introduced that
tries to take into account the complex mutual influence
of sensitive attributes via a sensitivity graph, achieving
state-of-the-art fairness results while also keeping the
accuracy high.

Knowledge-aware systems are oftentimes evaluated
on a set of widely used performance metrics such as
MAE, RMSE, and NDCG [4] [22]. The main design
choices of such systems are usually related to solving
cold-start and data sparsity problems [22], with a large

number of papers being focused on maximizing accu-
racy. What seems to be missing is a study that focuses
on establishing the level of fairness of current state-
of-the-art knowledge-based models. As such, three re-
search questions will be explored:

* RQ1: Do knowledge-aware models perform bet-
ter than other paradigms on metrics related to fair-
ness?

* RQ2: Does adjusting the relative weights of com-
ponents in the loss function of a knowledge-aware
recommender system lead to improved perfor-
mance on fairness and accuracy metrics?

* RQ3: Given the findings in RQ2, can optimizing
for fairness, based on the selected metrics, affect
the accuracy of the models in question? If so, to
what extent?

Relevant metrics for accuracy and fairness based on
existing literature will be utilized for testing. The test
results will be compared pairwise between each model,
and also benchmarked against the performance of
baseline General Recommendation and Collaborative-
Filtering models, as well as a state-of-the-art Fairness-
aware model.

The rest of this paper is organized as follows: Sec-
tion 2 presents the background; Section 3 presents the
methodology alongside the experimental setup; Sec-
tion 4 establishes the results derived from the pipeline;
Section 5 is focused on a discussion about responsible
research, followed by Section 6 which discusses the
findings; Section 7 concludes the content of the paper
and lays the groundwork for future research, while also
acknowledging the current limitations.

2 Background

Recommender systems are a concept that was first in-
troduced in the 90s [3]. Over time, their main use
has come in the form of pruning the ever-increasing
search space for users by providing them with con-
tent they would be interested in based on their be-
haviour. Nowadays, the most common classifications
for such systems include content-based, collaborative,
and knowledge-based techniques, with multiple meth-
ods being utilized in order to form the so-called hy-
brid systems [4]. Such systems have proven their
worth in the industry, with companies such as Net-
flix and Amazon utilizing them for their movie and
e-commerce services respectively [7][11]. With such
systems being utilized by both individual users look-
ing for leisure time content and by business stakehold-
ers sifting through job applications [21], it is important
to consider not only their accuracy, but also the eth-
ical aspect of those systems, which can be expressed
by estimating the fairness of their output. To that
end, the scope of this paper revolves around assess-
ing the fairness performance of current state-of-the-art
knowledge-aware models and hybrid paradigms that
include knowledge-based methods, all other systems
are excluded from consideration.



2.1 Knowledge-Aware & Hybrid
Recommendation

Graph-based and Knowledge-Graph Models

The idea of exploiting user-item graphs for recommen-
dation has been researched for quite some time [12].
Early approaches utilized random walks to propagate
user preferences, followed by Graph Convolutional
Networks which were able to pick up on higher-order
collaborative interactions based on the available graph
information. Another type of a graph-based model is
the knowledge graph based model. This model utilizes
a knowledge graph, which represents higher-order se-
mantic relationships between entities, rather than just
simple user-item interactions.

Using knowledge graphs as side information in rec-
ommendation models can help diminish common lim-
itations, such as data sparsity and the cold-start prob-
lem [8]. Evaluations seem to suggest that the pre-
cision in predictive power is improved for such sys-
tems. Moreover, using knowledge graphs as back-
ground information helps improve the explainability
and trustworthiness of such systems. Advancements
in deep learning techniques for graph data have given
rise to new knowledge-aware, deep recommender sys-
tems based on Graph Neural Netwoks. There exists
literature specifically on this topic [6] which focuses
on leading frameworks, particularly the graph embed-
ding modules they employ, and how they tackle key
challenges such as scalability and cold-start problems.

Hybrid models

Over the years, as more research is done on each of the
popular paradigms, it seems like problems such as the
cold-start problem are becoming more ubiquitous, as
no single paradigm has the innate capability of dealing
with it completely. As all of the well-known recom-
mendation techniques have strengths and weaknesses,
researchers have shifted their focus to a more compli-
cated paradigm - hybrid recommender systems. Such
systems combine different recommendation methods
in the hopes of achieving the best of both worlds while
also dealing with the aforementioned problems.

When it comes to accuracy, there seem to be mixed
results, with Burke [3] reporting benefits of hybrid
recommendation with knowledge-aware components,
while others conclude that even simple linear models
can outperform such sophisticated paradigms [12]. As
such, when it comes to the predictive power of hybrid
models, no definitive conclusions can be derived, and
it seems like there is no one-size-fits-all solution.

2.2 Fairness

Fairness in Recommender Systems has rapidly evolved
into an important research area, driven by the sig-
nificant societal and individual impact these systems
wield. The current state reflects a field grappling with
the complexity of defining fairness, which is inherently
a multi-faceted, and often subjective social construct.
There’s no single definition of fairness. Research
explores various notions, including individual fair-
ness (treating similar individuals similarly) and group
fairness (ensuring equitable outcomes across demo-
graphic groups)[16][15]. Attention is also paid to user-
side fairness (e.g., equitable recommendation quality

across user groups like gender or age) and provider-
side/item fairness (e.g., fair exposure for different
items or item creators, often addressing popularity
bias). The concepts of consistent fairness (similar
treatment for similar entities) and calibrated fairness
(outcomes proportional to merit) are frequently inves-
tigated [16][15][5].

The majority of research focuses on developing
technical, algorithmic solutions. These typically fall
into pre-processing (debiasing data), in-processing
(modifying model training, e.g., via regularization or
adversarial learning), or post-processing (re-ranking)
strategies. Evaluation is predominantly conducted
through offline experiments using historical datasets
(e.g. MovieLens) and a variety of computational fair-
ness metrics [5].

While process fairness (fairness of the recommen-
dation model/process) is acknowledged, the bulk of
research concentrates on achieving outcome fairness
(fairness of the recommendation results) [16]1[15]1[5].

Fairness-Aware Models

Fairness-aware models predominantly aim to miti-
gate discriminatory outcomes by either modifying the
learning algorithm’s objective or transforming data
representations. A common architectural pattern in-
volves augmenting standard model training with regu-
larization terms that penalize unfairness, as measured
by specific metrics [19]. More sophisticated architec-
tures leverage adversarial learning, setting up a min-
imax game between a primary model (e.g., a recom-
mender) and an adversary that tries to predict sensi-
tive attributes from the primary model’s internal repre-
sentations or outputs [10]. The objective of these ad-
versarial setups is often to learn fair representations or
embeddings that are useful for the main task but are
invariant to protected attributes, preventing the model
from relying on sensitive information, and achieving
state-of-the-art fairness results [10].

3 Methodology

The main goal of this paper is to determine whether
knowledge-aware models can provide fairer results
when compared to baseline models and fairness-
optimized models. In order to establish the current
level of fairness for this paradigm, a pipeline was de-
vised. This pipeline is a fork based on the Recbole
1.2.1 framework, combined with its FairRec Recbole
2.0 fairness derivation. This allows for reproducibil-
ity, as the datasets, models, and metrics described be-
low are publicly accessible and integrated directly in
the framework. This section aims to elaborate on the
pipeline, which includes training the models, collect-
ing and analyzing the results.

3.1 Datasets

The MovieLens 1M dataset was utilized for this study.
It is a widely used benchmark dataset for evaluating
recommender systems. It contains 1 million ratings
(from 1 to 5 stars) collected from 6,000 users on 4,000
movies. The dataset includes demographic data such
as gender, age, and occupation, but only gender was
included as a sensitive attribute in this pipeline.



After the dataset was downloaded, it was config-
ured to work for knowledge-aware models by creating
knowledge graphs using the RecSysDatasets frame-
work that is closely related to RecBole. Next, a 5-core
filtering section was added to the pipeline, alongside
duplicate removal, evaluation splits and field inclusion.
All non-explicitly defined settings are automatically
assigned default values according to the RecBole docu-
mentation. Given these settings, there were 6040 users
in total, 4331 of which were male (71.7%) and 1709
were female (28.3%). Out of all interactions (997024
in total), 751192 belonged to the male group (75.3%),
while 245832 belonged to the female group (24.7%).

3.2 Models

The models studied via this pipeline can be assigned
to three different categories. Due to time constraints, a
limited subset of models was picked for each category.
Models were chosen based on popularity, suitability,
and size of hyperparameter search space.

General Recommender Baselines

Three models made it into this category. These models
are not specialized in fairness optimization, nor do they
include or combine any sophisticated architecture.

e Popular - This is a non-personalized baseline
model that simply recommends the most popu-
lar items (i.e., those with the highest number of
interactions) to all users.

e Random - This model recommends items ran-
domly, without considering user preferences or
item popularity. It serves as a naive baseline to
test the effectiveness of other models, especially
when evaluating non-accuracy metrics like cover-
age or novelty.

e ItemKNN - This collaborative filtering model
computes similarities between items and recom-
mends items similar to those a user has interacted
with [2].

Knowledge-aware models

Three models made it into this category. These models
can be considered hybrid, as they utilize concepts from
collaborative filtering and rely on knowledge graphs.

* CKE - This model integrates information from
a knowledge base, such as textual, and visual
data, into collaborative filtering by jointly learn-
ing item representations using embedding tech-
niques which allows the model to improve rec-
ommendation performance in sparse settings by
enriching item representations with semantic con-
text from the knowledge graph [20].

* CFKG - This model enhances explainable recom-
mendations by embedding users, items, and enti-
ties from a knowledge graph into a unified latent
space, enabling personalized matching and expla-
nation [1].

* RippleNet - This model simulates the process
of user preference propagation on a knowledge
graph by activating a series of “ripples” through
multi-hop relations from a user’s interacted items,
thereby building a dynamic preference represen-
tation [14].

Fairness-aware models

Due to time constraints, only one model was chosen for
this category. In contrast to the aforementioned mod-
els, it is the only one that provides a hyperparameter
setting whose purpose is to optimize the model’s fair-
ness performance on a sensitive domain.

* PFCN-PMF - This model extends Probabilistic
Matrix Factorization by inserting an adversarial
“filter” module that removes user-sensitive at-
tributes (e.g., gender, age) from learned embed-
dings before scoring. During training, it jointly
minimizes the BPR ranking loss and maximizes
the inability of per-attribute discriminators to pre-
dict those sensitive features from the filtered em-
beddings [10].

3.3 Maetrics

The subset of metrics chosen for this study can be di-
vided into three categories. All Top-K metrics were
ran with K=10.

Accuracy
* Recall@10: Measures the fraction of relevant
items that are successfully recommended.

¢ MRR @10 - Measures the rank of the first relevant
item.

* NDCG@10 - Measures ranking quality, giving
more weight to relevant items ranked higher.

e Hit@10 - Measures if at least one relevant item is
in the top-K recommendations.

* MAP@10 - Averages precision at each recall
point for relevant items.

¢ Precision@10 - Measures the fraction of recom-
mended items that are relevant.

* GAUC (Grouped Area Under Curve) - Assesses
recommendation quality by computing per-user
discrimination between relevant and non-relevant
items, then averaging those per-user scores
weighted by each user’s number of relevant in-
teractions.

User-side Fairness

The following metrics are directly concerned with fair-
ness, particularly user-side, group fairness between
gender splits. Note that RecBole uses raw logits in-
stead of predicted ratings, changing the result do-
main. As such, those logits were passed through a sig-
moid function, after which they were linearly scaled to
match the expected rating domain [1, 5].

* Differential Fairness - This metric aims for equi-
table treatment across gender groups. It seeks to
ensure that the recommendation outcome for an
item is approximately the same regardless of the
user’s gender group.

* Value Unfairness - This measures the inconsis-
tency in signed estimation error (i.e., whether the
system consistently overestimates or underesti-
mates) for items between different gender groups.

* Absolute Unfairness - This measures the incon-
sistency in the magnitude of estimation error (ab-
solute error) for items between gender groups.



* Underestimation Unfairness - This metric quanti-
fies the disparity in how much the system under-
estimates the true ratings for items between gen-
der groups.

¢ Overestimation Unfairness - This quantifies the
disparity in how much the system overestimates
the true ratings for items between gender groups.

e Non-Parity Unfairness - This measures the
absolute difference in the average predicted
scores/ratings given to items by different gender
groups.

Item-side fairness and diversity

These metrics, while not directly measuring dispar-
ity in outcomes between user gender groups, are often
considered in fairness discussions as they relate to the
diversity of recommended items

* Tail percentage @ 10 - Measures the proportion of
recommended items that are from the “long-tail”
(Iess popular items).

* Gini index - Measures the inequality in the dis-
tribution of recommended items (often based on
item popularity). A lower Gini index indicates
more diversity in recommended items, which
can be seen as fairer to a wider range of item
providers.

* Popularity percentage @10 - Measures the pro-
portion of popular items in the recommendations.

3.4 Experimental Setup

As mentioned above, the pipeline mainly relies on
Recbole 1.2.1, as well as the FairRec extension. The
code for both was merged wherever necessary (e.g.
metrics, class definitions, models definitions), the final
version of which is available on GitHub .

Each of the aforementioned models was assigned a
grid hyperparameter search space for a maximum of
150 epochs per permutation. The main validation met-
ric was Recall@10, which determined the best models
for later analytical use, as well as early stopping be-
haviour. Grid search was governed by the Weights &
Biases platform, which helped with parallel CPU exe-
cution, as well as logging and data collection. For that
reason, the Weights & Biases logger in RecBole was
customized in order to accommodate for the logging
behaviour and format.

During training, the evaluation dataset was used to
create 2 more gender-filtered evaluation subsets - one
for the male group, and another for the female group.
To that end, metrics for 3 evaluation sets (All, Male,
and Female) were calculated after each epoch, the
main aim of which was to log metric progression for
each of the user groups. After training was finished, all
log data was pulled from the Weights & Biases plat-
form via their API and ran through custom analysis
scripts.

4 Results

This section presents the results derived from the
experimental setup outlined in the previous section.
Findings are grouped per research question

"https://github.com/JoanMVPopov/RecBole-tud-rp
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In order to summarize the evaluation results, Tables 1
and 2 were created. Table 1 provides the results for
each model’s best run, based on Recall @10, while Ta-
ble 2 provides a mean z-score rank based on Table 1,
aiming to take into account the models’ performance
across all metrics relevant to the their respective per-
formance domain. For further insight, the data from
the top 5 best performing runs for each model, based
on Recall @10, was used to create Figure 1.

Accuracy
Overall accuracy, as detailed in Table 1, shows

ItemKNN achieving the highest Recall@10 and
NDCG@10, outperforming the knowledge-aware
models, as well as all other models, in these accuracy
aspects by a noticeable margin (further supported by
its leading aggregate Z-score in Table 2). CFKG leads
all models in gAUC (0.8711) and appears to perform
the best among all knowledge-aware models in terms
of Recall@10 (0.0763).

CKE demonstrates the best overall results among
the knowledge-aware models when considering all ac-
curacy metrics collectively via the Z-score aggrega-
tion (Table 2). The POP and PFCN-PMF models ex-
hibit lower accuracy, with their overall performance
being similar. The Random model performs the worst,
which is also evident in its very low aggregate Z-
score (Table 2). The gender-specific subtables (a and
b below Table 1) reveal that the male group gener-
ally exhibits better best-run performance than the fe-
male group across most metrics, except for gAUC,
where the female group achieved a score of 0.8740
with CFKG, compared to 0.8702 for the male group
with the same model. Interestingly, the knowledge-
aware models showed better best-run Recall@10 per-
formance for the female group than for the male group.
The boxplots in Figure 1 suggest that model perfor-
mance varies more for the female group. However, it
is possible, especially for knowledge-aware models, to
choose a hyperparameter set that achieves better per-
formance for that group.

User-side Fairness

The POP model achieves the highest aggregate Z-score
(0.447, Table 2), indicating strong overall performance
in this category. It notably scores best on Value Un-
fairness (0.5835, Table 1) and Absolute Unfairness
(0.4804). The Random model also performs well in
aggregate user-side fairness (Z-score 0.439). Among
the knowledge-aware models, CFKG demonstrates the
best user-side fairness profile, leading with the best
scores for Differential Fairness (0.9398), Overesti-
mation Unfairness (0.0037), and NonParity (0.0001),
contributing to its positive aggregate Z-score (0.123).
ItemKNN, despite its accuracy prowess, shows the
poorest user-side fairness with the lowest aggregate Z-
score (-0.595), exhibiting particularly undesirable val-
ues for Differential Fairness (1.5324) and Overestima-
tion Unfairness (0.7547). CKE and RippleNet show in-
termediate performance, with RippleNet having a no-
tably worse NonParity score (0.0256). Surprisingly,
PFCN-PMEF, the only fairness-aware model on the list,
ranks right in the middle in terms of Z-score, being out-
performed by a knowledge-aware paradigm (CFKG).
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Figure 1: Boxplots for metric Recall@10, grouped by gender. The plots are based on the top 5 best-performing runs per model for this metric.

Table 1: Evaluation and fairness metrics results for best run per model, including gender-specific results at ' = 10. Best runs are selected based on Recall@10. Arrows indicate whether higher
(1) or lower ({) values are better.

Accuracy (1) User-side fairness (|) Item-side fairness & diversity
Model Recall@10 MRR@10 NDCG@10 Hit@10 MAP@10 Precision@10 gAUC Diff. Fair. Value Unf. Abs. Unf. Underestim. Overestim. NonParity Tail% @107 Gini@10) Pop% @10}
CKE 0.0756 0.1633 0.0798 0.4639  0.0331 0.0608 0.8682  1.4013 0.7343 0.6147 0.3134 0.4209 0.0040 0.0003 0.9245 0.9166
CFKG 0.0763 0.1541 0.0769 0.4575  0.0314 0.0586 0.8711  0.9398 0.7765 0.7707 0.7728 0.0037 0.0001 0.0007 0.8709 0.8953
RippleNet 0.0581 0.1410 0.0659 0.4053  0.0263 0.0523 0.8543  1.3666 0.7642 0.6432 0.5180 0.2462 0.0256 0.0023 0.9544 0.9302
POP 0.0446 0.1231 0.0553 0.3490  0.0221 0.0442 0.8035  1.4358 0.5835 0.4804 0.2363 0.3472 0.0095 0.0000 0.9971 1.0000
Random 0.0032 0.0130 0.0052 0.0444  0.0017 0.0047 0.5020  1.4565 0.6049 0.5059 0.2176 0.3873 0.0021 0.2015 0.1341 0.1967
ItemKNN 0.0922 0.2058 0.1012 0.5281  0.0456 0.0725 0.8602 1.5324 0.7728 0.7569 0.0180 0.7547 0.0102 0.0001 0.9540 0.9765
PFCN-PMF  0.0449 0.1241 0.0559 0.3464  0.0225 0.0443 0.8005  1.4483 0.5887 0.4875 0.2132 0.3755 0.0319 0.0000 0.9960 1.0000

Gender-specific evaluation metrics at K = 10 (best runs).

(a) Female group (b) Male group
Accuracy (1) Item-side fairness & diversity Accuracy (1) Item-side fairness & diversity
Model Recall@10 gAUC Taila@101 Gini@10] Pop% @10} Model Recall@10 gAUC Tail%a@10T Gini@10] Pop%@10]
CKE 0.0770 0.8685 0.0001 0.9311 0.8978 CKE 0.0750 0.8682 0.0003 0.9296 0.9241
CFKG 0.0798 0.8740 0.0005 0.8849 0.8728 CFKG 0.0749 0.8702 0.0008 0.8797 0.9041
RippleNet 0.0600 0.8519 0.0023 0.9557 0.9147 RippleNet 0.0573 0.8551 0.0023 0.9579 0.9363
POP 0.0393 0.7945 0.0000 0.9971 1.0000 POP 0.0467 0.8064 0.0000 0.9971 1.0000
Random 0.0029 0.4996 0.1954 0.2538 0.2040 Random 0.0029 0.4997 0.1980 0.1618 0.2003
ItemKNN 0.0919 0.8593 0.0000 0.9524 0.9741 ItemKNN 0.0923 0.8605 0.0001 0.9581 0.9775

PFCN 0.0431 0.7960 0.0000 0.9970 1.0000 PFCN 0.0456 0.8020 0.0000 0.9966 1.0000




Table 2: Z-score normalized aggregate scores across metric groups. Z-score normalization was applied on Table 1, per column.
The means for each model’s z-score were calculated per row, inverting the z-score result wherever necessary, such that the final

aggregated score implies “higher is better”.

Accuracy Metrics

Model Z-score Model
ItemKNN 1.205 POP

CKE 0.617 Random
CFKG 0.544 CFKG
RippleNet  0.183 PFCN
PFCN -0.203 CKE
POP -0.209 RippleNet
Random -2.137 ItemKNN

Item-side Fairness and Diversity

Examining item-side fairness and diversity, the Ran-
dom model overwhelmingly demonstrates the best per-
formance in this category, achieving an exceptionally
high aggregate Z-score of 2.433. This is driven by its
outstanding scores in Tail Percentage (0.2015), Gini
Index (0.1341), and Popularity Percentage (0.1967),
indicating it recommends a highly diverse and non-
popular set of items. Among the other models, CFKG
shows the best item-side fairness profile with the
second-highest aggregate Z-score (-0.242, though con-
siderably lower than Random), primarily due to hav-
ing the lowest (best) Gini Index (0.8709) and Popular-
ity Percentage (0.8953) among the non-Random mod-
els, alongside a reasonable Tail Percentage (0.0007).
CKE and RippleNet follow, with RippleNet exhibit-
ing the highest Tail Percentage (0.0023) among the
non-Random models, suggesting better long-tail cov-
erage. However, RippleNet’s Gini Index (0.9544) and
Popularity Percentage (0.9302) are less favorable com-
pared to CFKG and CKE. ItemKNN, POP, and PFCN-
PMF perform poorly in this category, with POP and
PFCN-PMF showing no tail coverage (Tail% = 0.0)
and very high Gini Index and Popularity Percentage
scores, indicating a strong bias towards popular items.
ItemKNN also struggles with a low Tail Percentage
(0.0001) and high Gini (0.9540) and Popularity Per-
centage (0.9765).

42 RQ2

The knowledge-aware models RippleNet and CKE
were investigated further, as their loss function nat-
urally consists of a recommendation loss component
and a KG loss component. The model CFKG was not
considered as its loss function definition did not pro-
vide a natural split for those components. Two addi-
tional hyperparameters were included, e and oyeg,
which were responsible for assigning weight to each
component. For auec, the values were drawn from the
list [0.5, 1.0, 1.5, 2.0], while for oy, that list was [0.0,
0.5, 1.0, 1.5, 2.0]. Both models were trained anew
with the same early stopping and metric maximiza-
tion mechanism as in RQ1. Due to time constraints,
the models’ respective hyperparameters, including the
newly introduced ones, were chosen from the top five
best-performing runs (Figure 1) that also offered rea-
sonable training time - not necessarily the best, but
among the top and fastest to train.

Due to this setup, cuec and oy, can be defined as
independent variables, and all other metrics can be

User Fairness Metrics

Item Fairness Metrics

Z-score Model Z-score
0.447 Random 2433
0.439 CFKG -0.242
0.123 CKE -0.332
0.078 RippleNet  -0.374
-0.048 ItemKNN  -0.442
-0.444 PFCN -0.520
-0.595 POP -0.522

defined as dependent. This is a suitable configura-
tion for the Two-way ANOVA test, which was car-
ried out on those variables in order to detect signifi-
cance. The variables were treated as categorical for
the purposes of the formula that’s fed into the ANOVA
model, not only to not assume linearity, but also due
to the restricted domain for those values (as defined
above). Tukey’s HSD tests were conducted on sig-
nificant results in order to establish the direction of
significance, the baselines for which were defined be-
forehand, based on proximity to the respective de-
fault RecBole values (CKE: ay, = 1.0; RippleNet:
g = 0.0; both: a.c. = 1.0). Statistical significance
was determined at p < 0.05.

Accuracy

The CKE baseline generally maintained strong per-
formance. Specifically, for the 'male’ user group,
the CKE baseline ay, = 1.0 was significantly bet-
ter than oy < 1.0 for Hit@10, Precision@10, and
Recall@10. For all groups, having ay, > 1.0 led
to slightly better results, but not in a significant way.
However, while the male group experienced a signifi-
cant decrease in Recall@10 for lower g values, the
female group showed an increase for o, = 0. For
RippleNet, the baseline azy = 0.0 was often more ef-
fective for accuracy with 'male’ users (NDCG, Preci-
sion@10, Recall@10 being better than in a non-zero
Qg configuration). Across both models, variations in
Qe from its 1.0 baseline did not yield significant im-
provements in accuracy metrics. Overall, alternative
hyperparameter settings did not offer broad, statisti-
cally significant enhancements in core accuracy met-
rics beyond the established baselines for either model.

User-Side Fairness

In terms of user-side fairness for CKE, oy, values
higher than its baseline demonstrated a slight but non-
significant improvement across the metrics. However,
setting o,y = 0 yielded contradictory results - Un-
derestimation Unfairness was significantly worse, but
Differential, Non-Parity, and Overestimation Unfair-
ness exhibited nearly significant improvements. For
RippleNet, the results indicated that non-zero ay,
yielded slightly better Overestimation Unfairness val-
ues. However, such values also led to significantly
worse results for almost all other metrics except for
Non-Parity Unfairness, where no significance was de-
tected. Changes in the ;... parameter did not lead
to significant changes in user-side fairness for either
model.



Item-Side Fairness and Diversity

For item-side fairness diversity, the CKE model’s base-
line did not see significant changes from alternative
settings. However, RippleNet demonstrated notable
benefits when 4 was adjusted from its 0.0 baseline.
Specifically, setting oy, = 1.5 led to a significantly
better Tail Percentage for ’all’, female’, and ’male’
user groups. Furthermore, for the female’ segment,
apgs = 1.5 also achieved a significantly better Gini
Index, while also being on the brink of significance
for the other user groups, which was also the case
for Popularity Percentage. Changes to ay... did not
yield changes improvements in this category for either
model.

4.3 RQ3

The fairness—accuracy trade-off was assessed using
two 2D multiobjective scatterplots per model (Figure
2), with a min-maxed Recall@10 on one axis and a
composite fairness score on the other. For each fairness
side, the appropriate metrics were min—max-scaled (in-
verting wherever necessary) and then averaged out per
model in order to produce an aggregate score. This
score was further min-max-scaled in order to produce
proper plots and calculations for euclidean distance to
the optimal point.

Looking at the frontier plots for CKE (plots a and
b from Figure 2), a trend is clearly visible - as we
increase the Recall@10 metric, the composite fair-
ness metric seems to get slightly worse. However,
this tradeoff might be worth investigating. For user-
fairness, picking the point that has the shortest eu-
clidean distance to the optimal point yields 17.13% av-
erage improvement per user-side fairness metric whilst
giving up only 2.04% in terms of Recall@ 10 perfor-
mance when compared with the base configuration
(Table 3). Similar results can be seen for item-fairness,
with an 18.28% increase on per fairness metric on av-
erage and a 3.12% decrease for Recall@10 (Table 4).

As far as RippleNet is concerned, the same gen-
eral tradeoff trend between Recall@10 and compos-
ite user-side fairness can be seen (Figure 2, subplots ¢
and d). However, it seems like the base configuration
is amongst the most optimal configurations for user-
side fairness, with the point with shortest euclidean
distance only yielding a 0.36% improvement for Re-
call@10 and a slight 0.03% decrease per fairness met-
ric (Table 3). In contrast, an interesting result can be
observed for the item-side composite fairness metric
where picking the most optimal point for item-side
fairness yields an impressive 80.63% average increase
whilst only reducing the Recall@10 performance by
0.72% (Table 4).

Table 3: User-side fairness and Recall@10 changes

Model Avg. user-side fairness change Recall@10 change
CKE 17.13% -2.04%
RippleNet -0.03% 0.36%

5 Responsible Research

The data used in this study is publicly accessible. Only
a limited set of sensitive attributes is retained for train-

Table 4: Item-side fairness and Recall@10 changes

Model Avg. item-side fairness change Recall@10 change
CKE 18.28% -3.12%
RippleNet 80.63% -0.72%

ing and analysis, that attribute being gender in this
study.

The training and evaluation of the recommender
models were conducted using an open-source frame-
work. A specific fork of this framework, customized
for the purposes of this study, is also publicly avail-
able. Additionally, all scripts used for data preprocess-
ing, model evaluation, and metric computation are in-
cluded in the repository linked in this study. The fig-
ures presented in this paper are generated directly from
those scripts and are also available in the repository.

To ensure reproducibility, all software dependencies
and experimental configurations are explicitly defined.
Given an identical setup, the results reported in this
study should be replicable by other researchers.

6 Discussion

The findings in Section 4 reveal a complex interplay
between model architecture, hyperparameter tuning,
and the multifaceted nature of fairness.

6.1 ”Jack of all trades, master of none”

The comparative analysis in RQ1 underscores a key
takeaway, based on the investigated dataset: no sin-
gle model or paradigm emerged as a universal cham-
pion across all performance domains. While the col-
laborative filtering model ItemKNN dominated pure
accuracy metrics, its performance on user-side fair-
ness was notably poor. Conversely, simpler base-
lines like POP and Random excelled in specific fair-
ness domains — POP in user-side fairness and Ran-
dom in item-side diversity — albeit at the cost of ac-
curacy. Knowledge-aware models occupied an inter-
esting middle ground. CFKG demonstrated the best
overall user-side fairness among similar models and
even surpassed the fairness-aware PFCN-PMF model
in this aggregate category. CKE, while strong in aggre-
gate accuracy, did not particularly stand out for metrics
from any fairness side, but was not a poor performer
either. RippleNet offered competitive item-side diver-
sity, but user-side fairness was not its strong suit. This
pattern, where a knowledge-aware model consistently
ranked within the top three in aggregate Z-scores for
accuracy (CFKG, CKE), user-side fairness (CFKG),
and item-side fairness (CFKG, CKE), suggests their
potential for achieving a more holistic fairness perfor-
mance while retaining competitive accuracy.

6.2 The Critical Role of Knowledge Graph
Weighting

The investigation into loss component weighting
(RQ2) for CKE and RippleNet revealed the significant
leverage provided by the knowledge graph component
weight (o), while the recommendation loss weight
(arec) showed minimal impact within the tested range.
For CKE, its baseline proved robust for accuracy, par-
ticularly for male users, and deviating to ay, = 0.0
significantly worsened Underestimation Unfairness for
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Figure 2: Scatterplots displaying the Pareto frontiers for CKE and RippleNet

all users. This indicates that the KG component is in-
tegral to CKE’s performance and fairness profile. Rip-
pleNet’s behavior was more varied: its baseline was
often better for male user accuracy and some user-
side fairness aspects, yet increasing a4 to 1.5 yielded
substantial improvements in item-side diversity across
all user groups, while also significantly reducing user-
side fairness performance. This illustrates that opti-
mizing for one fairness aspect or user group via oy,
may inadvertently affect others, necessitating careful,
context-specific tuning. It may possible to further de-
velop the loss functions of those models by making the
separate loss component weights learnable, adjusting
them based on internally calculated fairness and accu-
racy metrics.

6.3 Navigating the Fairness-Accuracy
Frontier

The exploration of the fairness—accuracy trade-off
(RQ3) confirmed its existence but also highlighted
opportunities for optimization. For CKE, enhancing
either user-side or item-side composite fairness was
achievable with a relatively small recall decrease com-
pared to its baseline configuration. This suggests that
meaningful fairness gains can be made without crip-
pling accuracy. RippleNet presented an even more
compelling case for item-side fairness: an impressive
80.63% average improvement in composite item-side
fairness was possible with a negligible 0.72% reduc-
tion in recall. While its user-side fairness showed
less room for improvement over the baseline via this
method, the potential to significantly boost item diver-
sity with minimal accuracy cost is a valuable finding.
These results demonstrate that the trade-off is not al-
ways severe and that carefully selected hyperparameter
configurations can lead to models that are both reason-
ably accurate and demonstrably fairer. It is also worth
noting that there seems to be a tradeoff between user-
side fairness and item-side fairness. While there was
some overlap between the frontiers, the majority of the
points, which belonged to one fairness domain’s fron-
tier, did not belong to the frontier of the other fairness
domain. This implies that optimizing for both user-
side and item-side fairness is a non-trivial task, the in-
terdependence relationships in which need to be stud-
ied further.

7 Conclusions and Future Work

This research investigated the complex landscape
of fairness in knowledge-aware recommender sys-
tems, comparing their performance against general and
fairness-focused models, and examining the impact of
internal component weighting. Our findings reveal
that no single model universally excels across accuracy
and all fairness dimensions. While traditional mod-
els like ItemKNN lead in accuracy, they often falter in
user-side fairness. Conversely, simpler baselines can
achieve strong results in specific fairness domains but
at a significant accuracy cost. Knowledge-aware mod-
els, such as CFKG and CKE, demonstrate a promising
ability to achieve a more holistic performance, often
ranking competitively across accuracy, user-side, and
item-side fairness domains without dominating any
single one.

The weighting of the knowledge graph component
in models like CKE and RippleNet proved to be a sig-
nificant lever for tuning, capable of substantially im-
pacting both accuracy and various fairness metrics,
sometimes with contradictory effects across different
fairness aspects or user groups. The recommenda-
tion component weight showed less influence. Further-
more, the exploration of the fairness-accuracy trade-
off indicated that substantial gains in specific fairness
dimensions, particularly item-side diversity for Rip-
pleNet and balanced improvements for CKE, are of-
ten achievable with only minor compromises in ac-
curacy. These results highlight the potential for tar-
geted optimization. However, different types of inher-
ent trade-offs emphasize the need for nuanced, well-
defined strategies to create recommender systems that
are both truly fair and effective.

Limitations and Future Work

Despite the valuable findings, this study has several
limitations that may affect the generalizability and in-
terpretability of the results:

* Experimental Scope - The study used a limited
number of datasets and models, with fixed group
splits and a single 8/1/1 train/validation/test split.
Broader evaluations with more datasets, diverse
group definitions, more model types, and multiple
splits would enhance the robustness of the find-
ings.

* Hyperparameter and Metric Coverage - The hy-
perparameter search space (e.g., for aue. and



aug) was relatively narrow, which may have
missed fine-grained performance-fairness trade-
offs. Similarly, the set of fairness metrics was not
exhaustive, limiting the comprehensiveness of the
fairness evaluation. Those need to be expanded -
including more well-defined fairness metrics cal-
culated across a larger search space.

No ubiquitous framework - Because of the cur-
rent state of the RecBole framework, some fair-
ness metric implementations used in this study do
not exactly match canonical definitions in the lit-
erature, which may limit comparability with prior
work. More work needs to be done in order to en-
sure easier and more reproducible pipeline setups
when using such open-source projects.
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