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A B S T R A C T   

Climate change and complex anthropogenic activities have raised significant concerns regarding Precipitation- 
Runoff Relationships (PRR). Traditional methods, assuming stationary and linear conditions, often fail to 
adequately capture these intricate links. To address the limitations, we proposed an integrated framework, 
employing the Driving indices for Precipitation-Runoff relationships within the nonStationary and nonLinear 
theory approaches (DPRS and DPRL) to identify the possible driving mechanisms in PRR. The framework is 
validated across five sub-basins (WRB1-WRB5) within the Wei River Basin, known for its high spatiotemporal 
variability and intense anthropogenic activities. Spatiotemporal dynamics, nonstationary processes, and 
nonlinear interactions among various factors are assessed, including climate forcing, groundwater, vegetation 
dynamics, and anthropogenic influences. DPRS and DPRL assessments revealed that baseflow significantly in-
fluences PRR but with high uncertainty. Potential evapotranspiration plays a dominant role in driving negative 
PRR changes in WRB5 (weakening the correlation between precipitation and runoff), while vegetation dynamics 
negatively affect PRR with lower uncertainty. Anthropogenic influences represented by Impervious Surface Ratio 
(ISR), Night-Time Light (NTL), and population density (POP) exhibit varying driving levels, with ISR having the 
strongest and direct impact, closely linked to urbanization processes and scale within the study cases. The mutual 
validation of DPRS and DPRL confirms the dominance of baseflow in the Wei River Basin, with urbanization 
contributing to high ISR, NTL, and POP driving levels in WRB2 and WRB3. Afforestation policies intensify 
vegetation dynamics’ impact in WRB4 and WRB5. This framework extends its utility to analyze various land 
evapotranspiration and soil moisture content at different depths in the PRR, supported by a physically-based 
hydrological model. Basin complexity is further employed to validate the reliability of the assessment out-
comes. These insights contribute to a more comprehensive understanding of hydrological processes and facilitate 
informed decisions for sustainable water resource management within the basin.   

1. Introduction 

Precipitation is the source of runoff, and runoff is a lagged function of 
precipitation (Nourani et al., 2016; Saft et al., 2015; Zhang et al., 2018). 
It is important to understand the various properties of the interdepen-
dence of precipitation and runoff, as hydrologic models and decision 
frameworks rely on foundational assumptions and knowledge about this 
interdependence (Nourani et al., 2016; Saft et al., 2015; Zhang et al., 

2018). For example, it is critical to represent the relationships between 
precipitation and runoff for predictive modeling (Ficklin et al., 2013; 
Hidalgo et al., 2009), reservoir and water resources decision-making 
(Hejazi and Cai, 2009; Hejazi et al., 2008; Quinn et al., 2017), as well 
as the preservation of ecosystem functionalities. The intricate de-
pendencies of precipitation and runoff are filtered by characteristics 
such as basin size, topographical characteristics, soil composition, 
vegetation cover, and spatial heterogeneity (Bales et al., 2018). An 
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increase in precipitation may directly lead to an increase in streamflow, 
but in the process of precipitation generating runoff, meteorological 
changes or anthropogenic interventions introduce diverse impacts on 
the runoff generation process. For instance, temperature-driven evapo-
ration exerts a profound influence on runoff dynamics and its correlation 
with precipitation. In numerous regions, anthropogenic activities such 
as dam construction, urban impervious surfaces, agricultural practices, 
land-use changes, and other anthropogenic influences have modified 
historical or natural streamflow regimes. Consequently, the complex 
interplay of these intertwined processes has induced nonlinear and 
nonstationary patterns in regional streamflow behaviors (Dey and Mis-
hra, 2017). These suggest a need for identifying the possible driving 
mechanisms of the Precipitation-Runoff Relationships (PRR) behind 
complicatedly nonlinear changes or nonstationary hydrological 
conditions. 

Various methods have been employed to characterize the PRR with 
successful applications. The commonly utilized technique is the corre-
lation coefficient method due to its simplicity and effectiveness. How-
ever, this method has certain limitations. Firstly, prior to using Pearson’s 
correlation coefficient for assessing the PRR, prerequisites like the 
bivariate normality of the data must be met (Armstrong, 2019). How-
ever, the nonstationary characteristics of precipitation and runoff time 
series resulting from climate change, land conversion, and human water 
use challenge this assumption (Liu et al., 2015; Zhang et al., 2011b). 
Consequently, applying the correlation coefficient to detect PRR under 
nonstationary conditions is constrained. Additionally, the intricate 
interplay of climate change and anthropogenic activities impacts the 
water cycle across time scales (Abbott et al., 2019). Although Pearson’s 
coefficient comprehensively reflects the PRR over a specific period, it 
fails to account for PRR in non-stationarity. Another common approach, 
the event runoff coefficient, quantifies retained precipitation in various 
storage components, such as vegetation interception, soil moisture 
accumulation, and percolation into deeper layers (Tarasova et al., 
2018). While pivotal in estimating event runoff, the runoff coefficient 
has limitations. It yields anomalous values when precipitation is mini-
mal, reflects integrated catchment characteristics, and relies on simpli-
fications (Feng et al., 2016; Savenije, 1996). Hydrological modeling 
offers detailed insights into PRR through data-driven or process-based 
models (Nayak et al., 2013; Sikorska-Senoner and Quilty, 2021). How-
ever, these models demand substantial data. In addition, prevailing 
hydrological modeling approaches presuppose stationary climatic and 
catchment attributes (Pathiraja et al., 2016), which restricts their 
applicability in nonstationary environments. This may lead to model 
parameters being optimized to dynamic climatic and catchment condi-
tions, potentially leading to a serious discrepancy between the simulated 
runoff and actual streamflow, thereby affecting water resources plan-
ning and operations. Some researchers have also conducted studies 
utilizing methodologies tailored for nonstationary environments. Zhang 
et al. (2015) employed the GAMLSS model to analyze flood frequency 
under both stationary and nonstationary conditions in the East River. Gu 
et al. (2017) developed GEV-CDN models considering time as a covariate 
to assess flood risk and failure risk of the major flood-control infra-
structure in the Pearl River basin, China. Xie et al. (2019) proposed a 
hybrid model based “feature decomposition-learning reconstruction” 
named VMD-DBN-IPSO to improve the accuracy of short-term runoff 
forecasting. Substantial advancements have been achieved in flood 
research and runoff forecasting. To address the limitations inherent in 
the aforementioned techniques for PRR, Detrended Fluctuation Analysis 
(DFA) is considered, and it effectively examines power-law autocorre-
lations in nonstationary time series (Peng et al., 1994). Detrended Cross- 
Correlation Analysis (DCCA) detects power-law cross-correlations be-
tween nonstationary signals (Kantelhardt et al., 2002). Detrended 
Partial-Cross-Correlation Analysis (DPCCA) further eliminates the 
impact of other signals on the two examined signals, revealing the 
intrinsic cross-correlations between them (Yuan et al., 2015). Building 
upon DCCA and DPCCA, we propose an index that overcomes the above 

limitations, offering a robust measure of the influence on PRR, inde-
pendent of data sequence lengths and catchment types. The index 
evaluates driving levels and directions, accounts for characterizing un-
certainties, considers the linear aspects of the time lag associated with 
baseflow, and contributes to a comprehensive understanding of 
nonstationary PRR scenarios. 

Entropy, a fundamental concept with wide-ranging applications 
across engineering and scientific disciplines, serves to characterize the 
inherent disorder within systems or information, thereby providing 
valuable insights into challenges related to information processing, 
uncertainty assessment, and risk analysis (Mishra and Ayyub, 2019). 
Shannon entropy (Shannon, 1948) quantifies the expected information 
within messages (Wu et al., 2013), which found utility in various do-
mains, including electrical engineering, statistics, mathematics, statis-
tical physics, and thermodynamics (Aguiar and Guedes, 2015; Lin and 
Ho, 2015; Perugini et al., 2015). Information Theory (IT) is based on 
Shannon Entropy (Shannon, 1948) and has found application in 
numerous hydrology-related investigations focusing on the analysis of 
spatiotemporal variability of precipitation, streamflow, precipitation 
deficit, and flow modeling (Brunsell, 2010; Chen et al., 2007; Mishra 
et al., 2009). Pechlivanidis et al. (2016) introduced an importance- 
weighted entropy-based measure to counter the tendency of common 
binning approaches to over-emphasize information contained in the low 
flows that dominate the record. The measure used a novel binning 
method and overcame artefacts due to data resolution and under- 
sampling. Sang et al. (2018) employed the Shannon entropy index to 
investigate the spatiotemporal variability of meteorological droughts 
over China. Compared with SPEI, the entropy index had an explicit 
definition and meaning and was much easier to calculate. More 
importantly, it reflects the physical formation process of droughts, so the 
proposed entropy index is an effective index to evaluate droughts. 
Goodwell et al. (2020) applied information measures to binary se-
quences of precipitation occurrence to quantify uncertainty and pre-
dictability in the form of lagged mutual information between the current 
state and two time-lagged histories, as well as associated dominant time 
scales. Franzen et al. (2020) employed information theory-based mea-
sures to detect thresholds, timescales, and strengths of daily precipita-
tion influences on downstream flows in the Colorado Headwaters. 
Notably, entropy serves as a quantifiable metric for assessing signal 
uncertainty, simultaneously enabling the computation of mutual infor-
mation between signal pairs. Mutual information (MI) is a measure of 
interdependence between variables (Cover, 1999). In these regards, we 
applied MI to develop an index for identifying the possible driving 
mechanisms in PRR using a nonlinear theory approach. By calculating 
mutual information between driving factors and precipitation (runoff), 
this approach quantifies the nonlinear nature of their associations. 
Higher mutual information values signify stronger associations or 
interdependencies. 

According to the quantification analysis of driving factors influ-
encing the PRR, a comprehensive understanding of the controlling 
processes in the PRR within nonstationary and nonlinear environments 
is crucial for effective water management and adapting to changing 
conditions (John et al., 2022). Diverse factors influence the PRR across 
various time scales (Liu et al., 2019). Regional and global climate pat-
terns significantly affect PRR, where the spatial–temporal distribution of 
precipitation, driven by atmospheric circulation, impacts runoff timing 
and magnitude. Anthropogenic climate change intensifies extreme 
weather events (Konapala et al., 2020). Natural catchment characteris-
tics like size, shape, slope, and geology significantly influence the PRR. 
Steep slopes and impermeable surfaces lead to rapid surface runoff 
during heavy rainfall (van Rensch et al., 2023). Human-driven land use 
changes, including deforestation, urbanization, agriculture, and land 
reclamation, alter hydrological responses, contributing to increased 
surface runoff, reduced infiltration, and modified runoff patterns 
(Kayitesi et al., 2022). Soil properties such as porosity, permeability, and 
moisture influence precipitation partitioning into infiltration and runoff. 

T. Li et al.                                                                                                                                                                                                                                        



Journal of Hydrology 639 (2024) 131535

3

Soil moisture levels directly impact runoff during rainfall (Western et al., 
1999). Vegetation’s role in the water cycle, particularly evapotranspi-
ration, affects runoff proportions. Changes like deforestation or affor-
estation alter the runoff-evaporation balance (Bai et al., 2020). 
Anthropogenic activities such as water abstraction, reservoir operations, 
and irrigation directly influence runoff timing and magnitude, further 
affecting the PRR. Hydrological infrastructure like dams and stormwater 
systems alter flow pathways and impact runoff generation (Wang et al., 
2022). Accordingly, the intricate interplay of these driving factors 
manifests in the complexity of the PRR, necessitating a comprehensive 
understanding of effective water resource management and adaptation 
strategies in the face of evolving environmental conditions. 

The primary aim of this study is to employ nonstationary and 
nonlinear theory approaches to quantify the relative importance of 
driving factors that exert influence over the precipitation-runoff re-
lationships. It seeks to identify the possible driving mechanisms in the 
dependencies between precipitation and runoff, particularly within re-
gions subjected to anthropogenic disturbances. These insights are 
pivotal in enabling informed decision-making for the sustainable man-
agement of water resources within a given catchment. The paper focuses 
on the following three aspects:  

• A Driving index for Precipitation-Runoff relationships with the 
nonStationary theory approach (DPRS) is proposed to identify the 
driving levels and directions under nonstationary circumstances.  

• A Driving index for Precipitation-Runoff links with the nonLinear 
theory approach (DPRL) is further developed based on mutual in-
formation techniques to quantify the nonlinear nature of their 
associations. 

• Following the quantitative assessment of candidate influencing fac-
tors in the precipitation-runoff relationships within nonstationary 
and nonlinear hydrological processes, the possible driving mecha-
nisms for these relationships are investigated based on diverse 
catchment response elements. 

To achieve the above aims, this study took five sub-basins with 
different catchment characteristics in the Wei Basin River to 

demonstrate our research objective and methods. The remainder of the 
paper is organized as follows: Section 2 analyses the research basins. 
Section 3 introduces the methods. The key results and discussion are 
presented in Sections 4 and 5. Section 6 exhibits the main conclusions 
and future research of this study. 

2. Data description and analysis 

2.1. Data description 

The Wei River Basin, situated between 103◦05′E–110◦05′E, 
33◦50′N–37◦05′N, is the Yellow River’s primary tributary in China (refer 
to Fig. 1a). Spanning an area of 134,800 km2, it runs 818 km in length 
(Huang et al., 2017b). Characterized by a continental monsoon climate, 
this basin has high variability in its dry and wet periods. Precipitation 
predominantly occurs between June and October, with an average 
annual precipitation of 572 mm. The basin’s average temperature is 
approximately 10.6℃, and its annual runoff is about 60 mm (Zhao et al., 
2015). Serving as a significant agricultural center in Northwest China, 
the Wei River Basin grows grains to meet the water needs of 22 million 
residents. Economically, it greatly contributes to the Guanzhong- 
Tianshui Economic Zone. Over the past fifty years, anthropogenic 
interventions—including agricultural irrigation, reservoirs, sediment- 
trap dams, river diversions, and soil conservation—have significantly 
influenced hydrological processes in the basin (Chen et al., 2016; Zuo 
et al., 2012). Such activities have caused a significant decrease in annual 
streamflow (Zhang et al., 2022), challenging the basin’s previously 
assumed hydrological stationarity, and amplifying the complexity and 
nonlinear characteristics of the basin. Given this, the Wei River Basin is 
an ideal region for exploring precipitation-runoff interactions within a 
nonstationary and nonlinear hydrological system. This study employs 
data from five sub-basins (WRB1-WRB5) to highlight varying 
precipitation-runoff characteristics and degrees of anthropogenic 
intervention managed by hydrological monitoring stations at Qinan, 
Weijiabao, Xianyang, Zhangjiashan, and Zhuangtou (Fig. 1a). They 
represent various locations, involving the upstream, middle sections, 
and the two primary tributaries in the downstream: the Jing and Beiluo 

Fig. 1. A, information of the study area, including the five selected sub-basins (wrb1, wrb2, wrb3, wrb4, and wrb5), hydrological monitoring stations, and a 
meteorological station (referred to as precipitation stations) within the wei river basin. in the lower right section of the figure, a red circle indicates the geographical 
location of the wei river basin in china. b, completion time and storage capacities of the main reservoirs in the wei river basin. c, location of irrigation districts in the 
economic core of the wei river basin. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Rivers. 
For a comprehensive understanding of the precipitation-runoff de-

pendencies within a changing environment, this study utilizes various 
datasets, including observed streamflow, meteorological records, 
geographic data, and remote sensing datasets indicative of anthropo-
genic influences. Daily streamflow data are sourced from the Yellow 
River Conservancy Commission (Table S1), which details the drainage 
areas, durations, and geographical coordinates of hydrological moni-
toring stations. The Chapman-Maxwell filter method, elaborated upon in 
Supporting Information S2, was employed to compute the daily base-
flow (BF). Daily meteorological records from 1960 to 2019 were ob-
tained from the China National Surface Weather Station (V3.0) 
(http://www.nmic.cn/). Potential evapotranspiration (ET0) was calcu-
lated using the Penman-Monteith equation, elaborated upon in Sup-
porting Information S2. Elevation data at a 90 m resolution were 
sourced from the USGS Shuttle Radar Topography Mission (SRTM) 
(http://srtm.csi.cgiar.org/). Global Inventory Modelling and Mapping 
Studies (GIMMS) NDVI3g dataset with a spatial resolution of 1/12◦ are 
utilized to assess vegetation cover dynamics from 1982 to 2014 
(https://ecocast.arc.nasa.gov/data/pub/gimms/3g.v1/). Impervious 
Surface Ratio (ISR) data were from 1985 to 2019 at a spatial resolution 
of 30 m were used to gauge urbanization rates (Gong et al., 2020). 
Additionally, Night-Time Light (NTL) data from 1992 to 2019 at a 
spatial resolution of 30-arc seconds served as a metric for evaluating 
diverse anthropogenic and environmental footprints (Ceola et al., 2014). 
Population data (POP) from 2000 to 2019 at a resolution of 30 arc 
seconds were procured from WorldPop (WorldPop, 2018), offering in-
sights into population distribution and migration. Missing data within 
records are imputed through interpolation techniques utilizing obser-
vational data obtained from adjacent stations. Spatial data is acquired 
through area-weighted aggregation of site-specific data within the re-
gion, employing methods such as the Thiessen polygon technique or 
extraction from remote sensing datasets. The raster data utilized in the 
hydrological model is standardized to a resolution of 1 km, with ad-
justments made through resampling for datasets failing to meet the 
requisite resolution standards. Meteorological data at a 1-kilometer 
resolution is derived from interpolating meteorological station obser-
vation data using the Kriging interpolation method. 

This study further investigates the anthropogenic influence, specif-
ically reservoirs and their corresponding large-scale irrigation areas, 
which are pivotal in influencing the Wei River Basin’s water cycle. Data 
from the Yellow River Conservancy Commission are utilized. The res-
ervoirs affected the PRR in the Wei River Basin due to extensive surface 
water withdrawals for agricultural irrigation purposes (Zhan et al., 
2014). Notably, the Wei River Basin’s primary reservoirs are closely 
linked to corresponding irrigation districts, with district sizes propor-
tionate to reservoir scales. Therefore, reservoir construction not only 
alters the seasonal water discharge within a given year but also signif-
icantly modifies inter-annual distribution. Data collection challenges led 
us to primarily rely on reservoir construction dates and capacities 
(Fig. 1b) to assess their PRR impact. In WRB1, the Xiazhai Reservoir, a 
small-scale facility, was built in the 1970 s. In WRB2, the largest 
reservoir in the Wei River Basin, Fengjiashan Reservoir, was constructed 
in 1974. A cluster of large-capacity reservoirs and their associated irri-
gation districts (Fig. 1c) are evident between WRB2 and WRB3, 
including Zhangjiazuitou Reservoir, Shitouhe Reservoir, Xinyigou 
Reservoir, Yangmaowan Reservoir, Dabeigou Reservoir, Laoyaju 
Reservoir, and Shibianyu Reservoir, mostly built concurrently around 
the early 1970 s. In WRB4, the Xijiao Reservoir, with a large-scale irri-
gation district, was established in 1997, directly influencing down-
stream streamflow at the Zhangjiashan hydrological monitoring station. 
WRB5 features Zhengjiahe Reservoir and Linfu Reservoir, both with 
minor capacities, built in the 1970 s. Additionally, a large-scale irriga-
tion area downstream of WRB5, regulated by the Shibaochuan Reser-
voir, impacts streamflow at the Zhuangtou hydrological station. 

2.2. Data analysis 

2.2.1. Possible driving factors 
The PRR under nonstationary and nonlinear circumstances is 

possibly controlled by climate forcing, groundwater, vegetation dy-
namics, and anthropogenic influences (Fig. 2b). 

Climate forcing: Potential evapotranspiration (ET0) is regarded as a 
representative climate-driving factor influencing PRR. This is because 
ET0 is regulated by various atmospheric parameters under anticyclonic 
conditions, including air temperature, heat flux, wind speed, saturated 
vapor pressure, net radiation, and relative humidity (Hobbins et al., 
2016; Liu et al., 2020). For instance, higher temperatures generally lead 
to increased evapotranspiration, while high humidity limits evaporation 
due to abundant moisture in the air. Increased wind speed accelerates 
evaporation by facilitating the departure of water molecules from the 
surface. Extended hours of sunshine contribute to surface energy input, 
thereby promoting water evaporation. However, changes in these at-
mospheric parameters associated with ET0 may not necessarily result in 
corresponding variations of changes in actual evapotranspiration (AET). 
This is because AET may often be limited by water availability rather 
than energy, leading to an unclear net effect of AET changes on PRR 
(Saft et al., 2015). 

Groundwater: Groundwater, characterized by its large water stor-
age capacity and long-term memory, plays a crucial role in PRR (Carlier 
et al., 2018). Contributions of shallow and deep groundwater inflows to 
streamflow exhibit distinct response time scales (Hare et al., 2021). For 
instance, streamflow can be attributed to shallow inflow processes, such 
as perched saturation along hydraulic gradient fronts, displaying tran-
sient behavior with short response times (ranging from days to weeks) 
(Hirmas et al., 2018). In contrast, discharge from confined aquifers ex-
hibits slower dynamics, including trends spanning multiple years. 
Furthermore, groundwater interactions extend beyond catchment 
boundaries, influencing groundwater quantity through hydraulic gra-
dients and regulating the exchange between regional groundwater and 
surface water (Bouaziz et al., 2018; Fowler et al., 2020). Additionally, 
anthropogenic impacts on groundwater extend to affect surface water 
runoff, including groundwater extraction, and modifications in vadose 
zone thickness (Fowler et al., 2022). 

Vegetation dynamics: Vegetation interacts with the PRR through 
processes such as evapotranspiration, interception, infiltration, and 
groundwater recharge (Ajami et al., 2017). Conversely, changes in 
precipitation patterns, rising temperatures, and variations in water 
availability directly impact vegetation growth and transpiration. In 
recent decades, afforestation programs have been proposed to harness 
benefits related to flood mitigation and carbon storage. The impact of 
afforestation on streamflow across diverse catchments is found to 
consistently decrease median and low streamflow (Buechel et al., 2022). 
Hence, the investigation of vegetation dynamics is considered a candi-
date driving factor for PRR. 

Anthropogenic influences: Intensified anthropogenic activities, 
linked to urbanization and population growth, threaten global water 
resource sustainability (Mekonnen and Hoekstra, 2016). Gathering 
continuous and long-term data on anthropogenic impacts related to the 
water cycle and human activities at the catchment level presents chal-
lenges (Thorslund and van Vliet, 2020). Remote sensing provides valu-
able tools for analyzing global human impacts on river systems, 
identifying human pressures, and assessing their temporal and spatial 
distribution (Ceola et al., 2019). The influence of anthropogenic factors 
on precipitation-runoff relationships is multifaceted and intricate. Three 
factors were selected for comprehensive examination in this study to 
elucidate the impacts of anthropogenic influences on precipitation- 
runoff relationships. Impervious surfaces, consisting of artificial struc-
tures obstructing natural water infiltration, are key components of urban 
settlements (Gong et al., 2020). High Impervious Surface Ratio (ISR) in 
urbanized areas affects surface energy and water balance, influencing 
extreme precipitation and floods (Lu et al., 2019). Changes in ISR impact 
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the PRR through four mechanisms: (1) Increased ISR raises surface 
runoff, elevating flood risk and transporting pollutants to water bodies. 
(2) ISR reduces soil water infiltration, enhancing surface moisture 
retention and affecting soil water availability and hydrological pro-
cesses. (3) The expansion of ISR decreases groundwater recharge. 
Assuming that preferential flow occurs in specific areas of a catchment, 
the increase in the ISR not only blocks the infiltration process but also 
disrupts the preferential flow process. Hence, expanding the ISR reduces 
groundwater recharge by affecting both infiltration and preferential 
flow processes (Shuster et al., 2005). Night-Time Light (NTL) products 
provide comprehensive insights into human presence and economic 
development’s influence on water resources (Ceola et al., 2019). NTL 
affects the PRR through two mechanisms: (1) NTL’s heat emission 

increases urban temperature, impacting the regional hydrological cycle 
by enhancing convection and influencing precipitation formation and 
distribution (Liao et al., 2017). It also raises localized evaporation, 
reducing surface runoff and precipitation infiltration. (2) NTL reflects 
urbanization and economic development, indicating increased imper-
vious surfaces and water usage, disrupting infiltration, recharge, and 
post-precipitation evaporation (Elvidge et al., 2007). Higher population 
densities (POP) in regions often result in increased urbanization and 
more impermeable surfaces like buildings and roads. The impact on the 
PRR can be understood through three key aspects. (1) Higher population 
densities lead to greater water demand for domestic, industrial, and 
agricultural purposes, affecting natural flow patterns and water avail-
ability (Fang and Jawitz, 2019). (2) As population densities rise, there is 

Fig. 2. a, Nonstationarity analysis results for hydrological process datasets (an upward arrow symbolizes an increasing trend within the data series, while a 
downward arrow signifies a decreasing trend; the designation Y denotes a statistically significant change trend, whereas N indicates a lack of statistical significance in 
the labeled change trend). b, Visual synthesis of selected process explanations for possible driving mechanisms in PRR under nonstationary and nonlinear processes, 
depicting a general catchment affected by complex anthropogenic interference. c, Remote sensing images characterizing anthropogenic influences. d, Heatmap for 
interconnection of the nonlinear relationships (MIC values) among the candidate driving factors. The factors studied are ET0, BF, NDVI, ISR, NTL, and POP (from top 
to bottom, left to right). 
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a greater need for infrastructure, urbanization, and agricultural expan-
sion, which alter the landscape, affecting the hydrological cycle 
(Hobeichi et al., 2022). (3) In densely populated regions, excessive 
groundwater extraction can deplete resources, leading to reduced water 
availability and land subsidence (Fang and Jawitz, 2019). 

2.2.2. Spatiotemporal analysis of driving factors 
From a spatiotemporal perspective (see Fig. 2c), the Hulu River Basin 

(WRB1) is situated in the upper reaches of the Wei River Basin. This sub- 
basin experiences minimal anthropogenic impact on its river system. 
The southern section of the sub-basin, near the Liupan Mountains and 
Long Mountains, is covered by thick forests and high vegetation char-
acteristics. The implementation of ecological conservation projects (Han 
et al., 2020), such as the soil and water conservation project, has 
resulted in an annual increase in NDVI values across the sub-basin (see 
Fig. 2a). NTL and POP values in the WRB1 are relatively low compared 
to other sub-basins, with their spatial distribution increasing from the 
northwest to the southeast. Especially, the NTL values showed a sharp 
increase after 2000 due to urban construction expansion in this sub- 
basin. However, the population density decreased primarily due to 
rural-to-urban migration (Huang et al., 2014). Although satellite images 
of ISR have a similar spatial distribution to the NTL image, they are not 
visible in Fig. 2 due to their reduced form. Hence, the changes in ISR are 
only analyzed in the temporal dynamics here. The WRB2 is situated in 
the middle reaches of the Wei River Basin, passing through Tianshui and 
Baoji cities. This sub-basin is characterized by a high level of population 
density and urbanization level (Zuo et al., 2015). NTL and POP values 
are concentrated in the two urban areas, with Baoji City, situated 
downstream, exhibiting higher NTL and POP values than Tianshui City, 
located upstream. After 2000, the ISR and NTL values in the sub-basin 
displayed a significant increase, while the overall POP values 
increased but had a decreasing trend after 2014. Vegetation coverage 
spatially increases from the northwest to the southeast and shows an 
annual increasing trend over time. WRB3 flows through Xianyang City, 
known for its robust economic performance, high level of urbanization, 
and dense population (Yang et al., 2020). The downstream urban 
agglomeration exhibits prominently high values of NTL, ISR, and POP, 
concentrated in specific spatial locations. Moreover, the spatial distri-
bution and temporal variation of NDVI values exhibit similarities to 
those observed in WRB2 (Yang et al., 2020). WRB4 flows through the 
cities of Qingyang City and Pingliang City. The river also runs through 
the Zhangjiashan Reservoir, primarily utilized to abstract water for 
agricultural irrigation. (Zhang et al., 2019), directly regulating the 
river’s annual discharge. The sub-basin’s northern section is positioned 
in the gully terrain of the Loess Plateau, while the southern part lies in 
the Guanzhong Plain. Consequently, the NDVI values display a spatial 
increase from north to south. NTL and POP values also exhibit a corre-
sponding rise from north to south, mainly concentrating in the southern 
Guanzhong Plain. With the development of urban construction, ISR and 
NTL values have increased annually. However, POP values have grad-
ually declined, primarily due to population migration to the adjacent 
city of Xi’an, the largest core city in the Wei River Basin. WRB5 is 
comparatively less impacted by anthropogenic activities (Gao et al., 
2013). The spatial distribution of NDVI, NTL, ISR, and POP values dis-
plays an incremental rise from north to south, with a corresponding 
annual increase over time. 

2.2.3. Nonstationary analysis of driving factors 
Mean and trend are essential statistical properties that remain con-

stant over time in stationary conditions and are typically utilized to 
identify abrupt shifts and gradual changes in nonstationary conditions, 
respectively (Cryer and Kellet, 1991). We used the Pettitt test with 
Trend-Free Pre-Whitening and Binary Segmentation (TFPW-BS-Pettitt) 
to find abrupt shifts in runoff and baseflow. TFPW mitigates autocor-
relation effects (Yue et al., 2003). The Binary Segmentation (BS) method 
(Lee and Verma, 2012) identifies multiple abrupt shift points iteratively. 

The non-parametric Mann-Kendall (MK) test assesses trends (Yue and 
Wang, 2004), with autocorrelation removed using TFPW before the MK 
test. Detailed calculations are in Supporting Information S3. Fig. 2a 
presents nonstationary testing results for hydrological datasets. The 
TFPW-BS-Pettitt method identified significant abrupt time points for 
runoff in WRB1, WRB2, WRB3, WRB4, and WRB5, occurring in 1992, 
1993, 2002, 1996, and 1994, respectively. Baseflow showed similar 
significant abrupt shift points in the sub-basins. The possible reason is 
that the Wei River Basin is situated in a semi-arid region where 
streamflow is primarily influenced by groundwater (Zhao et al., 2015). 
Precipitation time series showed non-significant trends, but temperature 
and potential evapotranspiration exhibited significant upward trends in 
some sub-basins. These changes may be attributed to the combined ef-
fects of global warming, urban expansion, and regional climate pro-
cesses (Huang et al., 2021). The NDVI values have increased 
significantly due to soil and water conservation projects since the 1950 s 
(Chen et al., 2007). Satellite data, including ISR, NTL, and POP, repre-
senting human pressure on the river system showed an overall upward 
trend, reflecting urbanization and increased human activities in the Wei 
River Basin (Chang et al., 2015). 

2.2.4. Nonlinear interactions among driving factors 
The Maximal Information Coefficient (MIC) metric measures 

nonlinear correlations among driving factors (Fig. 2d) (Zhang et al., 
2014). The heatmap analysis shows significant nonlinear correlations 
among the anthropogenic-related driving factors (POP, NTL, ISR) in the 
five sub-basins. However, the correlation between POP and ISR is weak 
in WRB1 and WRB4, likely due to rural-to-urban migration. Baseflow 
has weak correlations with other factors, and potential evapotranspi-
ration also exhibits relatively weak correlations, possibly due to inte-
grated climate forcing effects at global and regional scales. In WRB5, 
NDVI shows strong associations with POP, NTL, and ISR, likely due to 
simultaneous soil and water conservation and urbanization processes in 
this sub-basin. 

3. Methods 

To gain insight into the possible driving mechanisms affecting the 
Precipitation-Runoff Relationships (PRR) within nonstationary and 
intricate nonlinear hydrological processes, we have developed innova-
tive indices referred to as the Driving indices for Precipitation-Runoff 
relationships with the nonStationary and nonLinear theory approach 
(DPRS and DPRL). The indices serve as tools for evaluating driving levels 
and directions that influence PRR, which effectively address the limi-
tations of conventional approaches used to characterize PRR and their 
driving mechanisms within nonstationary and nonlinear systems. The 
investigation into the candidate driving factors influencing PRR includes 
climate forcing, groundwater, vegetation dynamics, and anthropogenic 
influences. The anthropogenic influence factors are derived from long- 
term continuous series of remote sensing data, categorized at the 
catchment scale. The spatiotemporal dynamics, nonstationary pro-
cesses, and nonlinear interactions among the factors were first assessed. 
By incorporating the driving levels and directions of driving factors 
computed from DPRS and DPRL, the plausible process explanations for 
influencing PRR in the study cases were deduced. Furthermore, the 
DPRS and DPRL indices are applied to analyze the driving mechanisms 
governing various land evapotranspiration and soil moisture content at 
different depths in the PRR using a physically-based hydrological model. 
In addition to the mutual validation of the DPRS and DPRL indices, the 
concept of basin complexity is further employed to validate the reli-
ability of the assessment outcomes derived from these two indices. The 
overall framework is visually illustrated in Fig. 3. 
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3.1. Identification technique for driving factors with nonstationary theory 
approach 

A Driving index for Precipitation-Runoff relationships with the 
nonStationary theory approach (DPRS) is proposed to identify the 
possible driving mechanisms that influence the precipitation-runoff 
connections within nonstationary hydrological processes. This index 
overcomes the limitations of conventional approaches used to describe 
PRR and their driving mechanisms under nonstationary conditions. The 
calculation procedure for the DPRS index is as follows. 

Step 1: The time lag between precipitation and baseflow is given by, 

R(m) =
∑N

i=1
xPre

i xBF
i− m (1)  

The R(m) is the cross-correlation coefficient which is calculated by the 
XCORR function; m is the time lag, and its range is [-12, 0], which was 
selected based on the monthly time scale; xPre

i is precipitation time series 
(i = 1, 2, 3, …,N); xBF

i− m represents the baseflow time series, where xBF
i− m is 

equal to zero when i – m exceeds N. 

R(mmax) = max{R(m) } (2)  

where mmax corresponds to the time lag m at which R(m) achieves its 
maximum value. 

⎧
⎨

⎩

xBF lag
i = xBF

i− mmax
i − mmax ≤ N

xBF lag
i = xBF

N i − mmax > N
(3)  

where xBF lag
i denotes the baseflow time series at the time lag of mmax. 

Step 2: Suppose that the precipitation time series, runoff time series, 
and the influencing factor of PRR are 

{
x1

i
}
, 
{
x2

i
}
, 
{
x3

i
}

(i = 1, 2, 3, …,N), 

respectively. Each time series 
{

xj
i

}
(j = 1, 2, 3) is accumulated as the 

profile 
{

Pj
k

}
(k = 1, 2, 3). 

Pj
k =

∑k

i=1
xj

i (4)  

Step 3: The profiles are divided into N − s+1 overlapping sub-periods. 
The value range of s needs to be selected according to the research 
purpose. The value range in this study is [36, N-1]. The time nodes of 
each sub-period h are from h to h + s − 1(h = 1, ⋯,N − s + 1). Then, the 

local trend {̃Pj
k,h} is generated by a least-squares polynomial fitting. 

Accordingly, the detrended residual series {Yj
s,l} 

(l = (h − 1)Â⋅s+k − h+1) are calculated by the difference between the 
original time series and the local trend. 

Yj
s,l = Pj

k −
̃Pj

k,h (5) 

Fig. 3. Illustration of the framework for identifying the possible driving mechanisms in precipitation-runoff relationships with nonstationary and nonlinear the-
ory approaches. 
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Step 4: The cross-correlation levels ρj1 ,j2 (s) between any two time series 
on the time scales of s are estimated, which ranges from − 1 to 1. The 
ρj1 ,j2 (s) is also referred to as the DCCA (Detrended Cross-Correlation 
Analysis) index, which characterizes the PRR under nonstationary hy-
drological processes. The coefficients matrix is constituted as, 

DCCA(s) = ρj1 ,j2 (s) =
∑(N− s+1)Â⋅s

l=1 Yj1
s,lY

j2
s,l

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑(N− s+1)Â⋅s

l=1 Yj1
s,lY

j1
s,l

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑(N− s+1)Â⋅s

l=1 Yj2
s,lY

j2
s,l

√ (6)  

ρ(s) =

⎡

⎢
⎣

ρ1,1(s) ρ1,2(s) ρ1,3(s)
ρ2,1(s) ρ2,2(s) ρ2,3(s)
ρ3,1(s) ρ3,2(s) ρ3,3(s)

⎤

⎥
⎦ (7)  

Step 5: The partial-cross-correlation level ρ(1,2; s) between the pre-
cipitation and runoff is determined based on the inverse matrix of ρ(s)
which is defined as, 

C(s) = ρ− 1(s) =

⎡

⎢
⎣

C1,1(s) C1,2(s) C1,3(s)
C2,1(s) C2,2(s) C2,3(s)
C3,1(s) C3,2(s) C3,3(s)

⎤

⎥
⎦ (8)  

ρ(1, 2; s) = − C1,2(s)
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
C1,1(s)C2,2(s)

√ (9)  

Step 6: The ρ1,2(s) denotes the PRR on the time scales of s with 
nonstationary effects removed. The ρ(1,2; s) characterizes the cross- 
correlation between precipitation and runoff by eliminating the in-
fluences of an external factor. The difference between ρ1,2(s) and ρ(1, 2;
s) represents the driving level of an influencing factor on PRR. To 
address the issue of inconsistent data-sequence lengths among different 
driving factors within a catchment and facilitate comparisons between 
different catchments, we introduce the concept of relative error. It is 
computed by dividing the difference between ρ1,2(s) and ρ(1,2; s) by 
ρ1,2(s). The ρ1,2(s) represents the specific PRR of a catchment at a given 
time scale s, reflecting the catchment-properties PRR influenced by in-
tegrated multifactorial forces. However, when the denominator ρ1,2(s)
approaches zero, there is a risk of encountering abnormally high values 
in the DPRS index. To address this, we update the denominator to ρ1,2(s)
+ 1. Notably, a positive value of the DPRS index signifies that the driving 
factor positively enhances the P-R link, while a negative index value 
suggests a negative effect of the driving factor on the P-R link. The 
calculation of the DPRS index is given by, 

DPRS(1, 2;3; s) =
ρ1,2(s) − ρ(1,2; s)

ρ1,2(s) + 1
(10)  

Step 7: The above formula for DPRS can only provide index values 
across time scales. However, we prefer a definitive measure within a 
given period. Hence, the kernel density function is utilized. 

f̂ w(DPRS) =
1

(b − a + 1)w
∑b

s=a
K
(

DPRS − DPRS(1,2; 3; s)
w

)

(11)  

f̂ w(DPRSmax) = max{f̂ w(DPRS) } (12)  

where f̂ w(DPRS) represents the kernel density function with w which 
denotes the bandwidth. The range of s is set as [a, b], and a Grid-
SearchCV is conducted for the optimal range (Pedregosa et al., 2011). 
The search space for s is set to [0.05, 1.95] with a step size of 0.05. K(.) 
denotes the kernel function. DPRSmax corresponds to the maximum 
value of kernel density for DPRS. Here, the Gaussian kernel density 
function is utilized for estimating kernel density. 

K(x) =
1̅̅
̅̅̅̅

2π
√ exp

(

−
1
2
x2
)

(13)  

3.2. Identification technique for driving factors with nonlinear theory 
approach 

Furthermore, a Driving index for Precipitation-Runoff links with the 
nonLinear theory approach (DPRL) is developed based on mutual in-
formation technique to quantify the nonlinear nature of their associa-
tions. The calculation procedure for the DPRL index is as follows. 

Step 1: Involve three time series: the runoff time series denoted as Xt, 
the precipitation time series denoted as Yt, and an influencing factor 
denoted as Zt , where t = 1,2,⋯,n, and n signifies the length of the time 
series. The initial computation entails deriving the cumulative fre-
quency for each time series. Subsequently, the runoff time series is 
transformed into the following time series Qt: 

Qt =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, Xt ≤ X20

2, X20 < Xt ≤ X40

3, X40 < Xt ≤ X60

4, X60 < Xt ≤ X80

5, Xt > X80

(14)  

where X20,X40,X60, and X80 correspond to Xt when the cumulative fre-
quencies are 20 %, 40 %, 60 %, and 80 %, respectively. Similar pro-
cessing is applied to the precipitation time series Xt and the influencing 
factor Zt, resulting in the updated time series Wt and Ft. These time series 
are discretized into five equidistant intervals to reduce the impact of 
noise while capturing a wider range of time series values across various 
magnitudes. Notably, the division into five equidistant boxes is a 
deduced outcome derived from rigorous comparative analyses and 
verifications (Franzen et al., 2020). 

Step 2: Calculate the probability distribution functions for the time 
series: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

p(qi) =
count(qi)

n

p
(
wj
)
=

count
(
wj
)

n

p(fk) =
count(fk)

n

(15)  

where p(qi), p
(
wj
)

and p
(
fk
)

are the probability distribution functions of 
Qt, Wt and Ft respectively; count(qi) , count

(
wj
)

and count
(
fk
)

represent 
the occurrences of numerical values in Qt , Wt and Ft, respectively; i = 1,
2,⋯,5; j = 1,2,⋯,5; k = 1,2,⋯,5. 

Step 3: The Shannon entropy of time series is calculated as follows: 

H(Qt) = −
∑5

i=1
p(qi)log2p(qi) (16)  

where H(Qt) is the Shannon entropy of Qt. Here, entropy with a loga-
rithm of base 2 is considered, such that entropy and related IT measures 
are in units of bits. 

Step 4: Calculate the joint distribution functions as follows: 
⎧
⎪⎪⎨

⎪⎪⎩

p(qi, fk) =
count(Qt = qi, Ft = fk)

n

p
(
qi,wj

)
=

count
(
Qt = qi,Wt = wj

)

n

(17)  

where p
(
qi, fk

)
is the joint distribution function of Qt and Ft; p

(
qi,wj

)
is 

the joint distribution function of Qt and Wt; count
(
Qt = qi, Ft = fk

)
is the 

number of simultaneous occurrences of Qt = qi and Ft = fk; count
(
Qt =

qi,Wt = wj
)

is the number of simultaneous occurrences of Qt = qi and 
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Wt = wj. 
Step 5: Given the influencing factor, the quantification of uncer-

tainty within the sequence becomes feasible through the utilization of 
conditional entropy. This measure is computed as follows: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

H(Qt |Ft) =
∑5

i=1

∑5

k=1
p(qi, fk)log2

p(qi, fk)

p(fk)

H(Qt |Wt) =
∑5

i=1

∑5

j=1
p
(
qi,wj

)
log2

p
(
qi,wj

)

p
(
wj
)

(18)  

where H(Qt |Ft) is the conditional entropy of Qt given Ft; H(Qt |Wt) is the 
conditional entropy of Qt given Wt. 

Step 6: Mutual information I(Qt ; Ft), quantifies the reduction in 
uncertainty of one variable when another variable is known. It is the 
difference between entropy and conditional entropy. The calculation for 
mutual information is as follows: 

I(Qt ; Ft) = H(Qt) − H(Qt |Ft) =
∑

p(qt , ft)log2
p(qt , ft)

p(qt)p(ft)
(19)  

Step 7: The DPRL index is further updated as follows: 

DPRL(t) =
I(Qt ; Ft)

H(Qt |Wt) + 1
(20)  

where I(Qt ; Ft) represents the mutual information between Qt and Ft. It 
quantifies the reduction in the uncertainty of Qt when Ft is given, 
providing insights into their interdependence. With regard to the impact 
of precipitation on runoff, this index introduces the concept of condi-
tional entropy H(Qt |Wt), accounting for the conditional uncertainty 
within runoff given precipitation. Furthermore, incorporating the notion 
of relative error, a modification is applied to the denominator by adding 
+ 1. This adjustment prevents the denominator from becoming 
exceedingly small, which may lead to anomalous metric values of the 
index. 

According to the aforementioned formulas derivation, the enhance-
ments of the DPRS and DPRL indices are summarized. (1) Compared to 
conventional hydrological models, the DPRS and DPRL indices have 
lower data requirements and offer a simple and effective technique for 
identifying the possible impacts of driving factors on PPR. They also 
address the limitations of process-driven hydrological models in the run, 
which assume stationary and linear conditions (Ammann et al., 2019; 
Jehanzaib et al., 2020). (2) DPRS overcomes nonstationary effects by 
subtracting the local trend with appropriate polynomial orders, ensuring 
the normality of input signals for cross-correlation analysis (Zebende, 
2011). (3) The effect of external factors on PPR may lead to spurious 
cross-correlation estimations (Yuan et al., 2015). Hence, the DPRL re-
veals intrinsic relationships between precipitation and runoff time series 
by excluding the influence of external factors, such as evapotranspira-
tion, groundwater, land cover, and anthropogenic interference. (4) 
DPRL quantifies the nonlinear nature of the precipitation-runoff links 
and their associated driving factors. (5) DPRS elucidates possible driving 
mechanisms affecting PPR at various time scales, which can improve our 
understanding of hydrological responses to climate forcing and 
anthropogenic activities at various time scales. Within a specified 
period, the driving direction of DPRS signifies the influence exerted by a 
particular factor on the correlation between precipitation and runoff 
during the period. It is imperative to note that DPRS is constructed 
utilizing DCCA and DPCCA. DPRS solely captures the driving level and 
direction of influencing factors in the changes of PPR but does not 
represent the specific water quantity behaviors in the hydrological cycle. 
(6) The DPRS and DPRL indices provide the driving levels and allow for 
comparisons of the index values among different driving factors with 
inconsistent data-sequence lengths and across various types of catch-
ments. (7) Indeed, DCCA and DPCCA can only capture the PRR at 
various time scales (Yuan et al., 2015). Therefore, the kernel density 

function is applied to the DPRS index to provide a definitive value for 
exploring the possible processes controls of PRR. (8) Baseflow, which 
plays a crucial role in the PRR, is subjected to a pre-processing step 
involving the determination of the time lag between precipitation and 
the mass centers of baseflow (Singh, 1968). This pre-processing step is 
performed prior to the application of the DPRS, allowing for a more 
accurate analysis of the possible driver of the changes in PRR. (9) The 
uncertainty was associated with driving factors (such as climate forcing, 
groundwater, vegetation dynamics, and anthropogenic influences) 
influencing the PRR across various time scales, characterized by violin 
plots. To illustrate, consider the influence of vegetation dynamics: on 
shorter time scales, vegetation’s effect on runoff is markedly seasonal. 
During the growth period, an increase in leaf area can intercept pre-
cipitation and elevate transpiration rates, consequently reducing runoff 
(Gaertner et al., 2019). Conversely, in the dormant period, a reduction in 
vegetation cover can result in increased runoff. On broader time scales, 
land-use changes such as deforestation or afforestation exert enduring 
effects on runoff patterns. Specifically, deforestation can increase runoff 
by diminishing precipitation interception and transpiration, whereas 
afforestation may boost groundwater recharge and diminish runoff 
(Krishnaswamy et al., 2018). All related explanations will be clarified in 
the revised manuscript. Violin plot combines features of box plots and 
density plots to display data distribution. The wider sections of the violin 
plot indicate a higher probability of data distribution, whereas the 
narrower sections suggest a lower probability (Hintze and Nelson, 
1998). Therefore, given the same volume of data, a vertically flatter or 
multimodal violin plot signifies a lower concentration and higher un-
certainty of driving levels for the changes in the PRR as the time scale 
changes (if you have interest in codes, please do not hesitate to contact 
us). 

4. Results 

4.1. Precipitation-runoff relationships in study cases 

The monthly precipitation-runoff correlation of five sub-basins in the 
Wei River Basin was examined using Detrended Cross-Correlation 
Analysis (DCCA), as depicted in Fig. 4a. The DCCA results indicated 
that WRB2 and WRB3 exhibited the strongest precipitation-runoff cor-
relation, with PRR values concentrated around 0.8 and 0.87, respec-
tively. WRB1 and WRB4 displayed lower PRR values, centered around 
0.6. WRB5 exhibited the lowest PRR value, approximately 0.5. Exam-
ining the PRR results of these five sub-basins, WRB5 showed the highest 
uncertainty, while WRB1 and WRB4 displayed lower uncertainty. WRB2 
and WRB3 exhibited the lowest uncertainty. The variability in PRR 
values across the sub-basins is attributed to the natural geographic 
conditions and anthropogenic factors within each sub-basin. WRB1, 
located in the upstream region of the Wei River Basin with a sparse 
population, experiences minimal anthropogenic influence. WRB4 and 
WRB5, situated in the downstream tributaries of the Wei River Basin in 
the semi-arid loess plateau region, are significantly impacted by affor-
estation policies, resulting in dynamic vegetation changes. WRB2 and 
WRB3, located in the upper to middle reaches of the Wei River Basin, are 
densely populated urban areas along the river, experiencing the greatest 
anthropogenic influence. Possible driving mechanisms for these results 
are provided in Sections 4.2 and 4.3. 

4.2. Possible driving mechanisms in precipitation-runoff relationships with 
nonstationary theory approach 

DPRS was utilized to quantify the driving levels and directions of 
possible influencing factors in the precipitation-runoff relationships 
under nonstationary conditions. The absolute values of the DPRS results 
(Fig. 4c) as well as the maximum kernel density values (Fig. 4d) were 
employed for comparing the levels of the driving forces associated with 
possible influencing factors. The results illustrate that the DPRS values 
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of baseflow in WRB1, WRB2, WRB3, and WRB4 significantly exceeded 
those of other factors, while in WRB5, baseflow’s DPRS values ranked 
second. This phenomenon indicates baseflow has a dominant influence 
on PRR. These findings align with the current dominance of ground-
water in the hydrological cycle of the Wei River Basin. The five sub- 
basins are located in a continental monsoon climate region character-
ized by abundant rainfall in summer and limited precipitation in winter, 
where baseflow constitutes a substantial portion of the annual runoff. 
During the dry season, evaporation and percolation processes lead to a 
reduction in soil moisture. Precipitation replenishes soil moisture 
through the infiltration process, further contributing to baseflow. 
Concurrently, the soil’s absorption of precipitation reduces surface 
runoff, making baseflow a primary component of runoff (Miao et al., 
2020). On the other hand, depending on soil properties, the flow ve-
locity of baseflow may be considerably lower than surface runoff, 
resulting in groundwater recharge during the wet season becoming the 
primary source of baseflow during the dry season (Huang et al., 2020). 
Furthermore, the DPRS values in the five sub-basins exhibit significant 
uncertainty. This is closely related to diverse factors within the study 
cases, such as groundwater depth, groundwater extraction, and urban 
development. Firstly, the diversity in groundwater depth impacts the 

flow velocity of baseflow, subsequently influencing the response time of 
runoff to precipitation. Secondly, groundwater extraction leads to 
reduced groundwater storage and lowered water tables, diminishing the 
generation of baseflow, reducing its flow velocity, and leading to varied 
responses of runoff to precipitation. Lastly, urban expansion has 
increased impervious surfaces, complicating soil properties. The devel-
opment of urban clusters is accompanied by an increase in water de-
mand, prompting the redistribution and utilization of water resources, 
such as reservoir construction and interregional water transfer, which 
significantly impact the regional PRR (Huang et al., 2017a). 

The DPRS results of NDVI show that vegetation dynamics have 
negative impacts on the PRR in all five sub-basins. In WRB1, WRB2, and 
WRB3, the influence of vegetation dynamics on the PRR is secondary 
only to baseflow, with lower uncertainty compared to baseflow. 
Changes in vegetation cover primarily affect regional evapotranspira-
tion. An increase in vegetation coverage leads to increased water con-
sumption through regional vegetation transpiration, resulting in a 
decrease in soil moisture and ultimately affecting the migration speed of 
groundwater and reducing baseflow generation. When soil moisture 
levels are low and precipitation events occur, incoming precipitation 
infiltrates into the soil, reducing surface runoff (Buechel et al., 2022). 

Fig. 4. A, precipitation-runoff relationships of five sub-basins within the wei river basin under nonstationary hydrological processes, investigated using dcca values. 
b, driving levels and directions of possible influencing factors in changes of precipitation-runoff relationships within the wei river basin, as indicated by dprs values. 
c, absolute values of dprs for possible influencing factors. d, Maximum kernel density values of the absolute values of DPRS for possible influencing factors. e, Values 
of DPRL for possible influencing factors. 
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Additionally, vegetation intercepts surface runoff, prolonging the con-
centration time of surface runoff and increasing soil infiltration. How-
ever, the additional infiltration from interception is less compared to the 
water losses due to evaporation. WRB1 is situated in the upstream 
source area of the Wei River Basin, where precipitation is relatively 
lower than in other sub-basins. In WRB1, vegetation interception of low- 
intensity precipitation events greatly impacts the PRR. With rapid eco-
nomic development, there has been an increasing awareness of ecolog-
ical conservation. Since the 1950 s, soil and water conservation projects 
in the Wei River Basin have been continuously promoted, leading to a 
consistent increase in vegetation coverage across sub-basins (Chang 
et al., 2015). However, in WRB2 and WRB3, rapid urban expansion has 
diminished the impact of vegetation protection. Simultaneously, 
extensive human activities have introduced complex effects of vegeta-
tion dynamics on PRR. In WRB4 and WRB5, the influence of vegetation 
dynamics is smaller, but it exhibits higher uncertainty, especially in 
WRB4. Different forms of vegetation cover growth are a crucial factor 
contributing to this difference. In planned green areas within urban and 
peri-urban regions, vegetation is often transplanted from other areas. 
This greening approach leads to a rapid response of PRR to vegetation 
cover changes. In non-urban areas, young plants are typically used for 
greening, which may take several years (depending on the vegetation 
type) to significantly impact PRR. Moreover, non-urban greening areas 
are usually larger, and phased construction may result in varying driving 
levels of vegetation dynamics on PRR. It is noteworthy that the impact of 
vegetation dynamics on PRR in WRB4 is lower than in WRB5. The 
successful implementation of afforestation policies in WRB5 is a key 
factor explaining this phenomenon (Wu et al., 2023). 

In the five sub-basins, ET0 has both positive and negative effects on 
PRR. The complex behaviors are related to the mechanisms influencing 
ET0. Evapotranspiration is the process by which water transforms from a 
liquid to a gaseous state, and it is influenced by energy and environ-
mental factors. Meteorological factors such as temperature, humidity, 
and wind speed all have potential control over the evaporation process, 
thus affecting the magnitude of potential evapotranspiration. Global 
climate change and human interventions have led to intricate variations 
in meteorological elements. Consequently, the impact of ET0 on the PRR 
exhibits diverse and intricate characteristics. ET0 has the greatest in-
fluence on PRR in WRB5, showing significant uncertainty, while its 
impact in other sub-basins is small (Fig. 4c). This could be attributed to 
periodic vegetation changes within the sub-basins affecting local climate 
and subsequently influencing the PRR within the sub-basins (Mu et al., 
2007). Urban development within WRB1, WRB2, WRB3, and WRB4 
leads to increased impervious areas that intercept precipitation, and the 
presence of tall buildings affect wind speed and direction. These changes 
alter the response of runoff to precipitation. The urban heat island effect 
generated by urban development influences atmospheric circulation in 
urban and surrounding regions, significantly impacting regional PRR 
(Wai et al., 2017; Zhang et al., 2020). Additionally, ET0 is closely linked 
to irrigation zone management (Berghuijs et al., 2017; Tu et al., 2023). 
In WRB2, WRB3, and WRB5, numerous large-scale irrigation zones have 
been established (Fig. 1c). Groundwater, river flow, vegetation cover, 
and infiltration processes within the sub-basins are all influenced by the 
operation of these irrigation zones, resulting in changes in PRR within 
the sub-basins. 

ISR, NTL, and POP are specific manifestations of human activities. 
These three factors have both direct and indirect impacts on the runoff 
generation process, making their influence on the PRR complex. ISR is a 
direct indicator of urban expansion (Gong et al., 2020). Compared to 
NTL and POP, ISR has a stronger direct reduction effect on precipitation- 
runoff dependency within the sub-basins (Fig. 4b). In WRB4, the impact 
of ISR ranks second only to baseflow, while in other sub-basins, ISR also 
exerts a significant influence on PRR. The high impact of ISR on PRR is 
due to impervious areas directly intercepting precipitation at the ground 
surface, obstructing soil evaporation and infiltration processes. During 
precipitation events, larger impervious surfaces increase surface runoff 

generation, shorten concentration times, and induce flooding. Reduced 
soil evaporation ensures that the soil retains more moisture, leading to 
increased baseflow, although this is outweighed by the losses resulting 
from obstructed infiltration processes. Since the effects of impervious 
surfaces tend to stabilize once they are established, the impact of ISR on 
PRR remains consistent. In contrast to the direct impact of ISR on PRR, 
the influence of NTL and POP is mostly indirect. Aside from WRB4, 
where NTL exhibits a negative impact on PRR, it shows positive effects 
in other sub-basins (Fig. 4b). NTL exhibits an increasing trend with 
economic development, reflecting higher energy consumption levels 
(Liao et al., 2017). Along with energy consumption, energy release leads 
to the urban heat island effect, which affects regional precipitation, 
temperature, and meteorological elements. POP has various impacts on 
runoff formation, primarily related to water consumption. WRB1 has a 
smaller population, resulting in a minor influence on PRR. WRB5, 
although also sparsely populated, features reservoirs such as Tuojiahe 
Reservoir and Zhengjiahe Reservoir (Fig. 1b), diverting water resources 
to other areas, and affecting PRR within WRB5. Due to larger pop-
ulations, POP exhibits stronger driving forces in WRB2 and WRB4. 
Notably, WRB3 has the highest population among the five sub-basins, 
but the driving level of POP is low. It is inferred that water transfer 
projects have alleviated the pressure of local water consumption on 
water resources in WRB3 (Zhang et al., 2011a). In summary, ISR pri-
marily has a negative impact on PRR. In comparison to ISR across the 
five sub-basins, NTL and POP exert relatively weaker overall driving 
forces, primarily resulting in indirect impacts on PRR. However, the 
assessment of POP’s influence on the PRR is limited due to the con-
straints of the time series length. 

4.3. Possible driving mechanisms in precipitation-runoff relationships with 
nonlinear theory approach 

DPRL applies the mutual information technique to quantitatively 
assess the driving levels of possible influencing factors in the 
precipitation-runoff relationships within the complex nonlinear hydro-
logical processes. The results (Fig. 4e) illustrate that baseflow is the 
primary driving force influencing the PRR in the five sub-basins. The 
DPRL values of baseflow are all greater than 0.4 in the five sub-basins, 
while the DPRL values of other factors are all below 0.1. Baseflow is 
an important component of the Wei River Basin’s runoff, particularly 
during the dry season (Miao et al., 2020), primarily contributing to 
runoff generation. Therefore, the DPRL values of baseflow are higher. 
The impact of vegetation dynamics in WRB4 and WRB5 is stronger than 
in other sub-basins and significantly exceeds the impact of other factors 
in the two sub-basins. The finding aligns with the lower level of ur-
banization in WRB4 and WRB5. Furthermore, the impact of vegetation 
dynamics in WRB5 is greater than in WRB4, illustrating that the affor-
estation policy in WRB5 has yielded positive results (Wu et al., 2023). 
Additionally, compared to WRB2, WRB3 has a higher proportion of 
irrigated areas, and the typical cropping pattern in these sub-basins in-
cludes winter wheat and summer maize. The vegetation dynamics 
within irrigation zones depend on changes in cropping patterns, thereby 
exerting complex effects on the PRR within the sub-basins. The impacts 
of ISR, NTL, and POP in WRB3 are all in the top two levels, and their 
impacts in WRB2 are slightly smaller than those in WRB3. Conversely, 
the impact of vegetation dynamics in WRB2 is greater than that in 
WRB3. The rapid expansion of downstream urban clusters in WRB3 is a 
significant factor contributing to this result. Simultaneously, in pursuit 
of higher economic income or a more convenient lifestyle, populations 
in WRB4 and WRB5 tend to migrate towards the central cities in WRB3. 
This migration results in lower anthropogenic driving factors for PRR in 
WRB4 and WRB5. Additionally, as populations concentrate, local sur-
face water resources become inadequate to meet regional water de-
mands. Consequently, groundwater extraction and inter-basin water 
transfer are employed to alleviate water resource pressures, leading to 
complex artificial interventions that may impact the PRR. ET0 has a 
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smaller impact on the PRR in all five sub-basins. The ranking pattern of 
DPRL values of ET0 in the sub-basins is similar to that of vegetation 
dynamics. ISR and NTL have the strongest impact in WRB1, likely due to 
its being the smallest basin area. Notably, the similar possible driving 
mechanisms are elaborated in greater detail in Section 4.2 and are not 
reiterated here. 

4.4. Mutual validation of nonstationary and nonlinear theory approach 
outcomes 

The patterns exhibited by DPRS and DPRL in Sections 4.2 and 4.3 are 
generally consistent, which mutually validates the reliability of their 
assessment outcomes. Both DPRS and DPRL results illustrate that base-
flow is the primary factor influencing PRR. Excluding WRB5, the DPRS 
values of baseflow are the highest among the six factors. In WRB5, the 
DPRS value of baseflow ranks second only to ET0. The DPRL values of 
baseflow are significantly higher than those of other factors in all five 
sub-basins. Furthermore, the DPRS and DPRL results for ISR, NTL, and 
POP demonstrate the differences between WRB2 and WRB3. WRB2 is 

located upstream of WRB3 and there is a large urban cluster downstream 
of WRB3. Therefore, ISR, NTL, and POP have a greater impact on PRR in 
WRB3 compared to WRB2. In contrast, WRB4 and WRB5 have smaller 
urban areas, so vegetation dynamics exhibit positive impacts in DPRS 
results and high-level influence in DPRL results. However, due to the 
distinct foundations of DPRS and DPRL, which are based on nonsta-
tionary and nonlinear theories, respectively. Their results exhibit minor 
disparities. For instance, in WRB5, the results from DPRS show that ET0 
has a much higher impact on PRR than other factors, whereas in DPRL 
results, the driving level of ET0 is extremely low, almost equal to other 
factors. This disparity might be attributed to the implementation of 
afforestation policies in WRB5, which altered the local climate, thereby 
causing an increase in the driving level of ET0 on PRR during specific 
periods. DPRS captures the influence of ET0 on PRR (Fig. 4c), hence 
demonstrating a high driving level in the maximum kernel density 
results. 

Fig. 5. a, Schematic overview of the CWatM framework for the hydrological processes with minimal anthropogenic influence. b, Driving levels of various land 
evapotranspiration and soil moisture content at different depths in changes of precipitation-runoff relationships within WRB1, as indicated by absolute values of 
DPRS values. c, Values of DPRS illustrating the driving direction. d, Maximum kernel density values of the absolute values of DPRS and DPRL values based on the 
results of various land evapotranspiration and soil moisture content at different depths in CWatM. e, Basin complexity results from five sub-basins before and after 
hydrological abrupt shifts considering nonstationary schemes. 

T. Li et al.                                                                                                                                                                                                                                        



Journal of Hydrology 639 (2024) 131535

13

5. Discussion 

5.1. Application of the driving indices in a physically-based hydrological 
model 

An in-depth analysis of the driving mechanisms of various land 
evapotranspiration (e.g., snowmelt evaporation, interception evapora-
tion, bare soil evaporation, and vegetation transpiration) and soil 
moisture content at different depths in the precipitation-runoff re-
lationships is performed by the employment of the DPRS and DPRL 
indices, using a high-resolution Community Water Model (CWatM). 

5.1.1. Theory of physically-based hydrological model 
The CWatM has a flexible modular structure and unique global and 

regional spatial representations. This section provides a case study of the 
Hulu River Basin at monthly time scale, under the control of the Qin’an 
hydrological monitoring station, focusing on the period from 1960 to 
1978, which had minimal anthropogenic influence. The inputs for the 
model include observed streamflow data, meteorological data, and 
geographical information data (refer to Table S3 for specific details). 
Fig. 5a shows the schematic overview of the CWatM framework for the 
hydrological processes with minimal anthropogenic influence. The 
model employs diverse datasets of daily meteorological driving as inputs 
for Penman-Monteith calculations to estimate potential evapotranspi-
ration. Precipitation is partitioned into rain and snow based on sub-grid 
elevation data and temperature. Water balance computations are con-
ducted separately for six land cover classes (forest, irrigated, paddy- 
irrigated, water-covered, sealed area, and grassland). Four land cover 
classes (forest, irrigated, paddy-irrigated, and grassland) have separate 
calculations for soil processes, water interception, and evaporation of 
intercepted water. The resulting flux and storage for each grid cell are 
aggregated using the fraction of each land cover class within the grid 
cell. The model runs with preferential flow, which bypasses soil layers 
and percolates directly into groundwater. Soil moisture redistribution is 
estimated in three soil layers using the Van Genuchten simplification of 
the Richards equation. Direct evaporation from the soil surface is 
computed individually for two additional land cover classes, water and 
impermeable surfaces, while evaporation and runoff are calculated 
separately. Groundwater storage is modeled using a linear reservoir 
model. In addition, the information of inputs for the model, including 
dataset, duration, time and spatial resolution, and source, is shown in 
Table S3. The more detailed calculation principles for land evapo-
transpiration and soil moisture content are elaborated in Supporting 
Information S5.2. Model calibration and validation are illustrated in 
Supporting Information S5.3. Furthermore, in the hydrological model 
applied for the Hulu River Basin, while surface evaporation was 
accounted for, it was not identified as a primary driving factor for 
detailed exploration due to two main reasons. Firstly, the study area 
contains a limited number of grid cells classified as aquatic environ-
ments, with the vast majority representing terrestrial landscapes. Sec-
ondly, the evaporation from these water bodies leads to a direct decrease 
in runoff volumes, demonstrating a clear linear relationship and well- 
established driving mechanisms. 

Hulu River Basin (WRB1) is situated in the Loess Plateau, charac-
terized by diverse land cover types and high altitudes ranging from 1203 
to 2908 m (Han et al., 2020). It primarily experiences infiltration into 
the groundwater system through piston flow, followed by preferential 
flow. A notable characteristic of this infiltration process is its prolonged 
duration, often exceeding ten years (Huang et al., 2013; Lin and Wei, 
2006). To ensure a precise depiction of the initial-state groundwater 
storage and soil moisture content, a warm-up period, including the years 
1960 to 1972, has been established. Subsequently, a calibration period 
of 1973–1976 and a validation period of 1977–1978 are set. The 
objective function employs the Nash efficiency coefficient (NSE) as the 
performance measure. The model run produces monthly NSE values of 
0.80 in the calibration period and 0.63 in the validation period (see 

Figure S1). 

5.1.2. Selected hydrological processes for precipitation-runoff relationships 
The CWatM simulates the four types of land evapotranspiration, 

including snowmelt evaporation, intercepted evaporation, bare soil 
evaporation, and vegetation transpiration. Snowmelt evaporation refers 
to the evaporation from the runoff generated by melting ice and snow. It 
plays a significant role in hydrological processes within mountainous 
and cold regions or seasons, contributing to increased atmospheric 
moisture content, reduced snowmelt runoff, and local cooling effects. 
Intercepted evaporation involves the storage and subsequent evapora-
tion of precipitation intercepted by vegetation canopies, thus reducing 
the amount of water reaching the land surface and influencing infiltra-
tion and surface runoff generation. Bare soil evaporation refers to the 
evaporation of water bodies directly from the land surface without the 
presence of vegetation or insulating layers. This process accelerates soil 
moisture loss, diminishes water storage capacity in the soil, affects 
precipitation infiltration and groundwater recharge, and reduces surface 
runoff generation. Vegetation transpiration represents the process 
through which plants absorb soil moisture and release it into the at-
mosphere. It directly impacts soil moisture content, thereby influencing 
local seepage processes and climate conditions. However, vegetation 
transpiration is also influenced by soil moisture availability. In sum-
mary, snowmelt evaporation, intercepted evaporation, bare soil evapo-
ration, and vegetation transpiration exhibit distinct effects on 
hydrological processes, including surface runoff, soil moisture content, 
and groundwater recharge. Namely, they play a pivotal role in shaping 
the precipitation-runoff links. 

The CWatM model employs a three-layer soil structure, which pos-
sesses an advantage in accurately calculating water percolation and 
facilitating a comprehensive understanding of this prolonged infiltration 
process. The soil structure in CWatM is a benefit for the Hulu River 
Basin, which is in the Loess Plateau with thick deposits of loess and poor 
soil permeability(Huang et al., 2013). This model allows for the exam-
ination of the distinct roles played by different soil layers in the hy-
drological cycle. For example, evaporation from bare soil reduces the 
moisture content in the upper soil layer, while both the upper and 
middle soil layers influence the infiltration process. Vegetation tran-
spiration uniformly affects the moisture content of all three soil layers. 
In this regard, it is of significant importance to analyze the varying levels 
of soil moisture content in different layers and their impact on the PRR. 

5.1.3. Possible driving mechanisms of selected hydrological processes in the 
precipitation-runoff relationships 

As shown in Fig. 5b and c, the DPRS index reveals the force mech-
anisms of land evapotranspiration and soil moisture content at different 
depths on PRR. The results show that the bare soil evaporation, vege-
tation transpiration, and upper soil moisture content (w1) exhibit high 
and positive force levels on PRR. However, the force levels exhibit a 
higher level of uncertainty. Snowmelt evaporation, middle soil moisture 
content (w2), and lower soil moisture content (w3) display low and 
negative force levels on PRR. The intercepted evaporation exhibits a low 
and passive impact on PRR. Fig. 5d shows the DPRL measure of the 
impact of various land evapotranspiration and soil moisture content at 
different depths on PRR. Furthermore, to cross-validate with DPRL re-
sults, the maximum kernel density values of DPRS absolute values for 
different factors were computed. The results indicate that the primary 
driving factors responsible for the PRR, as revealed by the DPRL, are 
consistent with those of the DPRS results. DPRL values for bare soil 
evaporation, vegetation transpiration, and upper soil moisture content 
(w1) are significantly higher than those of the other four factors, 
aligning with the results of the DPRS results. The candidate mechanisms 
are investigated as follows. Hulu River Basin is situated in arid and semi- 
arid regions. In comparison to snowmelt evaporation and intercepted 
evaporation, bare soil evaporation and vegetation transpiration occur 
more frequently and contribute significantly to PRR due to their larger 
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evaporation rates. The moisture content of the upper soil, regulated by 
the mechanisms of bare soil evaporation and vegetation transpiration, 
undergoes pronounced seasonal and interannual variations that are 
intricately linked to both runoff generation and the dependence of 
precipitation on runoff. Conversely, the middle soil moisture content 
and the lower soil moisture content primarily contribute to subsurface 
runoff generation. Due to poor soil permeability, the interaction be-
tween surface runoff and subsurface runoff is rather limited, resulting in 
a lower impact of w2 and w3 on the PRR. 

5.2. Verification of assessment results for the driving indices using basin 
complexity 

Basin complexity is applied to further validate the assessment results 
for the DPRS and DPRL. The concept of basin complexity was charac-
terized by learning statistical patterns from streamflow time series and 
quantifying the difficulty in predicting historically similar streamflow 
events (Pande and Moayeri, 2018). Basins are regarded as more complex 
when streamflow generation is more difficult to predict. A more intricate 
model is necessary to forecast hydrological processes in one basin with 
higher complexity. Basin complexity serves as a metric of the hydro-
logical cycle’s complexity and is associated with the PRR and its driving 
factors. A higher basin complexity suggests more intricate in-
terconnections among the factors. 

5.2.1. Theory of basin complexity 
The k nearest neighbor model (Lall and Sharma, 1996; Sharma et al., 

1997) is employed to compute the basin complexity (Pande and 
Moayeri, 2018), while the Vapnik-Chervonenkis (VC) generalized the-
ory (Vapnik, 2006) is used to balance the performance and complexity of 
the k nearest neighbor model to obtain the most suitable k nearest 
neighbor model. The VC generalized theory is a statistical learning 
theory proposed by Vladimir Vapnik and Alexey Chervonenkis in the 
late 1960 s and early 1970 s. The theory provides a framework and tools 
for analyzing the generalization ability and error-bound properties of 
machine learning algorithms. VC dimension and generalization error are 
key concepts of the VC generalized theory. The VC dimension measures 
the complexity of the hypothesis space of a learning algorithm (Pande 
et al., 2009). In simple terms, the VC dimension is the size of the largest 
sample set that the learning algorithm can completely separate. A higher 
VC dimension indicates greater representational power of the learning 
algorithm but may also lead to overfitting. Generalization error is the 
error of the learning algorithm on new samples, that is, the error rate of 
the model learned by the learning algorithm from the training sample set 
on unseen samples. The VC inequality provides an upper bound estimate 
of the generalization error. The calculation method of the basin 
complexity is shown in Supporting Information S6. 

5.2.2. Possible driving mechanisms considering the hydrological regime 
shifts using basin complexity 

Basin complexity for five sub-basins before and after hydrological 
abrupt shifts is illustrated in Fig. 5e. It is noteworthy that the abrupt 
shifts in the Wei River Basin are primarily driven by human in-
terventions. Basin complexity serves as a metric quantifying the in-
tricacy of the hydrological cycle and denotes the extent of influence 
exerted by various factors in the runoff generation process within the 
basin. Stronger basin complexity indicates that various factors have a 
greater impact on the precipitation-runoff relationship. Examination of 
basin complexity results, as depicted in Fig. 5e, reveals that prior to the 
abrupt shift, the basin complexity of WRB1 and WRB3 is higher. 
Following the abrupt shifts, basin complexity increased for WRB1, 
WRB2, and WRB4, while experiencing a slight decrease for WRB3 and 
WRB5. Considering the overall basin complexity, WRB1, WRB2, and 
WRB3 demonstrated higher basin complexity, while WRB5 exhibited 
diminished basin complexity. The results of DCCA, illustrated in Fig. 4a, 
indicated strong PRR in WRB1, WRB2, and WRB3, contrasting with the 

weaker PRR observed in WRB5, thus confirming the findings. Moreover, 
examination of the DPRS, depicted in Fig. 4d, revealed that compared to 
other basins, WRB4 displayed a more uniform distribution of driving 
levels of driving factors affecting the PRR. This suggests that the hy-
drological cycle process in WRB4 is influenced by a broader kind of 
factors, consistent with the observed basin complexity. Furthermore, 
human activities have a significant impact on the basins, affecting 
topography, climatic conditions, vegetation cover, soil conditions, and 
groundwater availability. Consequently, anthropogenic factors repre-
sent a crucial driving force for changes in basin complexity. However, 
the influence of human activities is intricate, resulting in an overall 
increasing trend in basin complexity, with occasional periods of decline. 
Although the driving factors considered in this research may not 
encompass all factors influencing the basins, the investigation of the 
impacts of various factors on the PRR under nonstationary and nonlinear 
conditions across different time spans is essential. The analysis of the 
driving factors influencing the PRR holds guidance for the development 
of hydrological models under nonstationary and nonlinear conditions. 

5.3. Limitations 

Certain limitations are explicitly stated. (1) Due to the intricate 
interplay of climate forcing, groundwater, vegetation dynamics, and 
anthropogenic influences on catchments, as well as the challenges 
associated with data collection on anthropogenic activities, it may not 
comprehensively account for all-inclusive or exhaustive driving factors 
in the changes of the PRR. (2) The estimation of baseflow using the 
digital filtering method also presents certain limitations. Issues such as 
data noise and gaps can significantly impact the accuracy of the results. 
Furthermore, the selection of appropriate filter parameters involves 
subjectivity, potentially leading to divergent base flow estimates. 

6. Conclusions 

This study investigates the possible driving mechanisms for changing 
precipitation-runoff relationships (PRR) with nonstationary and 
nonlinear theory approaches. The novel indices, Driving indices for 
Precipitation-Runoff relationships within the nonStationary and 
nonLinear theory approach (DPRS and DPRL), provide valuable insights 
into the possible driving mechanisms of PRR in hydrological processes 
under nonstationary and nonlinear conditions, respectively. Through 
mutual verification of the results of DPRS and DPRL, coupled with a 
comparative analysis the findings in previous literature, possible ex-
planations for PRR changes in the Wei River Basin were explored, 
focusing on climate forcing, groundwater, vegetation dynamics, and 
anthropogenic influences. 

The application of DPRS and DPRL has revealed the significant 
impact of these factors across different sub-basins of the Wei River Basin. 
Specifically, baseflow emerged as a predominant factor affecting PRR, 
highlighting its sensitivity to hydrological shifts. Additionally, potential 
evapotranspiration plays a crucial role in driving negative PRR changes 
in specific sub-basins, indicating a weakening correlation between pre-
cipitation and runoff due to climatic variations. 

Vegetation dynamics were identified as another crucial determinant 
negatively impacting PRR, even with lower uncertainty compared to 
other factors. This illustrates the intricate balance between natural 
processes and anthropogenic interventions in controlling hydrological 
responses. Anthropogenic influences, quantified through ISR, NTL, and 
POP, demonstrated varied driving levels, with ISR exhibiting the 
strongest direct impact on PRR, closely associated with urbanization 
processes. 

The mutual validation of DPRS and DPRL indices confirmed the 
significant interplay of these factors, with the dominance of baseflow 
and the significant contributions of urbanization and afforestation pol-
icies to the PRR dynamics within the basin. This research not only ad-
vances our understanding of the complex interactions controlling 
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hydrological processes but also provides a comprehensive analytical tool 
for assessing the impact of nonstationary and nonlinear factors on PRR. 

Furthermore, by employing a physically-based hydrological model, 
this study extended the utility of the proposed framework to driving 
mechanisms governing various land evapotranspiration and soil mois-
ture content at different depths in the PRR. The application of basin 
complexity as a metric for hydrological cycle complexity provided 
additional insights to validate the assessment outcomes for the DPRS 
and DPRL. 

This study contributes to the body of knowledge on hydrological 
modeling and management, offering a comprehensive framework for 
analyzing the driving mechanisms behind PRR under the influence of 
nonstationary and nonlinear hydrological processes. These insights 
facilitate informed decision-making and sustainable water resource 
management strategies within the Wei River Basin and potentially other 
regions experiencing similar hydrological complexities. 
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