EyeIDEA: Paving the Way Towards an
Augmented Eye-Tracking IDE

Master’s Thesis

Arjan Langerak






EyelDEA: Paving the Way Towards an
Augmented Eye-Tracking IDE

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
EMBEDDED SYSTEMS
by

Arjan Langerak
born in Dordrecht, the Netherlands

]
TUDelft

Software Engineering Research Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands
www.ewl.tudelft.nl


www.ewi.tudelft.nl

©2021 Arjan Langerak. All rights reserved.



EyelDEA: Paving the Way Towards an
Augmented Eye-Tracking IDE

Author: Arjan Langerak
Student id: 4211235
Email: a.c.langerak@student.tudelft.nl

Abstract

Since their invention, the keyboard and mouse are the most used input devices that
software developers use to interact with source code. However, these devices have their
IDE interaction issues as developers need to spend a significant amount of time learn-
ing how to use them efficiently and effectively. To tackle some of these issues, we used
an eye-tracker to provide an alternative input method. With eye-tracking, it is possible
to infer where developers are putting their attention to that can be utilized to improve
the IDE user experience and productivity. Therefore, we present EyeIDEA, an experi-
mental plugin for Intellij IDEA that integrates eye-tracking to provide source code nav-
igation, debugging interactions, and fine-grained information about user habits based
on eye-tracking. A user study was conducted with TU Delft students to investigate
the perceived usefulness of our eye-tracking IDE. Based on their reactions, we found
that the gaze-based interactions feel quick and natural. Moreover, there is a strong
preference for eye-tracking interactions that only require a single code element or but-
ton as input. Additionally, users perceived that an eye-tracking IDE could substitute a
mouse, especially when suffering from health-related issues or when performing light
programming work. However, eye-tracking also brings new challenges, including in-
tegrating eye-tracking with keyboard/mouse input and accounting for accuracy and
precision issues that influence the overall usability. A short video demonstration of
our tool is available at https://www.youtube.com/watch?v=ShvIX04rcrd.

Thesis Committee:

Chair: Dr. Ir. W. P. Brinkman, Faculty EEMCS, TU Delft
University supervisor:  Dr. M. Aniche, Faculty EEMCS, TU Delft


a.c.langerak@student.tudelft.nl
https://www.youtube.com/watch?v=ShvIX04rcr4




Preface

The year 2020 marked the beginnings of a new decade and what an interesting start it be-
came. Empty roads and streets, face masks were the latest fashion trend, and working from
home became the new standard as we all had to adapt to the coronavirus pandemic. New
challenges popped up as staying focused and motivated became more difficult. However,
thanks to all the people closest to me, I was able to complete my thesis successfully. Let me
show you my gratitude with lots of love and appreciation.

It also marks the end of my nine-year journey as a student at the Delft University of
Technology. Throughout this journey, I met lots of people and made friends with several of
them. I want to take the opportunity here to thank them all as they helped and supported
me. Without them, my life as a student would not have been the same. I would also like to
thank my parents for their support throughout all my years at TU Delft and letting me stay
over during the weekend when I moved out, especially during the corona epidemic.

During my Masters’s Thesis, I was supervised by Mauricio Finavaro Aniche for over a
year. During this time, Mauricio gave me the freedom to choose my own research topic and
supported me through this endeavor. Your supportive feedback and enthusiasm helped me
in several directions to complete this study. Without it, I doubt if I had chosen to pursue the
topic of this thesis. Finally, I also would like to give a shout-out to Minaksie Ramsoekh for
her help in the paperwork and reserving rooms for the user study as the TU Delft was under
lockdown.

Arjan Langerak
Delft, the Netherlands
April 1, 2021

iii






(L_Introduction|

2 Related Work

o1

IDE Usage and Associated Challenges|

[2.2  Eye-tracking for Software Development Tasks|

3  EyelDEA

[3:2" Plugin layoud

[3.3  Connecting to an Eye-Tracker|

Eye-tracker Setup| . . . . . ... ...

[3.4

[3.5 Preprocessing Gaze Data
[3.6 " TDE GUI Mapping]

[3.7

DataExportf . . . . ... ... ....

3.8 Executing Gaze-based Actions|

[3.9  Creating highlights on the screen|

4 Research Design|
4.1  Research Questions| . . . . ... ...
4.2 Methodology| . . ... ... ... ..
4.3 Data Collection and Analysis Procedure|
4.4 Participants| . . .. ... ... .. ..
4.5 Pilotstudy|. .. ... ... ......

S Results|

Contents

iii

vii



CONTENTS

[5.1 Participants statistics| . . . . . . . ... Lo 57
B2 RQT:IDEUsage|l . . . . . ... . o 58
5.3 RQ2: EyelDEA Perceptions| . . . ... ... ... ... ... ... ..., 69
5.4  RQ3: Eye-tracking IDE Prospects| . . . .. ... ... ... ... ... 76
6__Discussion 83
6.1 Research Questions| . . . . . . . . . . . ... .. ... 83
[6.2 Implications| . . . . . . . . . . . . e 85
[6.3 Threatsto Validity|. . . . . ... ... ... ... ... ... ... 85
nclusions and Futur: r 89

B oraphyj 91
A Glossary| 101
B Interview Questionnaires| 103
B.1 Demographic Questionnaire| . . . . . . ... ... ... .......... 103
[B.2 SUS Questionnaire| . . . . . . . . . . . . ... e 104
IB.3 Interview Questionnaire|. . . . . . . . . . . ... ... 104
B.4 Tramning Videos| . . . . . . . . . . .. e e 108
verview Card Eye 111

[D Tnvitation Poster for the User study] 113
[E " Survey invitation form| 116

vi



List of Figures

3.1 Overview of the architecture and theirroles) . . . . . ... .. ... ... .. 13
[3.2  The layout of the EyeIDEA plugin inside IntellilJ IDEA. . . . . ... ... .. 14
[3.3  Debugging Modes button panel with the two differenttabs.| . . . . . . . . . .. 15
[3.4 Instances of different eye-trackers.| . . . . . . .. ... oL 16
3.5 Life cycle of the calibration process.| . . . . . . ... ... ... ........ 17
[3.6 A calibration plot that illustrates the measurements taken.|. . . . . . . . .. .. 18
[3.7  The different components of the calibration result screen.| . . . . . . . ... .. 18
[3.8  Illustration of degrees of visual angle.| . . . . . ... .. ... ... ...... 19
3.9 Two different methods to calculate the precision.| . . . ... ... ... .... 21
[3.10 The additional components of the validation result screen.|. . . . . . . ... .. 21
[3.11 The construction of the gazecursor| . . . . . ... ... ... .. ....... 22
[3.12 Examples of filtering x-coordinates with different kernels.| . . . .. ... ... 24
[3.13 Overview of mapping architecture.| . . . . . . . . ... ... ... ....... 25
3.14 Overviewof IntelliJ IDEA wil . . . . . . . .. ... ... . ... ... 25
[3.15 Overview of the Debugger Tool Window.| . . . .. ... .. ... ....... 26
[3.16 Overview of the Editor. 1) Opened files tabs 2) Code text box 3) Gutter|. . . 27
[3.17 An example output of the text mapper. The green blob represents the current |
........................................ 28
[3.18 Example output of the Java mapper. The green blob represents the current gaze.| 29
[3.19 Example popup that uses a List to showitems.|. . . . . . ... ... ... ... 29
[3.20 Example of a button(visual object) that 1s represented as a Part.| . . . . . . . .. 30
[3.21 ER diagram of the database.| . . . . . .. ... ... ... .. ... .. .. .. 31
[3.22 " A snippet of the logging obtained with Logback|. . . . . ... ... ... ... 32
[3.23 The two different popups| . . . . . . . . . . oL 33

[3.24 The relations between each mode and how they revert back to the control mode. |
| Note, 1t 1s always possible to select Mode 2, 3, 4, and 8 from any other mode if |

| this 1s not already the currently activemode . . . . . . . .. .. ... ... .. 35
3.25 The three different Gaze Button states] . . . . . .. . . ... ... ... .... 36
[3.26 Overview of the process in creating highlights on the screen.| . . . . . . . . .. 37
[3.27 Example highlighting of the sourcecode.| . . . . ... ... ... ... .... 37
[3.28 Two different examples of visual objects that are highlighted.| . . . . . . . . .. 38

vii



LI1ST OF FIGURES

4.1 Overview of the study procedure.|. . . . . . . ... .. ... ... ... .. .. 45
4.2 Overview of the comparative study procedure.. . . . . . ... ... .. .... 46
[5.1 Individual plots of the top three transitions found in Table|5.4}| . . . . ... .. 64

[5.2  Individual plots of transitions between the Debuglool and Editor where the |
| participants spend at least 500ms on the respectable window before transitioning.| 65
[5.3  Navigation and DebugTool transitions to the Editor when eye-tracking 1s available.| 65
[5.4  Individual plots of transitions between the RunTool and Editor where the par- |

| ticipants spend at least 500ms on the respectable window before transitioning.| . 66
[5.5 Individual plots of the training time results.| . . . . . . ... ... ... .... 73
[5.6  The total amount of faults made during the training session.|. . . . . . . . . .. 75

[5.7 A mock-up of the ideas to change the current layout instead of the current fixed |
| window at the topof thescreen.| . . . . .. .. ... ... ... ... ..., 82

viii



Chapter 1

Introduction

Software developers majorly use Integrated Development Environments (IDEs) to develop
and maintain source code [35]. These programs incorporate all the necessary software tools
that developers typically use during software development activities into a single environ-
ment, aiming to increase their productivity. Common activities that take place are browsing
source code, navigation, and debugging [4} 47, 45]].

However, developers need to spend a significant amount of time learning how to use
the IDE. In a study about the usability of IDEs, Kline et al. [[37] found that developers only
use a small subset of the offered functionalities because it is too difficult to learn them all.
Furthermore, several studies show that developers face significant overhead in navigating
and debugging source code despite these functionalities. Minelli et al. [45]] found that 18%
of the time is spent on the user interface to read and browse source code. Additionally,
Piorkwiski et al. [54] found that 50% of the time is spent on foraging information during
debugging.

An emerging Software Development field is the investigation of the usage of an eye-
tracker to tackle these issues. With eye-tracking, it is possible to infer what developers are
putting their attention to [[18} 72, 57, [34]] and also opens up new possibilities to improve the
productivity of developers by analyzing and supporting their thoughts [67, 21} [3] and by
adding interactions based on their gaze [22, 156, 60].

Hejmady et al. used eye-tracking to investigate how developers are using an IDE during
debugging [29]]. They used a novel mining technique to analyze the visual patterns of devel-
opers. This technique helped them in finding out that experienced developers used the IDE
very differently than novice developers. Bednarik et al. also found similar patterns during
their study [7].

To avoid the labor-intensive mapping of gaze to source code that typically happens in
this type of research, a couple of studies created and published their tools that solves this
issue. A promising tool that automates the mapping is EyeCode [28] but this only works for
static images of the source code. A different approach was taken by Shaffer et al. [59] who
integrates the eye-tracker into the Eclipse IDE such that the mapping from gaze to source
code works on large code snippets and also offers the ability to investigate the behavior of
developers outside a lab setting.

Other studies investigate gaze-based input methods to interact with the IDE to increase

1



1. INTRODUCTION

productivity, mostly through improving navigation. These solutions are deployed as either
a standalone IDE [22]] or as plugins for IntelliJ [60] or Brackets.io [56]]. These studies have
shown that gaze input is a promising input technique to navigate source code.

For our work, we created a plugin for Intelli] EL EyeIDEA, that incorporates the eye-
tracking into the IDE. This plugin incorporates gaze-based actions such as navigating source
code, perform debugging actions such as placing breakpoints, evaluate code, and stepping in
and out of functions. To that end, the plugin correlates the gaze to the source code and other
user interface elements such as the code editor, the debugging tool, buttons, and menus.
These mappings are exposed such that we can use them to investigate how developers are
using the IDE and the impact of the gaze input on their behavior.

We conducted a user study among TU Delft students to investigate the perceptions of our
augmented eye-tracking IDE. In this study, the students performed two debugging sessions.
During the first session, the students were not allowed to use gaze input. It was only allowed
in the second session. Furthermore, they were free to use the IDE in their preferred way of
debugging such that all of their actions were voluntary. After these sessions, we interviewed
the students about their opinions of using eye-tracking as an interaction method.

Our main findings from the study are:

* Participants preferred to use the gaze-based action for navigation and setting break-
points but preferred the mouse or keyboard for interacting with the debugger.

» Gaze input is perceived to be better suited for actions that only require a single selec-
tion, rather than rapidly repeated selections.

» Half of the participants found it difficult to switch between the gaze-based input and
the mouse and keyboard input.

* The use of eye-tracking feels natural, but the inaccuracies contribute to usability is-
sues, and a high mental load reduces the willingness to use gaze-based actions.

* On average, the implemented gaze-based actions are easy to learn, and participants
made only a couple of mistakes.

* An eye-tracking IDE is perceived as useful for light programming work and in situa-
tions when a developer cannot use the mouse because of health issues or traveling.

The remainder of this paper is structured as follows: Chapter [2] describes the usage
of eye-tracking within software research to explore how developers are programming and
possible methods to use eye-tracking as an input mechanism. In Chapter 3] we present the
architecture, the integration of EyeIDEA within IntelliJ, and how the interactions work. We
discuss our research questions and the design of the user study in Chapter 4] The results of
the user study are described in Chapter [5| and in Chapter [6] we discuss the outcome of the
results and relate it to the research questions. Lastly, Chapter [/| concludes this paper and
provides future work.

Thttps://www.jetbrains.com/idea/


https://www.jetbrains.com/idea/

Chapter 2

Related Work

An upcoming trend is to investigate developers’ behaviors with eye-tracking to improve
their productivity. However, only a few of these studies incorporated eye-tracking into
software development tools. Instead, most of them choose to use screen captures or images
to correlate the gaze input to the code snippets or other Areas of Interest (AOI). Before
integrating eye-tracking into an IDE, it is vital to know how developers use an IDE to avoid
usability issues.

This chapter discusses studies about IDE usage and associated issues, research into
using eye-tracking to aid in software development, and studies that have incorporated eye-
tracking into software development tools. These tools help to map the gaze to source code
automatically or to provide alternative navigation methods.

2.1 IDE Usage and Associated Challenges

One of the primary ways to develop software nowadays is with an IDE. Consequently, it
has attracted many researchers to study IDE usage in order to improve them. Since an
IDE offers a range of different tools, we focus on navigation and debugging within an
IDE because these are part of our empirical analysis into an augmented eye-tracking IDE.
Additionally, we discuss which role an IDE plays in the day-to-day activities of developers.

Day-to-Day Usage of IDEs Several studies investigated the usage of IDEs by instru-
menting the IDE to obtain the executed actions and window events. Murphy et al. [47]]
investigated the usage of Eclipse by looking at the top used actions and opened windows.
The opened windows gave an indication about which tools were active. Minelli et al. [43]
collected all actions, window events, keyboard and mouse events, and time spent outside
the Pharo IDE for the Smalltalk programming language. Then, they analyzed this data by
creating “sprees”, a sequence of events, and turn these into understanding, navigation, edit-
ing, and GUI interaction activities [44]. Amann et al. [4] followed a similar approach in
the investigation of Visual Studio. Additionally, they also analyzed the top used actions and
tool usage.



2. RELATED WORK

These studies show that there are some overlapping behaviors in the usage of these
IDEs. For instance, both Eclipse and Visual Studio studies show that the debugger is the
second and third most frequently used tool. There are also some crucial differences between
the usage of these IDEs. For example, Minelli et al. found that users spend on average 17%
of the time configuring the Pharo IDE but only 3.5% of their time when configuring Visual
Studio. Amann et al. hypothesized that this could originate from the different GUI concepts
and that these indicators could be meaningful when designing IDEs. A similar issue is also
addressed by Kline et al. [37]. They noted that developers found it difficult to learn and
work with IDEs with poor toolbar and window organizations.

Navigation inside IDEs Another research field focuses on understanding how software
developers navigate source code and how efficient they are in finding relevant code. Minelli
et al. [46] found that developers performed between 1.5 and 19 times more navigation ac-
tions than the ideal case in the Pharo IDE. They argued that the ideal navigation is unfea-
sible as the relationships between code snippets are often hidden. Additionally, navigation
actions are also part of constructing a mental model of a software system. However, the
efficiency gap does suggest the need for better navigation methods.

This usability issue is also observed in Visual Studio by DeLine et al. [16], primarily
with “re-finding code”, i.e., the developer already visited a code snippet but forgot the name
of it or which Editor tab to click to find the code snippet. Most of the participants even
closed all tabs at some point to start over again.

Pilzer et al. [53] tried to reduce this issue by predicting which opened windows are
relevant. Before they created their detection tool, they conducted a study in which window
events, user input data, and eye-tracking information was collected. Their results were,
similar to DeLine et al. [16], that the amount of opened windows grow over time and are
only closed to reorganize their workspace. Based on the results, they developed a tool
that predicted which windows are irrelevant and achieved an 88.3% accuracy in predicting
which windows were relevant. Eight out of twelve participants perceived the tool as useful.
This result suggests that it can help in finding relevant windows and perhaps also tabs.

Ko et al. [38]] found that on average, 27% of the navigation actions returned to code
snippets that they recently visited in the Eclipse IDE. Additionally, 42% of the navigation
actions were indirect, i.e., scrolling and visual searching through the displayed code. Some
developers tried to reduce this overhead by placing bookmarks but had difficulties recalling
which bookmark to choose. A suggestion to fix these issues was to provide better cues in
the IDE to guide searches such that it leads to a reduction of the needed navigation steps.

One of these cues could be created by using past navigation action. Singh et al. [[62]
looked into various models to predict software developers’ navigation actions. The two
main prediction methods are click-based or view-based operationalization. The click-based
method means that a developer navigates the source code by clicking with the mouse on a
tab or the code to go to the implementation, declaration, or usage. However, the limitation is
that this method fails to record scrolling through the code, and clicking does not necessarily
mean that a developer has its attention on that method. According to the researchers, these
limitations were shown by Kevic et al. [36] that used gaze recordings from the iTrace tool to
compare click-based navigation with eye-tracking. By contrast, the view-based method re-

4



2.1. IDE Usage and Associated Challenges

lies on what is visible in the Editor, specifically in the middle of it. This method is somewhat
similar to eye-tracking but with the limitation that a developers’ attention is not necessarily
in the middle of the screen when navigating. Their results showed that click-based naviga-
tion approximated the developers’ navigation intentions while the view-based method did
this poorly. Additionally, the best navigation predictor was to rank more-recently visited
methods higher than those that are less-recently visited. That is in line with prior research
that developers revisit the same code often.

Debugging Usage inside IDEs A number of studies have investigated developers’ habits
during debugging inside an IDE. In one of these studies, Petrillo et al. [52] investigated
how developers use the debugger inside Eclipse. For this purpose, they created the Swarm
Debug Infrastructure (SDI) that collects all debugger events and shows these on a separate
dashboard. A preliminary test showed that SDI is effective in collecting and showing this
data. However, they argued that they could not claim generalizations on the debugging
habits they found during the study because that was not the goal.

Another method taken by Afzal et al. [2] was to mine the event data set of Visual Stu-
dio produced by Proksch et al.[S5] for the MSR 2018 Mining Challenge. One of their
findings was that developers start using the debugger early during debugging as in 80% of
the cases, the debugger was used in under 13 minutes while the average debugging time
was 45 minutes. One of their hypothesis was that developers tend to use the debugger on
difficult-to-find bugs. These bugs require more time to debug, causing an increase in the
total debugging time.

Hejmady et al. [29] used eye-tracking to investigate which code representations offered
by the jGrasp IDE gets the attention of developers. They created a labeling scheme based
on the gaze duration and the representations to investigate the visual patterns. The resulting
labeling was mined with the Sequential Pattern Mining(SPAM) algorithm that finds fre-
quent sequences. These were used to investigate how developers are switching between the
different representations over time. This approach allowed them to investigate temporal de-
bugging behavior. For example, they found that experienced programmers switched more
often between the code and the output. This effect would not be found without taking time
into account.



2. RELATED WORK

Topic Authors Study
Day-To-Day Murphy et al. [47] Monitoring Java developers using the
IDE Usage Eclipse IDE in their normal software de-

velopment activities.

Minelli et al. [45] 144] In depth analysis of how SmallTalk devel-
opers spend their inside the Pharo IDE.

Amann et al. [4} 53] Mining a previously collected Visual Stu-
dio IDE interaction dataset of C# develop-
ers to investigate the usage of this IDE .

Kline et al. [37] Empirical studies about usability issues of
various IDEs for Java and C# developers.

IDE Navigation  DeLine et al. [[16] Observing how C# developers are using
Visual Studio IDE during editing of unfa-
miliar code.

Pilzer et al. [53]] Detect relevant windows during software
development with eye-tracking to aid in
navigation.

Ko et al. [38]] Investigation of which strategies Java de-

velopers deploy to gather information in
understanding unfamiliar code by using the
Eclipse IDE.

Singh et al. [62] Testing the performance of predictive mod-
els of software development navigation.

Kevic et al. [30] Investigating navigation habits of develop-
ers in Eclipse IDE during a change task us-
ing IDE interactions and eye-tracking.

IDE Debugging  Petrillo et al. [152] Collect and visualize debugging activities
Usage inside Eclipse IDE.
Afzal et al. [2}155]] Exploring a Visual Studio IDE interaction

dataset of C# developers into their debug-
ging behavior.

Hejmady et al. [29] Investigating the visual attention patterns
of Java developers using the JGRASP IDE
during debugging.

Table 2.1: Summary of related studies about IDE Usage and Challenges grouped by re-
search topic.



2.2. Eye-tracking for Software Development Tasks

2.2 Eye-tracking for Software Development Tasks

In order to figure out how to deploy eye-tracking in the Software Development field, re-
search is needed into how gaze information can be leveraged to aid developers during soft-
ware development tasks. These investigations range from improving existing tools and
methods such as code summarization to creating new tools that improve productivity by
predicting if a developer is facing problems when writing code. The following paragraphs
highlight some studies that argue that their proposed method could be useable in an IDE
and studies that deployed and tested those tools in an IDE to see whether it is practical to
have them.

Future Development of Eye-tracking Tools Some studies investigated the use of gaze
information to create models and test how well they performed compared to similar studies.
Rodeghero et al. [57] investigated how developers read source code when summariz-
ing it and how this information can be turned into an automatic code summarization tool.
Their approach assigned weights to keywords inside a code snippet based on the reading
process of developers. Their findings indicate that keywords are read differently by devel-
opers, especially if sections were harder to understand. Additionally, almost four out of
five extracted keywords matched the selected keywords of the developers. Therefore, an
eye-tracking-based method can find keywords that are important to create a summary.

A broader set of studies by Fritz et al. [21] looked into whether bio-metric sensors
such as eye-trackers can be used to predict aspects such as code difficulty, coding progres-
sion, and interruptability, that relate to productivity. All of their studies included a multi-
tude of different sensors and found that a combination of those sensors performed better
as each sensor compensated for the disadvantages of other sensors. During their studies,
eye-tracking was most commonly used as a pointing device to indicate which code snippets
are investigated by the developer. The other sensors were used to predict various aspects
such as the current emotion or mental load of a developer.

In conclusion, they found that biometric sensors have the potential to predict the men-
tioned aspects. These aspects can be used to create tools that are based on individual de-
velopers’ behaviors instead of behavior based on all developers. Additionally, the output of
these sensors can potentially be used for real-time analysis, compared to most metrics that
rely on post hoc analysis.

Integrated Innovative Eye-tracking Tools into an IDE Investigating whether gaze in-
formation can predict developers’ habits does not reveal if these tools are useful during
software tasks. Therefore, studies created new development tools to test if developers find
them useful.

One of these studies done by D’ Angelo et al. [[15] investigated if sharing gaze informa-
tion could help developers during pair programming. In particular, they wanted to know
how the incorporated non-verbal cues affected communication about code locations. This
tool visualized which five lines of code were in the developers’ field of vision. The vi-
sualization used two colors, yellow and green, to indicate if the developers are looking at

7



2. RELATED WORK

the same code at the same time. After their user experiment, they interviewed the devel-
opers and found that they preferred to use these visualizations instead of communicating
about line numbers. They also adapted very quickly to this system. After a while, some
developers did not explicitly notice the visualizations.

As mentioned in the previous paragraph, biosensors have the potential to be used to
predict code difficulty. That is exactly what Hijazi et al. [30] tried to accomplish with their
tool TellBack. This tool uses a heart rate monitor with an eye-tracker to detect the mental
load of the developer. Additionally, it provides the specific code elements that the developer
is struggling with.

Each code snippet under the gaze is labeled as either “difficult” or “not difficult”. It
depends on the extracted features obtained by the heart rate sensor and eye-tracker if the
code snippet is “difficult” or not. Their experimental evaluation showed that it achieved an
accuracy of 83% in predicting the difficulty of a specific code element. However, further
research is needed to see if this still holds in an industrial setting.

2.2.1 Gaze Mapping to Source Code

Work has been done to reduce the effort needed to use eye-tracking to investigate how de-
velopers read and use source code. At the time of writing this thesis, the current analytical
eye-tracking software offered by companies is limited. In particular, the software makes
a recording of the screen, and researchers have to labels the locations on the screen that
matches the source code or other objects. This process makes it labor-intensive, particu-
larly if the contents shown on the screen can change at every moment. Therefore, some
studies have created and published tools that automatically map the source code shown on
the screen with the current gaze. The following paragraphs highlight these tools and the
usability of these tools.

EyeCode This experiment by Hansen et al [28]]. investigated code comprehension dif-
ferences based on experience. They created a tool that automatically maps the gaze to
different AOI’s such as code blocks, code lines, and individual code elements. Addition-
ally, it included a statistical library to obtain metrics for the fixations and saccades, such as
the fixation duration for specific code lines. However, this tool used a single static image
as an input to create these AOI’s. Therefore, the experiment used small snippets of Python
code that were under twenty lines of code. Additionally, they used unmodifiable code snip-
pets because the task was to predict the output of the program. A possible side effect of
this simplification was that none of the eye-tracking metrics correlated with programming
experience. Other more complex experiments did found a correlation with programming
experience [58, [, 140].

However, they could moderately predict the reading behavior obtained from the eye-
tracking metrics, such as which keywords are important. This result is in line with previous
experiments that used manual analysis.

iTrace This plugin for the Eclipse IDE is developed by Shaffer et al. [59] with maps the
gaze of a developer to the code shown in the Editor of Eclipse. They noticed that eye-

8



2.2. Eye-tracking for Software Development Tasks

tracking is becoming more popular to study code development. However, there was no tool
available that automatically maps the gaze to code and could be used on large code snippets
where the code was allowed to be modified. Therefore, they created a plugin within the
Eclipse IDE to map the gaze coordinates to code elements. After an experiment, the code
elements can be exported and filtered with a fixation filter.

A revised version [24] changed the architecture such that it is less dependent on Eclipse
to make it easier to support other IDEs such as Visual Studio IDE. This should make it
easier to perform experiments in IDEs that are used for specific programming languages.
As previously found by Amann et al. [4], there are significant differences in how IDEs are
used. So, it is important to be able to study these differences.

iTrace have been used successfully to conduct experiments about software traceabil-
ity [[72] , code comprehension [58, [32]] and classifying the expertise of developers [11} [12]]
which means that researchers find this tool useful.

2.2.2 Eye-tracking for IDE navigation

A couple of attempts have been made to use eye-tracking as a navigation tool inside an IDE.
Each attempt investigated various methods to deal with the inaccuracies of eye-tracking and
how to integrate the eye-tracker with pre-existing input methods such as mouse and key-
board. The following paragraphs list each of these attempts and their findings, if applicable.

EyeDE Gliicker et al [22] created a prototype IDE with eye-tracking interactions. Specif-
ically, their work focused on hands-free navigation of source code. They implemented the
interactions by using dwell-based mechanisms that activate a certain action. For instance,
they implemented some contextual menus that can be brought up by looking at a specific
button above the currently focused code element. A specific design choice was to avoid
bright colors that could introduce unwanted distractions.

The evaluation results were that the participants described it as interesting and intuitive
but had some difficulties with dwelling, especially when the gaze data was fluctuating. This
issue made it difficult to activate a button. Their proposed solution was to add a key-press-
based alternative to skip dwelling.

EyeNav A plugin for the text editor Brackets.io, developed by Radevski et al. [S6] with
the purpose to explore eye-tracking based code editing actions such as code scrolling and
selection. They used keyboard shortcuts to change between the different actions because
their focus was to use eye-tracking in combination with the keyboard, rather than to replace
it completely. Unfortunately, there is no empirical study that has tested this plugin.

CodeGazer This study investigated how gaze input can be used for navigation actions and
how it performs compared to a mouse or keyboard [60]. Shakil et al. developed a plugin for
IntelliJ IDEA that adds a selection-based interaction system based on Actigaze [42] to sup-
port the navigation actions. This system uses highlights to indicate interact-able elements
on the screen that can be selected by buttons that have the same color as these highlights. To

9



2. RELATED WORK

test their tool, they conducted two different user studies. The first study focused on compar-
ing the performance and accuracy of their tool against the mouse and keyboard. They found
that the gaze is, on average slower than a mouse but comparable to the keyboard. However,
the performance is comparable to the mouse for actions for which one would typically have
to move the mouse and press the mouse button. For instance, when navigating code, a user
moves the mouse over a specific code snippet and then presses the mouse button along with
a keyboard combination to trigger the navigation action.

The second study focused on assessing user preferences. During this study, the partic-
ipants were free to choose any input technique during every navigation step. They found
that most participants used gaze input for their primary input technique. The most popular
action was to jump directly to the definition or usage of a specific code element whereas
scrolling was perceived as the most difficult feature to use. Overall, the participants found
CodeGazer intuitive and easy to use. They indicated that it would be useful for general code
exploration but not for heavy development work.

10



2.2. Eye-tracking for Software Development Tasks

Topic Authors Study
Future Development Rodeghero et al. [S7]] Estimating important Java source code
of Eye-tracking keywords by using Eye-tracking for source
Tools code summarization.

Fritz et al. [21]] Investigating the use of biometric sensors

to develop prediction models for code dif-
ficulty, progression and interruptibility of
a developer.

Integrated Innovative D’Angelo et al. [15] Using eye-tracking to visualize which

Eye-tracking Tools code lines in the Visual Studio IDE are in
into an IDE the vision of developers in order to help
with communication during pair program-

ming.
Hijazi et al. [30] Measure code difficulty with eye-tracking

and heart rate sensor and locate the rele-
vant code inside the editor of the Eclipse
IDE.

Gaze Mapping to Hansen et al. [28] Automatically mapping gaze patterns to
Source Code static images of Python source code to in-
vestigate code comprehension.

Shaffer et al. [59,24] Research project to incorporate automatic
mapping of gaze patterns to source code
within Eclipse IDE and Visual Studio IDE.

Eye-tracking for IDE Gliicker et al. [22] Prototype build IDE with gaze enabled
Navigation navigation actions that makes use of con-
textual menu’s and buttons.

Radevski et al. [56]  Using gaze input for code edition and navi-
gation actions in Brackets.io IDE that uses
the gaze to integrate it with keyboard us-
age.

Shakil et al. [60] Investigate the usage of gaze enabled nav-
igation actions within IntelliJ IDEA by us-
ing a select and confirm scheme.

Table 2.2: Summary of related studies about using eye-tracking for software development
tasks grouped by research topic.

11






Chapter 3

EyeIDEA

This chapter describes the plugin design, the integration of the eye-tracker within IntelliJ
IDEA, and the gaze-based interaction mechanism. The current implementation supports
gaze analysis of Java and Text Files and detects if a gaze is inside an Area Of Interest (AOI)
such as the Project View or Editor. Additionally, a complete analysis of the visual objects
within the debugger is also available. The plugin is designed to be flexible and modular,
such that it can be expanded and modified to support other research interests.

3.1 Architecture Overview

The architecture of EyeIDEA consists out of five layers, each with its own roles.

Eye-tracker Roale

ecosystem
Y i i Eye tracker

_' IDE integration

. Analysis

‘ Manufactor SDK

Interaction

EyelDEA
Plugin

.‘ Gaze ( ‘

EyeTracker
‘ Exporter
|8 V) ¢ Mapping
info -
IDE Mapper
Gaze

Mapping
info

Action Highlighter

Enable/Disable
highlights

Figure 3.1: Overview of the architecture and their roles.

13



3. EYEIDEA

Each of these layers communicates to each other through a messaging system. This
system ensures that additional layers can use the information that is already available to
expand the current system.

The EyeTracker and IDE Mapper are labeled as IDE Integration because these layers
are responsible for connecting to the eye-tracker ecosystem and integrate this into the IDE.
Then, the Exporter takes this mapping information and saves it to an external information
source such as a database system.

The mapping information is also used to provide gaze-based interactions through the
use of the Action and Highlighter layer. The Highlighter adds and removes transparent
color boxes that are used to highlight specific visual objects on the screen. These highlights
are added or removed by the Action layer. This layer uses highlights to indicate that specific
objects can be selected when a specific action is activated. These actions are activated with
gaze-activated buttons that are added to the IDE.

3.2 Plugin layout

The plugin layout of EyeIDEA adds four different panels, three of which provide eye-
tracking interactions by using gaze buttons (Section [3.8), and the remaining panel is to
interact with the eye-tracker. This is illustrated in Figure [3.2]

s

4 - Dewona
]

Figure 3.2: The layout of the EyeIDEA plugin inside IntelliJ IDEA.

Panel 1 is the Gaze action button panel and is located on top. It consists out of eight
gaze buttons. Each of these buttons has a distinct color that corresponds with the used colors
from the highlighting feature described in Section [3.9] The purpose of these buttons is to
perform the action that is associated with them. This process is explained in Section [3.8]

Panel 2 is the Navigation Modes panel and is located on the left side. It consist out of
two gaze buttons. These buttons are used to select the implementation or declaration modes

14



3.3. Connecting to an Eye-Tracker

which are described in Section

Panel 3 is the Debugging Modes button panel and is located on the right side. It consists
out of two different tabs. The first tab, Actions, consists out of two gaze buttons that are
used to select the breakpoint and evaluation modes. This tab is shown in Fig.[3.34]

EyeIDEA Goze Debug Buttons & - /cIDEA Goze Debug Buttons &

Actions  Code Actions Code

(a) The Action tab. (b) The Code tab.

Figure 3.3: Debugging Modes button panel with the two different tabs.

The second tab, Code, consists out of a text area and a gaze button. This tab is only
used by the conditional breakpoint and evaluation window modes. The text area is used to
insert code, while the function of the button depends on which of the two aforementioned
modes is currently active. This will be explained in Section [3.8.1]

Panel 4 is the Control panel and is located at the bottom. It consists out of mouse-
controlled buttons to interface with the eye-tracker. These buttons are responsible for con-
necting and disconnecting from the eye-tracker, starting and stopping the eye-tracking, and
creating, saving, and loading the calibration. Additionally, two toggle buttons are used to
enable or disable optional features. The Show Pointer button is to visualize the gaze by
drawing a bubble on the screen that will be described in Section [3.4.3] The other button,
Click offset, enables a gaze correction feature based on mouse clicks. This feature will be
explained in Section[3.5.2]

3.3 Connecting to an Eye-Tracker

Many manufacturers are introducing eye-tracking devices on the market, each using their
proprietary software. An adapter is needed to make sure that our plugin has the option to
support the different eye-trackers and their software.

This adapter, AEyeTracker, describes the functionalities that are used within the plugin
to communicate with an eye-tracker effectively. AEyeTracker sends the gaze information
from the eye-tracker to the gaze messaging channel. Additionally, it also applies the filter
described in Section [3.5.3]to the gaze information and sends it out.

A separate messaging channel is used to provide other functionalities, for example, to
start the device. These messages are put into a separate channel to create a distinction be-
tween controlling the device and receiving gaze information. Gaze information is different

15



3. EYEIDEA

from control information because it is used by multiple layers while control information is
only meant to be used by the Control panel.
An overview of this adapter is shown in Fig.

Gontrol Channel

r Gaze Channel

c T Java
e (] A
Realization |

; i Realization
Tobii SDK JNI Bridge TobilEyeTracker (<----' H
v

MouseTracker

Figure 3.4: Instances of different eye-trackers.

For this thesis, we use an eye-tracker from Tobii [69] which comes with its own SDK’s.
However, none of these are written in Java, so a bridging component is developed with J N
to have access to the required functionalities within Java. Additionally, another adapter is
created for the mouse to simulate an eye-tracker for testing purposes.

3.4 Eye-tracker Setup

Before an eye-tracker can be used, it is recommended to calibrate the device. This calibra-
tion process is needed to create a 3d model of the users’ eye since some parameters cannot
be estimated without measurements [25]. Therefore, we have added a validation step to
estimate the accuracy and precision of the eye-tracker to evaluate the current calibration.

All the measurements of both processes and the validation calculations are saved on
disk. This also includes screenshots of both calibration and validation plots. An example
plot is illustrated in Fig.[3.6

Besides the validation process, we also added a gaze cursor option to visualize the gaze
movements. This option can be used to let users test the current setup in the tool itself or
use it as a pointer, similar to a mouse pointer.

3.4.1 Calibration

To calibrate an eye-tracker, the user starts by focusing on specific predefined locations on
the screen. In turn, the eye-tracker uses these known locations together with additional
information such as the eye-trackers distance from the screen and the screen dimensions to
calibrate itself.

To provide this functionally, we developed an external Java application that provides a
GUI that is used to perform the calibration. The GUI comes preconfigured with the typical
three, five, or nine uniformly distributed calibration points on the screen. These points are

1https://openjdk.java.net/qroups/hotspot/docs/RuntimeOverview.html#JavaNativeInterf
ace (JNI) |outline

16


https://openjdk.java.net/groups/hotspot/docs/RuntimeOverview.html#Java Native Interface (JNI)|outline
https://openjdk.java.net/groups/hotspot/docs/RuntimeOverview.html#Java Native Interface (JNI)|outline

3.4. Eye-tracker Setup

placed by using a relative coordinate system in order to support multiple screen resolutions.
EyelIDEA itself uses nine calibration points since this configuration is typical for a fullscreen
eye-tracking application. Additionally, this configuration balances between relatively good
accuracy and precision and the duration of the calibration process.

During this calibration, the current calibration target shrinks to guide the users’ eyes
towards the center. In the next step, the eye-tracker collects the data it needs for the
calibration. When it has collected enough data, the calibration target returns to its original
size. If there are other destinations left, the target moves to that location. Otherwise, the
eye-tracker computes the calibration, completing the process. This process is illustrated in

Fig. B3]

Start Calibration

/ B Shrink Calibration Target I .

) \
® *

Move Calibration Target Collecting Data

Finished Expand Calibration Target
Calibration ®

UL
o
oo

o
.
o
a
0°!

ojo o

Figure 3.5: Life cycle of the calibration process.

After performing the initial calibration, the results are shown on the screen. These
results show the measurements of each eye for each calibration point. Additionally, there
are lines drawn from each calibration point to the measurements that belong to this point.
A calibration plot is illustrated in Fig. [3.6]

Fig. shows a zoomed-in illustration of a calibration point. The orange lines repre-
sent measurements taken from the left eye, and the green lines are measurements from the
right eye.

The relationship between measurements and calibration points is also visualized by
clicking on a point with the left mouse button. This action will show which measurements
belong to the selected point. This is shown in Fig.

There also two filter buttons to only show the results of the left or right eye. These
options can help to determine if the center correction (Section [3.5.1)) needs adjusting for the
current user. These buttons are shown in Fig.

If there is a calibration problem with one or more calibration points, it is possible to

17



3. EYEIDEA

Figure 3.6: A calibration plot that illustrates the measurements taken.

I I Validate Recalibrate points - -

(a) Calibration point with (b) A selected cali- (c) Calibration screen buttons
lines representing the bration point.
recorded measurements.

Figure 3.7: The different components of the calibration result screen.

select these points to rerun the calibration for only these. Otherwise, the calibration can be
verified by running the validation. Each option is available by clicking on the buttons shown

in Fig.

3.4.2 Validation

Understanding the performance of the eye-tracker is important to evaluate the quality of the
eye-tracking data. For this study, we have chosen to evaluate the quality immediately after
the calibration to ensure that the calibration process was successful. It is recommended
by Holmgqvist et al. to validate the calibration to make sure that the eye-tracker perfor-
mance is good enough for the current experiment. Accuracy and precision of the eye-tracker
are indicators of the expected quality of the calibration. These will be explained later in this
section. Both indicators provide information about the deviation between what the user is
looking at and what the eye-tracker registers. These indicators are expressed in degrees of
visual angle, which is the angle between two straight lines from two different points on the
screen to the eye, as illustrated in Fig.[3.8] This type of measurement is often used in eye-
tracking research since it takes the distance between the user and the screen into account
instead of only using the distance between two points on the screen.

The following paragraphs explain the accuracy and precision indicators and the calcu-
lation of them.

18



3.4. Eye-tracker Setup

Visual Angle (%}

Figure 3.8: Illustration of degrees of visual angle.

Accuracy The average difference between the target calibration location and the mea-
sured gaze location [31]]. To express this difference in degrees of visual angle, we start with
averaging all measurements into a single point. Then, we calculate two 3D vectors, one for
the averaged measurements and the other for the target location. The origin of both of these
vectors is located at the users’ eye as illustrated in Fig. We use the mean of all the
origin points for the two vectors since we are averaging all the measurements.

The construction of the measurement vector is straightforward. The used eye-tracker
can report the measurements in the User Coordinate System || which means that the mea-
surements are already available as 3D points. The measurement vector is constructed ac-

cording to Eq. (3.1).

OriginDataVector = (Data.x — Origin.x, Data.y — Origin.y, Data.z — Origin.z) (3.1)

To construct the target vector, we need to denormalize the 2D target point to the User
Coordinate System. Each target point is normalized by using the top left corner of the screen
as (0,0) and the bottom right as (1,1). We denormalize this point back by using the screen
information taken from the eye-tracker and Eq. (3.2).

dx = (ScreenTopRight — ScreenTopLeft) « Target.x
dy = (ScreenBottomLe ft — ScreenTopLeft) x Target.y (3.2)
3DTarget = ScreenTopLe ft 4+ dx+dy

Essentially, we calculate the width and height of the screen and multiply it with the
x-coordinate or y-coordinate respectively of the target to obtain the coordinate in the User

Zhttp://developer.tobiipro.com/commonconcepts/coordinatesystems. html#UCS

19


http://developer.tobiipro.com/commonconcepts/coordinatesystems.html#UCS

3. EYEIDEA

Coordinate System. Since the target does not move on the z-axis, we do not need to calculate
the z-axis displacement separately.

With the constructed vectors, the visual angle is equal to the angle between these vec-
tors. Since we are only interested in the direction of the vectors, they are normalized before
the angle is calculated. To calculate this angle, we have used the Apache math3 APIEIthat
uses the cross product for vectors that are almost aligned and the dot product when they are
not almost aligned.

Precision The variation between each successive measured gaze location, i.e., the abil-
ity of an eye-tracker to reproduce the gaze measurement [31]]. It is common to calculate
this value by using angular distances 0, which are defined as degrees of visual angle be-
tween successive gaze measurements. These distances are obtained by calculating the angle
between two 3D Vectors as shown in Fig. [3.8] This process follows the same steps as de-
scribed in the paragraph. Then, the precision is calculated via the Root Mean
Square(RMS) of these angular distances (see Eq. (3.3) where n is the number of measure-
ments).

07 +63+...+6;
n

3.3)

A second option to describe the precision is to compute the standard deviation of the
measurements. In particular, the angular distance ¢ between each measurement and the
mean of these measurements. This is equivalent to using the RMS normalized by the
mean [68] and the equation is equivalent as that of Eq. (3.3). Both of the mentioned methods
are illustrated in Fig.[3.9]

3https://commons.apache.orqg/proper/commons—math/javadocs/api-3.6.1/0rg/apache/commo
ns/math3/geometry/euclidean/threed/Vector3D.html#angle (org.apache.commons.math3.geomet
ry.euclidean.threed.Vector3D, $20org.apache.commons.math3.geometry.euclidean.threed.Ve
ctor3D)

20


https://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/org/apache/commons/math3/geometry/euclidean/threed/Vector3D.html#angle(org.apache.commons.math3.geometry.euclidean.threed.Vector3D,%20org.apache.commons.math3.geometry.euclidean.threed.Vector3D)
https://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/org/apache/commons/math3/geometry/euclidean/threed/Vector3D.html#angle(org.apache.commons.math3.geometry.euclidean.threed.Vector3D,%20org.apache.commons.math3.geometry.euclidean.threed.Vector3D)
https://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/org/apache/commons/math3/geometry/euclidean/threed/Vector3D.html#angle(org.apache.commons.math3.geometry.euclidean.threed.Vector3D,%20org.apache.commons.math3.geometry.euclidean.threed.Vector3D)
https://commons.apache.org/proper/commons-math/javadocs/api-3.6.1/org/apache/commons/math3/geometry/euclidean/threed/Vector3D.html#angle(org.apache.commons.math3.geometry.euclidean.threed.Vector3D,%20org.apache.commons.math3.geometry.euclidean.threed.Vector3D)

3.4. Eye-tracker Setup

7
i

(a) Precision calculation using angular (b) Precision calculation using angular
distances O between successive mea- distances ¢ between the measurements
surements. and the mean.

Figure 3.9: Two different methods to calculate the precision.

Both the accuracy and precision are calculated for each eye individually. To calculate
these values, we use a new set of measurements that are taken after the calibration. The pro-
cess of collecting these measurements is exactly the same as that of the calibration process,
illustrated in Fig. [3.5] However, the difference is that the used Tobii eye-tracker operates in
normal mode instead of calibration mode. The normal mode sends gaze information to the
tool, whereas the calibration mode does not.

When all the measurements are complete, the results are shown on the screen. Initially,
only the collected measurements are shown as illustrated in Fig. Hovering with the
mouse over a calibration point reveals a popup with the accuracy and precision information
as shown in Fig.[3.10]

The rest of the interface is similar to the calibration screen. It contains filter buttons
that filter the left or right eye measurements. Additionally, the validation can be rerun
by selecting one or multiple calibration points and then click on the appropriate button.
The other two buttons either start the calibration again or closes the validation window.
Fig.[3.10b| shows the buttons to select these options.

(a) Calibration point with precision and (b) Validation screen buttons.
accuracy statistics.

Figure 3.10: The additional components of the validation result screen.

21



3. EYEIDEA

3.4.3 Gaze Cursor

The gaze cursor provides the user feedback based on where the eye-tracker thinks the users’
current focus is. This cursor shows the differences between the users’ focus and the eye-
trackers understanding of the believed focus. Depending on this difference, it can be rec-
ommended to either instruct the user to re-adjust their head and posture, to adjust the gaze
position using the methods described in Sections [3.5.1] and [3.5.2] or in the worst-case to
re-calibrate the device again.

By default, a bubble represents the gaze on the screen. An algorithm draws a fictive cir-
cle around n successive measurements and merges these to form a bubble. This is illustrated

in Fig. 3.11] for n=2.

© @& @

(a) Initial gaze cursor (outer (b) Second measurement with (c) Merged measurement gaze
black circle) with a single a fictive circle around it. circles into the updated gaze
measurement (inner black cir- cursor.

cle).

(d) Additional measurement to the existing (e) Merged measurement gaze circles into a
two. new gaze cursor. In this case, the very first

measurement is not used anymore in the con-
struction of the cursor.

Figure 3.11: The construction of the gaze cursor.

Besides this implementation, the cursor overlay API also supports displaying a single
dot for the current gaze measurement and multiple gaze cursors for different gaze data.
However, EyeIDEA displays a single gaze cursor for the filtered gaze data since that is what
we needed for our user study.

3.5 Preprocessing Gaze Data

Not all the raw data that is coming from the eye-tracker is useful. The data contains noise
that is caused by involuntary saccade movements [[14]], head drift, and other measurement
noise. Online correction and filter methods can correct these effects while eye-tracking is
active. The following subsections explain the different options that are available within
EyelDEA.

22



3.5. Preprocessing Gaze Data

3.5.1 Center Correction

This option can adjust how much weight should be given to each eye. Equations (3.4)
and (3.5)) show the center position is calculated.

X = Xgefe % (1 —weight) + Xyjgn * weight (3.4)

Y = Viefe * (1 —weight) + yyign: * weight (3.5)

The default configuration uses weight = 0.5. This configuration corresponds to an ideal
situation in which both eyes behave identically. However, in some situations, one of the eyes
corresponds more strongly with the users’ vision than the other eye. In this case, changing
the weight could compensate for this effect by relying more on the data for that particular
eye. Setting the weight < 0.5 increases left eye usage, while setting the weight > 0.5, the
right eye will be used more.

3.5.2 Click Drift Correction

There can be a displacement between the measured gaze position and what the user thinks
that the center position should be. This displacement can occur because of head movements
that the eye-tracker cannot adjust by itself or because the user sees the center differently
than the eye-tracker expects. A simple algorithm can correct this displacement by adding
it to the reported gaze data. The user can activate this by enabling the Click drift option.
While this option is enabled, every left click with the mouse will adjust the gaze data by
calculating the difference between the clicked location and the current gaze data location.

Using mouse clicks to adjust the gaze data is predominantly used when a webcam is
used as an eye-tracker [S0, 66].

3.5.3 Filtering

Filters can improve the quality of the registered gazes and reduce the effort needed to ana-
lyze the recording. For interactive gaze support, all filtering needs to be done in real-time
to keep the interaction responsive. This situation means that only online filters are possible.
EyeIDEA incorporates a couple of different filter designs based on a Finite Input Response
(FIR) design. This type of filter is recommended by Feit et al. [19]. An FIR filter creates a
weighted average based on n gaze inputs.

n

=y x 3.6
i l;,) Yo, X (3.6)
Equation shows the general formula for the FIR filter where X;_; stands for the gaze
input at time ¢ — i and w is the calculated weight. Three different kernels are implemented
to calculate these weights: linear, triangular, and Gaussian.

Linear The Linear kernel uses w; = 1. This corresponds to averaging the last n gaze
points.

23



3. EYEIDEA

— Unfiltered

e e
AL = B PANMAGA) = o PN =
- 1 . \
‘

£ 1000 £ 1000 £ w00
3 gy : VAP | H VDAY |
g 70 S 70 | S 70

500 500 | 500

(a) Filtering with a Linear ker- (b) Filtering with a Triangular (c) Filtering with a Gaussian
nel. kernel. kernel.

Figure 3.12: Examples of filtering x-coordinates with different kernels.

Triangular The Triangular kernel uses Eq. (3.7) to calculate the weights. This formula
assigns a higher weight to more recent points with increments of one. The result is that
recent gazes are made more important than older ones.

wi=n—i+1. (3.7)

Gaussian The Gaussian kernel uses Eq. to calculate the weights. This formula as-
signs weights based on a Gaussian function. Recent gazes are assigned higher weights than
older ones, similar to the Triangular kernel. However, this kernel uses non-linear smooth-
ing instead of linear. This result changes the importance of older gazes as they decrease at
a different rate than the Triangular kernel.

2

w; =e 27 (3.8)

3.6 IDE GUI Mapping

The eye-tracker provides gaze information that establishes a relation between the users’
gaze and an (x,y) coordinate on the screen. However, this relationship is not sufficient to
tell which visual object is relevant to the developer. A connection between the current gaze
and the visual objects on the screen is needed to establish that. However, this is not an
easy task since the IDE is developed with the Java Swing GUI toolkit that is designed to
handle the keyboard and mouse input. The eye-tracker must either simulate the keyboard
and mouse input or implement new methods to provide similar functionally.

After some trial and error, we concluded that it is easier to use a combination of these
methods. For this alternative solution, all visual objects from the GUI need to be inspected
to create a relation between the GUI and the current gaze location.

However, if a process needs to inspect the complete GUI every time a new gaze message
comes in, it could become problematic to process everything before the next gaze is avail-
able. To mitigate this, the GUI is subdivided into several regions that we call Components.
If a gaze falls into the visual area of the Component, the process only needs to inspect the
visual objects within this area. Section [3.6.1]explains this further.

24



3.6. IDE GUI Mapping

These visual objects also need their own representations in order to be identifiable. To
that end, Parts are created. A Part is an abstraction of a visual object in the IDE, and it
contains both visual and other information that relates to this object. Parts will be explained
in Section

The starting of the GUI mapping is handled by the Mapper. It is configured to take in
the gaze information from the gaze channel and pass it into the available Components. Then,
Mapper publishes the discovered Parts together with the corresponding Component on its
own separate channel. Note that the Mapper uses the original gaze information and not the
filtered gaze information. The Mapper uses this because it makes sure that it is possible to
apply other filters and calculation methods on the original data after the experiments.

A complete overview of the mapping process is illustrated in Fig. [3.13]

Gaze Channel

‘ IDE Mapper ‘
} *
e
Component Component
! *
Part Part
Part Part
' )

IDE Mapper

Mapping Channel

L @O

Figure 3.13: Overview of mapping architecture.

3.6.1 Components

I .
Navigation bar sren ook s e con o s
-

¥ 1 priect

Editor

java
com jetbrains.addressbook

. . Popup menu
Project tool window © nirestoskResoucs pup

Context menu

-16 1
2020-04-16 14:44:06.419
2020-94-16 14:44:06.453

004016 14:44:06.593
2= ® 200-04-16 16:44:06.628
2020-84-16 16:44:86.632

Run tool window

BARG] =071000  © Endpoiots @ Soving

Status bar

Figure 3.14: Overview of IntelliJ IDEA GUI, taken from their help guideﬂ

25



3. EYEIDEA

A Component is a representation of a specific Window in the IDE. We classify these
windows into a couple of main categories: the menubars, the editor, and the various tools.
Some of these windows can be seen in Fig. [3.14]

Each window consists out of different visual objects. Therefore, a Component consists
out of different Parts. A Component is thus responsible for selecting the Parts that cor-
responds to the gaze location. Unfortunately, due to some technical challenges regarding
overlapping Parts from other Components, we needed to hard code these overlaps.

Another technical challenge we faced is in discovering which visual object is inside
a Window. Luckily, IntelliJ provides a testing tool called UI Inspector E| that tells us
which classes belong to a visual object. However, this means that the construction of these
Components and Parts relies on manually mapping the visual objects, which is very time-
consuming. Therefore, not all visual objects are mapped to Components.

The following subsections will explain the different Components that EyeIDEA cur-
rently has implemented.

Tool window An IntelliJ Tool window provides various perspectives and access to regular
development actions such as project navigation, running status, and debugging. The Eye-
IDEA plugin also adds several Tool windows to provide information and interactions with
the eye-tracker.

Each Tool window consists out of two top-level Parts: the title bar and the content pane,
as illustrated in Fig.[3.13]

Debug: . ShoppingCartipp o — Title bar
E",:.E Debugget Blcomoe = 2= 2 = 1 ¥y ¥ = =
IPE Frames Vanables

5 LY +:---I-.-:‘:::.I-_::T‘-:I:I-:----------------------- Content Pane

E E — . : o
T H checkout5T, ShoppingCa e

o N total&mount = 000
end mairedl ShanninaCartfen

S pEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

T— Tree ltem Parts
Button Parts

Figure 3.15: Overview of the Debugger Tool Window.

Additionally, the IntelliJ SDK provides which Tool windows are available. Altogether,
this makes it possible to create a general Tool Window Component that can be used to map
every Tool window. However, the content of the content panes differs between each Tool,
which means that this Component only maps the title bar and Content Pane.

Besides the general Component, EyeIDEA contains a content pane mapping for the
Debug tool since the debugger is one of the areas of interest for this research. Figure 3.13]
illustrates two different kinds of Parts that are mapped. However, other visual objects such
as the “Debugger” and “Console” tabs are also available as Parts.

4https://www.jetbrains.com/help/idea/guidedftourfaroundfthefuserfinterface.html
5https://jetbrains.org/intellij/sdk/docs/reference_quide/internal_actions/internal_
ui_inspector.html

26


https://www.jetbrains.com/help/idea/guided-tour-around-the-user-interface.html
https://jetbrains.org/intellij/sdk/docs/reference_guide/internal_actions/internal_ui_inspector.html
https://jetbrains.org/intellij/sdk/docs/reference_guide/internal_actions/internal_ui_inspector.html

3.6. IDE GUI Mapping

Editor In the Editor window, a scroll-able text box shows the source code with line mark-
ers beside it in a window called the gutter. Above the text box are tabs that are used to
navigate between currently opened files. All of these items are shown in Fig.[3.16]

I =] ShoppingCartApp java £ Validatorjava © Couponjava E ProductCategory java € Prodt v I— 1

v

> public static veid main(string[] args) {

I createProductDatabase();

List<Product> products = new ArraylList<:();
products.add(new Product( name: "Pizza"));
products.add(new Product( name: "Beer")});

products.add(new Product

(
(
3 - products.add(new Product( name: "AllPurposeCleaner”));
( name: "Discolights™});
(

products.add(new Product( name: "Null"});

ShoppingCart shoppingCart = new ShoppingCart();
CheckoutCalculator checkoutCalculator = new CheckoutCalculator(shoppingCart);

for (Product product : products) {
shoppingCart.addToShoppingCart (product);

1

Figure 3.16: Overview of the Editor. 1) Opened files tabs 2) Code text box 3) Gutter

Each item in Fig. [3.16]is represented by a Part. Additionally, the system also maps the
source code shown in the text box onto different Parts. However, unlike the other Parts that
use an (X,y) coordinates system, these code entities use a different positioning system. This
system uses the number of characters from the top left of the text box. This positioning is
also called the logical position. Luckily, IntelliJ already provides methods that transform
(x,y) coordinates to the logical position. From there, EyeIDEA maps the text to Parts by
using two different mapping methods, the Text Mapper and Java Mapper.

Text Mapper The text mapper obtains the corresponding text by starting with scanning
the characters left and right from the logical position. Then, it maps the gaze coordinates to
the character, word, and line inside the text box. This is illustrated in Fig.[3.17}

Java Mapper The Java mapper maps the gaze coordinates to Java source code entities.
This method makes use of Intelli)’s Program Structure Interface (PSI) ﬁwhich is responsible
for parsing files and creates both semantic and syntactic code models. The Java mapper
translates the logical position into a description of the corresponding Java source code entity
by using the PSI model of the currently selected file. This description includes the text and
an identification label. This label describes the type of entity, namely, a class, method,
control statement, or variable. Alongside this description, the Java mapper also includes
the entity position in the text box and its relative position to other identified source code

Onttps://jetbrains.org/intellij/sdk/docs/basics/architectural_overview/psi.html

27


https://jetbrains.org/intellij/sdk/docs/basics/architectural_overview/psi.html

3. EYEIDEA

Souce code snippet Text Part representation
add(pr‘oduct); —_— TextEntity:
Position:
@%aps lineStart : '15°'
into lineEnd: '15'

offsetStart: 'Zeg'

offsetEnd: 'ZSg'

Description: 'products.add (product)';
Label: 'TEXTLINE'

TextEntity:
Position:
lineStart : '15'
lineEnd: '15°'
offsetStartc: '
offsetEnd: 'Z8

Description: 'products!'
Lakel: 'WCRD'

TextEntity:
Position:
lineStart : '15°
lineEnd: '15°'
offsetStart: '278"
offsetEnd: '278"

Description: 'd"
Label: 'CHAZR'

Figure 3.17: An example output of the text mapper. The green blob represents the current
gaze.

entities. The last one is included to improve the mapping accuracy in case of code changes.
An example of this process is illustrated in Fig.

Popup A popup is a special type of GUI Window shown on top of other windows. This
window automatically disappears when it is no longer active. Examples of these are shown
in Fig. as the Popup Menu and Context Menu. We have identified and implemented
two different types of popups, namely popups with a list and with a table. Both of these
consists out of separate items. For instance, Fig. shows a popup that contains a list
where each item represents the file location and code entity of the SlowTrain class.

3.6.2 Parts

A Part is a representation of a visual object on the screen. Most of these visual objects are
implementations of IntelliJ] IDEAs’ version of Java Swing Componentﬂ However, not all
objects correspond to Swing Components. For instance, the GUI representation of source
code elements is just text. However, the underlying PSI structure interprets it as Java source
code objects. This is illustrated in Fig. [3.18]

"https://docs.oracle.com/javase/tutorial /uiswing/components/index.htnl

28


https://docs.oracle.com/javase/tutorial/uiswing/components/index.html

3.6. IDE GUI Mapping

Source code Part representation

Souce code snippet
SourceCodeEntity:
Description: 'products' Highlight:
add (product); Label : "REFERENCE® text: 'produccs’
Include | sosision: e e
location lineStart : '15' neseEs
lineEnd: '15°'
Find PSI element offsetSvarc: '272
offsetEnd: '282'
under gaze
T Use PSI element
PSI Tree
PsiExpression
Statement
PsiMethod
CallExpression: PsidavaToken: SEMICOLON
products.add (product)

PsiReference
Expression: PsiExpression
products. add List
PsiReference ; Psidava R . Psidava PsiReference Psidava
o PsiReference Psildentifier: 5
Expression: Parameterlist Token: add Token: Expression: Token:
products DOoT LPARENTH product RPARENTH
PsiReference Psildentifier: PsiReference Psildentifier:
ParameterList products ParameterList product

Figure 3.18: Example output of the Java mapper.
gaze.

The green blob represents the current

F DN 1M

Executorjava 17

Usages of TrainScheduling.SlowTrain in All Places (4 usages found)

new SlowTrain(13, 16),
& Executorjava 12 < new SlowTrain(0, 13),
=4 Executorjava 20 < new SlowTrain(11, 14),

23+ new SlowTrain(2, 3)

Figure 3.19: Example popup that uses a List to show items.

Besides representing source code, there is another reason why Parts represent a visual
object, namely that some visual objects exist out of multiple objects. For instance, a list is a
visual object on its own. However, the items inside the list are also separate visual objects.
A multi-Part represents this relation by forming a linked list.

29



3. EYEIDEA

Therefore, a Part represents visual objects and provides access to the underlying visual
objects whenever possible. With this information, the Mapper determines the object’s lo-
cation, which is needed to check if the current gaze coordinates fall onto it. For instance,
Fig.[3.20]illustrates the process of representing a button as a Part.

Train.java [EyelDEATraining_main - O X

“~ Executor ~ P t‘p ’; [ Q

<<Abstract Class>> <<Abstract Class>>
JComponent AUIPart

Extends Extends

JButton JButtonPart

+getLocationOnScreen(): Point -jButton: JButton

>

Part representation

Class representation

+getComponent JComponent
+partinspectionx: Int, y- int). AUIPart
+getAction(): Optional=GazeAction=

Figure 3.20: Example of a button(visual object) that is represented as a Part.

The result is a relationship between the gaze and the visual object. This relationship is
not limited to knowing the visual object’s type. It also enables interactions with this object
if possible. These interactions will be explained in Section [3.8]

3.6.3 Mapper

The Mapper is responsible for detecting which Component and associated Parts can be
mapped onto the current gaze during the discovery phase and making this information avail-
able to other processes.

To start the discover phase, the Mapper sends the gaze information to all the configured
Components. These Components delegate the gaze to specific Parts. Eventually, the data
has reached all Parts that are inside the gaze, and the discovery phase is completed.

After this discovery phase, the Mapper publishes the complete chain of the Parts to-
gether with the Component that corresponds to the given gaze.

With this process, it is possible to decide later on which visual objects are the most
relevant to use. For instance, previous research into eye-tracking for software development
used Area Of Interests that corresponds to an entire window [29]] while others define more
specific AOIs [36].

The described process is illustrated in Fig.

3.7 Data Export
EyeIDEA generates a lot of data that could be useful for further analysis. This data can
be grouped as gaze input (Section [3.3)), IDE mappings (Section [3.6) and action usage (Sec-

tion 3.8). The data is extracted by two different processes, the Exporter and the Logger.

30



3.7. Data Export

These differ in their methods of extracting and exporting the data. The following subsec-
tions explain these processes.

3.7.1 Exporter

The Exporter shown in Fig. 3.I]exports the data from the eye-tracker and the IDE Mapper
(Section 3.6) to a database. This database contains four different tables that are illustrated

in Fig.3.21]

PP GazeEwvent

FH uiklements 15 gaze_id INTEGER

13 element_id INTEGER 123 x INTEGER
123 gaze_id INTEGER 123y INTEGER
REC name_descr TEXT |l _ _ _ _ _ __ - 123 x_eft INTEGER
123 % REAL 123y left INTEGER

FK_uiEl ts_GazeEvent -

123y REAL -HIREMENEDAEVEN | [123x right  INTEGER
123 width REAL 123 y_right INTEGER
123 height REAL 123 system_time INTEGER
123 device_time INTEGER

i | FK_codeElements_uiElements
|

L]
B codeElements

13 code id  INTEGER FB GazeEventFiltered
123 element_id INTEGER lijgazeid  INTEGER
ABC |abel TEXT 123 % INTEGER
ABC description TEXT 123y INTEGER
125 startline  INTEGER 123 system_time INTEGER
123 endline INTEGER 123 device_time INTEGER
123 startCol INTEGER

123 endCol IMTEGER

123 startOffset INTEGER

123 endOffset  INTEGER

Figure 3.21: ER diagram of the database.

The first table, GazeEvent, stores information about the gaze itself. This table includes
the individual (x,y) coordinates of both eyes and the combined coordinates using the method
described in Section @ Additionally, the time received from the eye-tracker and the
current system time is included as well.

The second table, uiElements, stores the location, dimensions, and description of the
mapped elements. These elements are either a Component (Section [3.6.1)) or a Part (Sec-
tion [3.6.2)). Furthermore, the table uses a constraint on the gaze id from the corresponding
gaze that is stored in the GazeEvent table.

The third table, codeElements, stores the code entity mappings. It is separated from the
uiElements table because the location data is not an (X,y) coordinate but rather the position

31



3. EYEIDEA

inside the Editors text box, see Fig. However, code entities are still Parts. Thus a
constraint is placed between the corresponding element ids.

The fourth and final table, GazeEventFiltered, stores the results from the filtered gazes.
This table has no relation to the other tables because the mapping process does not use the
filtered gazes as mentioned in Section

3.7.2 Logger

The purpose of the Logger is to record the performed gaze actions and which modes have
been selected (Section [3.8). In order to record this, we use the Logback development tool
ﬂ This tool is one of the most well-known logging frameworks for Java, and it allows us to
log the selected gaze actions and modes. A small snippet of the logged results is shown in

Fig..22

-11-11T08:49:13,766Z INFO toolwindow.gazeAction.GazeButton - Informing listeners to do action, timestamp: 1605084553766
actions.mode.ModeController - Changing Mode to actions.mode.ImplementationMode@l324b59%4
toolwindow.gazeAction.GazeButton - Informing listeners to do action, timestamp: 1605084557751
a.action.GoToImplementationAetion - Do Action

actions.mode.ModeController - Changing Mode to actions.mode.ButtonMode@660ae690

Figure 3.22: A snippet of the logging obtained with Logback.

3.8 Executing Gaze-based Actions

To execute an action, EyeIDEA needs to know what the intended action is of the devel-
oper. In order to figure this out, we created a distinction between selecting the action itself
and selecting appropriate information if needed. For example, interacting with a regular
button requires only clicking on that button. However, other actions such as navigating to
a function require knowing that the developer wants to navigate and the function that the
developer selected. Therefore, EyeIDEA uses Modes that control which Action can be exe-
cuted and the different transitions between the Modes. Some Modes need additional input
such as code selection. A straightforward method would be to let users dwell on additional
input, such as a code entity, to select this as input. However, this solution suffers from the
Midas Touch problem[33]] which is the problem that it feels like every location where you
look can trigger an action. Additionally, many additional inputs such as code entities are
too small to be used as targets to use a dwelling method for [19]. Shakil et al. [60] ap-
proached this issue by highlighting the target and defer the actual activation of the Action
to a separate target, a button, which is bigger than the actual target. All of the processes to
execute a gaze-based action (except the highlighting that is described in Section [3.9)) will
be explained in the following subsections.

3.8.1 Modes

A Mode is the current interaction state of EyeIDEA and is responsible for executing the
right Action with a certain input. A Mode uses a two-step approach similar to CodeGazer

8http://logback.qos.ch/

32


http://logback.qos.ch/

3.8. Executing Gaze-based Actions

[60] to select the input. The first step is that every valid Part (Section [3.6.2) under the
current gaze is highlighted with a unique color which corresponds to the eight Gazebuttons
shown in panel 1 of Fig.[3.2] Then, the user can select this Part as input by dwelling on the
gaze button with the same color as the highlight.

Table [3.1] lists all the available modes with a description and which the input is needed
to execute the associated action.

Note that both Selector modes do not have a valid Part. The reason is that during
this mode, a popup is shown on the screen to select other modes that do not require any
additional input. These popups are shown in Fig.[3.23] Additionally, the Call Evaluation
Window mode calls the Evaluation dialog directly and therefore does not need any other
Fart.

Conditional Breakpoint Evaluation Window

(a) Breakpoint mode popup (b) Evaluation popup

Figure 3.23: The two different popups

EyeIDEA makes use of gaze-selectable buttons so the user can select the listed modes
with their eyes. These buttons are located in Panels 2 and 3 shown in Fig. [3.2] Panel 2
uses two gaze buttons to select the Implementation and Declaration modes directly. The
other panel consists out of two tabs as explained in Section [3.2] The first tab, Actions has
two buttons that trigger either the Breakpoint or Evaluation Selector mode. When either of
these modes is selected, one of the popups from Fig. [3.23] will appear on the screen. Each
of these popups has two buttons to select Modes 5, 6, 9, and 10, respectively. Fig. [3.24]
shows how the relations between each mode. Additionally, Modes 7 and 11 can be selected
by using the button in the Code tab shown in Fig.[3.35

However, as Fig. [3.24]illustrates, the Control Mode is not actively selected by the user
but is selected by the system whenever the other modes are deselected. This mode is the de-
fault mode of EyeIDEA. Normally, a user selects a button with the mouse that only requires
the user to click on that button. Therefore, if a user also had to select the Control Mode
first, it will add another step in this process which adds more complexity. Another reason
for this implementation is to test how much of a hindrance it is to select a mode from the
user’s perspective. During the user study, we will ask the participants about their experience
with Mode selection. It will be helpful to the participants if they have a reference for the
two different situations.

3.8.2 Actions

An Action executes one or more commands by optionally using the supplied input. This
input can be specific visual objects, code entities, and character messages. The purpose of
these commands is to interact with the IDE. For example, to start the debugger or to jump to

33



3. EYEIDEA

Mode

Description

Valid Parts

1. Control

2. Implementation

3. Declaration

4. Breakpoint
Selector

5. Line Breakpoint

6. Conditional
Breakpoint Input

7. Set Conditional
Breakpoint

8. Evaluation
Selector

9. Evaluation

10. Windowed
Evaluation Input

11. Call Evaluation
Window

Trigger a supported button or select an
item from a supported list or table

Navigate directly to the implementation
of a code entity

Navigate directly to the declaration or us-
age of a code entity

Select between the Line Breakpoint and
Conditional Breakpoint mode

Set a Breakpoint at a specific line by us-
ing the position of a code entity

Select and paste code entities that are
used in the construction of a condition

Set a Breakpoint with the constructed
condition at a specific line by using the
position of a code entity

Select between the Line Breakpoint and
Conditional Breakpoint mode

Evaluate an existing code entity in the Ed-
itor

Select and paste code entities that are
used in the constructing of an arbitrary
expression

Call the Evaluation dialog with the con-
structed expression

Button, list item,
table item

Code entity

Code entity

Position of a code
entity

Code entities

Position of a code
entity

Code entity

Code entities, Line
positions

Table 3.1: Implemented modes in EyeIDEA. Only valid Parts can be selected when the

mode is active.

34



3.8. Executing Gaze-based Actions

Mode deselect,
/ \ execute action
| 2. Implementation |

Mode select_——

Execute
action

T Node select

Mode deselect,
execute action
3. Declaration

Mode select y Y Mode select _
I-' 1. Control '-I ’
4. Breakpoint (Starting Mode} 8. Evaluation
Selector Mode deselect'. _Mode deselect | Selector
e
Mode select Mode select Mode select Mode select
Mode Mode
deselect, deselect,
P ___ execute execute
Ve -\\a.ctlon action
| 5. Line Breakpoint | 9. Evaluation
.\._ .)/:
Execute » T ) ™ Execute
action 6. Cond_monal [ 10.W|r_1d0wed \ action
BreakpointInput | Mode deselect Mode deselect, Evaluation Input /
7. Set Conditional { 11. Call Evaluation

Breakpoint Mode deselect,

execute action

Mode deselect, Window

execute action

Figure 3.24: The relations between each mode and how they revert back to the control
mode. Note, it is always possible to select Mode 2, 3, 4, and 8 from any other mode if this
is not already the currently active mode.

the declaration of a code entity. Some of these commands correspond to commands already
available in the IntelliJ] SDK or commands specific to EyeIDEA.

However, not all commands are created this way. Instead, they are executed by emu-
lating either a mouse click or a keyboard shortcut. For instance, to select an item from a
list. The reason to use emulation in some situations is that they are not available through the
SDK, and they are problematic to implement. IntelliJ expects a mouse or keyboard input in
these situations and then interacts with many unknown parts to update the IDE.

Luckily, emulating mouse clicks does not interfere with using the mouse, but we could
not locate the needed keyboard shortcuts in the system files of IntelliJ. Therefore, it is not
possible to change the keyboard shortcuts because we manually added the key combinations
to EyelDEA.

3.8.3 Gaze Button

The Gaze Button allows a user to interact with EyeIDEA with their eyes. Each of these
buttons is large enough to compensate for the inaccuracies of the eye-tracker. Feit et al. [19]
recommends using a target that is at least 1.9x2.35cm in size to allow reliable interactions.
The chosen target size is 2.7x2.7cm because this size was a better balance between reliable
interaction and the overall screen estate to accommodate the buttons.

35



3. EYEIDEA

Each button has three different states, inactive, hover, and active. In the inactive state,
the user has not selected the button. During hover state, the current gaze is on the button,
and in the active state, the user has selected it.

Only a single mode is active, and thus only a single button from among the mode se-
lection buttons can be activated. Therefore, the other buttons are automatically set to the
inactive state if needed.

To activate the button, a user needs to dwell on the button long enough such that the
button transitions from the hover state to the active state and vice versa to deselect the
button. A button shows this state to the user by changing the color of the button to different
shades of blue for the hover and activated state as shown in Fig.

Declaration Declaration Declaration

(a) An inactivated button. (b) A button in hover state (c) An activated button

Figure 3.25: The three different Gaze Button states.

3.9 Creating highlights on the screen

EyeIDEA highlights items on the screen to indicate which items can be used as additional
input to the currently selected Mode as explained in the previous section. There are two
different technical implementations, one to highlight the code entities and the other to create
highlights for all the other visual objects. The Editor of IntelliJ has a build-in highlighter
which makes highlighting the code entities straightforward. However, no such highlighter
exists natively for the other visual objects, so we implemented this.

A highlighting algorithm determines which item is highlighted and then uses one of
these implementations. Depending on the currently active mode, only a specific subset of
the Parts that the Mapper (Section provides is used. Additionally, the algorithm can
use a different set of colors in case of color blindness. These steps are illustrated in Fig. [3.26]
and are explained in the upcoming subsections.

3.9.1 Highlighting Code Entities

As mentioned in the introduction, IntelliJ has a built-in highlighter to highlight text. By
using the code mapping process explained in|Section 3.6.1 Java Mapper| we can ask IntelliJ
to highlight the text. The result of these highlights is shown in Fig.

This system works with priorities to determine which color it should assign in case
multiple processes want to highlight the same piece of code. Unfortunately, IntelliJ uses a
priority system to assign the highlight, and it replaces our highlight with another one when
another process uses the highest highlight priority.

36



3.9. Creating highlights on the screen

Mode Selector

Mapping Channel

Curent

WMode

Highlight
Filter

Allowed
Part

Highlight Algorithm

Code Visual
| Entity Object |
Code Highlighter | OR |

Visual Object
Highlighter

Figure 3.26: Overview of the process in creating highlights on the screen.

for(Train ftrair{ = ftrainL:i.stIteratorI.next(); i

if(!train.pverlapWithTrain(scheduledTrai
scheduledTrain = [train;

scheduledTrains .(EcheduledTraidj H

}

Figure 3.27: Example highlighting of the source code.

We know one instance where this happens, and that is when a whole line of the editor is
highlighted when the debugger stops at a breakpoint.

Another issue that arises is that the used highlight colors are using the RGBA color
model ﬂ However, the highlighter of IntelliJ does not support transparent colors. This issue
means that we need to blend the colors to obtain the right color. The result of Eq.
blends the given color with a background color. The chosen background, bg, is the same as
that of the Editor of IntelliJ.

blendgrgp = SrcrGB - SCaipha + bgrGB - (1 — STCaipha) (3.9

3.9.2 Highlighting Visual Objects

The background color could be changed, or a highlight can be drawn on top of the object to
highlight the visual objects. However, since the objects can only be accessed by discovery
as explained in Section [3.6] any modifications done to the objects can result in unexpected
behavior. An encountered example of this was that some objects kept reverting to the orig-
inal background color. Therefore, we implemented the second option to draw the highlight

nttps://en.wikipedia.org/wiki/RGBA_color_model

37


https://en.wikipedia.org/wiki/RGBA_color_model

3. EYEIDEA

directly on top of the object. By using the width, height, and location of the object, a rectan-
gle is drawn on the screen using a Glass Pane m which makes it possible to draw on top of
IntelliJ. The used color for the highlight has a transparency value, so the underlying visual
object is still visible. Two examples of these highlights are shown in Fig.[3.28]

F & H 1= Usages of Train(int, int) i
ﬂ’SimpIeDebugTa;kjava 7 new Train(13,18),
-3 SimpleDebugTaskjava 12 new Train(0, 13),
& SimpleDebugTask,java 19 new Train(9, 15),
£ SimpleDebugTask. java new Train(11, 14),
-1 SimpleDebugTask java 21 new Train(6, 10),
E i = 1 :.l:J IH:l: E £ SimpleDebugTask java 22 new Train(1, 8),

SimpleDebugTask java 23 new Train(2, 5)

(a) Example highlighting of some buttons. (b) Example highlighting of a list.

Figure 3.28: Two different examples of visual objects that are highlighted.

However, there are issues with this approach too. The first issue is if the underlying
visual object changes color, it affects the used highlight because this approach blends the
highlight color with the color underneath it. This can be seen by comparing Fig. [3.19 with
Fig.[3:28b] The highlight on the last item on the list in Fig.[3.28b]has a darker color because
it blended with the highlight that can be seen in Fig. [3.19]

The second issue is related to the use of the GlassPane. The GlassPane catches any
mouse clicks that are in the highlighted locations. Luckily, we found a solution when the
IDE is running in Microsoft Windows. By changing the WS_EX_TRANSPAREN TE Window
Style constant of this pane, it instructs Microsoft Windows to make this specific window
invisible to mouse clicks, effectively letting the mouse clicks pass through the GlassPane to
the underlying visual object.

3.9.3 The Highlighting Algorithm

The highlights are used in combination with the action buttons described in Section[3.8] and
there is a maximum of eight different colors available. It would not be possible to assign
every element a unique color because there are far more selectable items on the screen than
those eight, especially when the current mode requires a code entity as input. Additionally,
the number of code elements can fluctuate, which means that two nearby code elements
may wind up with the same color because these elements are put close together through a
code change. This situation can cause flickering due to constant highlight removal to satisfy
the one-to-one correspondence between a color and the selected element.

Therefore, an algorithm is needed that assigns these highlights. This algorithm needs to
satisfy the following two requirements. Firstly, it should only create eight distinct highlights
where the colors have a one-to-one correspondence to the action buttons. This way, there
are no items that receive the same color. So, the algorithm assigns up to eight different

Ohttps://docs.oracle.com/javase/tutorial/uiswing/components/rootpane.html#glasspane
llhttps://docs.microsoft.com/enfus/windows/win32/winmsq/extendedfwindowfstyles#WS_E
X_TRANSPARENT

38


https://docs.oracle.com/javase/tutorial/uiswing/components/rootpane.html#glasspane
https://docs.microsoft.com/en-us/windows/win32/winmsg/extended-window-styles#WS_EX_TRANSPARENT
https://docs.microsoft.com/en-us/windows/win32/winmsg/extended-window-styles#WS_EX_TRANSPARENT

3.9. Creating highlights on the screen

colors that are evaluated at every incoming gaze. The algorithm then assigns a highlight
on a valid item within this gaze, using the different highlighting options from the previous
subsections. If all eight colors are used, the algorithm removes the highlight from the least
recently looked item and uses this color for the next highlight.

Secondly, the assigned color should remain stable, i.e., it should not constantly change
the color when the gaze is near the highlight and then on top of the highlight again. The
algorithm remembers the color of the assignment to achieve this, and it is only changed
when the algorithm removed the highlight to avoid assigning the same color twice.

3.9.4 Filtering Objects To Highlight

Depending on the mode, different Parts are eligible to be selected as input. The output from
the Mapper must be limited to only the eligible parts to make sure that no other part can be
selected. Therefore, a filter can be placed between the Mapper and the algorithm to allow
certain parts. This filter is part of the currently active mode.

There are two different filter implementations used. The first only allows code entities
to be highlighted, and the second only allows buttons that trigger specific IntelliJ actions.
However, we designed the filter implementations such that they are easily adjusted to filter
other parts if a new mode requires that.

3.9.5 Color blind mode

We chose the current colors for the highlighting using the website https://mokole.com
/palette.htmll These colors are tweaked somewhat because transparent colors have a
lighter shade, so a small compensation was needed. However, for people that are color
blind, the initially chosen colors can be very similar to each other. Therefore, we created
three alternative color schemes that either avoid red, green, or blue tints. We tested these
colors with the tool found on the website https://www.color-blindness.com/cobli
s-color-blindness-simulator/. This tool simulates a specific type of color blindness
by reducing the affected tints in the uploaded image.

39


https://mokole.com/palette.html
https://mokole.com/palette.html
https://www.color-blindness.com/coblis-color-blindness-simulator/
https://www.color-blindness.com/coblis-color-blindness-simulator/




Chapter 4

Research Design

4.1 Research Questions

The main goal of this study is to get an initial impression of the developers’ behaviors and
perceptions when using an eye-tracking augmented IDE for debugging tasks. In particular,
we choose to focus on debugging tasks as these kinds of tasks consist primarily out of
navigation and understanding source code. As several studies show [47, 4, 45]], developers
spend most of their time on these activities when using an IDE.

To investigate this, we specifically focus on how developers interact with EyelDEA,
what the perceived advantages and disadvantages are, and prospects for using eye-tracking
inside the IDE. Our goal is to identify relevant research areas for further development of an
eye-tracking augmented IDE. Therefore, the main research question is:

MRQ: Do developers perceive the eye-tracking augmented IDE as useful?

Grudin [23] describes that the usefulness of a system can be determined by considering
two quantities, usability and utility. Utility refers to if the developed system has a recogniz-
able purpose for the intended users, whereas usability refers to how easy it is to learn and
use the system. We consider three factors to determine the perceived usability and utility.
These factors are the IDE usage, the difference between using eye-tracking and currently
available inputs such as the mouse and keyboard, and the developers’ perception. In the
following subsections, we will explain and formulate the research questions based on these
factors.

4.1.1 Research Question 1

IDE Usage An IDE provides multiple development tools to assist developers in the cre-
ation and understanding of source code. Developers interact with these tools through the
GUI windows or by using hotkeys to trigger a specific action.

Consider, for example, a scenario in which a developer creates new functionality for
existing code. This scenario involves reading and changing the source code displayed inside

41



4. RESEARCH DESIGN

the Editor, switching between different source files, and viewing the execution result in the
run tool window. Developers would have to look at and interact with the GUI windows and
use shortcuts in their day-to-day IDE activities.

A broader perspective can be obtained by analyzing both the usage data from the IDE.
For example, by analyzing mouse clicks, keyboard usage, and gaze information captured by
the eye-tracker. The purpose of the gaze information is to fill in the gaps left behind by the
captured IDE usage data. These gaps occur because an IDE does not know that a developer
is reading source code or is glancing over the debug window since there is no input activity
from the developer.

Studying the actions and the coordination between GUI windows can reveal insights
into how developers typically use the IDE [64]]. This analysis can help in determining how
the perceptions of the developers relate to their actual behavior.

RQ1: How do developers interact with the eye-tracking augmented IDE
compared to the non-augmented IDE?

However, it is important to note that capturing and analyzing all the captured IDE data
and gaze data would be impracticable, and not all of this data is relevant.

Therefore, this research focuses on how long a developer uses the different GUI Win-
dows and the transitions between the GUI Windows. The specific GUI Windows that we
consider are discussed in Section[3.6.11

Additionally, the actions and related input techniques will also be analyzed, as stated in
the upcoming paragraph.

RQ1.1: How does the usage between the GUI windows differ?

RQ1.2: How frequently do developers transition between the
GUI windows?

Eye Tracking vs Keyboard and Mouse Another factor is to compare eye-tracking with
the already existing input methods, keyboard and mouse, to determine the perceived useful-
ness of eye-tracking support.

The usage and preferences of keyboard and mouse differ between developers. Although
there is no known study into these preferences, various online sources show that there is
some debate about which input method is the best for developers [[1]]. There are even plugins
to motivate to use keyboard shortcuts such as MouseFeed for Eclipse IDE [61]] and Promotor
X for IntelliJ IDEA [26]].

Since this research is about the perceived usefulness of eye-tracking and not necessarily
which different input technique has the best performance, both keyboard and mouse are
combined to form a baseline of the developers’ behavior.

We only test for the utility factor to investigate the usefulness of eye-tracking
compared to mouse and keyboard. We do not test for usability here because it is difficult to
compare the perceived usability of eye-tracking to keyboard and mouse. It is likely that the

42



4.1. Research Questions

target developers already have previous experience with using the target IDE, IntelliJ
IDEA. This situation means that it is difficult to quantify their learning experience and
compare it with the newly obtained information.

We analyze the utility of the different input techniques by investigating which IDE ac-
tions the developers use for every input technique. The reason is that if developers do not
use an IDE action that is available with gaze-based input, then the perceived utility of that
specific IDE action will probably be diminished.

RQ1.3: What are the most used gaze input actions and how does this com-
pare to mouse and keyboard?

4.1.2 Research Question 2

Perception The perceptions of an eye-tracking-based IDE is the final factor that we use
to determine the perceived usefulness. This factor is relevant to assess the thoughts of
developers about using eye-tracking.

We test the perceived usability of our developed eye-tracking IDE to assess these
thoughts. Nielsen [48]] describes in his book five factors to consider in testing the usability
of a system, namely learnability, efficiency, memorability, error tolerance, and subjective
satisfaction. However, this research considers efficiency, memorability, and error tolerance,
not within the scope of this study. The efficiency and error tolerance mainly test the
performance of the system. However, this is not the main focus of this study. Additionally,
memorability tests if the user can use the system successfully in the future, but this study
focuses on the initial perceptions of the system. Therefore, we only consider the
learnability and satisfaction factors to measure the developers’ perceptions.

RQ2: How do developers perceive the usability, learnability, and satisfac-
tion of the developed eye-tracking IDE?

Previous work by Shakil et al. [60] is an example of a study that also explored the
usability of eye-tracking within an IDE. However, their approach differs from ours since
they performed two studies: the first compares all the different inputs against each other,
and the other tests the input preferences.

4.1.3 Research Question 3

Perception Besides measuring the perceived usability of EyeIDEA as stated above, we
also investigate the perceived challenges for future prospects of using an eye-tracking IDE.

RQ3: What are the perceived challenges with an eye-tracking IDE?

43



4. RESEARCH DESIGN

More specifically, there are a couple of attributes that we want to investigate. The first
attribute is to look into perceived limiting features of the developed eye-tracking IDE itself.
The purpose is to get feedback on the implemented and missing features. This attribute will
investigate the utility aspect of EyeIDEA.

RQ3.1: What are the perceived limiting features of an eye-tracking IDE?

The second attribute that we consider is the perceived limitations and opportunities of
using eye-tracking as either an alternative or an addition to existing input methods. This
attribute could shed light on possible routes to take to integrate eye-tracking in the develop-
ment process.

RQ3.2: What are the perceived challenges compared to the existing input
methods?

The final attribute that we consider is to investigate the general willingness of using an
eye-tracking IDE and which perceived audience would benefit the most from such an IDE.

RQ3.3: Is there an audience that would use an eye-tracking IDE?

4.2 Methodology

The primary goal of this study is to examine the usability and perception of the developed
eye-tracking IDE. In particular, to test the novel interaction method based on eye-tracking.
This information could be used to figure out the knowledge gaps that need to be filled to
understand an eye-tracking-based IDE.

To find out if it can compete with the existing interaction, we conduct a study to study
how developers use the available input techniques, their preferences and why they prefer it.

The most logical data to collect would be to keep track of the interactions with the IDE,
usage of the GUI windows by using eye-tracking and interviewing the participants about
their experience and thoughts about the augmented IDE. Several other studies that tested
the usefulness of using eye-tracking for interactions have used similar methods [60, 22].

To get a good idea about the perceptions of the augmented IDE, the participants should
be able to voluntarily use the IDE such that it feels the most natural to them. This way,
the study reflects a more realistic environment than measuring the different interactions
individually. However, research into IDE user habits [47, /4] 45] show that while developers
use the debugger in general, it does not mean that they will use it during the user study.
There is a possibility that “whether to use the debugger or not is mostly a question of user
habit.”[2]. So, there is a trade-off between giving the participants total freedom and be able
to verify the usability and utility of the gaze interaction implementation of the debugging
tools.

44



4.2. Methodology

The following subsections will explain and discuss in-depth the procedure of the exper-
iment for the participants, the design and trade-offs of this procedure, the collected data,
and the analysis of this data.

4.2.1 Procedure Overview

The study consists out of four phases that are indicated with different colors in Fig.

| ; ; H
Questionnaire —i—> Training session —bpemm;iiﬁgi? Task_’l'—‘erformw?tshs_ll_g::ad Taskg:_,{ Interview ‘
H |

Figure 4.1: Overview of the study procedure.

Before the experiment, we ask the participants to fill out a questionnaire to determine
the demographic information and which tasks they receive.

After the questionnaire, a training course introduces the participants to the tool and
IntelliJ IDEA in case the participant is not familiar with it. The training starts with the
calibration and validation of the eye tracker. During this training, the participants are asked
to complete various objectives. We observe the time and effort that these objectives take
and note these down. These serve as an indication of the learnability of the tool.

Right after the training session, the participants go through two tasks in which they
have to discover and fix the bugs. These tasks use two different code snippets and are
randomized between participants to take into account that some actions are more likely
to be used during a specific task. Participants are also given a starting point to kick-start
the debugging session. Before starting a task, we configure the IDE to enable the input
technique under test and load in the associated code snippet.

The participants perform the first task without the tool to exercise their debugging skills
first as they typically would. Additionally, this establishes a baseline to compare our tool
against the regular IDE.

The second task is performed with the tool enabled. During this task, the participants
are encouraged to use the tool as much as they see fit. This encouragement is to make sure
that their actions are entirely voluntary.

After these tasks, we interview the participants about their initial opinion about the
usefulness of an eye-tracking IDE. During this interview, the participants are asked to fill
out the SUS questionnaire [9] which contains a couple of standardized questions to measure
the subjective usability. Furthermore, observations made during the study are discussed and
their overall perception of using an eye-tracker inside the IDE.

4.2.2 Programming environment

This study uses a Tobii Pro X2-30 eye-tracker [[69]. The eye-tracker is connected to an HP
Zbook 15 G5 Laptop(Intel i7-8750H 2.2Ghz with 16 GB RAM) which has a 1920x1080,
15.6” screen. The laptop runs Microsoft Windows 10 Home edition and IntelliJ IDEA

45



4. RESEARCH DESIGN

2019.2, in which two tools have been installed, EyeIDEA and Activity Tracker [[17]. The
latter is used to monitor the triggered actions as well as the keyboard and mouse activities
inside IntelliJ IDEA. Additionally, a separate laptop is used with remote desktop capabilities
to monitor the participants.

The programming language for the tasks is Java, which is a popular language and has
great debug support in IntellilJ.

4.2.3 Pre-User Study Questionnaire

Before the user study starts, a participant fills in a questionnaire in order to establish demo-
graphic information. The specific information requested was age, current software develop-
ment role or study program, previous experience with using an eye tracker, usage of glasses
or contact lenses, existing eye deficiency such as color blindness, and previous experience
with IntelliJ] IDEA. We use this information to describe the audience that participated in
this study. Furthermore, the mentioned items are further explained in Section 4.3.Tand the
questionnaire can be found in Appendix [B.1]

4.2.4 Training

Before the participants begin with the tasks, we ensure that they have an idea of how to
operate EyeIDEA. During this training session, the participants receive information about
the workings of EyeIDEA and will perform the actions until they can successfully perform
the associated objective. This training session is based on recommendations given by Ko et
al. [39].

Explanation from
Researcher
Briefing about layout o lle'etljform Edg\;‘”qred ti -
and gaze input alibration and Verification | Participant action

Action Training

l MNext Action

. . Participant performs Confidence Rating
—» EYETNIREET _pShow I i —Start'l'lmer—b{ the action until }»Stup ﬂmer—b{ from participant for

this action

and objective the action objective is reached

Al Actions are Completed

Training finished

Figure 4.2: Overview of the comparative study procedure.

46



4.2. Methodology

Action Objective
Use Debug Buttons Run the program and Start the Debugger
Go To Declaration Starting at the SlowTrain file, find the usages of

SlowTrain constructor and select the last usage of
new SlowTrain() from the list and then find the
declaration of trains variable

Go To Implementation Starting at the Executor file, go to the
implementation of Scheduler class and then to the
implementation of Train class and select the
FastTrain option from the list.

Set/Remove Line Breakpoint Starting at the Scheduler file Set and remove a
breakpoint at the only if statement in Scheduler.java

Set/Remove Conditional Starting at the Scheduler file Set and remove a

Breakpoint conditional breakpoint at the only if statement in
Scheduler.java. The condition to be set is the same as
the if statement

Quick Evaluation Starting at the Scheduler file and while the
debugger is active, evaluate the sort variable

Window Evaluation Starting at the Scheduler file and while the
debugger is active, select line 31 and activate the
Window Evaluation and click evaluate

Table 4.1: List of actions and associated objectives.

Figure [4.2] shows an overview of the training. The first step is that the participants are
briefed about the layout of EyeIDEA (Section [3.2), and how the gaze input action system
works (Section [3.8)). After we briefed the participants, we guide them through the calibra-
tion and validation process, which is explained in Section [3.4]

When participants successfully complete this, we move on to training every action that
is available within EyeIDEA. Firstly, we explain the current action to the participant and
how to complete the current training objective. These are listed in Table [4.1]

Then, the participant watches a small video on the screen that shows how to perform
this action. After this video has ended, we ask the participant to enable the eye-tracker
and complete the current objective. When the objective is met, the participant rates how
confident they are to perform this action on a scale from one to five. All the links to the
training videos can be found in Appendix [B.4]

47



4. RESEARCH DESIGN

The training ends when the participant has completed all the objectives.

4.2.5 Task Design

During the user study, we use two different code snippets, one for each task. In this task, the
participant finds and fixes as many bugs as possible within ten minutes. The primary goal of
this study is to experience eye-tracking and not to test debugging experience of participants.
Therefore, we chose the ten minutes limit. However, if a participant finds all bugs within
the time limit, the task is marked as complete.

There are in total two different tasks, one for mouse plus keyboard input and the other
adds gaze input to this list. Each of these tasks has an accompanied testing class to test
if the code is working as expected. In the first task, the participants only use the mouse
and keyboard. This task lets the participants exercise how they would typically debug.
Additionally, it makes sure that everyone has a reference point to compare against the gaze
input experience.

In the second task, the participants can use the gaze input, but they are not required to
use it. We instruct them that it is up to them if they want to use specific actions to make sure
that they voluntarily choose their actions.

In summary, the tasks’ objectives are to let the participants experience the specific input
techniques during debugging. For this reason, the code snippets are designed to be realistic
and contain bugs that also could have occurred in actual production code.

4.2.6 Code Snippet Design

The main objective of this user study is to test how developers perceive the gaze input during
debugging. Therefore, the code snippets are designed to let the participants exercise their
debugging skills and experience the different input techniques.

Therefore, the design of the two different code snippets has to fulfill the following cri-
teria:

1. The code snippets do not contain bugs or warnings that are spotted by the IDE.

2. The code snippets and bugs should not be too recognizable or trivial, or else a partic-
ipant would not have a reason to use the debugging tools.

3. There are no unexpected bugs in the code snippets to have a controlled software
environment.

4. The code snippets should be small and easy to understand to reduce the time it takes
to figure out the structure of the code so that the participant has more time to use the
debugging tools.

5. The code snippets should give the participant a reason to use the available debugging
tools.

6. The bugs should not be too difficult, or else a participant would have no idea where
to start.

48



4.2. Methodology

Finding two different code snippets that can satisfy these criteria failed, and thus the
decision was made to create our own code snippets. By designing these from scratch, a par-
ticipant should not recognize the introduced bugs immediately. This decision will naturally
fulfill a part of Item 2]

The code snippets are designed such that all the supplied tests will succeed if the par-
ticipants fixed all bugs. This satisfies Item 3| Additionally, each of the code snippets uses
topics that can be understood with only basic software knowledge to fulfill Item [4]

Only logical bugs are introduced such that the static analysis tools of IntelliJ do not flag
the bugs already to satisfy Item[I} We carefully placed the bugs such that fixing a bug should
lead to the discovery of another bug. This decision is to help the participant in finding a bug
and fulfills Item [6]

Another factor in the design and placement of the bugs is that each code snippet elicits
the use of breakpoints and variable evaluation. This design decision fulfills Item [5]

In order to add some realism in the form of non-trivial bugs, we based them on bug
classifications found by earlier research [[13 10, (70} 51} 27, 141]]

The exact selection of the bugs and an overview of the designed code snippets EI is found
in the following subsections.

Shopping Cart Code Snippet

The first task is based on a Shopping cart module in which the total price is calculated for
the products that are added to the shopping cart. In total, there are three bugs to be found.

The first bug is that the equals method of the product is missing that is needed to retrieve
it from the database. This type of bug is classified in [70] as “not overriding equals and
hashcode can cause both to be not defined”.

The second bug is that the tax calculation includes the product price instead of just the
tax rate. This bug can be caused by copy and pasting code from an existing method from the
same class without adjusting it to fit the control flow. Copy-and-paste type bugs are found
to be a major source of bugs in operating systems [13]].

The third bug introduces a non-existing product added to the cart that causes a negative
price value for that product instead of 0. This type of bug is caused by missing a precondi-
tion check. This kind of check is found by Campos et al. [[10]] as a commonly used method
to fix bugs.

Network Simulator Code Snippet

The second task is based on a simple Network simulator tool in which a simple Network
can be build using switches, firewalls, and end devices. In total, there are three bugs to be
found.

The first bug is that the connection links between a switch and a firewall can only flow in
a single direction, which means that packages are lost. This type of bug is caused by missing
an implementation that caused the error. Hamill et al. [27] classifies this as a coding fault
and found that this type of error is a cause for failure.

Leode snippets can be found on https://github.com/alangerak/EyeIldeaSampleProjects

49


https://github.com/alangerak/EyeIdeaSampleProjects

4. RESEARCH DESIGN

The second bug for this task is caused by the Switch that sends a package to itself if
it does not know where to send it to, causing a stack overflow. This issue is caused by
missing an edge case check to prevent this type of error. This type of bug can be seen as a
Parallelism bug[51]] because there could be an expectation that somehow, all switches can
simultaneously receive and decide at the same time what to do with the package. If this
were true, then the stack overflow would not happen since all switches would process the
incoming packages at the same time and know that it should not send it again.

The third bug causes that newly added rules to the Tree-rule-based Firewall would over-
ride the source address if the destination address and port combination already exist for that
source address. There is a missing condition that should check if there already exists a rule.
The bug type is a missing corner case, but it could also be classified as a control flow bug
since the instruction flow to add a new rule does not work as expected. This bug type is de-
scribed and analyzed by Zhenmin et al. [41] for modern open-source projects. They show
that these bugs are found a lot in these projects.

4.2.7 Post-Task Interview

After the participants have completed the second task, we conduct a post-task interview. The
purpose of this interview is to obtain qualitative data about using an eye-tracking enhanced
IDE. Before the interview starts, the participant is handed a SUS questionnaire that contains
ten questions with five Likert items, from Strongly disagree to Strongly agree[9]. The result
gives a score of the perceived usability of EyeIDEA.

At the beginning of the interview, we ask the participant to share their overall experi-
ence and thoughts about EyeIDEA. This opinion helps us to get a broad perspective of the
perceptions. Additionally, it gives us a rough estimate of the participants’ opinions about
the specific components.

After these questions, we ask the participant about the learnability and perceptions about
the gaze-based navigation and debugging actions. Depending on their overall experience,
we ask participants to explain their experiences in the context of these questions.

The final subject that we ask about is a general opinion about using eye-tracking inside
an IDE. This question is to evaluate whether the participant has any other expectations on
using eye-tracking inside an IDE.

A complete overview of all the interview questions and the SUS form can be found in

Appendices [B.2]and [B.3]

4.3 Data Collection and Analysis Procedure

This section covers the collected data and how it will be analyzed to answer the research
questions. Each of the following subsections describes a specific set of data that is used to
answer a question. These sections contain information about the data definitions, how we
obtained them, and how they will be analyzed.

50



4.3. Data Collection and Analysis Procedure

4.3.1 Demographic Information

Demographic information describes the background of the participants that show how they
fit in the general population. This information is useful to show what audience participated
in this study. All information is collected through a questionnaire (Section [4.2.3). We will
analyze this data superficially as we will only show what kind of group participated in this
study.

Age The age of the participant. The primary purpose is to provide information on the de-
mographic distribution of the participants. However, due to the selection of participants, see
Section4.4] we expect that the age distribution will be small. However, it is common to ask
the age when testing how useful a product is since age can influence how a particular input
device is used due to factors such as motor control [63] and different movement strategies
[71]. Age also can influence gaze patterns, as seen by Jennifer C et al. [8] when testing the
differences in fixations during usability testing of various websites.

Background The current software role or study program of the participant. This infor-
mation is only used to describe the current (non)involvement with software development.

Eye Deficiencies More than half of the Dutch population wears glasses or contact lenses
[65] and this can potentially influence the accuracy and precision of an eye tracker [49].
The reduced accuracy and precision can greatly affect the usability of EyeIDEA because if
the registered gaze does not match with the participants’ expectation, it inhibits the ability
to interact with the IDE.

Colorblindness could also impact the usability of EyeIDEA since it uses different colors
to indicate interactions. Although EyeIDEA has different color schemes, colorblindness
could still reduce the effectiveness of the implemented interaction system.

Eye Tracking Experience Whether or not the participant has used eye-tracking before.
The purpose of this data is to check the widespread usage of eye-tracking technology among
the participants.

Intelli] IDEA Experience Indication if the participant has used IntelliJ IDEA before. If
the participant has never used IntelliJ before, they will have a different learning experience
than the others. This data shows how many participants needed to learn IntelliJ during this
study.

4.3.2 Research Question 1

Data about the IDE interactions is needed to answer This data can be obtained from
the input devices (keyboard, mouse, and eye-tracker) as well as the actions that the IDE
performs. The following paragraphs explain how we turn this into data points and how we
will analyze this data.

51



4. RESEARCH DESIGN

GUI Window usage The usage of a GUI Window is measured by capturing the gazes that
fall within the GUI Window. EyelDEA already registers these gazes, and EyeIDEA puts
there these into a database.

This data is transformed into numerical data by summing up the time spend in each GUI
Window.

To account for different completion times and time spend inside GUI Windows between
participants, we normalized the total time for each Window by dividing it by the completion
time of that task. This way, we can compare the relative usages of the Windows.

We analyze this data by comparing the data gathered from both debug sessions against
each other to see if there are notable differences.

GUI Window transitions A transition takes place when the fixation changes from a GUI
Window to a different one. Similar to the GUI Window usage, we consult the database of
EyelDEA to get the needed data.

In order to transform this into numerical data, two approaches are taken: The first ap-
proach is to count the number of transitions between GUI Windows. This data is normalized
by dividing it by the total number of transitions because the number of transitions varies be-
tween participants. This approach follows a similar approach taken by Hansen et al. [28]].

This data is analyzed in the same way as the [GUI Window usage| data. However, this
approach does not take temporal effects into account that participants change their behavior
during their experiments [[7]. To account for these effects, we use a second approach. This
angle follows the approach that Hejmady et al. [29]] took to study visual patterns during
debugging.

For this approach, we transformed the time spent into a binary variable, timeSpan, to
indicate if the time spent before switching to another GUI Window is greater or smaller
than 500 ms. Additionally, this variable is used to encode the usage of a GUI window in a
character. For example, the character *A’ represents a short time spend in the Editor, while
the character *B’ represents a long time spent in the Editor. This results in an encoding of a
participant’s session that takes time into account.

The Sequential Pattern Mining (SPAM) algorithm [S] is used to analyze these
sequences. This algorithm uncovers frequently occurring switching patterns for each
participant. The result is a collection of switching patterns for both the mouse with
keyboard input and gaze input. Then, the top three patterns are extracted and plotted
together into graphs to explore the temporal effects.

Used actions An action occurs when a developer uses either a specific key combination,
mouse click, or a gaze button. This research excludes typing-related actions such as writing
code and code completion as they are outside of the study’s scope. These actions are col-
lected by parsing the output file obtained by Activity Tracker [[17] to obtain a collection of
actions.

To differentiate between gaze input triggered action and keyboard/mouse actions, we
use the action system’s log file of EyeIDEA. This file keeps track of when a gaze-related
action is used. We can retrieve the input type for every action, by manually comparing the
timestamps of both files.

52



4.3. Data Collection and Analysis Procedure

With this annotated list, we obtain for both gaze input and keyboard/mouse the total
amount per action-type. However, this list could still contain typing-related actions that
we remove manually. In the end, we will have two of these lists, one for the usage of the
augmented IDE and another for the non-augmented IDE. Then, we calculate the relative
frequencies for each action based on the total number of actions in that list. With these
frequencies, we will order the actions in each list and compare them to each other. Ad-
ditionally, we will also use results from the conducted interview to check their answers
against the obtained results. We are particularly interested in missing eye-tracking actions
and whether the implemented gaze actions are comparable to the most popular mouse and
keyboard actions.

Furthermore, we also investigate the situations in which the participants use the mouse
and keyboard instead of eye-tracking when it is available to them. These situations can tell
us when the participants value the mouse and keyboard above using the eye-tracker. This
value difference is an indicator of the effort it takes to use the eye-tracking input method.

4.3.3 Research Question 2

To answer RQ2] we need data about the participants’ experience with EyeIDEA. This data
is obtained by monitoring the participants during the user study and conducting an interview
which is described in Section 4.2.71

Satisfaction Satisfaction refers to how pleasant it is to use the augmented IDE for that
particular input technique and has a sizeable impact on the acceptance of using that input
technique. We measure the perceived satisfaction by asking the participants questions dur-
ing the interview about how they rate their experience with mouse and keyboard but also
their satisfaction with eye-tracking.

To analyze the satisfaction, we compare the answers given by the participants based on
the questions that relate to satisfaction.

Usability Usability is a measure of how well the user can use the system to satisfy their

needs and requirements to complete a specific goal. A tool to measure subjective usability

is the SUS questionnaire [9]]. This questionnaire contains ten questions with a one-to-five

scoring scale. These questions alternate between positive and negative items in order to

avoid response biases. The result of the questionnaire indicates the usability of this system.
The usability scores are calculated according to the following method:

* For each of the odd-numbered questions, subtract 1 from its value.
* For each of the even-numbered questions, subtract its value from 5.

* Take these new values and add up the total score. Then multiply this by 2.5.

Brooke [9]] used the following rationale for this calculation. The maximum score that
should be achieved is 100, and how higher the score, the more usable the system is per-
ceived. In order to get that score, each question has to have a maximum score of 10. Since

53



4. RESEARCH DESIGN

all odd-numbered questions are asked in a positive tone, a “agree completely” should have
a score of 10 while a “strongly disagree” has a score of 0. When 1 is subtracted from the
lowest value, the score will be 0. In addition, when you multiply the highest value with 2.5
after the subtraction, the score is (5—1)-2.5 = 10.

Similarly, the even-numbered questions are asked in a negative tone and should have a
reverse scoring effect on the usability score. This means that a “agree completely” should
receive a score of 0 and “strongly disagree” a score of 10.

To interpret these results, we calculate the mean and standard deviation over all the
scores. We also add an adjective rating based on these statistics by using the scoring system
created by Bangor et al. [6].

Besides this questionnaire, we also look into the answers given during the interview. In
particular, we use the answers to the questions that relate to the systems’ usability, e.g., the
evaluation of the interaction system and individual actions.

Learnability Learnability is defined as the amount of time that a novice needs to success-
fully perform a specific goal. During the training, each participant is observed to see how
long it takes until they complete a specific goal. At the end of the training, we ask the par-
ticipants how confident they feel on a score between one and five in performing the actions
available to EyeIDEA. This score is used as a perceived proficiency level for the actions.

We will analyze this data by plotting these results and then look for downward and
upwards trends by treating each objective as its own category. Additionally, we look into
if participants perceive specific modes as more difficult to learn than other modes. For this
approach, we will use the detailed answers that we collect during the interview.

Another option we will explore is to investigate the actions a participant took during an
objective. We compare these against the ideal action path to see which kind of errors they
made.

4.3.4 Research Question 3

For answering[RQ3] we only need the opinions and experience with EyeIDEA. These opin-
ions and experiences are obtained directly from the interview Section4.2.7

Perception The perception is an overall subjective measure of the perceived usefulness
of the eye-tracking IDE. In particular, the design of EyeIDEA is judged and whether eye-
tracking is suited for IDE-related tasks. We address the perception by asking participants to
express their opinions about EyeIDEA and their overall experience of using an eye tracker.
These questions are asked during the interview, see Section

All the responses are manually analyzed and grouped to check for overlapping and
unique answers to analyze the participants’ answers. We will then use these results to
answer the three research questions that we listed in [Section 4.1.3 Perception|

54



4.4. Participants

4.4 Participants

We wanted to get a diverse group of participants with different amounts of programming
experience for this study. This way, we obtain a broad range of responses from partici-
pants, ranging from experienced programmers that know how to use the IDE effectively to
participants that are still learning how to use the IDE and develop software.

Additionally, we wanted that a part of the group wore glasses or contact lenses for two
reasons. The first reason is to test the influence of the glasses on eye-tracking. Secondly, to
test if the possibly altered performance impacts the perceived usefulness of an augmented
IDE.

To achieve this, we invited students from the TU Delft since they are readily available
to us. We sent the invitations using direct chat messages to fellow students, master student
group chats, Teaching Assistant (TA) group chats, and distributed posters on the campus
to invite students. This poster is included in Appendix [D] These invitations led to an on-
line Survey form that contained more information about the user study and that they could
choose to receive a € 10,- gift card. The survey is included in Appendix [E]

4.5 Pilot study

A pilot study has been performed to verify the training procedure (Section .2.4), the code
snippet (Section .2.6)), and the questions for the interview (Section 4.2.7). We conducted
this pilot with an experienced software lead developer, aged 41, and had no prior experi-
ence with using an eye-tracker. The participant was asked to go through the whole session
first. We discussed the participants’ experience directly after the session to provide us with
feedback.

For the training procedure, we received feedback on the training videos on how to make
them shorter, so there is less time between the video and performing the objective. This
solution should make it easier to remember how to perform the shown action. We shortened
the videos by not repeating how to select an item in each video. This procedure is always the
same, and the participant deemed it unnecessary to repeat this. Additionally, we originally
had plans to use an overview card to guide the participants, but the training videos proved
to be sufficient.

The feedback for the code snippets was that the code reflects the difficulty of production
code. This meant that the participant used the augmented IDE just like in a regular working
day, so we did not change the code snippets.

For the interview, we noticed that there were a couple of questions that received the same
answer. To keep the flow of the interview, the participant recommended which questions
could be removed and which ones could be rewritten to encourage extensive answers. Apart
from that, the questions themselves were clear, and there were no obvious missing questions
to evaluate the experience with using the augmented IDE.

55






Chapter 5

Results

The previous chapter listed the research questions, what kind of data is needed to answer
them, the design and analysis of the user study, and which participants were invited to the
user study. In this chapter, we report the results of this study and analyze them accordingly
to answer the stated research questions. This chapter starts with going over which partic-
ipants took part in this study. We use descriptive demographics statistics to describe the
participants. Next up, we address the collected IDE Usage data. After that, we analyze
the training results and the overall usability of the developed augmented IDE, for which we
use the results obtained from the interview. Lastly, we will focus on the perceptions of an
eye-tracking IDE and what challenges and solutions they have proposed.

5.1 Participants statistics

A total of eight students signed up, but seven of them participated in this study, of which
28% were female, and the others were male. The participants’ age ranged between 19 and
29 years(mean = 22.7; standard deviation = 3.0; median = 22). Furthermore, 71% of the
students wore glasses or contact lenses when entering the study, but this dropped to 43%,
because of issues with tracking the participants’ eyes. Some had to take their glasses off to
fix this issue.

None of the participants were color-blind, so we have not used the alternative color
schemes described in Section Only a single participant had no prior experience using
IntelliJ IDEA but did inform us to have experience with other IDEs such as Eclipse and
Visual Studio. Additionally, 43% of the participants have used an eye-tracker, either for
another research project or for gaming.

Lastly, two of the participants were in their first and second year of their Bachelor in
Computer Science, four were Master students for Computer Science, and a single Complex
Systems Engineering and Management Master student.

57



5. RESULTS

Factor Percentage Factor Percentage
Gender InteliJ Experience
Male 72% Yes 86%
Female 28% No 14%
Age Eye-tracker Experience
19-22 57% Yes 43%
23-29 43% No 57%
Glasses / Contact Lenses Study
Yes T1%* BSc Computer Science 29%
No 29% MSc Computer Science 57%
MSc C.S.EM. 14%

Table 5.1: Demographics of the seven participants, *Some participants had issues with their
glasses and took them off, resulting in 43% that used them.

5.2 RQ1: IDE Usage

The IDE usage data provides a perspective about the differences between using the eye-
tracking augmented IDE and not using it. This information is captured by the eye-tracking
data, collected actions, and answers provided during the interview. The upcoming sub-
sections will show the results and analyze the differences between using the eye-tracking
capabilities and not using it as described in Section [4.3]

5.2.1 GUI Window Usage

During both debugging sessions, we turned eye-tracking on to analyze the participants’ at-
tention regarding GUI windows. Then, we summed up all the participants’ gaze duration for
each GUI window. However, we only included the windows that at least three participants
looked at to remove significant outliers. This data is shown in Table[5.2]

From this data, we observe that the participants spent the most time on the Editor.
Moreover, we also observe some differences in the usage patterns between the participants.
Firstly, participant P1 is the only participant that never looked at the DebugTool during both
debugging sessions.

Secondly, participant P3 never looked at the DebugPanel and Breakpoint Chooser,
which means that this participant never placed breakpoints using eye-tracking.
Additionally, P3 spent a negligible amount of time on the other EyeIDEA windows. This
result shows that P3 barely used eye-tracking. A reason could be that this participant
indicated that the eye-tracking felt too sensitive and that EyeIDEA responded too quickly
to the gaze input.

Thirdly, the participants spent an insignificant amount of time in the Usage Popup.
This window only shows up when a participant used the Go To Declaration navigation
action, and there exist multiple navigation locations. This observation shows that either this

58



5.2. RQI: IDE Usage

No Eye-tracking Available

Eye-tracking Available

GUI Window P1 P2 P3 P4 P5 P6 p7 P1 P2 P3 P4 P5 P6 P7
Common:
Editor 8m47s 7ml4s 8m40s 10m07s 7m27s 7m51s 8m39s 7ml17s 7m13s 9m4ls 8m43s 7m34s 5m25s 5m49s
DebugTool OmOs Om32s Om39s Oml6s 1m07s Om50s Om46s ~ OmOs Om22s OmOs Om2ls Om44s 1m23s Om47s
RunTool Om16s Om10s Om16s OmOls Om17s Om48s OmOls Om25s OmOls Om18s OmO03s OmO5s Om03s OmOls
Usage Popup 0mOls ~0mOs Om0S5s  OmOs OmOs ~0mOs OmI12s Oml7s Om03s OmOs OmOs OmOs OmOs Oml3s
NavigationBar Om04s OmO5s OmOs OmOls OmO4s OmOIs OmOs ~0mOs Om03s OmOs ~0mOs Om06s OmOls ~0mOs
EyeIDEA:
ButtonPanel - - - - 0m33s Om40s Om07s Om53s Om39s Om48s Om55s
NavigationPanel - - - - 0m25s 0m25s Om04s Om46s Om06s Om29s Om32s
Breakpoint Chooser - - - - - - - OmI2s Om02s OmOs OmO4s Om08s Om22s OmOSs
DebugPanel - - - - - - - Om16s Om04s OmOs OmO03s Om08s OmO07s OmO03s

Table 5.2: The total time that each participant spent in each window. All windows below
the EyelDEA label are only available with eye-tracking enabled.

situation does not often happen or that the participants did not use this navigation action.
We will revisit this in Section

Finally, we also observe that the NavigationBar received hardly any gaze time. This
window contains the run program, start debugging buttons, among other buttons, and is
located in the upper right corner just above Panel 1 in Fig. The participants had to
spend little time in this window since clicking on these buttons takes up almost no time.

To further investigate these numbers, we calculated the percentage of time spent inside
a window by dividing this time by the total time spent in all windows, which we repeated
for each participant individually. This way, we compensated that not every participant spent
exactly ten minutes looking at the screen during both debugging sessions.

In Table [5.3] we show the obtained data when eye-tracking interactions were unavail-
able. We observe that the Editor window is the number one most looked at window with a
significant usage gap between it and the second most used window, DebugTool.

Additionally, we observe that the difference between the minimum and maximum usage
of the Editor is 15%. This difference is the largest one among these windows, which also
means that there is quite a difference in how important the Editor is between participants.
However, it does remain the window on which the participants spend the most time on.

We also observe that there are two additional significant gaps. The first gap is between
the DebugTool and the RunTool. The second gap is between the RunTool and the other
windows below that. These gaps mean that both of these windows take second and third
place, respectively. The other windows do not receive as much time compared to the other
windows. A reason could be that participants do not use them often or quickly find what
they need in these windows.

Moreover, we also observe a big difference between the quartiles Q1, Q3, and the
maximum time for the Usage Popup window. This difference indicates that, in this case,

59



5. RESULTS

No Eye-tracking Available Eye-tracking Available

GUI Window Mean STD Min Q1 Q2 Q3 Max Mean STD Min Q1 Q2 Q3 Max
Common:

Editor 89.0% 59 81.4% 85.1% 89.0% 92.7% 97.0% 77.2% 10.2 622% 72.7% 78.7% 79.7% 94.9%
DebugTool 6.44% 4.11 0% 4.56% 6.75% 8.33% 12.5%  5.79% 5.74 0% 1.62% 4.18% 8.53% 16.1%
RunTool 2.85% 270 030% 1.16% 2.76% 3.11% 832% 1.47% 1.67 0.26% 0.41% 0.71% 1.96% 4.56%
Usage Popup 0.53% 0.82 0% 0.06% 0.14% 0.63% 2.22%  0.90% 1.35 0% 0% 0% 1.66% 3.03%
NavigationBar 0.47% 0.44 0% 0.11% 0.29% 0.85% 1.06%  0.34% 0.41 0% 0.01% 0.13% 0.48% 1.13%
EyeIDEA:

ButtonPanel - - - - - - - 7.10% 3.05 1.28% 6.37% 7.44% 8.65% 11.0%
NavigationPanel - - - - - - - 433% 2.47 0.80% 2.77% 4.77% 6.05% 7.09%
Breakpoint Chooser - - - - - - - 1.46% 1.43 0% 0.62% 1.05% 1.83% 4.29%
DebugPanel - - - - - - - 1.13% 0.96 0% 0.58% 0.89% 1.45% 2.97%

Table 5.3: Percentage of the total time spent in each window based on the data obtained
from the seven participants. All windows below the EyeIDEA label are only available with
eye-tracking enabled.

the distribution is skewed as only P7 spent some time inside this window as seen in
Table [5.2]  Additionally, we observe that the participant did not often look at the
NavigationBar. The distribution is also right skewed as the percentage significantly
increases from Q2 to Q3. This result means that only a few participants have looked at the
buttons in this window because they either used the buttons more or the other participants
clicked on these buttons without looking.

On the right side in Table[5.3] we show the obtained data when eye-tracking was avail-
able. This side of the table includes additional EyeIDEA windows that were not available
the first time. From this, we can immediately observe that the time is spread out between
the different windows. However, just as in the previous table, we observe that the Editor
window remains the most examined window. Additionally, the difference between the min-
imum and maximum for the Editor increased to 32%. There is an even greater difference in
using the Editor compared to the left side of Table[5.3] We assume that this is caused by the
addition of the EyeIDEA windows. These windows require that participants have to look at
them to execute an action. However, some participants did not use them very often or found
the correct gaze button very quickly. This behavior could explain the increased differences
in the time spent inside the Editor window.

Additionally, we observe that there are three additional significant gaps. The first gap
is between the EyeIDEA ButtonPanel (Panel 1 in Fig. [3.2) and the DebugTool as the gap
is bigger than the difference of mean time spent between the (Panel 2 in Fig. and the
DebugTool. Secondly, we observe a gap between the Gaze Navigation Panel and Breakpoint
Chooser (Fig. [3.234). The final gap is between the Usage Popup and the NavigationBar.
These gaps show that we can distinguish between five different groups based on these gaps.
If we look at the average times, we observe that the most time is spent in the first three

60



5.2. RQI: IDE Usage

groups and drops significantly for the other windows. As before, this could mean that
participants quickly find what they need in the other windows or that they use these windows
less often. Moreover, we also observe a skew in the RunTool usage as the mean and median
differ by 70%. P1 and P3 caused this issue as they spent significantly more time in the
RunTool, which we observed in Table

We also observe something about the time spent on the introduced EyeIDEA windows.
Participants spent on average the most time on the ButtonPanel followed by the Naviga-
tionPanel. Since the ButtonPanel plays a significant role in the interaction system, it is no
surprise that participants spend the most time in this window. This situation happens primar-
ily when most participants need to locate the right Gaze Button before activating a function
which adds additional time that they need to spend. However, there is a big difference be-
tween the minimum and maximum time. This difference indicates that some participants
have more issues with locating the right button than the others.

Another surprising observation we found is that participants spend a significant portion
of their time on EyeIDEAs’ NavigationPanel. This panel only consists out of two gaze-
based buttons that activate the navigation modes. Perhaps, this indicates that the participants
perform numerous navigation actions. Moreover, based on these observations alone, we see
that participants did not use the debug modes offered by EyeIDEA. If they were, we would
expect to observe something similar for the Gaze Debug panels. We will look further into
this in Section[5.2.3| where we make observations about which actions the participants used.

Finally, if we ignore the introduced EyeIDEA panels and then compare both sides of
Table[5.3] we observe that the order did not change. This observation shows that the partici-
pants did not significantly change their behaviors. However, we do notice a significant drop
in RunTool times and a rise in the Usage Popup times. Maybe, more navigation actions
took place, and participants relied less on running the program and looking at the output.
Another reason is that in order to use the Usage Popup a participant has to remember the
highlight color in addition to reading the list as seen in Fig. This activity increases
the time spent in this window.

Key Points

* The participants spend by far the most time on the Editor, regardless of the
presence of eye-tracking. Additionally, if we exclude the additional new win-
dows introduced by EyeIDEA, then the order of the windows based on the
time spent did not change.

* The introduction of the tool caused the participants to spend on average less
time on the Editor and spend this time on the new windows introduced by
EyeIDEA since the used buttons are activated based on the gaze time.

* Participant spent more time on the Usage Popup (i.e., the popup that displays
selection list of source code location which can be seen in Fig. [3.28b]) when
eye-tracking was active, probably because a participant has to remember the
highlight color in addition to reading the source code list in this popup.

61



5. RESULTS

5.2.2 GUI Window transitions

The way that participants transitioned between windows tells us how much they have
changed their attention between them. To capture these transitions, we created an encoding
as described in Section and used the open-source data mining program SPMF [20]
for running the SPAM algorithm to uncover patterns in these sequence of transitions. The
algorithm was configured such that it only considered either one or two consecutive
transitions to prevent double transition counting. We have extracted the top ten transitions
that we will discuss below.

Label Transition Label Transition

1 RN LONG DebugTool - LONG 1 VN LONG Gaze Buttons -
Editor LONG Editor

2 NR LONG Editor - LONG 2 Al SHORT Editor - SHORT
DebugTool Gaze Buttons

3 NB LONG Editor - SHORT 3 1A SHORT Gaze Buttons -
NavigationBar SHORT Editor

4 BN SHORT NavigationBar 4 NV LONG Editor - LONG Gaze
-LONG Editor Buttons

5 NRN LONG Editor - LONG 5 NI LONG Editor - SHORT
DebugTool - LONG Editor Gaze Buttons

6 PN LONG RunTool - LONG 6 IN SHORT Gaze Buttons -
Editor LONG Editor

7 NP LONG Editor - LONG 7 ON LONG Navigation Panel -
RunTool LONG Editor

8 NBN LONG Editor - SHORT 8 NVN LONG Editor - LONG Gaze
NavigationBar - LONG Buttons - LONG Editor
Editor 9 NQ  LONG Editor - LONG

9 NE LONG Editor - SHORT Navigation Panel
DebugTool 10 ND  LONG Editor - SHORT

10 RNR LONG DebugTool - LONG Navigation Panel

Editor - LONG DebugTool

(b) with eye-tracking available.
(a) without having eye-tracking available.

Table 5.4: The top ten GUI Window transitions. The annotation (LONG) and (SHORT)
indicate if the time spent inside a Window is > 500ms or shorter, respectively.

We can immediately observe from Table [5.4] that the top ten differs greatly between
the two situations. For instance, none of the labels in Table are found in Table [5.4b]
and vice versa. This result tells us that the participants changed their gaze patterns signifi-
cantly. However, this is to be expected since numerous interactions take place in the newly

62



5.2. RQI: IDE Usage

introduced EyeIDEA windows. These interactions are caused by interacting with the gaze-
based buttons. Additionally, all the transitions in Table [5.4b] include at least one window
introduced by EyeIDEA that further strengthen the idea that participants transitioned more
between the EyeIDEA windows, rather than the previously existing ones.

Moreover, we also observe that the participants transitioned a lot between the Gaze but-
ton (panel 1 in Fig.[3.2) and the Editor when eye-tracking was available because position one
to six in Table includes the Gaze button Panel. The most probable reason is that par-
ticipants needed to return to this panel frequently to select and execute a gaze-based action.
Additionally, we observe that the time spent in the Gaze Button window before transition-
ing to the Editor varied a lot. A reason for this behavior is that participants searched for the
Gaze button with the right color. This variation is indicated in Table [5.4b] with the SHORT
and LONG transitions annotations, and every possible permutation of this transition can be
seen in the top six.

During the interview, participants P1, P2, P4, and P7 indicated that they encountered
situations in which they had to spend more time to find the right button because the high-
light colors changed too much. This behavior means that there were some difficulties in
remembering the right locations.

A second observation we make is that the additional transitions reduced the transition
amount to the Editor and DebugTool compared to Table [5.4al We can observe from
Table that on average, the participants spent significantly less time in the Editor.
However, there is only a small difference between the DebugTool times. This observation
means that the participants spent more time before transitioning between them.
Additionally, we do observe that the participant also spend at least 500ms before
transitioning when eye-tracking was not available as indicated by the top two transitions in
Table [5.4al In contrast to the earlier situation, these transitions happened quite often as
positions five and ten in Table shows that these followed each other often.

To better understand how the transitions changed during the experiment, we spliced
the transitions into 15-second intervals. Then, we calculated the transition frequency per
participant and averaged these values.

We first looked at the transition differences in the top three in both situations. This is
plotted in Fig. In the left figure, we observe that the most activity during in the first 200
seconds is that participants looked for more than 500 ms at the Editor before transitioning to
the NavigationBar in which they spend little time. This behavior indicates that participants
started with running the code or starting the debugger since the buttons that activate this are
inside the NavigationBar. After this period, the participants transitioned between the Editor
and the DebugTool, in which they spend at least 500 ms. This behavior indicates that they
were in the process of debugging the code snippets.

In the right figure, we observe that for the first 200 seconds, the participants transitioned
very quickly between the Editor and the Gaze Buttons as they spend very little in either of
these windows. The participants knew exactly which Gaze button they had to look at to
perform an action. This situation could occur when there are only a couple of highlighted
items since it is easier to remember which color to find. This situation mostly happens when
a participant tries to select a regular GUI button as there are not many different GUI buttons.

63



5. RESULTS

Furthermore, this also coincides with the same behavior described above.

After this period, the participants take more time looking at the Gaze Buttons since they
probably use them to select source code which introduces a lot more changing highlight
colors.

— Alcsv
0.14 4 IA.csv
— VN.csv

0.175 4

0.150 4
0.12

0.125 1

0.100 4

=4
o
@

0.075 4

Relative Frequency

Relative Frequency

0.050 4

0.025 4

0.000 4

i
I\/V A

o] 10 20 30 40
Time period (x15 s)

o 5 10 15 20 25 30 35
Time period (x15 s)

(a) Top three transitions over time without

having eye-tracking available. (b) Top three transitions over time with eye-
tracking enabled.

Figure 5.1: Individual plots of the top three transitions found in Table

If we compare the figures in Fig. [5.1], an interesting pattern emerges. The transitions
varied are a lot more when eye-tracking was available. This situation makes sense since
a user needs to look at the Gaze Buttons for the gaze interactions and back to the original
window. Additionally, it shows that there are a lot more transitions when eye-tracking was
available. Participants P5 and P6 indicated during the interview that they found the amount
of transitions between the Editor and Gaze Buttons had a negative impact on the usability
which was phrased as:

“[...] I did not like this when I wanted to do multiple actions in quick succession |[...]”
-P5

Another interesting situation arose when we took the top two transitions of Table
and compared it with the eye-tracking situation as illustrated in Fig.[5.2]

In Fig.[5.2a) which shows when eye-tracking was not available, the participants had two
periods in which they transitioned slowly between the DebugTool and the Editor. These
periods show when they selectively used the debugging information. However, when the
eye-tracker was available as shown in Fig. [5.2b] the participants were slow in using the
debugger, but this increased at the same time as the first period, which is around 200 seconds
as in Fig.[5.24

An explanation is that the participants were navigating during this time when
eye-tracking was available instead of debugging.

When we plot the transitions that relate to the Gaze Navigation Panel as shown in
Fig.[5.3] we observe that this seems to be the case. The amount of transitions between the

64



5.2. RQI1: IDE Usage

— NR.csv — MRcsv
0.175 RN.csv 0.20 1 RN.csv

0.150 4

o
-
Iy]
]
o
h
v

o
=
°
S

o
.
5}

0.075 4

Relative Frequency

Relative Frequency

0.050 1

J
el | N
. 3 5/\/\ Jm\ I w00 V\ /\/ /\

Time period (x15 s)

o
=)
w

o] 5 10 15 20 25 30 35
Time period (x15 s)

(a) Transitions over time without having eye-

tracking available. (b) Transitions over time with having eye-tracking
available.

Figure 5.2: Individual plots of transitions between the DebugTool and Editor where the
participants spend at least S00ms on the respectable window before transitioning.

0.15

Relative Frequency
o
=
S

0.05 A

T T T T T T T
o] 5 10 15 20 25 30 35
Time period (x15 s)

Figure 5.3: Navigation and DebugTool transitions to the Editor when eye-tracking is avail-
able.

Editor and the Gaze Navigation Panel decreases significantly after 200 seconds.

Another explanation for this phenomenon was that participants P2, P3, and P6 said
that they found it more difficult to use eye-tracking interactions when they needed to think
a lot. This situation always occurred when they were debugging, which means that they
found it difficult to combine debugging and eye-tracking. Instead, they used the gaze-based
navigations instead of debugging.

65



5. RESULTS

020 — WPesv — NPcsv

PN.csv 0.20 4 PN.CSV

e

i

7
e
o
w

0.10 1

/
" A

Time period (x15 s)

e
i
5

Relative Frequency

Relative Frequency

=4
o
@

LA A f

Time period (x15 s)

5

(a) Transitions over time without having eye-

tracking available. (b) Transitions over time with having eye-tracking
available.

Figure 5.4: Individual plots of transitions between the RunTool and Editor where the par-
ticipants spend at least 500ms on the respectable window before transitioning.

The final situation that we looked at is the difference in transitions between the RunTool
and the Editor since the RunTool can play a major role in debugging the source code. These
results are plotted in Fig.[5.4] We observe that the transition frequency is consistent when
the eye-tracking was not available, as shown in Fig.[5.4a] However, in Fig.[5.4b] we observe
that it was only visited frequently at the end when eye-tracking was available. It seems that
the participants prioritized other windows. We can also observe that from Table [5.3] since
the average percentage of the time spent in the RunTool is half of the time spent when the
eye-tracking was not available.

Key Points

* There are more transitions observed between windows when eye-tracking is
available, which participants perceived as a negative contribution to the us-
ability.

* The DebugTool is used more selectively when the eye-tracking is not available
since there is a period in which a lot more transitions are observed between
the Editor and the DebugTool.

* When eye-tracking is not available, the RunTool (i.e. window that shows the
program output) is consulted faster and more often.

5.2.3 Used Actions

We captured the used actions that the participants used during both debugging sessions
and created a top five, which is shown in Table [5.5] Since they had only the eye-tracking
available in the second debugging session, all actions in Table were activated with a

66



5.2. RQI: IDE Usage

mouse or keyboard.

In the top five, we observe that the declaration navigation action is the most popular,
followed closely by the StepOver debug action, which steps over a code line when the
debugger is active. Interestingly, action three and five are also related to debugging. Only
action four is related to navigation as this action jumps back to the previously visited code
location.

In Table we listed all the actions when eye-tracking was available. We observe
again a navigation action is the most popular action. However, this time there is a bigger
usage gap between the first and second action. This gap means that participants likely relied
on this navigation a lot more.

Action Usage Action Input Usage
1 GoTo Declaration 26.9% 1 GoTo Eye-Tracking 22.6%
2 StepOver 21.0% Implementation
3 Resume 3.89% 2 Sf:t . Eye-Tracking 10.6%
LineBreakpoint
4 Back 7.06%
Undo Keyboard/Mouse  9.36%
5 Set LineBreakpoint  5.24% . .
4 GoTo Declaration  Eye-Tracking 8.10%
(a) without having eye-tracking avail- 5 GoTo Declaration  Keyboard/Mouse  4.26%

able.
(b) with eye-tracking available.

Table 5.5: The top five IDE actions:

Something that we also observed in Table [5.5b| was that the participants used both eye-
tracking and keyboard/mouse to navigate to a declaration. The majority of the participants
said during the interview, that they tended to navigate with the keyboard or mouse whenever
they had to think a lot but fell back to eye-tracking right after. One of the reasons that was
given:

“[...] I needed to think about how to use it because it takes more effort compared to
muscle memory that it already there.” - P7

Other participants also indicated that eye-tracking felt nicer whenever they thought that
the keyboard was not needed, i.e., writing code or doing an action that eye-tracking did not
support.

The second thing was that navigation was the most popular action for both, as men-
tioned before. However, during the first debugging session, the participants preferred the
declaration action, while in the second, it was the implementation action. During the train-
ing, P1, P2, P5, P6, and P7 said that they did not know the difference between these two
actions, only that they knew that a ctrl+click always navigated them to the expected loca-
tion. That shortcut is to activate the Go To Declaration action. So, a reason for the top
one difference could be that some participants did not know that the other navigation action
existed and that this worked better. This explanation also showed up in the total amount of

67



5. RESULTS

used actions since no one used the Go To Implementation action with keyboard or mouse
input in both debugging sessions.

Another thing we noticed was that the navigation actions were more popular when eye-
tracking was available since 35% of the actions were navigation actions compared to 27%.
On the other hand, the participants used more actions to actively use the debugger with
actions such as Step Over and Resume; and were setting fewer breakpoints compared to the
other actions. More interestingly was that during the interview, almost every participant
said that they did not notice any difference in their action usage between the different debug
sessions using statements such as “Felt no difference”, “did the same things” and “coding
style did not change”. Participant P6 said the following about this:

“It is pretty hard to change debugging habits and the tool in itself did not influence
mef...]” - P6

An explanation for this usage difference is that several participants found that the nav-
igation actions felt better to use because the eye-tracking was more reliable with code ele-
ment selection than button selection. So, they were inclined to navigate a lot more.

We also investigated the number of actions performed. When eye-tracking was not
available, the participants performed a total of 439 actions from 30 unique actions. How-
ever, when it was available, a total of 235 actions were performed from 26 unique actions.
So the participants executed almost half the amount of actions when the eye-tracking was
available while performing only four less unique action types. P3 and P4 did indicate dur-
ing the interview that they had to be careful when looking around. They felt that the system
reacted too quickly to their gaze and performed fewer actions. Therefore, they only chose
actions that felt more reliable such as code selections as mentioned before.

We extracted the top five actions when eye-tracking was available based on the input
types to investigate if the participants used the debugging actions often. This result will
show more details than Table since we now look at both input types.

Action Usage Action Usage

1 Undo 9.36% 1 GoTo Implementation 22.6%

2 GoTo Declaration 4.26% 2 Set LineBreakpoint 10.6%

3 Resume 3.40% 3 GoTo Declaration 8.10%

4 StepOver 2.98% 4 StepOver 3.83%

5 SaveAll 2.56% 5 Run 2.98%
(a) keyboard or mouse input. (b) eye-tracking input.

Table 5.6: The top five IDE actions when eye-tracking available, split by input type.

If we exclude the actions that use code selection, which in this case the Set LineBreak-
point action from Table [5.6b] we observe that the StepOver debugging action is still used
more often than the keyboard or mouse counterpart. However, the participants did not like
to use the Resume debugging action with eye-tracking as it is not in the top five found in Ta-

68



5.3. RQ2: EyeIDEA Perceptions

ble[5.6b] Based on this information, we observe that the participants slightly favored using
debugging actions with the keyboard and mouse rather than using eye-tracking.

Moreover, we observe that participants liked to activate the Run action with eye-tracking
input. We think that the participants did not activate it with the keyboard or mouse because
it is unlikely that a participant repeatedly performs this action which means that it is less of
an issue that the button selection is less reliable than code selection.

Key Points

* The choice of when to use eye-tracking actions depends on the current pro-
gramming activity. If it requires lots of thinking, the tendency is to use the
keyboard and mouse over eye-tracking.

* The navigation actions are used more often when eye-tracking is available
while debugging actions are more popular when eye-tracking is not available.
A reason is that the single code selection felt more stable to use than the other
eye-tracking interactions.

5.3 RQ2: EyeIDEA Perceptions

One of the other factors to determine the usefulness of an eye-tracking IDE, is to assess the
perceptions of the developed eye-tracking IDE, EyeIDEA. There are three criteria that we
used to assess these perceptions namely, satisfaction (Section 4.3.3 Satisfaction)), usability
((Section 4.3.3 Usability) and learnability (Section 4.3.3 Learnability). In the following
subsections, we present and summarize the results of each criterion.

5.3.1 Satisfaction

When describing the satisfaction of using EyeIDEA, participants P1, P2, P3, P6, and P7
found that the system was “Pleasant to use” and that they enjoyed the experience. Addi-
tionally, P1 and P7 stated that they expected a less enjoyable and difficult system and were
positively surprised about it.

A feature that contributed to the overall satisfaction was that the system felt very similar
to the original IDE, which meant that it was easy to learn.

Another feature that all participants enjoyed was that the action usage was fast and
responsive. However, P3 and P4 said that the system sometimes responded too quickly to
their gaze with P3 saying:

“I felt that I had to be careful where I was looking at which made it feel restrictive to
use during certain moments.” - P3

A common dissatisfaction among the participants was that the gaze tracking was not
always accurate enough to pinpoint the gaze to the intended target, which contributed to
some annoyance. Additionally, all participants felt that the additional gaze buttons took up
too much screen space, which made it more difficult to use the Editor.

69



5. RESULTS

* The overall impression is that eye-tracking is “Pleasant to use”. However, the
inaccuracies of the eye-tracking contribute to some annoyance, and in some
cases, the system responds too quickly.

5.3.2 Usability

As mentioned in [Section 4.3.3 Learnability], we evaluate the usability based on the score of
the System Usability Score (SUS) questionnaire and the answers given by the participants
during the interview.

System Usability Score After the experiment, the participants filled out the SUS ques-
tionnaire, which indicates the systems’ usability. The resulting score (Mean = 70.31, Stan-
dard Deviation = 7.22) can be translated to an adjective scale as “Good” [[6]. Moreover, the
acceptability of EyeIDEA can be seen as “Passable,” which is reserved for systems with a
score above 70. This score means that the developed IDE seems promising, but it does not
guarantee high acceptability when it is used outside a lab setting [6]].

Overall System Usability More than half of the participants found that the system is
simple to use and feels responsive. Out of the seven participants, four of them described the
systems’ usability with words as “Easy to Use” (P7), “Simple” (P2, P5), and “Not Difficult”
(P1). For the responsiveness, five participants described it either as “Feels faster than the
mouse” (P2, P4), “Reacts Quickly” (P7), or “Responsive” (P1, P5).

Something that all the participants liked was that the implemented actions worked the
same way that they are used to. Particularly, P6 described it as:

“To me, this felt very similar as if I would use the mouse.” - P6

Unfortunately, there were some inconsistencies felt by three participants regarding the
eye-tracking performance. This was described by P4 as:

“[...] the gaze did not always reach far enough.” - P4

The participants worked around this issue by readjusting themselves or by quickly look-
ing back and forth at another point on the screen.

Despite this issue, nobody felt fatigued while using the system. However, some were a
bit tired because they had to remove their glasses to get through the calibration procedure
successfully.

Another topic that arose when asking about the overall usability was that of the color
selection system. Most of the participants said that they liked it. This was described by P3
as:

“It works quite good to select the right code because it gives you a conformation, so it
also works without the gaze cursor.” - P3

70



5.3. RQ2: EyeIDEA Perceptions

An issue that was raised by many participants though was that the color assignment did
not feel consistent and that you had to spend some effort remembering the correct color. For
instance, P1 described it as:

“[...] when I first looked at the run button it was first green but then another time it was
red” - P1

We also received feedback about some difficulties with selecting modes as described in
Section Participants P3 and P4 found that the buttons activated too quickly. They
described it as if the system could activate an action without their input. This issue means
that the current system did not prevent the Midas Touch[33]] problem for everyone.

Usability of Controlling Buttons Two out of the seven participants (P4 and P7) chose
the IDE button interaction as one of their favorite modes. They mentioned that it was the
most logical to use, although we did observe that most of the participants primarily used
this mode to activate the “run code” and “start debugger” buttons. Participant PS5 mentioned
that the distance from the buttons of the debugger window (located at the same position as
panel 4 in Fig. to the Gaze selection buttons (panel 1 in Fig. is too big and that it
felt cumbersome to use. Additionally, P4 and P7 had some issues with selecting the buttons
because of their small sizes. This problem made it more difficult to see the highlight color
and get the registered gaze at the correct position due to inaccuracies.

The participants were divided about the feature that the Button Control mode did not re-
quire an activation as shown in Fig.[3.24] P2, P5, and P7 liked the idea that it required fewer
steps to activate a button, but the other half found it somewhat inconsistent compared to the
other modes, and P3 even forgot this feature because it did not require a mode selection.

Navigation Actions Usability Most participants were positive about the usability of the
navigation actions and described it as “Natural”. Six out of the seven participants (P1, P2,
P4, P5, P6, P7) described that it felt similar to using the mouse for navigation. P2, P4,
and P6 even mentioned that it felt faster than using the mouse. Additionally, they liked the
responsiveness of these actions.

Debugging Actions Usability All the participants were positive about the usability of
setting a line breakpoint with P1 and P3, liking that it had a direct relation with the code
rather than having to locate the correct line first. We do have to note that this is not a unique
feature with our tool as there is a shortcut in IntelliJ to place a breakpoint at the current
cursor location in the Editor, but none of the participants knew that.

However, while the participants used line breakpoints, the conditional breakpoint was
barely used. Most participants noted that they do not use this feature regularly and, as
such, did not use them. Additionally, they noted that it felt complex to use since it required
keyboard input to turn the code selection into a valid conditional expression.

A similar problem was also found for both of the evaluation modes. None of the partic-
ipants are used to using the quick evaluation option during debugger and instead used the
debug window as shown in Fig. [3.15]to view the variables. When asked about this, P2 said:

71



5. RESULTS

“[...] IntelliJ already shows a short summary of the value of the variable in the editor
anyway.”. - P2

However, P1, P3, and P4 noted that they found the action itself was quick and easy to
use. However, they needed more time during the debugging session and rather preferred to
try to understand the code by reading it before using debugging tools.

Key Points

* The participants find EyeIDEA easy to use, responsive and the implemented
actions feel similar as they are used to despite some inconsistencies with the
eye-tracking.

* The perceived usability of the color highlights depends largely on the used col-
ors as well as how consistent the assignment of a color to the same selectable
element.

* Most participants find that the navigation actions are the most usable because
the code selection feels the most natural and response.

* The participants perceived the debugging actions that do not require additional
code input as more usable than the actions that do require it.

5.3.3 Learnability

During the training, we timed the participants how long they took to complete the objec-
tives listed in Table[d.I} Additionally, we asked the participants to rate their confidence in
remembering how to use these actions.

Based on the results of the training times, which are shown in Fig. we observe
that initially, the average training time goes up but seems to go down after the navigation
modes. The interesting thing is that the Set Conditional Breakpoint and Window Evaluation
takes more steps to complete, which should result in a higher training time, but this is not
the case. We do observe this trend after the navigation modes with Set Line Breakpoint and
Quick Evaluation taking considerably less training time. However, we also observe that the
participants required more training time in the initial stages as they are getting accustomed
to the interaction system. Additionally, we see that the spread of the training time decreases
as participants are learning each mode, except for the very last mode in which the spread
increases again. This indicates that the Window Evaluation mode could be more difficult to
learn than the other modes.

Moreover, based on the confidence results shown in Fig. [5.5b] we observe that the par-
ticipant had a wide varied opinion about the confidence after the very first mode. However,
we do observe that this spread decreases significantly for the navigation modes and the Set
Conditional Breakpoint which shows that the participants were probably unsure about us-
ing the Control mode as this was the very first time that they used EyeIDEA. There are
some outliers in both the low and high-end spectrum, which could indicate that there are

72



5.3. RQ2: EyeIDEA Perceptions

80

60

40

Training Time (s)

20 A

> <
& & 8 & & 8 e
& 2 P & < 2 2
& @ 'S AF a W N
& & & & e R
z o ) o « =
& & S N R &
o & V' 0 > &
J © & § ¢«
o @ &
f—;é&

(a) Individual results of the completion times for the different modes. The
blue line represents the average training times for each mode.

Perceived Confidence

(b) Individual results of the confidence for the different modes. The blue
line represents the average confidence rating for each mode.

Figure 5.5: Individual plots of the training time results.

fast and slow learners present in the participant group. For the remaining modes, the spread

is larger, which indicates that these modes could be seen as more difficult to learn for some
participants.

Additionally, we also observe that on average, the participants gained more confidence
between each mode during the training session except of the conditional breakpoint and
window evaluation mode. Both of these modes were perceived by five participants (P1, P2,

73



5. RESULTS

P4, P6, P7) as the most difficult mode when asked Which mode was the hardest to learn?.
The two main issues mentioned were from P4 and P7:

“I had to write stuff and not only use the eye-tracker.” - P4

“[...] it was not very clear to me how I can select the variables and then create a
condition with it” - P7

So the main issue with this mode was the unclear selection of code. This relative diffi-
culty can also be seen in Fig.[5.5a]as it required more time to learn the conditional breakpoint
than the similar Line Breakpoint mode.

A similar note can also be made about the Window Evaluation since it is very similar
to the quick evaluation mode, which took less time to learn. Additionally, the confidence
rating for the window evaluation was lower than the quick evaluation. This difference also
paints the picture that participants perceived this mode as more difficult than the other ones.

However, both the Set Line Breakpoint and Quick Evaluation mode required fewer steps,
and thus less time was to be expected. On the other hand, the navigation modes required
around the same amount of steps but took more time to train. This increase was probably
due to the ordering; P3 mentioned this when asked about which action was the easiest to
learn. One thing that we conclude from Fig.[5.5a was that the participants were getting more
proficient in using the interaction system, which drove the completion time down.

Furthermore, when asked about the easiest mode to learn, five out of the seven partici-
pants (P2, P3, P4, P5, P6) said they found the navigation actions the easiest to learn:

“Navigation requires fewer things to remember [...]” - P3

“I liked the navigation [...] felt very similar as if  would use the mouse.” - P6

This is somewhat reflected by the rising average confidence levels from the very first
mode to both of the navigation modes. However, we did not observe this trend in the training
times which is probably caused by the ordering of the tested modes. Besides the navigation
modes, P1, P3, P6, and P7 mentioned that they also found that the line breakpoint mode
was one of the easier modes:

“[...] the line breakpoints only involved selecting and clicking just like a mouse.”. - P6

An interesting remark by participant PS5 which was also shared by P3 was about the
difficulty of the modes:

“[...] It just requires more steps that you have to do but most of them overlaps with the
other modes, so you don’t have to learn anything different.” - P5

In addition to the completion times and perceived confidence, we also investigated the
total amount of mistakes made during the training. These mistakes should also give some
information about learnability. Particularly, namely which type of mistakes the participants
made and how this changes during the training. We identified four different types of errors:

74



5.3. RQ2: EyeIDEA Perceptions

Error Type I - Selecting the wrong mode. This means that the participant switched
to the wrong intended mode and had to switch back.

Error Type II - Forgetting to activate a mode before using the Gaze Buttons. The
participant tried to use a Gaze Button but forgot to activate the mode, resulting in that
the Gaze Buttons did nothing.

Error Type III - Looking at the wrong Gaze Button. Since each Gaze Button is
color-coded, it can happen that a participant forgot the correct color or had trouble
distinguishing between the colors, which resulted in selecting the wrong Gaze Button.

Error Type IV - Selected the wrong action or obtained the wrong result based on
the current objective. Each of the training exercises had a certain objective that the
participant had to follow to succeed. If the participant obtained a different result or
executed the wrong action, the participant had to do it again.

B Error Type | Error Type Il WEE Error Type [l WM Error Type IV

204

Total amount

Figure 5.6: The total amount of faults made during the training session.

Based on the total amount of errors made during the complete training, we can observe

in Fig.[5.6|that the different kinds of modes were easy to learn, and the objectives were easy
to follow since the participants made few Type IV errors.

Additionally, we observe that there is a high amount of type III errors during the first

objective. However, these type III errors shrank very fast for the subsequent objectives. In
the beginning, the participants had to learn to differentiate between the different colors, but
they picked it up very easily, and few mistakes were made in the remaining objectives.

Moreover, we observe that some participants selected the wrong modes during the nav-

igation and evaluation modes as seen by the existence of Type I errors. P2 and P5 selected

75



5. RESULTS

the breakpoint selector on accident during the evaluation mode training because they forgot
that the evaluator selector was a different button. Additionally, P2 and P6 mixed up the
selection of the navigation modes. However, they quickly corrected themselves as they no-
ticed that they navigated to the wrong source code location. Perhaps this confusion was that
they normally use the Go To Declaration action as we described in Section[5.2.3|and forgot
the other option, despite the training video.

Finally, we also observed only a single type II error right during the very first mode, Go
To Declaration, that requires an activation before a user can use it. This indicates that it is
very easy to adapt to select a mode before performing the associated action.

Key Points

* On average, the interaction system is easy to learn except for modes that re-
quire additional input from the keyboard. Additionally, it is easy to learn to
localize the correct Gaze button based on the highlight color as the number of
mistakes decreases rapidly.

* The participants learn the actions that feel the same as using the mouse faster
than the other actions.

5.4 RQ3: Eye-tracking IDE Prospects

The final aspect that we considered was to investigate the perceived limitations and oppor-
tunities in using an eye-tracking IDE. During the interview, we made it made clear to the
participants that some of these questions were not about EyeIDEA itself but rather their
experience with using an eye-tracker within an IDE.

5.4.1 Missing features and limitations

We started by asking about missing EyeIDEA features during the debugging session. An
overwhelming response of the participants was that they missed the ability to switch be-
tween the editor tabs. We observed this as one of the primary methods that the participants
used to navigate within the code. Additionally, four participants missed the “go back to the
previous location” action. With this action, a participant can quickly jump between two files
using eye-tracking. They especially missed it since the mouse in the user study did not have
an additional side button which they would use to perform this action.

Another nice to have feature mentioned by P3, P4, and P6 was to include a scrolling
option. However, their sentiment was that it would be difficult to create a good scrolling
feature based on the current perceived limitations of the eye-tracker:

“[...] I honestly would have no idea how reliable it would be [...] eye-tracking is proba-
bly too sensitive for scrolling compared to a mouse scroll wheel or using a touchscreen.”
-P4

76



5.4. RQ3: Eye-tracking IDE Prospects

Besides the mentioned limitations during the regular questions, we also gave the partic-
ipant an opportunity to talk about other limitations of EyeIDEA. An often heard complaint
was that the current layout takes up too much screen space:

“[...] it feels like the editor is boxed in [...].” - P3

Currently, the size of the gaze buttons mostly determines the layout size. However, the
participants found that the gaze buttons had a comfortable size since they had no issues
selecting a button if their gaze could reach it. However, this means that there is a limit on
the number of gaze buttons that can be used based on the screen size to prevent the “boxed
in feeling of an editor”.

Another often heard issue was about the usage of the highlight colors. In particular,
some colors were less distinguishable from others or felt too vibrant. Most notably, P1, P2,
P4, and P7 found that the two different shades of green were too similar, especially when
they highlighted anything other than source code. P1 also included that:

[...] there are always differences between how good everyone can see the difference
between colors [...] - P1

This means that user preferences play a major role in the color pallete, limiting the
number of colors that we can use. In return, this also puts a limit on the maximum amount of
gaze buttons. In addition, four participants (P1, P2, P4, P7) said that the current assignment
of highlight colors changed too often:

“[...] when I first looked at the run button, it was first green but then moments after it
was red so I had to always spend some time to remember the current color.” - P1

This issue limited the participants’ willingness to use the system whenever they were
under a heavy mental load. However, it is not possible to find a unique color assignment for
every element as mentioned in Section[3.9.3]

There was another limitation raised that also increased the mental load:

“Looking does not equal reading. [...] I sometimes just wanted to read some code
before an action but I had to consciously switch to the action activation button and back
to the code which broke my reading thoughts as it were. That is why I chose to not use
the eye-tracking when I needed to think very deeply [...]” - P6

Other participants also mentioned something very similar where they used the mouse when
they needed to think very deeply.

77



5. RESULTS

Key Points

* Common missing features are navigating between editor tabs and go back to
a previous location.

* A limitation is that the Gaze buttons take up too much space on the used 15.6”
laptop screen. The number of Gaze Buttons is dependent on the size of the
screen.

* The participants are only comfortable with a limited number of different colors
that are assigned to a selectable element.

* There are difficulties when switching between reading code and looking at the
interface to select the right Gaze Button, especially under heavy mental load.

5.4.2 Challenges Compared to Keyboard and Mouse Usage

During our observations, we noticed that most participants (P1, P2, P3, P6, P7) lifted their
hand from the mouse whenever they were using the eye-tracker and put it back when they
needed the mouse again. According to those participants, this felt the most natural to them.

This behavior introduces a challenge to incorporate the eye-tracker into the current
workflow. The participants said it felt difficult or unintuitive to switch between the eye-
tracker or mouse to execute an action.

All the participants said they preferred not having to switch between different input
methods during the execution of an action and therefore ranked those actions higher. For
P3 and PS5, it also felt that the current system required more steps to accomplish something.
One of the reasons for this feeling was that these participants always used a combination
of using a keyboard and mouse to perform something, i.e., selecting an action with the
keyboard while simultaneously clicking on a code fragment. However, we mentioned above
that it was difficult to use eye-tracking in combination with the mouse or keyboard.

A second challenge is that the eye-tracker had lower accuracy and precision compared
to the mouse. While the implemented Gaze buttons and selection system took this into
account, there were still some issues with using it. Primarily, the posture of the participants
had a big influence on eye-tracking performance. Sometimes, the changing posture caused
an issue that the eye-tracking did not reach far enough. Additionally, it also means that the
performed calibration only works when the complete working setup is constant, i.e., same
desk, same chair height, which makes it cumbersome to use if there is no fixed workplace,
for instance, when traveling.

The final challenge is to avoid premature activation of modes. Some participants let
their eyes drift more easily than others which activated a mode in some cases. Especially
for P3:

“Sometimes, it felt like an action was activated without me looking at the button, or at
least, it felt that way.”. - P3

78



5.4. RQ3: Eye-tracking IDE Prospects

Key Points

* A part of the test group finds it difficult to switch between mouse usage and
eye-tracking.

* A small change in posture has a big influence on the current eye-tracking per-
formance, which forces users to keep their body more still compared to mouse
or keyboard.

* It is more difficult to avoid a premature mode activation with the implemented
eye-tracking interaction system.

5.4.3 Perceived Audience

Who would benefit from an eye-tracking IDE? According to all the participants, program-
mers are not able to use the mouse. However, the reason and the eventual audience differed.
For instance, participants P1, P4, P5, and P7 stated that programmers with medical issues
that relate to their hands, either permanently or temporarily like an injury such as RSI, could
benefit from an eye-tracking IDE in order to replace the mouse.

The second reason for not being able to use the mouse that was stated by P3, P4 and
P6, was “programming on the go” or “programming on a couch”. In these situations, a
programmer would probably not have access to a physical mouse and would most likely
replace it with a track-pad or touchscreen. According to P6:

“A track-pad feels tedious to use and it always feels as if I am a lot slower when working
with it. I think that an eye-tracker would be faster and more responsive than a track-pad
[..] ”.-P6

However, an issue that was raised by the same participant was that it would require a
fast calibration process otherwise too much time would be spent on setting up the system.
Additional, P6 mentioned:

“[...] the eye-tracker should be reliable too since you shift a lot with your position,
something that this system unfortunately has some trouble with.” - P6

A second perceived audience can be grouped as developers that seeks additional tools to
help with their focus. For instance, as a guidance during tutorials for beginning developers
to indicate which part of the source code on the screen is interesting based on what they are
looking at:

“[...] something like a more user focused tutorial.” - P1

Another example from P3 was to use eye-tracking as an aid during collaboration ses-
sions because:

79



5. RESULTS

“[...] you don’t have to or can’t point to a shared screen to indicate code fragments

[...]" -P3

This idea could help to get the other attendants’ attention such that they look at the
same code fragment as the active developer, resulting in fewer misunderstandings among
the attendants. D’Angelo et al. [[15] explored this idea already for pair programming and
found it developers found it helpful.

The third identified audience are developers that seek additional productivity by im-
proving their navigation or debugging actions. The stated requirements were to offer “quick
and easily accessible” actions that to prevent situations as:

“[...] having to reach for the mouse while I prefer to keep my hands on the keyboard.”
-P7

This sentiment was also described earlier in Section [5.3.3] In that section, we
mentioned that the participants preferred the simpler actions such as setting line
breakpoints over the complex conditional breakpoint action that required multiple
selections or keyboard input.

But what about the participants themselves? From the seven participants, P1 and P2
would definitely use the implemented eye-tracking IDE, while P4, P5, and P7 needed more
time in order to have an opinion about it. The remaining participants liked the idea, but they
found the accuracy and precision of the eye-tracking left something to be desired, which
made it feel unwieldy to use at some moments.

Key Points

* Programmers that cannot use the mouse because of health issues or do not
have access to a mouse are the most popular perceived audience.

* Less important audiences are programmers who search for tools to help with
their focus or productivity.

5.4.4 Proposed Ideas for an Eye-Tracking IDE

Instead of only criticizing EyeIDEA and eye-tracking for IDEs, we also gave the partici-
pants an opportunity to suggest new ideas for an eye-tracking IDE based on their current
impressions. We made a selection of these ideas and grouped them based on popularity and
their relation to the current challenges mentioned in Sections [5.4.T]and [5.4.2]

The most popular ideas we found were about changing the current layout such that
the gaze controls take up less space, reduce accidental mode selections, and make the Part
selection less cumbersome. These ideas revolved around the following ideas:

80



5.4. RQ3: Eye-tracking IDE Prospects

Changes to the Gaze action button panel Transform the Gaze action button panel
(marked as 1 in Fig. [3.2) into a floating popup, such that its position is closer to the
highlighted elements. This change makes it less cumbersome to select a Part. The number
of Gaze buttons should be reduced to make sure that this change does not take up too much
space. This change also reduces the complexity of picking enough distinguishable colors
since there are fewer Gaze buttons. Additionally, the Gaze buttons should include the
corresponding code element to reduce the issue of switching between looking and reading.
However, the participant found it challenging to come up with an idea to trigger the
placement of this popup. There were suggestions to either use a keyboard shortcut, another
Gaze button, or to implement a Gaze gesture to activate it.

Grouping modes together A similar idea was to group the different modes into a single
popup to eliminate the left mode panel to make room for the Project tool window shown in
Fig.[3.14] The remaining panel (marked as 3 in Fig.[3.2)) could be used for the Gaze buttons
to call the Part and Mode selection popups. By removing these Gaze buttons, we could
reduce the accidental mode selections. The reason is that there is only a single central place
to activate the mode selection instead of all around the Editor.

Simplify Control Panel The last idea was to simplify the Control panel (marked as 4 in
Fig. [3.2) by moving it into a menu to free up room for the Run tool window as shown in

Fig.

We illustrate all of these ideas in Fig.[5.7|which includes the new floating gaze selection
popup, the removal of the left mode panel, and the new menu for the gaze controls.

The second most popular ideas were to add customization options such as custom
color selections, changing which mode can be quickly accessed, and adjustable sensitivity
of the Gaze buttons. By adding these customizations, a developer could get a better
experience at the cost of some setup time. However, a suggestion was to add different
default profiles to prevent this. These profiles are based on activities and skill levels, such
as a travel profile where emulated mouse control is more important or a novice profile
where the buttons’ sensitivity is lowered.

Besides these ideas, we also received feedback that the eye-tracking felt at its best when
it gave an immediate reaction like it is currently with navigation or selecting a button. This
feedback means that new modes and resulting action should be implemented with this in
mind. For instance, P5 and P7 suggested that the current conditional breakpoint mode could
be an addition to the line breakpoint mode, i.e., the user places the breakpoint first and then
to the code selection for the condition. This way, the user does not have to construct the
complete condition first but always gets an immediate response.

81



5. RESULTS

Fle Edt View Novigate Code Analyze Refactor Buld Run Tools VC3 Window Help = X
% EyeIDEATraining Al Beaorv] b 26 5 & B Q
§ @ Ecctorjavs © © Schedulerjava  © FasfTrainjave (@ Tinjava @ SowTrainjava @ Sortingjava < © Utisjava EyelDEA -
HEE * Gporan €ratms Eratns co be scheduled o

e public Scheduler(ListcTrain> trains) {

this.trains = trains; £
) z
Item Selection | &

public ListcTrainy maximize(){

inListIterator hasliext(); train = trainlistIterator.next()) { Mode Selection

)1

Run o —
endTine=20;
5 ¥
endTime=16}
, endTine-5}
£
" Created the following schedule
2|3 E
E m T o n{startT: , endTime=16}
L
4A CHECKING RESULT ----
g [Failed] Expected 4 trains but got 1
2 Start Trackin
ol Process finished with exit code @
*
» %Run EETODO A Terminal EvelDEA () Event Log
) EyelDEA: off 3357 CRLF UTF-8 4spaces W &

Figure 5.7: A mock-up of the ideas to change the current layout instead of the current fixed
window at the top of the screen.

Key Points

* The most popular proposed idea we received is to change the current layout
such that it takes up less space, less accidental mode selection, and closer to
the selection to reduce the switching between reading and looking.

* The eye-tracking IDE feels at its best when an action does something imme-
diately, rather than having to perform multiple (selection) steps.

82



Chapter 6

Discussion

In this chapter, we start with formulating answers to the research questions. We will use
the results of our user study and compare this against relevant literature whenever possi-
ble. Then, we present the implications of our findings for an augmented eye-tracking IDE.
Lastly, we address the risks that can affect the validity of our study.

6.1 Research Questions

In this section, we revisit the research questions and use the user study results to answer
them. The findings of our research will also be compared against related work whenever
possible.

RQ1: How do developers interact with the eye-tracking augmented IDE compared to the
non-augmented IDE?

Based on our user study, the developers used the eye-tracking augmented IDE dif-
ferently than the non-augmented IDE. With EyeIDEA, the developers showed a lot more
volatility in switching between different windows. This behavior is to be expected since
the implemented interactions rely on activating dwell-based buttons that are placed around
the Editor. However, the amount of effort that this takes negatively impacts the usability of
EyeIDEA. A probable cause is that these transitions result in numerous context switches,
i.e., developers have to switch between thinking about the code and locating the right gaze
button based on the highlight color. Meyer et al. indicate that these context switches take a
developer “out of the flow” and reduces the perceived productivity [43].

Another difference is that developers rely on navigation a lot more with the eye-tracking
IDE as they are looking more selectively to the DebugTool and RunTool, and use more
navigation actions. Developers found the navigation actions more usable because they were
simple, and single code selections were more stable and thus used more. Additionally, it
could be that the screen estate taken up by the tool influenced the usability of the DebugTool
and the readability of the Editor as multiple students reported that they liked to have a lot of
screen space to display source code.

83



6. DISCUSSION

RQ2: How do developers perceive the usability, learnability and satisfaction of the
developed eye-tracking IDE?

Overall, the developers were positive about using the eye-tracking system. However,
the eye-tracking lacked some accuracy and precision at times, which introduced usability
issues such as that a specific location could not be reached on the screen or that a developer
activated a dwell-based button on accident. These issues were less apparent when selecting
code because it is displayed in the middle of the screen, which is an area that generally
has better eye-tracking quality [19]]. This observation means that to mitigate the remaining
“Midas touch problems”, the interaction elements should be moved away from the edges of
the screen.

We also found that developers perceive the actions which require only a single selection
as more usable than actions that require multiple selections. This could be because multiple
selections take too much time, which reduces the ability to think about the code to form a
mental model. By keeping it simple and fast, this interruption can be kept at a minimum.

The interaction system was perceived as easy to learn, and the training results showed
that the number of errors went down rapidly and confidence went up during the training.
This result means that this type of interaction is not confusing to developers, which is vital
as developers have trouble with learning how to use an IDE efficiently [37].

RQ3: What are the perceived challenges with an eye-tracking IDE?

We found three main challenges with an eye-tracking IDE. The first challenge is that
large dwell-based buttons are needed to compensate for the eye-tracking performance,
which reduces the screen space for the Editor. The developers found that this made the
Editor feel “boxed in”. This challenge means that the screen size dictates how many
buttons can be placed beside the Editor. CodeGazer used the same type of interaction
method [60] but did not report about this issue, possibly because they used a much larger
screen in their study.

The second challenge is that developers perceived a big difference between reading
code and looking at code. This difference caused issues when using eye-tracking under
heavy mental load as they are forming a model of the code inside their head. This issue is
also noted in the CodeGazer tool as developers preferred the tool for “light code exploration
work”.

The final challenge is that there are difficulties in using eye-tracking alongside the key-
board and mouse. In particular, our results show that the students found it difficult to keep
their hands on the mouse as they are using the eye-tracker. A reason could be that since both
mouse and eye-tracking use an (x,y) coordinate system, that the developers avoid using the
mouse because it is confusing to look at the screen without moving the mouse cursor. In-
stead, they let go of the mouse to treat eye-tracking as a mouse replacement. Also, since
developers adjust their posture unconsciously when using the keyboard and mouse, the eye-
tracking performance degrades, which forces the developers to keep their heads unnatural
still. However, it is meaningful to note that as eye-trackers are continuously improved, we
expect that it becomes less of an issue.

84



6.2. Implications

MRQ: Do developers perceive the eye tracking augmented IDE as useful?

Based on the formulated answers to the previous research questions, developers perceive
the eye-tracking-augmented IDE as useful under certain conditions. Firstly, the quality of
eye-tracking has a significant impact on the usability of the IDE, which limits the design
of the interaction systems. Secondly, simple actions that only require a single selection are
perceived as useful, while complex actions are not seen as useful. Finally, the audience and
environment play a role when developers perceive eye-tracking as useful. Most notably is
the situation in which a developer either cannot use the mouse because of health-related
issues, or there is no mouse available.

6.2 Implications

We observed several implications based upon the results and answers described in the pre-
vious section.

* The availability of eye-tracking-based actions can influence the behavior of devel-
opers. They relied more on navigation actions and less on debugging. The impli-
cation here is that developers perceived the navigation actions as more useful than
controlling the DebugTool buttons. Our goal was to establish areas that need further
attention, and this seems a good candidate for further investigation.

» Eye-tracking interactions are perceived as less usable when under heavy mental load.
This mental load could range from navigating and using debugger buttons in quick
succession to create a mental picture of a code snippet while staring at the screen.
This issue indicates another area that can benefit from additional research, especially
since the developers seemed to have trouble switching between using the mouse and
eye-tracking.

* Depending on the eye-tracking technology, developers have to keep their heads in a
similar position as during the calibration. This proved to be somewhat difficult for the
developers. Therefore, the augmented IDE should include tools to help the developers
to adjust their posture.

* The design of the tool should keep the layout size in mind to make sure that the Editor
is large enough to avoid the “boxed in” feeling. Therefore, it is advisable to consider
in other designs that additional interaction elements should be kept hidden and only
made visible when the developer wants to interact.

6.3 Threats to Validity

An eye-tracking augmented IDE opens up new possibilities to investigate how developers
are using an IDE. Together with interviews and questionnaires, it can provide insights into
the usefulness of said augmented IDE. However, these kinds of user studies have their own
issues that can challenge the validity of the results and findings.

85



6. DISCUSSION

6.3.1 Internal Validity

For our study, the participants always conducted the first debugging session without eye-
tracking capabilities before the second session that did include it. Therefore, it could be
that the order of these sessions influenced the usability of eye-tracking since they first expe-
rience the IDE as they normally would. This experience gives them certain expectations on
what eye-tracking interactions should feel. However, the participants did receive a training
session beforehand to familiarize themselves with the eye-tracking tool to make sure that
they already have some experience, although this is not fully comparable with their experi-
ence with mouse and keyboard. Furthermore, half of the participants used a different order
of two different code snippets to make sure there was no learning effect with using the IDE
twice with the same code. The random ordering of the code snippets was also to make sure
that the differences between the code snippets themselves did not influence the results.

Some questions during the interview left some room for interpretation as some partici-
pants provided more information to a question than necessary. Some participants even gave
a partial answer to another question, which could have influenced their answer to that ques-
tion. However, we did make sure to avoid putting pressure on the participants to provide us
with more information by making sure that they understood that this study was about their
perceptions and that we are interested in understanding the usefulness of an eye-tracking
IDE. Particularly, that we investigate both the advantages and disadvantages to figure out
limiting and positive aspects of an eye-tracking IDE such that we can determine if further
research is beneficial.

Similarly, the participants might have responded more positively to not disappoint us.
However, we believe that this did not happen for multiple reasons. Firstly, the participants
were free to use the eye-tracking under any circumstance that suited their needs. We can
confirm that the participants chose their actions voluntary as they switched between eye-
tracking, keyboard and mouse input under specific situations. Additionally, we observed
significant variances in eye-tracking usage between participants which shows that they used
it only when they wanted to use it. Secondly, we observed that the participants’ answers
coincided with the eye-tracking data that we collected. This observation means that the
participants truthfully answered the questions. Finally, we received negative feedback about
the eye-tracking IDE and multiple participants expressed the same negative feedback. This
feedback means that the participants felt comfortable to express their negative opinions.

6.3.2 [External Validity

For our study, we only invited students, which diminishes the generalizability across all
types of developers. While the students had different education levels and real-world pro-
gramming experience, they do not have the experience level of a senior developer. This lack
of experience level is especially true for working with unfamiliar code since the invited stu-
dents indicated that they mostly write their own code and do not often work with unfamiliar
code. While it is possible to give a separate group more time to familiarize themselves
with the code, it would have increased the study duration, making it more difficult to recruit
enough students.

86



6.3. Threats to Validity

Furthermore, the used code bases varied somewhat in size, bug types, and their per-
ceived complexity. While they were created to simulate real-world code, there is still a
difference with real-world code. Most notably, the size is generally much larger, which
requires more effort to understand the code before developers can find bugs. Additionally,
we only used Java as the programming language and IntelliJ IDEA as the IDE. Since there
are numerous differences between programming languages and IDEs, our findings are not
generalizable across all types of languages and IDE:s.

Additionally, we only used a specific eye-tracker, which has certain performance prop-
erties that relate to the accuracy, precision, and how much a developer could move and
adjust their posture. Therefore, different results could be obtained with eye-trackers that
exhibit different performance properties.

Another point is that the participants had only a limited amount of time to evaluate the
developed tool. However, this is not an issue since the goal was to investigate the initial
perceptions about an eye-tracking IDE, which we used to gather information about areas
that need more investigation.

We also cannot exclude the novelty effect, especially since most developers have never
used eye-tracking IDE before. However, we obtained similar positive responses as
CodeGazer [60] which we have based our interaction system on. This result suggests that
the responses to the interaction system were genuine.

87






Chapter 7

Conclusions and Future Work

In this paper, we introduced an augmented IDE that uses eye-tracking to provide alternative
interaction methods and fine-grained information about the usage of this IDE. We conducted
a user study to research the initially perceived usefulness of this augmented IDE with a par-
ticular focus on (i) IDE usage between non-augmented and augmented IDE (ii) perceptions
of the developed tool regarding usability, learnability, and satisfaction (iii) future prospects
of using eye-tracking in general for software development tasks inside an IDE.

The main findings of our user study are that (i) navigation and setting breakpoints are
perceived as the most useful eye-tracking interactions, (ii) actions that do not require mul-
tiple selections or are not selected in quick succession are perceived as the most suited for
eye-tracking interactions, (iii) switching between eye-tracking input and mouse/keyboard
input is perceived as difficult, (iv) eye-tracking feels natural, but accuracy and precision
problems reduces the overall usefulness, (v) gaze-based actions are easy to learn, and de-
velopers adapt quickly to it and (vi) an eye-tracking IDE is perceived as suitable for light
programming work and could work as a substitute for a mouse in case of health issues or
traveling.

Based on these findings, we speculate that an augmented eye-tracking IDE is perceived
as useful under certain conditions. Additionally, there are some implications in designing
such an IDE to improve their perceptions. It seems that eye-tracking interactions are per-
ceived as less useful when under heavy mental load, indicating that special care should be
taken in the design of interactions to no disturb the developer when under heavy mental load.
This result could be achieved by making sure that there are no unwanted visual elements
on the screen because of the interaction system. Additionally, it seems that the interaction
between mouse, keyboard, and eye-tracking poses some challenges, and further research is
needed into these issues. Finally, the design should keep the layout size into account to keep
the Editor as large as possible and not surround it with large GUI components.

Our methodology and design of the augmented IDE have some limitations which need
to be addressed. Firstly, the user study is only conducted in a lab setting with students.
In order to generalize this, an industry study is needed to test how our findings stand with
professional developers in a different environment. Secondly, our study only used a specific
IDE and programming language, which decreases the generality of all possibly augmented
eye-tracking IDEs.

&9



7. CONCLUSIONS AND FUTURE WORK

Our long-term vision is that new tools and interaction methods that use eye-tracking
to support developers can be beneficial. As future work, we call upon other researchers
to improve and expand our work by integrating eye-tracking within other existing IDEs,
developing different interaction methods, and using different investigation methods into
developers’ behaviors to understand developers’ needs from an IDE.

90



[1]

(2]

(3]

[4]

[5]

[6]

Bibliography

Why do computer programmers dislike using the mouse? - Quora, 2017.
URL https://www.quora.com/Why-do-computer-programmers—-dislike-usi
ng-the-mouse. [Online; accessed 15-October-2020].

Afsoon Afzal and Claire Le Goues. A Study on the Use of IDE Features for De-
bugging. In Proceedings of the 15th International Conference on Mining Software
Repositories, MSR 18, pages 114-117, New York, NY, USA, 2018. Association for
Computing Machinery. ISBN 9781450357166. doi: 10.1145/3196398.3196468. URL
https://doi.org/10.1145/3196398.3196468.

Maike Ahrens and Kurt Schneider. Using Eye Tracking Data to Improve Requirements
Specification Use. In Nazim Madhaviji, Liliana Pasquale, Alessio Ferrari, and Stefania
Gnesi, editors, Requirements Engineering: Foundation for Software Quality, pages
36-51, Cham, 2020. Springer International Publishing. ISBN 978-3-030-44429-7.

S. Amann, S. Proksch, S. Nadi, and M. Mezini. A Study of Visual Studio Us-
age in Practice. In 2016 IEEE 23rd International Conference on Software Analy-
sis, Evolution, and Reengineering (SANER), volume 1, pages 124-134, 2016. doi:
10.1109/SANER.2016.39.

Jay Ayres, Jason Flannick, Johannes Gehrke, and Tomi Yiu. Sequential pattern min-
ing using a bitmap representation. In Proceedings of the Eighth ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, KDD ’02, pages
429-435, New York, NY, USA, 2002. Association for Computing Machinery. ISBN
158113567X. doi: 10.1145/775047.775109. URL https://doi.org/10.1145/
775047.775109.

Aaron Bangor, Philip T. Kortum, and James T. Miller. An Empirical Evaluation of
the System Usability Scale. International Journal of Human—Computer Interaction,
24(6):591-593, 2008. doi: 10.1080/10447310802205776. URL https://doi.org/
10.1080/10447310802205776

91


https://www.quora.com/Why-do-computer-programmers-dislike-using-the-mouse
https://www.quora.com/Why-do-computer-programmers-dislike-using-the-mouse
https://doi.org/10.1145/3196398.3196468
https://doi.org/10.1145/775047.775109
https://doi.org/10.1145/775047.775109
https://doi.org/10.1080/10447310802205776
https://doi.org/10.1080/10447310802205776

BIBLIOGRAPHY

[7]

(8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

92

Roman Bednarik and Markku Tukiainen. Temporal Eye-Tracking Data: Evolution of
Debugging Strategies with Multiple Representations. pages 100-102, January 2008.
doi: 10.1145/1344471.1344497.

Jennifer C. Romano Bergstrom, Erica L. Olmsted-Hawala, and Matt E. Jans. Age-
Related Differences in Eye Tracking and Usability Performance: Website Usability
for Older Adults. International Journal of Human—Computer Interaction, 29(8):545—
546, 2013. doi: 10.1080/10447318.2012.728493. URL https://doi.org/10.1080/
10447318.2012.728493.

John Brooke. SUS: A quick and dirty usability scale, 1996. URL https://hell.m
eiert.org/core/pdf/sus.pdf. [Fetched from site; accessed 15-October-2020].

E. C. Campos and M. d. A. Maia. Common Bug-Fix Patterns: A Large-Scale Observa-
tional Study. In 2017 ACM/IEEE International Symposium on Empirical Software En-
gineering and Measurement (ESEM), page 407, 2017. doi: 10.1109/ESEM.2017.55.

K. R. Chandrika and J. Amudha. A fuzzy inference system to recommend skills for
source code review using eye movement data. Journal of Intelligent & Fuzzy Systems,
34:1743-1754, 2018. ISSN 1875-8967. doi: 10.3233/JIFS-169467. URL https:
//doi.org/10.3233/JIFS-169467. 3.

K. R. Chandrika, J. Amudha, and Sithu D. Sudarsan. Identification and Classification
of Expertise Using Eye Gaze—Industrial Use Case Study with Software Engineers. In
Jagdish Chand Bansal, Mukesh Kumar Gupta, Harish Sharma, and Basant Agarwal,
editors, Communication and Intelligent Systems, pages 391-405, Singapore, 2020.
Springer Singapore. ISBN 978-981-15-3325-9.

Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson Engler. An
Empirical Study of Operating Systems Errors. Operating Systems Review (ACM), 35:
83-86, September 2001. doi: 10.1145/502059.502042.

Tom N. Cornsweet. Determination of the Stimuli for Involuntary Drifts and Saccadic
Eye Movementsx. J. Opt. Soc. Am., 46(11):987-993, November 1956. doi: 10.1364/
JOSA.46.000987. URL http://www.osapublishing.org/abstract.cfm?URI=7
osa-46-11-987.

Sarah D’Angelo and Andrew Begel. Improving Communication Between Pair Pro-
grammers Using Shared Gaze Awareness. In Proceedings of the 2017 CHI Conference
on Human Factors in Computing Systems, CHI *17, pages 6245-6255, New York,
NY, USA, 2017. Association for Computing Machinery. ISBN 9781450346559. doi:
10.1145/3025453.3025573. URL https://doi.org/10.1145/3025453.3025573.

Robert DeLine, Amir Khella, Mary Czerwinski, and George Robertson. Towards
Understanding Programs through Wear-Based Filtering. In Proceedings of the 2005
ACM Symposium on Software Visualization, SoftVis *05, page 186, New York, NY,
USA, 2005. Association for Computing Machinery. ISBN 1595930736. doi: 10.
1145/1056018.1056044. URL https://doi.org/10.1145/1056018.1056044.


https://doi.org/10.1080/10447318.2012.728493
https://doi.org/10.1080/10447318.2012.728493
https://hell.meiert.org/core/pdf/sus.pdf
https://hell.meiert.org/core/pdf/sus.pdf
https://doi.org/10.3233/JIFS-169467
https://doi.org/10.3233/JIFS-169467
http://www.osapublishing.org/abstract.cfm?URI=josa-46-11-987
http://www.osapublishing.org/abstract.cfm?URI=josa-46-11-987
https://doi.org/10.1145/3025453.3025573
https://doi.org/10.1145/1056018.1056044

Bibliography

[17]

[18]

[19]

(20]

(21]

[22]

(23]

[24]

[25]

Dmitry Kandalov. Activity Tracker - plugin for Intellijs IDE — Jetbrains, 2020. URL
https://plugins. jetbrains.com/plugin/8126-activity-tracker. [Online;
accessed 15-October-2019].

Sarah Fakhoury, Yuzhan Ma, Venera Arnaoudova, and Olusola Adesope. The Effect
of Poor Source Code Lexicon and Readability on Developers’ Cognitive Load. In
Proceedings of the 26th Conference on Program Comprehension, ICPC 18, pages
286-296, New York, NY, USA, 2018. ACM. ISBN 978-1-4503-5714-2. doi: 10.
1145/3196321.3196347. URL http://doi.acm.org/10.1145/3196321.3196347.

Anna Maria Feit, Shane Williams, Arturo Toledo, Ann Paradiso, Harish Kulkarni,
Shaun Kane, and Meredith Ringel Morris. Toward Everyday Gaze Input: Accu-
racy and Precision of Eye Tracking and Implications for Design. In Proceedings
of the 2017 CHI Conference on Human Factors in Computing Systems, CHI *17,
pages 1125-1126, New York, NY, USA, 2017. Association for Computing Ma-
chinery. ISBN 9781450346559. doi: 10.1145/3025453.3025599. URL https:
//doi.org/10.1145/3025453.3025599.

Philippe Fournier Viger, Chun-Wei Lin, Antonio Gomariz, Ted Gueniche, Azadeh
Soltani, Zhi-Hong Deng, and Hoang Lam. The SPMF Open-Source Data Mining
Library Version 2. volume 9853, pages 36—40, September 2016. ISBN 978-3-319-
46130-4. doi: 10.1007/978-3-319-46131-1 8.

T. Fritz and S. C. Miiller. Leveraging Biometric Data to Boost Software Devel-
oper Productivity. In 2016 IEEE 23rd International Conference on Software Anal-
ysis, Evolution, and Reengineering (SANER), volume 5, pages 66-77, 2016. doi:
10.1109/SANER.2016.107.

Hartmut Gliicker, Felix Raab, Florian Echtler, and Christian Wolff. EyeDE: Gaze-
enhanced Software Development Environments. In Proceedings of the Extended Ab-
stracts of the 32Nd Annual ACM Conference on Human Factors in Computing Sys-
tems, CHI EA ’14, pages 1555-1560, New York, NY, USA, 2014. ACM. ISBN 978-
1-4503-2474-8. doi: 10.1145/2559206.2581217. URL http://doi.acm.org/10.
1145/2559206.2581217.

J. Grudin. Utility and Usability: Research Issues and Development Contexts. Interact.
Comput., 4:209-217, 1992. doi: 10.1016/0953-5438(92)90005-Z.

Drew Guarnera, Corey Bryant, Ashwin Mishra, Jonathan Maletic, and Bonita Sharif.
iTrace: Eye Tracking Infrastructure for Development Environments. pages 1-3, June
2018. doi: 10.1145/3204493.3208343.

E. D. Guestrin and M. Eizenman. General theory of remote gaze estimation using the
pupil center and corneal reflections. IEEE Transactions on Biomedical Engineering,

53(6):1125-1126, June 2006. ISSN 1558-2531. doi: 10.1109/TBME.2005.863952.

93


https://plugins.jetbrains.com/plugin/8126-activity-tracker
http://doi.acm.org/10.1145/3196321.3196347
https://doi.org/10.1145/3025453.3025599
https://doi.org/10.1145/3025453.3025599
http://doi.acm.org/10.1145/2559206.2581217
http://doi.acm.org/10.1145/2559206.2581217

BIBLIOGRAPHY

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

94

Hal’s Corner. Key Promotor X - plugin for Intellijs IDE — Jetbrains, 2020. URL http
s://plugins. jetbrains.com/plugin/9792-key-promoter-x. [Online; accessed
15-October-2020].

M. Hamill and K. Goseva-Popstojanova. Common Trends in Software Fault and Fail-
ure Data. IEEE Transactions on Software Engineering, 35(4):492-493, 2009. doi:
10.1109/TSE.2009.3.

Michael E. Hansen, Robert L. Goldstone, and Andrew Lumsdaine. What Makes Code
Hard to Understand? CoRR, abs/1304.5257, 2013. URL http://arxiv.org/abs/
1304.5257.

Prateek Hejmady and N. Hari Narayanan. Visual Attention Patterns during Program
Debugging with an IDE. In Proceedings of the Symposium on Eye Tracking Research
and Applications, ETRA *12, pages 197-200, New York, NY, USA, 2012. Association
for Computing Machinery. ISBN 9781450312219. doi: 10.1145/2168556.2168592.
URL https://doi-org.tudelft.idm.oclc.org/10.1145/2168556.2168592,

Haytham Hijazi, Ricardo Couceiro, Jodo Castelhano, Paulo Carvalho, Miguel Castelo-
Branco, and Henrique Madeira. Intelligent Biofeedback Augmented Content Compre-
hension (TellBack). IEEE Access, PP:1-14, February 2021. doi: 10.1109/ACCESS
.2021.3058664.

Kenneth Holmqvist and Richard Andersson. Eye-tracking: A comprehensive guide to
methods, paradigms and measures, pages 33-35,132. November 2017. ISBN 978-
1979484893.

Constantina loannou, Indira Nurdiani, Andrea Burattin, and Barbara Weber. Mining
reading patterns from eye-tracking data: method and demonstration. Software and
Systems Modeling, 19(2):345-369, March 2020. ISSN 1619-1374. doi: 10.1007/
s10270-019-00759-4. URL https://doi.org/10.1007/s10270-019-00759-4.

Robert J. K. Jacob. The Use of Eye Movements in Human-Computer Interaction
Techniques: What You Look at is What You Get. ACM Trans. Inf. Syst., 9(2):156,
April 1991. ISSN 1046-8188. doi: 10.1145/123078.128728. URL https://doi.or
g/10.1145/123078.128728,

Ahmad Jbara and Dror G. Feitelson. How programmers read regular code: a controlled
experiment using eye tracking. Empirical Software Engineering, 22(3):1440-1477,
June 2017. ISSN 1573-7616. doi: 10.1007/s10664-016-9477-x. URL https://do
1.0rg/10.1007/s10664-016-9477-x.

Silge Julia, Taylor Anita, and Devine Beth. Developer Survey Results 2019, 2020.
URL |https://insights.stackoverflow.com/survey/2019#development-env
ironments-and-toolsl [Online; accessed 16-February-2021].


https://plugins.jetbrains.com/plugin/9792-key-promoter-x
https://plugins.jetbrains.com/plugin/9792-key-promoter-x
http://arxiv.org/abs/1304.5257
http://arxiv.org/abs/1304.5257
https://doi-org.tudelft.idm.oclc.org/10.1145/2168556.2168592
https://doi.org/10.1007/s10270-019-00759-4
https://doi.org/10.1145/123078.128728
https://doi.org/10.1145/123078.128728
https://doi.org/10.1007/s10664-016-9477-x
https://doi.org/10.1007/s10664-016-9477-x
https://insights.stackoverflow.com/survey/2019#development-environments-and-tools
https://insights.stackoverflow.com/survey/2019#development-environments-and-tools

Bibliography

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

Katja Kevic, Braden M. Walters, Timothy R. Shaffer, Bonita Sharif, David C. Shep-
herd, and Thomas Fritz. Tracing Software Developers’ Eyes and Interactions for
Change Tasks. In Proceedings of the 2015 10th Joint Meeting on Foundations
of Software Engineering, ESEC/FSE 2015, pages 202-213, New York, NY, USA,
2015. ACM. ISBN 978-1-4503-3675-8. doi: 10.1145/2786805.2786864. URL
http://doi.acm.orqg/10.1145/2786805.2786864.

Rex Bryan Kline and Ahmed Seffah. Evaluation of integrated software development
environments: Challenges and results from three empirical studies. International
Journal of Human-Computer Studies, 63(6):607-627, 2005. ISSN 1071-5819. doi:
https://doi.org/10.1016/].ijhcs.2005.05.002. URL https://www.sciencedirect.co
m/science/article/pii/S1071581905001102.

A.J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung. An Exploratory Study of How
Developers Seek, Relate, and Collect Relevant Information during Software Mainte-
nance Tasks. IEEE Transactions on Software Engineering, 32(12):971-987, 2006.
doi: 10.1109/TSE.2006.116.

Andrew J. Ko, Thomas D. Latoza, and Margaret M. Burnett. A Practical Guide to
Controlled Experiments of Software Engineering Tools with Human Participants. Em-
pirical Softw. Engg., 20(1):123—-124, February 2015. ISSN 1382-3256. doi: 10.1007/
$10664-013-9279-3. URL https://doi.org/10.1007/s10664-013-9279-3.

Seolhwa Lee, Danial Hooshyar, Hyesung Ji, Kichun Nam, and Heuiseok Lim. Mining
biometric data to predict programmer expertise and task difficulty. Cluster Computing,
21(1):1097-1107, March 2018. ISSN 1573-7543. doi: 10.1007/s10586-017-0746-2.
URL https://doi.org/10.1007/510586-017-0746-2.

Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and Chengxiang
Zhai. Have things changed now?: An empirical study of bug characteristics in modern
open source software. pages 28-29, January 2006. doi: 10.1145/1181309.1181314.

Christof Lutteroth, Moiz Penkar, and Gerald Weber. Gaze vs. Mouse: A Fast and Ac-
curate Gaze-Only Click Alternative. In Proceedings of the 28th Annual ACM Sympo-
sium on User Interface Software & Technology, UIST 15, pages 385-394, New York,
NY, USA, 2015. Association for Computing Machinery. ISBN 9781450337793. doi:
10.1145/2807442.2807461. URL https://doi.orqg/10.1145/2807442.2807461.

André N. Meyer, Thomas Fritz, Gail C. Murphy, and Thomas Zimmermann. Soft-
ware Developers’ Perceptions of Productivity. In Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software Engineering, FSE
2014, pages 25-26, New York, NY, USA, 2014. Association for Computing Ma-
chinery. ISBN 9781450330565. doi: 10.1145/2635868.2635892. URL https:
//doi.org/10.1145/2635868.2635892.

95


http://doi.acm.org/10.1145/2786805.2786864
https://www.sciencedirect.com/science/article/pii/S1071581905001102
https://www.sciencedirect.com/science/article/pii/S1071581905001102
https://doi.org/10.1007/s10664-013-9279-3
https://doi.org/10.1007/s10586-017-0746-2
https://doi.org/10.1145/2807442.2807461
https://doi.org/10.1145/2635868.2635892
https://doi.org/10.1145/2635868.2635892

BIBLIOGRAPHY

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

96

R. Minelli, A. Mocci, M. Lanza, and L. Baracchi. Visualizing Developer Interactions.
In 2014 Second IEEE Working Conference on Software Visualization, pages 147-156,
2014. doi: 10.1109/VISSOFT.2014.31.

R. Minelli, A. Mocci, and M. Lanza. I Know What You Did Last Summer - An
Investigation of How Developers Spend Their Time. In 2015 IEEE 23rd International
Conference on Program Comprehension, pages 25-35, 2015.

R. Minelli, A. Mocci, and M. Lanza. Measuring Navigation Efficiency in the IDE.
In 2016 7th International Workshop on Empirical Software Engineering in Practice
(IWESEP), pages 1-6, 2016. doi: 10.1109/IWESEP.2016.11.

G. C. Murphy, M. Kersten, and L. Findlater. How are Java software developers using
the Elipse IDE? IEEE Software, 23(4):76-83, 2006.

Jakob Nielsen. Usability Engineering, pages 23-37. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 1993. ISBN 0125184050. URL https://dl.acm.o
rg/doi/10.5555/2821575

M. Nystrom, Richard Andersson, K. Holmqvist, and Joost Weijer. The influence of
calibration method and eye physiology on eyetracking data quality. Behavior Research
Methods, 45:281, 2013. doi: 10.3758/s13428-012-0247-4.

Alexandra Papoutsaki, Patsorn Sangkloy, James Laskey, Nediyana Daskalova, Jeff
Huang, and James Hays. WebGazer: Scalable Webcam Eye Tracking Using User
Interactions. In Proceedings of the 25th International Joint Conference on Artificial
Intelligence (IJCAI), page 3841. AAAI 2016.

Roy D. Pea. Language-Independent Conceptual “Bugs” in Novice Programming.
Journal of Educational Computing Research, 2(1):27-29, 1986. doi: 10.2190/689T
-1R2A-X4W4-29]2.

F. Petrillo, Z. Soh, F. Khomh, M. Pimenta, C. Freitas, and Y. Guéhéneuc. Towards
Understanding Interactive Debugging. In 2016 IEEE International Conference on
Software Quality, Reliability and Security (QRS), pages 152—-163, 2016. doi: 10.1109/
QRS.2016.27.

Jan Pilzer, Raphael Rosenast, André N. Meyer, Elaine M. Huang, and Thomas Fritz.
Supporting Software Developers’ Focused Work on Window-Based Desktops. In
Proceedings of the 2020 CHI Conference on Human Factors in Computing Sys-
tems, CHI °20, pages 1-13, New York, NY, USA, 2020. Association for Comput-
ing Machinery. ISBN 9781450367080. doi: 10.1145/3313831.3376285. URL
https://doi.org/10.1145/3313831.3376285.

David J. Piorkowski, Scott D. Fleming, Irwin Kwan, Margaret M. Burnett, Christo-
pher Scaffidi, Rachel K. E. Bellamy, and Joshua Jordahl. The Whats and Hows of
Programmers’ Foraging Diets. In Proceedings of the SIGCHI Conference on Hu-
man Factors in Computing Systems, CHI ’13, pages 3063-3072, New York, NY,


https://dl.acm.org/doi/10.5555/2821575
https://dl.acm.org/doi/10.5555/2821575
https://doi.org/10.1145/3313831.3376285

Bibliography

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

USA, 2013. Association for Computing Machinery. ISBN 9781450318990. doi:
10.1145/2470654.2466418. URL https://doi-org.tudelft.idm.oclc.org/10.
1145/2470654.2466418.

Sebastian Proksch, Sven Amann, and Sarah Nadi. Enriched Event Streams: A
General Dataset for Empirical Studies on in-IDE Activities of Software Develop-
ers. In Proceedings of the 15th International Conference on Mining Software Repos-
itories, MSR 18, pages 62—65, New York, NY, USA, 2018. Association for Com-
puting Machinery. ISBN 9781450357166. doi: 10.1145/3196398.3196400. URL
https://doi.org/10.1145/3196398.3196400.

Stevche Radevski, Hideaki Hata, and Kenichi Matsumoto. EyeNav: Gaze-Based
Code Navigation. In Proceedings of the 9th Nordic Conference on Human-Computer
Interaction, NordiCHI 16, New York, NY, USA, 2016. Association for Comput-
ing Machinery. ISBN 9781450347631. doi: 10.1145/2971485.2996724. URL
https://doi.org/10.1145/2971485.2996724l

Paige Rodeghero, Collin McMillan, Paul W. McBurney, Nigel Bosch, and Sidney
D’Mello. Improving Automated Source Code Summarization via an Eye-tracking
Study of Programmers. In Proceedings of the 36th International Conference on
Software Engineering, ICSE 2014, pages 390-401, New York, NY, USA, 2014.
ACM. ISBN 978-1-4503-2756-5. doi: 10.1145/2568225.2568247. URL http:
//doi.acm.orqg/10.1145/2568225.2568247.

Jonathan Saddler. Understanding Eye Gaze Patterns in Code Comprehension. Disser-
tation, University of Nebraska - Lincoln, May 2020.

Timothy R. Shaffer, Jenna L. Wise, Braden M. Walters, Sebastian C. Miiller, Michael
Falcone, and Bonita Sharif. iTrace: Enabling Eye Tracking on Software Artifacts
Within the IDE to Support Software Engineering Tasks. In Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, ESEC/FSE 2015, pages
954-957, New York, NY, USA, 2015. ACM. ISBN 978-1-4503-3675-8. doi: 10.1145/
2786805.2803188.

Asma Shakil, Christof Lutteroth, and Gerald Weber. CodeGazer: Making Code Nav-
igation Easy and Natural with Gaze Input. In CHI 2019 - Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems, CHI : Conference on Hu-
man Factors and Computing Systems, pages 1-12, USA United States, May 2019.
Association for Computing Machinery. doi: 10.1145/3290605.3300306.

Sigasi. MouseFeed — Eclipse Plugins, Bundles and Projects - Eclipse Marketplace,
2020. URL https://marketplace.eclipse.org/content/mousefeedr. [Online;
accessed 15-October-2020].

A. Singh, A. Z. Henley, S. D. Fleming, and M. V. Luong. An Empirical Evaluation
of Models of Programmer Navigation. In 2016 IEEE International Conference on

97


https://doi-org.tudelft.idm.oclc.org/10.1145/2470654.2466418
https://doi-org.tudelft.idm.oclc.org/10.1145/2470654.2466418
https://doi.org/10.1145/3196398.3196400
https://doi.org/10.1145/2971485.2996724
http://doi.acm.org/10.1145/2568225.2568247
http://doi.acm.org/10.1145/2568225.2568247
https://marketplace.eclipse.org/content/mousefeedr

BIBLIOGRAPHY

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

98

Software Maintenance and Evolution (ICSME), pages 9-19, 2016. doi: 10.1109/I1C
SME.2016.84.

Michael W. Smith, Joseph Sharit, and Sara J. Czaja. Aging, Motor Control,
and the Performance of Computer Mouse Tasks. Human Factors, 41(3):395-396,
1999. doi: 10.1518/001872099779611102. URL https://doi.org/10.1518/
001872099779611102. PMID: 10665207.

Will Snipes, Emerson Murphy-Hill, Thomas Fritz, Mohsen Vakilian, Kostadin
Damevski, Anil R. Nair, and David Shepherd. Chapter 5 - A Practical Guide to Ana-
lyzing IDE Usage Data. In Christian Bird, Tim Menzies, and Thomas Zimmermann,
editors, The Art and Science of Analyzing Software Data, pages 85-138. Morgan
Kaufmann, Boston, 2015. ISBN 978-0-12-411519-4. doi: https://doi.org/10.1016/
B978-0-12-411519-4.00005-7. URL http://www.sciencedirect.com/science/
article/pii/B9780124115194000057.

Centraal Bureau Statistiek. Ruim 6 op de 10 mensen dragen een bril of con-
tactlenzen, 2013. URL https://www.cbs.nl/nl-nl/nieuws/2013/38/ruim-6-o
p-de-10-mensen-dragen-een-bril-of-contactlenzen. [Online; accessed 16-
October-2020].

Yusuke Sugano, Yasuyuki Matsushita, Yoichi Sato, and Hideki Koike. An Incremental
Learning Method for Unconstrained Gaze Estimation. volume 5304, pages 656-667,
October 2008. doi: 10.1007/978-3-540-88690-7_49.

Jerry Chih-Yuan Sun and Kelly Yi-Chuan Hsu. A smart eye-tracking feedback scaf-
folding approach to improving students’ learning self-efficacy and performance in a C
programming course. Computers in Human Behavior, 95:66-72, 2019. ISSN 0747-
5632. doi: https://doi.org/10.1016/j.chb.2019.01.036. URL jhttp://www.scienced
irect.com/science/article/pii/S0747563219300457.

Tobii. Tobii Accuracy and Precision Test Method for Remote Eye Trackers. pages
9-10, 2012. URL https://www.tobiipro.com/siteassets/tobii-pro/learn
-and-support/use/what-affects-the-performance-of-an-eye-tracker/t
obii-test-specifications—accuracy—-and-precision-test-method.pdf/.
[Online; accessed 14-October-2020].

Tobii. Tobii Pro X2 eye tracker, 2020. URL https://www.tobiipro.com/product
-listing/tobii-pro-x2-30/. [Online; accessed 25-Februari-2020].

V. Vipindeep and P. Jalote. List of Common Bugs and Programming Practices to avoid
them. page 14, April 2005. URL https://www.cse.iitk.ac.in/users/jalote/
papers/CommonBugs.pdf. [Online;].

Neff Walker, David Philbin, and Arthur Fisk. Age-Related Differences in Movement
Control: Adjusting Submovement Structure To Optimize Performance. The journals

of gerontology. Series B, Psychological sciences and social sciences, 52:47, February
1997. doi: 10.1093/geronb/52B.1.P40.


https://doi.org/10.1518/001872099779611102
https://doi.org/10.1518/001872099779611102
http://www.sciencedirect.com/science/article/pii/B9780124115194000057
http://www.sciencedirect.com/science/article/pii/B9780124115194000057
https://www.cbs.nl/nl-nl/nieuws/2013/38/ruim-6-op-de-10-mensen-dragen-een-bril-of-contactlenzen
https://www.cbs.nl/nl-nl/nieuws/2013/38/ruim-6-op-de-10-mensen-dragen-een-bril-of-contactlenzen
http://www.sciencedirect.com/science/article/pii/S0747563219300457
http://www.sciencedirect.com/science/article/pii/S0747563219300457
https://www.tobiipro.com/siteassets/tobii-pro/learn-and-support/use/what-affects-the-performance-of-an-eye-tracker/tobii-test-specifications-accuracy-and-precision-test-method.pdf/
https://www.tobiipro.com/siteassets/tobii-pro/learn-and-support/use/what-affects-the-performance-of-an-eye-tracker/tobii-test-specifications-accuracy-and-precision-test-method.pdf/
https://www.tobiipro.com/siteassets/tobii-pro/learn-and-support/use/what-affects-the-performance-of-an-eye-tracker/tobii-test-specifications-accuracy-and-precision-test-method.pdf/
https://www.tobiipro.com/product-listing/tobii-pro-x2-30/
https://www.tobiipro.com/product-listing/tobii-pro-x2-30/
https://www.cse.iitk.ac.in/users/jalote/papers/CommonBugs.pdf
https://www.cse.iitk.ac.in/users/jalote/papers/CommonBugs.pdf

Bibliography

[72] Braden Walters, Timothy Shaffer, Bonita Sharif, and Huzefa Kagdi. Capturing
Software Traceability Links from Developers’ Eye Gazes. In Proceedings of the
22nd International Conference on Program Comprehension, ICPC 2014, pages 201-
204, New York, NY, USA, 2014. Association for Computing Machinery. ISBN
9781450328791. doi: 10.1145/2597008.2597795. URL https://doi.org/10.
1145/2597008.2597795.

99


https://doi.org/10.1145/2597008.2597795
https://doi.org/10.1145/2597008.2597795




Appendix A

Glossary

In this appendix, we give an overview of frequently used terms and abbreviations.

AOI: Area of Interest is a designated area that is used to link eye-movements to a particular
part of an object.

Debugger: A specialized software development tool that aids a software developer in de-
bugging a software application.

Debugging: The process of finding and resolving issues within software applications.

Dwell-base: An interaction mechanism that uses a specific fixation time to activate an
action.

Editor: A software application that is used to write and maintain source code, data, or
text.

EyeIDEA Action: The execution of one or more commands by using optional input.
EyeIDEA Component: A representation of a specific Window in the IDE.
EyeIDEA Mode: The current interaction state of EyeIDEA.

EyeIDEA Part: A representation of a visual object on the screen.

Eye-tracker: A device that measures eye movements.

Eye-tracking: The process of measuring eye movements to determine where a person is
looking at.

Fixation: A location in which the eyes stopped moving.
Gaze: The location where someone is looking at.

GUI: Graphical User Interface that displays content on the screen and allows interacting
with the software application.

101



A. GLOSSARY

IDE: Integrated Development Environment is an application that provides a comprehen-
sive set of software development tools that are integrated into the program.

Saccade: A small and rapid eye movement to shift attention between different points.

Tab: A Graphical User Interface component that allows multiple documents to be embed-
ded in a single window and allows a user to switch between documents quickly.

Toolbar: A Graphical User Interface component which can contain input and output com-
ponents, icons, menus, and text.

Window: A Graphical User Interface component that provides a container to present the
main content.

102



Appendix B

Interview Questionnaires

In this appendix, we provide the material that was used during the interview.

B.1 Demographic Questionnaire

]
TU De|ft Oriersiy of EyelDEA Questionnaire

Technology User nr:

Please fill in the following information

How old are you? ...t

Gender? .. ...

What is your profession or what do you study? ........

Do you wear glasses or contact lenses? .................
Are you color blind? .......... ... ..

» Which blindness? . ............. ... ... ... ... ...

Have you used an eye tracker before prior to this study?

Have you used Intellij IDEA before prior to this study?

103



B. INTERVIEW QUESTIONNAIRES

B.2 SUS Questionnaire

2
TU Delft &g EyeIDEA Interview Questions

Technology User nr:

System Usability Scale

agree completely —
< strongly disagree

1. I think that I would like to use EyeIDEA frequently............
2. I found EyeIDEA unnecessarily complex .......................

3. I thought EyeIDEA was easy to use ..........c.ovviinnnnan..

4. I think that I would need the support of a technical person to be
able touse EyelDEA . ... ..

5. I found the various functions in EyelDEA were well integrated. .

6. I thought there was too much inconsistency in EyeIDEA........

7. I would imagine that most people would learn to use EyeIDEA
very qUICKLy ...

8. I found EyeIDEA very cumbersome to use......................

9. I felt very confident using EyeIDEA ...................o.o ...

10. I needed to learn a lot of things before I could get going with

EYeIDEA ... oo []2]]3[4]]5]

B.3 Interview Questionnaire

104



]
TU Delft Fesue EyeIDEA Interview Questions

Technology
User nr:

1 EyelDEA Overall experience

The following questions are to evaluate your experience of using FyelDEA.

1. In a couple of words, how would you sum up your experience with EyeIDEA? (RQ2)

2. What did you like in general of an IDE that uses eye-tracking? Please describe it concretely
by using examples during the task. For example, ”It helped me to check the value of variable
X. So, I did Y and Z and then I saw the value” (RQ2)

3. What did you not like in general of an IDE that uses eye-tracking? (RQ2)

4. Would you use EyeIDEA for professional use? (RQ3.3)......... ’YGS‘ ’Don’t know

» Why?

2 EyelDEA Interaction System

The following questions are to evaluate the interaction system of EyelDFEA.

5. Which action did you found the easiest to learn how to execute it? (RQ2)
» Why?

6. Which action did you found the most difficult to learn how to execute it? (RQ2)
» Why?

7. Would you change something about the interaction system? (RQ3.1)

3 EyelDEA navigating effectiveness

The following questions are to evaluate the effectiveness of navigating with EyelDEA.



8. What do you think about the navigation features? Please describe it concretely by using an
example. (RQ2)

9. Are there other navigation features that you missed? (RQ3.1)

4 EyelDEA debugging effectiveness

The following questions are to evaluate the effectiveness of debugging with EyelDFEA.

10. What was your favorite and least favorite debugging action? You can choose from: button
interaction, placing breakpoints, placing conditional breakpoints, using quick evaluator, using
window evaluator) (RQ2)

Most:

Least:

»Why? Please describe it concretely by using an example.

11. Did you notice any differences in your usage of the debugging features when you could use
your eyes instead of the mouse and keyboard? (RQ3.2)

5 General IDE Eye tracking evaluation

The following questions are to evaluate what kind of impact the plugin had on using eye track-
ing in general for an IDE.

12. In your opinion, which audience would benefit the most with an eye tracking augmented
IDE? (RQ3.3)

13. Do you think it is better to use an eye-tracker as standalone just like the gazebutton or is
it better to mix it with mouse and keyboard just like you saw with the evaluator? (RQ3.2)

14. Could eye tracking replace existing IDE actions that requires a mouse or keyboard at the
moment? How do you envision this? (RQ3.2)

6 Eye Tracking experience

The following question is to evaluate the eye tracking itself.

15. Did you feel getting fatigued using the eye-tracker? (RQ3.1)



7 Tasks Evaluation

The following questions are to evaluate the quality of the tasks. (They dont have any connec-
tion with the research questions.)

How would you rate the difficulty of debugging your first task?... .’TriVialuEaSYHNeUtTal‘ ’DifﬁCUItHImPOSS“

How would you rate the difficulty of debugging your second task? . ’TriViaIHEaSYHNeUUaI‘ ’DifﬁCUItHImPOSS“

16. Did you have any issues with understanding the code from your first task?

17. Did you have any issues with understanding the code from your second task?

8 Closing questions

The participant gets some room here to comment on other aspects there were not asked.

18. Do you have any other remarks about EyeIDEA that you would like to share?

19. Do you have any other remarks about this research that you would like to share?



B. INTERVIEW QUESTIONNAIRES

B.4 Training Videos

108



B.4. Training Videos

Thumbnail

Description

Link

eneral information

Contirol action

demo

Implementation
action

demo

Declaration Actio

demo

Linebreak action

demo

Conditional

action

demo

Window
Evaluation action

demo

This training video shows the
concepts behind using Eyel-
DEA.

This training video shows how
to select and activate buttons.

This training video shows how
to use the “Go To Implementa-
tion” navigation action.

This training video shows how
to use the “Go To Declaration”
navigation action.

This training video show how to
use the line breakpoint action to
set a breakpoint.

This training video shows how
to use the conditional break-
point mode to set breakpoints
that only activate under a certain

condition.
This training video shows how

to activate and use the quick
evaluation action..

This training video shows how
to use the window evaluation ac-
tion which activates the Evalua-
tor Tool.

https://www.youtube.
watch?v=VB2W4-3f8Jo

https://www.youtube.
watch?v=C46rQdwGy9E

https://www.youtube.
watch?v=0PLOSVECOYo

https://www.youtube.
watch?v=xvNHNyT5FcA

https://www.youtube.
watch?v=7TvV8xTQzADk

https://www.youtube.
watch?v=eGkMyYC_kYA

https://www.youtube.
watch?v=X6hixqdiQQg

https://www.youtube.
watch?v=pl6saDxt6Cg

com/

com/

com/

com/

com/

com/

com/

com/

109


https://www.youtube.com/watch?v=VB2W4-3f8Jo
https://www.youtube.com/watch?v=VB2W4-3f8Jo
https://www.youtube.com/watch?v=C46rQdwGy9E
https://www.youtube.com/watch?v=C46rQdwGy9E
https://www.youtube.com/watch?v=0PLO5VECOYo
https://www.youtube.com/watch?v=0PLO5VECOYo
https://www.youtube.com/watch?v=xvNHNyT5FcA
https://www.youtube.com/watch?v=xvNHNyT5FcA
https://www.youtube.com/watch?v=7vV8xTQzADk
https://www.youtube.com/watch?v=7vV8xTQzADk
https://www.youtube.com/watch?v=eGkMyYC_kYA
https://www.youtube.com/watch?v=eGkMyYC_kYA
https://www.youtube.com/watch?v=X6hixqdiQQg
https://www.youtube.com/watch?v=X6hixqdiQQg
https://www.youtube.com/watch?v=p16saDxt6Cg
https://www.youtube.com/watch?v=p16saDxt6Cg




Appendix C

Overview Card EyelDEA

111



C. OVERVIEW CARD EYEIDEA

EyelDEA Overview card
pagelofl

1 Ul Overview

Panel 1 is Gaze action button panel, it is composed out of action but-
tons.

Panel 2 is Navigation Modes panel, it is composed out of navigation
mode buttons.

Panel 3 is Debugging Modes button panel, it is composed out of debug
mode buttons.

Panel 4 is Control panel, it controls the eye tracker.

2 Gaze Button

Declaaton Oeclaton

Inactivate hover activated

To activate a button, look at an inactivate button. This will change
into the hover state. If the gaze is over the button for long mbocﬂ 3
the button will be activated. The deactivation of a button follows the
same steps.

3 Actions

3.1 Highlights

}
Highlights are used to show which items are currently linked to the
gaze action buttons. Only a maximum of 8 items can be linked at any
time. If there are more, the oldest highlighted item will be replaced.

3.2 Executing an action

To be able to perform an action, the following steps need to be
performed:

Step one, select the desired mode.

Step two, look at an item to highlight it.

m»am three, activate the action button that has the same color as of the
highlighted item.

4 Modes

A Mode is responsible for linking the appropriate item on the screen
with a specific action. These actions are set to the action buttons.
This link between the item and the button is made clear by using
highlights.

4.1 Selecting a mode

To switch between the different modes, gaze buttons are used. Each
group is located on its own panel.

The button mode does not have a dedicated button, so it is not acti-
vated by looking at a specific button. Instead, looking at the current
activated gaze mode button will deactivate that mode and the plugin
will return to the button mode.

H:rm %mNm anmv::o:Swm?mﬁmn:<m$a‘ﬁrmaoamiz_zonvmammn.
tivated. Instead, look at the editor for just a moment and then look at
the button to deactivate it.

4.2 Different modes

IDE control mode Links regular IDE buttons and lists to the gaze
action buttons. These ui elements are normally activated by using
the mouse or keyboard. The mode is active when no other modes are
active.

4.2.1 Navigation modes

Navigation modes links the source code elements with a specific navi-
mm.:oz action. To trigger these modes, look at the corresponding gaze
utton found in navigation mode panel.

Implementation mode Links a source code element to the implemen-
tation action. Code elements are highlighted and the implementation
action can be triggered with the action buttons.

Declaration mode Links a source code element to the declaration
action. Code elements are rmmr:mrﬁma and the declaration action can
be triggered with the action buttons.

4.2.2 Debug modes

Debug modes links the source code elements with a specific debug
action. Some of the modes uses the location of the code elements to
perform the action.

Selecting the specific mode requires 2 steps.

1, activate the mmNm mode button that corresponds with the group.
A popup will show up in the middle of the screen. This popup has
multiple gaze mode buttons.

2 Select the specific submode by activating its gaze button.

Breakpoint modes Evaluation modes

Line breakpoint mode Links the location of a source code element to
set a new breakpoint or remove an existing one. To set or remove an
existing breakpoint, use the steps from 3.2

Quick Evaluation mode Links a source code element to be evaluated
and shows the result in the editor.

Code tab

Conditional breakpoint mode Uses one or multiple source code ele-
ments to create a condition for a breakpoint. To select the elements,
use 3.2. These are added to the text area in the code tab.

Create a valid condition of the added elements and then activate the
gaze button below the text area. To set the location of the breakpoint,
it uses the same as of Line breakpoint mode.

Evaluation Window mode Uses one or multiple source code elements
to be evaluated and shows this in a separate evaluate window. To
select the elements, use 3.2. These are added to the text area in the
code tab.

To activate the evaluation popup, activate the button right below the
text area. This will create the Evaluation Window and the code from
the text area will be put into this popup.

5 Additional Features

5.1 Show Pointer

To show the gaze on the screen, simply select the SShow Pointer"box.
This will display a bubble on the screen that expands and retracts
depending on the gaze.

5.2 Click offset

Recenter the gaze based on the clicked position with the left mouse

button. When the option is turned of, the correction will be removed
and the original gaze position from the eye tracker will be used again.

112



Appendix D

Invitation Poster for the User study

This appendix includes the poster that we distributed to invite students to join the user study.

Volunteers needed to
test an eye-tracking IDE.

Who: TU Delft students

When: December 10-18 (weekdays)

Where: Mathematics & Computer Science
(TU Delft Building 28)

Compensation: €10,- giftcard

All Covid-19 guidelines will be respected

113






Appendix E

115



E. SURVEY INVITATION FORM

Survey invitation form

Registration for participating in User
study about an interactive eyetracking
IDE

Hi, My name is Arjan and | developed a plugin to interact with Intellij IDEA using an
eyetracker a3 part of my Master Thesis and it needs to be evaluated.

During thie study. you will debug some Java code with and without using the eyetracker.
However, dont worry about your debugging skills, the goal is to test the eyetracking
interactions and not your debugging performance.

The study will consist cut of a training, interacting with the IDE and an interview afterwards
so you can give me feedback. It will take arcund 45-60 minutes.

For your efforts, | will give you a €10.- gifteard of your chaice if you participate.

A timeslot based on your availability will be emailed 1o you along with some details about
the procedure.

All Covid-19 measures currently in place will be respected and your data will be collected
anonymously.

Maote, only TU Delft students can participate due to Covid-19 measures.

Dates: 7 December- 18 December

Location: Mathematics & Computer Science (building 28)
Van Mourik Broskmanweg &
2628 XE Delft

Contact: a.c.langerak@student tudelft.nl

*Required

Name *

Your answer

Email {will only be used to send you a timeslot and more information) =

Your answer

Giftcard (select an option if you want the giftcard)

Choose -

Please indicate your preferred availability (You can select multiple options)

116

9.30-10.30 11.00-12.00 13.30-14.30 15.00-16.00 16.30-17.20



	Preface
	Contents
	List of Figures
	Introduction
	Related Work
	IDE Usage and Associated Challenges
	Eye-tracking for Software Development Tasks

	EyeIDEA
	Architecture Overview
	Plugin layout
	Connecting to an Eye-Tracker
	Eye-tracker Setup
	Preprocessing Gaze Data
	IDE GUI Mapping
	Data Export
	Executing Gaze-based Actions
	Creating highlights on the screen

	Research Design
	Research Questions
	Methodology
	Data Collection and Analysis Procedure
	Participants
	Pilot study

	Results
	Participants statistics
	RQ1: IDE Usage
	RQ2: EyeIDEA Perceptions
	RQ3: Eye-tracking IDE Prospects

	Discussion
	Research Questions
	Implications
	Threats to Validity

	Conclusions and Future Work
	Bibliography
	Glossary
	Interview Questionnaires
	Demographic Questionnaire
	SUS Questionnaire
	Interview Questionnaire
	Training Videos

	Overview Card EyeIDEA
	Invitation Poster for the User study
	Survey invitation form

