Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data - May 2017- Draft

Construction of Responsive Web Service for Smooth Rendering
of Large SSC Dataset

and the Corresponding Preprocessor for Source Data

MSc Geomatics Thesis Draft

Yuegian Xu

Abstract

This research focuses on a smooth generalization of continuous 2D map based on a smooth 3D vario-
scale geographical data structure. A Space Scale Cube (SSC) offers non-redundant geometric data for
the different level of details. SSC model represents geographic data as a closed polyhedron, to generate
a 2D map; SSC is intersected with the projection plane; resulting in a set of 2D polygons. However,
problems emerge when creating maps with a large sized SSC dataset under web environment due to
limited bandwidth and decoding speed. Repetitively transmitting data from the server to the client can
be time and bandwidth consuming. A preprocess should be applied to a source that allows the follow-up
development of an online traffic and time-saving prototype.

After preprocessing, large sized data will be subdivided based on octree algorithm to minimize
transmission time from server to the client; moreover, accessible to WebGL. A prototype has been
developed which enables smooth and simultaneous vario-scale map rendering against heavy user
actions such as massive zooming and panning in a short period. Modified prototype schema allows
query of only relevant data chunks by current viewport position; it prevents repeated loading of same
chunks; what is more, repeated transmission of data from outside to GPU is eliminated. A tree structure
is embedded at the client side that facilitates retrieve time. Rendering happens every frame; hence the
prototype responses to heavy user actions simultaneously. Also, it can obtain coordinates in RD
coordinate system by double clicking. After testing modified schema with a 9x9 dataset, fine
performance of the prototype is indicated by a high average fps (57 fps) and low main memory
occupation.

Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data - May 2017- Draft

1

ADSITACE c..vveieiieeeiee ettt ettt et e e et e e st e e st e e e st a e e s bt e s et e e st e e et e e e st e e e s aa e e st e e e bt e e s st eensbaeessraeentes 1
| 5018 CoTa RUTein (o) o NP 4
1.1 COMEEXLE e ieeiriiiiieeeeeeeee ettt eeeeeeeeeertrart i eeeeeeeeesesasasaeeaeeeessessssssnnsseseesssssssnnnnnseeessssssssnsnnseessssssssnnnnnseseens 4
5 DI \Y 0] A 721 (0 4 HNN USRS RRRRRTI 5
1.2.1 Problem statement & overall g0al.........c.cooiiiiiiiiiiii e 5
1.2.2 SCIENIfiC TEIEVANICEeouiiiiiiieeeee ettt ettt et ettt s s b e saee s 6
3 00 T 0] o) 1</ 5 (< TSRS SRRSOt 6
1.4 ReESEATCH QUESTIONS.uviiieiiiiiiteiiteete ettt rre st e e s te e s aa e e s st e e ssbaeesssaeesssaeesssaesssseessssaennns 7
1.4.1 Sub-questions fOr PreProCESSINEG:ceeuerreerrerrienierreeeieerte et eeee s et e st e e s reesseeseeenee 7
1.4.2 Sub-questions for client side development:coccvieeeiieeiieeecie e e 7
Theoretical background & related WOTKcooueiiiiiiiiieee et 8
2.1 VaTi0-SCAlE AAtA...ccuiiieiiiiiiieiiieeeie ettt e st e s et e s s te e s s be e s s beeesaaaessssaeesstaessaeesssaeensaaens 8
2.2 OCHTEE c.eeetieieitteeeetee ettt e ettt e et ee s et e s e et e e e e et e e s e bt e e s e r b e e e e e s b e e e s e sraeeseennrteesennnne 8
PR S LVZCY o T3 D5 30 e F=0001<) 0 121 RSN 9
2.3.1 ATTAYBUITET ..eeeiiiieecece ettt st s e e s e e aa e e s baeenabaeenns 10
2.3.2 FaCE CUILING c..veiiiiiiiiieiieceee ettt ste st e e s sta e e s sta e e s saaeessaeesssaeesssaesnssaesnns 10
2.4 Data preprocessing: binary formatcceeeceeieiieieiieieceecceeeecte e e e ae e et eeeaaeeas 10
2.5 GPU mMemory VS. MaAIN IMEIMIOTYccccccuuteererrreererirreeeessisreeesssssesssssssaesssssssessssssssesssssssssssssssssssssnns 11
2.6 LOCAlity Of TEETENCEcuueiieieeeeeee ettt ettt et s s e as 12
2.7 Memory management: Garbage collection (GC)ccccueeeeeiiieiieiiieeiceceieeecereeececere e s eeeeee e e 12
Methodology design and deVElOPIMENLcccueeeeiieiiiieeiieeeceee e ccreeeeee e ee e e e are e s e e e aee e aaee e naeeas 15
3.1 SoUrce data PrEPIOCESSIIIE ..veecveerreririerreeireeeiteeireesteesseesseesseessessseessseesseesssessssesssessseesssessssesssees 15
3.1.1 SOUICE AATA .eveeeeeiiiieeeeiiiee ettt e e ctee e e e te e e e e e ttee e e e aaeeeeesseeeeeessaeaeaesssaeeesssasesenssnaeann 15
3.1.2 S N 0T Tl ¢ 0) 116 <) o] AR PPN 16
3.1.3 Fetch raw data from OBJ fil.......cuuviiieeiiiieeeeieee ettt eeeare e e e eraeeeeeenaeee e e saeeeeennns 17
3.1.4 JA\[o) 0 F:1 1 1221w (o) s WU R 17
3.1.5 (@768 (=TT o) yd () RSP SURRURPUSSRNt 18
3.1.6 INOAE SETUCTUTE ... uvvveeeeeeieeeertereeeeeeeeeeerereeeeeeeeeeessrareeeeeessesssssssssssesssssesssssassseeeessessssssssssseessens 18
3.1.7 Duplication of triangles intersecting with vertical splitting plane........c...coecceeveeivienncnnneenee. 20
3.1.8 BINATY fI1€...ueeiiiieieiieceiee ettt sre e e ae e s saae e e seb e e st e e s aa e e e aaeesbaeessaaeensaaeennns 23
3.1.9 BoUNAING DOX Ileeieiieieiieceieeeee ettt e e e stre e s ere e e ra e e e saae e s aaeessaeesnnnaennns 24
3.2 CHHENE SIAE cevvieiiieieeiiiiieee ettt e eeererereee et e eeesessbasereeeeseesanssssaseseessssessssanssesesssesassssnnesenas 24
3.2.1 JavasCript NOAE SITUCIUTEeivcuiiieciieieie ettt seee e e see e s sae e s seae e e saaeesvaeessaeesssaeens 24

Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data - May 2017- Draft

3.2.2 CHENt fTAIMEWOTK ..evvveieiiieiiiiieieec et ceerrrereeeeeeceesessarereeeeeessessnssasssesessssssnnssssnnseeas 26
3.2.3 Intersection testing fUNCHON......c.ccieiiiieiiiieecieecce et sre e saae e s sree e s taeesaaeenans 27
3.2.4 Load ChunK fUNCHON ...ccooviiiiiiiiiee ettt e e s e esarar e e e e e essasssraeeeeees 29
3.2.5 Render ChUunK fUNCHONuvveveeeeeiiccciieeeee et ceeeearerer e e e e e eeseassrarereeeessesanssassnnseeas 30
3.2.6 Modified LoadChunk & RenderChunk function..........ccccceeeeveveeereeeeiieiiniereeeeeeeeessnneneeeeeens 32
3.2.7 Rendering fUNCHONccccuiiiiiieieiieccieecee ettt ste e e saae e s seae e e seaeesbaeesbaeesssaeennsaas 34
3.2.8 Previous AlteIMAtIVEccooveuveiiiiiieiiictrteeeee ettt e e ee e e e e s e esaasanreeeeeeesssanssssareeeas 35
3.2.9 USET ACHIOMIS coeeeieieieeiiiieieeeceeeeeceeesssssssesssssesssssssssesssssesssssssesesssssaseees 36
3.2.10 Viewport Bounding boXcc.ceeueirieriiieriineeeeeetee ettt 38

4 Implementation dEtailscccieeeiieeiiiieciieee e et e e e st e e et e e e aa e e e aae e e raeesnraeenn 40
41 PTEPTOCESSINZ c..uuuviieieeiiieeieiitteeeeiiteeeeertee e ettt e e s sttt eeesssaeesessssaeeesssseeesssssaaessssnsaeesssssaesssssseeens 40
4.1.1 | D F: 2 L PSPPSR 40
4.1.2 MIiSSING BOTEOIM.....uviiiiiiiieiicitee ettt ettt e e e s e e e e s e aa e e s s saeeeessaaaaesessssaaesssnnnnens 40
4.1.3 Determine threshold and limit tree depth.........cccuiieeieiciiieciieeeeeeee e 41

4.2 CHENE SIAC.uuuiiiiiiiiieiiiiiiee et eeerbrre e et e eesessbasereeeessssssssasassseesessssssssassresesssessnsssrennreeas 42
4.2.1 Vertex shader and fragment shader...........coocuieiiiiiiiiiiniiiiiecteceere e 42
4.2.2 TFIILIN CANIVAS ceereeieeiee ettt e e e ettt e e e e e e s sssaaaa et e e e eesssssssanseeeseesssssnsssaneeeeas 42
4.2.3 Get geographical COOTAINALESceeevuieieiiieiiiieeciee ettt eere e eere e e eaeeetee e s teeesaaeenennas 43
4.2.4 SETHINIZS .evveeiieiiiieieeiieeeeeetee e eertte e e sttt e e e s abe e e s ettt e e esessae e e e s saaee s e s sbaeeesssaaeeesnraeeeessreeeesannee 44

5 ReSUILS aNd ANALYSIS.....cciiiiieeiiieecieecciieccte et eerte e ree e e e e e tee e e tee e e beeeesaeesenseeessbae e saaeesaeeeraeeanraaens 45
3.1 Data size after 0Ctree divViding........ccceeecieieiieieiieieiieceiee et eeteeeeae e e e e e sreeeseaeesssaeesaaeeesaeennns 45
3.2 Evaluate prototype fUnCHionScoceeeiiiiiiiieeieeeeeeee ettt st 46
3.3 PrototyPe PEITOTINAIICEveiviiieeiieeiiieecieeett ettt ettt e s et e s s et e ssabe e s saeessaaeesssaaessaeenssaeens 48
3.3.1 TiME CONSUMPTION ...uviiiieiiiieieiitieeeeciteeeeeitreeseertreeessareeeesssseesssssaaeesssneessssssseessssssseesnsnn 48
3.3.2 MemOTY CONSUIMPLIONuurieiieiiieeieeiiteeeeeiteeeeeiteeeseesreeeessssreeeessssseesssssseesssssseeesssssssesssseees 51

4. Conclusion and fUtire WOTKooccuiiiiieiieeeceee et e e e e eaee e e e e eaae e e e naae e e e ansaaaans 56
0% B 070} s 16 L 1S3 1o s VOSSR 56
4.2 FULUTE WOTK .eoeiiiiiiitiiieee ettt e eeerirrree e e e e eeeeessbaseseeeessesnssssasesesssssersnsssnssesesssesassssenesenes 56
ADPEIAIX: ..ttt ettt ettt ettt et e e bt et e e bt e et e e h e e e ate e b e e et e e h e e et e e bt e e b e e st e e seeenteeseenatens 58
RETEIEIICE: ..eeeeieeeeee ettt e ctee e e e te e e e e te e e e e taaeeeeesaaeeseassaeeeeesssaaeeeassssaesasssaeeaasssaeesessseesannnes 59

Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data - May 2017- Draft

1 Introduction

1.1 Context

Geographical data are widely applied in various territories such as urban planning, civil engineering,
resource management, transportation management and much more. Traditional map generalization
method uses vector or raster format maps with a stack of predefined scales (Huang, 2016); it has a fast
responsiveness to user interactions such as panning and zooming. However, it leads to an unavoidable
loss of details between two fixed and discrete scales.

It is stated by Meijers (2009) that a Space Scale Cube (SSC) offers non-redundant geometric data for
the different level of details. SSC model represents geographical data as closed polyhedrons; 2D maps
are generated by intersecting SSC with a projection plane. By orthographic projection, terrain features
at the specific level of details (LoD) can be represented by a set of 2D polygons casting upon that plane.
The gradual transition of a terrain feature is realized by moving the plane downwards. Polygons
intersecting with projection plane are then transmitted to GPU in a format that is accessible to the
graphic processor. To fetch data as precise as possible to save time and online traffic, source data are
divided into small chunks based on octree algorithm. Three datasets are available: a sample smooth
SSC with four objects, a classic SSC of Leiden city center and a relative large classic SSC covering gkm
by 9km area. Figure 1-1 (a) and (b) provides a rough sight of the smooth sample and Leiden dataset that
will be used in this research respectively. The concept “lifespan” is involved to avoid “missing bottom”
problem. The bounding box of each chunk is used as a reference by which the corresponding chunk can
be concisely requested.

This paper presents an approach for large dataset preprocessing and construction of a web service-
based prototype that enables simultaneous rendering of concisely requested chunks. Following
conclusions are obtained:

Preprocessing - The binary format has been proved as a possible data format for WebGL data
transmitting and rendering. Source OBJ file is encoded as a Float32Array; the resulted typed array can
be directly accessed by the graphic processor. The current octree dividing method causes 30% volume
increment to Leiden dataset; 50% and 90% volume increase to a 9x9 dataset with a 2.5MB and 500KB
chunk size threshold respectively.

Client schema - A node structure reflecting octree structure containing necessary data elements is
generated in Javascript to store data in client memory. Node structure is updated regarding every
mouse movement; render function conducts a tree traversal every frame to ensure that the prototype
responds to massive user actions simultaneously. Prototype schema allows accurate chunk(s)
requesting and loading, moreover, non-repeat loading. Chunks loaded once are stored in client random
access memory (RAM), waiting for a next invoking. Rendering function communicates only with client
memory and runs in parallel with other functions.

Performance - Prototype performs well with the largest current available dataset without any halt; by
using the modified schema, average fps can be increased to 57; main memory garbage is removed

Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data - May 2017- Draft

automatically; speculated GPU memory use would be 350MB while the total RAM occupation including
browser framework will be around 600MB.

Figure 1-1: (a) smooth SSC (b) Classic SSC of Leiden city center

1.2 Motivation

1.2.1 Problem statement & overall goal

Recently, various efforts have been made to design file formats for transmission of 3D geometry, for the
use with high-performance 3D applications on the Web. The existing solutions either send all data
within a single batch, or they introduce an unnecessarily large number of requests. However, limited
bandwidth pairing with the limited computational power of Javascript environment leads to a
bottleneck (Ponchio, 2016). A dataset covering gkm by gkm area results in a binary file larger than
200MB. Imaging, a dataset covering the whole Netherland, or even the whole Europe will be available.
It is impossible for a web-service based prototype to generate a map with raw text data as a whole. As a
service facing domestic consumers, web service pursues fluent performance and fast responsiveness.
Hence, preprocessing and subdividing of source data are indispensable.

To transfer only parts of data to the client, it requires subdividing of the dataset. In previous work
(Rovers, 2016), R-tree was used as a spatial dividing method; however, drawback appears when objects
are holding a long lifespan. All triangles belonging to this long-lived object will be transferred if
intersection plane intersects with the bounding box of the object which causes redundancy (redundancy
means the transmission of unneeded data). In this case, another dividing method, octree, is tested and
evaluated.

What is more, incompatibility exists between coordinate reference system (CRS) of source data and
CRS of WebGL. This conflict calls for a proper transformation between two CRSs and; also, a
manipulation of user interaction parameters so that they can interact with the transformed source data.

The ultimate goal is to implement a web-based service along with its preprocessor that scales well with
large data sets, enables fast and smart transmissions of preprocessed data chunks, eliminates decoding
time through direct GPU uploads, minimizes the number of HTTP requests by reusing data in client
memory. Figure 1-2 gives a brief understanding of the concept: “smart fetch.” Only chunks intersecting
with current viewport are requested. Box in dash line represents the current viewport, chunks marked

Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data - May 2017- Draft

in red are chunks need to be loaded; chunks in blue represent chunks in client memory. As shown in
Figure 1-2, for the second user action, although chunk 300, 21 and 20 are intersecting with the current
viewport, no HTTP request will be generated for them. Instead of fetching these chunks from the server,
they can be directly obtained from three specific memory slots (either from main memory or GPU
memory).

I viewport

o ! 322
. 23 3 22 23 22
1320 : 320

302) : 30
- 21 v 20

chunks in memory

300|

033 | 032

031 | 030

E—

chunks needs loading

viewport

Figure 1-2: Example of anti-reloading and reusing of data in client memory

1.2.2 Scientific relevance

An efficient prototype would contribute to the continuing research on vario-scale data by van Oosterom
and Meijers (2013) and van Oosterom et al. (2014). There is currently no web service for smart data
requesting and smooth rendering of large SSC dataset. Rovers (2016) developed a web service to
explore spatial access for caching and retrieval of SSC data; WebGL rendering was not involved in that
research. Driel (2015) implemented a Java-based prototype for the real-time intersection on SSC data;
smart fetch of chunks according to viewport position remained unaccomplished.

1.3 Objective

Section 1.2.1 defines the overall goal of the research. The main object is to develop a web service for
smooth rendering and smart fetch of minimum redundant preprocessed data against massive user
actions. Delay during data transmission should be minimized and decoding at client side (by
Javascript) should be eliminated as well. What is more, the web service should be enriched with user
interactions. To achieve the overall goal, this research designs, implements and validates the
performance of the web service. Concrete objectives are:

Divide source data based on octree algorithm with a well-defined chunk size limitation.
Serialize and format data to eliminate decoding time at the client side.

Solve the incompatibility between WebGL and source data CRS.

Viewport position according to user actions should be accurately defined and be updated in
time.

5. Query relevant chunks by current viewport position.

SNt

Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data - May 2017- Draft

Prevent repetitive loading of chunks already in client memory to save transmission time as
well as memory usage.

Allow dynamic rendering, i.e. if multiple chunks are required, the prototype should be able to
render loaded chunk(s) individually in spite of the whole loading progress is completed or not.
Other user interactions enrichment, i.e. Fetching coordinates by double click at a point a
client is interested in.

1.4 Research questions

Primary research question - What is the architecture of web service that enables smart data
fetching for smooth and simultaneous rendering against massive user actions? What are the possible
data format and serialization method regarding the prototype architecture?

The following sub-questions have to be answered to reach the primary research question:

1.4.1

1.

Sub-questions for preprocessing:

In the existing OBJ files, vertices and triangles can be distinguished by the starting character of
each line. However, it has already been proved that progressively comparing and splitting
strings (decoding) of a static file is slow under Javascript environment. How should the text-
based source files be formatted? Is binary format a possible arrangement under this
circumstance?

How should the original dataset be structured and serialized so that it can be directly accessed
by GPU?

During the octree dividing, what is the affiliation of a triangle if it is intersecting with multiple
octants? What will the size change regarding this dividing method?

What will be the difference in total file sizes resulted from octree dividing with different
thresholds?

Sub-questions for client side development:

How should the octree structure be reflected in Javascript? How should the chunks be indexed?
How to define a viewport bounding box and how to update it regarding user actions?

If a user is repetitively zooming in/out during a short period, will there be overload? How to
update buffer data and vertex number without the unloading of all chunks that were requested
by previous render request?

What is the prototype schema that allows dynamic loading and rendering of single chunk?

Is the prototype performing well with predefined chunk size limit? What is the memory
consumption?

Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data - May 2017- Draft

2. Theoretical background & related work

2.1 Vario-scale data

Instead of storing separate layers for discrete scale levels, a spatial model called Space Scale Cube (SSC)
was designed and described in van Oosterom and Meijers (2013) and van Oosterom et al. (2014). A
classic SSC (as shown in Figure 2-1(a)) is generalized by extruding the original data into an additional
dimension; the 2D area objects are now presented as a 3D volume. However, the model is still based on
the considerable amount of discreteness. Figure 2-1(b) gives an ideal smooth SSC within which a small
change in map scale results in a small geometry change so that continuous changes will turn to a
gradual transition. A dataset based on the SSC model is represented as closed triangular-meshed
polyhedral. Minor changes in map scale can be realized by moving an intersection plane
down/upwards. A map can be seen as a rectangle raster at the viewport size which intersects with SSC.
By orthographically projecting all points on the intersection plane downwards; the color of the first
polyhedron each point hits is the color of that point on the map (as shown in Figure 2-1(c)).

|

/
A \V/

|

/‘
A
V

|
|\

a X) camera plane

|
\

(a) The classic SSC. (b) The smooth ssC. (c) Concept of rendering of SSC

W\
/
//

Figure 2-1: The space Scale Cube: A single 3D model representing terrain features by closed polyhedrons. LoD increases from
the top to bottom. And the concept of rendering SSC. Adapted from van Oosterom et al. (2014).

2.2 Octree

To allocate data into small chunks and to have a well-organized indexing, a tree structure should be
involved. An octree is a tree structure in which each internal node has exactly eight children resulted by
evenly dividing each side of their parent node into two parts. Such a tree structure possesses the
following advantages:

1. The bounding box of each chunk can be easily calculated at different levels.

2. It allows non-uniformly sized chunks. Geometry density can differ a lot regarding terrain types
(e.g. residential area against rural area).

3. Itis straightforward. Recursively divide one chunk until its leaf node size does not exceed the
threshold. A limitation of maximum tree level is also able to be restricted to prevent very deep

Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data - May 2017- Draft

tree structure which contains a large amount of small sized chunks to balance HTTP request
number.

A drawback of octree structure is the inflexibility of allocating triangles intersecting with splitting
planes. Details about octree dividing and triangle placement will be introduced in Chapter 3.

2.3 WebGL fundamental

WebGL runs on the GPU on a computer; therefore the client needs to provide the code that can be
recognized by a GPU processor. The code should be provided in the form of pairs of functions. For
instance, a vertex shader and a fragment shader, are two essential functions for GPU rendering.
According to WebGLFundamentals (2016), they should be written strictly in a, as stated, “ C/C++ like
language called GLSL (GL Shader Language).” A rendering program is composed by pairing all these
functions.

A vertex shader is crucial for the vertex position computation. Based on the positions manipulated by
the function, various kinds of primitives including points, lines, and in this case, triangles can be
rendered by specifying a primitive type when calling the gl.drawBuffer method. During the
rasterization, a second user-supplied function “fragment shader” is then involved in computing RGB
values for each pixel of the current primitive.

Set up states for these functions; for each chunk that requires a draw call, a bunch of states should be
set up. Then, by calling gl.drawElements or in this case, gl.drawArray, shaders are executed on the GPU.

Although the web prototype canvas is a 2D surface, WebGL canvas is actually in 3D; the additional z-
direction is used for depth testing. Pixels differing only by their z-coordinate correspond to the same
pixel on the screen, as described by Nyman (2013), “their z-coordinates are used to determine which
one hides the other one.” Coordinates in all three axes range from -1.0 to +1.0; keep in mind this is the
only coordinate system natively recognized by WebGL. A transformation between world CRS (e.g. RD
system) and WebGL system becomes significant. Figure 2-2 (a) shows the native WebGL CRS. Figure
2-2 (b) explains the concept: near z plane. A near z-plane can be seen as the camera plane, everything
above it will be cut away (although it is rendered, you cannot see it because it is above you). While
moving near z plane from the top of SSC downwards, changes of map scale are performed.

Except the dividing of data, another primary goal of our preprocessor is to process source data so that it
can be fitted into WebGL CRS and output it in the form of GL Shader Language.

Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data - May 2017- Draft

camera

canvas 1

Near z plane

Far z plane

Figure 2-2 (a): WebGL coordinate system (WebGL fundamentals, 2016) (b): Near z plane

2.3.1 ArrayBuffer

Buffers are arrays filled in with binary data uploaded to GPU. Usually, buffers contain things like
positions, normals, texture coordinates, vertex colors, etc. Attributes are used to specify how to fetch
data from buffers, manipulate, and provide them to the vertex shader. For example, positions can be
put in a buffer as three 32-bit floats (x, y, z) per position. You would tell a particular attribute from
which buffer to obtain vertex position information, what type of data it should take out (e.g. three
component 32-bit floats), where do the positions start, and how many bytes one vertex retains.
GLprogramming (n.d.) introduces the next steps of processing.

1. Clip primitives, color them by the above-mentioned fragment shader function.
2. Coordinates from source data are transformed to WebGL coordinates.
3. Rasterize the clipped primitives to pixel fragments.

2.3.2 Face culling

According to OpenGL (2016), in computer graphics, triangles primitives haves a particular facing; face
culling determines whether the triangle is visible or not. Facing is defined by specifying the order of
vertices (either clockwise or counter-clockwise) that compose the triangle as well as the order in which
they are projected on the screen. If it is specified that a front-facing triangle follows a clockwise winding
order, but the triangle projected on the screen follows a counter-clockwise winding order, then it will
not be drawn.

2.4 Data preprocessing: binary format

Louis-Rosenberg (2012) stated in his work that rather than loading a meshed OBJ file, processing it,
and putting into arrays that could be sent to a GL buffer increases the client performance significantly.
Binary data that could go directly into GPU will be a suitable data format. The binary representation of

a mesh that exactly mirrors the data which should be sent to an array buffer consists of a list of 32-bit
10

Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data - May 2017- Draft

oats representing the vertex data (6 for each vertex with position x, y, z, and normals) followed by a list
of 16-bit integers representing triangle indices. The word "little-endian" means the least significant byte
comes first in the array. The majority of standard systems (x86, x86-64, IOS) use little-endian.
Therefore, the float value should be written in little endian.

In this case, 32-bit floats are used. During preprocessing, by specifying an order for all triangles and
enabling face culling, normals are no longer needed. The attribute “vertex position” is followed by
another attribute essential for rendering: “vertex color.” Vertex color is formed by RGB values of this
vertex. WebGL recognizes RGB values in range o to 1; hence, 32-bit floats are compatible for vertex
color. The resulted data can be directly fetched with an HTTP request as an ArrayBuffer object. No new
storage needs to be allocated because both the vertex and color arrays use the same ArrayBuffer with
different offsets.

The transforming between byte kilobyte and megabyte is declared here:

1 megabyte (MB) = 1000 kilobytes (KB) = 1x10° bytes (B).

2.5 GPU memory vs. Main memory

Some GPUs use their memory that’s separate from main memory. Other GPUs share the same memory
as the rest of the system. According to Nyman (2013), as a WebGL developer, it is inexplicit which
memory system the client machine uses. Some important notes are:

e The very first step is uploading data to appropriate WebGL data structures. Uploading means
copying data from main memory to GPU memory. In this case, a particular WebGL data
structure is WebGL buffer (ArrayBuffer in binary format as mention above).

¢ Rendering is fast after data transmission.

e Data transfer is relatively slow.

Consider GPU as a fast and efficient machine while working independently, but one that takes long to
communicate with main memory. Therefore, ensure that most of the communications are made ahead
of time and concisely. Though not all GPUs are so isolated from the rest of the system — but WebGL
forces us to think in these terms so that the Javascript schema must run efficiently no matter what
particular GPU architecture a future client uses. No matter what kind of GPU architecture it is, the
communication between GPU and server should be eliminated. Figure 2-3 provides a general
relationship between client and server as well as the relationship between main memory and GPU
memory. A client contains following components: the prototype, Javascript scripts and HTML scripts,
main memory and GPU memory. The only element contacting with the server is the main memory;
GPU memory fetches data from main memory slots. A better schema that eliminates communication of
GPU with the outside should allow data to be directly stored in GPU memory.

11

Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data - May 2017- Draft

- ~
- ~
-~
»
i i A
! Clent ¥
] \

‘ Generate Viewport BBox I‘ Mouse Movement

Server

f Intersection test y '
Chunk BBox Tree

1)
1
]
1
]
1
]
1
]
1
]
1
! 1
! 1
! 1
l |
! 1
Bin Fil Fetch chunk i Y
e . XMLHttpRequest i Memeory
1
! 1
! 1
! 1
! 1
! i
]
1
]
1
]
1
]
1
]
1
]
1
1

]
I
'
I
. 4>< bin file content
\

create and initialize a
buffer object's data store

render primitives from
. £ A array data
. | Client GPU) i

/S A F ’

-~ — - -

~

Figure 2-3: Relationship between (1) server and client; (2) GPU memory and main memory

2.6 Locality of reference

According to Denning (2005), in computer science, locality of reference is described as frequent
accesses to same values, or related memory slots, depending on the memory access pattern. Two types
of reference locality are commonly conducted— temporal and spatial locality. Denning (2005) defines
temporal locality as the reuse of specific data within the relatively small time period. Spatial locality
stands for the use of data within relatively close storage locations. If a particular memory slot is
referenced at a given time, the neighbor memory slots are very likely to be referenced shortly; hence, it
is worthwhile to guess the size and shape of the neighbor slots for faster access. In our case, node data
elements are updated and located in main memory spatially so that they can be invoked later faster.

2.7 Memory management: Garbage collection (GC)

Garbage collection (GC) is an automatic memory management system (TIBCO, n.d.) widely available
for object-oriented programming languages such as Java, Javascript, and ECMAScript. Dynatrace
(2017) stated that “with a built-in garbage collection, developers are allowed to create new objects
without worrying explicitly about memory allocation and deallocation because garbage collector
automatically reclaims memory for reuse.” Peyrott (2016) describes a memory leak as the memory
occupied by one object is not returned to memory pool when the object is no longer required by an

12

Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data - May 2017- Draft

application. GC facilitates a prototype with less boilerplate code while eliminating memory leaks and
other memory-related problems.

Figure 2-4 briefly explains how memory management works for an object-oriented language. Objects
currently in use are tracked and everything else are designated as garbage. The blocks filled in blue
represent heap memory (occupied memory), which are the memory slots used for dynamic allocation
while the shaded blocks is free memory. In most configurations, the operating system allocates the heap
in advance while the program is running. It works in the following pattern:

1. An object generation claims a memory slot and moves the offset pointer forward. The next
object will be allocated at this offset (in between the filled block and shaded block) and claims
the next memory slot.

2. If an object is no longer in use, the garbage collector reclaims its underlying memory and reuses
it for future object generating.

Figure 2-5 presents the configuration of GC roots. Objects that are no longer referenced (temporal
located) causing classic memory leaks are removed by GC system. To determine which object is causing
memory leak, most GCs uses a mark-and-sweep algorithm; the algorithm consists of the following two
steps as summarized by Peyrott (2016):

1. The garbage collector builds a list of "roots." Roots are global variables whose reference is kept
in code. In JavaScript, a "window" object acts as a root and is always reachable; hence GC
considers it, and all of its child objects as reachable (spatially located) objects as well.

2. Memory slots that are unreachable are then marked as free, swept from heap memory.

For our research, an ideally designed schema should be light and live, which means all necessary data
for rendering is accessible directly from memory (it requires proper referencing); moreover, memory
for preprocessing at client side (i.e. unnecessary for forwarding rendering) should be marked as garbage
memory which can later be automatically reclaimed.

Memory Layout before Allocation

Memory Layout after Allocation

Figure 2-4: New objects are simply allocated at the end of the used heap (adapted from Dynatrace, 2017).

13

Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data - May 2017- Draft

Non reachable
objects-> Garbage

Reachable Objects

Figure 2-5: GC roots, their reachable child objects, and temporally located objects that are marked and need to be garbage-
collected (adapted from Dynatrace, 2017).

14

Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data - May 2017- Draft

3. Methodology design and development

3.1 Source data preprocessing

3.1.1 Source data
e OBJfile

Content and data type of the original OBJ file is shown in Table 3-2. Lines starting with “v” represent
vertices, the following three floats are x, y, and z coordinates respectively. A “g” indicates the beginning
of a new object; the following four values are object id (integer), class id (integer), which will be used as
a color reference later, minimum and maximum lifespan (integer). To counter the “missing bottom”
problem (see section 4.1.2), the concept “lifespan” is involved. Minimum lifespan is the z value at which
an object appears for the first time, and it lives until the maximum lifespan is reached. An object line is
always followed by several lines starting with “f” which represent triangles composing this object. A
triangle line contains three integers: index of vertex forming the triangle; the order of the vertices is
defined as counterclockwise. Table 3-2 gives a brief view of the actual content in source OB/ file.

OB]J File
v x coordinate (float) y coordinate (float) z coordinate (float)
g Objectid (int) Class id (int) Lifespan min (int) Lifespan max (int)

f Vertexindex 1 (int) Vertex index 2 (int) Vertex index 3 (int)
Table 3-1: OBJ file content and data type

OB]J File

v 93851.3255 463551.399 378

v 93848.358512 463548.100973 378
v 93853.1826667 463553.491 378

g1001706 13000 437 506
114803 114802 114801
114801 114804 114803

g1001704 12400 435 452
Table 3-2: A brief view of actual content in OBJ file

e Color information

The other source file is the color information list which can be downloaded from kadaster.nl (n.d.).
Each class id obtained from OBJ file has corresponding RGB values (0-255). Table 3-3 shows an
example of the color information of objects with class id “13000”.

15

Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data - May 2017- Draft

Color information

Class id 13000
Red Value 255
Green Value 255
Blue Value 255

Table 3-3: Class id versus RGB values

3.1.2 Preprocess concept

The basic preprocessing concept is generating small binary files containing elementary geometry and
color information in the form of GLSL that goes directly into GPU. Figure 3-1 shows the rough
preprocessing procedure. Data will be obtained from source files, processed and stored in a root node. If
the root node contains more triangles than the predefined threshold, it will be divided into eight smaller
chunks based on octree dividing algorithm. This step is recursively conducted until the size of nodes at
the lowest level is below the limitation. If a node needs to be subdivided, it becomes a parent node; the
bounding boxes of its eight children nodes are generated and written into a separate text file. The
output files include the binary files of nodes at the lowest level of each branch and the bounding boxes
of 8 children of every parent node. The detailed steps are explained in the following sections.

OBJ File

Vertice coordinates xXyz Color List
Object information Oid class_id min_lifespan max_lifespan Class_id
vertex id index of vertices composing the triangle RGB Value

Node: struct

If length of
Node_data = size limit

Normal Octree Dividing

EBox File of Node (txt file)
Bounding box of & leaf nodes

Recursively
subdivide

Lower Node

If length of
MNode_data = size limit
If length of
MNode_data <= size limit

Binary File
ArrayBuffer

Figure 3-1: Preprocessing concept

16

Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data - May 2017- Draft

3.1.3 Fetch raw data from OBJ file

Preprocessing was carried out in C++ environment. The first step of preprocessing is obtaining raw data
from the source files. Read every line of OBJ file, split it at white space; if it is a vertex line, store the
three elements after “v” into list “vertices_x”, “vertices_y” and “vertices_z” respectively. If it is an object
line, store the second element found after “g” in list “class_id”, store the third element in list
“min_lifespan” and the last item in “max_lifespan”. Count lines until the next object line is found, keep
the count in list “triangle_number” which represents the triangle number of this object. If it is a triangle

line, store the three elements found after “f” in list “triangle_vertices”.

Class_id, minimum and maximum lifespan and the triangle number are four attributes of an object;
therefore, the lengths of these four lists are the same, which equals to the total object number in this
SSC model. It was mentioned above that the vertices in source file are ordered by counter-clockwise, to
avoid the triangles being culled, the triangle vertices are entered into “triangle_vertices” as vertexi,
vertexs, vertex2. The length of list “triangle_vertices” is 3*the total triangles in this SSC model.

OBJ File

if OB] file is fine &&
line starts with "v"

list vertice_x
list vertive_y
list vertice_z

if line starts with "g"

list objct color

list min_lifespan
list max lifespan

list triangle_number

list triangle_vertices

Figure 3-2: Obtain raw data from source files

3.1.4 Normalization

It has been introduced in section 2.3 that the only native CRS WebGL can recognize is different from
the system of the source file. A crucial step is to normalize the original vertex coordinates so that they
can be fitted into a WebGL canvas. Figure 3-3 briefly shows how the x coordinates were normalized.
After fetching raw data, the maximum and minimum value for all x, y and z coordinates can be easily

17

Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data - May 2017- Draft

obtained from the corresponding list. The scaling factor for x coordinates equals to the maximum x
value minus the minimum one. Factors for y and z coordinates can be calculated by the same way. The
general scaling factor is the maximum value among three scaling factors. Every x, y z value should first
minus the minimum value in the corresponding direction and then be divided by the general scaling
factor. After normalization, all coordinates are ranged from o to 1.

In addition, WebGL accepts RGB values from 0 to 1; therefore, all color values require normalization as
well. It can be done by simply dividing the original 0-255 value by 255.0.

float scale = maxX - minX;

if (scale < max¥ - minY)
scale = max¥ - minY;

if (scale < maxZ - minZ)
scale = maxZ - minZ;

for (int i = B; i < verticesx.size(); ++i) {
verticesx[1] -= minX;
verticesx[i] /= scale;

Figure 3-3: Pseudo code for coordinates normalizing

3.1.5 Octree order

The dividing of SSC dataset follows the standard octree algorithm, if one octant is larger than a given
size, it will be recursively subdivided by the central plane in each direction, results in eight child
octants. The order and index of child octant are shown in Figure 3-4.

3.1.6 Node structure

An octant is constructed as a node structure in C++; Figure 3-6 shows the content of a node. Every node
contains five data items: chunk level, chunk id, data in chunk, chunk bounding box and children list of
the chunk.

e Chunk level (integer)

After fetching all raw data, a root node which contains all triangles in SSC model is constructed. The
initial root level is 0. Afterward, every subdivision results in a lower level. For example, the tree shown
in Figure 3-4 is a three level tree. The leaf nodes in different branches have different levels; chunk 00 at
level 1 is the leaf node for branch o while chunk 0400 at level 3 is the leaf node for branch 4.

e Chunkid (string)

Chunk id can be seen as the name of a chunk; id of the root node is “0”, which is the index of the chunk
before any subdividing. Afterward, append the index of an octant to its parent’s chunk id after every
subdividing until the lowest level of the branch is reached. Chunk id is also used as the binary file name
of the corresponding chunk.

e Data in chunk (list of floats)

Data that is necessary for octree dividing and binary file outputting including coordinates of triangles in
this chunk, corresponding color index and lifespan is kept in this list.

18

Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data - May 2017- Draft

e Chunk bounding box (list of floats)

The bounding box is defined by its lower left (LL) corner and upper right (UP) corner. Coordinates of
LL corner followed by what of UP corner compose the bounding box list.

e Children of the chunk (list of nodes)

If the chunk needs a subdivision, the resulting child nodes (follow the same order as shown in Figure
3-4) will be kept in this list. Nodes for chunks at the lowest level have an empty child list. Figure 3-7
gives an intuitive view of the list of nodes.

z o7 047 046
7
. ~
6 045 | 044 0o
5 4
el 05 lo406
0405/0404| |
041 ———1 o
2 0401|0400
1 0 o
- 015 | 014 02
X 00
- —_— =
/ | o011 | o010
Figure 3-4: Order of children Figure 3-5: Chunk id at different levels
= Root Node = Leaf Node (lowest)
+ Node.level: 0 + Node.level: int
+ Node.id: "0" + Node.id: string
+ Node.data: vector of floats + Node.data: vector of floats
+ Node.bbox: vector of floats + Node.bbox: vector of floats
+ Node.children: vector of 8 nodes + Node.children: []

Figure 3-6: Node content

Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data - May 2017- Draft

Level: 0
Chunk ID: "
BBox: [0,0,0,1,1.1]
Tree Root
Data: Triangle vertices and
RGB values
. — Level1
Children: Chunk ID: 0

BBox:[0.5,0,0, 0.5, 0.5, 0.5]

©»

Data: Triangle vertices and
RGB values in chunk 0

Children:]

Level:1
Chunk ID: 1

: BBox: [0, 0, 0,05, 0.5, 0.5]

Data: Triangle vertices and
RGB values in cunk 1

Children:

Level:2

Chunk ID: 10
@ BBox: [0.25,0,0,05, 025, 0.25]

Data: Tnangle vertices and
RGB values in chunk 10

Children: []

@
@

@

Figure 3-7: Rough view of tree structure embedded in Javascript

3.1.7 Duplication of triangles intersecting with vertical splitting plane

The allocation of triangles to child nodes always follows an order; hence, a triangle with multiple
affiliations will be taken by the node with the smallest index and will be missing in another chunk.
Therefore, missing of geometries at chunk boundaries might occur. The ideal design should be as less
geometry in each chunk as possible; however, regardless of whether the intersecting triangle is split up,
generating two new vertices or it is duplicated, redundancy occurs. Figure 3-8 explains the reason why
duplication of multi-affiliated triangles is used in this research. Assume the triangle in the figure is split
up, for example, left polygon needs to be triangulated first and results in two new triangles. In this case,
splitting causes 216 bytes redundancy while only 144 bytes are caused by placing the triangle in both
chunks. Therefore, this kind of triangle will be assigned into all chunks it is intersecting with.

20

Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data - May 2017- Draft

Figure 3-8: Splitting of intersecting triangle leads to more redundancy than duplication

Pseudo code for intersection detection is summarized in Figure 3-9. Instead of complicated intersecting
situations, situations of disjointness can be easily listed out. Six cases of disjointness are given in Figure
3-10. To test the intersection with one child node bounding box, for every triangle in its parent node,
the triangle does not belong to this child node if one (or more than one) of the following situations is
fulfilled.

e Maximum x coordinate of the triangle is smaller than the minimum x coordinate of the child node
bounding box.

¢ Maximum y coordinate of the triangle is smaller than the minimum y coordinate of the child node
bounding box.

¢ Minimum x coordinate of the triangle is larger than the maximum x coordinate of the child node
bounding box.

¢ Minimum y coordinate of the triangle is larger than the maximum y coordinate of the child node
bounding box.

¢ Maximum lifespan the triangle is smaller than the minimum z coordinate of the child node
bounding box.

¢ Minimum lifespan of the triangle is larger than the maximum z coordinate of the child node
bounding box.

Two examples of duplicated triangles are shown below. In Figure 3-11 (a), the triangle intersecting with
chunk 1 and chunk 2 will be added into both chunks. In Figure 3-11 (b), the triangle is disjoint with
chunk 1; however, its lifespan indicates its existence in chunk 1.

for (every triangle) {

var intersecting = true;

if (Triangle min X > BBox max X) {
intersecting = false;}

if (Triangle min y > BBox max y) {
intersecting = false;}

if (Triangle max x < BBox min x) {
intersecting = false;}

if (Triangle max y < BBox min y) {
intersecting = false;}

if (Triangle min z > BBox max z) {
intersecting = false;}

if (Triangle max lifespan < BBox min z) {
intersecting = false;}

if (Triangle min lifespan > BBox max z) {
intersecting = false;}

Intersecting;

}
Figure 3-9: Pseudo code for intersection detection

21

Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data - May 2017- Draft

Chunk1

| Chunk 2

Figure 3-11: (a) Example of duplication due to vertical splitting

y y
max X - max X
min X min X
BBox min X BBox max X T '
BBox min X BBox max X
X X
A maxy . BBoxmaxy
y Y
miny
BBox maxy BBox min y
maxy
miny
BBox min y X K X
: Z axis
Z axis
Lifespan min Z
|BBox min Z BBox max Z
Lifespan max Z
Figure 3-10: Six situations of disjointness
Z axis
A\ Chunk1
/ - \l‘l\
\
- \ Lifespan max Z
BBox min Z

Figure 3-11 (b) Duplication due to horizontal splitting

22

Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data - May 2017- Draft

3.1.7.1 Alternative (separate file for multi-affiliated triangles)

Duplicated triangles lead to an increment of file size; an alternative by which all triangles holding
multiple affiliations are stored in a separate file was come up with initially. The initial idea was, as
shown in Table 3-4 (a), generating separate files for every two adjacent chunks to store those “shared
triangles”. A file size test was carried out in advance, it was found that even the total size of “shared
triangles” in upper half chunks is small (2.4%) compared with the size of the whole model, let alone the
file size for every two chunks (will be 0.6% of the total size). Considering that it takes relatively long to
communicate with GPU from the outside, it will be very consuming to take separate operations for such
small files. Therefore, this alternative was abandoned.

Chunk Separate files

0 Intersecting 01

1 Intersecting 13

2 Intersecting 23 Intersecting triangles Size (KB)
3 Intersecting 02 In upper half 357

4 Intersecting 45 In lower half 275

5 Intersecting 67 Total S5C 14487

6 Intersecting 57

7 Intersecting 46

Table 3-4: (a) Separate files Table 3-4: (b) Size of separate files

4
$
@ = &”

&

(.‘ .

Figure 3-12: Separate file for intersected triangles

3.1.8 Binary file

If the size of all leaf nodes of a branch is below the given limitation, data of each leaf node is then binary
formatted and written into a bin file which is named after the node id. Only leaf nodes in each branch
result in binary files. Table 3-5 shows a slice of binary file content, x, y, z coordinates are followed by
their R, G, B values. Each value is a binary-formatted 32-bit float which occupies 4 bytes, hence, 24
bytes for one vertex, 72 bytes for one triangle. One value followed by another, without any white spaces
or end of line.

23

Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data - May 2017- Draft

x1 yl z1 R G |B x2 y2 z2 R G |B x3 y3 z3 R G |B

068 032 05 1 0 05 076 036 022 |1 0 05 067 032 05 /|1 0 05

12 bytes 12 bytes 12 bytes 12 bytes 12 bytes 12 bytes
Table 3-5: A slice of the binary file and the size in byte

3.1.9 Bounding box file

Other than that only leaf node are outputted as binary files, a complete bounding box tree is generated.
If a chunk needs subdivision, write its child nodes bounding boxes as a list of lists; each member list is
composed by coordinates of the lower left and upper right corners of bounding box followed by a
“depTogo” indicator. If the chunk needs a subdivision, depTogo equals to 1, otherwise it is 0. The order
of member lists follows the same order as the child nodes in octree. The bounding boxes will be
processed and outputted as a Javascript automatically. Figure 3-13 gives an example of the outputted
bounding box Javascript script of a two level tree (subdivision of chunk 00). “box0” contains bounding
boxes of all chunks after the first division. A subdivision was carried out in chunk o; resulted bounding
boxes are stored in list “box00”. The Javascript script will be later used to embed a tree structure at
client side (see details in section 3.2.1).

ar rootNode0= tree. root;

var box0 = [[-0.5,0,0,-0,0.5,0.442917, 1], [-1,0,0,-0. 5, 0. 5, 0. 442917, 0], [-0.5,0. 5,0, -
0,1,0.442917,1], [-1,0.5,0,-0. 5,1, 0. 442917, 1], [-0. 5,0, 0. 442917, -0, 0. 5, 0. 885833, 0], [~
1,0, 0. 442917, -0. 5, 0. 3, 0. 885833, 0], [-0. 5, 0. 5, 0. 442917, -0, 1, 0. 885833, 1], [~
1,0.5,0.442917,-0.5,1,0.885833,1 1 1;

addLevel (rootNode0, box0) ;

var rootNode(0 = rootNodel. childrenl0];

var box00 = [[-0.25,0,0,-0,0. 25, 0. 221458 0], [-0.5,0,0,-0. 25, 0. 25, 0. 221458, 0], [-
0.25,0.25,0,-0,0.5,0. 221458, 0], [-0. 5, 0. 25, 0, -0. 25, 0. 5, 0. 221458, O] [-

0. 25, 0, 0. 221458, -0, 0. 25, 0. 442917, 0], [0. 5,0, 0. 221458, -0. 25, 0. 25, 0. 442917, 01, [-
0.25,0. 25, 0. 221458, -0, 0. 5, 0. 44291r 0], [-0.5, 0. 25, 0. 221458, -0. 25, 0. 5, 0. 44291r 01 1;

addLevel {:rootf\'odeOO, boxOO) |

Figure 3-13: Example of Javascript for client tree construction

3.2 Client Side

3.2.1 Javascript node structure

To fetch exact chunk(s), a node structure similar to what was used in octree dividing is applied to
construct a tree structure at client side. In Figure 3-15, data elements of a node including BBox, depth to
go, intersection status, loading status, buffer of triangles in this node, number of vertices, a WebGL
buffer object and children of the node are listed out. Initial value for each data element is given in

column 1; Data types are listed in the second column. The third column provides an example of a root
node.

24

Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data - May 2017- Draft

Node bounding box is a list of 6 floats which composed by the lower left corner and right up corner
coordinates of this parent node. “Depth to go” of a root node equals to 1 if the node is subdivided; this
value for child nodes equals to the last value of the corresponding child node bounding box list.
Intersection status indicates whether the node is intersecting with the current viewport or not. Loading
status indicates whether the corresponding bin file has finished loading from the server into client’s
main memory or not; once the loading is completed, “loaded” will be tuned to true. Triangle buffer is a
Float32Array which contains all data obtained from bin file. Number of vertices can be easily calculated
from triangle buffer length. While loading a .bin file, a WebGL buffer object is initialized for later data
storing. If a parent node is subdivided, its child nodes will be inserted into children list by the pseudo
codes shown in Figure 3-14. Take the case in Figure 3-13, rootNodeo is the tree_root illustrated in
Figure 3-15; list “box0” is a list of lists containing all bounding boxes and depth to go indicators of child
chunks (after first dividing) of the tree root. For every child node, a new node structure is initialized,
and its “BBox” is filled in with the first six floats of the corresponding list in “box0” while “depTogo” is
the last float. So far, tree._root has a children list containing 8 child nodes: rootNodeoo, rootNodeo1 ...
rootNodeo7. “depTogo” of rootNodeoo is “1”, which means a subdivision of rootNodeoo. The above
steps are repeated with ParentNode = tree._root.childen[0] and “Child_BBox” = “box00” shown in
Figure 3-13.

Node.prototype.addChild = function (BBox,depTogo) {
var child = new Node (BBox,depTogo) ;
this.children.push(child) ;

}:

function addLevel (ParentNode, Child BBoxes) {
for (var i =0; i < Child BBoxes.length; i++){

ParentNode.addChild(Child BBoxes[i], Child BBoxes[i][:]);

}

Figure 3-14: Pseudo code for generating child nodes

New node = Type = tree._root
+BBox =[] List of floats [-1,0,0,0,1,0.885833]
+ depTogo = null Oor1 1
+ intersecting = false Boolean false
+ loaded = false Boolean false
+ tribuffer =[] Float32Array x1y1z1RGBx2y2z2RGBx3y3z3RGB..]
+ numVertice = [] Int 300
+ BufferObject =[] Buffer Object gl.createBuffer()
+ Children =[] List of child nodes [rootNode00, rootNode01,, rootNode07]

Figure 3-15: Example of Node content

25

Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data - May 2017- Draft

3.2.2 Client framework

A conceptual client framework is concluded in Figure 3-16, including working flow and communication
between client interface, Javascript, main memory and client GPU. The canvas of web browser is seen
as the client interface, by which mouse movement parameters are detected and passed into Javascript.
Current viewport bounding box is then generated based on mouse movements. An intersection test is
called after every new mouse movement; checking the intersection status of the viewport with every
node of the previously embedded node tree structure. Initialize requests for interested chunks from the
server; store fetched bin file content in client main memory. Meanwhile, values of data elements in
nodes are updated. In rendering function, data is copied from memory to client GPU; the rendering
operation itself is being conducted alone in GPU at every frame while the nodes are updated only after
new mouse movement.

A sequence in which main functions are called is indicated in Figure 3-17. Main functions including
mouse movements, viewport bounding box generating, intersection test, loading of chunks and main
rendering function; functions will be explained in following sections.

———————————————————

k===
e
2]
=2
—

‘ Generate Viewport BBox |<

&

Server
PR ~ | Updated with user |
I' Intersection test \ [interaction]
I :_ _____ :
: Chunk BBox Tree :
1
. o
Fetch chunk i Ll v .
Bin Files .
. XMLHttpRequest i\ Memeory
I
1 I — - -
1
: l
X » bin file content ! —
! ra ™
L) K . \
N [Client GPU)

create and initialize a
7| bufrer object's data store

. _ gl.bufferData
Vertice BufferSize Call GL functions
number ArrayBuffer
- render primitives from

] y
gl.drawarray ! array data
1]

frame

Figure 3-16: Client framework

26

Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data - May 2017- Draft

Javascript Functions Client
, b oo mm—m——_—_——_——— s N
' Update Viewport BBox «— Mouse up
' function !
: J' Call Zoom in / out
! ‘ Intersection test function
L]
i l Call
—> ‘ LoadChunk function ‘

l

I
I
I
I
: ‘ Node contents updated ‘
I
I
]

Tree
traversal
every frame

| Updated after every
' i user interaction '

’ Al
‘ Render function ‘

il l Call

‘ RenderChunk function ‘

<3Iient GPD

I

I

I r

I : . .
! i Render Function is
' called every frame
L]

Figure 3-17: Main functions and operating order in Javascript schema

3.2.3 Intersection testing function

The intersection testing function uses depth-first algorithm which means the test will continue with
next branch until the bottom of the previous branch is reached.

Assume a new viewport bounding box is generated (the details about how to create a viewport bounding
box will be introduced in section 3.2.10). Firstly, a disjointness test (similar to the theory in section
3.1.7) is conducted with the bounding box of root node. If intersection status is true, the test will be
carried out with bounding box of every child node. If the viewport is intersecting with child node i,
examine “depTogo” value of child node i. If “depTogo” is 0, which means the lowest level of this branch
is reached, then fetch node data element “intersecting”. If “intersecting” = false, which means it was not
intersecting with the last viewport position and was not rendered for last user action, call load chunk
function for child node i. If “intersecting” = true, which means it was intersecting with last viewport
position and is already loaded. If “depTogo” is 1, recursively call intersection testing function for child
nodes of node 7 until the bottom of this branch is reached.

If intersection status is false, set data element “loaded” of the current node as well as all its child nodes
to be false; it indicates the corresponding chunk will not be loaded after this mouse movement. Figure
3-19 gives an example of the intersection test procedure. Viewport marked in blue is intersecting with
chunk 00 and chunk 02; disjointness check will be applied to chunk 00, 01 and 02 successively;

27

Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data - May 2017- Draft

“depTogo” of chunk 02 = 1, therefore, chunk 03 will not be checked until all child nodes of chunk 02 are

proceeded.

So far, data element “intersecting” of all nodes are updated; data element “loaded” of nodes that are not
intersecting with the current viewport are updated.

viewport BBox
Node i

disjointness test

v

intersection = true or false

True

Node i was not loaded inb‘ i.StepTogo ==

previous intersection test

Load Node i

Set node.loaded == false
Recursively set evey
child node.intersection = false

i.intersecting == false

Call intersection test function
for every child node of Node i

Set node.intersecting == intersection

Figure 3-18: Intersection test function

!
02
OROOOLD
00 01
/4
viewport

OO 0O0O0O0O OOOODDUU
022

020

Figure 3-19: An example of intersection test procedure

28

Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data - May 2017- Draft

3.2.4 Load chunk function

In intersection testing function, loadChunk function would be called for every node that needs to be
loaded from the server. The process of loading a chunk is shown in Figure 3-20; a particular chunk is
queried by its file name (which has been introduced in section 3.1.6). First, fetch data element
“tribuffer” of the requested node; if the length of “tribuffer” is longer than 1, which means it has already
been loaded during previous mouse movements, then tune “loaded” to true. Otherwise, the “tribuffer” is
empty, which means the node has never been loaded and is not in main memory yet. Generate a new
XMLHttpRequest to fetch the chunk from the server; the response is an ArrayBuffer object which can
be accessed by GPU by creating a Float32Array with it. Assign the Float32Array to node.tribuffer so that
it is stored in client memory and can be invoked later. Set node.numVertices as the length of tribuffer
divided by 24 (as it has been introduced earlier that a vertex occupies 24 bytes of memory). Call WebGL
method “createbuffer” to initialize an empty buffer object in GPU; the buffer object is also set as a node
data element so it can be used afterward.

Once a chunk is loaded, a buffer object is initialized; after that, vertex shader and fragment shader are
set up. “gl.vertexAttribPointer” method defines an array of generic vertex attributes data.
gl.vertexAttribPointer(index, size, type, normalized, stride, offset); the first argument is the index of the
vertex attribute that is to be modified; the second and third ones declare number and type of
components per vertex attribute. Next argument states that the data needs not to be normalized when
being cast to a float. A stride means the total length in bytes of all attributes of one vertex; the last one
specifies an offset in bytes of the first component in the vertex attribute array. For example, to define
attribute “vertex positon” of vertex shader which tells the shader where to fetch vertex coordinates from
the Float32Array, the code is shown in Figure 3-21; positions of vertex 1 are the first three floats (12
bytes) x, y, and z in the Float32Array; RGB values (12 bytes) can be fetched with a 12-byte offset from
beginning of the array. Vertex 2 can be fetched with a 24-byte offset from the start and so on. Table 3-6
gives an impression of “vertPosition” and “vertColor” attribute content in GLSL as well as the offset and
length used to fetch specific attribute.

So far, buffer data is only obtained from the server and stored in main memory; no data except an
empty buffer object has been passed to client GPU yet. Keep in mind that LoadChunk function is the
only function communicates with the server. All data fetched and node states updated are stored in
main client memory, the RenderChunk function introduced in next section only communicates with
client memory.

29

Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data - May 2017- Draft

LoadChunk Function

Intersection test function

Requested Node

if Node 1 tribuffer.length = 1 If Node 1 tribuffer is empty

‘ MNew XMLHttpRequest }—b Server

L N - ~. XMLHttpRequest —‘

Py Node tribuffer = ', response (bin file)

Float32Array(response)

Node loaded = true ‘

Node.numVertices =
length of response/24

Node BufferObject = X Client GPU
gl.createBuffer() '

Create empty buffer object for
vertex attribute data

¥

1
1
1
1
I Set up generic
: vertex attributes data

‘ Set Node i.loaded = true

[
'
[
1
1
[
1
1
'
1
1
1
[
1
1
'
1
1
'
[
1
1
[
1
1
]

\ | Memory] '

Figure 3-20: Load chunk function

gl.vertexAttribPointer(‘vertPosition’, , gl.FLOAT, gl.FALSE, , 0);
gl.vertexAttribPointer(‘vertColor’, , gl.FLOAT, gl.FALSE, ,)

32-bit float
Offset
Total length

Figure 3-21: Example of setting up the vertex and fragment shader

vertPosition vertColor

x1 yl zl R G B

0.68 0.32 0.5 1 0 0.5

0 12 bytes since the start of this vertex
24 bytes

Table 3-6: Content for one vertex in GLSL, including position, RGB values, and offsets used to fetch specific attribute

3.2.5 Render chunk function

This render chunk function is casting as the main function for rendering; it determines which chunk(s)
to be rendered at this frame, then fetches corresponding buffer data, paste it to GPU and starts
rendering. Figure 3-22 gives the procedure of RenderChunk function. Once the function is called, it
starts to accomplish a tree traversal through all nodes. If the node is a leaf node (“depTogo” = 0) and
the chunk is loaded, moreover, the node is intersecting with the current viewport, invoke and copy
triangle buffer of this node from memory and pass the buffer to the empty buffer object previously
initialized at GPU memory using “gl.bufferData” method. WebGL buuferData method initializes and

30

Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data - May 2017- Draft

creates the buffer object's data store in GPU. After that, call gl.drawArrays method to render primitives
from array data. In this case, gl.drawArrays(gl. TRIANGLES, 0, node.numVertice) is used to draw
triangles for a group of three vertices; there are in total, node.numVertice vertices to be rendered for
one node. Compared with the initial rendering schema (introduced as an alternative in section 3.2.8),
the new rendering schema is more dynamic; it allows sequential rendering of a single chunk. Once the
data buff