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Abstract

Cycling is an increasingly attractive transportation mode, thanks to its health and environ-
mental benefits. Personalized travel assistance services can help make cycling more appealing
by providing speed or route advices that can reduce travel time and increase safety while
taking into account the personal preferences of cyclists. Due to its ability to learn agents’
reward function, Inverse Reinforcement Learning is a suitable algorithm for learning cycling
preferences from data.

This thesis aims to describe cycling styles as a set of cycling preferences encoded as a reward
function composed of a weighted sum of features. The weights associated to the features
composing the reward function represent the importance given to each cycling preference and
express the trade-off between different goals of a cyclist. Continuous-time Inverse Reinforce-
ment Learning extracts the weights from empirical cyclists’ trajectories collected during an
experiment performed in Delft. During the experiment, cyclists were asked to cycle according
to three different cycling styles: cautious, normal and aggressive. Differences between weight
sets extracted for each cycling styles were analyzed by means of the Kruskar-Wallis statistical
test and K-Means clustering algorithm, and the averaged weights for each cycling style were
used to simulate a set of test trajectories.

It is shown by simulations that the reward function identified for a specific cycling style leads
to an improvement in terms of similarity to test trajectories with the same cycling style with
respect to the reward functions corresponding to other cycling styles. The statistical analysis
shows that the weights of cautious and aggressive cycling styles show statistical differences
and define separate clusters.
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Chapter 1

Introduction

In the past years, green mobility solutions have been gaining interest and the demand for
alternative means of transportation like bicycles, e-bikes and scooters is raising.

Among them, bicycles are particularly valuable in terms of environmental sustainability, ease
of use and popularity. Cycling is becoming increasingly appealing, and it is particularly
widespread in Northen-European countries like Germany, Netherlands, and Denmark [10].
The change in mobility habits towards bicycles leads to the necessity of infrastructures and
services suitable to cyclists and their traffic patterns. On this line, research on modelling and
simulation of cyclists is advancing. By understanding cyclists’ behaviour, mobility services
can be designed in order to improve user experience. One of the recent developments in this
field is given by personalized travel assistance services, e.g., personalized speed or road advice
systems which provide speed, acceleration or route recommendations to cyclists in order to
reduce their travel time, increase the chances of catching a green light or optimize the route
for other personal preferences. The algorithms behind these services rely on a model of cy-
cling behaviour, in terms of cycling preferences or reaction to the advice. Once the model
of an individual cyclist is learned, the assistance service can be tuned in order to meet his
preferences and characteristics, providing a personalized travel service.

Personalization as an engineering technique applied to travel services has been extensively re-
searched in the driving domain, especially in the fields of advanced driver assistance (ADAS)
and autonomous driving. In the former case, a driver’s acceptance of the ADAS strongly
depends on his individual characteristics: for example, an aggressive driver who drives in a
risky way and often triggers the system will be bothered by the amount of warnings of a
system that a more cautious driver would perfectly accept. Hence, an aggressive driver could
ignore or disable the system. Similarly, for autonomous driving, the vehicle should provide
a comfortable travel experience for the user, but the definition of comfort may vary among
different persons.

Driving style refers to the habitual way of driving of an individual or a group of drivers [18].
From an engineering prospective, driving style is a complex notion involving several factors
in its description. The action of driving can be defined as a list of driving patterns, such
as accelerating, decelerating, overtaking etc, that are related to the external conditions (e.g.
road type and weather) and on the human intentions and preferences.
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2 Introduction

This last concept can be defined as the driving style. Here, developing driving style identifi-
cation techniques is interesting because it allows the prediction of driving actions of a user,
given a set of external conditions. Driving style recognition has been performed on the basis
of identification of specific driver preferences, usually in terms of increasing safety or mini-
mizing fuel consumption, or specific behaviours, as unpredictable manoeuvres or aggressive
interactive behaviour. Driving preferences are defined as personal inclinations towards dif-
ferent characteristics of the driving style such as minimizing fuel consumption, maximising
safety and comfort and minimizing travel time. In the literature, different categories of driv-
ing styles have been defined based on their driving preferences. As an example, aggressive
driving style has been connected to driver’s preferences for high speed, abrupt acceleration
and high fuel consumption, while cautious drivers tend to avoid dangerous situations and
keep a stable, lower speed [6]. Thanks to the large amount of available traffic data containing
valuable information, data-driven approaches have been increasingly employed and improved
in this field to learn personal preferences from data and thus characterize different individuals’
driving style.

For cyclists, limited literature on personalized cycling assistance is present. Dabiri et al. [7]
propose an approach to give optimal acceleration advice to a cyclist with respect to his pref-
erences in cycling, but the preferences are assumed to be manually assigned by the cyclist
himself. Identification of cycling style by means of data-driven approaches has not yet been
researched. Analogous to what have been developed in the automotive industry, this thesis
proposes a method to learn the cycling style of each user from observed trajectory data.
Different data-driven driving style characterization techniques have been explored in the lit-
erature. Clustering algorithms grouping driving styles into a discrete number of classes as
"aggressive',"moderate" and "conservative" are widely used [6] [30]. Other approaches model
drivers’ behaviour as a pattern recognition problem, using Hidden Markov Models to char-
acterize long-term driving intentions like lane-changing, lane-keeping, acceleration or turning
[32]. Another promising method is to represent drivers preferences with a reward function
that is learned from data by means of variants of the Inverse Reinforcement Learning (IRL)
algorithm.

IRL is a method originated in the robotics field that has been employed to learn reward func-
tions from human demonstrations. In the literature, several successful applications to the
driving domain are present, mostly aiming to extract the driving style in order to improve
the user experience for autonomous vehicles [15] [13] [31] [25] and to propose improved and
personalized ADAS [11]. These research works assume that drivers optimize a set of high-
level goals, like optimizing safety, comfort, energy consumption etc. From a mathematical
point of view, this notion can be encoded by a reward function. Within the context of IRL
for driving style identification research, reward function are usually defined as a weighted
sum of a set of features, each one related to a characteristic of the driving action. These
weights may vary from person to person, and the collection of the different features and their
corresponding weights characterizes the driving style. Driving styles are identified by means
of the IRL algorithm, which quantifies the driving preferences of a driver by identifying the
weights values of his internal reward function.

IRL is gaining interest thanks to its ability of reflecting the human’s decision-making process
and generalization capabilities. In fact, IRL provides a description of individual drivers’ long-
term behaviour by characterizing the individual driver himself through his internal reward
function, instead of learning his behaviour during specific manoeuvres. Moreover, this for-
mulation describes a set of preferences for each individual driver rather than assign him to a
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1-1 Problem statement 3

cluster, which gives a more detailed and personal model of the individual and is particularly
advantageous in view of a possible personalized travel service.

1-1 Problem statement

IRL has shown promising results in learning driving styles and might be successfully applied
to the cycling domain. The main goal of this thesis will be to investigate the possibilities of
this algorithm for learning cycling styles from observed trajectory data. The research question
this thesis is addressing is:

Given a set of fixed external conditions, can different cycling styles be learned
from cyclists’ trajectories using Inverse Reinforcement Learning?

To answer the main research question, a set of sub-questions are designed. The first step is
defining experiments with the goal of collecting informative data, so this sub-question arises:

How to design and implement an experimental setup that provides the trajectory
data necessary to implement and test the proposed algorithm?

In order to learn cycling styles, meaningful features that can capture human preferences in
the form of a reward function need to be designed.

Which features can represent cycling styles and how can they be mathematically
expressed?

Once the reward function’s shape is defined and the algorithm learns a set of weights from
each trajectory, their validity should be discussed. One possible criterion is that differences
in cycling preferences should imply different weight values. This leads to the following sub-
question:

Do the identified weights related to different cycling styles show statistical differ-
ences?

The extracted weights define reward functions that can be used to simulate cyclists’ trajec-
tories. Assuming that cyclists with the same cycling style have a similar set of preferences
defining their internal reward function, the identified reward function can be used as a model
that can simulate trajectories that fit the empirical ones.

Can the learned reward function simulate trajectories that fit the empirical ones?

Master of Science Thesis Francesca Andretta



4 Introduction

1-2 Thesis outline

The outline of this thesis is as follows. An introduction to Inverse Reinforcement Learning
and its applications to traffic domain is presented in Chapter 2. Chapter 3 presents the ex-
perimental setup, including characteristics of sensors, location, participants and instructions.
Chapter 4 describes the proposed approach and the features used to describe cycling styles are
described in detail. The same chapter presents the employed data processing techniques. The
performance of the proposed method is evaluated in Chapter 5 with a convergence analysis,
a simulation study and statistical analysis of weights.

This thesis is concluded with an overall discussion and future recommendations in Chapter
6.
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Chapter 2

Inverse Reinforcement Learning

2-1 Introduction

Inverse Reinforcement Learning is an approach originated by learning from demonstrations
developed in the robotics field, but has also been explored in other domains such as traffic
applications, cognitive science and video-games development [17] [29] [14].

While Reinforcement Learning aims to find an optimal policy, defined as the optimal sequence
of actions per states for an agent given a reward, the goal of Inverse Reinforcement learning
is to model the behaviour of an agent from observed demonstration by inferring its reward
function.

This chapter starts with an introduction to the Inverse Reinforcement Learning algorithm
and its theoretical background, and continues with a section dedicated to the versions of IRL
used for traffic applications.

2-2 Environment description - Markov Decision Process

The interaction of a human agent with the environment is often formulated as a Markov
Decision Process (MDP), represented by:

M = (S, A, P(s'|s,a), R(s,a)) (2-1)

with S the finite set of states or environment, A the finite set of actions, P the transition
probability distribution, where P(s'|s,a) is the probability of an agent of being in state s
after taking action a in state s and R(s, a) the reward function which encodes the utility of
an agent taking action a in state s. An optional discount factor v on rewards is absorbed into
the transition probabilities. At each time ¢, the state s; € S describes the environment and
the human chooses an action a; € A. For each state s, a deterministic policy 7 is a function
that outputs an action a = 7(s). A stochastic policy is defined as 7 (s,a) = P(a; = a|s; = s),
namely a probability distribution on the action to be taken in each state. A policy’s expected
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6 Inverse Reinforcement Learning

State & Action

Space Reward Function

Weights

Expert Demonstration Inverse Reinforcement

“Observed Learning (IRL)
Trajectories” “Optimal”
Policy
Environment

Dyvnamics

Figure 2-1: Structure of Inverse Reinforcement Learning by Alsaleh et al. [3]

reward is the expected sum of rewards that will be obtained if the policy is followed and a
strategy that aims to maximize this expected reward is said to be optimal.
In a Markov Decision Process, each state only depends on the previous one and on the policy.

2-3 Background

Given a set of human trajectories {7;}YY, consisting of a number of state-action pairs 7 =
((s0,a0), (s1,a1), ..., (8)), Inverse Reinforcement Learning aims to recover a reward function
such that the behaviour of the agent fits the observations. A scheme representing the general
high-level structure of Inverse Reinforcement Learning algorithm is shown in Figure 2-1. On
the left, the inputs such as the expert demonstrations, the environment dynamics given by
the transition probability and the environment description as Markov Decision Process. On
the right, the expected outcomes of the algorithm is the optimal reward function weights
which result in an optimal policy.

For many purposes, it is possible to assume that the reward function is linear over some fea-
tures, and can be defined as the weighted sum of a number of features, described with math-
ematical expression involving quantities that can directly be evaluated from data. Hence, the
reward function can be expressed as:

R(s,a) = —wl®(s,a), (2-2)

where w is the weight factor and ® the feature vector, with features defined as mappings
from state-action space to real values which capture important properties of the observed
behaviour. Diametrically, wT<IJ(s, a) can be interpreted as a cost function.

Given the feature-dependent parametrization of the reward function, a key concept in Inverse
Reinforcement Learning is that the difference between empirical and expected feature values
can be considered a measure of similarity between the empirical and generated trajectories.
Early works [2] propose a method that recovers reward weights such that trajectories derived
from this reward function and expert trajectories have similar features expectation, called
Feature Matching. The core of the algorithm consists of finding a policy such that a planner
based on this policy and the expert trajectories have almost equal features expectation. Fea-
ture Matching IRL does not necessarily find the correct reward weights, but recovers a policy
that leads to trajectories close to the expert ones in terms of feature values.

Francesca Andretta Master of Science Thesis



2-3 Background 7

Recovering reward weights from demonstrations imposing feature matching only is an under-
defined problem. Many weight values and thus reward functions can explain the observed
behaviour. For example, if a user chooses random actions, this would result in a constant
reward function for which each behaviour is optimal.

Ratliff et al. [24] apply the Maximum Margin concept to IRL and formulates it as a quadratic
programming problem. In this framework, the algorithm aims to find a solution better than
any other solution by a margin. The margin depends on a loss function, which is chosen as the
count of the number of states the planner visited but not the expert. This way, the margin is
larger for policies that are very different from the demonstrated optimal policy. As Ziebart
points out in his thesis [33], even if the method has the advantage of recovering a unique set
of weight parameters, it still has a problem: it may be possible that the weights and conse-
quently the reward function can’t make the demonstrated behaviour optimal and better than
the other possible behaviours. This issue may arise in a situation for which the demonstrated
behaviour is not perfect or the reward function does not capture enough characteristics to
describe human behaviour. A feature boosting approached was introduced in order to provide
a more complete description of the behaviour and to address its non-optimality. This method
has shown to improve the original maximum margin approach, but suffers from possible over-
fitting of feature definition on demonstrated behaviour.

Ziebart et al [34] introduced a probabilistic mathematical framework accounting for the non-
optimality of demonstrations based on the maximum entropy principle. The observation
are assumed to be the result of a human taking stochastical and near-optimal actions. The
demonstrated trajectories are sampled from the distribution:

P(rijw) oc e (2-3)

where the probability of choosing a sub-optimal trajectory is exponentially decreasing with
respect to the trajectory’s cost. The agent’s reward function is the one maximizing the average
log-likelihood L(w) of the given N demonstrations:

N
w* = argmax L(w) = arg maxz log(P(7;|w)) (2-4)
v Y=l

However, it is not possible to analytically compute w* from this expression since the proba-
bility distribution P(7|w) of trajectories T given a set of weights w is intractable analytically.
Hence, w* has to be found with gradient-descent methods and hence requires the gradient of
L(w) [15].

The gradient of L(w) can be shown to be the difference of feature expectations between the
empirical trajectories and the generated ones [33]:

va(w) = (I) - EP(T"U)) [(D]a (2_5)

with ® the empirical feature value calculated from empirical demonstrations, and F P(rw) [P]
the feature expectations, which is the expectation of feature values ® over the the distribution
of trajectories given a set of weights P(7|w), defined previously.

Intuitively, if the expected value of a feature k is higher than the empirical one, it means
that the weight corresponding to that feature should increase. This way, since the cost is
minimized, the likelihood of trajectories with high value for the feature k decreases.
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8 Inverse Reinforcement Learning

The main challenge in calculating 2-5 is to calculate the feature expectations Ep(r|y) (D],
which has the form:

Ep(eiu|®) = [ P(rlw)@(r)dr (2-6)

Since it requires integrating the whole set of trajectories. As for 2-4, the probability distribu-
tion P(7|w) of trajectories 7 given a set of weights w is not computable analytically. Ziebart
et al. [33] use a dynamic programming forward-backward algorithm to calculate the feature
expectation, but such an approach is intractable for large state-action spaces.

Most of the literature on Inverse Reinforcement Learning is based on Ziebart’s Maximum
Entropy IRL method. Several sampling-based methods have been proposed to solve the
problem of feature expectation calculations. Sampling-base techniques applied to IRL consist
of deriving the expected feature values by sampling trajectories from a sampling probability
distribution of trajectories ¢(7). In Boularias et al., [4], a uniform baseline probability distri-
bution is suggested while in Finn et al. [9] the probability distribution is refined over time
[26].

Finn et al. [9] propose Guided Cost learning algorithm, a deep-learning based approach
that brings two main improvements to the Inverse Reinforcement Learning framework: this
algorithm is capable of learning nonlinear reward functions, suitable for high-dimensional
robotics application, and handles unknown model dynamics by performing a sampling-based
approximation of the gradient. Guided Cost learning algorithm [9] goes further than other
sampling-based Inverse Reinforcement Learning methods by only generating trajectory sam-
ples which are useful for the estimation of the partition function, but suffers in terms of
interpretation of the features.

2-4 Inverse Reinforcement Learning for traffic applications

Continuous and large scale action-spaces typical of the driving domain pose a challenge in
the calculation of the expected feature values of equation 2-6 with Maximum Entropy IRL
algorithm. In order to simplify the algorithm, some convenient domain-dependent assump-
tions can be made. Related works defined a framework for a continuous-time version of IRL
that can represent the environment in traffic domain and avoid the problems associated with
the discretization of a large state-action space.

One possible approach is to suppose that a human driver is an optimizer who only performs
the best actions in terms of the internal reward function, so the algorithm generates the best
path according to the recovered reward function. Such an approach is known as Inverse Op-
timal Control (IOC), and will presented in Section 2-4-2. On the other hand, a trajectory
sampling IRL approach described in Section 2-4-1 supposes that a human driver can mentally
construct numerous potential trajectories and choose one to execute based on the associated
rewards. According to this assumption, the algorithm generates a set of feasible trajectories
and the most likely one is chosen.

In both cases, a traffic-domain suited version of IRL produces trajectories, intended as position
in time, instead of state-action sequences as in Maximum Entropy IRL. Since the trajectories
generated by the algorithm mimic human driver trajectories, they should be smooth and dy-
namically feasible. In particular, acceleration and jerk should be continuous in time.

Most of the literature on IRL for automotive domain assumes that the generated trajectories
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2-4 Inverse Reinforcement Learning for traffic applications 9

have been approximated as two-dimensional polynomial functions of time of order four or five
115],[13].

z(t) = ap + a1t + ast® + ... + a,tV

2-7
y(t) = by + byt + bot> + ... + bt (27)

By parametrizing the trajectory as a function of time of a certain order, velocity and acceler-
ation are continuous and can be computed as analytical derivatives of the trajectory function.
In order to reduce computational effort, it is possible to optimize only selected points of the
trajectories. Kuderer et al. [15] employ splines to represent trajectories. The trajectory is
given by a set of S spline segments that define the trajectory in a time interval [tg, txts):

T(t) = Sk(t) (t € [tkv thrAt])v (2‘8)

where 7(t) is the trajectory as a function of time, & denotes an interval of the trajectory and
si denotes the time segment defined for time in the interval [ty, tx+v¢]. Each interval shares
the start and end points with the previous and following interval. These points, called control
points, are a subset of the total number of points of the spline and are the only ones optimized
during the algorithm.

2-4-1 Trajectory Sampling Inverse Reinforcement Learning

As presented in the introductive Section 2-4 , Trajectory Sampling IRL emerges as one of the
main [RL versions used in traffic applications.

The hypothesis of this method is that since the human driving follows the constraints of traffic
rules and the motion of the vehicle, the space of possible trajectories can be reduced to some
small subspaces. Therefore, it is possible to assume that the human driver preplans a limited
number of trajectories and then select one to follow. Hence, it is reasonable to approximate
the expected feature values with the average of feature values derived from multiple generated
feasible trajectories:

T .
w <I>T?

M
Ep(rlw)[@] ~ 3 Y — =Py (2-9)

wT ®
i=1j=1 j]\/il e T'L] ‘

Where w is the set of weights, ®_; is the feature vector extracted from the trajectory Tij ,

which is one of the IV feasible trajelctories generated given the initial position and velocity of
77, one of the M empirical trajectories.

Feasible trajectories are generated by representing the trajectory as a polynomial or other
kind of function. Given initial position and velocity and boundary equations, the final posi-
tion and velocity are sampled. By solving the boundary conditions resulting from imposing
the initial and sampled final conditions, the coefficients of the polynomial are derived and
therefore a trajectory is generated.

The feature values can be directly derived from the trajectory, thus a set of weights can fully
characterize the reward functions associated to each generated trajectory. The algorithm
optimizes the weight values by gradient-descent: given a set of weights at an iteration, the
feature expectations are found according to Equation 2-9. This value is used to calculate the
gradient as the difference between expected and empirical feature values, thereafter a new
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10 Inverse Reinforcement Learning

weight vector is updated using this gradient. The new weight vector is used in the following
iteration, and the process is repeated until convergence.
The pseudo-code of the algorithm used by [13] and [31] is given as:

1. Empirical feature vector is computed from demonstrations:
P = % Zi]\il &, weight vector w is randomly initialized, learning rate o a €
2. For each trajectory 77 in the set of empirical trajectories
2.a Fix the environment start
position, velocity and acceleration and derive a sampling space in terms
of free parameters of this trajectory represented by a polynomial function
to be sampled.
2.b A set of M of trajectories is generated by sampling the free parameters.
2.c For each trajectory in the set:
2.c.1 Calculate the features values of the trajectory (IﬂT'i
2.c.2 Add the feature vector to the buffer of feature vectors:
Bl + @I,
3. While HCI) — EP(T|w)[<I>}H > € do:
3.a Compute the sampling-based approximation of the expected feature values using
the trajectory stored in the buffer B

wl e j

Ep(r|w)[®] ~ Zi]\il ij\il eini@-(I)Tj

M e Tij i

3.b Compute the gradient: ’

V =& — Ep(r|w)[®]

3.c Update the weight vector w;y; with the gradient

Wi+1 = W; — Va
end
In Figure 2-2, the framework of Trajectory Sampling Inverse Reinforcement Learning used by
[13] and [31] for driving style identification is presented. Their assumption is that a driver
focuses on high-level goals that produce high-level decisions (e.g. lane-changing/acceleration,
lane-keeping/deceleration). Before taking a decision, a driver generates different trajectories
in his mind (on the top of the figure) and evaluates them according to his internal reward
function (at the center of the figure). Each potential trajectory has a probability exponen-
tially depending on the reward function, and the driver selects trajectories according to this
probability distribution (right part of the figure).

2-4-2 Inverse Optimal Control

Several interpretation of the term "Inverse Optimal Control" can be found in the literature.
In some papers, IRL and Inverse Optimal Control are equivalent while in others, Feature
Matching Inverse Reinforcement Learning is called Inverse Optimal Control [33]. Classical
Inverse Optimal Control is described as the solution of optimal control problems: Inverse
Optimal Control consists of finding the reward function given a stabilizing control law.

In this section, the focus will be on the approach referred to as modern Inverse Optimal
Control, which derives from the IRL framework [1], and can be denoted as Optimal IRL.
Inverse Optimal Control is based on the assumption that demonstrations are optimal with
respect to the reward function and that the feature expectation vector Ep(ru)@ can be
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Figure 2-2: Inverse Reinforcement Learning for driver behaviour modeling by Huang et al. [13]

approximated as the feature values vector of the most likely trajectory.
Ep(r|w)[@] = <I>(arg max P(7|w)) Z D (2-10)

Where @ are the feature values of the optimal trajectory associated to each one of the N
empirical trajectories. The most likely trajectory’s feature vector is calculated as the average
of the feature vectors calculated from the trajectories generated by optimizing the parameters
following the assumption that demonstrations are not assumed to be drawn from a probability
distribution, but they are generated by actually minimizing a cost function. This looks like a
rough approximation, but it has been shown to perform well in driving applications.

As for Trajectory Sampling IRL, Inverse Optimal Control algorithm optimizes the weight
values by gradient-descent, the only difference is given by the expression of the feature ex-
pectation and thus the calculation of the gradient. At each iteration a set of weights is given,
which fully defines a reward functions associated to a trajectory since the feature values are a
function of the trajectory only. For each empirical trajectory, the initial condition are fixed.
The trajectory maximizing the reward function associated to the weight vector at that iter-
ation is found and the feature values of this optimal trajectory are calculated. The process
of finding the optimal trajectory given initial conditions, constraint and reward function and
the subsequent derivation of the feature values is repeated for all the empirical trajectories at
each iteration. After all the optimal trajectories given the reward function at that iteration
have been found, the feature expectations are found according to Equation 2-10 by averaging
the feature values of the optimal trajectories associated to the different empirical trajectories
starting states. This value is used to calculate the gradient as the difference between expected
and empirical feature values, and a new weight vector is updated using this gradient. The new
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12 Inverse Reinforcement Learning

weight vector is used in the following iteration, and the process is repeated until convergence.
The steps of the algorithm are summarized as follows:

1. The empirical feature vector is computed from demonstrations:
¢ = % le\il (I)T i
the weight vector w is randomly initialized, learning rate a and stop threshold € are given
2.While Hq) — EP(T|w)[<P]H > € dO
2.a For each trajectory 77 in the set of empirical trajectories
2.a.1 Fix the environment start position, velocity and acceleration and find the
optimal trajectory with respect to the reward function R; = —wl®,:
m/* = argmin (—R(7,w;))
given C road, velocity and acceleration constraints. ‘
2.a.2 Derive the feature values @ _;, from the optimal trajectory T*
2.b Compute the expected feature values by evaluating the feature function for all the
optimized trajectories:
Ep(rlw)[@] ~ 8y, = £ T, @,
2.c Compute the gradient: '
V =& — Ep(r|w)[®]
2.d Update the weight vector w;;; with the gradient V:
Wi4+1 = W; — Va
end

2-5 Conclusions

Research on driving style identification can be used as a useful starting point for answering
the research questions of this thesis. IRL has shown to be promising in learning driving style,
and could be suitable for identifying cycling style as well.

It can be argued that external factors have a smaller impact on cycling behaviour with respect
to driving behaviour. In particular, cyclists are usually not strictly constrained into lanes, and
they are not required to comply to speed limits. As a consequence, the behaviour of cyclists
depends on a stronger way to internal factors, such as the personal cycling preferences, thus it
is very heterogeneous [22]. IRL demonstrated to be effective in modelling human preferences
with the notion of a reward function. In traffic applications, it has the advantage of giving
a general model of the road user’s internal reward function motivating his decisions rather
than describing his behaviour during specific manoeuvres or considering specific parameters.
In particular, the last strategy is the one used in clustering approaches, which consider a set
of features of the driving or cycling action (e.g. speed, abrupt acceleration, fuel consumption)
and then cluster them according to some notion of distance between their values, but it
is agnostic of the model behind the decisions of performing determinate cycling or driving
actions which lead to these values.

For these reasons, IRL is considered to be a good method to identify cycling preferences,
that define the cycling style of an individual. In the next chapters, the development of an
experimental study and the details of the proposed approach will be discussed.
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Chapter 3

Experiments

3-1 Introduction

In the absence of available public datasets for cyclist trajectories, part of this thesis project
was devoted to an experimental study, involving the development of the experimental setup
and performing the experiments. The first part includes the description of the experiment
(scenario, participants, instructions) and data collection (sensors). After performing the
experiments, data were processed in order to be suitable inputs for the cyclist preference
extraction algorithm as it will be described in Section 4-3. The type of data necessary to
study individual cycling behaviour is trajectories, namely cyclist position in time. From
trajectories, it is possible to derive velocity, acceleration and distance from road edges.
Gavriilidou et al. [10] present a methodology to set-up a large-scale cycling experiment. Three
main data collection approaches can be used to gather trajectory data:

e Observation of real-life cycling: guarantees absence of bias and influence on the be-
haviour of cyclists.

e Cyclist simulator: The validity and performance of cyclists virtual reality simulators
is unknown. The data gathered with a valid simulator are independent on external
conditions, which makes it a potentially useful tool for future research.

e Controlled experiment: This approach guarantees controllability on the participants
and the scenario design. When performed in an artificial environment (e.g. a gym),
it is possible to control weather conditions. The main problem that may arise is the
learning effect, namely the impact of familiarity with the experiment on participants
behaviour. Other factors as time and fatigue contribute to modifications in participants
behaviour as well. This disadvantage is stronger in experiments that require participants
to behave naturally, as they were observed during their every-day life activities. Another
drawback is that usually participants are selected with a certain bias, so the results
may not be representative of all population. A way to counterbalance this effect is to
choose participants from different age groups, gender and other experiment-dependent
characteristics.
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14 Experiments

3-2 Proposed experimental setup

The experiment was designed in order to provide informative data in terms of different cycling
preferences. The participants were asked to cycle according to a set of instructions on their
cycling style to force variability of shown cycling preferences.

In the next section, a detailed explanation of the experimental plan, including a description
of the chosen scenario, participants and instructions will be given. The following section
presents the data collection plan, with the choice and characteristics of used sensors.

3-3 Experimental plan

3-3-1 Scenario

The chosen location was Shoemakerstraat, in Delft. The path is shown in Figure 3-1, with
numbered intersections and a blue dot for the starting point right below the Kruithuisweg
causeway. The chosen path includes five intersections, two long straight segments and four
turns.

The route involves intersections, where cyclist behavior is informative in terms of tendency to
accelerate or decelerate abruptly in order to stop or avoid the traffic light, straight segments
where cyclists can show how fast they are willing to ride and at turns, where the distance
with respect to the borders of the road and the difference with respect to the desired velocity
are particularly important factors. The path is wide enough to allow overtaking in a safe way.
The traffic lights of the first, second, third and fourth intersections are adaptive. The fifth
one can be manually triggered: if the button is pressed, it goes green. Most of the traffic
lights cannot be controlled, and being adaptive there is no way of knowing the exact timing.
The variable traffic light has been considered as variability factor intrinsic in the non-artificial
experimental setup. Most of the times the adaptive traffic lights were red, so the participants
performed the experiments under similar traffic lights configuration. However, the trajecto-
ries are grouped together according to the cycling style or the kind of road segment, such
as straight, curve (approaching a stop, starting from a stop, in the middle of the path), so
having the participants performing the experiment under the same traffic light conditions is
not a necessary requirement.

The route is marked in the Figure 3-1: the participants start cycling from the starting point
(blue dot), if necessary stop at the first intersection, continue straight until the second inter-
section, ride through the S-shaped segment until the third intersection, cross the road, cycle
through the second long straight segment, crosses the road at the fourth intersection, and go
back to the initial point. In order to facilitate participants’ route following, a set of arrows
indicating the direction were positioned in the path.

3-3-2 Instructions
In the context of this preference-learning algorithm, the collected data should show differences
in cycling preferences. Without this requirement, the experimental data could show little

differences in terms of cycling preference and thus it would not be possible to evaluate the
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3-3 Experimental plan 15

Figure 3-1: Location and route chosen for the experiment. The blue dot is the starting point,
the black dots represent the intersections and the number shows their order in the route. The red
lines show an example of the collected trajectories of one participant.
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performance of the algorithm.
In order for the experiment to follow this requirement, participants were asked to ride the
same route with three different cycling styles aiming to show different cycling preferences:

e Style 1: The rider is asked to keep maximum distance from road edges, obstacles, and
other cyclists, never overtake and avoid abrupt acceleration.

e Style 2: The cyclist is asked to ride as he would normally do, ideally trying to maintain
the desired speed and overtake only if the cyclist ahead is slower.

e Style 3: The cyclist is instructed to minimize his travel time through the course without
breaking the law or endangering anyone. He should overtake if given the chance.

3-3-3 Participants

Ten healthy 23-28 years old male participants were recruited among TU Delft students. The
participants have the same gender and are in the same age group because the main goal of
this project is to distinguish three groups of cycling styles depending on the instructions,
rather than the cycling style of the individual. The data has been anonymized to protect
the participants’ identity, and each subject has been given a unique identifying number.
Participants were asked to bring their own bicycle, and were given an helmet for safety
reasons. The experiment was approved by the Human Research Ethics Committee (HREC)
of Delft University of Technology.

3-3-4 Time and duration

Two participants per time ride along the path, along with other road-users. Each participant
does six laps, two for each cycling style, for a total of 2.5 km. Each lap approximately takes
five minutes, including the waiting time at the stops. In order to avoid physical fatigue, two
five-minutes breaks were scheduled, for a total duration of the experiment of 40 minutes per
couple of participants. To minimize the risks arising from the request of cycling according
to Style 3, all the experiments were performed during non-peak hours, when the presence
of other road users is limited. In any case, participants were explicitly instructed to not
endanger themselves or others. Moreover, they were asked to cycle according to their safety
margins and to respect traffic rules, traffic lights and other road users.

3-4 Data collection

The sensors used during the experiment are differential Global Position Systems (GPS) in
Real-Time Kinematic positioning (RTK) mode. This technology can reach centimeter accu-
racy by processing the measurements in differential mode.

The setup was provided by TU Delft GRS Lab, and consists in a low-cost u-blox ZED-F9P
(U-blox, Thalwil, Switzerland) receiver which connects to the TU Delft GNSS station which
provides real-time correction of the position data, as shown in Figures 3-2, 3-4. The position
is returned in ellipsoidal coordinates (latitude and longitude) and needs processing in order
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Figure 3-2: Setup for differential Global Positioning System (GPS), which contains a reference
station, and a rover Global Navigation Satellite System (GNSS) receiver used in the field for
surveying [5]

_\\ receive measurements

from reference station
(DLF1) via NTRIP
Android GNSS antenna
smartphone

u-blox application board
i M
: i -

Figure 3-3: The low-cost u-blox GNSS re-
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Figure 3-4: Connection of u-blox receiver
and smartphone used by the participants

to be used, as will be explained in Section 4-1.

Each participant wore a backpack equipped with the differential GPS setup shown in Figure
3-4, with the antenna on the top, connected to the receiver and to a smartphone where the
data file is logged.
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Chapter 4

Proposed approach

4-1 Data post-processing

The position data of the trajectories collected during the experiments by means of the differ-
ential GPS sensors are in geographical coordinates form, as shown in Figure 4-1. They were
transformed into cartesian coordinates by means of the function latlon2local of MATLAB
[20], which projects the geographic coordinates in the ETRS89 standard to the local carte-
sian coordinates, as it is shown in figure 4-2. From the obtained data, the trajectories were
considered from the starting point of the path. The initial parts of the trajectories before
starting the experiment were discarded and each trajectory was divided into segments:

e Straight segments: long straight segments on the right and left of the path, where
cyclists can overtake and accelerate, if asked to cycle according to style 3.

e Approaching stop segments and turns: in these road segments, cyclists decelerate to
maintain stability or stop.

An example of a trajectory divided into these two category of segments is shown in Figure 4-3
In the results of Chapter 5, these two segments will be analyzed separately since difference
in cyclist behaviour during straight segments and turns (e.g. acceleration profile) depends on
the physical difference between the road segments rather than on a difference in cycling pref-
erences. Hence, a relative difference between cycling styles among the same segment group
trajectory can be analyzed. From the collected trajectories, 115 straight segments and 147
turn segments were extracted. In the literature on IRL for traffic applications, 90 to 300
short trajectories have been used, so the amount of gathered data is in line with the related
research works [16] [27] [19] [13][31].

Each segment trajectory was smoothed with Savitzky-Golay filter with order 3 and window
length one third of the length of the segment, following the literature on cycling style identi-
fication from position trajectory data [3] [21]. Then, the velocity was calculated by numerical

derivation as:
on(t) = x(t+ 52 — x(t) () = y(t+ 52 —y(t) (41)
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Figure 4-1:
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Figure 4-2: All the trajectories of one participant in cartesian coordinates
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Figure 4-3: Example of division a single trajectory into segments: straight (green), turns (blue)
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Figure 4-4: Comparison between initial and Savitzky-Golay filtered velocity and acceleration

with 0t = 1s given by the sample rate of the sensors, 1 Hz. Then, since the sampling rate
is relatively high compared to other experimental data on cyclists’ trajectories [10], and this
could lead to possible high error on the acceleration calculation, v, and v, were smoothed with
Savitzky-Golay filter with order 3 and window length on third of the length of the segment,
and v calculated as v = , /vZ 4 v2 and the acceleration calculated as the numerical derivative

of v as a(t) = w. The Figures 4-4a and 4-4b show the comparison between initial

and smoothed velocity and the acceleration profile resulted by derivation of the initial and
smoothed velocity respectively.

In order to calculate the distance of the cyclist from the lane edges, accurate position data of
the line in the middle of the cycling path is needed. This data was collected by slowly walking
through the middle of the cycling path with a GPS-equipped backpack. The position of road
edges was collected in the same way. The resulting position data was defined as a polygon,
since this format is useful for the algorithm to detect violations of the constraint defined by
the road edges.

4-2 Feature definition

Once the empirical data have been collected and processed, the learning algorithm was de-
veloped. The first step is to define the reward function describing the cycling styles to be
identified from data.

Choosing the features of the reward function is a domain-dependent problem, and has been
handled in different ways in the literature. Considering the reward shape definition and con-
sequent feature structure, defining reward function as the linear sum of weighted features can
give insights on the real-life meaning, but can result in an inaccurate approximation of the
real reward function behind humans decision. On the other hand, using a function approxi-
mator like neural network would improve the accuracy, but it is more difficult to connect it
with human features.

The choice for the proposed algorithm is a model with a cost function defined as a weighted

Master of Science Thesis Francesca Andretta



22 Proposed approach

sum of features, that are easily interpreted and thus suitable for characterizing individual
cyclist’s preferences.

The literature on Inverse Reinforcement Learning uses the concept of reward function instead
of cost function, since it is easier to intuitively explain human preferences. By using a cost
function instead, the whole framework remains consistent: instead of arg max(R), arg min(.J)
is used, with J as the cost function where J = —R.

In the field of Inverse Reinforcement Learning for traffic applications, the objective function
expressions reported in the literature usually include terms related to travel efficiency, com-
fort and interaction with other vehicles. These terms have been defined quite consistently
across the literature: the first one is a function of the difference between the velocity and the
desired velocity, the comfort factor depends on the acceleration and the last one is usually
related to some distance or speed difference with respect to the surrounding vehicles.

The mathematical expression of the feature functions are commonly:

 Quadratic function, e.g. ®(f) = f?, in order to define a quadratic-programming problem

o Exponential function, e.g. ®(f) = el usually used for dangerous states, such as ap-
proaching stops or other vehicles. This way, the feature value increases exponential
when the agent gets closer to these states.

o Absolute value ®(f) = |f]

In this work, the feature functions have an absolute value form, which is a function structure
widely used in the literature for describing reward or cost functions. Moreover, the feature
functions are normalized with respect to each maximum allowed value. This ensures that the
features are on the same range, and that the gradient descent optimization moves smoothly
towards the minimum by updating the weights at a similar rate. Since features are normalized,
the set of weights derived for each trajectory is a consistent information that can be used for
comparison and statistical analysis.

Given each trajectory 7, from which the velocity v(t), acceleration a(t) are derived according
to 4-1, the features proposed in this research are listed as:

e Acceleration. In the research works for driving style characterization, this term has
been connected to comfortable driving. For cyclists, it is representative of the willingness
of a cyclist to accelerate to arrive to the destination faster, to avoid a red light or to
pass another cychst
Disyos (T Gmax) =

Sl 19Ol for a(t) > 0

tmax Gmax

o Negative acceleration. This term is connected to the behaviour of cyclist in situations
where their velocity is smaller than the one of the cyclist ahead or when a cyclist is
approaching a traffic light and can accelerate trying to avoid the red light or decelerate
and then stop. It i 1s also relevant when describing the cyclists’ to the behaviour in turns.

¢ancg (7-7 amin) — Zt 0 a ‘ fOl” a( ) < 0

¢ Minimizing travel time. Minimizing travel time is one of the common goals of many
cyclists. However, given the same external conditions as rush, weather etc. some cyclist
could give a higher value to this criterion with respect to others.
®4(T, bmax) = ——

tmax

tmax
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e Cycling in lower speed than the desired speed Cycling with a speed different than
the desired one can be frustrating. However, there can be persons that are comfortable
with cycling at a slightly lower speed than the desired one, possibly in order to save
energy.

Doy (T, Vles) = L ifzo o) vl o O(t) < Vdes

tmax VUdes

¢ Cycling in higher speed than the desired speed As for the previous point, other
persons could prefer to cycle with a velocity higher than desired one. At the same way,
cycling at higher speed than the desired one could be more frustrating for some cyclists
than others.
Doy igner (T Vmaxs Vdes) = . ifzo ) —vaee] oy O(t) > Vdes

tmax Umax —Vdes

o Distance from middle of the cycling path. This feature encodes the concept of
safety margins with respect to the road edges. The safest choice would be to cycle at
the center of the lane, especially in curves.

D y(7, dmax) = ﬁ Z:f:() % where d(t) is the distance from middle of the cycling path
at time t.

Having the features above, the objective function for each cyclist’s trajectory 7 is defined as
follows:

J(Tv C, Ves, U}) = Wapes (I)apos (7—7 amax) + Wapeg q)aneg (7_7 amin) + w Py (T, tmax)“‘

wvhigher évhigher (T’ Umax Udes) + wvlower (Dvlower (7—7 Udes) + Wd(bd(T, dmaX)

With acceleration a, vecity v, final time ¢; and distance from middle of the lane d derived
from the trajectory 7. C'is the set of constraints given by the road constrains, namely the
limits given by the lane and consequently the maximum distance dy,.xthe velocity constraints
given by maximum velocity vyax, acceleration constraints as the maximum acceleration apax
and the maximum travel time t;,,x. These constraints do not depend on the cyclist, but on
the segment type. The desired velocity is calculated for each cyclist as the mean velocity
during the trajectories where the cyclist was asked to cycle normally and maintain his desired

T

speed. For each segment type, vges = M, with T duration. The set of weights, one for
each feature, is the output of the algorithm proposed in Section 4-3-5.

All the features presented in this section are normalized, so their magnitude is less or equal to
one. In order to reasonably trust the empirical feature values that are crucial in this method,
the uncertainty on these quantities should be less than 10% of their maximum value. This
estimation is rough because it is employed to verify that the theoretical range of accuracy fits
the accuracy provided by the data collection equipment.

In the following part of the section, the uncertainty on each feature is calculated from its
mathematical expression and estimations for the velocity, acceleration and maximum distance
values. Then, assumed that the uncertainty should be at maximum 10% of the maximum
feature value, the required accuracy on position, velocity and acceleration data is derived and
the results compared with the accuracy of the employed sensors. Given 1 Hz sampling rate of
the GPS and duration of the recorded path t = t,.x, the maximum number of collected data
points is Nmax = S+ tmax = tmax. In the feature calculation, ¢, is canceled because every
feature is divided by tmax as in the features’ mathematical expressions indicated in 4-2, so it
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will not be part of the uncertainty expression.

° (ﬁapos
With estimated maximum acceleration amax = 28%, the maximum uncertainty for this
feature 6(®,,,,) is calculated through the law of propagation of uncertainty [12]:
2
6((bapos) = <fS : iQ(a))‘

max

Given the requirement of having 0(Fy+) < 0.5, it results d(a) < 0.2

« &,
neg
At the same way, the minimum negative acceleration is given by |amin| = 233, so the
same result follows the calculations.

e &y and ®
Since the desired cycling velocity is not a precise value but more of a range in which
the cyclists is comfortable riding, it will be assumed to be without uncertainty for the
scope of this section. As a consequence, the uncertainty of the velocity features follows:

@) = /(s ()

Vneg

('Umax_Udes)
With estimated maximum velocity of vyax = 12% and estimated desired velocity vges =
4, the uncertainty for the feature F,_ is more conservative and the uncertainty on the
velocity results: d(v) < 0.27%

. By
Both the center of the cycling path position and the cyclist’s position suffer of uncer-
tainty, so the uncertainty of the distance d is: dd = 2J(s) Given a maximum distance
dmax = 2m, the uncertainty on position needs to be:

st = (13- 59)

max

Resulting in §(s) < 0.2m

Overall, the required accuracy on position is 0.1 m, which is consistent with the required
accuracy of velocity and acceleration, which are obtained through differentiation of the po-
sition. The sensors employed for data collection can reach this accuracy on position, so the
choice of sensors is consistent with the required accuracy on feature values.

4-3 Proposed algorithm

The main research questions arising during this project is if it is possible to characterize
cyclist’s style using Inverse Reinforcement Learning. In Alsaleh et al. [3] [21], Maximum
Entropy Inverse Reinforcement Learning algorithm was applied to cyclist behaviour during
specific short manoeuvres, namely overtaking and following. As a consequence, the state-
action space is limited to the possible action and states during these cycling situations and
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being restricted, it is possible to use the Maximum Entropy version of Inverse Reinforcement
Learning. When longer paths are considered, the computational effort of this algorithm be-
comes too high. As a consequence, continuous-time versions of Inverse Reinforcement Learn-
ing as Inverse Optimal Control and Trajectory Sampling Inverse Reinforcement Learning were
considered for this project, in line with the literature on Inverse Reinforcement Learning for
traffic applications.

Another goal of this thesis project is to design an experimental setup in order to collect empir-
ical trajectories. In order to evaluate the performance of a preference identification algorithm,
there should be a noticeable preference difference in the gathered data. This issue represents
a big challenge since collecting a big amount of data from different cyclists is time-consuming,
requires participants availability, tools to gather data (e.g. sensors, cameras etc.). Moreover,
there are not available public datasets for cyclists trajectories. For this reason, an experimen-
tal setup in which cyclists are instructed on which preferences to show was developed. This
way, variability on cycling preferences is forced during the experiment and the algorithm is
tested on its capabilty of learning the preferences related to the instructions given to partici-
pants. The details of the experiments were presented in Chapter 3.

From a conceptual perspective, this changes the premises of time-continuous Inverse Rein-
forcement Learning algorithm. The assumption is that trajectories are not sampled from
a probability distribution, but the trajectory of each cyclist is optimal with respect to the
reward function, which should be consistent with the instructed cycling preferences.

This makes the proposed approach close to Inverse Optimal Control, with the modification
of using one demonstration and extracting the weights corresponding to the behaviour shown
in this demonstration, since it is assumed to be representative of the cycling preferences.

A high-level representation of the algorithm is shown in the Figure 4-5. As can be seen in
the figure, in step 1, the empirical feature vector is calculated (bottom-left of the figure) for
each demonstrated cycling trajectory. In step 2, given the initial position and velocity and
the constraints, the trajectory that is optimal with respect to the reward function at iteration
i is calculated and the corresponding feature values are derived in step 3 (top of the figure).
In step 4, the difference between empirical and optimal feature values gives the gradient used
for weights update (bottom-right of the figure), then the optimization process restart from
step 1. The process is repeated iteratively until convergence or trigger of the stop conditions.
In the remainder of this subsection, deeper analysis of the proposed algorithm, including
learning rate, optimization vector, end conditions and constraints choice are presented. The
pseudo-code is reported in subsection 4-3-5.

4-3-1 Learning rate

Another difference with respect to the standard Inverse Optimal Control algorithm is the
use of learning rate schedule method, a common technique in optimization problems. The
learning rate is initialized and used to calculate the new weight vector at the first iteration.
If the weights derived with this learning rate lead to an optimal trajectory with higher error
with respect to the error of the optimal trajectory at the previous iteration, it means that the
optimization process is escaping from the minimum because the learning rate is too high. In
this case, the learning rate is decreased by multiplying it for a decay factor 0 < v < 1. If the
error is less than the previous iteration, the learning rate and weight values are kept and the
optimization process continues. The considered error is the norm of the difference between
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Find the trajectory optimizing the reward Derive the corresponding feature

function R = -w;®(T, C) — values
T; = argmin -R(w;, T, C) @,(T7)
A - \ e
A
N Ll
Collect cycling demonstrations N

q)emp (Temp)

+ ‘ Update the weights values

Wiy1 = W; + a(q)emp(Temp) - q)i(TI))

Environment
c ”q)emp_q)i” <E€

Figure 4-5: Proposed Inverse Reinforcement Learning approach for cyclist preferences extraction.
On the left, the empirical cycling trajectories are collected and the corresponding empirical features
derived. At each iteration, the trajectory optimizing the reward function is determined (upper-
left corner) and the corresponding feature values calculated (upper-right corner). The difference
between empirical and generated feature values is used as a gradient to update the weights values
defining the reward function to be optimized at the next iteration.
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simulated and empirical features. In detail, the process at iteration i:
1. Compute the error between generated features and empirical features: e; = ||® — ®;(7;")||
2. If €; > €;—1
a. The optimization is escaping from the minimum because the learning rate is too big:
o=y
b. Update the weight value with the new learning rate and go back to the beginning of
iteration :
W; = Wy—1 — Va
else:
a. The weight vector can be updated with the previous learning rate:
Wi+1 = W; — Va
b. The algorithm can continue with iteration ¢ + 1

4-3-2 End conditions

In order to stop the optimization process, a set of end-conditions are checked. These end
conditions are:

e The error between generate features and empirical features is less than a threshold:
in this case, the generated trajectory is similar enough to the empirical one and the

optimization can stop.
COND1: €; < €e

o The learning rate is less than a threshold: the learning rate is so small that the updated
weight values are almost equal to previous ones.
CONDg: « < ¢,

e The generated trajectories do not lead to a decrease of the error for a consecutive
number of times: this means that there is no improvement by updating the weight
value so probably the optimization stopped in a local minimum.

CONDs3: ne > N,

4-3-3 Constraints

Regarding the constraints, nonlinear constraints act as upper and lower bounds for velocity
and acceleration, since a cyclist can only reach a maximum speed and acceleration. An upper
and lower boundary on the final time 7,4 = t; ensure that the arrival time is in a reasonable
range considering the length of the path. All the position points should lie inside the limits
of the roads, which is given as a closed polygon.

The constraints C' read:

0< 'U(t) < VUmax

Amin < a(t) < Gmax

tmin < tfinal < tmax

x(t),y(t) € P

Where P is the polygon defined by the road edges.
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4-3-4 Optimization vector

In order to reduce computational time, the spline-segmentation method proposed by Kuderer
et al [15] was employed. The trajectory is defined as a two-dimentional fourth-order piece-
wise spline.

A trajectory with total time duration t; is divided into Ny, segments, each one described by:

o the time interval [tx, tx1s¢], with k& denoting each interval, At the duration of each time
interval and Ny At =t

e a polynomial function of the trajectory on x-axis over time:
(t) = sh(t), t € [th, thyad
with:
s¥(t) = af + alt + bt + aft® + aft?,
x(t) the position on the x-axis over time and sf(t) the fourth-order spline describing
the position x-axis over the time interval [tx, txve).

e a polynomial function of the trajectory on y-axis over time:
y(t) = $5(0), © € [t te sl
with:
sY(t) = bl + bt + bht? + b3 4 bitd,
y(t) the position on the y-axis over time and s (¢) the fourth-order spline describing the
position y-axis over the time interval [tg, tg1ve].

The knots of the spline are the points where the segments are joined. Since the segments
share the last point with the first point of the next segment, the control points of a segment
k are expressed as the first point of the segment only, and the last point of the last segment:

CcLp = [85(1),85(1),tk] U [:c(tf),y(tf),tf]

4-2
k € Niot (42)

The optimization process optimizes these control points only, which are a subset of the total
points of the spline and are defined by their position and time. For each dimension, a set of
optimal control points is optimized. Then, the continuous function of position over time for
both axis is derived as a piece-wise fourth-order spline z(¢) and y(t) respectively. The union
of z(t) and y(t) gives the two-dimensional trajectory 7(t) = (z(t),y(t)). The velocity for x
and y axis is calculated as the analytical derivative of the functions of position over time x(t)
and y(t), resulting in #(¢) and y(t) respectively, which are evaluated in the points given by
the time vector tx. The velocity is then given by v(t) = /x(t)? + y(t)?. The acceleration
is obtained in a similar way, by finding the analytical second derivative of the functions
x(t) and y(t), resulting in #(¢) and §(t), evaluated in the time points given by tx, and then
calculating a(t) = \/Z(t)% + 4(t)?. Given the trajectory and its derivatives, the feature values
are calculated.

The final optimization vector is then defined as the the set of control points for each segment
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of the whole trajectory, denoted as:

C1
2

v = cn = [xcaywtc]

LCN¢ot

with ¢ a vector containing the x-position, y-position and time for each control point, and x,
the vector of the positions of all the control points on the x-axis, y. the vector of the positions
of all the control points on the y-axis and t. the time vector corresponding to the control
points defined by z. and y..
At each iteration, given a set of weight values w the optimization problem is given by:

min —R(7) = min wd(r) = min w®(7(v)) = m(r)r;lcntc w®(7 (¢, Ye, te))

st. 0<te< tmax (4-3)
g(t) <0

with g(7) nonlinear constraint on the trajectory, velocity and acceleration:

T(Ze, Yoy te) € P (4-4)
0< 7.-(-%'07 Ye, tc) < Umax (4'5)
Amin < 7';(3307y0ytc) < Umax (4'6)

4-3-5 Pseudo-code
The pseudo-code of the proposed algorithm follows:

For each empirical trajectory 7 of person j and cycling style s

a. The empirical feature vector is computed from the demonstration ®
b. The weight vector w is initialized to ones, the parameters initial learning rate ayg,
number of spline control points N, decay v factor are given,
stop conditions set to FALSE
c. While stop conditions are all FALSE do:
c.1. The initial and final state of 7 are fixed, and the optimization
vector is optimized with respect to the reward function

R, = —w?@i, given the constraints.
The resulting optimized control points generate an optimal trajectory:
¥ = argmin (w! ®,)

c.2. Compute the generated feature values by evaluating the feature
function for the optimized trajectory:

@i (7))

c.3. Compute the error between generated features and empirical features:
e; = ||® — ®i(7])]|
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c.4. Compute the gradient:
V=2=o—&(r)
c.h. ife; > e;_1
¢.5.0ptimization escaping from the minimum because the learning rate is
too big:
a = ay
c.5.b. Update the weight value with the new learning rate:
w; = wi—1 — Va
¢.5.c. Go back to c.1
c.6. else:
c.6.1. The weight vector can be updated with the previous learning rate:
wit1 = w; — Va
¢.6.2. : The algorithm can continue with the following iteration:
t=1+ 1
c.7.: Check stop conditions, if one is TRUE break and save the weights of the
last iteration
d.: Save the extracted weights in the weight buffer:
B + 'wJS. — w
end
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Chapter 5

Results

The first part of the chapter will focus on a convergence study of the optimization algorithm.
In Section 5-1, the convergence of the learned cycling style towards the empirical trajectories
is examined. Then, the weights extracted from the trajectories will be analyzed in terms of
difference between cycling styles. Section 5-3-1 will explore the statistical differences between
group of weights related to different cycling styles. A series of statistical tests will be per-
formed in order to analyze the connection between weight distributions and cycling styles.
As anticipated in Section 4-1, the trajectory data related to straight road segments and turns
will be considered separately during the optimization process and the subsequent statistical
analysis of the weights. This follows from the fact that the behaviour of cyclists during turns
is constrained by stability and safety reasons: in particular, cyclists decelerate during turns,
while they do not do so in a straight segment. This choice builds on the literature on IRL for
driving style recognition: in [11] path segmentation is used and in [25], straight and turning
road segments are distinguished.

5-1 Convergence study

Given a single demonstrated trajectory, for each iteration the initial position (xg,yp), the
velocity vy and final position (zf,ys) are fixed. These conditions are boundary condi-
tions of a spline trajectory 7 defined as in equation 2-7, where the remaining spline control
points (z;,y;, t;) are the optimization variables with respect to the learned reward function
R = —w®(7). At each iteration, the learned weights result in a reward function that gen-
erates a trajectory which gets closer and closer to the empirical one. The error term is the
norm between features resulting from the optimized trajectory and empirical ones. Since the
features are considered a powerful way to encode the characteristics of the trajectory, having
a decreasing feature error results in an increased similarity of trajectories. An example of
spline trajectories generated at each iteration converging towards the empirical trajectory
is shown in Figure 5-1. The circle markers are the control points of the splines, which are
the optimization variables optimized at each iteration, from which the trajectory is derived
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Convergence of trajectory during the optimization process
65 T T T T T T
Empirical trajectory
Initial trajectory

Initial control points
— — —Intermediate trajectories
O Control points
Final optimized trajectory

-110
60 62 64 66 68 70 72 74

X axis [m]

Figure 5-1: Example of spline trajectories generated by the reward functions whose weights are
optimized during the learning process. The markers represent the control points of the spline
trajectories. They are the optimization variables.

according to Section 4-3-4.

The evolution of the feature error averaged for all trajectories during learning is shown in
Figure 5-2, 5-2b for turns and 5-2a for straight segments. The shaded bands represent the
standard deviation of the feature error evolution for all the trajectories, and the solid line
represents the mean feature error at each iteration. It can be noticed that the learning pro-
cess rapidly converges towards a steady small error value, on average 0.1779 for turns and
0.1463 for straight segments, usually after 20 iterations. The mean reduction from the initial
feature error to the final one is 87.23% for straight segments and 74.55 % for turns. This
result is consistent with the literature on IRL in traffic domain, especially for continuous-time
approximations [15]. The limitation of convergence using those methods could be due to the
assumption of optimality of demonstrations, which also the proposed algorithm makes, or to
approximation errors caused by trajectory sampling in trajectory-sampling based methods.
For each trajectory, the convergence of the algorithm is evaluated in terms of the evolution
of the norm of the difference between the empirical feature values and the expected feature
values during learning. A trajectory is intended as a function position in time, and the veloc-
ity is considered an important information to be analyzed. Indeed, the position itself is only
related to the safety margins with regard to distance from the middle of the cycling road,
while the velocity function gives information about the tendency to keep the desired velocity
and it is related to the total travel time, another feature of the proposed reward function.
Figures 5-3 and 5-4 refer to the best and the worst straight trajectories in terms of feature
error. The same applies to turns in figures 5-5 and 5-6. For all these plots, on the left, the
convergence of the generated velocity profiles towards the empirical velocity is shown. Here,
the dashed line show the velocity resulting from intermediate reward functions during the
learning process. On the right, the 2-dimensional plot of the trajectory is reported. It can be
noticed that for trajectories showing poor convergence, the algorithm rapidly converges to a

Francesca Andretta Master of Science Thesis



5-1 Convergence study 33

Evolution of the feature error during learning for straight segments Evolution of the feature error during learning for turn segments
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(@) Evolution of feature error for straight trajectories (b) Evolution of feature error for turn trajectories

Figure 5-2: Evolution of feature error during learning

sub-optimal reward and cannot further improve the result. In both cases, the main difference
is that the velocity profiles are different with respect to the empirical ones. The learning rate
schedule proposed in 4-3-1 takes care of possible high initial learning rates, so the problem
probably arises because the proposed reward function structure or spline parametrization of
the trajectory cannot describe accurately the behaviour shown in these demonstrations. For
straight segments, the algorithm tends to generate trajectories that reach a steady velocity
such that the features error is minimized. In the case of the worst straight trajectories, the
shape of the empirical velocity profile differs significantly with respect to a speed profile con-
verging to a constant value, and the algorithm cannot simulate a trajectory which reproduces
a similar velocity profile. In the worst turn trajectory, the cyclists abruptly decelerates to stop
and then abruptly accelerates again: this behaviour may be too complex to be represented
by a linear reward function and a simplified spline trajectory model. Regarding the best
results, it can be seen that the algorithm almost perfectly imitates the empirical trajectories.
For most of the demonstrations, the proposed algorithm can learn a reward function that
generates a smooth trajectory that imitates the cyclist behaviour reasonably well.

In order to have a high-level picture of the cycling styles learned by IRL, a comparison of
averaged empirical and optimized speed profiles for different cycling styles is shown in Figures
5-7,5-8,5-9 and 5-10. The shaded bands represent the standard deviation of the speed profiles
of all the trajectories in that segment, and the solid line represents the mean velocity. To
help visualization of the different speed profiles, different road segments have been considered
separately. The first Figures 5-7 present the empirical and optimized speed profiles of turns
starting right after a stop, while the second set of Figures 5-8 shows the speed profiles of curves
in the middle of the path, not approaching a stop segment nor starting from a stop. The third
set of Figures 5-9 shows the speed profiles of turn segments approaching a stop. Finally, the
last set of Figures 5-10 show the speed profile of empirical and generated trajectories during
straight segments. The plot of the velocity profiles for the three cycling styles’ trajectories
show relevant differences among the three. In straight segments, aggressive cyclists ride with
a higher speed accelerating during the path compared to normal cyclists who tend to keep
their desired trajectory throughout the road segment. The pattern is similar for the simulated
trajectories’ speed profiles, implying that the algorithm could learn high-level speed profile
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Comparison between optimal and empirical trajectory
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Figure 5-3: Best generated straight trajectory
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Figure 5-4: Worst generated straight trajectory
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Comparison between optimal and empirical trajectory
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Figure 5-5: Best generated turn trajectory
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Figure 5-6: Worst generated turn trajectory
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Figure 5-7: Comparison between empirical and optimized speed profiles for turn segments starting
from a stop

differences between cycling styles. However, the final increase of velocity during straight
segments for aggressive cyclists is not reproduced by the generated speed profile. Different
turning road segments were taken into consideration: a standard turn (no stops before or
right after it), a turn immediately after a long straight segment and a turn immediately
after the traffic light. As it can be noticed from the images, the speed profile of these three
considered types of curves is different: for a turn right after a stop, aggressive cyclists tend
to rapidly accelerate to a high but stable velocity, while normal cyclists slowly accelerate
until the desired speed and cautious riders maintain a low, constant speed. At the same way,
approaching a stop, aggressive riders abruptly decelerate while normal and cautious ones keep
a stable, lower velocity. These characteristics are reproduced by the speed profiles generated
by the optimal trajectories. However, it can be noticed that the speed profiles of normal
cycling styles and aggressive cycling styles overlap significantly.

5-2 Simulation study

In this section, an evaluation of the learned cycling style is performed. The human likeness
(HL) is a metric for measuring the closeness of a model to human demonstrations commonly
used in the literature on driving style identification [13]. For trajectories, higher human
likeness means better model accuracy, and can be described in terms of the mean error
between empirical and generated trajectory. The lower the error, more accurate is the reward
function. The HL error is expressed as:

HI — HTempn_t TgenH’ (5-1)

where Temp denotes the empirical trajectory and 74e, denotes the generated trajectory, both
sampled at the same timestamps and divided by the total number of timestamps n;.
The trajectory dataset was split according to the cycling styles and then into training and
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Figure 5-9: Comparison between empirical and optimized speed profiles for turn segments ap-
proaching a stop
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Figure 5-10: Comparison between empirical and optimized speed profiles of straight segments

test sets, resulting in a training and a test trajectories set per cycling style. The optimal
weights for each trajectory were grouped into training and test sets for each cycling style,
consistently with the trajectory sets. In other words, for a specific trajectory in one of the
training trajectory set, the extracted weights are in the corresponding training weights set.
Then, the average weights for each weights training set are calculated and denoted as wirgin,
for cautious cycling style, w¢rqin, for normal cycling style and wyyqin, for aggressive cycling
style. For each test trajectory, fixed the initial position and velocity and final position, each
of the aforementioned weights are used to generate a trajectory.

The empirical test trajectory and the simulated ones are compared in terms of human like-
ness error HL. During the simulation study, the human likeness of trajectories generated by
weights of the same cycling style of the test trajectory is compared to the ones generated by
the other weights. Given a test trajectory Tyesy, with cycling style k£ (where k = 1 cautious,
k = 2 normal and k = 3 aggressive), Wiraing, Wirain, aNd Wiraing are used to generate trajec-
tories Tsim,, Tsimo and Tgim, respectively.

The similarity between the generated trajectories and 7yest, is inversely proportional to the
human likeness error given in equation 5-1. The human likeness error between the test tra-
jectory Tiest, and the trajectory generated by the corresponding cycling style training weights
set are denoted as ey, , ex, and ey,. If the algorithm learned how to generate trajectories with
cycling style k, it should generate trajectories that are similar to the test ones using weights
trained on trajectories with cycling style k. As a consequence, given a test trajectory, the
error resulting from a trajectory generated by the weights of the training set corresponding
to the cycling style of the test trajectory should be lower than the other two.

The errors resulting from the simulation study on the test trajectories is then averaged ac-
cording to the cycling style of the training set and the cycling style of the test set, resulting
in an average error between the empirical test trajectories and the trajectories generated with
each training set. The tables 5-1 and 5-2 reports the mean errors for each training and test
set for straight segments and turns respectively. The trajectories are re-sampled every 0.1
seconds.

The results of the simulation analysis show that using the reward function trained on trajecto-
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Table 5-1: Average trajectory error [m] between test straight trajectories and trajectories simu-
lated with different cycling styles’ reward functions

Rraining cycling style | Test - Cautious | Test - Normal | Test - Aggressive
Werain, 0.4023 0.2748 1.3050
Weraing 0.8407 0.0693 1.2108
Wiraing 1.1541 0.5729 0.7963

Table 5-2: Average trajectory error [m] between test turn trajectories and trajectories simulated
with different cycling styles’ reward functions

training cycling style | Test - Cautious | Test - Normal | Test - Aggressive
Weraing 0.4963 0.6129 0.6753
Weraing 0.5486 0.1819 0.2864
Wiraing 0.5590 0.2060 0.2609

ries of the same cycling style results in a lower HL error, for both straight and turn segments.
The improvement with respect to trajectories generated with other cycling styles’ weights is
particularly noticeable when cycling styles with clear differences as considered, as aggressive
and cautious. This is reasonable since the resulting reward function reflects the difference
of the demonstrated cycling behaviour, which is very different for cautious and aggressive
cyclists. For straight segments, the improvement is particularly noticeable with respect to all
the cycling styles. For turns, normal and aggressive cycling styles’ weights generate trajecto-
ries with similar errors, while the difference is stronger when cautious cycling style weights
are considered. For straight segments, the average improvement is 58.86 %, while for turns
the average improvement is 28.85%, but reduces to 10.31% when only normal and aggressive
cycling styles are considered. Figures 5-11,5-12 and 5-13,5-14 show a comparison between the
test trajectory and the trajectories generated by the reward function trained on trajectories
with the same cycling style as the test one and the ones trained on a different cycling style
trajectory set, leading to the best and worst results in terms of HL error for straight segments
and turns respectively. On the right, a 3-dimensional plot of the trajectory as a function
of time is reported, with time on the x-axis, x-position on the y-axis and y-position on the
z-axis. The plots show that even if the improvement is not noticeable, the reward functions
trained on the same cycling style set still produce a smooth trajectory, similar to the test one.

5-3 Weight analysis

This section investigates the distributions of weights extracted from trajectories run with
different cycling styles. For each trajectory, a set of six weights is extracted, one for each
feature. The whole set of all the trajectories can be grouped according to two factors: the
participant who run the trajectories and the cycling style instructions related to a specific
trajectory. Assuming that the participants behave consistently with respect to instructed
cycling preferences, this section will focus on the weight distributions resulting from the tra-
jectories grouped according to the cycling style.
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Table 5-3: P-values resulting from Shapiro-Wilk test on normality for different features’ weights
of each cycling style extracted from straight trajectories

Distance

Features Positive acceleration NegatlYe Travel time Velocity h}gher Velocity l‘(>wer from the middle
acceleration than desired than desired .
of the cycling path
Cautious cycling style 1.72 106 1.7410~ 8 0.0036 3.70 10~ 11 0.00012 0.00014
Normal cycling style 1.07 10~ O 2.17 10~ 6.37 10~ 9 1.09 10~ 7 1.39 100 6.75 100
Aggressive cycling style 0.0009 0.054 0.192 0.00011 1.59 10 10 0.00042

5-3-1 Statistical analysis

The distributions of the weight related to each feature for each cycling style will be compared.
In this section, each feature is considered separately in order to verify the statistical differ-
ence between weights for each feature and consequently understand which features are more
important in the description of cycling styles.

Statistical procedures determine the response of a variable in different population groups.
For each feature, the distribution of weights for each cycling style can be formalized as a
population group, and the factor whose effect is to be analyzed is the cycling style. Each
group is defined as: wj,, with k € {Style 1, Style 2, Style 3} and j € F, with F the set of the
features F' = {Positive acceleration, Negative acceleration, Speed higher than desired one,
Speed lower than the desired one, Time, Distance from the middle of the cycling path}.
One of the most common statistical tests is ANOVA. ANOVA is a method that analyzes the
difference between means of two or more population groups and it is based on the law of the
total variance, which divides observed variance in a given variable into components due to
different causes of variation: the variation between groups, defined as the variation of group
means from the overall mean, and the variation within group, which is the variation of the
values of each group from the estimate of their group mean. Then, ANOVA compares these
two components: if the ratio between between-group and within group variability is higher
than a threshold determined using the F-test, the group means are statistically different from
each other. For each feature j, the standard ANOVA models the data (the weights) as a
linear model:

Ynk = Mk T €nk (5-2)

where 3,5, is an observation, with n observation number and k£ population group (in our case
{Style 1, Style 2, Style 3} ), ux the mean of the group and e, the error associated to the
Ynk data value. The main assumptions needed to represent the data with the linear model
of equation 5-2 are the independence and normality of observed data and homogeneity of
variance. The normality assumption were tested on the data by means of the Shapiro-Wilk
test, reported to be one of the most powerful normality tests [23], with null hypothesis that
the data comes from a normal distribution with an unknown mean and variance. The test
rejects the null hypothesis at the 5% significance level, when the p-value is less than 0.05.
The table with the statistics for weights for different features for straight and turn segments
is reported in tables 5-3-1 and 5-4. The null hypothesis was rejected for almost every group
of feature weights, so it can be concluded that the data do not follow a normal distribution.
As a consequence, a non-parametric version of ANOVA, the Kruskar-Wallis test, was used on
the extracted weight distributions.

The Kruskar-Wallis test is based on an analysis of variance using the ranks of data values
rather than data themselves. The data are ranked from 1 for the lowest value of the data for
a group to N for the highest value. Converting data to rank is necessary to avoid the need
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Table 5-4: P-values resulting from Shapiro-Wilk test on normality for different features’ weights
of each cycling style extracted from turn trajectories

s : . L . Distance
Features POblth? Negdtn{e Tr'avel Velocity h}gher Velocity lf)wer from the middle
acceleration acceleration time than desired than desired .
of the cycling path
Cautious cycling style 0.0010 0.00023 9.98 10~ 7 5.65 10 11 2.57 10~ 0 0.0019
Normal cycling style 0.00062 0.00096 5.49 10~ 7 1.04 1096 0.00023 0.0126
Aggressive cycling style 0.0078 5.4 10~ 7 5.51 10~ 0.0019 3.32 10~ 0 0.00017

Table 5-5: P-value resulting from Kruskar-Wallis test for different features’ weights extracted
from turn trajectories

Distance
Features Positive Negative Travel  Velocity higher Velocity lower from the middle
acceleration acceleration  time than desired than desired of the cycling
path
p-value 7.71107°  0.0008 6.39 10722  1.59 101 3.01 1071 6.47 107°
Effect size  0.2456 0.0850 0.6639 0.4593 0.4505 0.1201

of assumptions on the distribution of data by transforming the data into a uniform distribu-
tion of ranks regardless of the underlying distribution. The procedure still requires a set of
assumptions to be satisfied: independent sets of data, sufficient sample size, continuous or
ordinal data. The null hypothesis is an hypothesis which considers a difference in data (in
this case, weights values) be due to chance rather than the effect of an external factor (cycling
style). Hence, the null hypothesis of this test is that the mean ranks of the three distributions
related to the three cycling styles are equal. The test determines if the null hypothesis is
rejected or not based on a procedure similar to ANOVA’s, but considering mean of ranks
instead of mean of data values.
The assumptions of the Kruskar-Wallis test are satisfied by the data: the sets of weights are
independent, each group has at least 30 values and the data is continuous. An additional
assumption on similarity of distribution shape can be considered. The similarity of distri-
butions was qualitatively investigated by inspecting histogram representation of data and
quantitatively checked by means of the MATLAB function fitmethis [8], which finds the
distribution that best fits data among all distributions available in MATLAB. The results
of both the methods did not show similarity of distribution shape among groups. However,
this is not a necessary assumption for the Kruskar-Wallis test. When this assumption is not
respected, the results need to be interpreted in terms of mean ranks difference, which intu-
itively represent the tendency of a certain group to show higher or lower valued weights with
respect to the others, instead of medians difference.
The p-value and effect size given by the Kruskar-Wallis test are shown in tables 5-5 and 5-6
for turns and straight segments respectively. The effect size is calculated as the etasquared
n? coefficient, as in [28]:
o H—-k-1
 on—k

With H the statistics resulting from the Kruskar-Wallis test, k£ the number of groups and n
the total number of observations. The resulting value is comprised between 0 and 1, with a
value <0.2 indicating a weak effect size.

7 (5-3)

The p-values resulting from the test show that the null hypothesis is always rejected, so the
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Table 5-6: P-value resulting from Kruskar-Wallis test for different features’ weights extracted
from straight trajectories

Distance
Features Positive Negative Travel  Velocity higher Velocity lower from the middle
acceleration acceleration — time than desired  than desired of the cycling
path
p-value 221 10°®  0.00100 2.1110°'7 8.7210°2" 3.66 10716 2.55 107°
Effect size  0.6956 0.1017 0.6553 0.7928 0.6060 0.1680

three groups do not come from the same distribution. However, the effect size is weak for
features distance from the middle of the cycling path and negative acceleration. The results
of the Kruskar-Wallis test do not provide information on which group means are different.
The information about which pairs of means are significantly different is important in order
to evaluate how each cycling style is different from the others. Given significant Kruskar-
Wallis tests, the pairwise comparison is performed by means of the post-hoc multicomparison

test with Dunn-Sidék’s approach, which provides a correction factor to take into account the
errors arising from multiple comparisons.

Positive acceleration Negative acceleration

Time
%2 —a— Z‘Z T;fz —
& & &
3 © 3 © 3 ©-
Mean ranks Mean ranks Mean ranks
Figure 5-15: Feature Figure 5-16: Feature Figure 5-17: Feature
positive acceleration negative acceleration travel time
Velocity higher than desired Velocity lower than desired Distance from the middle of the eycling path
3 ©- 3 ©- 3 &
Mean ranks Mean ranks Mean ranks
Figure 5-18: Feature Figure 5-19: Feature Figure 5-20: Feature
velocity higher than de- velocity lower than de- distance from the middle

sired sired of the cycling path

Figure 5-21: Multi comparison Dunn-Sidék test for weights of different features for straight
segments

The results of the test are shown in Figures 5-21 and 5-28. The x-axis represents the mean
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Figure 5-28: Multi comparison Dunn-Sidak test for weights of different features for turn segments

ranks for each feature, while the y-axis the cycling style of the analyzed weights distribution:
starting from the bottom cautious, normal and aggressive. The intervals do not represent the
variance, but are test intervals: if they are separated, two groups are statistically different.
It is noticeable from the figures that the first (bottom - cautious cycling style) and last (up
- aggressive cycling style) intervals do not overlap for most of the features. This implies
that performed tests show a clear statistical difference between the cautious cycling style and
aggressive cycling style for all weights.

In particular, the test shows that the mean ranks of the feature positive acceleration tend
to be higher for cautious cycling style groups, meaning that this group tends to minimize
positive accelerations more than others. At the same way, the mean ranks of the weights to
the feature travel time result to be increasing from the more cautious to the more aggressive
cycling style, which is intuitively connected to a higher importance given to minimizing travel
time for more aggressive cyclists. The mean ranks of weights relative to features welocity
higher than desired show a similar pattern: cautious cycling style weights tend to have higher
ranks than the others, since cautious cyclists tend to avoid cycling at higher speed than the
desired one. On the other hand, for feature velocity lower than desired the opposite holds:
aggressive and normal cycling style groups have higher mean ranks than the cautious one,
since the importance given to minimizing velocity lower than the desired ones is higher for
these cyclists. For feature distance from the middle of the cycling path, the Kruskar-Wallis
test shows that the weights of cautious cycling style have lower mean rank with respect to
normal and aggressive styles, implying that for this group it is less important to minimize the
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Table 5-7: P-values and effect sizes resulting from the comparison of different features’ weights
for cautious and normal cycling style extracted from straight trajectories

Distance
Features Positive Negative  Travel Velocity higher Velocity lower from the middle
acceleration acceleration time  than desired than desired of the cycling
path
p-value  7.65 107° 0.9784  0.00010  1.95 10° 2.2076 1.867°
effect size  0.2883 0.0032 0.3309 0.3612 0.3570 0.1354

distance from the middle of the cycling path, maybe trying to maximize the margins with
respect to the other lane. However, the results do not show a clear difference between normal
and aggressive cycling styles in this matter. At the same way, the weights of the feature
negative acceleration does not show differences between normal and aggressive cycling styles.
For each comparison, the effect size was derived by means of the Mann-Whitney U-test,
which is the version of Kruskar-Wallis test used to compare only two groups. The effect size
is calculated as the r? coefficient, as suggested in [28]:

2
2_ 27
n

r

(5-4)

with Z the value resulting from the Mann-Whitney U-test, n the total number of observations.
The resulting value is comprised between 0 and 1, with a value <0.2 indicating a weak
effect size. The p-values resulting from the Dunn-Sidak-corrected pairwise comparisons and
effect sizes are reported in tables 5-7,5-9,5-8 for straight segments and 5-10,5-12,5-11 for turn
segments. For each segment, the different combinations between cycling styles are considered,
analyzing the difference between cautious-normal, normal-aggressive and aggressive-cautious
separately. A low p-value (< 0.05) indicates that the statistical difference between groups
is relevant. From the p-values reported in the tables it results that the difference between
cycling and aggressive cycling style is confirmed for all the features in both of the segment
types, while this does not hold for the cautious and normal cycling style weights of the feature
negative acceleration in straight trajectories and aggressive and normal cycling style weights
of the feature distance from the middle of the cycling path in straight trajectories. " Table 5-12
shows that there is no significant difference between weights of normal and aggressive cycling
styles for turns since the p-value is higher than 0.05 and thus the null hypothesis is not
rejected. On the other hand, for straight segments the test shows that statistically significant
difference is present also when normal and aggressive cycling styles are compared. From the
effect size values, it follows that the features travel time and velocity higher than desired have
the highest effect size, meaning that the relationship between the cycling styles and weight
values is particularly strong for these features. On the other hand, negative acceleration and
distance from the middle of the cycling path show a weak effect size for most of the considered
comparisons.

5-3-2 Clustering analysis

The proposed algorithm’s capability of extracting parameters that represent the three cy-
cling styles presented in Section 3-3-2 is evaluated by performing a clustering analysis on the
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Table 5-8: P-values and effect sizes resulting from multiple comparison tests of different features’
weights for cautious and aggressive cycling style extracted from straight trajectories

Distance
Features Positive Negative Travel Velocity higher Velocity lower from the middle
acceleration acceleration time than desired than desired of the cycling
path
p-value 0 0.0074 0 0 0 0.0093
effect size  0.4536 0.0924  0.3634 0.4754 0.3886 0.1048

Table 5-9: P-values and effect sizes resulting from multiple comparison tests of different features’
weights for normal and aggressive cycling style extracted from straight trajectories

Distance
Features Positive Negative Travel Velocity higher Velocity lower from the middle
acceleration acceleration  time than desired than desired of the cycling
path
p-value 3.1210°° 0.0022 8.14107% 6.3810°7 0.00129 0.364
effect size  0.3692 0.0813 0.4055 0.4550 0.2343 0.0350

Table 5-10: P-values and effect sizes resulting from multiple comparison tests of different fea-
tures' weights for cautious and normal cycling style extracted from turn trajectories

Distance
Features Positive Negative Travel  Velocity higher Velocity lower from the middle
acceleration acceleration  time than desired than desired of the cycling
path
p-value  5.03107°  0.0085 2.0810~1 9.7310°% 2.63710 0.00331
effect size  0.1629 0.0720 0.4635 0.2534 0.3469 0.0705

Table 5-11: P-values and effect sizes resulting from multiple comparison tests of different fea-
tures’ weights for cautious and aggressive cycling style extracted from turn trajectories

Distance
Features Positive Negative Travel Velocity higher Velocity lower from the middle
acceleration acceleration time  than desired than desired of the cycling
path
p-value 8.07 1079 0.0012 0 1.33 107 1° 6.79 10~ 7.607°
effect size  0.1888 0.0700  0.4416 0.3768 0.3214 0.1222

Table 5-12: P-values and effect sizes resulting from multiple comparison tests of different fea-
tures’ weights for normal and aggressive cycling style extracted from turn trajectories

Distance
Features Positive Negative Travel Velocity higher Velocity lower from the middle
acceleration acceleration time than desired than desired of the cycling
path
p-value 0.1783 0.8765  0.0052 0.0120 0.4017 0.6148
effect size ~ 0.0405 0.0060  0.1384 0.0809 0.0290 0.0076
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Scatter plot of weights value
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Figure 5-29: Scatter plot of the values positive acceleration, velocity higher than desired and
travel time features for turns

weights. Intuitively, groups of weights related to different cycling style should be split into
three different clusters. Unsupervised clustering algorithms can be used in the feature space
defined by the features described in Section 4-2.

K-means Clustering was chosen as clustering approach. It is part of the class of methods
called partitional clustering, which aim to group the data points into a pre-specified number
of clusters K, which is suitable for the scope of this analysis, since the number of clusters is
the known number of cycling styles. The main advantage of this approach is that it is easy
to implement and computationally efficient. A key-concept in clustering is the (dis)similarity
measure, since points in the same cluster are closer than points in different clusters, and it is
needed to estimate the distance between them. The most common measure is the Euclidean
distance, but others are possible, as the Random Forest predictor in Chen et al. [6].

In general, clustering has been used with data-points given by quantities that can directly
be connected to the driving action. In this case, this technique is employed to evaluate the
learning algorithm’s results in terms of connection of the weights distribution to different
cycling styles.

In order to visualize the clusters, a set of three features was selected to plot the weights values
in 3 dimensions. Then, K-means clustering was applied on the feature space defined by all
the features, and the results evaluated by means of a confusion matrix compared the original
labels (the cycling styles of the empirical trajectories) and the ones assigned by the clustering
algorithm.

First, K-Means clustering was performed on weight values of the features positive acceleration,
velocity higher than desired and travel time. The features were chosen in order to consider
three different kind of information on the cycling style: acceleration, velocity and time. The
choice between positive and negative acceleration and velocity is motivated by the effect sizes
and test intervals shown in Figures 5-21 and 5-28. For both straight and turn segments, the
feature wvelocity higher than desired has higher effect size than the feature wvelocity lower than
desired, and the same applies to the feature positive acceleration. Moreover, the feature neg-
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Figure 5-30: Clusters of the values positive acceleration, velocity higher than desired and travel
time features for turns
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Figure 5-31: Scatter plot of the values positive acceleration, velocity higher than desired and
travel time features for straight segments
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Figure 5-32: Clusters of the values positive acceleration, velocity higher than desired and travel
time features for straight segments

ative acceleration and distance from the middle of the cycling path did not show significant
difference between cycling styles, so they were not chosen as relevant features for the first
clustering analysis. From a visual analysis of the clusters, it is clear that the aggressive and
cautious styles’ clusters are distinguishable for both turns and straight segments. The scatter
plot in Figure 5-29 shows that the normal cycling style weights do not form a clearly distin-
guishable cluster, confirming the results of the statistical test. However, K-means clustering
algorithm can distinguish three clusters, one of them being the union of a part of normal
cycling style weights and aggressive ones. This may be due to different behaviour of par-
ticipants, for some of them cycling in a normal way could be similar to others participants’
aggressive cycling style.

Then, K-Means clustering was performed on the weight values of all the features. For each set
of weights, the algorithm returns one cluster index and the centroid location of the cluster.
In order to evaluate the results by connecting the clusters found with K-Means to the cycling
styles, each index was linked to the cluster defined by weight values with the closest centroid
with respect to the calculated one. Figure 5-33 presents the confusion matrix comparing the
assigned and original clusters for weights derived from straight segments, in Figure 5-34 the
same applies to turns. The confusion matrices confirm the insight given by the K-Means clus-
tering algorithm applied to a subset of weights corresponding to three features: for straight
segments, the derived weights show statistical differences between cycling styles, and thus
can be clustered into three different groups. For turns, the cautious cycling style group is a
well-defined cluster, while normal and aggressive cycling style weights cannot be distinguished
effectively.
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Figure 5-33: Confusion matrix for the results of K-Means clustering algorithm applied to weights

derived from straight segments
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Figure 5-34: Confusion matrix for the results of K-Means clustering algorithm applied to weights

derived from turn segments
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5-4 Discussion

The experimental setup described in Chapter 3 provides cycling trajectory data of three dif-
ferent cycling style: aggressive, normal and cautious. In this chapter, the capability of the
IRL algorithm described in Chapter 4-3 of learning these different cycling styles is evaluated.
The cycling style imitation is analyzed in terms of convergence towards human demonstra-
tion. After that, a simulation study compares the cycling style resulting from the learned
reward functions against empirical cyclists’ test trajectories. Then, a statistical analysis on
the group of weights related to different cycling styles is performed, to test the implication of
different cycling behaviours to the difference in weight distribution.

The convergence of the learning algorithm is measured by the feature error over optimization
iterations. The error is calculated as the norm between simulated and empirical features, and
it is calculated at every iteration. For both turns and straight segments, the error rapidly
converges to a final asymptotic value, after 20 iterations. Smaller error means an improved
reward function that leads to better generated demonstrations. The limitations of the con-
vergence can be due to the assumption of a linear reward function with hand-crafted features
and time-invariant weights, which may not fully represent human cycling behaviour. How-
ever, the algorithm converges to reward functions that can generate trajectories similar to the
empirical ones, and the errors improve during learning.

For each demonstration, the empirical and optimized trajectories, the extracted weights and
the cycling style are saved, defining three groups of trajectories and weights corresponding to
aggressive, normal and cautious cycling.

First, the empirical and optimized trajectories of each cycling style group are averaged and
split into different road segment in order to visually appreciate the shape of the speed profiles.
The similarity between the speed profiles of the averaged optimized and demonstrated tra-
jectories suggests that the algorithm learns the high-level characteristics of different profiles.
In particular, the travel time, the velocity range of the learned cautious and normal cycling
styles are consistent with the empirical averages. Regarding aggressive cycling, the generated
trajectories can capture the abrupt changes in velocity and the importance given to reduc-
ing travel time, resulting in fast trajectories, but some characteristics of the speed profile,
as increasing the velocity at the end of straight segments, are not learned by the algorithm.
Moreover, normal and aggressive cycling styles speed profile are similar in curves.

In the simulation study, the cycling style of the aforementioned reward functions is compared
with empirical test trajectories. The test set consists of three groups of empirical trajectory,
each one related to a set of cycling preferences. The trajectory error between the trajectories
generated with the three rewards and the empirical one is used as a human likeness evaluation
metric, and the average error is calculated for the three groups of trajectories in the test set.
The results show that the reward function learned for a specific style leads to a strong im-
provement in terms of similarity to test trajectories with the same cycling style with respect
to other cycling styles. When the normal cycling style trajectory test set is considered, the
improvement is still present, but it is reduced. A possible explanation is that normal cycling
style shares some characteristics with cautious cycling, e.g. the tendency to maintain the
desired speed, and aggressive cycling, as reducing travel time. Moreover, the data related
to this category have a higher variability: this can result from the fact that experimental
instructions for aggressive and cautious cycling are very clear and easily interpreted, while
normal cycling is participant-dependent, so the difference in trajectory data result from a
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difference in the participants’ notion of normal cycling. Since the proposed algorithm is able
to learn the differences in these preferences, the averaged reward is more sparse.

Since the identified weights are the main output of the algorithm, an analysis of the distribu-
tion of the three groups of weights was performed. Each cycling style defines a set of weights,
but some features may be more informative than other for distinguishing the styles. In order
to test the statistical difference between the distributions of weights for different cycling style,
the non-parametric Kruskar-Wallis test is employed. Each feature is considered separately to
understand which features are linked to distribution of weights with higher difference between
cycling style. Then, cycling styles are pairwise compared. The test confirms the statistical
difference between weights distribution of different cycling styles with relevant effect sizes for
all the features except negative acceleration and distance from the middle of the cycling path.
This could mean that the negative acceleration and distance from the middle of the cycling
path are not relevant in the characterization of the proposed cycling styles: in particular, a
cyclist negative acceleration is usually segment-specific: for example, in turns or before stops,
the cyclists are asked to decelerate in order to maintain stability, while accelerating depends
more heavily on cycling intentions. Distance from the middle of the cycling path is a fea-
ture that is connected to safety margins of cyclist. During the performed experiments, very
few road users were present in order to guarantee a safe environment for participants. As a
consequence, cyclists had the freedom to ride in the whole cycling path. When higher levels
of interaction with other cyclists are present, a safety feature defined by the distance from
the middle of the cycling path and distance from other cyclists would be more relevant for
characterizing the cycling style, as reported in the literature. Another possible explanation
could derive by the fact that for each road segment, an average of 20% of the trajectories
look horizontally shifted, even though the speed profile is reasonable. Probably the differen-
tial GPS could not resolve the ambiguities of some position points and estimated the next
position based on the previous ones, so the information on the distance from the road edges
may not be completely reliable and thus the corresponding weights.

Positive acceleration, Velocity higher than desired and Travel time are the feature for which
the different cycling styles’ weights distribution show a higher distance in the Kruskar-Wallis
test. They have been selected as input features for a scatter plot and a clustering K-means
algorithm. For straight segments, the difference between the three cluster is clearly visible.
For turns, the scatter plot of the weights shown in Figure 5-29 show a clear distinction be-
tween the cautious cycling style cluster and the other two, while it is not possible to clearly
distinguish aggressive and normal cycling. This outcome confirms the Kruskar-Wallis test
test for curves reported in 5-28, where no clear statistical difference between normal and ag-
gressive cycling style weight distributions could be appreciated. A possible reason to explain
the difference with respect to straight segments is that all the straight road segments shared
the same characteristics, while there is more variability for curves. Curves starting after a
straight segment, after a stop or approaching a stop were joined in the same turn trajectory
dataset. Each of these road segments has different characteristics that can influence the cy-
clist behaviour beyond his cycling style. For this reason, the influence of cycling style may be
reduced and the corresponding weights could show less statistical difference. The outcomes
of the weight analysis for normal and aggressive cycling style weights can be connected to
the results of the simulation study, which indicates that normal cycling is not well defined as
an individual cycling style, but rather shares characteristics of aggressive cycling, depending
on the road user. A concept that could help representing an intermediate cycling style is
moderate cycling, which is cycling without being too aggressive or cautious. The clustering
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algorithm shows that a group of weights forms a cluster that is distinguishable by the other
two. The algorithm has been tested on the capability to learn the instructed cycling styles,
but the real cycling style of the demonstrated trajectories could be different with respect to
the label given by the experimental instruction. For this reason, the weights for trajecto-
ries labelled differently could be similar because their corresponding cycling style is actually
similar.
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Chapter 6

Conclusions and recommendation

Cycling as a transportation mode not only has an impact on urban challenges such as reducing
traffic congestion and air pollution, but also improves the lifestyle of individuals providing an
easy and regular physical activity. Designing infrastructures and services that make cycling
more appealing can improve living conditions in urban areas and promote a healthier lifestyle.
In particular, personalized travel services has been gaining interest in the past years, as per-
sonalized speed or road advices that can reduce travel time and increase safety while taking
into account the personal preferences of cyclists. After learning individual cyclist preferences,
travel services can be tuned in order to meet the user demands and needs, increasing the
acceptance of the system and compliance to the advices.

This thesis proposed a version of Inverse Reinforcement Learning to characterize cycling style
by learning cyclist preferences from experimental data. This method models the preferences
of the cyclist with a reward function he optimizes while cycling. The reward function is com-
posed of a weighted sum of features representing relevant characteristics of the cycling action.
The learning algorithm learns the weights corresponding to each cycling demonstration, which
express the trade-off between different goals, such as keeping desired speed, reducing accel-
eration and minimizing travel time. Given the continuous nature of the traffic domain, a
continuous version of IRL was used, in line with the literature of driving style identification
with IRL. In this chapter, the answers to the questions introduced in Chapter 1 are discussed
and recommendation for future research are given.

6-1 Conclusions

The goal of this thesis is defined as:

Given a set of fixed external conditions, can different cycling styles be learned
from cyclists’ trajectories using Inverse Reinforcement Learning?
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The following sub-questions were designed to answer the main research question of this thesis
project, and will be discussed:

How to design and implement an experimental setup that provides with the tra-
jectory data necessary to implement and test the proposed algorithm?

The main requirement for the design of the experimental setup is that the gath-
ered data should be informative enough to be used to investigate the difference
in cycling preferences of participants. In order to do that, an experimental setup
where participants were asked to cycle according to different cycling styles was de-
signed. The experimental instructions explicitly states the cycling preferences the
participants should show, and each set of preferences is assumed to be connected
to a cycling style. In particular, avoiding intense acceleration and maximizing
safety margins are associated to a cautious cycling style while minimizing travel
time, abrupt accelerations are associated to a more aggressive cycling style.

The collected data show differences in cycling style which can be qualitatively
appreciated in Figures 5-7,5-8,5-9 and 5-10. In particular, the speed profiles of
the three cycling styles show qualitative shape difference, which gives information
on the tendency to accelerate or keep the desired velocity, and the travel time du-
ration. Moreover, performing the experiment in a real-world environment made
it possible to capture naturalistic cyclist behaviour in terms of interaction with
the environment. The experiment, however, was conducted in off-peak hours in
order to guarantee a safe experience to the participants. As a consequence, a
limited number of interactions with other road users happened. Moreover, since
the experiment was performed with sensor-equipped bikes, only the data of the
participants were available so the information related to interaction with other
users, such as distance during overtaking or following, could not be derived from
the gathered data. Considering these factors, the experimental setup is considered
to be apt for the scope of learning cycling preferences from trajectory data, but
it would benefit from improvements on gathering the data related to interaction
between cyclists.

Which features can represent cycling style and how can they be mathematically
expressed?

Do the identified parameters related to different cycling styles show statistical dif-
ferences?

The features proposed to represent cycling style give a good description of the
cyclist’s inner reward function. They take into account different characteristics of
the cycling action, including acceleration, velocity, travel time and safety. Since
cyclists’ behaviour is constrained by the physical characteristics of a bike, jerk
was not taken into account in this description. As mentioned in Chapter 5, the
difference in cycling styles resulted in a clear statistical difference in weight dis-
tributions for cautious and aggressive cycling. Regarding normal cycling, the
weights did not show clear statistical differences between normal and aggressive
cycling for turns in most of the features. This may be due to a limited difference
between normal and aggressive cycling during curvy road segments, since most
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of the cyclists tend to keep their stable velocity during turns, while the cautious
ones decelerate further. The difference between the characteristics of different
curvy road segments could have also played a role, and another possible reason
is that the participants’ interpretation to the normal cycling style instructions
may be different from one person to the other, resulting in a less defined distri-
bution of weights. The results confirmed that higher the real difference between
cycling preferences, the higher the statistical difference between weights. As a
consequence, the algorithm could learn the importance given to different features
by cyclists riding according to different cycling styles.

Can the learned reward function simulate trajectories that fit the empirical ones?

In the simulation study, the capability of the reward functions averaged with re-
spect to each cycling style’s weight to predict trajectories that reflect the original
cycling style is evaluated. The generated trajectories are compared with test tra-
jectories run with different cycling styles. The results show that the learnt reward
functions can effectively generate trajectories which show different cycling prefer-
ences. In particular, the improvement in the error between trajectories generated
by the reward function trained on trajectories run with the same cycling style
and the other reward functions trained on the other cycling styles is particularly
strong for cautious and aggressive cycling styles, which is intuitively reasonable
and it is in line with the results on weight distributions difference. In fact, the
feature-based representation of human behaviour leads to good generalization ca-
pabilities, since the model learns the importance given to a set of general features
rather than the trajectory itself.

It can be concluded that the proposed experimental setup provided informative data to apply
the proposed data-driven method for learning cycling preferences. During learning, the algo-
rithm was able to converge close to the vicinity of the empirical trajectories. However, some
limitations need to be acknowledged: two assumption of the algorithm, namely the optimality
of demonstrations and a linear time-invariant reward function model may not hold in every
situation. Human behaviour is complex and the demonstrations are not always optimal with
respect to the reward function, thus the algorithm cannot address sub-optimal and irrational
decision. Moreover, the hand-crafted features may not give a complete representation of cy-
cling style. The weights resulting from the learning processes show statistical differences when
aggressive and cautious cycling styles are considered, while the difference is minor for normal
cycling.

6-2 Future work

During this thesis project, several fields for future research and improvement were found:
Experimental setup
The current experimental setup provided informative data. However, it does not take into
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account interaction between cyclists and some information, such as the distance between cy-
clists and other road users, are lost. Moreover, it was not possible to learn a unique individual
cyclist preferences, because it would require a big amount of data for each person. In order
to gain new insight about different cycling styles in interactive situations, a new experimental
setup should be developed in order to take into account the interaction between individuals.

Scenario

More complex scenarios should be considered, for example queue forming, complex inter-
sections. Adding these scenarios would provide information on complex cycling patterns,
which can be useful in learning the cycling style in interactive environments. Moreover, cy-
clist’s reaction to traffic light could be investigated as part of a personalized model of each
individual cyclist.

Feature definition

New features should be designed in order to take into account interaction with other cyclists
and other informative characteristics of cycling style in a naturalistic environment. These
features may include distance between cyclists, velocity difference, features related to specific
manoeuvres as overtaking and following. A comprehensive reward function could describe
complex behaviours, by taking into account different characteristics of the cycling action.

Inverse Reinforcement Learning algorithm

Modelling the reward function as a linear sum of features has shown to be effective in sev-
eral driving and cycling style identification. However, more complicated behaviours could
be addressed by defining a more complex parametrization of the reward function, such as
using neural networks to map raw states to reward values. Manual feature definition relies
on domain knowledge and human experience, and may not always the be the more accurate
description of the cycling style. Deep neural networks have shown to be a promising method
for extracting informative features directly from data, and they could be employed in this field.
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