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Spin-orbit coupling and linear crossings of dipolar magnons in van der Waals antiferromagnets
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A magnon spin-orbit coupling, induced by the dipole-dipole interaction, is derived in monoclinic-stacked bi-
layer honeycomb spin lattice with perpendicular magnetic anisotropy and antiferromagnetic interlayer coupling.
Linear crossings are predicted in the magnon spectrum around the band minimum in � valley, as well as in the
high-frequency range around the zone boundary. The linear crossings in K and K ′ valleys, which connect the
acoustic and optical bands, can be gapped when the intralayer dipole-dipole or Kitaev interactions exceed the
interlayer dipole-dipole interaction, resulting in a phase transition from semimetal to insulator. Our results are
useful for analyzing the magnon spin dynamics and transport properties in van der Waals antiferromagnets.

DOI: 10.1103/PhysRevB.102.144416

I. INTRODUCTION

Since the experimental demonstrations of magnetism in
two-dimensional (2D) van der Waals materials [1,2], 2D
magnetic materials and the spin excitations therein have at-
tracted great research interest. For CrI3, one of the most
important 2D magnetic materials, the strong atomic magnetic
anisotropy makes it beyond the Heisenberg model addressed
in the Mermin-Wagner theorem [3] and is responsible for
the existence of the long-range magnetic order. Interestingly,
the magnetic ground state of a bilayer CrI3 is predicted to be
either ferromagnetic or antiferromagnetic, depending on the
way of stacking [4,5]. In particular, the monoclinic-stacked
structure, as illustrated in Fig. 1(a), has been demonstrated
experimentally to be a PT -symmetric antiferromagnet, where
the two ferromagnetic monolayers align antiferromagnetically
with a relative shift along the zigzag direction [6].

The dynamics and transport properties of magnons, quanta
of collective spin waves, have recently received intensive in-
vestigations in traditional bulk antiferromagnets [7–11]. One
outstanding property of the magnons in antiferromagnets
is the coexistence of different spin-polarized modes, which
supplies more interesting physics due to the additional spin
degrees of freedom [12,13], compared to magnons in ferro-
magnets. The studies in van der Waals antiferromagnets in
this direction, however, remain limited. In bilayer CrI3, for
instance, the magnetization dynamics of the uniform mode
has been observed only very recently through an ultrafast
optical pump/magneto-optical Kerr probe technique [14] and
magneto-Raman spectroscopy [15]. There is, so far, rare re-
porting on spin dynamics and transport of the propagating
magnons.

In this paper, we perform a theoretical study on the magnon
spectrum of the monoclinic-stacked antiferromagnetic bilayer

*These authors contributed equally to this paper.
†kashen@bnu.edu.cn

in Fig. 1(a) by taking into account the magnetic anisotropy, ex-
change interaction, and dipole-dipole interaction (DDI). Two
linear crossings, as shown in Fig. 1(c), are predicted around
the band minimum near the � point. Other linear crossing
points in the short wavelength regime with THz frequency,
e.g., those in K and K ′ valleys shown Figs. 1(f) and 1(g)
and discussed in detail below, are also found. The effective
Hamiltonian, which captures the main features, is derived.
Moreover, a phase transition between semimetal and insulator
will also be discussed.

II. MODEL AND HAMILTONIAN

We model our spin system by a Hamiltonian including
magnetic anisotropy, Zeeman term, exchange interaction, and
DDI:

H = K

2

∑
i

(
Sz

i

)2 + gμB

∑
i

Si · B −
∑
〈i, j〉

Ji jSi · S j

+ μ0(gμB)2

2

∑
i �= j

R2
i j (Si · S j ) − 3(Ri j · Si )(Ri j · S j )

R5
i j

.

(1)

For the stable classical antiferromagnetic ground state indi-
cated in Fig. 1(a), we take the anisotropy parameter K < 0
and the nearest intralayer and interlayer exchange parameters
J > 0 and J ′ < 0, respectively. The magnetic field is normal
to the plane.

By applying the Holstein-Primakoff transformation [16],

Sz
a = S − a†a, S+

a =
√

2S − a†aa,

Sz
d = −S + d†d, S+

d = d†
√

2S − d†d, (2)

we derive the magnon Hamiltonian under the basis
(a1k, a2k, d1k, d2k, a†

1−k, a†
2−k, d†

1−k, d†
2−k )T with aik (dik) and

a†
ik (d†

ik) representing the magnon annihilation and creation
operators for the ith sublattice in the top (bottom) layer,
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FIG. 1. (a) The monoclinic lattice of bilayer CrI3 with antiferromagnetic interlayer coupling. Only the magnetic atoms are shown. The
coordinates of atoms within the unit cell are ra1 = (0, 0, ηz )a0, ra2 = (0, 1, ηz )a0, rd1 = (2

√
3/3, 0, −ηz )a0, and rd2 = (−√

3/3, 1,−ηz )a0

with a0 being the shortest distance between neighboring atoms. The interlayer distance is 2ηza0. The ground-spin configuration corresponds
to the spins in the upper (lower) layer colored in red (blue), orientating along ẑ (−ẑ) direction. The orange bonds stand for those bearing
antiferromagnetic interlayer coupling. (b) Full magnon spectrum and the fine structures in (c) �, (f) K , and (g) K ′ valleys. (d) and (e) are the
enlarged view around the left and right crossing points, respectively, in � valley.

respectively. The first line of Hamiltonian Eq. (1) leads to
[13,17]

H0
k,−k =

⎛
⎜⎜⎜⎜⎝

[
Hi j

a
]

0 0 [λi j
k ]

0
[
Hi j

d

] [
λ

i j
k

]†
0

0
[
λ

i j
k

] [
Hi j

a
]

0

[λi j
k ]

†
0 0 [Hi j

d ]

⎞
⎟⎟⎟⎟⎠, (3)

where each block is a 2 × 2 matrix with i, j = 1, 2 and the
diagonal ones read

[
Hi j

a(d )

] =
(

εa(d ) λk

λ∗
k εa(d )

)
. (4)

The matrix elements are defined as

εa = ωex + 2ω′
ex + ωan − ωH , (5)

εd = ωex + 2ω′
ex + ωan + ωH , (6)

λk = −ωexγk, (7)

λ
i j
k = ω′

exγ
i j
k , (8)

with ωex = 3SJ , ωan = −KS, ω′
ex = −SJ ′, and ωH = gμBB.

The form factors are γk = 1
3

∑3
i=1 eik·δi and γ

i j
k = eik·δ′

i j

with the relative coordinates between the neighboring atoms
being

δ1 = (0, a0, 0), (9)

δ2 =
(√

3a0

2
,−a0

2
, 0

)
, (10)

δ3 =
(

−
√

3a0

2
,−a0

2
, 0

)
, (11)

δ′
11 = δ′

22 =
(

−
√

3a0

3
, 0,−2ηza0

)
, (12)

δ′
12 =

(
−

√
3a0

6
,

a0

2
,−2ηza0

)
, (13)

δ′
21 =

(√
3a0

6
,

a0

2
,−2ηza0

)
. (14)
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The DDI term, i.e., the second line in Hamiltonian Eq. (1),
gives

HDDI
k,−k =

⎛
⎜⎜⎜⎜⎜⎝

[
A

aia j

k

] [
B

dia j

k

]† [
B

aia j

k

]† [
A

dia j

k

]†[
B

dia j

k

] [
A

did j

k

] [
A

dia j

k

] [
B

did j

k

]
[
B

aia j

k

] [
A

dia j

k

]† [
A

aia j

k

] [
B

aid j

k

]
[
A

dia j

k

] [
B

did j

k

]† [
B

aid j

k

]† [
A

did j

k

]

⎞
⎟⎟⎟⎟⎟⎠. (15)

The matrix elements are defined as

Aαβ

k = −Sμ0(gμB)2

2
Gαβ

k , (16)

Bαβ

k = Sμ0(gμB)2

2
Fαβ

k , (17)

in which

Fαβ

k = −3
∑
mn

(
X αβ

mn − iY αβ
mn

)2

(
Rαβ

mn
)5 eik·Rαβ

mn , (18)

Gαβ

k =
∑
mn

(
Rαβ

mn

)2 − 3
(
Zαβ

mn

)2

(
Rαβ

mn
)5 eik·Rαβ

mn . (19)

with Rαβ
mn = mv1 + nv2 + rβ − rα . The unit translation vec-

tors read

v1 = (
√

3a0, 0, 0), (20)

v2 =
(

−
√

3

2
a0,

3

2
a0, 0

)
. (21)

The entire magnon spectrum thus can be calculated from
Hamiltonian Eqs. (3) and (15). The main features in the ab-
sence of the magnetic field are plotted in Fig. 1, for which
we have adopted the parameters in bilayer CrI3 with S =
3/2, K = −0.49 meV, J = 2.2 meV, J ′ = −0.04 meV, a0 =
3.98 Å, and 2ηza0 = 3.98 Å [4,18].

III. MAGNON SPIN-ORBIT COUPLING

For a better understanding of the numerical results, we
perform an analytical analysis, for which we ignore the
particle-hole coupling, i.e., the 4 × 4 off-diagonal blocks in
Hamiltonian Eqs. (3) and (15), by considering the fact that
the interlayer exchange interaction (ω′

ex ∼ 0.06 meV) and the
DDI (|A(B)αβ

k | ∼ 0.01 meV) in bilayer CrI3 are much weaker
than the particle-hole splitting (twice of the magnon gap) due
to the anisotropy (ωan ∼ 0.7 meV) and intralayer exchange
interaction (ωex ∼ 10 meV), and therefore do not cause a
qualitative change in the magnon spectrum (unless otherwise
clarified in Sec. III C). Then we can restrict our discussion
within the particle subspace (a1k, a2k, d1k, d2k )T . The reduced
Hamiltonian can be in general written as

Hk =

⎛
⎜⎝

εa + ε′
k λk + λ′

k ζ ∗
k η∗

k
λ∗

k + λ′∗
k εa + ε′

k η′∗
k ζ ∗

k
ζk η′

k εd + ε′
k λk + λ′

k
ηk ζk λ∗

k + λ′∗
k εd + ε′

k

⎞
⎟⎠, (22)

with intralayer DDI parameters

ε′
k = Aa1a1

k = Ad1d1
k , (23)

λ′
k = Aa1a2

k = Ad1d2
k , (24)

and interlayer ones

ζk = Bd1a1
k , (25)

ηk = Bd2a1
k , (26)

η′
k = Bd1a2

k . (27)

It is convenient to transform Hamiltonian Eq. (22) into the
representation under the basis of the eigenstates of intralayer
interaction, i.e., (a+

k , d+
k , a−

k , d−
k ) with

a(d )±k = 1√
2

[
a(d )1k ± λ∗

k + λ′∗
k

|λk + λ′
k|

a(d )2k

]
. (28)

The Hamiltonian Eq. (22) thus becomes

H̃k =

⎛
⎜⎜⎝

ε+
a,k ζ ∗

k + η∗
+,k 0 η∗

−,k
ζk + η+,k ε+

d,k −η−,k 0
0 −η∗

−,k ε−
a,k ζ ∗

k − η∗
+,k

η−,k 0 ζk − η+,k ε−
d,k

⎞
⎟⎟⎠,

(29)

with

ε±
a(d ),k = εa(d ) + ε′

k ± |λk + λ′
k|, (30)

η±,k = (λ∗
k + λ′∗

k )η′
k ± (λk + λ′

k)ηk

2|λk + λ′
k|

. (31)

Here, the superscripts – and + denote the acoustic and optical
bands, respectively. Since the excitations, ak and dk, have
opposite spin polarization [13], Hamiltonian Eq. (29) reveals
that the interlayer DDI introduces not only an intraband spin-
orbit coupling to the acoustic and optical branches separately
via ζk − η+,k and ζk + η+,k, but also an interband spin-orbit
coupling scaled by η−,k. The momentum dependence of these
spin-orbit parameters are plotted in Fig. 2, in which inactive
momentum points with vanishing value are observed. The
situation of the acoustic branch, i.e., ζk − η+,k, is explicitly
shown in Fig. 3. The vanishing value around the � point and
the boundary of Brillouin zone explains the formation of nodal
points shown in Fig. 1(c). The orientation of the spin-orbit
field, as indicated by the colored arrows, varies with wave
vector around the nodal points.

A. Effective Hamiltonian and nodal points in � valley

In the vicinity of the �-point, λk 	 −(1 − k2a2
0/4)ωex. The

acoustic modes and the optical modes are well separated in
frequency. Thanks to the relation |η−,k| 
 ωex, one can treat
them separately. The Hamiltonian thus reduces to two subsys-
tems involving only the spin degree of freedom

H̃±
k =

(
ε±

a,k ζ ∗
k ± η∗

+,k
ζk ± η+,k ε±

d,k

)
, (32)
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|ζ-η+|

 0

 0.2

 0.4

 0.6

 0.8

(a) -2 -1  0  1  2
kx/K0

-2

-1

 0

 1

 2
k y

/K
0

|ζ+η+|

 0

 0.1

 0.2

(b) -2 -1  0  1  2
kx/K0

-2

-1

 0

 1

 2

k y
/K

0

|η−|

 0

 0.1

 0.2

(c) -2 -1  0  1  2
kx/K0

-2

-1

 0

 1

 2

k y
/K

0

FIG. 2. DDI-induced intraband spin-orbit parameters of
(a) acoustic and (b) optical magnon bands and (c) the interband
coupling. The arrows stand for the arguments of these complex
parameters. K0 = 4π/(3

√
3a0 ).

where the diagonal and off-diagonal components read

ε±
a(d ),k = εa(d ) − Sμ0(gμB)2

2

(
Ga1a1

k ± Ga1a2
k

)
±

(
1 − a2

0

4
k2

)
ωex, (33)

ζk ± η+,k = Sμ0(gμB)2

2

(
F d1a1

k ∓ F d1a2
k + F d2a1

k

2

)
. (34)

After evaluating the summation in Fαβ

k and Gαβ

k in the long
wavelength limit, as explained in Appendix A, we achieve an
analytical expression:

H̃±
k = ε̄±

k + (ωH ẑ + �±
k ) · σ. (35)

|ζ-η+|

 0

 0.2

 0.4

 0.6

 0.8

-1  0  1
kx/K0

-1

 0

 1

k y
/K

0

W=−2

W=1W=1

(a) -1  0  1
kx/K0

-1

 0

 1

k y
/K

0

|ζ-η+|

 0

 0.01

 0.02

 0.03

-0.001  0  0.001
kx/K0

-0.001

 0

 0.001

k y
/K

0

W=−1 W=−1

(b) -0.001  0  0.001
kx/K0

-0.001

 0

 0.001

k y
/K

0

FIG. 3. DDI-induced intraband spin-orbit field of the acoustic
magnon bands (a) in first Brillouin zone and (b) in the vicinity of
� point. W is the winding number of each loop.

Here, the spin-independent energy can be expressed as

ε̄−
k = ωan + 2ω′

ex + fz + f ′
z + v0k + ωex

a2
0

4
k2, (36)

ε̄+
k = ωan + 2(ωex + ω′

ex) + fz − f ′
z − ωex

a2
0

4
k2, (37)

and the spin-orbit fields are

�−
k = (v0k cos 2φk − f0, v0k sin 2φk, 0), (38)

�+
k = (−3 f0, 0, 0), (39)

where f0 and v0 are positive real numbers. It is interesting
to note that while the spin-orbit coupling of the optical band
is a simple constant, the one of the acoustic band contains
an additional contribution varying with the direction of mo-
mentum. Such an angular dependence is a common feature of
dipolar field in the long wavelength limit [13]. Another im-
portant feature one can observe from spin-orbit field Eq. (38)
is that, distinct from the three-dimensional (3D) case [13], the
magnitude of the angular dependent term here is linear in k.

Apparently, the spin-orbit field Eq. (38) vanishes at k± =
(± f0/v0, 0) 	 (±0.001K0, 0), which well explains the nu-
merical results in Fig. 3(b). At ωH = 0, k± corresponds to
the two nodal points in Fig. 1(c). We expand the spin-orbit
coupling Eq. (38) near k = k± + k̃ and obtain an effective

144416-4
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Hamiltonian up to the linear order in k̃,

H−
± (k̃) = ±(v0k̃xσx + 2v0k̃yσy)

=
(

0 ±v0(k̃x − 2ik̃y)
±v0(k̃x + 2ik̃y) 0

)
, (40)

where the spin-independent term ε̄−
k± has been discarded. This

Hamiltonian has chiral symmetry CH−
± (k̃)C−1 = −H−

± (k̃)
with C = σz. As a result, the chirality of the nodal points is
characterized by the winding number,

W = (1/2π i)
∮

L
dξ (k̃)/ξ (k̃), (41)

where the integration performed over a closed loop around
the nodal point and ξ±(k̃) is defined as the phase factor of the
off-diagonal matrix element in Eq. (40), i.e.,

ξ±(k̃) = ± k̃x − 2ik̃y

|k̃x − 2ik̃y|
. (42)

This leads to chirality of −1 for both nodal points. The
nonzero chirality, the linear crossing, and the twofold degen-
eracy together indicate that these nodal points can be regarded
as a magnon analog of the 2D Weyl points recently proposed
in an electronic system [19].

As shown in Fig. 3(b), the winding number −1 also co-
incides with the direct observation of a 2π rotation of the
spin-orbit field through a closed loop around each nodal point.
The total winding number of the � valley [for a single loop
besieging both nodal points in Fig. 3(a)] is therefore −2, being
the same as the one around the dipolar-induced nodal line in
3D cubic lattice [20]. Figure 3(a) shows that another two nodal
points at the zone boundary both have winding number +1,
compensating the chirality from k± near � valley. In contrast
to the 3D Weyl points, which are robust against any perturba-
tion [21–24], the 2D Weyl points can be gapped by particular
perturbation [19]. In the present case, for example, the inclu-
sion of a nonvanishing ωH due to an out-of-plane magnetic
field, according to the effective Hamiltonian Eq. (35), opens
a gap at the crossing points, very similar to the situation in
2D electron gas with Dresselhaus- or Rashba-type in-plane
spin-orbit field.

B. Nodal points in K and K ′ valley

At K and K ′ points, the band splitting |λk + λ′
k| vanishes,

therefore, one has to treat the acoustic and optical bands
together by using the complete 4 × 4 Hamiltonian Eq. (29).
By expanding the Hamiltonian around these points,

k = K(K ′) + q(cos θq, sin θq), (43)

with K(K ′) = (∓K0, 0) and q 
 K0, we obtain

η±,K+q 	 −ζK[e−iθq ± ei(θq−2π/3)]/2, (44)

η±,K ′+q 	 ±ζK ′ [e−iθq ± ei(θq+2π/3)]/2, (45)

with ζK ′ = ζ ∗
K . The derivation of Eqs. (44) and (45) is given in

Appendix B. At θq = ±π/3, all elements of the off-diagonal
blocks depending solely on η−,k vanish for K and K ′ valleys,
respectively. The four dispersion curves along this momen-
tum line become linear in q, i.e., ε̄K − vF q ± √

3|ζK | and

ε̄K + vF q ± |ζK |. The intersections between them give rise to
four nodal points in each valley, namely,

k1,τ = (
√

3 + 1)|ζK |
2vF

(
τ

2
,

√
3

2

)
, (46)

k2,τ = (
√

3 − 1)|ζK |
2vF

(
τ

2
,

√
3

2

)
, (47)

k3,τ = (
√

3 + 1)|ζK |
2vF

(
− τ

2
,−

√
3

2

)
, (48)

k4,τ = (
√

3 − 1)|ζK |
2vF

(
− τ

2
,−

√
3

2

)
. (49)

Here, τ is the valley index with K (τ = 1) and K ′ (τ = −1).
This is consistent with the spectrum from a full calculation
plotted in Figs. 1(f) and 1(g). To uncover the nature of these
nodal points, we again expand the Hamiltonian near k =
ki,τ + k̃ and derive a 2 × 2 effective Hamiltonian for each
nodal point under the basis of the two branches involving

H1,τ = nz,τ sz − n‖,τ (τ sx + sy), (50)

H2,τ = nz,τ sz + n‖,τ (τ sx − sy), (51)

H3,τ = −nz,τ sz − n‖,τ (τ sx − sy), (52)

H4,τ = −nz,τ sz + n‖,τ (τ sx + sy), (53)

where

nz,τ = (vF /2)(k̃xτ +
√

3k̃y), (54)

n‖,τ = (vF /4)(
√

3k̃xτ − k̃y). (55)

Here, si=x,y,z are Pauli matrices. These effective Hamiltonians
can be classified into two groups, i.e.,

H± = nzsz + n‖(sx ± sy), (56)

which have chiral symmetry

C± = (sx ∓ sy)/
√

2, (57)

and therefore can be brought to a block off-diagonal form by
a unitary transformation U±.

U −1
± H±U± =

(
0 −nz ∓ i

√
2n‖

−nz ± i
√

2n‖ 0

)
, (58)

with

U± = 1

2

(
1 ± i −1 ∓ i√

2
√

2

)
. (59)

By substituting the phase factor of the off-diagonal matrix
element in Hamiltonian Eq. (58), i.e.,

ξ± = − nz ± i
√

2n‖
|nz ± i

√
2n‖|

(60)

into Eq. (41), we find that all four nodal points near K (K ′)
valley have the same chirality of +1 (−1). By considering
their twofold degeneracy and the linear dispersion nearby, we
conclude that these nodal points are also 2D Weyl points [19].
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FIG. 4. Magnon spectrum around the K and K’ points from the
calculation, in which the interlayer DDI is suppressed by increasing
the interlayer distance by 30%.

C. Phase transition from semimetal and insulator

We should point out that the particle-hole coupling due to
the intralayer DDI, which has been neglected in the above
analysis, actually is able to cause quantitative or even qualita-
tive changes for different parameter choices. Specifically, the
nodal points P1-4 in Figs. 1(f) and 1(g) from full calculation are
found to deviate from the momentum line with θq = ±π/3.
By increasing the ratio between the strengths of the intra- and
interlayer DDI via decreasing the interlayer distance, P2 and
P3 become closer and finally overlap at a critical ratio. When
this ratio increases further, a global gap is opened between
the acoustic and optical branches, leading to a transition from
semimetal phase to insulating phase. The fine structure around
K and K’ points for the gapped phase is plotted in Fig. 4, for
which the interlayer distance in enhanced by 30%.

According to Eq. (B21), the particle-hole coupling induced
by intralayer DDI gives

Ba1a2

K(K ′ ) = Ba2a1

K ′(K ) = fK [1 + ei 2π
3 (1±1) + e−i 2π

3 (1±1)], (61)

which suggests Ba1a2
K = Ba2a1

K ′ = 0 and Ba2a1
K = Ba1a2

K ′ �= 0.

Similarly, one has Bd1d2
K = Bd2d1

K ′ = 0 and Bd2d1
K = Bd1d2

K ′ �= 0.
On the other hand, as recently shown in Ref. [25], the

Kitaev interaction, an anisotropic term of the intralayer ex-
change interaction between the nearest-neighboring Cr atoms,
can produce a similar insulating phase in single layer CrI3. To
examine its role in our bilayer structure, we take into account
this additional intralayer interaction [26,27],

HK = −KA
∑
〈i, j〉

(
Si · p̂Ri j

) · (
S j · p̂Ri j

)
, (62)

where

p̂δ1
=

(
−

√
2

3
, 0,

√
1

3

)
, (63)

p̂δ2
=

(√
1

6
,

√
1

2
,

√
1

3

)
, (64)

p̂δ3
=

(√
1

6
,−

√
1

2
,

√
1

3

)
. (65)

After applying the aforementioned standard procedures, we
obtain

HK =

⎛
⎜⎜⎜⎝

[
H ′i j

k

]
0

[
Ki j

k

]†
0

0
[
H ′i j

k

]
0

[
Ki j

k

][
Ki j

k

]
0

[
H ′i j

k

]
0

0
[
Ki j

k

]†
0

[
H ′i j

k

]

⎞
⎟⎟⎟⎠, (66)

where the nonvanishing blocks are expressed as

[
H ′i j

k

] = KAS

(
1 −γk

−γ ∗
k 1

)
, (67)

[
Ki j

k

] = KAS

(
0 −γ̃k

−γ̃−k 0

)
. (68)

The form factor γk here is the same as above and

γ̃k = 1
3 (eik·δ1 + ei2π/3+ik·δ2 + e−i2π/3+ik·δ3 ). (69)

As one may notice, the diagonal blocks can be included into
the Hamiltonian Eq. (4) by simply replacing the exchange
parameter ωex by ωex + KAS. The off-diagonal blocks are
additive to those from intralayer DDI [Baia j

k ] and [Bdid j

k ]. In
particular, at K and K ′ points, we have

γ̃K(K ′ ) = 1
3 [1 + ei 2π

3 (1∓1) + e−i 2π
3 (1∓1)], (70)

which contains the same factor as Eq. (61) and gives K21
K =

K12
K ′ = 0 but K12

K = K21
K ′ �= 0. This indicates that the Kitaev

affects the spectrum of K and K’ valleys in the same way as
the intralayer DDI.

Therefore, a material with weaker Kitaev interaction is
preferred for experimental observation of K (K ′)-valley nodal
points. Another option would be to use an artificial structure
to avoid anisotropic exchange interaction. Nevertheless, the
linear crossings between the two spin bands in the �-valley
are robust against the intralyer DDI and Kitaev interaction,
even in the insulating phase.

D. Discussion on PT symmetry

Before closing this paper, we would like to discuss the role
of the PT symmetry in magnonic systems. It is well known
that in a PT -symmetric fermionic system, Weyl fermions
are forbidden because the PT symmetry introduces twofold
degeneracy of Weyl cones [28]. In the present magnonic case,
such a degeneracy is removed by the interlayer DDI, which
can be understood as follows. Without any interlayer cou-
pling, for any magnon mode in the top layer ak, one can find
its PT partner in the bottom layer bk. The bosonic nature of
magnons requires (PT )2 = 1, and therefore PT ak = bk and
PT bk = ak. The interlayer DDI then introduces a coupling
between ak and bk and generates hybrid eigenstates generally
in the form of

ψk = 1√
2

(ak + eiδk bk). (71)

The phase factor δk relies on the explicit expression of the
coupling. The PT partner of ψk reads

PT ψk = e−iδk
1√
2

(ak + eiδk bk), (72)
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equivalent to ψk except a marginal global phase factor e−iδk .
In other words, ψk itself is PT symmetric and no additional
degeneracy is necessary. By contrast, the relation (PT )2 =
−1 in fermionic systems results in the PT partner of a hybrid
state Eq. (71) as

PT ψk = e−iδk
1√
2

(−ak + eiδk bk), (73)

which is orthogonal to ψk, indicating that PT ψk and ψk must
be different states.

IV. SUMMARY

In summary, we predict magnon spin-orbit coupling due to
DDI in monoclinic-stacked van der Waals antiferromagnetic
bilayers. Such a spin-orbit coupling is expected to activate the
intrinsic magnon spin-relaxation mechanism and magnon spin
Hall effect recently predicted in Ref. [13]. Specifically, in the
long wavelength limit, the spin-orbit coupling contains both
momentum-independent and linearly momentum-dependent
effective magnetic fields, which give rise to two nodal points.
Due to their low energy, these magnon states would have
a large thermal population and are relevant even at low
temperature. The sub-THz range of their frequencies, al-
though much higher than the usual ferromagnetic resonance,
is already achievable by current techniques [10,11,14,15],
which supports their observation and potential applications
in magnonics. In the K and K ′ valleys, four nodal points are
found in each valley. These nodal points connect the acoustic
and optical magnon bands and make a magnonic semimetal.
By tuning the interlayer distance or introducing intralayer
Kitaev interaction, a phase transition to insulating phase is
predicted.
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APPENDIX A: DIPOLAR INTERACTION IN THE LONG
WAVELENGTH LIMIT

We now calculate the summation appearing in the inter-
layer DDI:

Fαβ

k = −3
∑
mn

(
X αβ

mn − iY αβ
mn

)2

(
Rαβ

mn
)5 eik·Rαβ

mn . (A1)

Focusing on the long wavelength regime, one can take a
cutoff distance ρ satisfying 1/k 
 ρ 
 a0. For all in-plane
distances shorter than ρ, it is safe to use eik·Rαβ

mn 	 1,

Fαβ (k) 	 −3
∑

|k·Rαβ
mn|>kρ

(
X αβ

mn − iY αβ
mn

)2

(
Rαβ

mn
)5 eik·Rαβ

mn

−3
∑

|k·Rαβ
mn|<kρ

(
X αβ

mn − iY αβ
mn

)2

(
Rαβ

mn
)5

= − 1

A

∫
r>ρ

dreik·r(∂2
x − ∂2

y − 2i∂x∂y
) 1√

r2 + h2

− 1

A

(
βαβ

xx − βαβ
yy − 2iβαβ

xy

)
, (A2)

with A being the area of a unit cell and h the inter-
layer distance. Apparently, the atomistic detail of a specific
crystal only affects the k-independent parameters β

αβ
i j . The

k-dependent term can be calculated analytically.
By applying partition integration, one obtains∫
r>ρ

dxdyeik·r∂2
y

1√
r2 + h2

= −
(∮

L
dxeik·r y

(r2 + h2)3
−

∮
r=ρ

dxeik·r y

(r2 + h2)3/2

)

+ iky

∮
L

dxeik·r 1√
r2 + h2

− iky

∮
r=ρ

dxeik·r 1√
r2 + h2

− k2
y

∫
r>ρ

dxdyeik·r 1√
r2 + h2

. (A3)

Here, L represents the outer boundary of the entire 2D system,
which is assumed be to sufficiently large so the factor e−ik·r
oscillates at the boundary, resulting in a significant reduction
of the integration over L. At the inner surface with r = ρ, we
have e−ik·r 	 1. Considering the interlayer distance h of the
same order of a0, we have h 
 ρ and therefore

√
r2 + h2 ≈ r

for r � ρ. Equation (A3) then gives∫
r>ρ

dxdyeik·r∂2
y

1√
r2 + h2

	 2πρ2

(ρ2 + h2)3/2
− k2

y

k

∫ 2π

0
dθ

∫ ∞

kρ

dξeiξ cos θ

= 2πρ2

(ρ2 + h2)3/2
− 2π

k2
y

k
. (A4)

Similarly, one can calculate the other two integrals in
Eq. (A2):∫

r>ρ

dxdyeik·r∂2
x

1√
r2 + h2

= 2πρ2

(ρ2 + h2)3/2
− 2π

k2
x

k
, (A5)∫

r>ρ

dxdyeik·r∂y∂x
1√

r2 + h2
= −2π

kyky

k
. (A6)

Therefore, the summation Eq. (A1) can be expressed as

Fαβ

k = 1

A

(
βαβ

yy − βαβ
xx + 2iβαβ

xy + 2πke−2iθk
)
, (A7)

with θk representing the angle of k with respect to the x axis.
The spin-orbit-coupling parameters of the acoustic and op-

tical bands read

ζk ± η+,k = Sμ0(gμB)2

2

(
F d1a1

k ∓ F d1a2
k + F d2a1

k

2

)
, (A8)

which contain nine parameters β
αβ
i j . However, these param-

eters are actually not independent, because any vector Rd2a1

(Rd1a2 ) can be obtained by rotating one particular Rd1a1 around
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the z axis counterclockwise by 2π/3 (−2π/3). Specifically,
we find

Rd1a1
mn,‖ = a0

(√
3m −

√
3

2 n − 2
√

3
3

3
2 n

)
, (A9)

Rd2a1
(m−n)(−n),‖ = a0

(
−

√
3

2 m −
√

3
2 n +

√
3

3
3
2 m − 3

2 n − 1

)

= R(2π/3)Rd1a1
mn,‖, (A10)

Rd1a2
(−n)(m−4n−2),‖ = a0

(
−

√
3

2 m + √
3n +

√
3

3− 3
2 m + 1

)

= R(−2π/3)Rd1a1
mn,‖, (A11)

where the rotation operator around normal direction is defined
as

R(φ) =
(cos φ − sin φ

sin φ cos φ

)
. (A12)

By writing the β
αβ
i j in the form of matrices, we express

them as

β̂d1a1 =
(
βxx βxy

βxy βyy

)
, (A13)

β̂d2a1 = R(2π/3)β̂(ζ )R(−2π/3), (A14)

β̂d1a2 = R(−2π/3)β̂(ζ )R(2π/3), (A15)

which give

F d1a1
k = βyy − βxx + 2iβxy + 2πke−2iθk , (A16)

F d2a1
k =

(
1

2
− i

√
3

2

)
(βxx − βyy)

− 2

(√
3

2
+ i

2

)
βxy + 2πke−2iθk , (A17)

F d1a2
k =

(
1

2
+ i

√
3

2

)
(βxx − βyy)

− 2

(
−

√
3

2
+ i

2

)
βxy + 2πke−2iθk . (A18)

In addition, for any vector Ra1d1
mn = (X a1d1

mn ,Y a1d1
mn , Za1d1

mn ) =
(
√

3m − √
3n/2 − 2

√
3/3, 3n/2, 2ηz )a0 with nonzero n,

one can always find another vector Ra1d1
(m−n)(−n) = (

√
3m −√

3n/2 − 2
√

3/3,−3n/2, 2ηz )a0 = (X a1d1
mn ,−Y a1d1

mn , Za1d1
mn ).

Their contributions to βxy cancel with each other, meaning
βxy ≡ 0 in the present lattice.

Finally, we obtain

ζk ± η+,k =
(

1 ± 1

2

)
μ0μBM2D

s (βyy − βxx )

+ (1 ∓ 1)μ0μBM2D
s 2πke−2iθk , (A19)

with M2D
s = Sg2μB/(2A). Thus, the spin-orbit coupling in the

acoustic and optical bands become

ζk − η+,k = − f0 + v0ke−2iθk (A20)

and

ζk + η+,k = −3 f0, (A21)

respectively. Here, f0 = 1
2μ0μBM2D

s (βxx − βyy) and v0 =
μ0μB4πM2D

s . The value of f0 can be determined from the
numerical evaluation at k = 0 in a lattice model.

Similarly, for the intralayer parameters, we have

Gαβ

k 	 − 1

A
βαβ

zz − 1

A

∫
r>ρ

dreik·r∂2
z

1√
r2 + h2

. (A22)

Using
√

r2 + h2 ≈ r for r � ρ, the second term gives∫
r>ρ

dxdyeik·r∂2
z

1√
r2 + h2

	 k
∫ 2π

0
dθ

∫ ∞

kρ

dξeiξ cos θ

= 2πk, (A23)

leading to

ε′
k = Aa1a1

k = −Sμ0(gμB)2

2
Ga1a1

k

= μ0μBM2D
s

(
βa1a1

zz + 2πk
) = fz + 1

2
v0k, (A24)

λ′
k = Aa1a2

k = −Sμ0(gμB)2

2
Ga1a2

k

= μ0μBM2D
s

(
βa1a2

zz + 2πk
) = f ′

z + 1

2
v0k. (A25)

APPENDIX B: RELATION BETWEEN THE SPIN-ORBIT
COUPLING PARAMETERS AT K AND K ′ POINTS

According to the rotation relation addressed above, one
expresses the vectors as

Rd1a1
mn,‖ =

(
Rd1a1

mn,‖ cos θmn

Rd1a1
mn,‖ sin θmn

)
, (B1)

Rd2a1
(m−n)(−n),‖ =

(
Rd1a1

mn,‖ cos
(
θmn + 2π

3

)
Rd1a1

mn,‖ sin
(
θmn + 2π

3

)), (B2)

Rd1a2
(−n)(m−4n−2),‖ =

(
Rd1a1

mn,‖ cos
(
θmn − 2π

3

)
Rd1a1

mn,‖ sin
(
θmn − 2π

3

)). (B3)

By applying them into the general expression of spin-orbit-
coupling parameters, we have

ζK(K ′ ) = −3Sμ0(gμB)2

2

∑
mn

(
Rd1a1

mn,‖
)2

(
Rd1a1

mn
)5 e−2iθmn

× eiK(K ′ )·Rd1a1
mn (B4)

η′
K(K ′ ) = −3Sμ0(gμB)2

2

∑
mn

(
Rd1a1

mn,‖
)2

(
Rd1a1

mn
)5 e−2i(θmn− 2π

3 )

× eiK(K ′ )·Rd1a2
(−n)(m−4n−2) (B5)

ηK(K ′ ) = −3Sμ0(gμB)2

2

∑
mn

(
Rd1a1

mn,‖
)2

(
Rd1a1

mn
)5 e−2i(θmn+ 2π

3 )

× eiK(K ′ )·Rd2a1
(m−n)(−n) (B6)
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at K and K ′ points. By further substituting

K(K ′) =
(

∓ 4π

3
√

3a0

, 0

)
, (B7)

we obtain the relations

ζK = η′
K = ηKe−i4π/3, (B8)

ζK ′ = ηK ′ = η′
K ′ei4π/3. (B9)

Here, the upper and lower signs stand for the K and K ′,
respectively.

For the parameter λ′
k, the involved vectors satisfy C3 rota-

tion symmetry, i.e.,

Ra1a2
mn,‖ = a0

(√
3m +

√
3

2 n
3
2 n + 1

)
, (B10)

Ra1a2
(−m−n)(m−1),‖ = R(2π/3)Ra1a2

mn,‖, (B11)

Ra1a2
(n+1)(−m−n−1),‖ = R(−2π/3)Ra1a2

m,‖ . (B12)

This allows us to transform the summation around K (K ′) into

λ′
K(K ′ )+q = −Sμ0(gμB)2

2

∑
mn

(
Ra1a2

mn

) − 3
(
Za1a2

mn

)2

(
Ra1a2

mn
)5

× ei(∓K0+q)·Ra1a2
mn , (B13)

= −Sμ0(gμB)2

2

∑
mn

(
Ra1a2

mn

) − 3
(
Za1a2

mn

)2

(
Ra1a2

mn
)5

× 1

3
[ei(∓K0+q)·Ra1a2

mn + ei(∓K0+q)·Ra1a2
(−m−n)(m−1)

+ ei(∓K0+q)·Ra1a2
(n+1)(−m−n−1) ]. (B14)

We then expand it up to the linear order in q. Actually the
zeroth order vanishes. The linear order leads to

λ′
K(K ′ )+q = ±e±iθq qvm, (B15)

with

vm = −Sμ0(gμB)2

4

∑
mn

(
Ra1a2

mn

) − 3
(
Za1a2

mn

)2

(
Ra1a2

mn
)4

× sin

[
4π

3
(m − n) + θmn

]
. (B16)

Equation (B15) has the same form as the exchange term,

λK(K ′ )+q = −ωexγK(K ′ )+q = ∓vF qe±iθq , (B17)

where the exchange-induced velocity vF = a0ωex/2. As a re-
sult, we obtain

λK(K ′ )+q + λ′
K(K ′ )+q = ∓(vF − vm)qe±iθq . (B18)

Typically, the intralayer exchange interaction is much stronger
than DDI, which leads to vF 
 vm and

η±,K+q = −(η′
Ke−iθq ± ηKeiθq )/2

= −ζK[e−iθq ± ei(θq−2π/3)]/2, (B19)

η±,K ′+q = (η′
K ′eiθq ± ηK ′e−iθq )/2

= ±ζK ′[e−iθq ± ei(θq+2π/3)]/2. (B20)

By using Eqs. (B10)–(B12), one can also calculate the
particle-hole coupling induced by intralayer DDI:

Ba1a2

K(K ′ ) = Ba2a1

K ′(K )

= −3Sμ0(gμB)2

2

∑
mn

e−2iθmn(
Ra1a2

mn
)3 e∓iK0·Ra1a2

mn

= −Sμ0(gμB)2

2

∑
mn

e−2iθmn(
Ra1a2

mn
)3 e∓iK0·Ra1a2

mn

+ e−2iθ(−m−n)(m−1)(
Ra1a2

(−m−n)(m−1)

)3 e∓iK0·Ra1a2
(−m−n)(m−1)

+ e−2iθ(n+1)(−m−n−1)(
Ra1a2

(n+1)(−m−n−1)

)3 e∓iK0·Ra1a2
(n+1)(−m−n−1)

= fK [1 + ei 2π
3 (1±1) + e−i 2π

3 (1±1)], (B21)

with

fK = −Sμ0(gμB)2

2

∑
mn

e−2iθmn(
Ra1a2

mn
)3 e∓i 4π

3 (m−n). (B22)
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