,wrn MMﬁm-mmwaFrq; «wﬂgq; :rw. T % o e —
FRANNIS, LSRR o8 82 i el g ;

g o TECHNlSCHE HOGESCHOOL 44118 L/%B
£ VLIEGTUIGBOUWKUNDE W,7/

F KANAALSTRAAT 10 - DELFT
A - HOLLAND

CA T

TR R R

..

| ‘:(1:‘.";' “ |
. :
S e
[T .
’ .
[

¥

‘li

The local mstablhty of compression members
ﬁ built up from flat plates,

L - by - ;

| Prof. dr ir A. van der Neut

'ﬁ}m e n " ,, .,
AR W R ¢ Blakl v it L v LTS
" oy v i I <

3o - PRI e
Cy . > et RN

. DR NN .

C oA Lo e KT N ey ’ )
S e R . oY

T Sy PR S IN P  WERT R BT

i R TR PN S LA ST S B S R

Repér? V.T.H. -

L
&iv




 TECHNISCHE. HOGESCHOOL
'SUB-AFD. VLIEGTUIGBOUWKUNDE

RAPPORT VTH -47
. THE LOGAL INSTABILITY OF COMPRESSION MEMBERS,
© BUILT UP FROM FLAT PLATES

Prof. Dr.1r. A van der Neut

Dit onderzoek is uitgevoerd met steun
van het Delfts Hogeschoolfonds.

DELFT
“August 1952




by pg.gf,; Dr Ir A.van der Neut.

f,j, Tho problem of local instability of structures, composed of flat
",'platoa. rigidly connected along ‘the longitudinal ‘edges, is essentially.

'~¥]to £ind the interaction between the compoaing plates, resulting in

“lfequality of buckling stresses and wave lengths for all individual

A plates. With complicated structures, like plates reinforced by longit-
4*ud1na1 atiffeners, ‘the computationa required for doterminlng the exact
-aolution are. highly laboriocus. This paper preeents an exact method,

" which reduces the amount of numerical work by applying nomograms, giving

 the relation between buckling stress, wave length and edge restraint.
The method can be applied to structures composed of an arbitrary '

.number of walls (section &4 and 5). Explicit formulae have been given

for structures with 4 or less Joints connecting the walls (sectlon 7)
The procedure is illustrated by a numerical example.
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1. Iatroduction o . N
Semiamonoeoque structures, as applied in aircraft and in eome types

- of shipe. consist of eheet. reinforoed by regularly epaoed longitudinalA
stiffenere supported by irames. When' loaded in longitudinal compression,

failure by instability oecurs. According to the - type of . buckling o
deformation the instability may be classified asy 1. ‘column feilure;
2 torsional instability; 3. general instability; 4 loeal instability.
- With ¢olumn failure or Euler instability all stiffenere are bending
in the direction normal to the sheet,. the framee behavins ae rigid
'supports. With ggional instabiligz the cross section of the stiffe—4
ners rotates in the plane normal to the longitudinal axis of the
stiffeners, éxcept the cross sections located in the plane of the -
frames. Gengral inetabilitz may occur when frames are relatively weak
- in bending The fremes will buckle together with the stiffeners; the
' -half wave lensth comprising MOTe : thsn one frame distance. .
' Whereas the wave length with the first two types of buckling ie
-'governed by frame spacing, with local iggtgbilitx the wave length ie )
much smaller than the frame distance and it is practically independent
of conditions presented by the frames. Moreover in contrast to the
former types the cross seetion of the stiffeners can no longer be':,
considered to remain undieterted in its plane. Any of the composing
walls of the.stiffeners as well as the sheet panels buckle in the .
. manner of plates loaded in compression, the half wave length beins of
the order of magnitude of the width of the individual plates.
, The coherence of the individual plates however requiree that the
wave patterns of different individnal plates are compatible. Therefore
‘the problem of computing the local buckling load is how to apply. plate
theory such that the interaction of collaborating plates is accounted
for adequately. Commonly used engineering methods for determining the
local buckling stress of stiffeners consider each individual plate to

have hinge support at the line of intersection with the adaecent walls, |

The buckling stress is assumed to be equal to the weighted average of
the, in general unequal, buckling stresses of . the compesing plstes. '
(ref.1). This approach -is unsatiefactory in many respects; though for
rapid determination of a first approximation it proves to be quite
useful. It does not present compatible wave patterns since wave lengths
. of the individual walls are unequal; hinge support is being assumsd,
whereas in fact the 1ensitudinal edges of the- plates are restraint
elastically by the edjeining plates; the buckling streases computed
for the 1ndividual plates are unequal, ‘whereas in fact interaction
equalizes these buekling stresses. ‘The reliability ef this methed

p
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decreases when the interaction is more important due to increasing
difference in the width to thickness ratio (b/t) of individual plates.
Such conditions occur with stiffened sheet, where b/t of sheet panels
is much larger than that of stiffener walls. For this case a more rigid
analysis is required, accounting for the interaction. This applies =
more in particular to modern aircraft wings, where the compressive load
per unit of width is very high, due to the large size of the aircraft
or the small thickness of the wing. Whereas formerly it was tolerated
that skin panels buckled at loads far below the ultimate load, aerodyn-
amic cleanness and weight economy may require nowadays that the skin
does not buckle and remains fully effective up to the ultimate load.
This means that the local buckling stress of the skin-stiffener cémbin—
ation should preferably be equal to the buckling stress with respect to
- column failure or torsionnal instabilivy. Consequently aeronautical .
engineering needs a straighforward approach'to'the'local instability
problem. . ‘ o

The derlvatlon of the stabillty criterium for a structure composed
of a sequence of rectangular plates does not present fundamental dif-
ficulties. The fourth order differential equation yielding for each
composihg plate 4 integration constants - the determinant is of the
order equal to 4 times the number of composing plates. However the
numerical work requircd for evaluating the determinant is quite
laborious. In this way the local buckling stresses for stiffeners
‘having Z~-.and channel section have been computed (rei.2).

n ‘the same manner the problem has beexn solved for panels
stiffened by top=hat section stringers, heglecting however the stringer
flanges (ref. 3). '

. The'object of this paper is to present a more straightforward
nethod, enabling the solution for guite complicated systems with a
relatively small amount of computational work; this latter being cutb
dovm by applying a set of nomograms presented in this papser,

2. Assumptions

The structure considered in this vpaper is coumposed out of plat
plates; each plate having constant thickness and constant @idth. So it
i comprises flat paﬁels, stiffened by %4-, channel and sqgare tophat
section stiffeners,sbut it does not include either rounded tophat
stiffeners or stiffeners with flange'edges'reinforced by bulbs or lips.

The method developed in this paper has been based upon the follow-
ing assumptions: | | ; | -

1) The wave length being a small multiple of the lateral dimensions of

| TECHNISCHE HOGESCHOOL | o ' “[RAPPORT
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the stiffeners the shear loads and bending moments in the plane of each
individual wall will remain smallj consequently the strains in the
centre of the plate thickness are negligably small and the dicplacementg
of the dentre in the plane of the plate can be neglected. Hence the
line of intersection of the centre planes of two successive walls is
considered to have no displacement at all: each composing plate will
be assumed Go have at its edges rigid support, except plates with free
edges. Pjates with 2 supported edges will be called webs; plates with
one supported edge and one free edge flanges. Flange edge reinforce-
ments; even if they are of.constant’thickness; cannot be considered to
have no displacements in the plane normal to the flange, since the
width of the edge reinforcement is small compared to the wave 1ength.
As long as an extension of this theory covering reinforced flanges is
mlssing, a conservative estimate of the critical load is obtained by
nealectlng the effect of the reinforcement. '

2) The flexibility of the eormer between two adjoining walls is -
neglected. Hence the rotations of 001ncid1ng edges of two adjoining
plates are assumed to be equal. ’ ‘ ‘

3) The wave length is independent of frame spacing and that magnitude
of wave length is assumed which makes the local buckling stress mini-
mal. Likewise the influence of the conditions at the loaded edges can
be neglected, i.e. the panel can be considered to have infinite length.
4) With riveted structures the joint between the sheet and the flanges
of the stiffeners is situated near the middle of the flange. However it
will be assumed that the joint is situated at the cormer between fiange
and web of the stiffener, so as to obtain a sheet panel with supported '
edges. As far as the sheet panel is concerned this assumption does not
influence its condition of loading very much; however the loads on the
flange will differ rather importantly in the assumed. scheme and the
actual structure. Due to the fact that the ¢ross section of these
flanges is small compared to the total cross section it may be expect-
ed that this assumption does not influence the critlcal load of the
whole panel importantly. -

5) Hooke's law is being asuumed throughout, though a further develop-
ment proves to be possible coverlng the plastic range. '

%, Buckling of a web with edge.restraint.
The differential equatlon of a flat plate loaded in 1ong1tud1nal

compression is

' Ld :
AAwu——o":x,- (2-1)

With elastic restraint against rotdtlon at the rlvldly supported
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edges the boundary conditionS'are (see fig.l):

y=-3b : W=o Bb 1=+C (:E) ¥ : (a_.2a)
, _ I W
y = 3 b W:Q, ,M,_: B;“31=—C1(%)({>z (3-2b)

-where C,, G, are ¢Qefficients, oxpressing the stiffness of restraint.
- The general solution of (1) for an infinitely long plate is.

= (n.cdshu:# A, coépg«- A, sinhay + A, sin (33) 5ih'—"—"ﬁ

This solution is composed out of a symmetrical part and an anti-symme-
trical part. Hence, for an arbitrary set of edge restraints C,; C

the buckling mode can -be decomposed into a symmetrical and an anti- -

Symmetrical bdckling mode w. and W, resp. Both modes occurring at tie

same bﬁckling stress,vtae stiffness of edge restraint, equal at both

edges, must be such in both cases that the buckling stresses are

equal for equal wave length 2 2. -

The boundary conditions replacing (2a,b) are (see fig.2)

3
\j:‘%h: \l\/5=0J MSQB w‘:—CsT,k's
VL J W, |
B:Lzb.o WQ_=°, MQ_—B “t__c tPu.

The identiffive.w,+w, yields'(compare fig.l and 2)

y =

M =M+ Mg,

Mt= Mu_ +M$ | or
Y | : »
CF'\;(‘{&‘ Q) = %(cﬂ-‘?&‘csqs) 4 (>-2a)
' RN - , ' o
—CzT(qm*q’s3="—(cﬂ-‘fl*Cs\?s) _ o o (3-2b)

For a glven set of stiffnesses C.and C,, the equations: (Ba b) together
with the condition that the buckling stresses for the symmetrlcal and
the antisymmetrical case are equal, ‘define the stiffnesses Cay Csand
the ratio *‘/ws . Thus the pOSulblllty of the decomposition of the.
general case with unequal stiffnesses C..C.. into a symmetrical and

an antisymmebrlcal case has been shown.,
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4, Buckling of an arbitrary sequence of plates _

- There are n plates numbered'successively 1, 2, .. .i, ....n1.
The rotation of the edge of plate i, forming the joint with plate
i-1is denoted by cpi' 15 the rotation of the other edge of platei

y 1 -
103 3 410

These rotations are positive in the antl-clockwise direction.
According to assumption (2)

’~?m‘la= ‘QC.E-,-'-' o S ’ (y-4)

-‘(’LL+|_= ‘Hfu. ' . .
Decomp051ng the rotations into a symmetrical and an anti-symmetrlcal
part (compare fig 2) it follows

*(?u..-qhu-kes._ _

(y-25

Wi e = ‘(’uk""?s\,
The edges of the plate i are loaded by the elastic restraining moments
M., 'and M; 4, using the same denotatlon and positive direction
as for Py« Applying the decomposition into symmetrical and anti-symmet-
rical part, follows: '

Mt,i-l = Mqt - Ms-.

. (y-3)
Miier = Mai + Me
where S

: | (u-4)
MS:"—CS“Ps' 3

The condition of equllibrlum of the 301nt 1—1, i requires

M'-lL +Mn|.|—o (4-5)
Substituting (2) into (1) and (3), (4) 1nto (5) yields

U‘f«-"“?s\g;. = (Yo - ¥5)¢ ' - , ' (H;6.) .

-[%(C«wa *Cawd] - ES (ca%—_c;w;ﬂl o (4-7)

For a given stress o and half wave length £ Lhe coeifficients of restraint
c.and Cg, which are requlred ifor equilibrium can be compubed (see
sect.6). Therefore they may be con31Jered to be known quantities. Then,
when $;L,,q5t. are known,the rotations y,;,¢ys¢ can be solved from
the equations (6),(7). Applying (6),(7) to the next joint i, i + 1,
$a.isio¥s.i.,  Can be solved, etc.So these equations are recurrent
equations enabling the.computation,of the whole buckling mode as soon

as for one of the composing plates the decomposibion into ¢ and ¢5 is
known. Usually more pos51b111t1es exist for stdrtlng the solution of the
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A_fiven in fie,10 that miu Lo oreour for g On,
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imay be that the cross section of the compossd siructure is regular in

‘known that Ya,=0 IFor 4, an arbitrary value can be choren, since the

-with one free edge, the other edge being supported and elastically

‘Then the equatlons (6),(7) have to be replaced for i1 = 2 by

in addition to the longitudinal compression ¢ obher external loads

recurrent e.uations: _ - 1. Usually‘it

such a way that a plane of symmetry or anti-synmetry of the mode can.be
indicated. For instance in the case of & channzi section, the critical
mode will be symmetrical. Denoting the middle wall with index 1, it is

nagnitude of the deformation is indefinite in buckling proclems.
2. “hen the cross section is open, the outmost walls wil!l ve flanges

restrained. The behaviour of bthe flange <depends upon & single coatficiem
of restraint €. Denolting one of the end flanges with iniex 1, the relat-

ion between restraining moment and edge rouvation is
M= =(3¢) P

Pio=(Pa-Ps)y 3 ( C) $ia -~ [-B (co,\()“_(‘ ‘?sﬂ =0 ’(H 8 g)
Taking for ¢,; an arbltﬂary value, @,,. 4, can be computed {rom (8),(9)
and the recurrent equations (6),(?7) for i = 3,4  ....n - 1 can be
solved.

r“he fact, that an arbitrary combinasvion c¢f values for o0 and & has
been chosen for solving the recurrent squabtions, in general wmeans that

must be applied for equilibrium. Only wien o is equal To the buckling
stress u\ fvrrengonding e the assumsed nall wave length & these cwternal
loads are zero. |
The need for external load appesrs avu th2 lassb joint, betuesn the

walls n - 1 and n, where equilibrius rejul.ss Lhe external woment w,
The condition of eqguilibrium of this joint is

mn.n.\-\ - Mv\-\.v\ - Mn,\‘\-l =0 : ("*“ ‘o‘v)

P]nn,depends upon Ye wn.r only, since wsll n is the last wall of

the sequence. fherefore {pa Jn.: 13 tus I'inal seb of unknown
l ? '\l" -

¢uanblble" ocawring in Lhe recurrent equaticns, and My |+ M, .
dees not venish in general; for eguilitriw: Lne wowent wm,_, , haz to

be added. This moment can be realized by n . uving of stiffness
R pn= —(“"A@),hhh',restraining tie joi.ib zainst robtation. vhen
Ra,, >0 equilibrium reguirss ob - oddition of stiffness;this
means that .ithout chis added stiifness Lac ziructure is unstable and
that the buciling srreszs T, ab tae assw:st valuz of & is smaller than

¢. wWhen R { v oeguilioriuas reguires & roeduction of stiffness,

n-l,n :
which may mean thai ihe zetual strucbuws iz cbuable and Unat the buckling

stress oy at the assume:! vi.ue of £ is larger than o. However this staha-

o

ment does not hold in -2e=r2l; 1% appears iron the numerical exan*le
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r}cn beb.zen the ranges of negative wnd positive & iz rormed by tie a-

=U, Therefore tinz concl -

syupiotic value R = + 03 igiloving iron Ynol n”
. St |

less the sign of R hegps to puide tne ciacice o1 C.
Oomputing Rmn-l for an assumed value of £ and some values of O,
Oy for the half wave length £ can be determi?ed sraphically by inter-
polation (fig.3). Repecating Ghese.couputations ior obther values of &
the relation between £ and Oy is obtained, fro: which the critical
stress and the corresponding wave length can be determined (fig.h).
The expression for R, n-t, n ‘dependo upon the character of «all n.
Boti cases considered ior wall 1 will be considered nere Ifor wall n,

1., If wall n is sups orb «d alonz both its edses and its deformalion has

to be symmetricals CPa,, =0 ;  @sn=(Pat s,
, P :
Mh.n-\ =T (FCS }n (q)“ + s )h-l
Then (4.10) wvields: : . _
| P CafatCsPs 1 |, [ B¢ )
Rh-\,n= [-5- CPo,-i-CPs et + ( sz)n (‘-l IOO.J

2. If wall n is a [lange

b
Mn,n_,= - (';'C—)h'(‘f’a.*‘q’s)
hence )
R =[§_ CaCP...+cscp,] +(_B_c_) (4-10b)
h-l,n CPA"‘CPS n- n
The procedure outlined above cnables a stralghu¢oruara determination

n-|

of @,,,, providcd thwe coefficients of estraint €,, Cg and € are
available as Tunctions oif ¢ and &. NOnogrags for Ltne debernination ol

2

these coefficients have been given in section O.

5, dxtension Lo closed and bifurcalbing gectiong
In section 4 it has been assumed that the sseguence oi plabes Loris

a sbructure with open cross secbion. some supplementary resnarks are
concarned .ith Uie case trat tThe structurs nor.g @ closeu guciion,

yosin,; 4 biiurcatin¢ joint.
5,1 Cloz=d crogsscih section
“hen the cross secuion is symmesricel the problem reduces to the
problew for Lhe open section, linited by Ghe plane of ey;metry._ﬁhen
symaebry is not availibl:s the solution is obtained vy superposition of

sion from R< 0 that o_>» ¢ should be taken with some caubtion. Heverbie-—

Next Uhe case wiil be considered Gi@t moro Lhan & Jdl B oare joining

VIR AU UND ' - '
LW e lUNDE ) blz 3

2 buckling modes (I and 1I) with arbitrary odu, rotu.ions off wall 1.

solution 1 starts with  Qqa,=© y Py, = and yields ((p“ )I 5
((Psn)l
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Solution II starts with o ,=1;¢si=© 3 - and yields (Yam)y »(fsm)g

The superposition Q =¢r + Xyr yields
Pim= Loy~ ?s,r X =1 ,
Pms = Yant Pen={Pan +Qsn) + X(\Pmn“{’sh)x
Then cg.‘_q%l saranteeing the continuity at the joint n,1, yields:

- +(Qan + Psin)x
X e e | .
Applying (10) to the joint :,1 the moment moq required to obtain

equilibrium, is obtained.

5,2 Bifurcating cross section
In stiffened panels bifurcations are always present. The solution
is oktained along bLihe princip]eovolven in section 4, equating the

rotations of all walls meeting in the point of bifurcation and requ1r1ng
the egquilivriua of moments acting upon the JOlnt.
The procedure will be illustrated by 2 examples:a panel stiffened

by top~hat section stiffeners and a panel stiffened by Z-stiifeners
altﬂrﬂating in size. | | ‘

ta tophat stiffeners (fig.5.
the symmebry of the continuous structure the critical mode
will be sywmetrical with respec’t to the planes of symmetry A en B.
This observation overcomes the complication 1mposed by the occurrence

of Cloeew Jectlons, A
The oontwmuous sequence of main walls is l 2, 3. The supplementary

walls 1%, 1", introducing the ‘bifurcation at joint 1,2, are added to

this sequence; they obtain the lower figure of those of both main-

walls, since Uthe momnnts excerted by these supplementary walls depend.

upon the rotation of joint 1,2 only.

Symaetry with respect to A and B resp. ylelds.

L?(’L(::o B (“PCL\':OA
Hence
Fra= Wy = t?s, i .v")t"* w2 (f')'&?.“" \{’31 4 - ’ (5—')
The condition of eyuilivrium of joint 1,2 is
B . ' [ 1 . ' N,
D PRI P M+ My =0 . (5 &3

Bypresszing the moments in the rotations it follows

TRy (2, + () Nger - [Rleata-csun)] =0 (s -3

From @) and (2) \Paa , Wes Can be computed.
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Due to symmetry with respect to B, wqy=-o. _
Then the additional restraint at joint 2,5 is given by (4.10a), where

: Z-s-'xfggg;g (figz.6)

The planes A and B are planes of symmetry for the structure, since
with this prohlem the direction of the flanges 1s not essential. The
structure might be replaced by that given in fig.7.

The critlcal mode will be anti-symmetrical w1ch resyect to the Dlanes
A en B,

The coutinuous sequence of main walls 1s as .indicated in fig .6;_
 being 5. The supplementary walls 2 and 5 m have obtained their
figure by the same reasoning as given in the former example. The walls
3% and 5" have obtained their figure in view of the fact that their

edge moments can be derived from those of wall 3.
The equations for joint 1,2 are (4.8),(4.9), yielding @a,., Yse-
Equality of rotations at jcint 2,5 yields.

Yar+ Yoo = Yoa=YPas-~YPsa | (5-4)
The condition of equilibrium of Jjoint 2,5 is

M2.3'+M2‘3 “+ M}z"- M’B'a =0 ‘
bue o antisymmetry. Pﬂgzg M, .. Expressing Ghe moments in ‘the
rotations it follows. ' )

~ (R),(CattarCs¥s), - (3c)2.(~h ®s), 2(-)(<uf¢~ Capey, @ (5-5
From (4) and (5) @Yas. ws» can.be computed,

In the same way the joint 3,4 can be considered:

Yar + Ysa = Pay~Ysy . _ ' (5 -0

—2( ) (CQ"PQ .-Q"’ \Ps) ('E C) ,,,(‘fo., (PS) (’%),_' (CCL"PQ.'"’ ":S(('g,.}q =0 (‘5 ‘f ?

ylelch_ng Way » Psu -
The additional restraint requlred at Jonnt Gy5 1

[ O]

‘wiven by (4.10 b)
where-n = 5. '

6. The coefficients of restraint
6.1 The nomograms of Cs Caand c.

The apulication of the method given in ¢ ec. 4 pequires knowledge cof
the coeificlzants OL restraint as functions of ¢ snd 4 Tor S cascs:
1. symmetric wuck lln( of a web (Cq) ;
2. anti-symmetric buckling of a web {¢a);

LAl

%, buckling of « flange (c). o
| The bucklirng stress of a plate can be exyressed by a coefTinis 0t k
| defined by ' v e
. X kf“ AJORT
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~ defined by

- where

out for 3 or 4 values of the stress, and 5 or 4 wavelengths. For svery

s h}13 - .
and the ‘half wave length 2 can be replaced by the coefflclent X

Then C, Co and ¢ are to be given as functions of k and X . The exact

solubions for these elementary stability. problems is (ref 4)

=P cat c -__ b*q o
o te*v+wtm - et T pagp-qegs (57 02)
where ‘ -
Z i[*A-+nkA]
and

(6 + 4 X Fq sinh.peos.g — Qb coshp sing)

. (6 -4)
NS *Q)\:q,coshpcosq +a?Qm+(T’q QNW*"*PW%

[-A+ﬂk0

~‘When applylnﬂ the method of sec.4 a large number of coefficients
of restraint has to be determined. Ths computation has to be carried

wall 1 or 2 coefficients of rcstraint have to be determined with any

set ¢, 4. Hence for a structure composed of m walls m (1 to 2)(9te 18|

coefficientshave to be computed. This requlres readlly applicable
information on Cy,C. and C. :

Graphs from which Cg and € as functions of k and A can be taken,
have been given in ref. 4a and b. However these graphs are confined
to'positive values of C, and C, whereas the ‘Testraint in composed
structures may be negative. loreover applidation of these graphs is
tedious, since the graphs contain only a llmited number of lines for
constant Cq and c.

Therefore, instead of completing these ‘graphs with negative values
of ¢cg and ¢ and computing an analogous graph for Car it was decided
to develop nomograms for Cgs C, and c. _ o

Several systems of nomograms vould be requlred for cs, Cq and ¢
each, when basing ‘them upon (1), (2) and (&) ‘Though it would represent
the exact solutlon, errors would be inevitable due to the complexity
of the procedure;lTherefore it seemed preferable to derive the nomo-
grams from approximate formulae, offering the possibility to read the
coefficients ofvrestraint from one -single nomogram. Likewise the
graphs of ref. 4a and b have been derived from approximate’ solutlons
obtained by aoplylng the energy-method.

The approximate solutions have been computed assuming for the
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deflection of the plate
w = [ ARty +B feq)] sin T

where f,(y) and f(y) satisfy the geometrical boundary conditions,
and the ratio .A/B is such that che dynamlc boundary conditions at the

rigidly supporived edge(s) are satisfied.
The assumed deflections are

D1l

Cwe Afeswde mEe r@a) () sin TE o (6-u)
='A{§M\-vr%.+ ;Ici‘:s)[(—‘i —\]—”-}s«m%“ o ( 6-5)

wo= A{ %-.q%s—s[(-%)—u-af’3(%)‘“1-852<%')-<a-178](%)z}sim‘% €é-6)
(4) and (6) have.been taken from ref. 4a énd.b, since these assump-
tions yield a close approx1mat10n of k2 (5) has been chosen in ana-
logy to (4). In W, f.(y) represents the deflection of a beam, . symme -
trlcally loaded at its ends by bendlng momentv:: in W,
f(y)ls the deflection of a beam, antisymmetrically loaded at its ends
by bendlng moments  and correSponalng shear loads. w, and w, satisfy the
dlfferentlal equation when £ - eo (m = -2, c, = - 6),‘and when A/B > ee
(eimply supported edges) '

The critical stress parametars k2 calculated by applylng the eneroy'
nme thod, are: ‘

for_symmetrical buckling of a web

kN 'X"(.(JG; 'n")c +(1-%)¢, "’—‘.""( %;)C:.F(“—JC +‘ | ( (3.—7)
::o+-‘3_— ’rr") Cs'*'(_L ‘)Cs + 2 '

for anti-symmetrical buckling of a web

I3 [401- 79) C2 +480- ) Cu v 1 4G+ (4 - B)Carau(i-Zdc, + 72 (6 - 8)

RN =
(.°s+—--1)c +6(E-lca+ g
for a flange
ke (o -qu-(ac +C] +(o. 08792 009868/.4.)C +('0795L,6 0.89395 M) C + 2_(\ - M)
i ooao7:sc +or|8|.,7C+033333
(6-9)
| These results are of the general form: »
| ' ‘RAPPORT:
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ko At = -;-f F(y+G(y, -

enabling the construction of nomograms~for C'withAstraight basic lines

for

and

k- AY

Y

9, where s has been assumed to be me 0,3.

6.2 The'agcuracz.pf the approximate solution,

. These nomograms have been given in figs. 8 and

" In ref. 4 a and b . a comparison is given:of'the appfoximate and the

k2

‘exact solutions. For c > 0 the error of kzlis maximal 1°/0 when
< 9, and & > 0,4, For a flange with positive restraini the error

of X? varies from 1/2%/0 at &/b = 10 tot 25-°/0 at £/b = 0,8.

For negative'csi c
~ the approximate value, obtaine

a and ¢

I, II and III resp..

a comparison between the exact value and-
d from the nomograms, is given in table

Table I ¢ according to a/ exact b/ approximate solution.

gffi -0’6 . 0,7 U, 8 0,9 1,2
a b | a b a b a b ‘a b |
0,7(=9,71 = |=7,96 - |=6,68 =  [=5,72 =5,9 |-4,04 4,06
1,4 |-8,44 - | =6,47 - |-5,09 =5,36|-4,16 -4,22\-2,80 -2,81
2,1|-3,19 =-3,85|=0,581 -0,60 +0,856 +0,85|+1,229 +1,21|+0,493 +0,50
2,0 6,0 oo |
1 0,7|-2,68 -2,68|-2,07 -2,07|-2 -2
1,4|-2,13  =-2,12|-2,00 -2,00|-2 =2
2,1-1,03 -1,03|-1,89 =-1,89|-2 =2

‘Table II ¢, acceraing to a/exact b/approximate solution.

gY/®

1,2

0,6 20,7 0,8 049
a b ‘a b a b ‘a b a b

0,7 0|=8,25 -8,52|-7,28 'L7,28
' 1;4 -8900 ”7108 -’7510
2,1 -7,45|-6,74 -6,75
0,7]:

1,4

2 ’ l < - N .
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'Téble'III .C acéording to a/exact b/approximate solution

Y L5 | 2,0 2,5 | 3 o
o a b a b a b| a b a b

0,3 . 3,64 =3,66 [-2,35 -23#L |-1,61 -1,66 |-1,15 -1,17 | -0,666 -0, 67

0,7 2,57 =2,81 |-1,05 -1,08 -0,403-0,40 |0, -0,14 | > 0

6 | 12
. a b a b
-0,300 -0,30 | -0,101L ~0,10
>0 L >0

Assuming the admlsulble error of c to be’ 5°/o, the nomozrams can be
used in the ranges of negative restralnt.

C ) -5, /1,)07 ; Cad-10, /b>°.’7 ; C>~3 /b>ls

A comparlson of theé results obtained from a calculation based upon the
~application of the nomograms and results available in literaturs is’ _
possible for U- and Z-sections with equal flanbes and constant wall
“thickness (see table IV).

Table IV:k® (referrlng to web) for channel and a-sectlons strlnoers
(a = with of web, b = w1th of flange)

B/a’ | 0,2 0,3 . | 0,375 10,5 [0,75 |1,0
nomogram method - |4457  |4,36. 13,96 2,91 [1,50 | 0,89
| ref.5 approximate solution|4,59 14,39 13,96 2,92 1,50 0,89
ref.2 exact solution | - - {4,00. - | 2,907 '1,496'. 0,885
The nomOgrhm method and ref.5 have been b;svd upon she sane appr0kluat-

ions for the deflections; so the results should be 1aenolcal, the
existing deviations give an impression of the reliability of the
nomograms. Comparison with the exact solutions shows that the approx-
imation is very close 1ndeed,this comparison covers roughly the ranbes _

of cs'and Co.

0.376< Yo € 1 0> €, »n2.50 o<¢e <270

| Therefore a general conclusion on the accuracy of the. approx1mat1ve
solution cannot be drawn. However 1t seems probable that the approxlmat-
ion cannot be in error for more than a few percents, since:

RAPPORT

TECHNISCHE HOGESCHOOL b
. 2 .44

VLIEGTUIGBOUWKUNDE




l. for positive coefficlents of restraint the error of k2 does not
exceed 1 and 2§ o/o for web and flanges resp.; _ :

2. the important errors. of the coefficients of restralnt occur with
small k and small &/b (see table I, II, III), whereas small k means
parrow width of plate and small £/b means”large width of plate;
therefore it is unlikely that the region of large errors will be

encountered in practice.

7. Applications | | |
For all n walls of the composed: cross section. the coefficients of .

restraint, Cq and ¢, for webs and C for. flanées, arc determined from thj

nomograms figs 8¥énd_, after couwputing LAb -and k - (b/Z)a, where

k;&%;i?g'éqf o and & are equal for all walls. The computatlon is to
be executed for 3. or. 4 values of o at 5 or 4 values of L. A guide for

making a guess at & can be obtained from the con51derat10n, that £ will
be smaller than thefwidth of the largest web and larger than the width
of the smallest web. A guess at o can be obtainéd from the comsideration
that the web with largest b/t will obtain much restraint from the
adaacent walls. Therefore the upper limi% of o will be that of a rigid- -

1y restrained plate. w1th (see—6.7)

kusdm\+asA%) | - 7=

where b is the width of'ﬁhe web with largest b/t and £ is the assumed
half wave length.
Hav1ng determined the coeff1c1ents of restralnt c the quantltles

S = (% ‘,_C).~ are compubed or s"=(i)°'(% ),c where ( B A is an

arbitrary unit of spring stiffness. . :

The computation endswith Lhe determination of the required
additionmal spring stiffness Rn.in The general procedure to
obtain R has been ouwlined in section 4.,

In the following explicit formulae for R or r =R (X), have
been given, applying to n ¢S , where the first and the last ‘wall
are flanges. : '

he2: F,= S, +5, | o o (7-2)

T 'Q_’} = 53 " 'a 5“1 5;; +S‘(so_l+ 552)» . . . (’ _‘3) .

z_s| -+ 50.1 + Ss:_

Aol i Fags Sy oy 25030(25 +Sa 4580+ [51(Sae* S5 +2SarSsal(Sas +553) | 7 -4)
2[s, $Sar+Ss2)+2Sanr SszJ + (25 +Saa+ 552 )(Saxt Ssa) -

RAPPORT |
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n:=5 - fys= Ss + {?- (28, +Sqq + 53&)[sa1 s.s“'s('sau*'_sl'-a) +* so.qssq(s;;"'ss;)] +
: "‘[S (Suz*ss0+asn.1§s§][N sc.q Ssq +(S“3*SS!)($&§+SSN)]} :,
{(ZS +Saa +Sst)[l.| Saa3Sga+ (SQ;*-SuYSmﬁ- ss‘l )] +

+2[$ (Sq_1+55a)+2.$,“$373(.§‘_‘+s 31'50.-4*55«)} (7 S)-
Formulae for more compllcated sections, where n:¢s can be derlved
from (2),to.5).Some important cases have been considered 1n table V.
Table V Derived structures withnh €5

n [T %;ven "basic ‘_derlved structures’ , Teplace -by
fortula case |. | o o ’
' — - | 7 - channel and Z- .,
2 | 7-2 —74 . -afi= -o|--—  sections with | Sa S
4 e - equal flanges :
| Al panel with Z-sec-| |
| = i ~tions at egual Sa Sy +25¢
| a | A ! . . k3 3
e i i intervals- .
z N - . . ' :
3 |73 a | NG squars tophat sSa ' Saa
B - sections : ' ,
'™, panel with tophat ' S |
! -_?'l\_ | sections at. equal | = Seir St Ser
L ' _intervals Sa Ssa
S \ ! : . ‘Saa Sar+ Sy
' NN B panel,mth alter- < | s S
2-|7-5 ) £ _L :La :]i' “i_ nat'_in;-;; equal flangr s :: 23;:;, a
i B - . | Ty rT=T—=red Z-sections at | ssa | 25aa
1 1 7 i-gqual intervals. o i’::";ssz'" ‘

8. Numerical example : : : , o
Ihe dimensions of a panel with alternating /-stiffeners at equal
distances. (fiz.6) has dimensions as given in table VI. :

Table VI. Basic d_zita for numerical example

el M A AT T SR R AN 2T

1 4 30 . 7,5 : U,160 2:’,5 : 2’5:

2. |4 | 75 |18,75 1 gy 1

2' |4 |30 | 7,5 0,160 125 2,5

3 |3 |11 53,67 . 13,2240 0,3135 0, 7426
3™ |3 |20 | 6,67 O,1264 . 11,5820 3,75

4 3. |50 16,67 0,7901 0,6528 1,50

5 |3 | 20 6,67 . |0,1264 1,5820 13,75

The critical half wave length will be. between b3 and b# The smaller :
4-section will be of secondary Amportance for tne wave length, so it nay
be expected that £ is much. larger than b, = 50 . shen wall 3 would be

RT .
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rigidly restrained £ = 0,660 x 101l = 67, dith finite etiffneee of
restraint & will exceed 67, but will not reach 101. Therefore practical
1imits for £ will be 75 and 90. Computations have been executed for
i 75; 82,5 and 90 or %— = 1,03 1,15 1,2, Applying (7.1) the upper
limits of_kaﬁ-will be 7.10; 7.41; 7.81. The lower limit is, neglect-
ing edge restraint, k23 = &4, Computations have been executed fer~ka3 .
4,51 ; 5,16 ; 5,80 ; 6,45 or ky = 1,40 ; 1,60 3 1,80 and 2,00,
In table VIL the cogfficients of restraint, read from fig.8 and 9, have
been tabulated. The graphical representation of the coefficient of .
additional restraint . , computed from (7,5) and viveﬁ in figil0
shows that the. considered range of o includes asymptotic values of ¥,
This fact thwarts the graphlcal interpolation. This inconvenience can'
be overcome by determining the asymptote from qg,h..o ’ again by
graphical interpolation of @, .. - B '
Finally the interpolation of K, and,Ktﬁt has been given in fig.10,
yielding K, < 585 , Y =1,2 . Aseuming E= 20’ kg/em® @, = 2850kgkd

Comparlson of table VII and tables I, 1I, III shows that the errors of

ca; Cq ‘and c. are very small indeed.
9. Notations . : _ :
T suffllx, referring to antl-symmetrlcal deformatlon of plate,
elastically restrained at both edges (web).
b : width of a plate, web or flange |
c coefflclent of restraint of a flange.-

c,: _»e- - " " " web, antlsymmetrlcally dlstorted

Cgyt coefficient of restraint of a web, syﬁmetrically,distorted

i : suffix for an afbitrary plate : ‘
k : non-dimensional buckling coefficient, defined by

£ : half wave length of buckling mode , |
Myy,n external moment required for equilibrium at joint n-l,n

n : number oi walls in the sequence i,
0 : suffix, referring to an arbitrarily chosen reference wall

r coefficient of additional restraz.nt9 deilned by

.

s : coefficient of rest:aint

s : sufflix refsrring to symmebrical deformation of plate, elastical-‘

iy restrained at both edges (web).
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t :fplate.thiéknsss |
w i deflection of plate
Xt longitudiﬁal'cosrdinaté
':,y-. lateral coordinate of a plate
E
J

: plate stlffness n‘
'. Young's modul : :
: edge momsnt in wall iat the Joint w1th wall j, positlve in’
_ anti~clockw1se direction - :

Rn;l;n.additional stlffness required for equlllbrlum = - (-—)

n-i,n
_Si-} ; stiffness of restralnt = —-C

lwi_i i:rotation of wall. i.at the joint wihh wall s posltive in anti-
o clockwisa direction ' |
- N wave length parameter = T{ %
i 3 Poisson's ratio. |
o £<compressive stress -
, ’qb;ibuckllng stress at half wave length z
crit crltical stress.
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fig,l “Buckling mode of a plate with adge restraint
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fig.2 Decomposition of buckling wods into a
and an anti-symuetrical part,
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Critical mode of panel with rcbularly spaced tophat

fig. 5
ectlon cstiffeners
—
\ ' 3u %,—

fig. ©

Critical mode of panel with woulculy Sp&ceu

4-stiffeners of alternating ‘size.:

fig. 7
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mbructure aequivalent to that of Fig.6
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R n-1,n
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A

ecrit,

fig.o Graphical deterwination of o

n-1,n <O

fig.4 Graphical det sriina Gl £ :
8 i & erninzbion of Oorit

P
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fable V11 KNumerical ixample: Coefficients of restraint znd results

- . ) o ' N
i 1l and 2 2

)
«Q

1 |wp | & Rt 6| b | 2P r

75 2’50 00224 ()o 061‘} "lojo . l- OO 1040 "‘,OO"”O —7. 70. —4‘21
' ] 0.2561 0,096 | -1,22 . 1.60| 0,60 |-7,66 | -3,98
C.2881 0,128 | -1.13 |1.80] 0.80 |-7.62 | -3.76
0.52C| 0.160 | -1.03 . ]2.00] 1,00 ~7.58 | =3.52

82,5 2,75 | 0,224 6,092 | =1.07 0,57 |=7.40 | ~5.70

o 0,256 | 0.124 | -0,99 : T el 6 0.77 |=7.37 | =5.50
0.288 |.G.156 | =0.90 ©|1.80| 0,97 [-7.34:1 5,30
0.520:4::0.188 | -0.81 2,00 1.17 |-7.30 =3, oy

90 |3.00| 0,224 |'C.113 | -0.88 1,201,501 0.91 |=7.17 |'=3.54

0.256-| 0,145 | ~0.80 o 12,600 0.91 [-7.14 | =35.15
0.288 10,177 | -0.72 - [1.80) 1.1l |-7.12|-2.97
U.320 105209 | -0, 64 12:000  1.51 -7,u9“;-2 7D

/b
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3.75 16,177 | C.106 |[-C.62 =1

: T u.202 O.131 1=0.58 -~ 2) 11 6&
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