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ABSTRACT 

 

Purpose: To increase the sensitivity in longitudinal analysis 

of DW-MRI data with the ball-and-sticks model. 

Methods: Longitudinal DW-MRI data (baseline and two 

follow-up scans) of 25 middle-aged subjects (47 to 61 years 

at base line) were acquired. After coregistering all the 

diffusion-weighted images (DWIs) from the baseline and 

follow-up scans to a subject-specific intermediate space, an 

extended ball-and-sticks model was fitted. Stick orientations 

were constrained such that they did not change over time. 

The stick fractions were warped and projected onto the 

TBSS (tract-based spatial statistics) skeleton, and were 

compared to a reference framework in which all scans were 

processed independently. 

Results: Compared to the reference framework, the standard 

deviation of the apparent noise on the primary stick 

fractions on the TBSS skeleton was reduced with 

approximately a factor two. 

Conclusion: The use of the proposed longitudinal DW-MRI 

pipeline may significantly increase the precision compared 

to a default cross-sectional image processing pipeline. 

 

Index Terms— DW-MRI, longitudinal, ball-and-sticks 

 

1. INTRODUCTION 

 

Diffusion-weighted magnetic resonance imaging (DW-MRI) 

is a non-invasive MRI technique that enables measurement 

of diffusion of water [1]. It is frequently used to assess the 

brain’s white matter integrity, because the water diffusivity 

reflects the microstructural organization of neural fibers [2].  

 

The quantitative nature of DW-MRI makes it especially 

suitable for longitudinal studies because it facilitates 

measurement of subject-specific changes in diffusion 

behavior. Longitudinal studies in DW-MRI have for 

instance been used to quantify small changes in the white 

matter after ischemic stroke [3], during development [4], 

and during normal ageing [5]. 

 

A limitation of many DW-MRI studies (e.g. [3-5]) is in the 

use of the conventional single tensor model. It is well 

known that water diffusion in white matter cannot be 

adequately modeled by a Gaussian, particularly in voxels 

containing more than one fiber tract. Therefore, diffusion 

descriptors computed from this model may lack sensitivity 

[6], or may suggest spurious change in the white matter 

microstructure [7, 8]. 

 

Several alternative models have been proposed to provide a 

more adequate description of the diffusion including the 

ball-and-sticks model [9], multi-tensor models [10], or 

CHARMED [11]. However, the number of unknown 

parameters is larger in these models, which hinders precise 

estimation. 

 

Particularly in a longitudinal DW-MRI study it is of interest 

that a good precision is achieved, because the effect size is 

typically small. Simultaneously, however, a longitudinal 

study offers the opportunity to pool information across 

different scans of the same subject. For instance, in many 

DW-MRI studies it seems reasonable that the orientation of 

white matters does not change drastically over the time span 

of a few years. This would allow the estimated white matter 

orientations to be constrained over time. In effect this 

reduces the total number of unknown parameters, which 

could enhance the precision of parameter estimation. 

 

The goal of our paper is to increase the sensitivity of 

longitudinal DW-MRI studies using the ball-and-sticks 

model. The key novelty of our approach is that we 

coregister the DWIs from the baseline and follow-up scans 

from the same subject and then fit a ball-and-sticks model to 

all DWIs simultaneously. While doing so the stick 

orientations are constraint to be the same on the different 

time points. All other unknown ball-and-sticks parameters 

are estimated separately for each time point. We evaluate 

the proposed method with diffusion data from 25 subjects. 

 

2. MATERIALS & METHODS 

 

2.1. Overview of proposed framework 

In Figure 1 an overview of the proposed framework is 

presented. After basic preprocessing, the DWIs from the 

baseline and follow-up scans are coregistered to a subject-



specific intermediate space. Next, an extended ball-and-

sticks model is fitted to all DWIs simultaneously. In this 

extended ball-and-sticks model, the stick orientations are 

constrained across the different scans. All other unknown 

parameters are still estimated for each scan. In the following 

sections, each of these steps will be discussed in more detail. 

 

 

Figure 1. Overview of the proposed framework for 

fitting a diffusion model to the DWIs of a single subject. 

2.2. Study population 

The proposed framework was evaluated on 25 middle-aged 

subjects (47 to 61 years at base line) from the Rotterdam 

Study, a prospective population-based cohort study among 

middle-aged and elderly subjects in a district of the city of 

Rotterdam, the Netherlands [12]. Ethical approval was 

granted by the institutional review board, and written 

informed consent was obtained from all participants.  

 

2.3. Data acquisition 
All subjects were scanned three times on a 1.5 Tesla MRI 

scanner (GE Signa Excite) using an 8-channel head coil. 

The average time between baseline scan and last follow-up 

scan was 5.8 years. No major hardware or software updates 

were performed on the scanner throughout the study [13]. 

DWIs were acquired with a single shot, diffusion-weighted 

spin echo echo-planar imaging sequence using TR = 8575 

ms, TE = 82.6 ms, FOV = 210x210 mm
2
, imaging matrix = 

96x64 (zero-padded to 256x256), yielding 35 contiguous 

slices with a thickness of 3.5 mm. DWIs were acquired in 

25 non-collinear directions with a b-value of 1000 s/mm
2
. 

Three volumes were acquired without diffusion-weighting 

(the b0-volumes) [13]. 

 

2.4. Preprocessing 

The DWIs from each baseline and follow-up scan were 

separately corrected for motion and eddy current distortion 

by affine coregistration to the b0-volume using flirt (part 

of FSL [14]). After coregistration to the reference b0-

volume, the gradient directions were reoriented according to 

the rotation component of the transformation [15]. Then, a 

single tensor model was fitted separately fitted to the DWI 

baseline and follow up data merely to facilitate mutual 

coregistration. 

 

2.5. Coregistration of DWIs 

The DWIs from the baseline and both follow-up scans were 

transformed to a subject-specific intermediate space. While 

doing so, it is essential to avoid any asymmetry bias [16]. 

We therefore extended the approach in [5] to support three 

scans. An overview is presented in Figure 2.  

 

Let A, B and C refer to the scans at three different time 

points. First, based on the FA (fractional anisotropy), all 

pairwise (nonrigid) transformations (i.e. TAB, TBA, TBC, TCB, 

TAC, TCA) were computed using fnirt (part of FSL). Next, 

the transformation to intermediate space M was computed 

by inverting and adding the displacement fields, e.g. TAM = 

inv(TBA)/3 + inv(TCA)/3. 

 

Figure 2. Overview of the coregistration of the DWIs 

from three different scans. 

The affine transformations applied during preprocessing 

(motion end eddy current distortion correction) were 

concatenated with the nonrigid transformations to the 

subject-specific intermediate space, such that only a single 

interpolation of the DWIs was required. Simultaneously, the 

DWIs were upsampled to 2.0 mm
3
 cubic resolution. After 

this transformation, the corresponding gradient directions 

were globally reoriented [15]. 

 

2.6. Reference ball-and-sticks model 

In the ball-and-sticks model [9], the diffusion-weighted 

signal in the i-th DWI is modeled as follows: 

𝑆θ,𝑖 = 𝑆0 ((1 −∑𝑓𝑗

𝑁

𝑗=1

)𝑒𝑥𝑝(−𝑏𝑖𝑑)

+∑𝑓𝑗𝑒𝑥𝑝 (−𝑏𝑖𝑑(V𝑗 ∙ g𝑖
𝑇)

2
)

𝑁

𝑗=1

), 

in which b is the diffusion-weighting parameter, g is a unit 

vector that specifies the direction of a diffusion-encoding 

gradient pulse, S0 is the non-diffusion-weighted signal, N is 

the number of stick compartments, d is a diffusivity 

parameter, fj represents a stick’s volume fraction and Vj the 

principal eigenvector of the j-th stick compartment.  

 

The function bedpostx (part of FSL [9]) was used to fit 

the ball-and-sticks model with N=2 stick compartments to 

each scan in its native space. After estimation, the stick 

fractions and orientations were warped to the subject-

specific intermediate space, using the appropriate functions 

in FSL (i.e. applywarp and vecreg). 

 



2.7. Longitudinal ball-and-sticks model 

In the longitudinal ball-and-sticks model, the diffusion-

weighted signal Sθ in the i-th acquired DWI of the k-th scan 

is modeled according to: 

𝑆θ,𝑖,𝑘 = 𝑆0,𝑘 ((1 −∑𝑓𝑗,𝑘

𝑁

𝑗=1

)𝑒𝑥𝑝(−𝑏𝑖,𝑘𝑑𝑘)

+∑𝑓𝑗,𝑘𝑒𝑥𝑝 (−𝑏𝑖,𝑘𝑑𝑘(V𝑗 ∙ g𝑖,𝑘
𝑇 )

2
)

𝑁

𝑗=1

). 

Here, the eigenvectors Vj are parameterized using spherical 

coordinates ψj and φj. In case of k=3 scans and N=2 stick 

compartments, the unknown parameter vector θ becomes 

[S0,1, f1,1, f2,1, d1, S0,2, f1,2, f2,2, d2, S0,3, f1,3, f2,3, d3, ψ1, φ1, ψ2, 

φ2]. Notice that now the stick direction parameters (ψ1, φ1, 

ψ2, φ2) are the same for each scan k. A maximum likelihood 

estimator using a Rician noise distribution was used to 

estimate the unknown parameter vector in each voxel of the 

intermediate space [10]. 

 

2.8. TBSS analysis 

The stick fractions of both the proposed (longitudinal) and 

reference framework were analyzed on a white matter 

skeleton in atlas space (FMRIB58) using TBSS (tract-based 

spatial statistics) [17]. The function tbss_x was used to 

warp and project the stick fractions onto a skeleton, which 

takes into account that partial volume fractions are not 

scalar measurements of diffusion but have orientations that 

need to be matched across subjects [18]. The ICBM-DTI-81 

white matter label atlas [19] was warped to FMRIB58 space 

and used to label skeleton voxels, such that average stick 

fractions over different white matter structures could be 

computed. 

 

3. EXPERIMENTS & RESULTS 

 

In Figure 3 one example of stick orientations estimated with 

the reference framework are visualized. In single fiber 

regions, e.g. the corpus callosum (red circle), the sticks are 

similarly oriented in the three different scans. In crossing-

fiber regions, however, the sticks have inconsistent 

orientations across the three scans (blue circle).  

 

The between-scan differences of the primary stick fractions  

of the same subject are primarily caused by ‘noise’. 

Therefore we take these between-scan differences as a 

measure of estimation variation. For each subject the 

standard deviation of the primary stick fractions f1 across the 

three scans is computed in the TBSS skeleton voxels. In 

Figure 4 we show this standard deviation, averaged over the 

25 subjects in our study. Observe that the average standard 

deviation of the proposed framework is only half that of the 

reference framework.  

In Figure 5 the average within-subject standard deviation of 

the mean primary stick fractions in each of the 48 white 

matter structures in the ICBM-DTI-81 atlas is visualized. 

Again it can be observed that the proposed framework 

yields smaller between-scan differences. Finally, as an 

example, we visualize the average primary stick fractions 

obtained with the proposed framework in the ‘Superior 

corona radiata R (label 25)’ in Figure 6. 

 

 

Figure 3. Example of stick orientations estimated from 

the baseline (red), the first follow-up (blue) and the 

second follow-up (green) scan of the same subject.  

 

Figure 4. The average within-subject standard deviation 

of the primary stick fraction on a white matter skeleton. 

 

Figure 5. Average within-subject standard deviation of 

the primary stick fractions in 48 white matter structures. 



 

Figure 6. Example of primary stick fractions obtained 

with the proposed framework in the 'Superior corona 

radiata R (label 25)' versus age. Connected points 

represent the same subject. Lines have random colors to 

distinguish between different subjects. 

 

4. DISCUSSION & CONCLUSION 

 

We have evaluated a framework to simultaneously fit the 

ball-and-sticks model to multiple scans of the same subject. 

This approach allowed the stick-orientation to be 

constrained over different scans, while all other parameters 

were estimated separately for each scan.  

 

We have limited our evaluation of the longitudinal 

framework to the ball-and-sticks model. More complex 

models of diffusion (e.g. [10] or [11]) were not supported by 

our DW-MRI data as they require the DWIs to be acquired 

with more than one non-zero b-value. 

 

A non-rigid transformation was used to warp the scans to a 

subject-specific intermediate space. We preferred this 

approach over an affine or rigid transformation such that 

shrinkage of the brain and growth of the ventricles could be 

represented. 

 

The advantage of constraining the orientations across 

different scans can be appreciated in Figure 3. The shown 

variation of the estimated stick orientations across scans 

simultaneously results in additional variance in the 

estimated stick fractions (see Figure 4 and Figure 5). Large 

fluctuations of the stick orientations across different scans 

may also affect the (orientation-based) labeling of the stick 

fractions used in tbss_x which will add to the variance on 

the skeletonized stick fractions. These are the primary 

reasons why the within-subject standard deviations of the 

stick fractions were much lower with the proposed 

framework.  

 

The small within-subject fluctuations of the stick fractions 

suggest that the proposed framework may be more sensitive 

to subtle changes in the white matter, and may therefore be a 

promising tool in future longitudinal DW-MRI studies. 
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