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Abstract 

This research focuses on a smooth generalization of continuous 2D map based on a smooth 3D vario-

scale geographical data structure. A Space Scale Cube (SSC) offers non-redundant geometric data for 

the different level of details. SSC model represents geographic data as a closed polyhedron, to generate 

a 2D map; SSC is intersected with the projection plane; resulting in a set of 2D polygons. However, 

problems emerge when creating maps with a large sized SSC dataset under web environment due to 

limited bandwidth and decoding speed. Repetitively transmitting data from the server to the client can 

be time and bandwidth consuming. A preprocess should be applied to a source that allows the follow-up 

development of an online traffic and time-saving prototype.   

After preprocessing, large sized data will be subdivided based on octree algorithm to minimize 

transmission time from server to the client; moreover, accessible to WebGL. A prototype has been 

developed which enables smooth and simultaneous vario-scale map rendering against heavy user 

actions such as massive zooming and panning in a short period. Modified prototype schema allows 

query of only relevant data chunks by current viewport position; it prevents repeated loading of same 

chunks; what is more, repeated transmission of data from outside to GPU is eliminated. A tree structure 

is embedded at the client side that facilitates retrieve time. Rendering happens every frame; hence the 

prototype responses to heavy user actions simultaneously. Also, it can obtain coordinates in RD 

coordinate system by double clicking. After testing modified schema with a 9x9 dataset, fine 

performance of the prototype is indicated by a high average fps (57 fps) and low main memory 

occupation.   
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1 Introduction 

1.1  Context 

Geographical data are widely applied in various territories such as urban planning, civil engineering, 

resource management, transportation management and much more. Traditional map generalization 

method uses vector or raster format maps with a stack of predefined scales (Huang, 2016); it has a fast 

responsiveness to user interactions such as panning and zooming. However, it leads to an unavoidable 

loss of details between two fixed and discrete scales.  

It is stated by Meijers (2009) that a Space Scale Cube (SSC) offers non-redundant geometric data for 

the different level of details. SSC model represents geographical data as closed polyhedrons; 2D maps 

are generated by intersecting SSC with a projection plane. By orthographic projection, terrain features 

at the specific level of details (LoD) can be represented by a set of 2D polygons casting upon that plane. 

The gradual transition of a terrain feature is realized by moving the plane downwards. Polygons 

intersecting with projection plane are then transmitted to GPU in a format that is accessible to the 

graphic processor. To fetch data as precise as possible to save time and online traffic, source data are 

divided into small chunks based on octree algorithm. Three datasets are available: a sample smooth 

SSC with four objects, a classic SSC of Leiden city center and a relative large classic SSC covering 9km 

by 9km area. Figure 1-1 (a) and (b) provides a rough sight of the smooth sample and Leiden dataset that 

will be used in this research respectively. The concept “lifespan” is involved to avoid “missing bottom” 

problem. The bounding box of each chunk is used as a reference by which the corresponding chunk can 

be concisely requested.  

This paper presents an approach for large dataset preprocessing and construction of a web service-

based prototype that enables simultaneous rendering of concisely requested chunks. Following 

conclusions are obtained: 

Preprocessing - The binary format has been proved as a possible data format for WebGL data 

transmitting and rendering. Source OBJ file is encoded as a Float32Array; the resulted typed array can 

be directly accessed by the graphic processor. The current octree dividing method causes 30% volume 

increment to Leiden dataset; 50% and 90% volume increase to a 9x9 dataset with a 2.5MB and 500KB 

chunk size threshold respectively.   

Client schema - A node structure reflecting octree structure containing necessary data elements is 

generated in Javascript to store data in client memory. Node structure is updated regarding every 

mouse movement; render function conducts a tree traversal every frame to ensure that the prototype 

responds to massive user actions simultaneously. Prototype schema allows accurate chunk(s) 

requesting and loading, moreover, non-repeat loading. Chunks loaded once are stored in client random 

access memory (RAM), waiting for a next invoking. Rendering function communicates only with client 

memory and runs in parallel with other functions.  

Performance - Prototype performs well with the largest current available dataset without any halt; by 

using the modified schema, average fps can be increased to 57; main memory garbage is removed 
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automatically; speculated GPU memory use would be 350MB while the total RAM occupation including 

browser framework will be around 600MB. 

                  
Figure 1-1: (a) smooth SSC                                (b) Classic SSC of Leiden city center  

 

1.2  Motivation 

1.2.1 Problem statement & overall goal 

Recently, various efforts have been made to design file formats for transmission of 3D geometry, for the 

use with high-performance 3D applications on the Web. The existing solutions either send all data 

within a single batch, or they introduce an unnecessarily large number of requests. However, limited 

bandwidth pairing with the limited computational power of Javascript environment leads to a 

bottleneck (Ponchio, 2016). A dataset covering 9km by 9km area results in a binary file larger than 

200MB. Imaging, a dataset covering the whole Netherland, or even the whole Europe will be available. 

It is impossible for a web-service based prototype to generate a map with raw text data as a whole. As a 

service facing domestic consumers, web service pursues fluent performance and fast responsiveness. 

Hence, preprocessing and subdividing of source data are indispensable.  

To transfer only parts of data to the client, it requires subdividing of the dataset. In previous work 

(Rovers, 2016), R-tree was used as a spatial dividing method; however, drawback appears when objects 

are holding a long lifespan. All triangles belonging to this long-lived object will be transferred if 

intersection plane intersects with the bounding box of the object which causes redundancy (redundancy 

means the transmission of unneeded data). In this case, another dividing method, octree, is tested and 

evaluated.  

What is more, incompatibility exists between coordinate reference system (CRS) of source data and 

CRS of WebGL. This conflict calls for a proper transformation between two CRSs and; also, a 

manipulation of user interaction parameters so that they can interact with the transformed source data.   

The ultimate goal is to implement a web-based service along with its preprocessor that scales well with 

large data sets, enables fast and smart transmissions of preprocessed data chunks, eliminates decoding 

time through direct GPU uploads, minimizes the number of HTTP requests by reusing data in client 

memory. Figure 1-2 gives a brief understanding of the concept: “smart fetch.” Only chunks intersecting 

with current viewport are requested. Box in dash line represents the current viewport, chunks marked 
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in red are chunks need to be loaded; chunks in blue represent chunks in client memory. As shown in 

Figure 1-2, for the second user action, although chunk 300, 21 and 20 are intersecting with the current 

viewport, no HTTP request will be generated for them. Instead of fetching these chunks from the server, 

they can be directly obtained from three specific memory slots (either from main memory or GPU 

memory).  

     

Figure 1-2: Example of anti-reloading and reusing of data in client memory 

 

1.2.2 Scientific relevance  

An efficient prototype would contribute to the continuing research on vario-scale data by van Oosterom 

and Meijers (2013) and van Oosterom et al. (2014). There is currently no web service for smart data 

requesting and smooth rendering of large SSC dataset. Rovers (2016) developed a web service to 

explore spatial access for caching and retrieval of SSC data; WebGL rendering was not involved in that 

research. Driel (2015) implemented a Java-based prototype for the real-time intersection on SSC data; 

smart fetch of chunks according to viewport position remained unaccomplished.  

 

1.3  Objective  

Section 1.2.1 defines the overall goal of the research. The main object is to develop a web service for 

smooth rendering and smart fetch of minimum redundant preprocessed data against massive user 

actions. Delay during data transmission should be minimized and decoding at client side (by 

Javascript) should be eliminated as well. What is more, the web service should be enriched with user 

interactions. To achieve the overall goal, this research designs, implements and validates the 

performance of the web service.  Concrete objectives are: 

1. Divide source data based on octree algorithm with a well-defined chunk size limitation. 

2. Serialize and format data to eliminate decoding time at the client side. 

3. Solve the incompatibility between WebGL and source data CRS. 

4. Viewport position according to user actions should be accurately defined and be updated in 

time.  

5. Query relevant chunks by current viewport position.  
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6. Prevent repetitive loading of chunks already in client memory to save transmission time as 

well as memory usage. 

7. Allow dynamic rendering, i.e. if multiple chunks are required, the prototype should be able to 

render loaded chunk(s) individually in spite of the whole loading progress is completed or not.  

8. Other user interactions enrichment, i.e.  Fetching coordinates by double click at a point a 

client is interested in.  

 

1.4  Research questions 

Primary research question - What is the architecture of web service that enables smart data 

fetching for smooth and simultaneous rendering against massive user actions? What are the possible 

data format and serialization method regarding the prototype architecture?  

The following sub-questions have to be answered to reach the primary research question: 

1.4.1 Sub-questions for preprocessing: 

1. In the existing OBJ files, vertices and triangles can be distinguished by the starting character of 

each line. However, it has already been proved that progressively comparing and splitting 

strings (decoding) of a static file is slow under Javascript environment. How should the text-

based source files be formatted? Is binary format a possible arrangement under this 

circumstance? 

2. How should the original dataset be structured and serialized so that it can be directly accessed 

by GPU? 

3. During the octree dividing, what is the affiliation of a triangle if it is intersecting with multiple 

octants? What will the size change regarding this dividing method? 

4. What will be the difference in total file sizes resulted from octree dividing with different 

thresholds?    

1.4.2 Sub-questions for client side development: 

1. How should the octree structure be reflected in Javascript? How should the chunks be indexed? 

2. How to define a viewport bounding box and how to update it regarding user actions? 

3. If a user is repetitively zooming in/out during a short period, will there be overload? How to 

update buffer data and vertex number without the unloading of all chunks that were requested 

by previous render request? 

4. What is the prototype schema that allows dynamic loading and rendering of single chunk? 

5. Is the prototype performing well with predefined chunk size limit? What is the memory 

consumption?  
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2. Theoretical background & related work  

2.1  Vario-scale data 

Instead of storing separate layers for discrete scale levels, a spatial model called Space Scale Cube (SSC) 

was designed and described in van Oosterom and Meijers (2013) and van Oosterom et al. (2014). A 

classic SSC (as shown in Figure 2-1(a)) is generalized by extruding the original data into an additional 

dimension; the 2D area objects are now presented as a 3D volume. However, the model is still based on 

the considerable amount of discreteness. Figure 2-1(b) gives an ideal smooth SSC within which a small 

change in map scale results in a small geometry change so that continuous changes will turn to a 

gradual transition. A dataset based on the SSC model is represented as closed triangular-meshed 

polyhedral. Minor changes in map scale can be realized by moving an intersection plane 

down/upwards. A map can be seen as a rectangle raster at the viewport size which intersects with SSC. 

By orthographically projecting all points on the intersection plane downwards; the color of the first 

polyhedron each point hits is the color of that point on the map (as shown in Figure 2-1(c)). 

 

Figure 2-1: The space Scale Cube: A single 3D model representing terrain features by closed polyhedrons. LoD increases from 
the top to bottom. And the concept of rendering SSC. Adapted from van Oosterom et al. (2014). 

 

2.2   Octree 

To allocate data into small chunks and to have a well-organized indexing, a tree structure should be 

involved. An octree is a tree structure in which each internal node has exactly eight children resulted by 

evenly dividing each side of their parent node into two parts. Such a tree structure possesses the 

following advantages: 

1. The bounding box of each chunk can be easily calculated at different levels. 

2. It allows non-uniformly sized chunks. Geometry density can differ a lot regarding terrain types 

(e.g. residential area against rural area).  

3. It is straightforward. Recursively divide one chunk until its leaf node size does not exceed the 

threshold. A limitation of maximum tree level is also able to be restricted to prevent very deep 
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tree structure which contains a large amount of small sized chunks to balance HTTP request 

number.  

A drawback of octree structure is the inflexibility of allocating triangles intersecting with splitting 

planes. Details about octree dividing and triangle placement will be introduced in Chapter 3.  

 

2.3 WebGL fundamental  

WebGL runs on the GPU on a computer; therefore the client needs to provide the code that can be 

recognized by a GPU processor. The code should be provided in the form of pairs of functions. For 

instance, a vertex shader and a fragment shader, are two essential functions for GPU rendering. 

According to WebGLFundamentals (2016), they should be written strictly in a, as stated, “ C/C++ like 

language called GLSL (GL Shader Language).” A rendering program is composed by pairing all these 

functions. 

A vertex shader is crucial for the vertex position computation. Based on the positions manipulated by 

the function, various kinds of primitives including points, lines, and in this case, triangles can be 

rendered by specifying a primitive type when calling the gl.drawBuffer method. During the 

rasterization, a second user-supplied function “fragment shader” is then involved in computing RGB 

values for each pixel of the current primitive. 

Set up states for these functions; for each chunk that requires a draw call, a bunch of states should be 

set up. Then, by calling gl.drawElements or in this case, gl.drawArray, shaders are executed on the GPU.  

Although the web prototype canvas is a 2D surface, WebGL canvas is actually in 3D; the additional z-

direction is used for depth testing. Pixels differing only by their z-coordinate correspond to the same 

pixel on the screen, as described by Nyman (2013),  “their z-coordinates are used to determine which 

one hides the other one.” Coordinates in all three axes range from -1.0 to +1.0; keep in mind this is the 

only coordinate system natively recognized by WebGL.  A transformation between world CRS (e.g. RD 

system) and WebGL system becomes significant. Figure 2-2 (a) shows the native WebGL CRS. Figure 

2-2 (b) explains the concept: near z plane. A near z-plane can be seen as the camera plane, everything 

above it will be cut away (although it is rendered, you cannot see it because it is above you). While 

moving near z plane from the top of SSC downwards, changes of map scale are performed.   

Except the dividing of data, another primary goal of our preprocessor is to process source data so that it 

can be fitted into WebGL CRS and output it in the form of GL Shader Language.  
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Figure 2-2 (a): WebGL coordinate system (WebGL fundamentals, 2016)   (b): Near z plane 

 

2.3.1 ArrayBuffer  

Buffers are arrays filled in with binary data uploaded to GPU. Usually, buffers contain things like 

positions, normals, texture coordinates, vertex colors, etc. Attributes are used to specify how to fetch 

data from buffers, manipulate, and provide them to the vertex shader. For example, positions can be 

put in a buffer as three 32-bit floats (x, y, z) per position. You would tell a particular attribute from 

which buffer to obtain vertex position information, what type of data it should take out (e.g. three 

component 32-bit floats), where do the positions start, and how many bytes one vertex retains. 

GLprogramming (n.d.) introduces the next steps of processing.  

1. Clip primitives, color them by the above-mentioned fragment shader function. 

2. Coordinates from source data are transformed to WebGL coordinates.  

3. Rasterize the clipped primitives to pixel fragments. 

2.3.2 Face culling  

According to OpenGL (2016), in computer graphics, triangles primitives haves a particular facing; face 

culling determines whether the triangle is visible or not. Facing is defined by specifying the order of 

vertices (either clockwise or counter-clockwise) that compose the triangle as well as the order in which 

they are projected on the screen. If it is specified that a front-facing triangle follows a clockwise winding 

order, but the triangle projected on the screen follows a counter-clockwise winding order, then it will 

not be drawn. 

 

2.4   Data preprocessing: binary format 

Louis-Rosenberg (2012) stated in his work that rather than loading a meshed OBJ file, processing it, 

and putting into arrays that could be sent to a GL buffer increases the client performance significantly. 

Binary data that could go directly into GPU will be a suitable data format. The binary representation of 

a mesh that exactly mirrors the data which should be sent to an array buffer consists of a list of 32-bit 
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oats representing the vertex data (6 for each vertex with position x, y, z, and normals) followed by a list 

of 16-bit integers representing triangle indices. The word "little-endian" means the least significant byte 

comes first in the array. The majority of standard systems (x86, x86-64, IOS) use little-endian. 

Therefore, the float value should be written in little endian. 

In this case, 32-bit floats are used. During preprocessing, by specifying an order for all triangles and 

enabling face culling, normals are no longer needed. The attribute “vertex position” is followed by 

another attribute essential for rendering: “vertex color.” Vertex color is formed by RGB values of this 

vertex. WebGL recognizes RGB values in range 0 to 1; hence, 32-bit floats are compatible for vertex 

color. The resulted data can be directly fetched with an HTTP request as an ArrayBuffer object. No new 

storage needs to be allocated because both the vertex and color arrays use the same ArrayBuffer with 

different offsets. 

The transforming between byte kilobyte and megabyte is declared here: 

1 megabyte (MB) = 1000 kilobytes (KB) = 1x106 bytes (B). 

 

2.5   GPU memory vs. Main memory  

Some GPUs use their memory that’s separate from main memory. Other GPUs share the same memory 

as the rest of the system. According to Nyman (2013), as a WebGL developer, it is inexplicit which 

memory system the client machine uses. Some important notes are: 

 The very first step is uploading data to appropriate WebGL data structures. Uploading means 

copying data from main memory to GPU memory. In this case, a particular WebGL data 

structure is WebGL buffer (ArrayBuffer in binary format as mention above). 

 Rendering is fast after data transmission. 

 Data transfer is relatively slow. 

Consider GPU as a fast and efficient machine while working independently, but one that takes long to 

communicate with main memory. Therefore, ensure that most of the communications are made ahead 

of time and concisely. Though not all GPUs are so isolated from the rest of the system — but WebGL 

forces us to think in these terms so that the Javascript schema must run efficiently no matter what 

particular GPU architecture a future client uses. No matter what kind of GPU architecture it is, the 

communication between GPU and server should be eliminated. Figure 2-3 provides a general 

relationship between client and server as well as the relationship between main memory and GPU 

memory. A client contains following components: the prototype, Javascript scripts and HTML scripts, 

main memory and GPU memory. The only element contacting with the server is the main memory; 

GPU memory fetches data from main memory slots. A better schema that eliminates communication of 

GPU with the outside should allow data to be directly stored in GPU memory. 
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Figure 2-3: Relationship between (1) server and client; (2) GPU memory and main memory 

 
 

2.6   Locality of reference 

According to Denning (2005), in computer science, locality of reference is described as frequent 

accesses to same values, or related memory slots, depending on the memory access pattern. Two types 

of reference locality are commonly conducted– temporal and spatial locality. Denning (2005) defines 

temporal locality as the reuse of specific data within the relatively small time period. Spatial locality 

stands for the use of data within relatively close storage locations. If a particular memory slot is 

referenced at a given time, the neighbor memory slots are very likely to be referenced shortly; hence, it 

is worthwhile to guess the size and shape of the neighbor slots for faster access. In our case, node data 

elements are updated and located in main memory spatially so that they can be invoked later faster.  

 

2.7   Memory management: Garbage collection (GC) 

Garbage collection (GC) is an automatic memory management system (TIBCO, n.d.) widely available 

for object-oriented programming languages such as Java, Javascript, and ECMAScript. Dynatrace 

(2017) stated that  “with a built-in garbage collection, developers are allowed to create new objects 

without worrying explicitly about memory allocation and deallocation because garbage collector 

automatically reclaims memory for reuse.” Peyrott (2016) describes a memory leak as the memory 

occupied by one object is not returned to memory pool when the object is no longer required by an 
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application. GC facilitates a prototype with less boilerplate code while eliminating memory leaks and 

other memory-related problems.  

Figure 2-4 briefly explains how memory management works for an object-oriented language. Objects 

currently in use are tracked and everything else are designated as garbage. The blocks filled in blue 

represent heap memory (occupied memory), which are the memory slots used for dynamic allocation 

while the shaded blocks is free memory. In most configurations, the operating system allocates the heap 

in advance while the program is running. It works in the following pattern: 

1. An object generation claims a memory slot and moves the offset pointer forward. The next 

object will be allocated at this offset (in between the filled block and shaded block) and claims 

the next memory slot. 

2. If an object is no longer in use, the garbage collector reclaims its underlying memory and reuses 

it for future object generating.  

Figure 2-5 presents the configuration of GC roots. Objects that are no longer referenced (temporal 

located) causing classic memory leaks are removed by GC system. To determine which object is causing 

memory leak, most GCs uses a mark-and-sweep algorithm; the algorithm consists of the following two 

steps as summarized by Peyrott (2016): 

1. The garbage collector builds a list of "roots." Roots are global variables whose reference is kept 

in code. In JavaScript, a "window" object acts as a root and is always reachable; hence GC 

considers it, and all of its child objects as reachable (spatially located) objects as well.  

2. Memory slots that are unreachable are then marked as free, swept from heap memory. 

For our research, an ideally designed schema should be light and live, which means all necessary data 

for rendering is accessible directly from memory (it requires proper referencing); moreover, memory 

for preprocessing at client side (i.e. unnecessary for forwarding rendering) should be marked as garbage 

memory which can later be automatically reclaimed.  

 

Figure 2-4: New objects are simply allocated at the end of the used heap (adapted from Dynatrace, 2017). 
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Figure 2-5: GC roots, their reachable child objects, and temporally located objects that are marked and need to be garbage-
collected (adapted from Dynatrace, 2017). 
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3. Methodology design and development  

3.1  Source data preprocessing 

3.1.1 Source data 

 OBJ file 

Content and data type of the original OBJ file is shown in Table 3-2. Lines starting with “v” represent 

vertices, the following three floats are x, y, and z coordinates respectively. A “g” indicates the beginning 

of a new object; the following four values are object id (integer), class id (integer), which will be used as 

a color reference later, minimum and maximum lifespan (integer). To counter the “missing bottom” 

problem (see section 4.1.2), the concept “lifespan” is involved. Minimum lifespan is the z value at which 

an object appears for the first time, and it lives until the maximum lifespan is reached. An object line is 

always followed by several lines starting with “f” which represent triangles composing this object. A 

triangle line contains three integers: index of vertex forming the triangle; the order of the vertices is 

defined as counterclockwise. Table 3-2 gives a brief view of the actual content in source OBJ file.   

 

OBJ File 

v x coordinate (float) y coordinate (float) z coordinate (float)  

g  Object id (int) Class id (int)  Lifespan min (int) Lifespan max (int) 

f Vertex index 1 (int) Vertex index 2 (int) Vertex index 3 (int)  

Table 3-1: OBJ file content and data type 

 

OBJ File 

v 93851.3255 463551.399 378 

v 93848.358512 463548.100973 378 

v 93853.1826667 463553.491 378 

… 

g 1001706 13000 437 506 

f 114803 114802 114801 

f 114801 114804 114803 

…. 

g 1001704 12400 435 452 

Table 3-2: A brief view of actual content in OBJ file  

 

 Color information 

The other source file is the color information list which can be downloaded from kadaster.nl (n.d.). 

Each class id obtained from OBJ file has corresponding RGB values (0-255). Table 3-3 shows an 

example of the color information of objects with class id “13000”. 
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Color information 

Class id  13000 

Red Value 255 

Green Value 255 

Blue Value  255 

Table 3-3: Class id versus RGB values 

 

3.1.2 Preprocess concept  

The basic preprocessing concept is generating small binary files containing elementary geometry and 

color information in the form of GLSL that goes directly into GPU.  Figure 3-1 shows the rough 

preprocessing procedure. Data will be obtained from source files, processed and stored in a root node. If 

the root node contains more triangles than the predefined threshold, it will be divided into eight smaller 

chunks based on octree dividing algorithm. This step is recursively conducted until the size of nodes at 

the lowest level is below the limitation. If a node needs to be subdivided, it becomes a parent node; the 

bounding boxes of its eight children nodes are generated and written into a separate text file. The 

output files include the binary files of nodes at the lowest level of each branch and the bounding boxes 

of 8 children of every parent node. The detailed steps are explained in the following sections.  

 

 

Figure 3-1: Preprocessing concept 
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3.1.3 Fetch raw data from OBJ file 

Preprocessing was carried out in C++ environment. The first step of preprocessing is obtaining raw data 

from the source files. Read every line of OBJ file, split it at white space; if it is a vertex line, store the 

three elements after “v” into list “vertices_x”, “vertices_y” and “vertices_z” respectively. If it is an object 

line, store the second element found after “g” in list “class_id”, store the third element in list 

“min_lifespan” and the last item in “max_lifespan”. Count lines until the next object line is found, keep 

the count in list “triangle_number” which represents the triangle number of this object. If it is a triangle 

line, store the three elements found after “f” in list “triangle_vertices”.  

Class_id, minimum and maximum lifespan and the triangle number are four attributes of an object; 

therefore, the lengths of these four lists are the same, which equals to the total object number in this 

SSC model. It was mentioned above that the vertices in source file are ordered by counter-clockwise, to 

avoid the triangles being culled, the triangle vertices are entered into “triangle_vertices” as vertex1, 

vertex3, vertex2. The length of list “triangle_vertices” is 3*the total triangles in this SSC model. 

 
Figure 3-2: Obtain raw data from source files 

 

3.1.4 Normalization 

It has been introduced in section 2.3 that the only native CRS WebGL can recognize is different from 

the system of the source file. A crucial step is to normalize the original vertex coordinates so that they 

can be fitted into a WebGL canvas. Figure 3-3 briefly shows how the x coordinates were normalized. 

After fetching raw data, the maximum and minimum value for all x, y and z coordinates can be easily 
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obtained from the corresponding list. The scaling factor for x coordinates equals to the maximum x 

value minus the minimum one. Factors for y and z coordinates can be calculated by the same way. The 

general scaling factor is the maximum value among three scaling factors. Every x, y z value should first 

minus the minimum value in the corresponding direction and then be divided by the general scaling 

factor. After normalization, all coordinates are ranged from 0 to 1. 

In addition, WebGL accepts RGB values from 0 to 1; therefore, all color values require normalization as 

well. It can be done by simply dividing the original 0-255 value by 255.0. 

 
Figure 3-3: Pseudo code for coordinates normalizing  

 

3.1.5 Octree order 

The dividing of SSC dataset follows the standard octree algorithm, if one octant is larger than a given 

size, it will be recursively subdivided by the central plane in each direction, results in eight child 

octants. The order and index of child octant are shown in Figure 3-4.  

3.1.6 Node structure 

An octant is constructed as a node structure in C++; Figure 3-6 shows the content of a node. Every node 

contains five data items: chunk level, chunk id, data in chunk, chunk bounding box and children list of 

the chunk.  

 Chunk level (integer) 

After fetching all raw data, a root node which contains all triangles in SSC model is constructed. The 

initial root level is 0. Afterward, every subdivision results in a lower level. For example, the tree shown 

in Figure 3-4 is a three level tree. The leaf nodes in different branches have different levels; chunk 00 at 

level 1 is the leaf node for branch 0 while chunk 0400 at level 3 is the leaf node for branch 4.  

 Chunk id (string) 

Chunk id can be seen as the name of a chunk; id of the root node is “0”, which is the index of the chunk 

before any subdividing. Afterward, append the index of an octant to its parent’s chunk id after every 

subdividing until the lowest level of the branch is reached. Chunk id is also used as the binary file name 

of the corresponding chunk. 

 Data in chunk (list of floats) 

Data that is necessary for octree dividing and binary file outputting including coordinates of triangles in 

this chunk, corresponding color index and lifespan is kept in this list.  
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 Chunk bounding box (list of floats) 

The bounding box is defined by its lower left (LL) corner and upper right (UP) corner. Coordinates of 

LL corner followed by what of UP corner compose the bounding box list.  

  Children of the chunk (list of nodes) 

If the chunk needs a subdivision, the resulting child nodes (follow the same order as shown in Figure 

3-4) will be kept in this list. Nodes for chunks at the lowest level have an empty child list. Figure 3-7 

gives an intuitive view of the list of nodes.  

           
                               Figure 3-4: Order of children                                             Figure 3-5: Chunk id at different levels 

 

 
Figure 3-6: Node content  
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Figure 3-7: Rough view of tree structure embedded in Javascript  

 

3.1.7 Duplication of triangles intersecting with vertical splitting plane 

The allocation of triangles to child nodes always follows an order; hence, a triangle with multiple 

affiliations will be taken by the node with the smallest index and will be missing in another chunk. 

Therefore, missing of geometries at chunk boundaries might occur. The ideal design should be as less 

geometry in each chunk as possible; however, regardless of whether the intersecting triangle is split up, 

generating two new vertices or it is duplicated, redundancy occurs. Figure 3-8 explains the reason why 

duplication of multi-affiliated triangles is used in this research. Assume the triangle in the figure is split 

up, for example, left polygon needs to be triangulated first and results in two new triangles. In this case, 

splitting causes 216 bytes redundancy while only 144 bytes are caused by placing the triangle in both 

chunks. Therefore, this kind of triangle will be assigned into all chunks it is intersecting with.  
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Figure 3-8: Splitting of intersecting triangle leads to more redundancy than duplication 

 

Pseudo code for intersection detection is summarized in Figure 3-9. Instead of complicated intersecting 

situations, situations of disjointness can be easily listed out. Six cases of disjointness are given in Figure 

3-10. To test the intersection with one child node bounding box, for every triangle in its parent node, 

the triangle does not belong to this child node if one (or more than one) of the following situations is 

fulfilled.  

 Maximum x coordinate of the triangle is smaller than the minimum x coordinate of the child node 

bounding box. 

 Maximum y coordinate of the triangle is smaller than the minimum y coordinate of the child node 

bounding box. 

 Minimum x coordinate of the triangle is larger than the maximum x coordinate of the child node 

bounding box. 

 Minimum y coordinate of the triangle is larger than the maximum y coordinate of the child node 

bounding box. 

 Maximum lifespan the triangle is smaller than the minimum z coordinate of the child node 

bounding box. 

 Minimum lifespan of the triangle is larger than the maximum z coordinate of the child node 

bounding box. 

Two examples of duplicated triangles are shown below. In Figure 3-11 (a), the triangle intersecting with 

chunk 1 and chunk 2 will be added into both chunks. In Figure 3-11 (b), the triangle is disjoint with 

chunk 1; however, its lifespan indicates its existence in chunk 1.  

 
Figure 3-9: Pseudo code for intersection detection 
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Figure 3-10: Six situations of disjointness 

 

              
      Figure 3-11: (a) Example of duplication due to vertical splitting         Figure 3-11 (b) Duplication due to horizontal splitting         
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3.1.7.1 Alternative (separate file for multi-affiliated triangles) 

Duplicated triangles lead to an increment of file size; an alternative by which all triangles holding 

multiple affiliations are stored in a separate file was come up with initially. The initial idea was, as 

shown in Table 3-4 (a), generating separate files for every two adjacent chunks to store those “shared 

triangles”. A file size test was carried out in advance, it was found that even the total size of “shared 

triangles” in upper half chunks is small (2.4%) compared with the size of the whole model, let alone the 

file size for every two chunks (will be 0.6% of the total size). Considering that it takes relatively long to 

communicate with GPU from the outside, it will be very consuming to take separate operations for such 

small files. Therefore, this alternative was abandoned.  

          
Table 3-4: (a) Separate files                  Table 3-4: (b) Size of separate files

 

 

Figure 3-12: Separate file for intersected triangles 

 

3.1.8 Binary file  

If the size of all leaf nodes of a branch is below the given limitation, data of each leaf node is then binary 

formatted and written into a bin file which is named after the node id. Only leaf nodes in each branch 

result in binary files. Table 3-5 shows a slice of binary file content, x, y, z coordinates are followed by 

their R, G, B values. Each value is a binary-formatted 32-bit float which occupies 4 bytes, hence, 24 

bytes for one vertex, 72 bytes for one triangle. One value followed by another, without any white spaces 

or end of line.  
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x1 y1 z1 R G B x2 y2 z2 R G B x3 y3 z3 R G B 

0.68 0.32 0.5 1 0 0.5 0.76 0.36 0.22 1 0 0.5 0.67 0.32 0.5 1 0 0.5 

12 bytes 12 bytes 12 bytes 12 bytes 12 bytes 12 bytes 

Table 3-5: A slice of the binary file and the size in byte 
  

3.1.9 Bounding box file 

Other than that only leaf node are outputted as binary files, a complete bounding box tree is generated. 

If a chunk needs subdivision, write its child nodes bounding boxes as a list of lists; each member list is 

composed by coordinates of the lower left and upper right corners of bounding box followed by a 

“depTogo” indicator. If the chunk needs a subdivision, depTogo equals to 1, otherwise it is 0. The order 

of member lists follows the same order as the child nodes in octree. The bounding boxes will be 

processed and outputted as a Javascript automatically. Figure 3-13 gives an example of the outputted 

bounding box Javascript script of a two level tree (subdivision of chunk 00). “box0” contains bounding 

boxes of all chunks after the first division. A subdivision was carried out in chunk 0; resulted bounding 

boxes are stored in list “box00”. The Javascript script will be later used to embed a tree structure at 

client side (see details in section 3.2.1). 

 

 

 
Figure 3-13: Example of Javascript for client tree construction  

 

 

3.2 Client Side 

3.2.1 Javascript node structure 

To fetch exact chunk(s), a node structure similar to what was used in octree dividing is applied to 

construct a tree structure at client side. In Figure 3-15, data elements of a node including BBox, depth to 

go, intersection status, loading status, buffer of triangles in this node, number of vertices, a WebGL 

buffer object and children of the node are listed out. Initial value for each data element is given in 

column 1; Data types are listed in the second column. The third column provides an example of a root 

node.  
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Node bounding box is a list of 6 floats which composed by the lower left corner and right up corner 

coordinates of this parent node. “Depth to go” of a root node equals to 1 if the node is subdivided; this 

value for child nodes equals to the last value of the corresponding child node bounding box list. 

Intersection status indicates whether the node is intersecting with the current viewport or not. Loading 

status indicates whether the corresponding bin file has finished loading from the server into client’s 

main memory or not; once the loading is completed, “loaded” will be tuned to true. Triangle buffer is a 

Float32Array which contains all data obtained from bin file. Number of vertices can be easily calculated 

from triangle buffer length. While loading a .bin file, a WebGL buffer object is initialized for later data 

storing. If a parent node is subdivided, its child nodes will be inserted into children list by the pseudo 

codes shown in Figure 3-14. Take the case in Figure 3-13, rootNode0 is the tree_root illustrated in 

Figure 3-15; list “box0” is a list of lists containing all bounding boxes and depth to go indicators of child 

chunks (after first dividing) of the tree root. For every child node, a new node structure is initialized, 

and its “BBox” is filled in with the first six floats of the corresponding list in “box0” while “depTogo” is 

the last float. So far, tree._root has a children list containing 8 child nodes: rootNode00, rootNode01 … 

rootNode07. “depTogo” of rootNode00 is “1”, which means a subdivision of rootNode00. The above 

steps are repeated with ParentNode = tree._root.childen[0] and “Child_BBox” = “box00” shown in 

Figure 3-13.  

 
Figure 3-14: Pseudo code for generating child nodes 

 

 
Figure 3-15: Example of Node content  
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3.2.2 Client framework 

A conceptual client framework is concluded in Figure 3-16, including working flow and communication 

between client interface, Javascript, main memory and client GPU. The canvas of web browser is seen 

as the client interface, by which mouse movement parameters are detected and passed into Javascript. 

Current viewport bounding box is then generated based on mouse movements. An intersection test is 

called after every new mouse movement; checking the intersection status of the viewport with every 

node of the previously embedded node tree structure. Initialize requests for interested chunks from the 

server; store fetched bin file content in client main memory. Meanwhile, values of data elements in 

nodes are updated. In rendering function, data is copied from memory to client GPU; the rendering 

operation itself is being conducted alone in GPU at every frame while the nodes are updated only after 

new mouse movement.  

A sequence in which main functions are called is indicated in Figure 3-17. Main functions including 

mouse movements, viewport bounding box generating, intersection test, loading of chunks and main 

rendering function; functions will be explained in following sections.   

 

Figure 3-16: Client framework 
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Figure 3-17:  Main functions and operating order in Javascript schema 

 

3.2.3 Intersection testing function 

The intersection testing function uses depth-first algorithm which means the test will continue with 

next branch until the bottom of the previous branch is reached.  

Assume a new viewport bounding box is generated (the details about how to create a viewport bounding 

box will be introduced in section 3.2.10). Firstly, a disjointness test (similar to the theory in section 

3.1.7) is conducted with the bounding box of root node. If intersection status is true, the test will be 

carried out with bounding box of every child node. If the viewport is intersecting with child node i, 

examine “depTogo” value of child node i. If “depTogo” is 0, which means the lowest level of this branch 

is reached, then fetch node data element “intersecting”. If “intersecting” = false, which means it was not 

intersecting with the last viewport position and was not rendered for last user action, call load chunk 

function for child node i. If “intersecting” = true, which means it was intersecting with last viewport 

position and is already loaded. If “depTogo” is 1, recursively call intersection testing function for child 

nodes of node i until the bottom of this branch is reached.  

If intersection status is false, set data element “loaded” of the current node as well as all its child nodes 

to be false; it indicates the corresponding chunk will not be loaded after this mouse movement. Figure 

3-19 gives an example of the intersection test procedure. Viewport marked in blue is intersecting with 

chunk 00 and chunk 02; disjointness check will be applied to chunk 00, 01 and 02 successively; 
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“depTogo” of chunk 02 = 1, therefore, chunk 03 will not be checked until all child nodes of chunk 02 are 

proceeded.  

So far, data element “intersecting” of all nodes are updated; data element “loaded” of nodes that are not 

intersecting with the current viewport are updated.   

 

Figure 3-18: Intersection test function 

 

 

Figure 3-19: An example of intersection test procedure 
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3.2.4 Load chunk function 

In intersection testing function, loadChunk function would be called for every node that needs to be 

loaded from the server. The process of loading a chunk is shown in Figure 3-20; a particular chunk is 

queried by its file name (which has been introduced in section 3.1.6). First, fetch data element 

“tribuffer” of the requested node; if the length of “tribuffer” is longer than 1, which means it has already 

been loaded during previous mouse movements, then tune “loaded” to true. Otherwise, the “tribuffer” is 

empty, which means the node has never been loaded and is not in main memory yet. Generate a new 

XMLHttpRequest to fetch the chunk from the server; the response is an ArrayBuffer object which can 

be accessed by GPU by creating a Float32Array with it. Assign the Float32Array to node.tribuffer so that 

it is stored in client memory and can be invoked later. Set node.numVertices as the length of tribuffer 

divided by 24 (as it has been introduced earlier that a vertex occupies 24 bytes of memory). Call WebGL 

method “createbuffer” to initialize an empty buffer object in GPU; the buffer object is also set as a node 

data element so it can be used afterward.  

Once a chunk is loaded, a buffer object is initialized; after that, vertex shader and fragment shader are 

set up. “gl.vertexAttribPointer” method defines an array of generic vertex attributes data. 

gl.vertexAttribPointer(index, size, type, normalized, stride, offset); the first argument is the index of the 

vertex attribute that is to be modified; the second and third ones declare number and type of 

components per vertex attribute. Next argument states that the data needs not to be normalized when 

being cast to a float. A stride means the total length in bytes of all attributes of one vertex; the last one 

specifies an offset in bytes of the first component in the vertex attribute array. For example, to define 

attribute “vertex positon” of vertex shader which tells the shader where to fetch vertex coordinates from 

the Float32Array, the code is shown in Figure 3-21; positions of vertex 1 are the first three floats (12 

bytes) x, y, and z in the Float32Array; RGB values (12 bytes) can be fetched with a 12-byte offset from 

beginning of the array. Vertex 2 can be fetched with a 24-byte offset from the start and so on. Table 3-6 

gives an impression of “vertPosition” and “vertColor” attribute content in GLSL as well as the offset and 

length used to fetch specific attribute.  

So far, buffer data is only obtained from the server and stored in main memory; no data except an 

empty buffer object has been passed to client GPU yet. Keep in mind that LoadChunk function is the 

only function communicates with the server. All data fetched and node states updated are stored in 

main client memory, the RenderChunk function introduced in next section only communicates with 

client memory.  
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Figure 3-20: Load chunk function 

 

 

Figure 3-21: Example of setting up the vertex and fragment shader 

 

 vertPosition vertColor 

 x1 y1 z1 R G B 

32-bit float 0.68 0.32 0.5 1 0 0.5 

Offset 0 12 bytes since the start of this vertex 

Total length 24 bytes 

Table 3-6: Content for one vertex in GLSL, including position, RGB values, and offsets used to fetch specific attribute 

 

3.2.5 Render chunk function 

This render chunk function is casting as the main function for rendering; it determines which chunk(s) 

to be rendered at this frame, then fetches corresponding buffer data, paste it to GPU and starts 

rendering. Figure 3-22 gives the procedure of RenderChunk function. Once the function is called, it 

starts to accomplish a tree traversal through all nodes. If the node is a leaf node (“depTogo” = 0) and 

the chunk is loaded, moreover, the node is intersecting with the current viewport, invoke and copy 

triangle buffer of this node from memory and pass the buffer to the empty buffer object previously 

initialized at GPU memory using “gl.bufferData” method. WebGL buuferData method initializes and 



Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data · May 2017· Draft 

31 

 

creates the buffer object's data store in GPU. After that, call gl.drawArrays method to render primitives 

from array data. In this case, gl.drawArrays(gl.TRIANGLES, 0, node.numVertice) is used to draw 

triangles for a group of three vertices; there are in total, node.numVertice vertices to be rendered for 

one node. Compared with the initial rendering schema (introduced as an alternative in section 3.2.8), 

the new rendering schema is more dynamic; it allows sequential rendering of a single chunk. Once the 

data buffer is processed and stored in main memory, it can be passed to GPU at any time. As long as 

there is a non-empty buffer(s) at GPU side, the rendering is underway, no matter whether all 

intersecting chunks have been loaded yet or not. In other words, loading and rendering are running in 

parallel. 

Figure 3-25 provides an example of memory state, server state and GPU state after three mouse 

movements respectively. After first mouse movement, the viewport is intersecting with only chunk 00; 

file “00.bin” is loaded from the server; node data elements including “tribuffer” are updated and stored 

in main memory; at the GPU side, one buffer object is initialized, filled with Float32Array passed from 

main memory and rendered. A panning is conducted, the viewport is now intersecting with both chunk 

00 and chunk 01. After intersection test function, it is detected that chunk 00 is intersecting with the 

current viewport as well as the previous one; therefore, load chunk function is only called for chunk 01. 

Node data elements are updated; triangle buffer of node 01 is stored in main memory now. At GPU side, 

buffer data of two chunks that need to be rendered are passed from memory; two chunks are rendered. 

After the third mouse movement, only chunk 01 is intersecting with the viewport; “intersecting” of node 

01 is true before updating. Hence no chunks need to be loaded. Triangle buffers of both nodes are still 

occupying storage in main memory. There are two buffer objects at GPU side, one empty and one filled 

with buffer data of chunk 01; chunk 01 is then rendered.  

 

Figure 3-22: Render chunk function 
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3.2.6 Modified LoadChunk & RenderChunk function 

 After testing, it is found that average frame per second (fps) gets lower when sending abundant data 

from main memory to GPU memory. It can be indicated that on this machine, GPU and main memory 

are working separately; therefore, as mentioned in section 2.5 that sending data to GPU is relatively 

slow; modification was applied to the LoadChunk function and RenderChunk respectively. As shown in 

Figure 3-23, “tribuffer” is no longer a node data element; it is now a variable that will be renewed at 

every loading; therefore, it is now temporally located in main memory; its spatial reference will be 

unreachable for GC roots after a small duration. “tribuffer” still equals to the newly generated 

Float32Array with HttpRequest response. The following steps are almost the same as before; expect the 

“pass data to GPU” which was initially in RenderChunk function is now being placed in LoadChunk. 

After fetching data from the server, a new buffer object is generated in GPU memory; data is passed to 

GPU by filling in buffer object with “tribuffer” content. Set node.BufferObject equals to the newly filled 

buffer. So far, “tribuffer” only occupies temporal main memory; filled BufferObject is actually spatially 

located in GPU memory; a node.BufferObject performs as a pointer to corresponding GPU memory slot.  

In the old schema, data is fetched from main memory and is sent to GPU at every frame. The new 

schema shown in Figure 3-24 requires no transmission of data because it is already in GPU memory. 

Instead of fetching node.tribuffer, fetch BufferObject from GPU, set up vertex attribute data and render 

primitives as introduced before. 

Figure 3-25 provides an example of main memory state, server state and GPU memory state after three 

mouse movements respectively. After first mouse movement, the viewport is intersecting with only 

chunk 00; file “00.bin” is loaded from the server; node data elements including a temporal located 

“tribuffer” and a spatially located BufferObject are updated and stored in main memory. At GPU side, 

one buffer object is stored, referenced and filled with “tribuffer” content and then rendered. A panning 

is conducted, the viewport is now intersecting with both chunk 00 and chunk 01. After intersection 

testing, it is detected that chunk 00 is intersecting with the current viewport as well as the previous one; 

therefore, load chunk function is only called for chunk 01. Node data elements are updated. At GPU 

side, buffer data of two chunks that need to be rendered are passed from temporal main memory; two 

BufferObjects are stored and rendered. After the third mouse movement, only chunk 01 is intersecting 

with the viewport; “intersecting” of node 01 is true before updating. Hence no chunks need to be loaded. 

After a few second, “tribuffer” for both nodes are automatically deleted from main memory. There are 

two full buffer objects at GPU side; only BufferObject for chunk 01 is fetched by referencing 

node01.BufferObject and rendered.  
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Figure 3-23: Modified LoadChunk function. ArrayBuffer is passed to GPU memory only once while loading the chunk. 

 

 

Figure 3-24: Modified RenderChunk function. Instead of sending data from main memory to GPU, data is fetched from GPU 
memory directly. 
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Figure 3-25: Example of node content updated after three mouse movements 

 

3.2.7 Rendering function 

Rendering function requests animation frames, which means it requires GPU to draw array(s) at every 

frame. With the animation frames, subtle changes during panning or zooming are able to be rendered 

completely. What is more, parameters related to mouse movements are located in this function and are 

updated to vertex shader every frame to ensure vertex position is manipulated accurately and 

simultaneously according to user actions. Mouse movement parameters will be introduced in following 

sections.  
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Figure 3-26: Rendering function 

 

3.2.8 Previous alternative 

An alternative for loading and render was initially tried; Figure 3-27 gives a view of it. Instead of the 

dynamic rendering of multiple chunks, the initial method initializes only one large buffer for all 

intersecting chunks (buffer data in each chunk is seen as sub-data of the large buffer). The rendering 

will not start until all requested chunks finish loading; hence, the alternative was abandoned.  

 
Figure 3-27: Alternative for static rendering of intersecting chunks  
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3.2.9 User actions 

Panning  

In this case, the concept “panning” can be regarded as rendering vertices at a different position. The 

dragged distance in x and y-direction are offset in the corresponding direction from the original vertex 

position. For example, in Figure 3-28 (a), the map is dragged from the original position to position 

shown in (b). It performs the same as adding x offset to x coordinates of all vertices in buffer array that 

are currently in GPU. As thus, the vertices to the left of the map in canvas (as shown in (a), where is not 

covered in native rendering range of WebGL) are now manipulated to be inside the rendering extent.  

 

Zooming  

Figure 3-29 provides an understanding of zooming. Zooming is controlled by mouse wheel movements; 

it results in two actions. First, move up/down the near z plane. Any geometry above near z-plane cannot 

be shown on canvas. The extent of SSC model along z-axis is usually 0 to 1; hence, the z value of near z 

plane equals to 1 divided by zoom factor. For example, near z plane is exactly at the top of SSC model 

when the zoom factor is 1. Near z plane is at half of the model when zoom factor equals to 2. z value of 

near z plane is also the z value of the viewport. This value can only be infinite close to zero which means 

the near plane never reaches the bottom of the model; hence, there is always geometry to be rendered.   

Second, magnify the geometry. As what is illustrated in Figure 3-28 (c), after panning, vertices are 

manipulated at a new position. Yet, to fill in the canvas, x and y coordinates of all vertices in GPU ought 

to be multiplied by current zoom factor (which is always >=1).   

 
Figure 3-28: Abridged general view of panning and zoom 
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Figure 3-29: z value versus zoom factor 

 

Update mouse movement parameters 

Mouse movement parameters include old page position x and y (in pixels), which are mouse positions 

on web page canvas before panning and can be obtained by fetching a click event position; original 

location x and y (from -1 to 1), which can be seen as the position of current viewport centroid in WebGL 

canvas before panning. The framework of mouse movements is briefly shown in Figure 3-30. Initial 

values of mouse movement parameters are defined; therein, the initial original location X and Y value 

are explained in detail in chapter 4.  

A panning action including left key pressing, dragging and releasing; If mouse left key pressed, set 

dragging status to true (which means the map is being panning), fetch old page x and y value (in pixels), 

set original x and y location (in WebGL CRS) equals to the current x and y location obtained from the 

last mouse movement respectively.  While panning the map, mouse movement parameters are being 

updated at every pan step using code shown in Figure 3-31; e.pageX – oldPageX results in an offset 

value in pixels, it will be first divided by current zoom factor and then normalized to WebGL 

coordinates by multiplying panStepSize factor. Moreover, the viewport bounding box is updated at 

every pan step as well (details will be explained in section 3.2.10). If left key is released, which means 

the panning process finishes, set dragging status to false and call intersection testing function. 

During a zoom process, zoom factor is updated at every zoom step. Recall that z value of viewport 

bounding box equals to 1/zoom factor; therefore, viewport bounding box is being updated and, 

intersection test function is called at every zoom step.  



Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data · May 2017· Draft 

38 

 

      
Figure 3-30: updating mouse movement parameters 

 

 

Figure 3-31: Update mouse movement parameters  

 

3.2.10 Viewport Bounding box 

Viewport bounding box, in other words, the extent currently needs to be shown on canvas, is defined by 

its centroid, radius in x and y-direction and z value. For example, in Figure 3-32 (a), only the extent 

marked in blue needs to be rendered; therefore, the radius in x and y-direction equals to half of the 

corresponding side length of WebGL canvas (which is 2) divided by zoom factor. X and y coordinate of 

centroid equal to location x and y introduced in the section above. A viewport bounding box is 

expressed by the same parameters as the chunk bounding box: lower left x, y, upper right x, y and z 

value 9 (as given in Figure 3-32 (b)). Figure 3-33 provides an example of updated viewport bounding 

box after zoom in; bounding box side length before zooming was 0.5 and equals to 0.2 after zooming in 

(current zoom factor is 5). The extent of WebGL canvas is a 2 by 2 square while only geometry inside 

the 0.2 by 0.2 viewport needs to be loaded and rendered. After every updating of location x and y and 

current zoom factor, viewport bounding box needs to be updated using the code shown in Figure 3-34. 

Viewport bounding box does not affect rendering or WebGL canvas; it depends only on mouse 

movement parameters. The only reason it is involved is to determine chunks requested.  
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Figure 3-32: (a) Viewport in WebGl canvas        (b) Viewport Bounding Box expression 

 

                                         
            Figure 3-33: (a) Viewport radius at Zoom = 5                       (b) Viewport radius at zoom = 2    

 

 
Figure 3-34: Update viewport bounding box 
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4 Implementation details 

4.1 Preprocessing 

4.1.1 Dataset 

Removal of vertical triangles - The SSC model of source OBJ file contains both tilting triangles and 

vertical polygons (as shown in Figure 4-1); however, in this case, vertical polygons are invisible due to 

the orthographic projection; hence vertical polygons were removed to decrease dataset size.  

Dataset details - Three datasets have been tested with the prototype; a small smooth dataset with 

only 4 objects; a Leiden city center dataset containing 10k triangles and a relatively large dataset 

covering a 9km by 9km area which contains 3091k triangles. Details including the number of non-

vertical triangles, minimum and maximum coordinates of each dataset are listed in Table 4-1. 

 
Figure 4-1: SSC model containing vertical triangles  

 

Dataset Number of triangles Scope (minx, minY, maxX, maxY)  

Smooth sample 136 (-0.993582, 0, 0, 1) 

Leiden 10,125 (93500, 463500, 94100, 464100) 

9x9 3090.8k (182000, 308000, 191000, 317000) 

Table 4-1: Dataset details 
 

4.1.2 Missing Bottom 

Missing bottom happens when a triangle is below the splitting plane, yet its lifespan is across the 

splitting plane. The triangle will not be visible if only upper chunks are loaded. Figure 4-2(a) illustrates 

a typical missing bottom problem; holes can be seen when the viewport is only intersecting with chunk 

05 (which is an upper half chunk). Figure 4-2(b) gives a view of triangles in chunk 05 if lifespan is not 

considered. In section 3.1.7, a duplication of triangles with long lifespan is applied as a counterplan 

against the missing bottom problem. Figure 4-2(c) and (d) shows triangles in the new content in chunk 
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05, triangles with long lifespan are now included in this chunk and will be rendered if chunk 05 is 

loaded.  

                         
Figure 4-2: (a) Missing bottom is shown in prototype   (b) Chunk 04 (lifespan not involved)           

                     

                          
 (c) View from top of chunk 04 (lifespan involved)    (d) Triangles at z = 0 are missing yet lifespan is involved 

    

4.1.3 Determine threshold and limit tree depth  

Take the bandwidth into consideration, assume that most PC users have a bandwidth at 3-5MB per 

second; the file size of each chunk should be limited. One triangle occupies 72 bytes for rendering. 

Multiple chunks might be loaded at the same time, the size of a single binary file was initially limited to 

be below 500KB (6944 triangles). What is more, it was found that areas with a denser geometry such as 

city center or residential area could lead to extreme deep leaf nodes (e.g. 5 or 6 levels) while chunks of 

the rural area at the same level contain insufficient triangles (0 in extreme case). To avoid unnecessary 

XMLHttpRequests for these tiny chunks, a limitation of maximum tree depth is set to be 4.  An initial 

threshold of maximum 6944 triangles per chunk and maximum 3 subdivisions was firstly tested. The 

relationship between different thresholds, total file size, and prototype performance are presented in 

chapter 5.  

 

 



Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data · May 2017· Draft 

42 

 

4.2 Client side 

4.2.1 Vertex shader and fragment shader 

It has been introduced in section 2.3 that a vertex shader does an important job to manipulate vertex 

positions. In this case, a vertex shader contains two attributes: vertex position and vertex color; their 

color can be obtained by the method explained in section 3.2.4. Five uniforms: view matrix, zoom 

factor, extent, x and y offset are then involved in vertex position manipulation; therein, zoom factor, x 

and y offset are affected by mouse movements; extent is determined by dataset itself (will be introduced 

in section 4.2.2). The final vertex positions at GPU side can be calculated using function shown in 

Figure 4-3 (b). Vertices obtained from binary file are first placed at the location determined by panning, 

and then magnified with current zoom factor and finally transformed by the view matrix to be correctly 

projected on the screen.  

 
Figure 4-3: (a) Attributes and uniforms used for vertex shader 

 

 
Figure 4-3: (b) Actual vertex position obtained by GPU 

 

4.2.2 Fill in canvas 

As what has been introduced in chapter 2, in WebGL coordinated system, all three axes go from -1.0 to 

+1.0. However, the normalized SSC model is usually smaller than WebGL rendering scope. For 

example, x, y and z-axis of the normalized 9x9 dataset goes from -0.67 to 0, 0 to 0.67 and 0 to 1 

respectively.  It will be located at the position shown in     Figure 4-4 (a) if no manipulation is applied to 

vertex coordinates. To fill in the canvas, an initial offset in both x and y directions are predefined. 

xoffset = 0.5*(max_x – min_x),  yoffset  = 0.5*(max_y – min_y). The extent of specific normalized SSC 

model = 2.0 (which is the extent of WebGL canvas) / maximum value between x offset and y offset 

(0.67 in this case). Associate x and y offset and extent factor with the manipulation function in Figure 

4-3 (b), the model will first be panned from the original location to location shown in in Figure 4-3 (b); 

and then be magnified to fill in WebGL canvas. Remember that the viewport bounding box is only 

related with chunk bounding boxes; therefore, it should be modified regarding the SSC extent to agree 

with the actual chunk bounding box values. The code for modification is shown in Figure 4-5.  
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    Figure 4-4: (a) Original position of SSC         (b) Move SSC to center of canvas                (c) Enlarge SSC to fill in canvas 

 

   
Figure 4-5: Modify viewport bounding box with actual model extent 

 

4.2.3 Get geographical coordinates 

An extra function for obtaining geographical coordinates by double click at the interested point is 

implemented in this prototype. Current viewport bounding box coordinates are proportional to 

Javascript canvas coordinates. An example explains the principle of this functionality is shown in 

Figure 4-6 (a). Values in blue represent viewport coordinates; values in black are Javascript canvas 

coordinates. The point marked in red represents the position of double-click-event; its Javascript 

canvas coordinates can be fetched by event.pageX/Y; hence the corresponding viewport coordinates can 

be easily calculated. A scaling factor was obtained at normalization during preprocessing; for example, 

scale = 600 for dataset “Leiden”. The geographical coordinates equal to viewport coordinates multiplied 

by scaling factor. Figure 4-6 (b) gives a view of how this function looks like; the popup disappears after 

1.5 seconds.  

      
Figure 4-6: (a) Get geographical coordinates                       (b) Example of obtained coordinates  
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4.2.4 Settings  

 The initial value of zoom factor is set to be 5 to avoid high memory cost at loading.  

 Canvas height, as well as width, is set as 600 pixels.  

 gl.DEPTH_BUFFER_BIT is called at every frame to set buffer depth value as 1.0. It represents 

the range of z value in which SSC model is able to be rendered on the screen.  

 gl.COLOR_BUFFER_BIT is called at every frame to set up the background color as (0.75, 0.9, 

0.8, 1.0). 
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5 Results and Analysis  

5.1  Data size after octree dividing  

Table 5-1 gives a comparison of chunk sizes of Leiden dataset produced using different dividing 

methods. If the source data is not divided, binary file size for data in one chunk is 729 KB. The 

threshold used is 500KB; 8 chunks (in total 790 KB) resulted if lifespan is not taken into consideration. 

The size of each chunk differs a little; in general, chunks in the lower half are slightly larger than those 

in the upper half. Compared with the non-divided file, an 8% increment in size was resulted due to the 

duplication of triangles intersecting with vertical splitting planes. If lifespan is involved, the size of 

lower chunk keeps the same while the size of every upper chunk increases around 40% due to the 

duplication of long lifespan triangles. The total size of 8 chunks is 930 KB, 28% volume up compared 

with the non-duplicated binary file.  

The 9km by 9km dataset containing more than 3090k triangles is divided with two thresholds; first is 

500KB per chunk and maximum 3 subdivisions; second is 2.5 MB per chunk. The size of the non-

divided chunk is 217MB. For threshold one, 2255 chunks are generated, of which 2137 (94%) chunks 

are smaller than the threshold, 118 chunks (6%) are larger than threshold after 3 subdivisions, and 209 

(9%) chunks are less than 50KB; the maximum chunk size is 1.24MB. For threshold two, all resulting 

chunks are smaller than the threshold, and only 8 chunks are smaller than 50KB; the maximum file size 

is 2.34MB.  

If lifespan is not taken into consideration, the 9x9 dataset results in 1401 chunks, of which 1345 (96%) 

chunks are under limitation; 385 chunks are relatively tiny (<50KB); 56 chunks are larger than 500KB 

after 3 subdivisions. The total file size is 234MB, 8% greater than data in one chunk and 76% smaller 

than total file size resulted from dividing with lifespan.   

A comparison between upper chunks and lower chunks size of the 9x9 dataset (with lifespan) is given in 

Table 5-3, 1187 upper chunks in total 172 MB (42%) while the remaining 1068 lower chunks hold 17% 

more storage than upper chunks do even if the lifespan is involved. It indicates that when the user is 

panning around the top of SSC, due to a larger viewport bounding box, more chunks will be requested 

yet the sizes are relatively smaller.  

Table 5-3 gives the same comparison for 9x9 dataset divided without lifespan.  557 upper chunks (40%) 

in total 93 MB (40%) while the remaining 884 lower chunks (60%) hold the remaining 60% of total file 

size. If the user is panning around the top of SSC, due to there are fewer chunks in upper half, the 

amount of data requires transmission is balanced.  
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Chunk Size (without lifespan) (kb) Size (with lifespan) (kb) Size (one chunk) (kb) 

00 104 103  

 

 

 

729 

01 83 82 

02 142 141 

03 125 124 

04 79  114 (44% up) 

05 70 100 (42% up) 

06 100 140 (40% up) 

07 87 126 (45% up) 

Total 790 (8% up) 930 (28% up) 

Table 5-1: Comparison of chunk size of Leiden dataset 

 

Threshold Size (MB) Chunks < threshold > threshold < 50KB Max Min 

One chunk 217 1 - - - - - 

<500KB & max 4 

levels (without 

lifespan) 

234  

(8%) 

1401 1345  

(96%) 

56  

(4%) 

385 

(27.4%) 

944KB 0KB 

<500KB & max 4 

levels 

(with lifespan) 

412 

(90% up) 

2255 2137  

(94%) 

118  

(6%) 

209  

(9%) 

1.24 MB 7 KB 

<2.5 MB  

(with lifespan) 

331   

(52% up) 

554 554  

(100%) 

- 8  

(1%) 

2.34 MB 26 KB 

Table 5-2: Comparison of chunk size of 9x9 dataset 

 

9x9 (500KB, with lifespan) Chunks Size (MB) Total size (MB) 

Upper half 1187 172 (41.7%) 412 

Lower half 1068 240 (58.2%) 

Table 5-3: Size of upper half/ lower half chunks of 9x9 dataset (lifespan involved) 

 

9x9 (500KB, without lifespan) Chunks Size (MB) Total size (MB) 

Upper half  557 (40%) 93 (40%) 234 

Lower half 884 (60%) 141 (60%) 

Table 5-4: Size of upper half/ lower half chunks of 9x9 dataset (without lifespan) 
 

 

5.2 Evaluate prototype functions  

 Zoom and panning 

The prototype works fluently with both Leiden dataset and the 9x9 dataset. Chunks can be accurately 

acquired according to the current viewport position and be rendered simultaneously. Zoom step factor 

was initially set as 0.95 which enables the prototype to reveal SSC model at an interval = 0.0016 in the 

z-direction; any geometry change in z direction that is smaller than 0.0016 may not be presented on 
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screen. The result is evaluated and shown in Figure 5-1. Camera in (a) is at z = 0.02998; after one zoom 

in step, it is at z = 0.02848 in (b). A sudden popup of a triangle (in green) and a block (in black) are 

found. It indicates that the triangles are not oblique enough for revealing geometry change with a 

relatively large zoom step.  

A smaller zoom step (0.99) was then applied to examine the geometry change (interval = 0.0002); the 

results are shown in     Figure 5-2 (a) to (e); a more gradual change can be observed. Figure 5-3 

illustrates an apparent gradual change (zoom interval = 0.0016) of the complete smooth sample data.  

 Precise loading of chunks 

A console logging function is inserted in LoadChunk function to evaluate which chunk is being loaded; 

“only tuning loaded + filename” will be logged on console if the function is called for a chunk already 

loaded and stored in memory. By logging this string, it can be proved that LoadChunk function is only 

tuning data element “loaded status” to be true if the chunk is already loaded; no XMLHttpRequest is 

generated to communicate with the server. Figure 5-4 shows the console output when repetitively 

viewing of the same area; it proves that there is no repetitive loading of chunks.  

        
        Figure 5-1: (a) Z value = 0.02998          (b) Z value = 0.02848 (zoom step = 0.95)      

 

     
     Figure 5-2: (a) z = 0.1754         (b) z = 0.1748               (c) z = 0.1745                 (d) z = 0.1743                     (e) z = 0.1741 

   

         
Figure 5-3: Obvious gradual change  
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Figure 5-4: Validation of no repetitive loading of already loaded chunks 

 

 Validation of position of geometry  

Accuracy can be evaluated by comparing coordinates obtained from the prototype with a reference. In 

Figure 5-5, coordinates of a representing point are validated. In (a), coordinate obtained is (93808, 

463781); it is nearly the same as what provided in (b) (93809, 463780). The accuracy of the prototype 

can be ensured.  

     

Figure 5-5: (a) Coordinates obtained from prototype         (b) Online map for validation (Adapted from EPSG (2017)) 

 

 

5.3 Prototype performance 

5.3.1 Time consumption  

In past tests with data in one chunk, the prototype ground to a halt when experiencing massive user 

actions. Thanks to octree subdividing and smart data fetching schema, the prototype (both old and 

modified schema) responses to heavy user interactions fast and fluent without any halt. The 

performance of prototype in a complete performance recording including operations such as initial 

loading of the web page, zoom in to the bottom, zoom out to the top and traverse through the whole 

dataset was analyzed.  

A comparison (as shown in Figure 5-6 and Figure 5-7) of a typical workflow in early period of 

performance recording (mainly loading and rendering chunk(s) for the first time) between old schema 

and the modified one is given in Table 5-5.  An intersection test function including intersection test, 

loading of one chunk, storing “tribuffer” at main memory, creating empty BufferObject at GPU and 

storing it in main memory as a pointer takes the old schema 15ms to finish. It takes the modified 

schema 50ms to complete the same process due to a relatively slow communication between temporary 



Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data · May 2017· Draft 

49 

 

memory “tribuffer” and GPU memory BufferObject. Network communication time can be persuaded 

because the prototype is currently loading data from the local server. It can be indicated in Figure 5-6 

that only three chunks (two level-3 chunks and on level-4 chunk) are loaded and rendered; it is because 

the viewport is near the bottom. Therefore, tree traversal and rendering are speedy (less than 10ms) for 

the old schema. In latter period of performance recording (see Figure 5-8); the viewport is near the top 

of the dataset (where the viewport bounds a larger range), which leads to the rendering of more chunks 

at every frame. Lags due to rendering subsequent chunks can be clearly obtained from the figure; it is 

caused by massive transmission of main memory data to GPU. Thus, fps is hindered (average fps for old 

schema is only 39). For modified schema, although the initial loading takes relatively longer than the 

old schema does, the rendering operation is light and fast. Repetitive transmission of data between 

memory and GPU is avoided, as shown in Figure 5-9; a representative rendering process for modified 

schema takes less than 10ms and is without any transmission lag. Therefore, average fps for new 

schema is 43% higher than the old one.  

Most time-consuming Javascript calls for both schemas are listed in Table 5-6. For new schema, on 

average, rendering operations run for only 5.5% of performance period while the old schema is 

operating heavy rendering (80% of the time); Gecko and web browser graphic driver takes 46% and 

34% of the time respectively. (According t0 MDN (2016) describe Gecko as “the name of the layout 

engine developed by the Mozilla Project. Gecko's function is to read web content, such as HTML, CSS, 

XUL, Javascript, and render it on the user's screen.”) Load chunk from a remote repository will be 

tested in future work. In general, average fps is the best performance indicator; loading of chunks and 

transmitting of data both hinder the fps. Modified schema obtains an average 57 fps (43% better than 

old schema) which indicate that, by using new schema, 30% of loading and transmission time can be 

saved.  

 Modified schema Old schema 

Operation Time (ms) time 

Check intersection & load one chunk 50 15 

Tree traversal & Rendering > 30 10 

Average fps 57 (43% up) 39 

Table 5-5: General performance comparison between old and modified schema 

 

 
Figure 5-6: A typical workflow of intersection checking, loading, and rendering (old schema; load one chunk: 15ms) 
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Figure 5-7: A typical workflow of intersection checking, loading, and rendering (modified schema; load one chunk: 50ms) 

 

 
Figure 5-8: Time consumption for pure tree traversal and rendering (old schema: more than 30ms) 

 

 
Figure 5-9: Time consumption for pure tree traversal and rendering (modified schema: less than 10ms) 

 

Modified schema Old schema 

Function % of time Function % of time 

Gecko 45.9 renderChunk 80.13 

Graphics 33.8 Graphics 9.14 

RenderChunk 5.53 Gecko 3.44 

Tools 3.67 loadChunk 0.44 

loadChunk 2.37 Tools 0.2 

Table 5-6: Most time-consuming calls during a complete performance recording 

 

A period with low fps is shown in Figure 5-10 (in combination with Javascript call legend, see 

Appendix), it is due to the loading and transmission of data from temporary memory to spatially located 

GPU memory (sequentially loaded chunks as framed in red). Once the chunks are loaded, the follow-up 

rendering is fast; moreover, fps is high and stable. Figure 5-11 also explains the reason, compared with 

the sequentially transmitted data (see Figure 5-12, framed in red), new schema only makes calls for 

rendering; rendering process is actually happening in GPU. Recall what was mentioned in section 2.5, 

GPU works really fast independently.  
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Figure 5-10: Javascript frame chart during 2581ms to 5632ms (Modified schema: low fps due to loading of chunks and data 
transmission to GPU) 

 

 

Figure 5-11: Javascript frame chart after most chunks are loaded (Modified schema: high fps) 

 

 

Figure 5-12: Lags for data transmission cause low fps (old schema) 

 

5.3.2 Memory consumption  

Prototype memory usage and allocation for different datasets using both schemas are listed below.  

5.3.2.1 Old schema 

Figure 5-13 and Figure 5-14 gives top 5 memory consuming object group at loading and after map 

traversing of Leiden dataset respectively. At loading, in total 4.8MB is occupied; the most consuming 

objects are Javascript scripts. Only 4 chunks are requested at loading, hence, 4 ArrayBuffer objects 

retaining 0.46MB (9% of total memory usage). After traversal through the whole dataset, 8 chunks are 

loaded, retaining 0.96MB (17% of total memory usage). No continuing loading or occupation of memory 

was observed; it can be proved: data in main memory can be retrieved and reused.  

Figure 5-15 and Figure 5-16 give top 5 memory consuming object group of the 9x9 dataset (threshold = 

500KB). At loading, Javascript scripts are again the most consuming objects; the second most 
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consuming objects are Array objects in which the node tree structure is stored. Figure 5-17 (a) provides 

a close look at an Array object in client memory and explains by what it is composed. Take the case of 

Array object at memory slot 0x1a2fb36d880, It is composed by, first fetching element 0 from box0112 

and “data” element of the first child node of rootNode0112; second, allocate a free memory slot to fill 

empty “data” list with bounding box data. Therefore, more complex the tree is more consuming the 

Array objects will be. Compared with the usage after traversal, an extra 0.4MB memory slot was used 

for general math function at loading. The actual memory used for tree structure should be 0.79MB for 

the 9x9 dataset. 9 chunks need to be loaded initially, causing a 0.94MB memory occupation; after rough 

traversing, the whole dataset, 1452 (65%) chunks have been visited, resulting in 238MB memory usage 

of ArrayBuffer objects. It can be indicated in Figure 5-17 (b), ArrayBuffer object regards to data element 

“tribuffer” of a node; “unknown slot” is the memory allocated for binary data fetched from the server. 

By using old schema, “tribuffer” is spatially located in main memory and can be referenced at any time. 

It is always occupying a memory slot. 

Representative parameters for performance evaluation for different datasets are listed in Table 5-7; it 

can be indicated that heavy tree traversal and rendering decreases fps. It is due to the drawback of old 

schema. Average fps for the 9x9 dataset is 68% of fps for Leiden dataset.  Speculated total main memory 

consumption for 9x9 dataset will be around 350MB; however, the recording of GPU memory 

consumption is not available temporarily. Only the total random access memory (RAM) usage of the 

browser can be obtained, and it is, in general, twice as much as the above-mentioned memory, which 

will be 700MB.  

  
Figure 5-13: Memory allocation at loading of Leiden dataset 

 

  
Figure 5-14: Memory allocation after traversing through Leiden dataset 

 

 
Figure 5-15: 9x9 dataset (<500KB) memory use when loaded  

 



Construction of Web Service for Smooth and Simultaneous Rendering of Large SSC Dataset and Preprocessing of Source Data · May 2017· Draft 

53 

 

 
Figure 5-16: Memory use after traversal of 9x9 dataset  

 

Dataset Averag
e fps 

Memory at loading 
(MB) 

after traversal 
(MB) 

ArrayBuffer 
(MB) 

Tree Structure 
(MB) 

Sample data 57.1 2.3 4.3 0.01 (0%) 0 

Leiden 58.9 4.84 5.58 0.9 (17%) 0.03 

9x9 (500kb) 39.0 5.96 350 343 (98%) 0.79 
Table 5-7: General performance of three datasets at different states 

 

 
Figure 5-17: (a) Example of memory retained by Array object         (b) Memory for ArrayBuffer object (spatial locality) 

 

5.3.2.2 Modified schema 

Modified schema was tested with 9x9 (500KB) dataset, Figure 5-19 shows main memory usage after 

three periods: first one, initial loading and heavy user actions (see Figure 5-19); second, after idling for 

a few seconds (see Figure 5-20); third, idled after a small user action.  After the first time period, 

120MB of main memory is occupied, mostly by ArrayBuffer (94%); however, if idle the prototype for 10 
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seconds, only 110MB are removed by garbage collection because the ArrayBuffer objects were 

temporally located and they are no longer reachable. Figure 5-22(a) shows a temporal located 

ArrayBuffer; it has no connection with other spatially located objects (compared with the ArrayBuffer 

object illustrated in Figure 5-17(b)); hence, it is recognized as garbage in GC roots.  

e 5-21 gives a comparison between main memory usages after some user actions, the amount of 

WebGLBuffer objects (as framed in red) in main memory changes yet the main memory keeps the 

almost the same. It is not only because garbage has been removed, but also WebGLBuffer objects in 

main memory are just pointers to the truly filled Buffer objects in GPU. Figure 5-22(b) provides a close 

look at a WebGLBuffer and how it is referenced in GC roots. Unlike the old schema which uploads only 

needed data to GPU at every frame; by using new schema, after all chunks have been visited, all data 

will be stored in GPU memory. So far, only main CPU memory can be tracked; GPU usage is hidden; 

modified schema works much better than the old one with the 9x9 dataset. In future, if an enormous 

dataset is available, GPU may encounter overloading problem. A conceptual unloading schema can be 

easily realized using gl.deleteBuffer method to delete BufferObject directly from GPU in a particular 

condition. However, whether GPU memory becomes fragmented or not due to deletion is unknown and 

requires future experiment.  

 
Figure 5-18: Main memory usage  

 

 
Figure 5-19: Memory usage right after initial loading and heavy user actions 

 

 
Figure 5-20: Memory usage if idle the browser for seconds 

e 5-21: Main memory usage and WebGLBuffer number after two user actions 
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Figure 5-22: (a) Temporal located ArrayBuffer   (b) WebGLBuffer object stored in main memory 
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6 Conclusion and future work  

6.1   Conclusion  

The binary format has been proved as a feasible data format for WebGL data transmitting and 

rendering. The source OBJ file is serialized as x, y, z, R, G, B, x, y, z… and encoded as a Float32Array; 

the resulting typed array can be directly accessed by the graphic driver. Triangles intersecting with 

multiple octants are duplicated to all octants it is intersecting with to avoid missing geometry at the 

boundary. Triangles whose lifespan are crossing horizontal splitting plane will also be duplicated to 

chunks at both sides of the plane. Duplication causes 30% size increment to Leiden dataset; 50% and 90% 

size increase to 9x9 dataset divided with a 2.5MB threshold and 500KB threshold respectively.   

A similar node structure reflecting the octree structure containing necessary data elements is generated 

in Javascript to store data in client memory. A Javascript script containing a bounding box tree can be 

automatically generated during preprocessing. Node data elements are updated regarding every mouse 

movement; render function operates a tree traversal every frame to ensure that the prototype is 

responding to heavy user actions simultaneously. Prototype schema allows accurate chunk loading, 

moreover, non-repetitive loading as well as non-repetitive transmission of data to GPU. Buffer objects 

created and transmitted once are stored in GPU memory, waiting for a next invoking. An automatic 

garbage removal schema ensures main client memory never encounters overloading.  

Modified schema performs well for 9x9 dataset without any halt; fps after initial loading is stable and 

relatively high compared with regulated maximum fps for most monitors (60 fps), average fps is around 

57.  Yet GPU usage is hidden; it can be speculated as around total chunk size (e.g. 350MB for the 9x9 

dataset with lifespan) while the total RAM occupation including WebGL memory and browser 

framework is roughly observed to be around 600MB. No continuing occupation of memory is detected; 

moreover, no noticeable halt or waiting for loading can be observed. It proves that the Javascript 

schema allows reuse of data directly from GPU and parallel operation of rendering with other functions.  

6.2 Future work 

 Publish chunks to an open repository for loading speed testing, modify chunks size threshold 

according to performance.  

 

 The content in the binary file is serialized as x, y, z, R, G, B, x, y, z,…at the present stage.  RGB values 

are repeated for every vertex so that the file content can be accessed by GPU as an ArrayBuffer 

object. It is fast for GPU processing, however, causing unnecessary repetition of the same RGB value. 

Is it possible to assign RGB values once for a triangle, or even better, once for an object?  

 

 Missing geometry at z = 0 even if lifespan is involved. A look from above of chunk 00 is shown in 

Figure 6-1(a); the look from above of the chunk right above it (chunk 04) should obtain the same 
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view. However, as shown in (b), the bottom (triangles at z=0) are still missing even if lifespan is 

taken into consideration. The resulting map is shown in (c), holes are still visible.  

   
Figure 6-1: (a) Chunk 00           (b) Chunk 04 (lifespan involved)             (c) Map with holes 

 

 For now, tree structure of 9x9 dataset occupies 0.79MB of memory. In future, suppose a 20x20 

dataset is available, the tree structure could take up 6.4MB of memory. Consider the size the map of 

Netherland or Europe. Is it possible to split tree structure script into multiple scripts, load a 

particular part only when it is requested?   

 

 Geometry changes are subtle that are easily being skipped over with a large zoom step. Is there a 

way to magnify the change either within source data or during rendering? 
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Appendix: 

 

 
Figure 1: Legend for Javascript function  
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