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Conclusions
User study:
• Sequential error finding is suboptimal
• The proposed DEDS workflow fatigues and frustrates clinicians
• Clinicians prioritize based on dose distribution

Simulation study: 
• Priority (based on dose) DEDS have the potential to reduce 

error detection time
• AI error modes and how the DEDS presents the errors (slice vs 

3d regions) influence analysis time and QA duration
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Simulation Study

• Patient data: CT, dose, del(hptc), del(pred) 
[4] and uncertainty volumes of 41 head and 
neck patients treated at HollandPTC

• Approach: simulated QA process using 
model

• Conditions:
▪ The information source used for sorting: 

mean error and max dose
▪ The time it takes to analyze a slice

Method

Results

Summary statistics of the simulated analysis (left) and editing (right) times across 41 patients 
and 100 runs of the simulation. Epsilon=0 represents the currrent workflow and Epsilon=4 the 
workflow with DEDS suggestions, which require extra analysis time.

Times for analyzing 
and editing from [5]

We kept the editing 
times constant

Without DEDS assistance With DEDS assistance

RO and RTT check the same 
slice several times

RO refused to follow DEDS 
suggestion. Loos like the worst 

case!

Method

User Study

• Patient data: CT, dose, del(hptc), del(pred) [4], and uncertainty volumes of two 
head and neck patients from HollandPTC

• Participants: experienced head and neck RTT and RO from HollandPTC
• Task: detecting clinically significant delineation errors within a 5-minute time 

window
• Conditions: with and without DEDS assistance

Results

The figures below present the reduction in unattended error or user-defined priority for the RO and RTT 
workflows without and with DEDS assistance for the brainstem. We also include the optimal (suggested 
by DEDS), worst case (the opposite of the DEDS suggestions), and random workflows.

Would clinicians adopt DEDS in practice? Which information sources and workflows do users prefer? Can DEDS effectively speed up the QA process?

Introduction and Motivation

Clinicians define slices’s priority as a weighted combination of 
AI uncertainty [4], error and dose:

• Delineation is a bottleneck in the planning process [1]
• AI advances have dramatically accelerated delineation [2]
• In the AI-supported delineation workflow, the clinicians perform 

quality assessment (QA)

We investigate these questions in user and simulation studies

The QA process is fatiguing and time-consuming due to the 
number of errors and their extent [3]

Delineation Error Detection Systems (DEDS) aim at reducing 
time but lack validation with clinicians:

Would clinicians adopt DEDS in practice?
Can DEDS effectively speed up the QA process?

Anatomy of Delineation Error Detection Systems (DEDS)

priority = w1.agg(unc)+w2.agg(error)+w3.agg(dose)

We designed a DEDS which permitted clinicians address most 
relevant slices first by sorting them by their priority score:

Top row presents available information sources 
and bottom row the once we derived

We derive the scores by aggregating volumes 
per slice using functions aggregation functions 
(agg) like sum, max and mean
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Bayesian Deep Neural 
Network (BDNN)
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and dose with bounding 
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