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Abstract

Motivation - Cancer remains one of the deadliest diseases worldwide and while advancements have been made in cancer
treatment, cancer’s heterogeneous nature makes it challenging to find a good treatment. Survival prediction for cancer
patients can aid in choosing a treatment plan. Various machine learning methods have been employed to predict the
survival of cancer patients, but they offer little insight into why a patient’s survival is likely or not. Mutational signatures
can offer an explanation on what a patient’s cancer originates from, and can be linked to certain outside factors such
as UV radiation. Even though mutational signatures have been employed in other problems, like predicting DNA repair
pathway deficiencies, they have not been used in survival prediction. Integrating the survival problem with the extraction
of mutational signatures could allow for extracting signatures that are particularly indicative of a patient’s survival,
providing a better prediction and more insight into why a patient’s survival is predicted that way.
Results - We propose Multi-Task Auto-Encoder Cox (MTAE-Cox), which combines a non-negative auto-encoder for
signature extraction with a Cox model for survival prediction and optimizes these in a multi-task manner. Our method
jointly optimizes the auto-encoder’s reconstruction error and the Cox loss, integrating the survival prediction problem
into the signature extraction. MTAE-Cox is applied to four cancers of the TCGA dataset (GBM, HNSC, OV, SKCM)
and its prediction performance is compared to Cox models using Gene Expression, Mutational Catalog, and exposures to
COSMIC signatures. MTAE-Cox outperforms the generally applied gene expression (median C-index of 0.579 over 0.561
for gene expression) for GBM and outperforms Cox using non-integrated signatures derived by NMF for three of the four
cancers. MTAE-Cox can extract biologically relevant signatures that are similar to COSMIC signatures that are known
to be common in the specific type of cancer, for example SBS3 for ovarian cancer.

1. Introduction

Cancer is one of the deadliest diseases worldwide, being

the leading cause of death in 2020, and continues to grow

[1, 2]. While advancements in cancer treatment have been

made in recent years with for example targeting genes in

oncogene-driven cancers and immuno-oncology, challenges

remain in the heterogeneous nature of cancer [3]. Because

of the heterogeneity, cancer is divided into subtypes, which

are used to determine the treatment path of patients [4].

However, even with the different treatments, not every cancer

subtype (and therefore not every patient) can be treated

effectively. Moreover, another consideration when choosing

a cancer treatment is the side effects of the treatment [5].

For example, chemotherapy has more severe side effects than

the aforementioned immuno-oncology [6]. Survival prediction

of cancer patients can be used to aid the choice between

treatments for the same subtype with different side effects, for

example by estimating the effectiveness of a treatment [7] or by

giving an indication of the lethality of a patient’s cancer.

1.1. Survival prediction for cancer
Survival prediction currently involves training machine learning

models to predict a patient’s survival rate over time given the

characteristics of the patient derived from genetic and clinical

data. First, the survival prediction problem can be defined as

a classification problem, which typically defines two classes

for the patients: Low-risk and high-risk groups. Classifying

patients into two or few classes simplifies the problem, but

disregards crucial information such as the censoring of samples,

the survival status, the survival time and typically requires

defining low and high risk groups based on rules defined by

the user (which can be dependent on the used data or cancer

type). Second, methods that use regression models predict the

survival time of patients. Although the regression definition

takes survival time into account, it can still not incorporate

censored data, as some patients may not have a survival time

when they are still alive at the time of leaving the study. Finally,

there are models that predict the hazard ratio (risk score) of

patients over time. The predicted risk score combined with a

baseline function leads to the survival function (hazard ratio

over time) of a patient. Models solving this type of problem

can incorporate censored samples into the training step. The

standard model to predict the risk score is the linear Cox

Proportional Hazards (Cox PH) model where the risk score is

a linear combination of the covariates such as the expression

of a selected set of genes [8, 9]. At present, non-linear versions

of Cox PH have been proposed as well, where DeepSurv was

the first non-linear method to improve over the linear Cox PH

model [10].

Various machine learning methods have been employed

using different types of data for survival prediction.

Pathological images are used in combination with regularized

machine learning methods to perform survival prediction by

1
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distinguishing short-term and long-term survivors, for example

for lung cancer patients [11]. More generic and readily available

types of clinical data – such as the patient’s age, the patient’s

geographic location, or the stage of a cancer – can be used

for survival prediction as well [12, 13]. Next to clinical data,

molecular or genetic data is used to predict the survival of

cancer patients. In particular gene expression contains relevant

information for the survival prediction problem and is widely

used in the survival prediction problem [14]. While vastly

leveraged, usage of gene expression may pose challenges due

to its high dimensional nature. For many cancers, we have a

limited number of patients (∼ 100−1000 for TCGA data), while

gene expression typically involves more than 20.000 genes (in

the TCGA dataset). Having much more features than samples

may cause machine learning models to overfit, thus not fit

properly and not provide an accurate survival prediction. To

alleviate the overfitting, methods employ a feature selection

step which is performed before training and using the machine

learning model. The feature selection step can select features

that are likely to be useful for the survival prediction, allowing

the machine learning model to train on a smaller set of features

that is closer to the number of samples in terms of size. One

such a feature selection step is PKSFS, which selects features

based on a priori knowledge and stability of the features to

reduce the feature set [15]. Another example is proposed by

Mosquera Orgueira et al. who iteratively prune the feature set

based on the features’ importance determined by the random

forests models [13].

The survival of a patient is affected by multiple processes

that drive their cancer. These processes include for example

DNA repair deficiencies, external UV radiation, alcohol

consumption, smoking cigarettes, etc [16, 17]. Each of these

processes leaves behind mutations in the cells’ DNA, where

a nucleotide in the cell becomes different from the reference

genome. Over time, the processes’ mutations accumulate and

a combination of mutations in certain places in the DNA can

cause cells to become cancer cells. Alexandrov et al. have shown

that a patient’s mutations can be deciphered into mutational

signatures and how much each of these signatures have

attributed to the set of mutations, called exposures [18]. The

deciphered signatures can be related to the processes causing

mutations, giving an insight into what caused the cancer

[19]. Various studies have related the mutational signatures of

many cancer patients to the biological processes, whose results

have been recorded in the Catalogue of Somatic Mutations of

Cancer (COSMIC) database [20]. The mutational signatures,

specifically the exposures to the signatures, have been used

in the prediction of for example DNA repair deficiencies [21].

However, the mutational signatures have not been used for the

survival prediction problem of cancer patients.

Deciphering mutational signatures from mutational catalogs

(number of mutations per type of mutation) is typically done

through nonnegative matrix factorization (NMF) [18]. NMF is

an unsupervised method; therefore the derived signatures are

not specific to a particular task, such as survival prediction, but

are more general. Signatures that are specific to a task could

increase the performance of the model for that task and provide

more insight in the biologically relevant processes. Supervised

versions of NMF to incorporate the prediction problem in the

decomposition into signatures have been proposed [22, 23].

While these supervised NMF methods can extract signatures

specific to a task, they cannot be integrated with some kinds of

models such as deep-learning based methods and can therefore

not be used for every task. To overcome this compatibility

issue, we propose an auto-encoder model that uses a linear

activation function and applies a non-negativity constraint to

imitate NMF. The optimisation of the auto-encoder can be done

through widely used deep learning optimisers such as SGD,

Adam, or RMSProp, making it easier to integrate with other

deep learning methods. The auto-encoder finds signatures in

the weights of its decoder and the exposure in the encoding of

the mutational catalog.

Using this linear auto-encoder we propose the Multi-Task

Auto-Encoder Cox (MTAE-Cox) model to utilize and find

mutational signatures for the survival prediction problem.

MTAE-Cox uses the auto-encoder to extract signatures and

exposures from the mutational catalog and uses these exposures

in its Cox model to perform the survival prediction. We

have implemented two versions: Auto-Encoder Cox model

(AE-Cox), which derives signatures and performs the surival

prediction disjointly, and the Multi-Task Auto-Encoder Cox

model (MTAE-Cox) which derives signatures and performs

the prediction jointly. Therefore, MTAE-Cox integrates the

survival prediction problem into the signature extraction,

yielding signatures specific to the survival prediction problem

and improving the prediction performance. The performance

of both AE-Cox and MTAE-Cox of the survival prediction

problem is compared to various benchmark models. Finally, we

find COSMIC signatures that relate to the found signatures to

verify their origin.

2. Methods

In survival prediction, a survival function is defined as

h(t,−→xi) = λ0(t)η(
−→xi) [10] where t is time, −→xi is the feature

vector of patient i, η(−→xi) is the risk function, λ0(t) is the

baseline function, and 1 ⩽ i ⩽ N with N the number of

patients. In this paper, we focus on finding the risk function,

which provides a risk score based on the feature vector of the

patient. This risk score multiplied by the baseline function

provides the survival function of a patient. So given is a

feature matrix X ∈ RN×P , where N is the number of samples

(patients), P is the number of features, and −→xi is row i of X

corresponding to patient i. For the proposed models the feature

matrix is the mutational catalog of single based substitutions

with context (SBS96 mutations [18]), so P = 96.

In order to train a survival prediction model, a set of

labeled samples is needed. Each sample has two labels; a

time indicating the time between diagnosis and last interaction

with the patient and a status indicating whether the patient

is deceased (1) or not (0). A patient is censored when it is

unknown what the result of their treatment was after the last

follow-up date. Therefore, we know that a censored patient has

survived until at least their survival time, but they may have

survived for longer. The time and status give two matrices for

labels; T ∈ RN×1 for time and S ∈ {0, 1}N×1 for status.

2.1. AE-Cox and MTAE-Cox
Auto-Encoder Cox (AE-Cox) and Multi Task Auto-Encoder

Cox (MTAE-Cox) introduce a novel approach to survival

prediction of cancer patients using mutational signature

extraction (Figure 1). AE-Cox first extracts novel mutational

signatures for a patient group using a non-negative auto-

encoder and after that predicts the survival function of patients

using a Cox model. Thus, AE-Cox trains the auto-encoder and

the cox model disjointly, where the Cox model uses the latent
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Fig. 1. Overview of the MTAE-Cox model’s components. This includes

the features (mutational catalog), the auto-encoder, its latent space

(exposures) and the Cox model. The losses of the model are shown in

the circles. The dimensions of the matrices for each component are shown

in brackets.

embedding extracted from the auto-encoder as input. MTAE-

Cox integrates the extraction of mutational signatures and the

survival prediction by jointly training the auto-encoder and Cox

model using a multi-task loss. Contrary to AE-Cox, MTAE-

Cox derives signatures that can be influenced by the survival

prediction problem.

2.1.1. Survival Prediction

AE-Cox and MTAE-Cox both include a Cox model, that

estimates the risk function similarly to a Cox proportional

hazards (CoxPH) model. The risk function is estimated by

finding a set of unknown parameters such that η(xi) = exiβ ,

where β ∈ RP×1 are the unknown parameters [8]. In other

words, the risk function is a linear combination of the hazards

(the latent embedding extracted from the auto-encoder) in the

CoxPH model. Thus, in both AE-Cox and MTAE-Cox the Cox

model is an output layer with a single output (the risk score)

with a linear activation function. To estimate β, the conditional

log-likelihood is optimised [8]

LCOX(β) =
k∑

i=1

xiβ −
k∑

i=1

log

 ∑
l∈R(ti)

e
xlβ

 (1)

=
N∑

i=1

si

xiβ − log

 ∑
l∈R(ti)

e
xlβ

 (2)

where si is the status of patient i in S, R(ti) is the risk

set of time point ti, k is the number of uncensored patients.

The sum from i = 1 to k is then the sum over the uncensored

patients. The risk set is the set of patients that are still at risk

at the given time point, including the censored patients. The

Cox loss therefore uses both censored and uncensored patients

to compute the log-likelihood of a sample, but only sums the

log-likelihoods of the uncensored patients.

In AE-Cox the auto-encoder and the Cox model are trained

disjointly. The auto-encoder and Cox model are instantiated

separately, so the connection between the exposures and the

Cox model in Figure 1 is not present directly. In training the

non-negative auto-encoder is first fully trained, after which the

Cox model is trained on the latent embedding (the exposures,

E ∈ RZ×P
≥0 ) extracted from the trained auto-encoder. When a

prediction is made using a trained AE-Cox model, the patient’s

mutational catalog’s latent embedding is computed using the

auto-encoder, which is then fed into the Cox model that finally

computes the risk score.

2.1.2. Mutational signature extraction by non-negative
auto-encoder

Typically mutational signatures are derived from the

mutational catalog using non-negative matrix factorization

(NMF) [18]. In AE-Cox and MTAE-Cox we use a non-negative

auto-encoder instead, enabling us to integrate the mutational

signature extraction with a larger variety of prediction models.

The auto-encoder consists of the input layer, one hidden layer,

and the output layer. Similar to NMF, the auto-encoder has a

fixed number of signatures (Z ∈ N is the number of signatures).

The input layer expects the mutational catalog of the patients,

as defined in the problem definition X. The number of nodes in

the hidden layer is the number of signatures, which results in

the exposure matrix E ∈ RZ×P
≥0 . Finally the output layer has

the same dimension as the input layer, so the output matrix

X̂ ∈ RN×P . The encoder and decoder use linear activation

with no bias, such that the auto-encoder simulates NMF as

close as possible. Thus, the hidden layer and output layer are

computed as

E = XSenc (3)

X̂ = ESdec (4)

where E is the matrix corresponding to the hidden layer,

Senc ∈ RP×Z
≥0 are the encoder weights, Sdec ∈ RZ×P

≥0 are

the decoder weights, and X̂ is the reconstructed mutational

catalog. The NMF originally proposed to extract mutational

signatures uses Equation 4 to express the relation between the

mutational catalog, exposures, and signatures [18]. Thus, we

can extract the mutational signatures from the auto-encoder

by taking the weights of the decoder, Sdec. According to the

definition of mutational signatures they behave like probability

density functions, so they cannot have negative values and the

sum of all values in a signature has to be 1 [18]. To align

with the former, the non-negativity constraint is added to the

encoder and decoder weights, which sets any negative value

to zero after each training iteration. To adhere to the latter,

we expect each row of the signature matrix Sdec to sum to

1. This is not enforced by a constraint during training, but

instead Sdec is normalised when analysing the signatures. To

optimise the weights of the auto-encoder the squared Frobenius

reconstruction error is used (Equation 5).

F (X, X̂) = ||X̂ − X||2F (5)

=
N∑

i=1

P∑
j=1

|x̂ij − xij |2 (6)

As any auto-encoder the loss is minimized when the output

X̂ is similar to the input X.

2.1.3. Multi task model

MTAE-Cox integrates the training of the auto-encoder with the

training of the Cox model, allowing the derived signatures to

be influenced by the survival problem. To achieve this, the

auto-encoder’s latent embedding becomes the input for both

the decoder and the Cox model as shown in Figure 1. Since the

auto-encoder and Cox model are optimised at the same time,

their losses have to be combined. The Cox loss (Equation 2)

effectively only sums the losses of uncensored samples, while the

auto-encoder loss (Equation 5) sums the error over all samples.
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To accommodate this difference the losses are normalised as

shown in Equation 7 and Equation 8.

LCOX(β) =
1

k
LCOX(β) (7)

F̄ (X, X̂) =
1

N
F (X, X̂) (8)

Finally, the two losses are combined with two hyperparameters

α and γ. The total loss is a weighted sum of the Cox loss and

the reconstruction error, as shown in Equation 9.

LMTAE(X, X̂, β) = αF̄ (X, X̂) + γLCOX(β) (9)

2.2. Experimental Setup
AE-Cox and MTAE-Cox give two types of outputs, which are

both to be evaluated. First is the survival prediction of the

patient, i.e. their risk score, determined by the Cox model.

Second are the mutational signatures, generated by the auto-

encoder part of the models. For the survival prediction we are

interested in the performance of the prediction, or how accurate

this performance is compared to the known labels. This requires

the model to distinguish high risk patients with a low survival

function from low risk patients well. The mutational signatures

are analysed by their stability and compared to existing and

well-known signatures.

2.2.1. TCGA data

The feature vector used by (MT)AE-Cox is derived from a

single-omic, such as gene expression, mutational catalog, or

exposures of signatures. For the experiments conducted in this

paper data from The Cancer Genome Atlas (TCGA) is used

[24]. More specifically, the data from all cancer types part of

the Firehose Legacy dataset are obtained from the cBioPartal

[25]. Since AE-Cox and MTAE-Cox need mutation data, a

survival label, and a survival time, we consider only patients

that contain those three types of data and patients that have at

least 1 mutation. As a result of its loss function (Equation 2) the

trainability of the Cox model is heavily dependent on the ratio

of censored and uncensored patients. To select the cancer types

to analyse, we therefore select the cancer types where more

than 40% of the patients is uncensored. The selected cancer

types are GBM (79%), HNSC (43%), LAML (65%), OV (67%),

SKCM (52%). After filtering, we find a total of 285 GBM, 508

HNSC, 174 LAML, 314 OV, 360 SKCM patients. The auto-

encoder part of the models depends on the number of mutations

of the patients. The median number of mutations varies over

the selected cancer types: 35 GBM, 74 HNSC, 6 LAML, 26 OV,

227 SKCM. Since LAML has a limited number of mutations per

patient, it is excluded from further analysis.

Besides filtering the dataset on patients with useable data,

one preprocessing step is performed. This preprocessing is

constructing the mutational catalog for each of the patients,

based on the TCGA mutation file. The mutational catalog is

a count for each type of single base substitution, as defined by

Alexandrov et al. [18]. For each type of substitution we consider

the context, which are the two directly adjacent nucleotides.

The 6 single base substitutions with each 16 possible contexts,

yields 96 types of mutations that need to be counted. We

combine the mutation and its location known from the TCGA

data with the GRCh37.p13 reference genome from the Genome

Reference Consortium [26] to count each of the mutation types

in the mutational catalog.

2.2.2. Training

AE-Cox’s auto-encoder and Cox model are trained disjointly.

First, the auto-encoder is trained, whose features and labels

are both the mutational catalog matrix X. The weights are

optimised using an Adam optimiser and updated using back-

propagation [27, 28]. The training is run until the validation

loss does not improve for 100 epochs, or until a maximum of

500 epochs. When the training is stopped, the weights for which

the validation loss was lowest are selected. After the training

of the auto-encoder is completed, the mutational catalog is

passed through the encoder of the auto-encoder to obtain the

embedding. Then the Cox model is trained using the embedding

as input and the survival status and time as labels. This is also

done with an Adam optimiser, until the validation loss does not

improve for 100 epochs or until a maximum of 500 epochs.

MTAE-Cox is trained by optimising the joint loss of the

auto-encoder and the Cox model. During training, the Cox

model directly obtains the latent embedding of the mutational

catalog from the auto-encoder, so the features of MTAE-Cox

are the mutational catalog, X, and the labels are the same

mutational catalog for the auto-encoder and the survival time

and status for the Cox model. Like AE-Cox, MTAE-Cox is

optimised through back-propagation with the Adam optimiser.

The training is performed until the validation loss does not

improve after 300 epoch, with a maximum of 5,000 epochs

allowing the training to continue for longer than AE-Cox.

MTAE-Cox has a higher upper limit of epochs because the first

part of training mostly focuses on improving the reconstruction

error part of the loss, after which the Cox loss starts to

decrease as well. Training more epochs allows for both of these

optimisations and to find the best balance between the two

losses. The training is performed in single batches per epoch

for both AE-Cox and MTAE-Cox, allowing the Cox model to

optimise better as it can use a larger number of uncensored

patients per update iteration.

Mutational signatures

The mutational signatures are derived from the weights of the

auto-encoders in AE-Cox and MTAE-Cox. After the training is

completed, the weights from the decoder are extracted. There is

no constraint on the weights to be probability density functions,

but there is a non-negativity constraint. In order to create

mutational signatures, we normalise each row of the weight

matrix.

Determining the quality of the signatures is done by

computing the stability of the signatures. Similar to Alexandrov

et al.’s NMF method [18] the training is performed for a range

of signatures (2 to 10 specifically), for 10 iterations per number

of signatures providing 10 sets of signatures for each number

of signatures. Per number of signatures, these signatures are

clustered using a variant of k-means clustering in which each

signature of an iteration is assigned to a different cluster.

The stability is defined as the mean silhouette width of the

clusters of mutational signatures. Additionally, the centroids

of the clusters are used as the signatures derived from the

models. Finally, the reconstruction error for these signatures

is computed.

Using the stability over the number of signatures we can

determine the optimal number of signatures for each model and

dataset. Any number of signatures with a stability higher than

0.7 is considered and the one with the lowest reconstruction

error is selected as optimal number of signatures. If there is

no number of signatures above the threshold, the number of

signatures with the highest stability is chosen.
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Hyperparameters

Besides the number of signatures, the main hyperparameters

to choose are the weights of the reconstruction error and of

the cox loss for MTAE-Cox. These weights are determined by

an exploratory analysis, where the training losses of each was

analysed for a range of weights. We found that the weights did

not greatly influence the model’s performance, unless γ was so

large that the reconstruction error would not decrease anymore.

In that case, the auto-encoder is not training to find meaningful

signatures anymore, which is not desirable. Hence, we chose to

set both α and γ to 1.

2.2.3. Testing

After determining the optimal number of signatures, the

trained models are tested and compared to established methods

using 5-fold cross validation to allow for analysis in the stability

of the methods. Finally, since the performance of the Cox model

depends on the ratio of the (un-)censored samples, the folds are

stratified on the survival status.

Evaluation metrics

The performance of the survival prediction is measured with

the concordance-index (C-index). The C-index is computed by

using the survival time of the samples. Using the predicted risk

score the samples are sorted and their order is compared to

the order when sorted using their survival time. The C-index

is then computed by dividing the number of correctly ordered

pairs over the total number of pairs as denoted in Equation 10

[29].

C-index =

∑
i,j 1Tj<Ti

· 1ηj>ηi
· Sj∑

i,j 1Tj<Ti
· Sj

(10)

where Sj is the survival status (0 for censored, 1 for uncensored)

of sample j and ηi is the predicted risk score of sample i.

The interpretation of the C-index is similar to that of

the better-known AUC-index. When all pairs are predicted

correctly, the C-index will be 1, while a random model will

give a C-index of 0.5.

Comparison methods

We compare AE-Cox’s and MTAE-Cox’s performance with

various existing methods. Both the performance of the Cox

model and the signatures derived by the auto-encoders are

evaluated.

The derived signatures are compared to Sigprofiler [30].

Sigprofiler uses a non-negative matrix factorization (NMF) to

derive the signature matrix. This is used on the same dataset as

AE-Cox and MTAE-Cox, with the same parameters for number

of iterations and range of signatures. The optimal number of

signatures is determined for Sigprofiler separately with the

same stability threshold as is used for AE-Cox and MTAE-

Cox of 0.7. To determine the similarity between signatures

derived by NMF, AE-Cox, and MTAE-Cox the signatures of

two methods are matched to each other, such that the highest

average cosine similarity is obtained. Finding this allocation of

signatures pairs is done by generating all possible combinations,

calculating the average similarity for each combinations, and

choosing the allocation resulting in the maximum average

similarity.

The performance of the survival prediction is compared to a

variety of models. The topology of the model does not change

– (MT)AE-Cox is always compared to a Cox model – but the

features of the Cox model vary. The following feature sets are

used for the Cox models:

• Gene expression

• Mutational catalog

• Exposure to COSMIC signatures

• Exposure to SigProfiler’s NMF signatures

Gene expression is used the most for survival prediction for

cancer patients and is generally the best indicator for survival

[14]. We use the z-score of the gene expression as input to

the Cox model, as present in the TCGA dataset. The z-score

computes the relative expression in a tumor compared to the

gene expression of a control group. Thus it highlights the genes

that are expressed in a non-standard way.

Mutational catalog is the counts of the mutations grouped as

the SBS96 mutations. For this comparison method, the catalog

is normalised and then directly used by the Cox model.

The COSMIC signatures are an established set of known

mutational signatures, that have been found by a variety

of studies [20]. To obtain the exposures of the samples

in the dataset we use, we utilize SigProfiler’s Assignment

[31]. SigProfiler’s Assignment allows the assigning of known

signatures to a mutational catalog, yielding the exposure

matrix. The version of the COSMIC signatures used is 3.4.

We run the assignment on our entire dataset and obtain the

exposure to COSMIC signature for each patient. Then the Cox

model is trained and scored with these exposures as input.

The exposures of the Sigprofiler’s NMF method are

extracted from the signature derivation step. When NMF

determines the mutational signatures, it simultaneously

estimates the exposure matrix that the Cox model uses.

3. Results and Discussion

Throughout the results AE-Cox, MTAE-Cox, and the baseline

methods where relevant, are applied to extract signatures

and predict the survival from/of the patients across four

cancer types (HNSC, GBM, OV, SKCM), as selected in

subsubsection 2.2.1, unless stated otherwise. Furthermore,

unless stated otherwise, the experiments are performed with

5-fold cross validation to be able to check for the stability of

the methods’ performance.

3.1. Hyperparameters and training
First of all, we evaluate how the balance between the auto-

encoder’s reconstruction error and the Cox loss impacts the

MTAE-Cox’s survival prediction performance (C-index). We

analyse the influence of the ratio of the two losses’ weights

on both the prediction performance (C-index) and the training

curves of the model, since the two weights are part of a weighted

sum that forms the total loss. A 5-fold cross validation is run on

ratios ϕ = α
γ ranging from 10−3 to 103, where α is the weight

for the Frobenius reconstruction error and γ is the weight for

the Cox loss (Equation 9).

The impact of the loss ratio on the C-index performance is

cancer dependent, as shown in Figure 2. MTAE-Cox has stable

C-index performance for HNSC, ranging between a mean of

0.485 (ϕ = 10−2) and 0.522 (ϕ = 102) and for SKCM, ranging

between 0.558 (ϕ = 10−3) and 0.593 (ϕ = 102). For GBM, the

performance stays stable for ratios up to 1 (mean C-index of

0.569) and then the performance decreases as the ratio increases

(mean C-index 0.495, ϕ = 103). Performance on OV has the

opposite trend, where the C-index is stable up to ϕ = 1 as well,

but the performance increases as the ratio increases after that

(mean C-index 0.523 (ϕ = 1) to 0.575(ϕ = 103)). The variance



6 Wouter Polet

Fig. 2. Test C-index performance results of the weight ratios ϕ ranging

from 10−3 to 103. Results are over a 5-fold cross validation, where the

mean is plotted on the line.

Fig. 3. Training plot of MTAE-Cox on ovarian cancer (OV), where a

separate line per fold is plotted. Both reconstruction error and cox loss

are plotted, with each the training and validation error/loss. The weight

ratio ϕ is 1.

of the performance of the models over the folds is very high,

making it impossible to reliably determine what ratio is better

for the model’s performance.

3.1.1. Analysis on reconstruction error and Cox loss
weights

We also investigate how the MTAE-Cox model optimises the

two losses during training to get more insight into the model’s

behaviour. The training curves follow similar trends for the

four cancer types (one of which is shown in Figure 3). The

reconstruction error of the training set decreases quickly in the

first 200 epochs, after which it stabilizes. The reconstruction

error over the validation set closely follows the behaviour of the

error over the training set, albeit with a slightly higher value.

The reconstruction error converges regardless of the weight

ratio, however the higher ϕ the less epochs it needs to converge.

The Cox loss does not decrease rapidly at the beginning

of training and is prone to overfitting after a certain number

Fig. 4. Training plot of MTAE-Cox on ovarian cancer (OV) with weight

ratio ϕ = 10. Again a separate line per fold and both reconstruction error

and Cox loss (both training and validation) are plotted.

of epochs, where the training loss gradually decreases further

but the validation loss does not. The validation Cox loss

decreases before it starts increasing (and with that overfitting),

so an optimum can be found during training. Contrary to

the reconstruction error, the optimization of the Cox loss is

dependent on the weight ratio (ϕ). When the ratio of the losses’

weights’ (ϕ) increases, the Cox loss over the training set starts

decreasing after a larger number of epochs (Figure 4).

With a lower ratio, the training is stopped earlier where

the reconstruction error contributed more to the total loss.

The early stopping checks whether the total validation loss

still decreases and stops the training if not. The validation

reconstruction error keeps decreasing slightly, even after a high

number of epochs. However, the Cox validation loss has an

optimum, after which it starts increasing again. For higher

weight ratios, the reconstruction error compensates for the

increasing Cox loss, while for lower ratios the total validation

loss increases because of the Cox loss increasing.

The optimal values of the validation losses generally do

not change much with the weight ratio ϕ. However, the Cox

loss requires more epochs to optimise, so to speed up the

training process a lower ϕ can be chosen. Furthermore, for

larger values of ϕ, the validation Cox loss does not reach its

optimum anymore, so values of ϕ from at least 102 should be

avoided.

3.2. Signatures of NMF, AE-Cox and MTAE-Cox
SigProfiler’s NMF [18] and the auto-encoder in both AE-Cox

and MTAE-Cox are used to derive the signatures from the

mutational catalog. While they share the same purpose, the

method of finding the signatures, and thus the signatures

themselves, varies between them.

3.2.1. Selection of number of signatures

The stability of the mutational signatures, which gives an

indication of how well the model can find similar signatures

across repetitions, is used to determine the number of

signatures to be used in NMF, AE-Cox, and MTAE-Cox.

Specifically, we compare the stability of the signatures found by

all these three models. The stability of the derived signatures

is the average silhouette score of the clusters computed in the
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Fig. 5. The stability, as recorded when finding the optimal number of

signatures, for each cancer type separately with values for the baseline

NMF, AE-Cox, and MTAE-Cox. The number of signatures ranges from 2

to 10.

clustering step as described in section 2.2.2. Across 4 cancers -

SKCM, HNSC, OV, and GBM - we find two main behaviours

with respect to the stability of the derived signatures (Figure 5)

over five cross-validation folds.

For both SKCM and HNSC, NMF is more stable than AE-

Cox for lower number of signatures, while MTAE-Cox yields the

least stable signatures overall. NMF starts with a high average

stability of 0.99 and steadily decreases to 0.34 for SKCM and

ranges from a maximum stability of 0.99 to a minimum of

0.44 for HNSC. AE-Cox’s stability ranges from 0.71 to 0.41

and 1.00 to 0.60 with cancers SKCM and HNSC respectively.

Contrary to NMF, AE-Cox’s stability stops decreasing towards

10 signatures for SKCM or even improves for HNSC. After a

certain number of signatures, AE-Cox’s stability is higher than

NMF’s stability (SKCM: at 9 signatures with mean stability

of 0.41 (AE-Cox) and 0.40 (NMF); HNSC: at 8 signatures

with mean stability of 0.67 (AE-Cox) and 0.58 (NMF)) Finally,

MTAE-Cox’s stability behaves similarly to NMF’s stability as

it decreases with higher numbers of signatures. However, it

does so with a lower stability overall compared to the other

two methods (SKCM: 0.63 to 0.09; HNSC 0.27 to -0.01).

On OV and GBM cancer, NMF shows a low stability which

flattens out towards 10 signatures. Contrary to SKCM and

HNSC, NMF’s stability does not start at 1.00; instead, it ranges

from 0.44 to 0.15 and from 0.35 to 0.07 with OV and GBM

respectively. MTAE-Cox has a slightly higher stability than

NMF; 0.51 to 0.13 with OV and 0.47 to 0.11 with GBM. AE-

Cox has a higher stability than the other two methods, namely

0.70 to 0.50 for OV and 0.56 to 0.29 for GBM.

For OV and GBM cancers all methods are too unstable

to use more than two signatures, following the procedure

explained in section 2.2.2, as the stability is always below 0.7.

Furthermore, MTAE-Cox is too unstable to use more than two

signatures for all four cancers. For SKCM and HNSC cancers,

6 signatures can be chosen for NMF (stabilities of 0.72 SKCM

and 0.80 HNSC) and for SKCM 3 signatures can be used with

AE-Cox (stability of 0.71).

We investigated the impact of the number of signatures on

the reconstruction error, which is expected to decrease when

the number of signatures increases. When more signatures

Fig. 6. The Frobenius reconstruction error, as recorded when finding

the optimal number of signatures, for each cancer type separately with

values for the baseline NMF, AE-Cox, and MTAE-Cox. AE-Cox’s and

MTAE-Cox’s reconstruction error is multiplied by the number of samples

per fold to compensate for the normalisation. The number of signatures

ranges from 2 to 10.

Fig. 7. Average cosine similarity of signatures between pairs of baseline

method NMF, AE-Cox, and MTAE-Cox for different of signatures. In each

fold, the signatures of two methods are matched with each other such that

the average cosine similarity over the pairs of signatures is the highest.

The plotted line is the mean of this average cosine similarity.

are used, the mutational catalogs can be decomposed in a

more fine-grained way resulting into a smaller error. For all

cancer types with both NMF and AE-Cox, the reconstruction

error decreases with more signatures, as expected (Figure 6).

However, NMF’s reconstruction error starts and ends with

lower values and differs less between the cancer types than AE-

Cox’s reconstruction error. For MTAE-Cox the reconstruction

error does not decrease, but has very small changes instead

which do not exclusively decrease. This can be explained by the

optimization of the auto-encoder being determined not only by

the reconstruction error itself, but also by the Cox loss. When a

balance between both errors is found, the reconstruction error

is no longer influenced by the optimization since decreasing it

would increase the Cox loss, which would increase the total loss.
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(a) Signatures found by SigProfiler’s NMF
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2

(b) Signatures found by AE-Cox

Fig. 8. Derived signatures for OV cancer on fold 3 by SigProfiler’s NMF and AE-Cox during the determination of the number of signatures. The

centroids of the clusters used to determine the stability are shown.

3.2.2. Similarity of signatures

To assess whether MTAE-Cox finds different signatures from

AE-Cox and how closely AE-Cox’s signatures relate to the

baseline NMF signatures, we compare the cosine similarity

between pairs of signatures derived across methods. For

each pair of methods (NMF/AE-Cox, AE-Cox/MTAE-Cox,

NMF/MTAE-Cox) the signatures of the two methods are

matched per fold as explained in section 2.2.3, such that the

average similarity is the highest (Figure 7).

For all cancer types, except for OV cancer, AE-Cox and

MTAE-Cox have the most similar signatures, with a cosine

similarity that ranges from 0.633 to 0.210 for HNSC, 0.833 to

0.303 for GBM, and 0.587 to 0.174 for SKCM. For OV cancer,

the similarity between AE-Cox’s and MTAE-Cox’s signatures

is closer to the cosine similarities between other comparisons

(0.586 to 0.173). The similarity between NMF and MTAE-Cox

is stable over the number of signatures for HNSC (averaged

0.325 to 0.259), although it is low. For other cancer types this

similarity decreases with an increasing number of signatures

(0.541 to 0.256 for OV, 0.211 to 0.114 for GBM, and 0.225 to

0.108 for SKCM). NMF’s and AE-Cox’s signatures’ similarities

decrease with a higher number of signatures for all cancer types

(0.236 to 0.056 HNSC, 0.452 to 0.155 OV, 0.216 to 0.086 GBM,

and 0.223 to 0.058 SKCM).

In summary, although the signatures derived by MTAE-

Cox differ from the ones found by AE-Cox, they are more

similar to each other than to the baseline NMF method for

all cancers except ovarian. AE-Cox and MTAE-Cox having the

most similar signatures can be explained by the fact that the

same method is used to derive the signatures, namely the non-

negative auto-encoder. The similarity between AE-Cox’s and

MTAE-Cox’s signatures are comparable over all cancer types.

Moreover, the signatures derived by AE-Cox and MTAE-Cox

still differ, especially with a larger number of signatures, which

can be caused by the impact of the survival prediction problem

to the signatures of MTAE-Cox and by the larger instability

that comes with more signatures.

The similarity between NMF and MTAE-Cox suffers from

both the change in method (NMF to auto-encoder) and the

integration of the Cox loss. However, MTAE-Cox’s signatures

are more similar to NMF’s signatures than to AE-Cox’s

signatures, especially for HNSC. This could be due to the

Fig. 9. C-index performance of the benchmark models, AE-Cox, and

MTAE-Cox on the test set with 5-fold cross validation. The plotted dots

are the C-index resulting from each fold. The models are run and plotted

separately for each cancer.

low stability of MTAE-Cox’s signatures, which is highest for

HNSC, causing the centroids of the clusters of signatures to be

more noisy. Analyzing the derived signatures NMF and AE-

Cox further indeed explains why the unstable signatures may

be more similar to NMF’s signatures. Most notably, AE-Cox

isolates just mutations with frequency in new signatures from

all other mutation types whereas NMF adds more low frequency

mutations to all signatures (Figure 8). The more signatures

there are, the more signatures show these isolated mutation

types. The difference in behaviour could be a side effect of

the non-negativity constraint set on the weights of the auto-

encoder. The optimiser can optimise the weights to negative

values, which are then set back to 0 after an epoch. This leads

to weights of value 0 which corresponds to the mutation types

that have 0% frequency in a signature.
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3.3. Predictive performance
To assess the predictive performance of AE-Cox and MTAE-

Cox, we compare their predictions’ concordance index (C-index,

see Figure 9) to that of a variety of benchmark methods across

different feature types and extraction methods over the four

selected cancer types.

3.3.1. Survival prediction performance comparison to
benchmark models

The performance of the benchmark models, AE-Cox, and

MTAE-Cox relative to each other varies between the cancer

types and is thus dependent on the dataset.

For HNSC the Cox model on gene expression data (Cox-

GE) achieves the best performance (median of 0.611). The

Cox model with the mutational catalog (Cox-Catalog) performs

similarly to the Cox model on exposures of COSMIC signatures

(Cox-Cosmic) and the Cox model based on the exposures of

NMF (Cox-NMF) (0.509, 0.508, 0.510 median respectively).

AE-Cox drops in performance compared to the baseline

methods (0.484), but MTAE-Cox again improves over AE-

Cox to a similar performance (0.509) as the baseline models.

The variance between runs is higher than the difference in

performances, therefore we cannot conclude one method to

perform better than another.

MTAE-Cox and Cox-Catalog outperform all other methods

with GBM (median C-index of 0.579 and 0.581 respectively),

including Cox-GE (0.561) which does not perform best only for

GBM. Cox-Cosmic performs worst of the six methods (0.450),

which is improved by Cox-NMF (0.500) and further improved

by AE-Cox (0.521).

Cox-GE performs well with OV (median C-index of 0.608).

Cox-Catalog performs worse (0.564) and Cox-Cosmic decreases

the performance further (0.516). The signatures derived from

the patients on which the survival prediction is run as well

perform better than the exposures of COSMIC signatures (Cox-

NMF 0.528, AE-Cox 0.541, MTAE-Cox 0.552).

Cox-GE performs best out of all the tested methods on

SKCM (median C-index 0.600). Cox-Catalog performs worse

(0.558), but Cox-Cosmic performs similar to Cox-GE (0.595).

Cox-NMF performs worst of the methods (0.476) and AE-Cox

performs similar to MTAE-Cox (0.557 and 0.555 respectively).

The Cox-GE method performs best in three out of the four

cancer types (HNSC, OV, SKCM). First, this can be explained

by gene expression data having more features than the other

methods (20,530 genes compared to 96 mutation types, 79

COSMIC signatures, and less than 10 signatures for NMF, AE-

Cox, and MTAE-Cox). Second, the gene expression data is

obtained by measuring how much genes are transcribed into

mRNA, which can then be turned into functioning proteins

[32]. Gene mutations in a cell can cause the difference in gene

expression, but the gene expression data capture the result

of more complex processes than the plain gene mutations do.

Using gene expression then allows for a better performing

model; however, since it is harder to determine what caused

a change in the gene expression, the model will be less

interpretable. For well-known mutational signatures, on the

other hand, processes behind the signatures are mostly known.

This would allow for a better explanation for the prediction of

the model.

For three out of four cancer types (HNSC, GBM, OV)

MTAE-Cox performs better than AE-Cox and for another three

cancer types (GBM, OV, SKCM) it outperforms Cox based

on NMF. This is to be expected, as the signatures are tuned

Fig. 10. C-index performance of the test set over the number of signatures

in 5-fold cross validation. The range of number of signatures is 2 to 10.

The performance for each cancer is plotted separately.

towards the survival prediction problem. For GBM MTAE-

Cox sees the biggest increase in performance over Cox based

on NMF and AE-Cox, while it has a small decrement in

performance for HNSC compared to Cox on NMF and for

SKCM compared to AE-Cox.

AE-Cox performs better than Cox with NMF signatures

for GBM, OV, and SKCM. This indicates that the signatures

found by the auto-encoder are better suited for the survival

prediction problem than the signatures that are derived by the

SigProfiler’s NMF method.

3.3.2. Performance does not improve with unstable
signatures

To analyse whether the performance of AE-Cox and MTAE-

Cox would be better if we were to allow unstable signatures,

the C-index over a range of number of signatures (from 2 to 10,

Figure 10). For HNSC and SKCM, both AE-Cox and MTAE-

Cox show a stable C-index, which is therefore independent

of the number of signatures. Furthermore, the performances

of AE-Cox and MTAE-Cox are very similar for these two

cancer types. With GBM and OV, MTAE-Cox still has a stable

performance over a varying number of signatures. AE-Cox has

a performance that varies more, but there is no clear trend to

be identified in its performance.

Since there is no significant improvement in the predictive

performance of AE-Cox and MTAE-Cox when using unstable

signatures, it is better to use a low number of signatures (i.e. 2)

to obtain the most stable signatures that AE-Cox and MTAE-

Cox can derive.

3.4. Comparison of AE-Cox and MTAE-Cox
signatures to COSMIC signatures

In order to find biological explanations on the survival

prediction of patients, we investigate the relation between

the derived signatures to well-known COSMIC signatures, by

analysing the cosine similarities between the derived signatures

and the COSMIC signatures. The signatures AE-Cox and

MTAE-Cox found could indicate what constitutes a higher or

lower survival rate for patients, since the Cox model predicts

the survival based on a patient’s exposures to these signatures.
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Fig. 11. Heatmap of the similarity between AE-Cox, MTAE-Cox signatures. Rows are the signatures from AE-Cox and MTAE-Cox, per cancer. The

columns are the COSMIC signatures. The lighter the colour, the higher the cosine similarity between the two signatures.

Matching these signatures to COSMIC signatures can therefore

uncover the biological processes linked to the cancer.

Furthermore, AE-Cox and MTAE-Cox find a small number

of stable signatures, so we decompose these into COSMIC

signatures to see whether they consist of multiple COSMIC

signatures. The decomposition finds possible combinations of

COSMIC signatures that can be combined into the found

signatures.

3.4.1. Similarity based comparison between (MT)AE-Cox
and COSMIC signatures

To compare the signatures found by AE-Cox and MTAE-Cox

to the COSMIC signatures, the cosine similarity between these

is shown in Figure 11. The signatures are derived by creating

a single train-test split of 90%-10% and performing a stability

analysis. The resulting centroids from the signature clusters

are used in the comparison with COSMIC signatures. All

methods and cancers reported a select number of signatures of

2, except for SKCM AE-Cox which selected 3 signatures. Since

the predictive performance of AE-Cox and MTAE-Cox does not

increase with less stable signatures, we have used 2 signatures

for each method and cancer combination in the analysis of the

signatures.

The signatures from OV cancer are the most similar

to COSMIC signatures found (average similarity of cosmic

signatures to the closest derived signature of 0.233 for AE-

Cox and 0.301 for MTAE-Cox), followed by HNSC (0.161

and 0.222), SKCM (0.157 and 0.162) and lastly GBM (0.125

and 0.156). The MTAE signatures are more similar to

COSMIC signatures than the AE signatures for all cancer

types, suggesting that exposures to the COSMIC-like signatures

can be a more valuable indicator for the survival prediction

problem. OV has the largest increase in average similarity to

COSMIC signatures from AE-Cox to MTAE-Cox with 0.068,

which corresponds to a 29.1% increase. This is followed by

HNSC (0.062, 38.4%), GBM (0.031, 24.9%), and finally SKCM

(0.006, 3.63%).

We identify COSMIC signatures that are similar to AE-

Cox’s and MTAE-Cox’s signatures, specifically the COSMIC

signatures with a cosine similarity larger than 0.6. The most

similar COSMIC signature to all found signatures across all

cancer types is SBS55 (ranging from a cosine similarity 0.611 to

0.804 over all cancer types and both methods, where the highest

similarity per method-cancer pair is chosen). SBS55 is not

associated with a process (yet), but may just be a sequencing

artifact in which case it would be expected to be present equally

in all cancer types [33]. SBS3 has an average similarity of

0.45 and is mostly similar to the signatures extracted from the

OV cancer, specifically to one of AE-Cox’s signatures (cosine

similarity of 0.744) and to both MTAE-Cox’s signatures (0.679

and 0.736). SBS3 has been linked to somatic BRCA1 and

BRCA2 mutations, in among others OV cancer [34, 35]. SBS5

has similar similarities to signatures from OV cancer as SBS3

(OV-AE2: 0.667, OV-MTAE1: 0.601, OV-MTAE2: 0.637).

SBS5 may be related to tobacco smoking and is more commonly

found in aged individuals [19]. SBS25, SBS39, SBS40, and

SBS89 are all similar to one of the two signatures derived by

either AE-Cox or MTAE-Cox (cosine similarities ranging from

0.608 to 0.670 for AE-Cox and 0.624 to 0.656 for MTAE-Cox).

The processes behind these COSMIC signatures are generally

unknown, but SBS25 could be caused by chemotherapy, a

treatment often applied to cancer patients. With data from real

patients, such as in the TCGA dataset, it would be possible that

patients undergo chemotherapy and therefore have exposure to

this signature.

Finding COSMIC signatures that are similar to AE-Cox’s

and MTAE-Cox’s signatures, which are associated to biological

processes that fit the cancer the signatures are derived from,

indicate that AE-Cox and MTAE-Cox can derive signatures

that are indicative of the processes relating to the cancer.

Combined with MTAE-Cox’s exposures, processes that are

especially indicative of a patient’s survival could be found.

3.4.2. Decomposition of MTAE-Cox’s signatures into
COSMIC signatures

The decomposition of signatures into COSMIC signatures

finds whether the derived signatures are linear combinations

of certain COSMIC signatures. We decompose MTAE-

Cox’s signatures into COSMIC signatures using NNLS from

Sigprofiler which minimizes the L2 error to devise a list of

COSMIC signatures for each of the signatures that are being

decomposed [30].

The MTAE-Cox’s signature from the OV cancer is

decomposed the most successfully, judged by its highest cosine
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Fig. 12. Decomposition plot of MTAE-Cox’s signatures from Ovarian cancer. The decomposition of two MTAE-Cox signatures are shown, denoted by

SBS96A and SBS96B. On the left, the original signature and the reconstructed signature with the decomposition is shown. MTAE-Cox’s signatures are

decomposed in the signatures shown on the right, with the decomposition weights in the top right of each signature plot.

similarity between the original and reconstructed signatures.

The other signatures’ decomposition finds a less similar

reconstructed signature to the original ones, indicating that

these signatures could be new signatures, that incorporate more

survival characteristics, instead. OV’s signatures decomposition

being the most successful is to be expected, since OV’s

signatures are also the most similar to the COSMIC signatures.

Figure 12 shows the decomposition plots for the MTAE-

Cox’s signatures of OV cancer. The decomposition finds the

same COSMIC signatures list for each signature (SBS3, SBS5,

SBS55, and SBS1), but with different weights. SBS1 is the

only signature we did not identify already from the cosine

similarities. SBS1 has been linked to spontaneous deamination

of 5-methylcytosine [34]. Furthermore, SBS1 may register the

number of mitosises that a cell has experienced [36]. It has been

found that the mitotic rate of cells can be linked to the survival

time of patients [37]. SBS1 can therefore indeed be an indicative

signature for the survival prediction. The additional COSMIC

signature shows that, besides the similarity, the decomposition

into COSMIC signatures can help to identify additional relevant

biological processes related to the cancer.
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4. Conclusion

We propose and have implemented two novel methods for

both mutational signature extraction and survival prediction:

Auto-Encoder Cox (AE-Cox) and Multi Task Auto-Encoder

Cox (MTAE-Cox). AE-Cox combines a non-negative linear

auto-encoder, that optimises its weights to signatures and

computes the exposures as its latent space, with a Cox model

to perform survival prediction disjointly. AE-Cox’s signatures

and exposures are therefore independent of the survival

prediction problem. MTAE-Cox is a variation on AE-Cox that

optimises the auto-encoder and the Cox model jointly, thereby

integrating the survival prediction with the decomposition

of the mutational catalog into mutational signatures and

exposures.

The stability of signatures derived by AE-Cox, MTAE-

Cox, and the baseline method NMF show no clear trend over

the various cancer types. Integrating the survival prediction

problem with the signature extraction using MTAE-Cox yields

signatures that are better suited for survival prediction. MTAE-

Cox outperforms AE-Cox in 3 of the 4 cancer types according

to the C-index of its survival prediction. However, AE-Cox and

MTAE-Cox do not improve survival prediction based on gene

expression, which outperforms both in 3 out of 4 cancer types.

The signatures derived by AE-Cox and MTAE-Cox

have found to be similar to certain COSMIC signatures.

Overall, MTAE-Cox’s signatures are more similar to COSMIC

signatures than AE-Cox’s signatures, indicating that COSMIC

signatures can be indicative to a patient’s survival. This effect

is most noticeable in OV cancer, where the average cosine

similarity over all COSMIC signatures increases by 36.1%.

SBS55, which could be linked to sequencing artifacts, is

the COSMIC signature that is most similar to all signatures

derived by AE-Cox and MTAE-Cox (average cosine similarity

of 0.55). Additionally, SBS3 (0.41) which is related to BRCA1

and BRCA2 mutations in OV cancer and SBS5 (0.41) which

may be related to tobacco smoking, are found to be similar

to the derived signatures. The decomposition of MTAE-Cox

signatures indicate one more relevant COSMIC signature,

SBS1, that could indicate the number of mitosises, which can

be indicative of the survival of a patient.

AE-Cox and MTAE-Cox are limited by the number of

features they require – survival time, survival status, mutation

data – which decreases the number of samples that are usable

from TCGA.

To improve the predictive performance of AE-Cox and

MTAE-Cox a combination of multiple omics can be used

for the survival prediction. The auto-encoder would not

change, but the exposures computed by the auto-encoder would

be combined with gene expression. This could combine a

better prediction with the additional explainability that the

mutational signatures offer.

To conclude, we have shown the possibility to derive

mutational signatures using an auto-encoder enabling the

integration of survival prediction with the mutational signature

extraction. This does not yield a better prediction than

currently available, but gives the opportunity to find new

signatures that are relevant to the survival of patients.
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