<]
TUDelft

Delft University of Technology

Optimization of annual planned rail maintenance

Oudshoorn, Menno; Koppenberg, Timo; Yorke-Smith, Neil

DOI
10.1111/mice.12764

Publication date
2021

Document Version
Final published version

Published in
Computer-Aided Civil and Infrastructure Engineering

Citation (APA)

Oudshoorn, M., Koppenberg, T., & Yorke-Smith, N. (2021). Optimization of annual planned rail
maintenance. Computer-Aided Civil and Infrastructure Engineering, 37 (2022)(6), 669-687.
https://doi.org/10.1111/mice.12764

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

https://doi.org/10.1111/mice.12764
https://doi.org/10.1111/mice.12764

DOI: 10.1111/mice.12764

RESEARCH ARTICLE

59 WILEY

Optimization of annual planned rail maintenance

Menno Oudshoorn'? | Timo Koppenberg?

! Algorithmics group, Delft University of
Technology, Delft, The Netherlands

2 Macomi B.V., Rotterdam, The
Netherlands

Abstract

Correspondence

Neil Yorke-Smith, Delft University of
Technology, P.O. Box 5031, 2600 GA Delft,
The Netherlands.

Email: n.yorke-smith@tudelft.nl

1 | INTRODUCTION

For the optimal condition of railway infrastructure it is
imperative to ensure a safe and durable network, and to
minimize the number of unexpected failures—causes of
major disruptions to the train schedule and high costs for
corrective maintenance.

As a case study, the Dutch railway network contains
more than 7000 km of railway track and is one of the
busiest railway networks in Europe. In 2018, a total of
165 million kilometres were driven by passenger trains,
and a total of 57 billion tonne-kilometres were driven by
goods trains (ProRail, 2020). The number of trains and pas-
sengers using the network is growing annually; and the
demands on the European rail network are expected to
keep increasing until 2040.

Much research has been done on preventative rail main-
tenance scheduling (Consilvio et al., 2020). However, the
problems studied in the academic literature are mostly
small and artificial. The methods used to solve these prob-
lems work well on small instances, but it is unclear how
they would scale to a large real-world problem with com-
plex constraints, such as in the Netherlands and other rail-
heavy countries.

| Neil Yorke-Smith!

Research on preventative rail maintenance to date majors on small or artificial
problem instances, not applicable to real-world use cases. This article tackles
large, real-world rail maintenance scheduling problems. Maintenance costs and
availability of the infrastructure need to be optimized, while adhering to a set
of complex constraints. We develop and compare three generic approaches: an
evolution strategy, a greedy metaheuristic, and a hybrid of the two. As a case
study, we schedule major preventive maintenance of a full year in the complete
rail infrastructure of the Netherlands, one of the busiest rail networks of Europe.
Empirical results on two real-world datasets show the hybrid approach delivers
high-quality schedules.

Against this background, we make the following con-
tributions to the state of the art. First, we develop and
benchmark three nonexact solution methods for the rail-
way planned maintenance problem: an evolution strategy,
a greedy algorithm, and a hybrid between these two. We
provide insight into the performance of these algorithms
in practice.

Second, we provide a study of a large-scale real-world
case. The instances that come from real data require over
600 maintenance jobs to be scheduled, with more than
8000 options for each job. Further, there exist complex,
noncontinuous constraints that severely limit the feasible
search space. This means exact methods such as mixed
integer programming (MIP) solvers, which are often used
to solve the indicated small instances of related problems
(Budai et al., 2006), are not suitable to solve this problem.

Third, we provide solutions to a real-world national-
level maintenance scheduling problem, which are of better
quality than the schedules currently being used.

This study was conducted in conjunction with ProRail,
the organization that has the sole responsibility to plan and
schedule the preventive maintenance for the whole of the
Netherlands. ProRail is also responsible for unplanned cor-
rective maintenance. For commercial confidentiality, all

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial License, which permits use, distribution and reproduction in any

medium, provided the original work is properly cited and is not used for commercial purposes.
© 2021 The Authors. Computer-Aided Civil and Infrastructure Engineering published by Wiley Periodicals LLC on behalf of Editor

Comput Aided Civ Inf. 2022;37:669-687.

wileyonlinelibrary.com/journal/mice | 669

https://orcid.org/0000-0002-1814-3515
mailto:n.yorke-smith@tudelft.nl
http://creativecommons.org/licenses/by-nc/4.0/
https://wileyonlinelibrary.com/journal/mice

> | WILEY

results have been scaled by an arbitrary large constant, and
the years of the datasets are redacted. The schedule devel-
oped informed ProRail in its planning for the year 2021
and beyond.

2 | RELATED WORK

Rail maintenance scheduling is a broad field where
different types of problems are considered. First, the
temporal granularity varies, from short to medium term
maintenance planning to longer term where strategic and
investment decisions are relevant (Simson et al., 2000;
Sousa et al., 2019). Second, the geographic granularity
varies, from taking into account individual tracks and
switches to looking at a higher level network of, for exam-
ple, an entire city. Third, some studies do not only consider
scheduling the maintenance but also deciding what main-
tenance needs to be scheduled based on some kind of
deterioration model (Ghofrani et al., 2020) and the trade-
off between costs and chance of failure (Mohammadi et al.,
2020); Memarzadeh and Pozzi (2016) also consider the
value of information in gathering data about deterioration.
Others assume that a list of necessary maintenance jobs is
known and only look at when to schedule them. Fourth,
the use of periodic and aperiodic tasks varies: both these
types of tasks, as well as their combination, are considered
in literature. Lastly, the literature is interested in planned
(scheduled) maintenance—the focus of this article—
proactive (data-driven) maintenance, and emergency
(corrective) maintenance. Lopes Gerum et al. (2019), who
combine predictive and planned maintenance, provide a
survey. Other works study railway timetabling (Yin et al.,
2019), or automated inspection (Guo et al., 2021).

Budai et al. (2006) introduce the preventive mainte-
nance scheduling problem (PMSP) where a set of routine
tasks, as well as one-time projects, must be scheduled. Sim-
ilarities with the problem treated in this article are that pos-
session and maintenance costs are being used, as well as
similarity in some constraints such as “project a is combin-
able with project b.” However, there are key differences:
the PMSP does not consider locations and location con-
flicts, and all costs are completely independent unlike in
the problem we address. Budai et al.’s problem is initially
solved by an MIP solver, but small (+15 tasks) problems
already could take more than 3 h. Recognizing that exact
methods are inappropriate, the authors propose several
greedy heuristics.

Separately, Peng et al. (2011) introduce the track main-
tenance scheduling problem (TMSP). Like the PMSP, a
set of projects must be scheduled; the maintenance teams
are also considered. Thus, the objective is to minimize
the total travel costs of the maintenance teams together

@ OUDSHOORN ET AL,
with the impact on railway operation. The authors present
an iterative heuristic approach, and apply it to a “large-
scale real-world problem” with 333 projects and 21 teams
over 48 weeks. The resulting sum of travel costs and soft
constraint violation penalties was a two-thirds decrease
over the human scheduler’s solution. Later papers on the
TMSP are, for example, Xie et al. (2018), who cast it as
a vehicle routing problem with time windows, and Su
et al. (2019), who study part of the Dutch regional rail net-
work. Our work does not schedule the maintenance teams,
but has more complicated hard constraints and soft con-
straints, and a real-world case study of larger size than
these authors. Another direction initiated by Peng and
Ouyang (2014) is clustering track maintenance jobs into
projects, with the intent of assigning projects to teams.

A sequence of authors apply various algorithmic
approaches to the PMSP and variants; Soh et al. (2012) is
one survey. For example, Budai-Balke et al. (2009) were
among the first to test various genetic and memetic algo-
rithms (GA, MA) on the PMSP. Adding the local search to
the GA improved performance for most instances tested.

Andrade and Teixeira (2011) use two objectives: main-
tenance costs and train delays. The authors focus on the
deterioration model and deciding whether maintenance
should be performed at all. Biobjective simulated anneal-
ing is used to solve the problem. Zhang et al. (2012) use
a deterioration model and consider “importance” of track
segments, which is similar to the notion of affected passen-
gers for certain subcorridors that arise in our problem.

Khalouli et al. (2016) test the PMSP model with a 2-year
horizon and approximately 30 projects. Using the CPLEX
MIP solver the authors manage to solve (only) 62% of
instances within 3 h. Kiefer et al. (2018) also formulate their
problem as an MIP model but quickly find out its run-
time limitations on a larger instance, exceeding the 24-h
time limit. Therefore, they develop a metaheuristic based
on large neighborhood search. They test it on the Vienna
tram network, the largest instance encountered in the
literature.

Peralta et al. (2018) use a multiobjective approach with
cost and delay as objectives. They use two multiobjec-
tive methods: AMOSA (Bandyopadhyay et al., 2008) and
NSGA-II (Deb et al., 2002). They also use a nonrandom ini-
tialization; solutions are generated following certain expert
heuristic rules. Such rules are also available for our case
study, although we will not use them due to the relatively
poor optimality of the manual schedules.

Summarizing, the literature does not explain how to
address simultaneously all of the following for preventa-
tive maintenance planning: (1) realistic hard and soft con-
straints; (2) multiple (at least two) objectives; (3) large
scale, beyond city or regional size; and (4) computational
tractability within 24 h.

OUDSHOORN ET AL.

Besides works on the PMSP and variants, it is possible
to combine scheduling train traffic with scheduling rail
maintenance; among the recent works are D’Ariano et al.
(2019) and Zhang et al. (2020).

Lastly, we note that other engineering maintenance
scheduling problems with related characteristics have
also been studied, such as road maintenance and power
grid maintenance scheduling problems. Both these prob-
lems also consider maintenance scheduling in some kind
of network-based structure. Typical solution approaches
are again inexact: genetic algorithms (Cheu et al.,
2004), metaheuristics (Froger et al., 2016), reinforcement
learning based on Markov decision processes (Gao &
Zhang, 2013; Medury & Madanat, 2013), and simulation-
optimization approaches (Shahmoradi-Moghadam et al.,
2021).

3 | PROBLEM STATEMENT
3.1 | Maintenance planning and
scheduling

Maintenance and constructing new infrastructure
accounts for a large part of the yearly costs rail infras-
tructure managers such as DB Netze Track, ProRail, and
SNCF Réseau. Further, performing maintenance causes
trains to be hindered, which causes major disruptions
and possible capacity problems on detour routes (Zhang
et al., 2020). There is patent incentive to create a main-
tenance schedule in such a way that maintenance costs
and unavailability of the track are minimized, while
still ensuring reliability by not decreasing the amount of
maintenance that is performed. The problem addressed
in this article focuses on the costs and feasibility of this
planned maintenance schedule.

Unavailability of rail service is a cost to the rail users. It is
accounted as cost from the perspective from the rail man-
ager because of contractual and regulatory obligations. For
example, ProRail has a business objective of minimizing
unavailability to freight and passengers.

Maintenance planning and scheduling is a large oper-
ation consisting of multiple stages. ProRail’s approach is
typical: the smallest unit of maintenance considered is an
asset operation, describing a piece of maintenance or new
infrastructure, which has to be performed at a certain part
of the network. Asset operations can vary in length and
costs. For example, consider the conservation of a signal
and the replacement of a “recloser”: the two operations
take the same amount of time—about an hour—but the
costs are around € 1000 and € 10,000, respectively. Another
common asset operation, the complete renewal of rail, is
usually planned for 200-1500 m in a single operation and

59 WILEY--

Subcorridors affected: Gd-Wd, Wd-Bkla,
wd-Ut

Percentage of trains blocked: 100%
Time window: February 2019 to June
2019

Project request

Available subcorridors Diration: 52 hours

Subcorridors affected by °
project request

O]
©
@
FIGURE 1 Request (in box) and affected subcorridor

mmReizgers & Goederen/ Passenger & Freight
e Hogesnelheidslin / High-speed Line

m= Goederen / Freight

= Museum / Heritage

FIGURE 2

Dutch railway network

can have a cost as high as half a million euros and a dura-
tion of up to 11 h.

Each year, a number of asset operations are selected to
be performed, and they are clustered to projects. The man-
agers of each project can then execute one or more project
requests. A project request is a request to work on certain
subcorridors of the network, for which those subcorridors
might have to be taken out of service. A subcorridor is part
of one or more corridors, which are parts of the rail net-
work with an ongoing transport flow (Figure 1).

When the project requests for a given year are known,
they can be scheduled. In the case of the Netherlands
(Figure 2), this scheduling is done manually by human
experts, and therefore takes a long time; usually, only a sin-
gle schedule is created for each year. Due to the complex-
ity and size of the problem together with having to deal
with incomplete data, unmodeled constraint logic, and

” | WILEY

involvement of other stakeholders, the human schedulers
have difficulty making a schedule that adheres to as many
constraints as possible and is even somewhat optimal in
terms of costs.

In practice, the problem as given is usually overcon-
strained even in terms of hard constraints only, because the
rail infrastructure managers, on one hand, simply specify
too many requests, and on the other hand, because they
are unaware of collective feasibility of the set of requests. A
discussion process begins a the computed schedule. Thus
a solution to the maintenance planning problem at a tech-
nical level—as we provide is this article—must be seen
as part of a larger sociotechnical decision process involv-
ing discussion among multiple stakeholders. We make
an important contribution to this process by providing
solutions with fewer constraint violations and lower cost,
obtained in much less time.

3.2 | Detailed problem description

The scheduling problem consists of a number of project
requests in a given time period, usually a year. Given a
list of project requests, each request must be assigned a
start time, with an hour granularity. This must be done
such that costs are minimized while respecting constraints.
Both hard constraints, which in principle must always be
adhered to despite the effect on costs, and soft constraints,
which give a cost penalty when broken, are present in the
problem. Scheduling within a project request is performed
at a later stage of the planning process, closer to execution:
it is out of scope of the higher level problem here.

For each project request, the following information is
given: (1) the duration (in whole hours); (2) the set of sub-
corridors the project request affects; (3) a set of prerequisite
project requests; (4) a time window indicating the period in
which the project request must be scheduled; (5) the main-
tenance costs of the project requests, divided into three cat-
egories: personnel costs, security costs, and constant costs;
(6) a percentage of passenger trains and freight trains that
will be blocked by this project requests on the given sub-
corridor; when zero, the project request does not cause a
disruption at all. Further, for each subcorridor, the follow-
ing information is given: (1) the set of corridors of which
it is part; (2) the number of passengers and freight trains
estimated to travel through it, for any given hour in the
global plan window; (3) the number of extra travel min-
utes each passenger can expect when the subcorridor is out
of service; (4) the percentage of travelers taking replace-
ment buses rather than a detour route by train when the
subcorridor is out of service; (5) the fine that has to be
paid per affected freight train when the subcorridor is out
of service.

@ OUDSHOORN ET AL.

Note that we represent the maintenance actions through
their length, affected area and costs: the details of the spe-
cific actions are not needed. Further, the more low-level
decision of bundling the smaller parts of maintenance to
the TVPs (see Section 3.2.2) is a later step in the process, not
in scope here. We exclude staff scheduling from this article
in order to limit the scope. However, the actual problem we
tackled includes staffing constraints, which our approach
successfully integrates.

3.21 | Problem objectives

The maintenance scheduling problem is a biobjective
problem in terms of costs, together with an objective
derived from the satisfaction of constraints.

Maintenance costs

The maintenance costs are the costs for actually per-
forming the maintenance and are paid to the contracted
maintenance company. There are three types of mainte-
nance costs: security costs, personnel costs, and constant
costs. The constant costs are independent of the planned
moment of a project request and are therefore not optimiz-
able.

The personnel costs are calculated per hour and subcor-
ridor, for each project request. First, the hourly costs are
computed by dividing the total personnel costs by the dura-
tion. Then, for each hour in the planned period, the hourly
costs are multiplied by a given personnel multiplier for that
hour. These are then all added together to find the total
personnel costs. When the duration of a project request is
less than 8 h, the costs are scaled up to a duration of 8 h to
represent the minimum time of a personnel shift. Finally,
when two short project requests on the same subcorridor
are planned directly after each other, their personnel costs
are scaled up together.

The security costs are costs for securing the workplace
for the maintenance crew. These costs are calculated per
overlapping period in a subcorridor. An overlapping period
indicates a period in time in which at least one project
request is planned at all times. For each overlapping
period, the security costs are the maximum security costs
of all project requests in the overlapping period. They are
given as a fixed cost.

The sum of the security, personnel, and constant costs
make up the first cost objective of the problem.

Availability costs

The availability costs are costs associated with the
(un)availability of the railway infrastructure and the
impediment experienced by passengers and freight trains.
Some of the availability costs are not actual monetary costs,

OUDSHOORN ET AL.

but rather the impediment experienced, expressed as a
cost value.

The first part of the availability costs are those for pas-
senger impediment. They are computed per hour and sub-
corridor. The maximum degree of impediment of project
requests scheduled at that hour and subcorridor is found. It
is also given how many passengers will travel through the
subcorridor at that time, and the extra travel minutes they
are expected to experience. Finally, a static month mul-
tiplier is given for each month of the year. These are all
multiplied to find the total extra travel minutes, which is
then multiplied by a cost per extra travel minute. The costs
are increased by 30% for each passenger expected to travel
by replacement bus because of the relative discomfort this
brings to the passenger. Finally, the costs are multiplied by
the found maximum degree of impediment.

The costs for freight train impediment are computed
similarly. The maximum degree of impediment for freight
trains is found, and is multiplied by the expected number
of affected freight trains and the fine per freight train. This
is done for each hour and subcorridor. Finally, a number
of alternative travel costs have to be paid. These are com-
puted per overlapping period for each subcorridor. This
can be done by computing the number of affected passen-
gers, and a given function maps this to a number of alter-
native travel costs.

The sum of the impediment costs for both passengers
and freight, and the alternative travel costs, make up the
second cost objective of the problem.

In addition to these two explicit cost objectives, we
have the third objective of maximizing satisfaction of the
soft constraints, explained further below. We will aggre-
gate the three objectives as a single weighted sum objec-
tive function representing total costs, and explore trade-
offs between this cost and the number of hard constraint
violations.

3.2.2 | Problem constraints

Both soft and hard constraints are present. Several con-
straints are conditional: they must be enforced only for
requests with hinder, meaning the request has a degree of
impediment for either passenger or freight trains larger
than zero.

Conflicts

There are five different conflict types that specify combi-
nations of subcorridors that may not be taken out of ser-
vice at the same time. These types are (1) corridor conflict:
trains traveling over one single corridor should experience
impediment at most once; (2) passenger detour conflict:
passengers must have an alternative route available so they

59) WILEY-=

can still get to their destination; (3) goods detour conflict:
goods trains must have an alternative route available so
they can still get to their destination; (4) junction conflict:
certain important junctions must stay reachable; (5) bor-
der conflict: trains must be able to cross the border at least
one location.

There may never be two project requests planned at the
same time if there is a conflict between any of their sub-
corridors. A pair of requests can create only a single con-
flict violation. The junction conflicts are a soft constraint;
the other four conflict types are hard constraints. This con-
straint is only enforced for project requests with hinder.

Dependencies

Dependency constraints specify combinations of a sub-
corridor and a time period where planning maintenance
is prohibited. This constraint is only enforced for project
requests with hinder.

Corridor constraints

The corridor constraints are soft constraints. They apply to
overlapping periods, which are, as explained before, con-
tinuous periods in time for a given corridor or subcorridor
in which at least one request is planned at all times. Only
requests with hinder are used to find the overlapping peri-
ods. In these constraints, the notion of TVP is used. TVP
stands for a “train-free period” and is used to describe an
extended period during which the rail is unavailable due to
one or more project requests. Due to the rules that ProRail
uses for this constraint, an overlapping period only counts
as a TVP if it is at least 24-h long.

The max TVP corridor constraint specifies the maxi-
mum number of TVPs that can be present in a corridor,
in the complete global plan window. The mintime between
TVPs corridor constraint specifies the minimum number
of hours that must be between two TVPs within the same
corridor.

Required time window

A project request may have a required time window that is
more restrictive than the global plan window, in which the
request must be planned. This is a hard constraint.

Max simultaneous requests at a subcorridor

A maximum number of project requests that may be sched-
uled simultaneously at a subcorridor is given. This is a
soft constraint.

3.3 | Mathematical model of the problem

We can now present a complete model of the maintenance
scheduling problem as a constraint programming model.

“ | WILEY

Table 1 summarizes the parameters, functions, and predi-
cates used in the mathematical model.

Decision variables
X; €N, 0<x; < Tepgs i =1,...,N: start time of project
request i in number of hours since T,

Objective functions
Tend
f10= 3, Y, pbMax(sc, 1)
t=0 sceSC

(TR, - MO, - ERM
-(1+0.3BUS,.) - ermCost)
+ atc(pbMax(sc, t) - TR, - MO,)

+ gbMax(sc, i) - (FT!, - FINE;.) (la)

x;+scaled;.s)

CoP,
fz(x)=z Co0, + Z PCM, - =1
iepP t=x;
Cos,
+ 2 2 max 1sc;p 1P

sceSC tvpegetTV Ps(affects subcorridor (sc))

Equation 1a calculates the availability costs. For each
hour and subcorridor, the passenger impediment costs,
alternative travel costs, and freight impediment costs are
computed. Equation (1b) calculates the maintenance costs.
The first part is computed per request, and contains the
constant costs and the possibly scaled, personnel costs. The
second part is computed per overlapping period and sub-
corridor and finds the maximum security costs for each
of them. Here, % denotes the security costs of project

request i per affected subcorridor.
Hard constraints

Vi € P : requiredWindow(i)

= max(0,TWS)) < x; < x; + d; < min(Te,q, TWE;) (2a)

Vi,j € P : hinders(i) A hinders(j) A conflict(i, j)

= -overlap(i, j) (2b)

Vi € P,d € D : hinders(i) A dependency(i,d)

= -overlap(i, d) (2c)

@ OUDSHOORN ET AL,

Constraint 2a enforces the time window constraint.
Each project request must be planned within the global
plan window, and within the more restrictive time win-
dow if it is given. Constraint 2b enforces the conflict
constraints. For each pair of project requests with a
potential conflict, overlap is not allowed if they both
cause hinder. Constraint 2c enforces the dependency
constraints. Given a dependency and a project requests
with hinder that potentially conflict, the two may not
overlap.

Soft constraints

We model the satisfaction of the soft constraints by
aggregating them into a single penalty function. Some
helper functions are defined in Table 1 (bottom). Then,
the equations to compute the soft constraint penalties
are

P,,(x) = (10,000 - cOV) (3a)

Pyrype(x) =) (20,000 - maxTVPC(c)) (3b)
ceC

Pouryp(X) = Z((10,000
ceC \(t1,t2)egetTVPs((getHindersOnaf fectsCorridor(c)))
-mTV(t1, t2))> (3¢)
Pyge(®) =) (20769 20,000) (3d)
sceSC

The first penalty (3a) corresponds to the junction
conflicts. (3b) arises from the max TVP corridor con-
straints, and (3c) from the mintime between TVPs con-
straint. (3d) is the maximum simultaneous requests at a
subcorridor.

The total of the soft constraint penalties is defined as fol-
lows, as the unweighted sum:

TotalSC(X) = Py pc(X) + Py p(X) + Pro(X) + Pppyse(X)
4)

Goal of the optimization

When formulated with a single-objective function, the goal
of the optimization is to find x = {x;, ..., x5} such that

X1.1(X) + x2f2(%) + x3TotalSC(x) (5)

OUDSHOORN ET AL.

59| WILEY-

TABLE 1 Parameters, predicates, and functions for the mathematical model of the problem

Parameters
L]

csctty
PDC

SC SC;

T,
Tena
d;
TWS;
TWE;
N:

maxCor,

start

mwsc
mwc

mpi

maxSC

TRy

ermCost

ERM,

BUS,.

FTy

ATC,

FINE,,

COP; COS; COO;
PCM,

Mo,
Predicates

overlap(i, j)
overlap(i, ty, t;)
hinders(i)
conflict(i, j)
dependency(i,d)

requiredWindow(i)

requestActive(P, t)
Functions

overlapping(t)
overlapping(t, P)

af fectsCorridor(c)

af fectsSubcorridor(sc)
getTVPs(P)

getHinders()
timeBetween(tvp,, tvp,)
pbMax(sc, t)

gbMax(sc, t)

Project request indices

Corridor index/subcorridor index/time index/maintenance type index

Set of all projects/set of all dependencies/set of all corridors

Set of all subcorridors/set of subcorridors affected by project request i

Start date of the global plan period

Number of hours in the global plan window

Duration of project request i

Time before which project request i may not be started

Time before which project request i must be finished

Number of project requests

Maximum number of TVPs on corridor ¢

Maximum number of weekends affected by TVPs per subcorridor

Maximum number of weekends affected by TVPs per corridor

Minimum number of hours that should be between two TVPs in a corridor

Maximum number of project requests that may be active at one subcorridor at any point in time
Number of passengers estimated to go through subcorridor sc at time ¢

Cost of an extra minute of travel

Number of extra minutes of travel per passenger when subcorridor sc is taken out of service
Percentage of travelers having to take replacement buses when subcorridor sc is taken out of service
Number of freight trains expected to go through subcorridor sc at time ¢

Amount of alternative travel costs when p passengers are affected

Fine that has to be paid per freight train when subcorridor sc is taken out of service
Personnel costs/security costs/constant costs of project request i

Personnel cost multiplier at time ¢

Month multiplier at time ¢

True if project requests i and j overlap in time

True if project request i overlaps with the time window (¢, t,)

True if project request i causes a disruption by hindering (part of) the affected infrastructure

True if project requests i and j would cause a conflict violation when planned in an overlapping manner

True if dependency d is relevant to project request i, i.e., when project request i is planned during the
specified subcorridor and time window of d, a dependency violation would arise

True if project request i has a required window which is tighter than the global plan window on at least
one side

True if any request in the set P has a planned period which overlaps with time ¢

Returns the set of all project requests whose planned period overlaps with time ¢
Returns the set of all project requests in P whose planned period overlaps with time ¢
Returns the set of all project requests affecting corridor ¢

Returns the set of all project requests affecting subcorridor sc

Returns a set of TVPs, i.e., overlapping periods of at least 24 h, from the requests in set P. A TVP will have
a start and end date, as well as a list of requests that are part of the TVP.

Returns all project requests i for which hinders(i) is true

Returns the time between TVPs tvp, and tvp,

Returns the maximum passenger blockage of project requests affecting subcorridor sc at time ¢
Returns the maximum goods train blockage of project requests affecting subcorridor sc at time ¢

(Continues)

“ | WILEY

TABLE 1 (Continued)

Functions

scale(x, n)

atc(n)

Soft constraint penalty
helper functions

coV
maxTVPC(c)
mTV(t1,t2)
mOV (sc)

OUDSHOORN ET AL.

EiEp

Returns the number x scaled up to the nearest multiple of n

Returns the alternative travel costs for an overlapping period in which n passengers are affected

l{@, j)|hinders(i) A hinders(j) A conflict(i, j) A overlap(i, j)}|
max(0, |getTVP(getHinders() N af fectsCorridor(c))| — maxCor,)
max(0, mpi — timeBetween(¢t1, £2))

max, ., .(Joverlapping(¢) N affectsSubcorridor(sc)|) — maxAtOneLocation

is minimized and all hard constraints are satisfied. In
the case study of Section 5, the weights y; are set uni-
formly to 1, according to the preference of the domain
experts.

4 | ALGORITHMS

This article approaches the rail maintenance planning
problem of Section 3.3 by developing three algorithmic
approaches. All three are inexact methods, in light of,
first the complexity of the problem studied, and second,
the desire by the stakeholders to find (only) a sufficiently
good solution. Attempting to find one “optimal” solution
is inappropriate due to, on one hand, the multistakeholder
decision process, which is informed by the mathemati-
cal optimization—but which is not (and cannot be) incor-
porated into it—and on the other hand, the two objec-
tives, costs and constraint violations, whose trade-off is
ultimately a managerial decision by the rail management
company.

The first algorithm is an evolution strategy: a
population-based local search method. The second is
a greedy algorithm, which tries to find globally (near)
optimal solutions by making locally optimal choices. The
third algorithm is a hybrid, which aims to combine the
strengths of the first two approaches to provide solutions
with better quality.

4.1 | Evolution strategy

The motivation to consider an evolution strategy (ES) is,
first, their effectiveness in complex multiobjective prob-
lems, and second, the popularity of genetic and evolution-
ary algorithms in maintenance planning, as Section 2 sur-
veys. A member of the family of evolutionary algorithms,
an evolution strategy uses small mutations to change a
population of individuals and explore the search space

(Emmerich et al., 2018). Algorithm 1 shows pseudocode.

Algorithm 1: Evolution strategy

Initialize parent population P, repeat
repeat
Select randomly p parents from P,
Recombine the p selected parents to form an offspring r
until A offspring are generated,
if comma-selection is used then
‘ The new parent population is determined from the
offspring population

B Y R S R

else

®

The new parent population is determined from both the
old parent population and the offspring population
10 until a termination criterion is fulfilled,

The termination criterion is a given number of genera-
tions. In the case study, this number was set so the algo-
rithm terminated in approximately 24 h. This allows the
manager to run the algorithm overnight.

There are three parameters that need to be set: the par-
entsize u, the offspring size 4, and the selection type: either
offspring only (comma selection) or both parents and off-
spring (plus selection). Selection of the next parent pop-
ulation is done deterministically. Note that the fitness of
individuals is used when selecting the parent. In our imple-
mentation we used plus-selection so well-performing par-
ents will not be discarded. We experimented with crossover
and found it ineffective, due to the interdependencies
between elements.

4.1.1 | Mutations

With p being equal to 1, there is no recombination and
an offspring individual is created by applying a muta-
tion to a parent individual. Specifying good mutation(s)
is arguably the most important part of creating an effec-
tive evolution strategy. Several problem-specific mutations
have been created, which focus on decreasing costs and
constraint violations, as well as (random) exploration of
the search space.

OUDSHOORN ET AL.

Day and hour mutations

These mutations move a randomly selected project
request to a random other day or hour, respectively. The
required time window of a selected request is taken into
account, but other constraints are not checked; these
mutations are primarily for exploration of the search
space.

Bucket mutations

Buckets are groups of project requests that are non-
conflicting and affect similar subcorridors. By planning
buckets in an overlapping manner, both availability and
maintenance costs decrease. There are three bucket
mutations:

* Create bucket mutation: Find two project requests that
are currently notin a bucket and are eligible to be created
into a bucket. Create a bucket from those two requests.
The bucket is planned at the original plan moment of
one of the two requests with equal chance.

* Expand bucket mutation: Take a random request that is
not in a bucket yet and try to find an existing bucket that
would accept the request. If no such bucket is found,
retry with a different request until a set number of tries.
If multiple eligible buckets are found, choose one at
random.

* Shrink bucket mutation: Take arandom bucket and move
one request out of the bucket and plan it at a random
other time. If the bucket contained only two requests,
the bucket will be removed.

Fix constraint mutations

These mutations try to decrease the number of hard
constraint violations, specifically through decreasing con-
flict and dependency violations as these are the hard-
est constraints to satisfy. There are separate mutations
for conflicts and for dependencies; they work in a simi-
lar way. First, a project request that is currently in vio-
lation is found. Then, possible time windows where it
would not cause a violation are computed. If at least one
long-enough time window is found, the project request
is moved to (one of those) time window(s). If no such
time window is found, the project request is moved to
a random other time. If possible, the starting time of
the request is kept the same, such that only the date is
changed: for example, a request planned at night is kept at
night.

Each mutation is given a pre-set weight, and whenever
an individual is mutated, one of the mutations is randomly
selected using those weights. Future work could adaptively
modify the weights, in the style of adaptive large neighbor-
hood search.

59 WILEY--"

412 | Constraint cooling

Initial tests showed that the evolution strategy was quite
effective in decreasing the number of hard constraint vio-
lations. However, the cost optimizations were unsatisfac-
tory; the algorithm became stuck in a local optimum, from
which it could not escape without changing the solution in
such a way that would initially increase the hard constraint
violations again. Therefore a process called constraint cool-
ing has been implemented, drawing on ideas from simu-
lated annealing (Ingber, 1993). During the runtime of the
algorithm, the number of allowed hard constraint viola-
tions is slowly decreased. Any solution with fewer viola-
tions than the allowed number at the time is considered
feasible and is only compared on costs. The idea behind
constraint cooling is that, instead of first optimizing the
violations and then the costs, the two are optimized simul-
taneously. Initial tests showed that the final solutions had
lower costs with cooling implemented.

The cooling schedule used is C; = C; - a!, with C,, being
the allowed constraints violations at the start of the algo-
rithm, a the cooling factor, 0 < o < 1, ¢t the number of
the current generation, and C, the allowed constraints
at generation ¢. A minimum number of allowed viola-
tions is specified to lessen becoming stuck in a local
optimum. In practice, given a maximum and minimum
number of allowed violations, « is chosen such that the
minimum is reached after two-thirds of the total num-
ber of generations. This means in the final one-third of
the generations, the number of allowed violations is kept
constant.

413 | Separation of requests with hinder

As explained in Section 3.2.2, some project requests do not
have any passenger or freight impediment and therefore
do not hinder the subcorridors they affect. These project
requests do not cause any availability costs. Further, they
are not part of the (most difficult) constraints; they do not
cause conflicts or dependency violation, and are not taken
into account when computing TVPs. These requests are
relatively unimportant; almost all of the problem’s diffi-
culty is caused by the requests that do hinder. Therefore,
the decision was made to separate the requests with hinder
from those without. The evolution strategy is only run on
the blocks with hinder, and the blocks without it are added
greedily afterward. This is done by sorting these project
requests descending on length, calculating the (estimated)
personnel and security costs for each request for each pos-
sible plan moment and planning the request at the time
which is optimal in terms of those costs.

“ | WILEY

Through this separation, the runtime of the evolution
strategy is spent on optimizing the most difficult part
of the problem, and no time is wasted on moving rela-
tively unimportant project requests. Initial tests indicated
almost no loss of solution quality when adding the project
requests without hinder using the above greedy method.
We next consider performing all the scheduling using a
more advanced greedy algorithm.

4.2 | Greedy algorithm

Greedy algorithms follow the problem-solving heuristic of
making a series of locally optimal choices, in the hope that
this will lead to a solution that is (close to) globally opti-
mal. The speed of a greedy algorithm is the motivation for
exploring this approach. Algorithm 2 provides pseudocode

Algorithm 2: Greedy algorithm

1 Separate the project requests in two lists H (with hinder) and NH
(without hinder)

2 Sort H descending on the expected affected passengers: the average
number of affected passengers per hour for each of its locations
times the length of the request in hours

3 Sort NH descending on length in hours

4 for each project request x € H do

5 if length of x < 4 then

6 | startTime < 01:00

7 else

8 | startTime « 22:00

9 for each day d in the global plan window do

10 | Plan x on d at startTime and keep track of the best result
1 Plan x on the best found result
12 for each project request x € NH do

13 for each day d in the global plan window do

14 | Plan x on d at 07:00 and keep track of the best result
15 Plan x on the found best result

for a greedy algorithm for the maintenance scheduling
problem. The idea is to first schedule those requests with
hinder (in order from most predicted disruption to the
least) and then those without hinder (in order from the
longest to shortest).

Order of project requests

Project requests with hinder are ordered by the expected
impact they have, specifically on availability costs. To do
this, both the length of a project request and the expected
number of passengers for each of its affected subcorridors
are taken into account. This way, a long project request that
affects a very idle subcorridor does not get planned early
on, because it would not affect that many passengers any-
way. The requests are planned in reverse order of impact, so
that the most impactful requests have the highest chance
of finding an optimal plan moment. The requests without
hinder are ordered on the length in hours, as they do not
affect any passengers.

OUDSHOORN ET AL.

EiEp

Starting time of a request

In order to decrease the runtime of the algorithm, we
reduce the temporal granularity: not each hour in the
global plan window is tried for each request; rather, a daily
granularity is used. The start time for a request is chosen so
that it provides the most potential for an optimal solution,
according to the following heuristic. A request with hinder
that takes fewer than 4 h is planned at 01:00, so that is fin-
ished before 05:00. The period between 01:00 and 05:00 is
the least busy time, so the least passengers will be affected.
A request with hinder that takes more than 4 h is always
planned starting at 22:00. This way, a request which takes
less than 8 h fits in a night, and a request that takes less
than 56 h fits in a weekend. Finally, a request without hin-
der starts at 07:00, because personnel costs are the cheapest
between 07:00 and 20:00, and these request do not cause
availability costs so they do not need to be planned during
a night or weekend.

Choosing the plan moment

Choosing the plan moment of a request is simple: while
trying each possibility, we keep track of the best plan
moment. Of course, hard constraint violations are more
important than costs. It can occur that no possible plan
moment can be found, for which the request would not
create any hard constraint violations. In that case, a
moment causing the least hard constraint violations is
preferred.

Randomization

The greedy algorithm in its basic form is fully determin-
istic. This is contrary to the evolution strategy, which
contains many random components. There are two main
points in the algorithm in which randomization can be
applied to the greedy algorithm: the order of the project
requests, and the chosen plan moment. We considered
three randomization methods as means to perturbation the
determinization:

* Roulette wheel selection: Given some kind of metric per
project request, select the next request to be planned by
roulette wheel selection on that metric (Zhang et al.,
2012). Optionally, only the first n requests are planned
using this method and the remainder deterministically.

* Randomize next request: The requests are ordered with
the deterministic order, but at each iteration, one of the
top n requests is chosen to be planned next, according to
a predefined distribution.

* Randomize start time: Instead of just keeping track of the
best moment to plan a request, an ordered list of possi-
bilities is kept. At the end of each iteration, one of the
best n options is chosen using a predefined distribution.

OUDSHOORN ET AL.

TABLE 2 Characteristics of the two datasets
Characteristic
Number of project requests
With hinder
With required time window
Do not fit in required window
With prerequisites
With nonzero maintenance costs
Affected subcorridors per request
Length of requests in hours
Affected corridors per request
Potentially conflicting dependencies per request (with hinder)

Potentially conflicting requests per request (with hinder)

Note: Apart from the first row, the table shows the min/mean/max.

These methods can also be combined. The effect of these
randomizations are studied in Section 6.

4.3 | Hybrid greedy-ES
Initial tests showed that the evolution strategy and the
greedy algorithm had complementary strengths and weak-
nesses. The evolution strategy was effective in minimiz-
ing costs, especially availability costs. The solutions pro-
vided by the greedy algorithm usually had slightly higher
availability costs, but much lower soft constraint penalties.
The motivation for combining the algorithms into a hybrid
form is to combine the strengths of these algorithms to pro-
vide better solutions.

The two algorithms are combined in a multistage
approach to create a iterated multilevel algorithm (Raidl
et al., 2010). Pseudocode is given in Algorithm 3.

Algorithm 3: Hybrid greedy—ES algorithm

input :The number of stages n, n > 0, the number of project
requests to be planned each stage {p;, ..., p, }, an ordered
list of all project requests to be planned, and a number of
generations for each stage {g,,....g,}

1 Using the randomized greedy algorithm, create a solution with the
first p; project requests planned. Repeat this until an initial parent
population for the evolution strategy is filled.

2 Run the evolution strategy on the created population for g;
generations.

3 fori=2tondo

4 Take the resulting population from the previous evolution
strategy for each individual in this population do
5 Add the specified p; requests using the randomized greedy
algorithm
6 Add the resulting individual to the next starting population
7 Run the evolution strategy on the created population for g;

generations
8 return best solution of the final evolution strategy run

The hybrid algorithm works by repeatedly planning a
number of requests greedily, running the evolution strat-

59| WILEY--

Year X Year Y

1033 688

526 316

305 484

4 9

0 0

455 530
1/3.47/23 1/4.75/19
3/26.7/576 2.33/49.5/744
1/2.29/8 1/2.73/10
0/41.3/308 0/159.7/1040
0/181.3/467 0/117.3/277

egy on those solutions for a while, and adding more
requests greedily to the best individuals of the evolution
strategy. This is done until all requests have been planned.

5 | EXPERIMENTAL SETUP

5.1 | Datasets

Recall that our work was performed when the Year X
Dutch rail maintenance plan had been decided, but prior
to the Year Y plan. We received from ProRail the actual
project request data for both Year X and Year Y, as well
as the plan made by ProRail for Year X. Table 2 overviews
characteristics of both datasets. Note that both are overcon-
strained problems: there is no solution that will satisfy all
hard constraints. In practice, solutions to the mathemati-
cal model are input for the stakeholder discussion, which
ultimately leads to a compromise solution and postponing
(until the next year) the project requests which cause the
remaining hard constraint violations.

The first part of the table shows the total number
of project requests and the number of project requests
with certain properties. Both datasets contain a substan-
tial number of project requests to be planned. The Year
Y data contains fewer requests than the Year X data, but
in other characteristics it will become clear that despite
having fewer requests, the requests in the Year Y data
are generally longer and more impactful. Both datasets
have an approximately 50/50 split between project requests
which actually hinder the subcorridor and those that do
not. In both datasets, there are a large number of requests
that have a required window. Most of these required win-
dows are quite large and do not limit the possibilities
much. On the other hand, both datasets contain a num-
ber of project requests that do not fit in their own required

* | WILEY

window. This means that it is impossible to find a solution
with zero hard constraint violations. Due to missing data,
neither dataset has any project request with prerequisites,
both datasets contain some project requests that have zero
maintenance costs.

Table 2 also shows the (average) impact of project
requests. It can be seen that project requests in the Year
Y data are generally longer and affect more passengers.
Finally, the (potential) impact of certain constraints is
shown. The number of affected corridors indicates the
difficulty of the corridor constraints. The number of
potentially conflicting requests and dependencies indicate
the difficulty of the conflict and dependency constraints,
respectively. It can be seen that in the Year Y data, the
number of potentially conflicting dependencies is much
higher on average. The number of potentially conflicting
requests is relatively equal when taking the total number
of requests into account.

As stated, for the Year X data the actual schedule
created—manually—by ProRail is also available. Running
this schedule through the formal model described in Sec-
tion 3 reveals that the schedule has total costs of 965.2
(recall that all results have been scaled by an arbitrary
large constant) and breaks 690 hard constraints. The man-
ual schedule violates this large number of constraints due
to: some unmodeled exceptions, some oversights such as
missed dependencies during planning, and, most often, by
conscious decision in stakeholder discussions. This solu-
tion can be used to compare the results of the different
algorithm. For the Year Y data, at the time of our experi-
ments, the actual schedule was not yet planned.

The Dutch Year X data are used as the primary dataset
with which to test the algorithms. The Year Y data are
used as a validation set, to see whether the conclusions
drawn using the Year X data still hold. If this is the case,
the conclusions have more robustness over changes in the
input data.

5.2 | Experimental design

We will assess empirically the three methods proposed in
Section 4 individually, and then compare them with each
other. In addition, we compare with a multiobjective evolu-
tionary algorithm from the literature, NSGA-II (Deb et al.,
2002).

5.2.1 | Test of the evolution strategy

Because the evolution strategy contains many randomized
components, a total of 53 runs have been performed on the
Year X data. Further, six runs have been performed on the

OUDSHOORN ET AL.

EiEp

TABLE 3 Parameters for the evolution strategy
Parameter Value
Parent size 40
Offspring size 170
Selection type Parent and offspring
Number of parents (o) 1
Constraints allowed at start 1200
Constraints allowed at end 8

Year Y data. Each run of the algorithm was for24 hon a 2.7
GHz CPU, 16 GB RAM machine. Table 3 shows the param-
eter values.

The parent size, offspring size, selection type, and the
number of allowed constraints at the start have been set
through an initial sensitivity analysis. A full parameter
study is left as future research. The number of allowed
constraints at the end of the algorithm is set to 8 rather
than 0. This relaxation is warranted because, as shown
in Table 2, there are a number of requests that do not
fit in their required window and therefore always cause
a constraint violation. Further, initial tests showed that
almost all solutions had 6 or 7 constraint violations at the
end. By setting the allowed constraints to 8, the slope of
constraint cooling is somewhat shallower and this should
allow the algorithm more time to optimize the costs
while also gradually decreasing the number of constraint
violations.

5.2.2 | Greedy algorithm

Both the deterministic and randomized versions of the
greedy algorithm have been tested on the Year X data.
Testing the deterministic version requires only a single
run.

We study five methods of randomization: (1) roulette
wheel selection, all requests; (2) roulette wheel selection,
first 50 requests; (3) randomize next request, choosing one
of the top 3 options with probability 0.5/0.35/0.15; (4) ran-
domize start time, choosing one of the top 3 options with
probability 0.5/0.35/0.15; (5) randomize both next request
and starting time, choosing one of the top 3 options with
probability 0.5/0.35/0.15. The probabilities for the last three
methods are not based on parameter analysis, rather with
the intuition of giving the better option more probability,
but still choosing the second or third best option often
enough of the time to have a significant impact on the
results. Lastly, we can restrict roulette wheel to the first
50 requests only, because in the data, there are relatively
few large requests with major impact, and many small
requests. By taking only the first 50 requests, which will all

OUDSHOORN ET AL.

TABLE 4 Tested configurations of greedy-ES hybrid, Year X data

Number of
Run stages Requests per stage
1 2 50/983
2 10 15/20/30/50/80/100/
100/120/250/268
3 2 90/943
4 2 20/1013
5 3 20/70/943
6 2 50/983
7 2 50/983

be relatively impactful, there is still randomization but bet-
ter results are expected. For each of these methods, 20 runs
were performed. Each run of the greedy algorithm takes
approximately 10-15 min on the same machine that was
used to run the evolution strategy.

5.2.3 | Hybrid algorithm

One of the strengths, but at the same time also a weakness,
of the hybrid algorithm is its customizability. By being able
to fully specify the number of stages, requests per stage
and runtime per stage, the algorithm is likely to be able to
work well on different types of data. However, it is not obvi-
ous what the optimal values for these (hyper)parameters
should be, and how they may change over a change in
input data. To obtain an initial idea of the effect of changing
the number of stages as well as the number of requests and
runtime per stage, seven various configurations have been
tested, as shown in Table 4. We discuss the results (right
two columns) in the next section.

The first run is considered the baseline, and the fol-
lowing runs test various aspects of changing the parame-
ters. In run 2, the number of stages is increased substan-
tially. Runs 3 and 4 test what happens when the number
of requests in stage 1 increases and decreases, respectively.
Run 5 tests what happens when a single stage is added. In
runs 6 and 7, the effect of changing the time distribution
over the stages is tested.

The parameters for the evolution strategy part of the
greedy algorithm are the similar to the parameters used
in the experiments for the evolution strategy itself. For the
greedy part, the “next request” randomization is used, with
probabilities 0.5/0.35/0.15 to choose the best, second best,
and third best request, respectively. The total runtime of
evolution strategy is always set to be 20 h; the total time
of the greedy algorithm is roughly 3-4 h, meaning that the
total runtime will be approximately the same as the run-
time of the runs of the evolution strategy.

59| WILEY-—

Runtime per

stage (h) Total costs Violations
12/8 928.1 10
2/2.5/2.5/2.5/2/2/ 967.8 8
2/1.5/1.5/1.5

12/8 937.4 10

8/12 932.8 10

7/7/6 934.5 10

16/4 949.8 10

4/16 961.2 10

6 | RESULTS

This section reports the results of the experiments
described in Section 5. The scope is the whole of the
Netherlands rail network, for Year X data and then for
unseen Year Y data.

6.1 | Evolution strategy

6.1.1 | Year Xdata

As stated earlier, in total the evolution strategy was run 53
times on the Year X data. Figure 3a shows the solutions in
terms of total costs and hard constraint violations.

A majority of the solutions have 10 hard constraint vio-
lations; 35 of 53 runs. The other solutions have 11-17 hard
constraint violations. However, the relation between costs
and constraints is not as expected. It might be expected
that solutions that end up with slightly more constraint
violations also reach lower costs because they theoretically
have a bit more space for cost optimization. This relation is
not visible though; the lowest cost solution is one with 10
constraint violations, and there are many solutions with 10
constraint violations and lower costs than the lowest cost
solutions at higher constraint violations. It seems that the
algorithm sometimes converges to a bad local optimum in
terms of hard constraint violations, while the costs are in
the same range as the other solutions.

Figure 3b shows a kernel density estimate of the costs
of a solution of the evolution strategy. All solutions, also
the ones with more than 10 hard constraint violations,
have been taken into account. The average costs are 986.67
814.8 million with a standard deviation of 8.717.2 million.
The distribution closely resembles a normal distribution.
To confirm this, an Anderson-Darling test for normal-
ity has been performed on the data. This test returns a
p-value of 0.555, and therefore does not reject the null
hypothesis that the data is normally distributed under a

* | WILEY

1000 1 °
$ o
° ° (]
995 - t °
[)
[]
990 1 °
°
i . .
985 °
3 ° °
: []
g 980 ' ®
: °
975 >
970
965 °
oL

N
N

10 11 12 13 14 15 16 17 18

Hard constraint violations

(a) Evolution strategy results, costs versus constraint violations

FIGURE 3

900 -

850 -

800 -

-
a
o

Total costs

700 -

—— Average
Minimum

—— Maximum

—— Lowest cost solution

—— Highest cost solution

650 -

0 2000 4000 6000 8000 10000 12000

Iterations

FIGURE 4 ESrobustness analysis, Year X data

significance level of .05. Although there are no major out-
liers in the obtained solutions, the spread in terms of costs
is still relatively large. This is a clear disadvantage of this
algorithm. Doing a single run may yield an “unlucky”
result, and when running the algorithm on new input data,
multiple runs are required to get an idea of the average
solution. Indeed, because the spread in costs is relatively
high, it would be beneficial if there is a significant correla-
tion between the quality of intermediate solutions and the
end result of a single run. If so, early restarting could be
implemented if an “unlucky” run is detected.

To test this hypothesis, the optimization traces of all runs
are plotted in Figure 4. The behavior of the trace with the
costs first going down and then up again is due to the
constraint cooling process; these intermediate solutions
have more hard constraint violations and their costs are
not representative as a final solution. Looking at Figure 4,
first it is visible that the spread in solution quality already

Probability

o
o
N}

Results of evolution strategy experiments, Year X data

OUDSHOORN ET AL.

0.05 4

0.04 4

e
=3
@

0.014

0.00

4 9/_%0 9é0 9;0 9é0 9é0 10‘00 10’10
Total costs
(b) Evolution strategy results, kernel density estimate of costs only
TABLE 5 Results of evolution strategy, Year Y data

Run Total costs Violations
1 1092.6 27
2 1101.5 27
3 1092.4 34
4 1086.7 25
5 1102.9 25
Mean 1095.2 27.6

appears early on in the algorithm: around 2000 iterations
the spread seems to be almost as large as at the end of the
algorithm. Unfortunately, there seems to be little correla-
tion between the intermediate results and the end result
of a run. Considering the traces for the lowest and highest
cost solution, this becomes quite clear. Around 2000 itera-
tions, the lowest cost solution almost has the highest costs.
In the middle stages of the algorithm, the lines for the low-
est and highest cost solution lie very close. Only at the end
of the algorithm, they clearly separate. This means that is
not possible to restart early on in the algorithm, and a full
run is required to find out the end result.

6.1.2 | Year Ydata

Five runs have been performed on the Year Y data, as
shown in Table 5. Some preliminary conclusions can be
drawn. First, the number of hard constraint violations in
the Year Yresults is higher than in Year X, even though the
number of allowed constraint violations at the end of the
algorithm was set to the same value. This indicates that for
the Year Y data, it is harder to solve all hard constraints. A
possible cause for this is the fact that there are many more

OUDSHOORN ET AL.

— ES, costs
ES, constraint violations
—-= NSGA-Il, costs

1200 ‘ I NSGA-II, constraint violations

-
Hess I it

1150

Total costs

1100

1050

0 10 20 30 40 50
Time (hours)

FIGURE 5 NSGA-II versus evolution strategy, Year X data

conflicting dependencies in the Year Y data compared to
Year X as indicated in Section 5.1. Further, it is visible that
there is still significant variability in the results. After see-
ing the results of the other algorithms, more comparative
conclusions can be drawn.

6.2 | Multiobjective genetic algorithm
One algorithmic approach is to explicitly address the mul-
tiple objectives (recall Section 3.1). We examined this with
the genetic algorithm NSGA-II (Deb et al., 2002). Figure 5
shows the results on Year X data, compared to the evolu-
tion strategy. It can be seen that whereas NSGA-II aggres-
sively optimizes down the number of hard constraint vio-
lations, it only slowly reduces the components of the cost.
By contrast, the evolution strategy including its constraint
cooling process achieves a low number of constraint vio-
lations with a much lower cost. We infer that NSGA-II
too quickly focuses on one part of the frontier, namely
that with low violations, and does not find other interest-
ing points that trade-off slightly more violations for much
lower total cost.

We also explored another popular multiobjective algo-
rithm, AMOSA (Bandyopadhyay et al., 2008). AMOSA
augmented with constraint cooling performed better than
NSGA-II (see Figure 6b, discussed next). However, it was
clear that the single-objective methods operating with an
aggregated objective function (4) gave much better solu-
tions. In particular, the biobjective aspect of the costs was
not important enough to warrant such a decrease in solu-
tion quality demonstrated by NSGA-II and AMOSA. The
explanation is likely that the overconstrained nature of
the problem means the optimization is less about two cost
functions and more about a single cost function versus
hard constraint violations.

59| WILEY-—

TABLE 6 Greedy versus evolution strategy, Year X data
Algorithm Runtime Total costs Violations
ES, best solution 24h 965.1 10
ES, average 24h 986.1 1.4
Greedy 15 min 980.5 10

TABLE 7 Greedy versus evolution strategy, Year Y data
Algorithm Runtime Total costs Violations
ES, best solution 24h 1086.7 25
ES, average 24 h 1095.2 27.6
Greedy 20 min 1090.4 16

6.3 | Greedy algorithm

First, the deterministic greedy algorithm has been run on
both datasets. The results are shown in Tables 6 and 7 for
Year X and Year Y, respectively, together with the results of
the evolution strategy. It can be seen that the greedy algo-
rithm performs very well. Not only does it run in much
less time than the evolution strategy, the results are also
slightly better than the average result of the evolution strat-
egy. It does not outperform the best result(s) of the evo-
lution strategy, so if plenty of runtime is available to do
multiple runs of the evolutions strategy this yields a bet-
ter solution. However, realistically this will probably not
be the case, and the greedy algorithm is suitable to get a
decent result in a short time.

6.3.1 | Randomized greedy
Next to the deterministic greedy algorithm, the different
configurations of randomness described in Section 5.2.2
have also been tested, by running each of them for 20 times
on the Year X data. The results can be found in Figure 7 and
Table 8.

It can be seen that the “roulette wheel” method produces
relatively poor results. This was expected, as explained in

TABLE 8 Results of various configurations of randomization
in the greedy algorithm, Year X data
Configuration Total costs Violations
Deterministic 980.5 10
Roulette wheel 996.7/959.7 11.9/11
Roulette wheel 50 978.3/956.6 10.9/10
Next request 980.1/972.6 11.4/11
Starting time 960.8/956.2 12.6/12
Both request and time 966.1/947.9 12.4/12

Note: For each of the nondeterministic configurations, the table reports the
mean and lowest costs, respectively.

*“ | WILEY

° L]
° °
[° s
1000 A :
° L]
[
° [] L]
990 A ® .
H ° 8
; °
2 I S
2 9801 @8 ®
8 ¢ ' ° °
3 s
: !
9704 . '
® *
L4 ‘ °
960 - . ' ‘ o
@ ° ® Roulette wheel
® Roulette wheel 50
® Next request
950 A @ Starting time
L ® Both request and time
9 10 11 12 13 14 15 16
Constraint violations
(a) Solutions of various randomization methods for the greedy algorithm
FIGURE 6 Pareto-frontiers, Year X data
& ® Evolution strategy (single run)
975 1 oo % Greedy algorithm
950 1 L
®
925 - ‘e
PR
2 900 A °
88754
k)
°
850 1 °
L]
°
[
825 - ° [3
800
0 T T T T T T T T
0 50 100 150 200 250 300 350
Hard constraint violations
(a) Pareto frontier costs vs. violations, ES and greedy, Year X data
FIGURE 7

Section 5.2.2. There is essentially too much randomness
for the algorithm to remain effective. The configurations
for “starting time” and “both request and time” achieve
the lowest cost solutions on average. However, these solu-
tions have somewhat more constraint violations on aver-
age as well. On the contrary, “roulette wheel 50” and “next
request” have slightly higher cost on average, but some-
what fewer constraint violations.

Further, all configurations yield at least one solution that
has lower costs than the deterministic version, although
also having one or two more hard constraint violations.
Hence taking the best of greedy’s rapid multiple runs
is warranted.

OUDSHOORN ET AL.

R

0.251 —— Roulette wheel
—— Roulette wheel 50
—— Next request
—— Starting time
0.201 —— Both request and time
0.151
z
3
©
Q
o
& 0101
0.05 1
0.00 1
940 960 980 1000 1020
Total costs
(b) Kernel density estimation, costs only
® NSGA-I
% AMOSA [Y
+ Evolution strategy
6501 % ES-greedy hybrid

o
B
o

o
N
o

Maintenance costs + half of soft constraints
2
o

o
=
o

A

0 300 325 350 375 400 425 450 475 500

Availability costs + half of soft constraints

(b) Pareto frontier between cost types: ES, hybrid, and two multi-objective GAs. Year X data.

Kernel density estimation of total costs for various methods of randomization in the greedy algorithm, Year X data

6.4 | Hybrid algorithm

6.4.1 | Year X data

Recall that the hybrid algorithm was run seven times
on the Year X data with the configurations in Table 4.
The results are shown in the right two columns of the
table.

The first observation is that there are multiple runs of
the hybrid algorithm that provide a better solution than
both the evolution strategy and (randomized) greedy algo-
rithm, with a substantial difference. The best run of the
hybrid has a cost reduction of around 37.5 31 million

OUDSHOORN ET AL.

TABLE 9 Tested configurations of greedy-ES hybrid, Year Y

Run Stages

2
2
2
3
2
2

A U A WD

Requests per stage
50/638

90/598

20/668

20/70/598

50/638

50/638

59 WILEY--*%

compared to the best result of the evolution strategy runs.
The improvement in results validates the idea to combine
the strengths of the algorithms.

The second observation is that the Pareto-frontier of the
evolution strategy is more encompassing than that of the
greedy algorithm, and further that the two together are
complementary (Figure 6a). Overall, the hybrid gives a
wide spread of interesting trade-offs for the rail manager
to consider.

The third observation is that, even when we focus on
costs only (ignoring hard constraint violations), the hybrid
has a clearly lower total cost than the multiobjective GAs,
NSGA-II and AMOSA (Figure 6b).

Examining in detail the difference between the configu-
rations of the hybrid algorithm, we observe some changes
affect the solution quite heavily, and some changes that
only have a little effect on the solution quality. First, the
run that was deemed the “baseline” actually gave the best
result. The run with 10 stages instead of 2 has much higher
costs than the baseline, and although it is the only run
with 8 hard constraint violations instead of 10, the cost
increase does not justify this. Redistributing the time so
that one stage has much more runtime than the other
also causes a large cost increase; this can be seen in the
results of runs 6 and 7. Changing the number of requests
in the first stage only has little effect on the solution qual-
ity, provided this number stays within reasonable bounds.
The difference in results between runs 1, 3 and 4 is rela-
tively small and could be caused by variance, when con-
sidering the robustness of the evolution strategy shown in
Section 6.1.

6.4.2 | Year Ydata

Finally, the hybrid algorithm has been run on unseen the
Year Y data with the six configurations specified in Table 9.
The main goal is to check whether the conclusions drawn
based on the Year X data, both in terms of comparison to
the other algorithms and the effect of the configuration,
still hold. The results are shown in the right columns of
the table.

Runtime per stage (h) Total costs Violations
12/8 1038.4 17
12/8 1063.2 16
8/12 1040.3 20
7/7/6 1078.7 17
16/4 1091.1 16
4/16 1072.9 17
TABLE 10 Overview of results on Year X data
Algorithm Runtime Costs Violations
ProRail schedule 6 months 965.2 690
ES, best result 24h 965.1 10
ES, average 24h 986.1 1.4
Greedy, deterministic 15 min 980.5 10
Greedy, best result 15 min 947.9 12
Hybrid, best result 24h 928.1 10

Itis clear that the hybrid algorithm gives the best results
on the Year Y data as well; the best result of the hybrid
has approximately 48.4 40 million fewer costs than the best
result of the evolution strategy. Looking at the configura-
tions, it can be seen that the “baseline” configuration still
performs best as for Year X. From runs 5 and 6, it becomes
clear that giving one stage much more runtime than the
other gives substantially worse results, as for the Year X
data. In run 4 where three stages were used, the results are
also quite a bit worse than the baseline; this was not the
case for the Year X data. Looking at runs 2 and 3, using
90 requests in stage 1 is worse for the Year Y data than for
the Year X data, and using 20 requests gives similar results
to the baseline for both datasets. It should be considered
that the Year Y data contains fewer requests, so having 90
requests in stage 1 is a relatively higher number for Year
Y compared to Year X. Overall, it looks like having under
10% of the number of requests in stage 1 and the rest in
stage 2, with approximately equal runtime, gives the best
results. Further research with replication, more configura-
tions and new datasets when they become available is war-
ranted to confirm these conclusions.

6.5 | Summary

Summarizing the results presented in this section,
Tables 10 and 11 show the main results of the algorithms
developed on the Year X and Year Y data, respectively.
Comparing the algorithms, it is clear that the hybrid
algorithm outperforms both the evolution strategy and the
greedy algorithm. Only when a short runtime is required,

* | WILEY

TABLE 11 Overview of results on Year Y data
Algorithm Runtime Costs Violations
ES, best result 24h 1086.7 25
ES, average 24 h 1095.2 27.6
Greedy, deterministic 15 min 1090.4 16
Hybrid, best result 24 h 1038.4 17

the greedy algorithm could be considered better than the
hybrid algorithm. However, the hybrid algorithm can also
be set up to run for a shorter time of evolution strategy.
Further experimentation is relevant to confirm the most
robust configuration of the hybrid algorithm.

7 | CONCLUSION AND OUTLOOK
This article addressed a large-scale, real-world scheduling
problem of societal importance: rail maintenance schedul-
ing at a national level. We proposed a hybrid greedy-
evolutionary algorithm that robustly provides solutions of
better quality than the schedules currently being used in
practice. Our approach was successfully demonstrated for
the complete rail network of the Netherlands, one of the
busiest rail networks in Europe.

Two algorithmic approaches—an evolution strategy and
a greedy meta-heuristic—provided similar solutions in
terms of total costs, but were strongly differentiated in the
distribution of those costs, therefore enabling the hybrid
algorithm to outperform them both. All algorithms clearly
outperform the manual schedule of Dutch rail infrastruc-
ture manager ProRail, with the hybrid algorithm having
both lower costs and fewer constraint violations. Further,
the speed of scheduling has increased drastically. This
means that, in contrast to of maintenance planners such as
ProRail only making a single schedule each year, the algo-
rithms allow planners to run multiple iterations, to adjust
schedules according to preferences, and, with other stake-
holders, to explore different scenarios including which
project requests to postpone. Thus we provide important
facilitation to the overall sociotechnical planning process.

Several directions are prominent for future work. First,
further testing with the hybrid algorithm. Running the
algorithm multiple times with more configurations and
different input data will give understanding on the effect of
the hyperparameter configuration as well as the distribu-
tion of solutions for certain configurations. Second, explor-
ing the trade-offs between the components of cost: the
two explicit cost objectives and the implicit objective from
managerial preferences. Observing the relatively poor per-
formance of multiobjective GAs, a biobjective version of
the hybrid is an interesting direction.

@ OUDSHOORN ET AL,
ACKNOWLEDGMENTS

The authors thank C. Versteegt, and the anonymous
reviewers. This research was partially supported by TAI-
LOR, a project funded by EU Horizon 2020 under grant
agreement 952215, and received funding from ProRail.

ORCID
Neil Yorke-Smith @ https://orcid.org/0000-0002-1814-3515

REFERENCES

Andrade, A. R., & Teixeira, P. F. (2011). Biobjective optimiza-
tion model for maintenance and renewal decisions related to
rail track geometry. Transportation Research Record, 2261(1),
163-170.

Bandyopadhyay, S., Saha, S., Maulik, U., & Deb, K. (2008). A sim-
ulated annealing-based multiobjective optimization algorithm:
AMOSA. IEEE Trans. on Evolutionary Computation, 12(3), 269-
283.

Budai, G., Huisman, D., & Dekker, R. (2006). Scheduling preven-
tive railway maintenance activities. Journal of the Operational
Research Society, 57, 1035-1044.

Budai-Balke, G., Dekker, R., & Kaymak, U. (2009). Genetic and
memetic algorithms for scheduling railway maintenance activities
(Econometric Institute Report). Erasmus University Rotterdam.

Cheu, R. L., Wang, Y., & Fwa, T. F. (2004). Genetic algorithm-
simulation methodology for pavement maintenance scheduling.
Computer-Aided Civil and Infrastructure Engineering, 19(6), 446-
455.

Consilvio Alice, Febbraro Angela Di, & Sacco Nicola. (2020). A
Rolling-Horizon Approach for Predictive Maintenance Planning
to Reduce the Risk of Rail Service Disruptions. IEEE Transactions
on Reliability, 1-13. https://doi.org/10.1109/tr.2020.3007504

D’Ariano, A., Meng, L., Centulio, G., & Corman, F. (2019). Inte-
grated stochastic optimization approaches for tactical scheduling
of trains and railway infrastructure maintenance. Computers and
Industrial Engineering, 127, 1315-1335.

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and
elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. on
Evolutionary Computation, 6(2), 182-197.

Emmerich, M., Shir, O., & Wang, H. (2018). Evolution strategies (pp.
1-31). Cham, Switzerland: Springer.

Froger, A., Gendreau, M., Mendoza, J. E., Pinson, E., & Rousseau,
L.-M. (2016). Maintenance scheduling in the electricity industry:
A literature review. European Journal of Operational Research,
251(3), 695-706.

Gao, H., & Zhang, X. (2013). A Markov-based road maintenance opti-
mization model considering user costs. Computer-Aided Civil and
Infrastructure Engineering, 28(6), 451-464.

Ghofrani, F., Pathak, A., Mohammadi, R., Aref, A. J., & He, Q. (2020).
Predicting rail defect frequency: An integrated approach using
fatigue modeling and data analytics. Computer-Aided Civil and
Infrastructure Engineering, 35(2), 101-115.

Guo, F., Qian, Y., Wu, Y., Leng, Z., & Yu, H. (2021). Automatic railroad
track components inspection using real-time instance segmenta-
tion. Computer-Aided Civil and Infrastructure Engineering, 36(3),
362-377.

Ingber, L. (1993). Simulated annealing: Practice versus theory. Math-
ematical and Computer Modelling, 18(11), 29-57.

https://orcid.org/0000-0002-1814-3515
https://orcid.org/0000-0002-1814-3515
https://doi.org/10.1109/tr.2020.3007504

OUDSHOORN ET AL.

Khalouli, S., Benmansour, R., & Hanafi, S. (2016). An ant colony algo-
rithm based on opportunities for scheduling the preventive rail-
way maintenance. In Proceedings of CoDIT 2016. IEEE.

Kiefer, A., Schilde, M., & Doerner, K. F. (2018). Scheduling of main-
tenance work of a large-scale tramway network. European Journal
of Operational Research, 270(3), 1158-1170.

Lopes Gerum, P. C., Altay, A., & Baykal-Giirsoy, M. (2019). Data-
driven predictive maintenance scheduling policies for railways.
Transportation Research Part C, 107, 137-154.

Medury, A., & Madanat, S. (2013). Incorporating network considera-
tions into pavement management systems: A case for approximate
dynamic programming. Transportation Research Part C, 33, 134-
150.

Memarzadeh, M., & Pozzi, M. (2016). Integrated inspection schedul-
ing and maintenance planning for infrastructure systems.
Computer-Aided Civil and Infrastructure Engineering, 31(6),
403-415.

Mohammadi, R., He, Q., & Karwan, M. (2020). Data-driven robust
strategies for joint optimization of rail renewal and maintenance
planning. Omega, 103, 102379.

Peng, F.,Kang, S.,Li, X., Ouyang, Y., Somani, K., & Acharya, D. (2011).
A heuristic approach to the railroad track maintenance schedul-
ing problem. Computer-Aided Civil and Infrastructure Engineering,
26(2), 129-145.

Peng, F., & Ouyang, Y. (2014). Optimal clustering of railroad track
maintenance jobs. Computer-Aided Civil and Infrastructure Engi-
neering, 29(4), 235-247.

Peralta, D., Bergmeir, C., Krone, M., Galende, M., Menéndez, M.,
Sainz-Palmero, G. I., Bertrand, C. M., Klawonn, F., & Benitez,
J. M. (2018). Multiobjective optimization for railway mainte-
nance plans. Journal of Computing in Civil Engineering, 32(3),
04018014.

ProRail. (2020). Jaarverslag 2019. www.jaarverslagprorail.nl/verslag

Raidl, G., Puchinger, J., & Blum, C. (2010). Metaheuristic hybrids (Vol.
146, pp. 469-496). Springer.

Shahmoradi-Moghadam, H., Safaei, N., & Sadjadi, S. J. (2021). Robust
maintenance scheduling of aircraft fleet. IEEE Access, 9, 17854-
17865.

Simson, S. A., Ferreira, L., & Murray, M. H. (2000). Rail track main-
tenance planning: An assessment model. Transportation Research
Record, 1713, 29-35.

59 WILEY-—*

Soh, S. S., Radzi, N. H., & Haron, H. (2012). Review on scheduling
techniques of preventive maintenance activities of railway. In Pro-
ceedings of the 4th international conference on computational intel-
ligence, modelling and simulation (pp. 310-315). IEEE.

Sousa, N., Alcada-Almeida, L., & Coutinho-Rodrigues, J. (2019).
Multi-objective model for optimizing railway infrastructure asset
renewal. Engineering Optimization, 51(10), 1777-1793.

Su, Z., Jamshidi, A., Nufiez, A., Baldi, S., & De Schutter, B. (2019).
Integrated condition-based track maintenance planning and crew
scheduling of railway networks. Transportation Research Part C,
105, 359-384.

Xie, S., Lei, C., & Ouyang, Y. (2018). A customized hybrid approach
to infrastructure maintenance scheduling in railroad networks
under variable productivities. Computer-Aided Civil and Infras-
tructure Engineering, 33(10), 815-832.

Yin, Y., Li, D., Besinovic, N., & Cao, Z. (2019). Hybrid demand-driven
and cyclic timetabling considering rolling stock circulation for a
bidirectional railway line. Computer-Aided Civil and Infrastructure
Engineering, 34(2), 164-187.

Zhang, C., Gao, Y., Yang, L., Gao, Z., & Qi, J. (2020). Joint opti-
mization of train scheduling and maintenance planning in a rail-
way network: A heuristic algorithm using lagrangian relaxation.
Transportation Research Part B, 134, 64-92.

Zhang, L., Chang, H., & Xu, R. (2012). Equal-width partitioning
roulette wheel selection in genetic algorithm. In Proceedings of the
conference on technologies and applications of artificial intelligence
(TAAI'12) (pp. 62-67). IEEE.

Zhang, T., Andrews, J., & Wang, R. (2012). Optimal scheduling of
track maintenance on a railway network. Quality and Reliability
Engineering International, 29(2), 285-297.

How to cite this article: Oudshoorn M,
Koppenberg T, Yorke-Smith N. Optimization of
annual planned rail maintenance. Comput Aided
Civ Inf. 2022;37:669-687.
https://doi.org/10.1111/mice.12764

http://www.jaarverslagprorail.nl/verslag
https://doi.org/10.1111/mice.12764

	Optimization of annual planned rail maintenance
	Abstract
	1 | INTRODUCTION
	2 | RELATED WORK
	3 | PROBLEM STATEMENT
	3.1 | Maintenance planning and scheduling
	3.2 | Detailed problem description
	3.2.1 | Problem objectives
	3.2.2 | Problem constraints

	3.3 | Mathematical model of the problem

	4 | ALGORITHMS
	4.1 | Evolution strategy
	4.1.1 | Mutations
	4.1.2 | Constraint cooling
	4.1.3 | Separation of requests with hinder

	4.2 | Greedy algorithm
	4.3 | Hybrid greedy-ES

	5 | EXPERIMENTAL SETUP
	5.1 | Datasets
	5.2 | Experimental design
	5.2.1 | Test of the evolution strategy
	5.2.2 | Greedy algorithm
	5.2.3 | Hybrid algorithm

	6 | RESULTS
	6.1 | Evolution strategy
	6.1.1 | Year X data
	6.1.2 | Year Y data

	6.2 | Multiobjective genetic algorithm
	6.3 | Greedy algorithm
	6.3.1 | Randomized greedy

	6.4 | Hybrid algorithm
	6.4.1 | Year X data
	6.4.2 | Year Y data

	6.5 | Summary

	7 | CONCLUSION AND OUTLOOK
	ACKNOWLEDGMENTS
	ORCID
	REFERENCES

