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Summary
This thesis proposes a new material model for masonry, the Equivalent Shear Masonry Model. It was
created as an improvement of the Engineering Masonry Model, a smeared cracking material model
that was developed by DIANA FEA BV in collaboration with Delft University of Technology to model
existing masonry typical for the earthquake-troubled province of Groningen.

The Engineering Masonry Model is an orthotropic model that evaluates failure in the direction per-
pendicular to the bed joints (i.e. the local vertical direction) and in the direction perpendicular to the
head joints of the masonry (i.e. the local horizontal direction). For tension, the model uses a bi-linear
constitutive relationship with secant unloading and reloading. The horizontal tensile strength can op-
tionally be derived from the shear strength of the bed joints, assuming a toothed vertical crack failure
mechanism. The compressive behaviour is represented by a non-linear constitutive relationship with
a combination of linear and secant unloading, and secant reloading. The shear failure along the bed
joints is described by a Coulomb friction criterion, with linear unloading and reloading.

As an alternative to the evaluation of the stresses perpendicular to the head joints, the Engineering
Masonry Model can evaluate the stress in the direction normal to the expected diagonal staircase
cracks. However, this diagonal crack option does not have its own constitutive relation, it only limits
the diagonal normal stress. Thus the deformations normal to the cracks do not directly contribute to
any softening. This option works well for cases where the diagonal cracks occur as a result of diagonal
tension, for instance with rocking mechanisms in slender walls.

However, diagonal staircase cracks observed in laboratory test of wide shear walls often seem to
open up horizontally rather than diagonally, like in Figure 1. Besides, horizontal tensile stress may also
cause diagonal staircase cracks. The force-displacement diagrams of severely damaged shear wall
tests show a hysteresis loop that is similar to the hysteresis loop of the shear behaviour of the bed
joints. Therefore, it is interesting to regard the diagonal staircase crack as a horizontal phenomenon,
as a diagonal crack that opens up horizontally under the influence of horizontal forces, see Figure 2,
whose behaviour is determined by the shear behaviour of the bed joint.

Figure 1: Deformed shape of masonry with a diagonal stair-
case crack that opens up horizontally.

Figure 2: Failure mode considered by the Equivalent Shear
Masonry Model: diagonal cracking due to horizontal normal
stress and shear stress.

The horizontal opening of a diagonal crack was the inspiration to develop the alternative Equivalent
Shear Masonry Model. Its diagonal staircase crack failure criterion is thus derived from horizontal force
equilibrium at this crack, between the effects of the load (i.e. the internal stresses) and the resistance
of the material (i.e. the shear strength of the bed joint). The criterion combines horizontal normal stress
and shear stress as follows:

𝜏፱፲ + 𝜎፱፱ tan𝛼 ≤ 𝜏፦ፚ፱ (1)

where 𝜏፱፲ is (the absolute value of) the masonry shear stress parallel to the bed joint, 𝜎፱፱ is the ma-
sonry horizontal tensile stress, tan𝛼 is the height-width ratio of the expected diagonal staircase crack
(depending on the type of bond and the brick and mortar dimensions) and 𝜏፦ፚ፱ is the shear strength
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of the bed joints. The left-hand side of Equation 1 is referred to as the equivalent shear stress 𝜏፞፪. An
equivalent measure for the deformation 𝛾 ፪ is formulated as:

𝛾 ፪ = 𝛾፱፲ +
𝜀፱፱
tan𝛼 (2)

where 𝛾፱፲ is (the absolute value of) the masonry shear strain parallel to the bed joint and 𝜀፱፱ is the
masonry horizontal tensile strain.

The constitutive relation between these two equivalent measures of stress and deformation follows
the shear behaviour of the bed joints, see Figure 3. The shear behaviour and the horizontal tensile
behaviour are linear and independent of each other as long as their combined equivalent measure
does not exceed the material’s shear strength. When it does, their combined behaviour is described
by the graph in Figure 3. The cumulative equivalent shear strain dictates the softening. Note that the
shear unloading behaviour and horizontal tensile unloading behaviour are also linear and independent
of each other.

Figure 3: Stress-strain diagram illustrating the equivalent shear behaviour.

Besides the diagonal staircase crack failure described here, the Equivalent Shear Masonry Model
evaluates vertical tension, and horizontal and vertical compression, using the same constitutive rela-
tions as in the Engineering Masonry Model.

The theoretical description above is implemented as a Fortran subroutine to be used as a user sup-
plied material model in Diana’s finite element analysis software. The compiled user supplied material
model of the Equivalent Shear Masonry Model is called usrmat_eqshma.dll.

The model has first been verified on homogeneously strained single element problems for differ-
ent load paths. These analyses showed that the user supplied material model works as intended for
two-dimensional plane stress elements, for the following load cases: vertical tension and compres-
sion loading, unloading and reloading; and for the following load cases while under constant vertical
compression: horizontal tensile loading and unloading, shear loading and unloading and three combi-
nations of simultaneous shear loading and/or unloading and horizontal tensile loading and/or unload-
ing. For comparison, the same single element analyses were performed with the Engineering Masonry
Model’s Diagonal stair-case cracks option, but those showed peculiar results, namely sudden drops in
the stress-strain diagram and confused crack status output.

After this verification, a validation was made against a masonry unit cell that was analysed with a
micro modelling approach in order to approximate the real behaviour of masonry in a detailed manner.
The same separate shear and horizontal extension load cases were investigated as for the single ele-
ment model, as well as three variants of each of the combined shear and horizontal tension load cases.
The results showed clear resemblance to the Equivalent Shear Masonry Model’s single element model
results. For the combined simultaneous shear and horizontal tensile load cases, the resemblance was
most clear when the ratio between the extension deformation increment and the shear deformation
increment was close to tan𝛼.
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Next, themodel was validated at structural level, against a shear wall experiment. The shear wall ex-
periment was analysed with a full scale finite element model using the Equivalent Shear Material Model.
The experiments modelled are TUD-COMP-47 and TUD-COMP-48, both double clamped shear walls
subjected to asymmetric cyclic horizontal loading. The analysis with the Equivalent Shear Masonry
Model showed promising characteristics. Though the diagonal cracks were still slightly too steep, their
localisation was satisfactory. The force-drift diagram showed linear behaviour in the first cycles, then
continued non-linear with some inelastic deformation, and then showed softening and a residual plateau
in later cycles. The hysteresis loop had a slight S-shape and a similar width over its entire height. The
peak force was slightly reduced with each repetition in each cycle.

Compared to the Engineering Masonry Model’s Diagonal stair-case cracks option, the model gave
smoother results and had less convergence issues. However, it did need more iterations per step.
Therefore it is recommended to adjust the ’tangent’ shear stiffness returned by the code. The crack
direction of the Equivalent Shear Masonry Model is slightly better and its crack localisation is muchmore
realistic. Both models did not reach the experimental peak strength and showed a too steep softening
regime, though calibration might be able to improve this. The peak force reduction of the Equivalent
Shear Masonry Model was not matched by either the Engineering Masonry Model’s Diagonal stair-case
cracks option or its Tensile strength head-joint defined by friction option.

It is recommended to further validate the Equivalent Shear Masonry Model. The behaviour of the
material model under other combined load cases should be investigated, for instance the shear be-
haviour under a varying or even tensile overload. Also other experimental tests should be modelled,
for instance slender shear walls that show rocking, window banks that suffer tensile bending failure and
wide shear walls that are loaded much further than light damage. Furthermore, some improvements
to the theory and the subroutine code are recommended, and eventually expansion to shell elements
and three-dimensional solid elements is recommended.

In conclusion, the Equivalent Shear Masonry Model shows promising characteristics to model di-
agonal staircase cracking in masonry. It produces smooth force-displacement diagrams and has less
convergence problems than the Engineering Masonry Model’s Diagonal stair-case cracks option. It
generates cracks that are less steep and more localized. The model is able to represent post-peak
behaviour of shear walls and even displays peak force reduction. Therefore, it is recommended that
the material model is developed further, so that hopefully one day it can be used in practice to provide
more accurate masonry cracking predictions.
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𝜎፜,፫፞፟,፲ vertical reference compressive stress
𝜎፧፧ stress normal to the diagonal staircase crack
𝜎፭ stress at time 𝑡
𝜎፭ዅኻ stress at time 𝑡 − 1
𝜎፭,፫፞፟ reference tensile stress
𝜎፭,፫፞፟,፱ horizontal reference tensile stress
𝜎፭,፫፞፟,፲ vertical reference tensile stress
𝜎፭፭ stress tangential to the diagonal staircase crack
𝜎፱፱ horizontal normal stress, or stress normal to the head joint
𝜎፱፱,ኺ horizontal normal stress before the strain increments
𝜎፲፲ vertical normal stress, or stress normal to the bed joint

𝜏 shear stress
𝜏ኺ shear stress before the (shear) strain increment(s)
𝜏፞፪ equivalent shear stress
𝜏፞፪,፥ initial linear prediction of the equivalent shear stress
𝜏፦ፚ፱ shear strength, or bed joint shear strength
𝜏፧፭ shear stress parallel to the diagonal staircase crack
𝜏፱፲ shear stress, or shear stress parallel to the bed joint

𝜑 friction angle
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1.1. Background
In recent years several mining related earthquakes shook up the northern Dutch province of Gronin-
gen. Many buildings were damaged, among which many masonry structures. Some structures were
considered to be unsafe and had to be strengthened or rebuild. Other suffered only aesthetic damage,
but still had to be restored. Issues arose about who was liable for the damage.

Detailed assessment of masonry behaviour became of interest, not only its ultimate limit state ca-
pacity (here, when will a building collapse?), but also its serviceability limit state behaviour (here, when
and how will a building start to look damaged?). It became important to be able to asses whether ma-
sonry cracks were the result of the earthquakes and thus the liability of the miner, or of other issues
such as uneven foundation settlement and thus the responsibility of the building’s owner. Therefore,
insight into masonry cracking behaviour was desired.

Numerical analysis is often used to gain this understanding of the damage and failing behaviour of
structures. Finite element software can be used to model the structures and estimate their behaviour
under certain exerted loads. This could provide insight into the occurring crack patterns and accompa-
nying crack widths due to earthquake loads and give an estimate of the residual strength and stiffness
afterwards. However, existing material models for masonry were not sufficient to represent the be-
haviour of the masonry that is typically used in the affected buildings in Groningen. This masonry is
slender, unreinforced and has a low bond strength, which leads to cracks forming mainly through the
joints, resulting in horizontal cracks, diagonal staircase cracks and vertical toothed cracks. [10]

A special material model for this type of masonry was developed by DIANA FEA BV in collaboration
with Delft University of Technology. It is called the Engineering Masonry Model. [6, Section 38.12]
This model was developed specifically to be used for cyclic analysis, that represent earthquakes. The
model was set out to approximate the initial stiffness, the stiffness at the end of loading, the loading
capacity, the energy dissipation and the crack pattern of masonry. The intended applications were flat
or curved shear walls under an overload, loaded horizontally at their top.

1.2. Research Objectives
The main research question of this thesis is:

Is it possible to improve a Total Strain based constitutive concept like the
Engineering Masonry Model to better model diagonal cracking in masonry?

Four research objectives are formulated to answer this question, each with their own sub-questions:

Objective I: To explain existing ways to model diagonal cracking in masonry, especially the Engi-
neering Masonry Model

1. How can masonry be modelled for the finite element analysis?

1
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2. What is the Engineering Masonry Model?
3. How does the Engineering Masonry Model describe the material behaviour?
4. What is the background of the formulas used by the Engineering Masonry Model?
5. What are the advantages and disadvantages of the Engineering Masonry Model?

Objective II: To create a new material model for masonry that includes a diagonal staircase crack
failure mode

6. Is there another way to view diagonal staircase cracks?
7. What alternative material model could be used?
8. How can this new material model be formulated?
9. How can this new material model be implemented as a user supplied subroutine for

DIANA?

Objective III: To assess the validity of this new material model

10. Does the user supplied material subroutine work as intended for a single integration
point?

11. How does the new material model compare to the Engineering Masonry Model’s Di-
agonal stair-case cracks option for a single integration point?

12. How accurately does the material model represent masonry horizontal extension and
shear behaviour compared to a masonry micro model?

13. How close are the new material model’s approximations to laboratory tests of a real
masonry shear wall?

14. How does the new material model compare to the Engineering Masonry Model’s Di-
agonal stair-case cracks option for full scale model of a shear wall?

Objective IV: To review the results of the validity assessment

15. What aspects of the new material model work well?
16. What aspects of the new material model require improvement?
17. What adaptations could be made to the material model’s theory?
18. What adaptations could be made to the material model’s code?
19. What further validations are required?

1.3. Report Outline
This report consists of four parts that correspond to the four research objectives stated in Section 1.2.
A summary of the report can be found on page iii.

The first part consists of two chapters, one that describes information from literature and one with
own work that investigates this information in-depth. Chapter 2 contains a brief description of the finite
element method, several fracture models and the DIANA software. It then continues with a detailed
description of the Engineering Masonry Model. Chapter 3 provides explanatory derivations behind for-
mulas used in the Engineering Masonry Model, re-derivations of some incorrect formulations found in
the Engineering Masonry Model literature and a graphic summary of the failure criteria of the Engineer-
ing Masonry Model Diagonal stair-case cracks option. Then follows a brief review of the accuracy and
efficiency of the Engineering Masonry Model.

The second part consists of three chapters. Chapter 4 shows the features that inspired the creation
of the new material model. Chapter 5 contains the theoretical description of the new material model,
that is now called the Equivalent Shear Masonry Model. Chapter 6 explores the Fortran subroutine
code of the Diana user supplied material model that was written for the Equivalent Shear Masonry
Model.
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The third part aims to asses the validation of the Equivalent Shear Masonry Model. Chapter 7 de-
scribes analyses of a single element model with a single integration point to determine whether the
code works as intended. It also compares the Equivalent Shear Masonry Model with the Engineering
Masonry Model Diagonal stair-case cracks option. Chapter 8 describes analyses of a unit cell of micro
modelled masonry. This was done to approximately determine the behaviour of real masonry under the
same loading conditions that were previously used for the single element model. Chapter 9 contains
a finite element model on structural level using the Equivalent Shear Masonry Model, meant to ap-
proximate real life masonry laboratory tests of wide double clamped shear walls under cyclic horizontal
loading. The results are also compared to an approximation with the Engineering Masonry Model’s
Diagonal stair-case cracks option.

The fourth part consists of the conclusions (Chapter 10) and the recommendations for further work
(Chapter 11).
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This chapter briefly describes the finite element method, several fracture models and the software that
was used for this thesis. It then continues with a detailed description of the Engineering Masonry Model.

2.1. The Finite Element Method
The reader is assumed to be familiar with the concept of finite element modelling. For the sake of
completeness, a brief introduction into the aspects used in this thesis will be given here.

The finite element method (FEM) is described by Wells as ”a numerical method for solving par-
tial differential equations” [19]. More concretely, in structural mechanics it is mainly used to calculate
stresses and deformations in structures. For this purpose the continuous material of the structure is
represented by a finite number of elements, hence the name finite element method. In general it holds
that the smaller these elements are, the more accurate the solution becomes. However, the computa-
tional effort increases with the increase in number of elements. Therefore, finite element analysis are
often performed on a computer with the help of finite element software.

In this thesis, only plane stress (membrane) elements are used. These are two-dimensional ele-
ments that have zero out-of-plane stress components. They are commonly used to model flat structural
components, such as walls.

The elements are connected with their neighbouring elements at the nodes, where the forces are
transferred. Linear elements have nodes at their corner points. Higher-order serendipity elements
have additional nodes at their sides. For example, quadratic (i.e. second-order) elements have one
additional node at their sides and cubic (i.e. third-order) have two additional nodes at their sides. At the
nodes the user can apply loads (forces or displacements) and define supports (fixed displacements).
The finite element method integrates the stress and strain over each element by evaluating their values
at specific integration points inside the element. The location and weight factors of these points depend
on the integration scheme used. For example, a second-order quadrilateral (i.e. rectangular) element
typically has four integration points, though a higher or reduced integration scheme can also be used.

In the finite element method the following equation is solved for a linear structural mechanics prob-
lem:

Ka = f (2.1)
whereK is the global stiffness matrix, a is a vector containing the nodal displacements and f is a vector
containing the nodal forces.

A non-linear problem, however, has to be solved stepwise. The governing equation for each step
then becomes:

K𝚫a = f ፭ዄጂ፭፞ − f ፭። (2.2)

where 𝚫a is a vector containing the nodal displacement increments, f ፭ዄጂ፭፞ is a vector containing the
external nodal forces at the end of the increment and f ፭። is a vector containing the current internal nodal
forces.

To solve this equation, the finite element method starts from an equilibrium state at time 𝑡 when:

f ፭። = f ፭፞ (2.3)

7
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Then a load increment 𝚫f፞ is applied so that:

f ፭ዄጂ፭፞ = f ፭፞ + 𝚫f፞ (2.4)

The method will then use Equation 2.2 to calculate the corresponding displacement increment:

𝚫a = Kዅኻ (f ፭ዄጂ፭፞ − f ፭። ) (2.5)

2.1.1. Iterative Incremental Procedure
Often merely a stepwise (i.e. incremental) solution procedure is not accurate enough, as it tends to drift
away from the true solution. Therefore, iterative incremental procedures are used. A common one, the
Newton-Raphson method, is pictured in Figure 2.1. The procedure of this method is described below.
[17]
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Figure 2.1: Graphical representation of the Newton-Raphson iteration scheme, image based on [17]. The straight, sawtooth
shaped line is the path the finite element procedure follows, the dashed line is the true equilibrium path.

The method starts from the initial start point or an equilibrium state, i.e. the final point from the
converged previous step called (aኺ, fኺ። ), were f

ኺ
። = f ፭፞ and the tangent stiffness Kኺ is known. The first

deformation increment is calculated:

𝚫aኻ = [Kኺ]ዅኻ (f ፭፞ + 𝚫f፞ − fኺ። ) (2.6)

Then an equilibrium check is executed. For this purpose, for each element the displacement increments
𝚫aኻ at the nodes are interpolated and differentiated to find the strain increments 𝚫𝜺ኻ at each integration
point. For each integration point, a material model is used to calculate the stresses 𝝈ኻ in the material.
Next, these stresses are extrapolated and integrated to obtain the internal forces fኻ። at the nodes. The
material model also provides the information for the current tangent stiffness Kኻ. Finally, the out-of-
balance force is calculated:

rኻ = f ፭፞ + 𝚫f፞ − fኻ። (2.7)
If this out-of-balance force is sufficiently small, equilibrium is reached and the step is ended. Otherwise,
the procedure continues from this point aኻ, fኻ። . A variation of the strain increment is calculated:

daኼ = [Kኻ]ዅኻ rኻ (2.8)

which is used to update the total increment:

𝚫aኼ = 𝚫aኻ + daኼ (2.9)
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The material model is again used to calculate the stresses 𝝈ኼ at integration point level, which are used
to calculated the internal forces fኼ። at the nodes. Again, the material model also provides the information
for the current tangent stiffness Kኼ. Once more, the out-of-balance force is calculated:

rኼ = f ፭፞ + 𝚫f፞ − fኼ። (2.10)

This process is repeated until the out-of-balance forces are so small that the step is considered to be
converged.

Overall, the iterative incremental procedure creates a sawtooth shaped path, see Figure 2.1. The
slanting parts can be attributed to the main FEM procedure. The calculation is comprised of solving
one large linear system of equations for the entire model, with the force, displacement and stiffness
data at the nodes. The vertical drops can be attributed to the material model, that calculates the stress
and stiffness for each integration point separately.

2.1.2. Stiffness used in the Finite Element Procedure
In the iterative procedure in the previous section, the finite element procedure used the tangent stiffness
to calculate the next (variation of the) strain increment. This works fine for materials with a smoothly
changing, but always positive stiffness, like in the example in Figure 2.1. However, when the stiffness
becomes (almost) zero or even negative, like in Figure 2.2, using the tangent stiffness can become
problematic. Also for inelastic materials, whose unloading does not follow the previous equilibrium
path, this is less straight forward.

Figure 2.2 shows the stress-strain history of a non-linear material up until a certain point in time.
From this bifurcation point the material can go two ways: either unload or continue to load. The stiffness
right before this point is the tangent stiffness 𝐸፭ፚ፧፠፞፧፭. If the material continues loading, this is a good
approximation of the stiffness 𝐸፥፨ፚ፝ right after. However, if the material instead continues to unload, it
follows a – very different – unload stiffness 𝐸፮፧፥፨ፚ፝. Therefore, the stiffness at the bifurcation point is
not unique. But only one single value has to be provided for the finite element program to work with.

Figure 2.2: The stress-strain history of a fictional non-linear material up to a bifurcation point, where after it may continue to
load or start to unload. Several definitions of the stiffness are drawn in at this point. Note that in this case the loading stiffness
coincides with the tangent stiffness.

The standard option is to use the tangent stiffness. Since in most analyses materials are mainly
loaded, this is usually the best approximation. If the material model is used for cyclic loading, however,
this advantage does not hold, as unloading than is just as common as (re)loading.

A bigger problem with the tangent stiffness, is that it can become zero or negative when the material
yields horizontally or softens, as is the case in Figure 2.2. A zero stiffness gives problems with inverting
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the stiffness matrix in order to solve the linear system of equations from Equation 2.2. Though a single
negative entry in a stiffness matrix doesn’t give this problem, it can result in (almost) zero values during
the assembly of the global stiffness matrix.

Besides the tangent stiffness, two alternatives are pictured in Figure 2.2 and clarified in Equa-
tion 2.11. One is the linear stiffness 𝐸፥።፧፞ፚ፫, which is the stiffness the material initially had, the slope
of the linear first part of the graph. The other is the secant stiffness 𝐸፬፞፜ፚ፧፭, which is slope of the line
between the current point and the origin. The advantage of these stiffnesses is that they are never
negative. The disadvantage is that they do not always give a good estimate of the material behaviour
and thus may need many iterations for the solution to converge.

𝐸፭ፚ፧፠፞፧፭ =
𝜎፭ − 𝜎፭ዅኻ
Δ𝜀 , 𝐸፥።፧፞ፚ፫ = 𝐸ኺ, 𝐸፬፞፜ፚ፧፭ =

𝜎፭
𝜀፭

(2.11)

Furthermore, in order for the iteration procedure to work properly, the estimated stiffness has to be
a good estimation of the actual stiffness or something larger. If the stiffness is larger than the actual
stiffness over the increment, the procedure will always find (a variation of) a deformation increment
between the previous deformation and the one searched for. If the stiffness is lower than the actual
stiffness over the increment, the iteration procedure will find (a variation of) a deformation increment
that goes beyond the searched deformation. If this is still close to the searched value, the procedure
might circle back to that and converge. But if this value is to far away, the procedure might not converge.

2.2. Fracture Models
Brittle materials such as masonry are often subject to cracking. There are two ways to model fracture:
as discrete cracks or as so-called smeared cracks.

2.2.1. Discrete Cracking: Finite Element Techniques
Discrete crack models feature a line that represents the crack. The displacement field is discontinuous
at this crack. This is achieved through special elements or adjustments to the topology. The advantage
of discrete crack modelling is that the cracks physically open up, which is closest to what is seen in
reality. Four discrete crack models are briefly discussed here. [17]

Nodal Release Technique
The nodal release technique starts out with a common mesh. Once the failure stress is reached in
an integration point, an extra node is added at the location of the closest node, so that the elements
that were connected at that node now each have their own node and are no longer connected. This
means that the topology changes during the analysis, so it requires complicated topology management
to tracks these changes. Also, this model is by definition only capable of modelling brittle fracture. The
directions of the cracks are fixed, because they can only occur along the mesh lines.

Interface Elements
Another way to achieve a discrete crack is with the help of interface elements. These elements have to
be added in advance by the user where he expects cracks to occur. In contrast to the previous crack
model, the interface elements preserve the connection between the continuum elements, so they can
represent softening and/or sliding. The directions of the cracks are fixed, because they can only occur
at the predefined interface elements. In order to minimize added compliance, the interface elements
require a high dummy stiffness, which affects the condition of the global stiffness matrix.

Embedded Discontinuity Elements
Embedded discontinuity elements have a crack band added into their shape functions. The large strain
increase in case of cracking is assumed to be only in this cracked region, while the other regions remain
elastic. The direction of the crack is not fixed. The crack path can be non-continuous, which leads to
an overestimation of the crack energy.

eXtended Finite Element Method
The eXtended Finite Element Method (XFEM) uses enhanced elements. In this method a discontinuity
in the displacement field is realised with the help of extra degrees of freedom at the existing nodes,
multiplied by a Heaviside function. This method gives a continuous crack path whose direction is not
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fixed by the mesh. Due to the extra degrees of freedom it does take longer to compute. Also, it only
allows for one crack per element and problems arise when the crack gets very close to the nodes.

2.2.2. Smeared Cracking: Material Models
In smeared crack models the cracks are considered to be smeared out over the element. For the
smeared cracking approach a special material model is needed. The strain in the crack and strain of
the elastic area just around it are averaged, so the crack looks like a stretched band in the results. The
displacement field is continuous. The advantage of the smeared crack approach is that cracks can
occur anywhere in the model and in any direction, without changing the topology and without using any
special elements.

Smeared crack material models are divided into fixed crack models and rotating crack models.
Rotating crack models always evaluate the stress in the principle directions. This way, always the
lowest softening regime is followed. Fixed crack models evaluate the stress in the principle directions
until the integration point reaches the peak stress. After failure, the crack angle is assumed to be fixed
in that same direction. This may give too stiff results. [17] Other sources also include a third option,
switching from rotating crack to fixed crack after reaching a user defined strain value. [6, Section 38.5]

Total Strain Rotating Crack Model
The Total Strain Rotating Crack Model is a total strain based smeared crack model. Various different
constitutive relations for the tensile and the compressive regime can be used. These relations are
always isotropic, because the stress is evaluated in the principle directions. [6, Section 38.5]

Rankine-Hill Plasticity Model
The Rankine-Hill model is an anisotropic plasticity model that uses different strength and softening
characteristics in orthogonal directions. For masonry, these directions are along the bed joint and
perpendicular to the bed joint. The model evaluates the stresses in these two directions only. The
constitutive relations are a combination of a Rankine yield criterion for tension that includes softening,
with a Hill criterion for compression, that includes hardening and subsequent softening. [6, Section 38.9]

Engineering Masonry Model
The Engineering Masonry Model is a smeared crack model available in DIANA Finite Element Analysis
that was developed especially for masonry. It is an orthotropic fixed crack model that can evaluate
cracking in four directions: normal to the bed joint and either normal to the head joint or normal to two
the possible diagonal staircase cracks. This model will be described in detail in Section 2.4.

2.2.3. Masonry Model Scales
Masonry can be modelled with different amounts of detail, see Figure 2.3. The most detailed option is to
model the bricks, the mortar and the mortar-brick interface all separately. The bricks and the mortar are
then modelled with continuum elements and the mortar-brick interface with interface elements. This is
thus a discrete crack model. A model of this scale is often referred to as amicro model. The advantage
of this scale is that is gives the most accurate results, though it takes some time to model it and it takes
a lot of computational effort.

The least detailed option is to model the entire masonry as one homogeneous material. This can
be done with a smeared crack material model. A model of this scale is often referred to as a macro
model. The advantage of this scale is that it is the easiest to model and takes the least computational
effort. It is therefore preferred for long analyses like repetitive cyclic loading. Its accuracy is greatly
dependent on the material model that is used.

Then there are two in-between options. One is to model the bricks with continuum elements, and to
represent the behaviour of the mortar and mortar-brick interface together by interface elements.1 This
is often referred to as meso model.

The second in-between option is to model the bricks as they are with continuum elements, and to
model the behaviour of the mortar and mortar-brick interface together as joints with continuum ele-
ments. These joints are them are then assigned a smeared crack material model. This is sometimes
also referred to as a micro model.
1For this model the bricks are usually widened and heightened with the joint thickness.
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(a) Most detailed micro model: bricks and joints as continuum
elements, brick-joint interface as interface elements.

(b) Alternative micro model: bricks as continuum elements,
and joints and brick-joint interface together as elements.

(c) Meso model: bricks as continuum elements, joints and
brick-joint interface together as interface elements.

(d) Macro model: bricks, joints and brick-joint interface to-
gether as continuum elements.

Figure 2.3: Masonry model scales.

2.3. DIANA Finite Element Analysis
DIANA Finite Element Analysis is a finite element software package by DIANA FEA BV. [4] It is an
extensive package, equipped for various analyses, including dynamic analysis and non-linear analysis.
It offers a great number of material models, from common models for steel and reinforced concrete to
more advanced models for soil and masonry.

The user can create structural models, run analyses and view the results from the graphical user
interface Diana Interactive Environment. Alternatively, analyses can be run from the Diana Command
Box. The user must then provide a text file containing the analysis commands with file extension .dcf
and a text file containing the model data2 with file extension .dat. These files can be lengthy and must
satisfy strict syntax requirements. Therefore, it is good practice to first create both the model and the
analysis commands as far as possible in the user interface and then export them. This provides a solid
starting point to expand on.

2.3.1. User Supplied Material Model
Besides the numerous material models that DIANA provides, it also allows the user to create its own
material model. This material model must be written as a Fortran subroutine and compiled to a .dll-file
that DIANA can read. General information about the user supplied subroutines can be found in Diana’s
User’s Manual, Material Library, section 13.5 General User-supplied Material Model. [5, Section 13.5]

2This is the description of the model that is to be analysed, containing information about the geometry, elements, material
properties, supports, loads etcetera.
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More detailed practical instructions can be found in [1] and [20].
As explained in the end of Section 2.1.1, the material model is called each iteration for each in-

tegration point to calculate the stress and stiffness. For this purpose, the user supplied subroutine
receives information from the DIANA main frame: the stress and strain at the beginning of the step
and the applied strain increment, see Figure 2.4. It also receives the material properties as given in
the .dat-file – which are stored as double precision floating-point numbers in the USRVAL-array. In
addition, it receives some extra user state parameters – which are stored in two arrays, USRSTA for the
double precision floating-point numbers and USRIND for the integer numbers. These user parameters
can be updated by the material model to track the history or describe the current state.3 At the end, the
subroutine must return the stress and stiffness after the increment, and the updated user parameters.
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Figure 2.4: The Newton-Raphson iteration scheme that was presented in Figure 2.1, with the user supplied subroutine input
marked in blue and the user supplied subroutine output marked in purple, for when the user supplied subroutine is called to
perform the part of the iterative procedure marked with the teal arrow.

Once written and compiled, the user supplied material model can be used for finite element analysis.
If the material model requires many input parameters, this can best be done by defining those inputs
in a .dat-file. The .dat-file can then be imported into the graphical user interface, or the analysis
can be run from the Command Box. In the former case, the location of the .dll-file must be spec-
ified. In the latter case, the .dcf-file must contain two lines to invoke the user supplied subroutine,
see line 4 and 5 of Listing C.2 in Appendix C. These lines are *FORTAN and USE ”C:\…full di-
rectory…\subroutinename.dll”, or simply USE ”subroutinename.dll” when the .dll-file
is located in the working directory.4 Note that not only the material properties have to be provided, but
also two empty arrays (i.e. lists of zeros) for the user state parameters.

2.4. The Engineering Masonry Model
The Engineering Masonry Model is a material model for masonry walls that is available in the finite
element software DIANA Finite Element Analysis. It was developed especially for cyclic loading. It
uses a smeared cracking approach and is a multi-directional fixed crack model. It is compatible with
regular plane stress (membrane) elements and curved shell elements. [6, Section 38.12]

To reflect the anisotropy of masonry a horizontal and a vertical stiffness are used. Failure can be
considered in four directions: normal to the head joints (in the local 𝑥-direction), normal to the bed joints
(in the local 𝑦-direction) and optionally normal to either of the two expected possible diagonal staircase
3Their values at input are always those at the beginning of the step, though, not the values at the end of the previous iteration.
4The working directory is set by typing Cd\working directory in the Command Box.
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cracks, see Figure 2.5 and Section 2.4.5 for further description of these directions. When the Diagonal
stair-case cracks option is not active, the material behaviours in the horizontal and vertical direction are
uncoupled.

Figure 2.5: A head joint, a bed joint and one possible path of a staircase crack marked in dark grey on a background of a brick
wall with a running bond. The height-width ratio of this crack is defined as tanᎎ.

For this section, several sources about the Engineering Masonry Model were consulted, namely:

• The SAHC conference paper Computational modelling of masonry with a view to Groningen in-
duced seismicity, [14]

• the DIANA Validation report for Masonry modelling, [16]

• section 38.12 Engineering Masonry Model of the Theory Manual in the DIANA User’s Manual,
[6, Section 38.12]

• section 6.5 Engineering Masonry Model of the Material Library in the DIANA User’s Manual, [5,
Section 6.5]

• the Engineering Masonry Model subroutine engmas.f, [15]

• an earlier user supplied subroutine for the Engineering Masonry Model usrmat_quad2.f, [2]
and

• the graphical user interface Diana Interactive Environment of the Diana software. [4]

These sources do not all use the same symbols for the same concepts, so an overview of all symbols
used by them is given in Appendix A. Sometimes one (or some) of the sources also use a different
definition for a similar concept.

2.4.1. Failure Modes Considered
The Engineering Masonry Model can evaluate seven failure modes. The six of them that are applicable
to plane stress elements are summarized in Table 2.1.5 Firstly, the stress in the direction normal to
the bed joints is checked for tension (A) and compression (B). The constitutive relations used are
discussed in Sections 2.4.3 and 2.4.4. Secondly, shear sliding along the bed joint (C) is considered.
This behaviour is described in Section 2.4.2. Finally, for failure in the head joints, the Engineering
Masonry Model provides four options:

• The first option does not consider failure in the head joint at all. In the user interface this option
is called Head-joint failure not considered, in the .dat-file it is HEADTP=NONE. With this option
selected the Engineering Masonry Model checks for failure modes A, B and C from Table 2.1.

• The second option considers the compressive and tensile failure in the head joint similarly to the
failure in the bed joint. The user must then provide an explicit value for the horizontal tensile
and compressive strengths. In the user interface this option is called Direct input head-joint ten-
sile strength,6 in the .dat-file it is HEADTP=EXPLIC. With this option selected the Engineering
Masonry Model checks for failure modes A, B, C, D and E from Table 2.1.

5Besides these, the Engineering Masonry Model can also evaluate the out-of-plane shear failure for curved shell elements. This
will not be discussed in detail, because this thesis limits itself to flat membrane elements.

6It is actually the tensile strength of the masonry as a whole in the direction normal to the head joints that the user supplies.
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Table 2.1: Overview of failure modes considered by the Engineering Masonry Model.

A Vertical tension, i.e.
tension normal to the bed joint

𝜎፲፲ ≤ 𝑓፭፲

B Vertical compression, i.e.
compression normal to the bed joint

𝜎፲፲ ≥ −𝑓፜፲

C Horizontal shear sliding, i.e.
shear sliding along the bed joint

|𝜏፱፲| ≤ 𝜏፦ፚ፱

D Horizontal tension, i.e.
tension normal to the head joint

𝜎፱፱ ≤ 𝑓፭፱

E Horizontal compression, i.e.
compression normal to the head joint

𝜎፱፱ ≥ −𝑓፜፱

F Diagonal tension, i.e.
diagonal staircase crack

𝜎፧፧ ≤ 𝑓፭ᎎ
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• The third option considers the tensile failure normal to the head joint similarly to the failure in the
bed joint, but now with a value for the horizontal masonry tensile strength that is derived from
friction in the bed joints, see Section 2.4.3. The user must provide information on the masonry
topology in the form of the angle 𝛼 at which a diagonal staircase crack could occur.7 The user
can also provide a minimum horizontal tensile strength. In the user interface this option is called
Tensile strength head-joint defined by friction,8 in the .dat-file it is HEADTP=FRICTI. With this
option selected the Engineering Masonry Model checks for failure modes A, B, C and D from
Table 2.1.

• The fourth option considers failure in the head joint as part of a diagonal staircase crack. The
model does this by evaluating the tensile stress normal to the possible staircase crack. The user
must provide the angle 𝛼 at which this diagonal staircase crack could occur. In the user interface
this option is called Diagonal stair-case cracks, in the .dat-file it is HEADTP=DIAGON. With this
option selected the Engineering Masonry Model checks for failure modes A, B, C and F from
Table 2.1.

2.4.2. Shear Behaviour
The shear behaviour is considered to be dominated by the shear behaviour of the bed joints. The
deformed shape of the masonry after shear sliding along the bed joint is depicted in Figure 2.6. The
failure criterion to be checked is:

|𝜏፱፲| ≤ 𝜏፦ፚ፱ (2.12)

where 𝜏፱፲ is the shear stress and 𝜏፦ፚ፱ is the shear strength or maximum shear stress. The maximum
shear stress is described by the Coulomb friction criterion, known from soil mechanics:

𝜏፦ፚ፱ =max ( 0, 𝑐 − 𝜎፲፲ tan𝜑 ) (2.13)

where 𝑐 is the cohesion, 𝜎፲፲ is the stress normal to the sliding direction, here the local vertical normal
stress, and 𝜑 is the friction angle.

Figure 2.6: Deformed masonry after shear sliding along the
bed joint. The crack is a horizontal line, the crack deformation
is horizontal.

Figure 2.7: Stress-strain diagram of the shear behaviour.

The shear behaviour is pictured in Figure 2.7.9 Before failure, the material behaves linear elastic.
After failure, it softens, followed by sliding under constant stress. Unloading and reloading is linear with

7This option does not evaluate any diagonal cracking, though.
8It is actually not the tensile strength of the head joints, but the horizontal strength of the masonry as a whole that is derived
from friction in the bed joints, while assuming that the horizontal tensile strength of the head joints is negligible. See also
Sections 2.4.3 and 3.1.2.

9In [6, Section 38.12] and [16] the unloading branch is pictured somewhat lower than it should be. After unloading, the stress-
strain diagram reaches exactly the inverse of the amount of Ꭱᑞᑒᑩ it still had available when it began to unload.
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the initial elastic shear stiffness. This can be summarized as follows:

𝜏 =
⎧
⎪
⎨
⎪
⎩

−𝜏፦ፚ፱ for 𝜏ኺ + 𝐺፱፲Δ𝛾 < −𝜏፦ፚ፱

𝜏ኺ + 𝐺፱፲Δ𝛾 for − 𝜏፦ፚ፱ ≤ 𝜏ኺ + 𝐺፱፲Δ𝛾 ≤ 𝜏፦ፚ፱

𝜏፦ፚ፱ for 𝜏፦ፚ፱ < 𝜏ኺ + 𝐺፱፲Δ𝛾

(2.14)

where Δ𝛾 is a shear strain increment, 𝜏 is the new shear stress, 𝜏ኺ is the shear stress before the shear
strain increment and 𝐺፱፲ is the shear stiffness.

Should the material be cracked in any direction, the cohesion is reduced to zero immediately. Oth-
erwise, once the material reaches the maximum shear stress, the cohesion is reduced by the following
equation:

𝑐 = 𝑐ኺ
𝛾፮ − 𝛾፜፮፦

𝛾፮
(2.15)

where 𝑐 is the current cohesion, 𝑐ኺ is the initial cohesion, 𝛾፜፮፦ is the cumulative shear strain over all the
time that the shear stress was equal to the maximum shear stress and 𝛾፮ is the ultimate shear strain,
the cumulative shear strain at which the cohesion is fully gone. This value intrinsically depends on the
shear fracture energy and due to the smeared crack approach also depends on the element size, by:10

𝛾፮ =
2𝐺፟፬
ℎ ⋅ 𝑐 −

𝑐
𝐺፱፲

(2.16)

where 𝐺፟፬ is the shear fracture energy and ℎ is the crack band width, which is an approximation of the
element width in the direction of the crack opening.

Under cyclic shear loading, energy will be dissipated. The stress-strain diagram will then display a
parallelogram shaped hysteresis loop.

2.4.3. Tensile Behaviour
The tensile behaviour is described by a bi-linear stress-strain relation, see Figure 2.8. The material
behaviour is linear elastic before failure and after failure it follows a linear softening curve. Unloading
and reloading follow a secant line trough the origin and the furthest reached point on the loading curve.
This can be summarized as follows:

• If 𝜀 > 𝛼፭,፫፞፟ there is new tensile extreme, so:

𝛼፭,፫፞፟ = 𝜀 (2.17)

where 𝜀 is the current normal strain and 𝛼፭,፫፞፟ is the highest reached normal strain value up to
this step, or reference tensile strain.

𝜎 =

⎧
⎪⎪

⎨
⎪⎪
⎩

𝐸𝜀 for 0 ≤ 𝜀 < 𝑓፭
𝐸

𝐸(𝜀፭,፮ − 𝜀)
𝐸𝜀፭,፮ − 𝑓፭

⋅ 𝑓፭ for
𝑓፭
𝐸 ≤ 𝜀 < 𝜀፭,፮

0 for 𝜀፭,፮ ≤ 𝜀

(2.18)

where 𝜎 is the normal stress, 𝐸 is the normal stiffness, 𝑓፭ is the tensile strength, 𝜀፭,፮ is the ultimate
tensile strain, the strain at which the stress is reduced to zero.

𝜎፭,፫፞፟ = 𝜎 (2.19)

where 𝜎፭,፫፞፟ is the reference tensile stress, the stress that corresponds to the reference tensile
strain.

10[14] uses a different definition of the ultimate shear strain ᎐ᑦᑝᑥ ዆ ᎐ᑡ ዄ ᎐ᑦ and provides the following equation ᎐ᑦᑝᑥ ዆ ኼፆᑗᑤ/፡ ዄ
᎟ᑪᑪ tanᎣ/ፆ, where the division over ፜ is missing in the first term. It incoherently uses this definition of ᎐ᑦᑝᑥ with the definition
of ᎐ᑔᑦᑞ as given in this section.
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• If 𝜀 ≤ 𝛼፭,፫፞፟ there is tensile unloading or reloading, so:

𝜎 =
𝜎፭,፫፞፟
𝛼፭,፫፞፟

⋅ 𝜀 (2.20)

where 𝜎፭,፫፞፟ is the reference tensile stress, the stress that corresponds to the reference tensile
strain.

The softening curve is defined by the tensile fracture energy. The ultimate strain depends on the
tensile fracture energy, and due to the smeared crack approach also depends on the element size, by:

𝜀፭,፮ =
2𝐺፟፭
ℎ ⋅ 𝑓፭

(2.21)

where 𝐺፟፭ is the tensile fracture energy.
Under cyclic tensile loading, zero energy will be dissipated. The stress-strain diagram will then

display a straight secant line.

Figure 2.8: Stress-strain diagram of the tensile behaviour. Figure 2.9: Deformed masonry after failure due to horizontal
normal stress. The toothed vertical crack opens up horizon-
tally.

Horizontal Tensile Strength
Horizontal tensile failure is only checked when head joint failure option Direct input head-joint tensile
strength or Tensile strength head-joint defined by friction is selected. If the former is selected, 𝑓፭፱ is the
horizontal tensile strength that was provided by the user.

If the latter option is selected, the horizontal tensile strength is calculated by:

𝑓፭፱ = 𝜏፦ፚ፱/ tan𝛼 (2.22)

where 𝛼 is the angle at which a diagonal staircase crack could occur, see Equation 2.30.
This formula is based on the concept that masonry horizontal tensile strength is limited by the

failure mechanism in Figure 2.9, that depicts a vertical toothed crack. How that concept results in
Equation 2.22 will be explained further in Section 3.1.2. For the Direct input head-joint tensile strength
option, a minimal head joint tensile strength can optionally be provided as minimum value of 𝑓፭፱.11

Equation 2.22 is also used to calculate the horizontal tensile strength that is needed to calculate the
diagonal tensile strength with the Diagonal stair-case cracks option. For that option, a residual tensile
strength can provided as minimum value of 𝑓፭፱.

2.4.4. Compressive Behaviour
The compressive loading behaviour is described by a curve that consists of four parts, see Figure 2.10.
The first part is a third-order curve, the second part is a second-order curve, then follows a linear
softening part, to end with a residual constant stress. Unloading starts with the linear elastic stiffness,
11This is not a minimal head joint tensile strength, but a minimal tensile strength for the total masonry in the direction normal to
the head joints.
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then continues secant to the origin.12 Reloading is secant to the furthest point on the loading curve that
was reached. The strain value where the third-order polynomial passes into a second-order polynomial

Figure 2.10: Stress-strain diagram of the compressive behaviour.

is:
𝜀∗ = 𝑓፜

𝐸 (2.23)

where 𝑓፜ is the compressive strength.13 The factor between this value and the strain at the compressive
strength is:

𝑛 =
𝜀፩
𝜀∗ =

𝐸 ⋅ 𝜀፩
𝑓፜

(2.24)

where 𝜀፩ is the strain value at the compressive strength. The loading curve in Figure 2.10 can be
summarized as follows:

• If 𝜀 < 𝛼፜,፫፞፟ there is new compressive extreme, so:

𝛼፜,፫፞፟ = 𝜀 (2.25)

where 𝛼፜,፫፞፟ is lowest reached normal strain value, or reference compressive strain.
The stress is given by the constitutive relation in the graph in Figure 2.10. As described in [14],
this is a third-order function from the origin until −𝜀∗, then second-order function until −𝜀፩, where
𝜎 = −𝑓፜, followed a linear softening curve towards the ultimate compressive strain 𝜀፜,፮, but a
maximum14 value of −0.10𝑓፜ is retained. The formula given in [6, Section 38.12], [16], [14] and
[2] do not describe this behaviour properly, so the relations where re-derived. These relations are
presented in Section 3.1.1. Once the stress 𝜎 is known:

𝜎፜,፫፞፟ = 𝜎 (2.26)

where 𝜎፜,፫፞፟ is the reference compressive stress, the stress that corresponds to the reference
compressive strain.

• If 𝜀 < 𝜀ኺ there is compressive reloading, so:

𝜎 = 𝜎ኺ +
Δ𝜀

𝛼፜,፫፞፟ − 𝜀ኺ
(𝜎፜,፫፞፟ − 𝜎ኺ) (2.27)

12The stress value at which the linear unloading continues as secant unloading is ᎘᎟ᑔ,ᑣᑖᑗ. The value pictured in the compressive
stress-strain diagrams in [16] and [6, Section 38.12] is (ኻ ዅ ᎘) ᑔ፟, but the text and formulas presented correspond to a value
of ᎘᎟ᑣᑗ instead. The value pictured in the compressive stress-strain diagram in [14] is (ኻ ዅ ᎘)᎟ᑔᑚ, but the text and formulas
presented correspond to a value of ᎘᎟ᑔᑚ instead.

13[16] and [6, Section 38.12] alternately use a positive and a negative definition of the compressive strength.
14A minimal amount of negative stress, thus a maximum stress.
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where 𝜎 is the new stress, Δ𝜀 is a strain increment, 𝜀ኺ is the strain before the strain increment
and 𝜎ኺ is the stress before the strain increment.

• If 𝜀 ≥ 𝜀ኺ there is compressive unloading, so:15

𝜎 =

⎧
⎪

⎨
⎪
⎩

𝜎፜,፫፞፟ + 𝐸 (𝜀 − 𝛼፜,፫፞፟) for 𝜀 < 𝛼፜,፫፞፟ −
(1 − 𝜆)𝜎፜,፫፞፟

𝐸
𝜆 𝜎፜,፫፞፟ 𝜀

𝛼፜,፫፞፟ −
(1 − 𝜆)𝜎፜,፫፞፟

𝐸

for 𝛼፜,፫፞፟ −
(1 − 𝜆)𝜎፜,፫፞፟

𝐸 ≤ 𝜀
(2.28)

where 𝜆 is the compressive unloading factor.16

Under cyclic compressive loading, energy will be dissipated. The stress-strain diagram will then
display a triangular hysteresis loop.

2.4.5. Diagonal Staircase Crack
If the Diagonal stair-case cracks option is checked, the Engineering Masonry Model evaluates the
stresses in a rotated axis system.

Definition of the Diagonal Axis System
Figure 2.11 shows how the two axis systems used in the Engineering Masonry Model are defined. The
𝑥-axis is defined parallel the bed joint, the 𝑦-axis is defined parallel to the head joint. The angle between
the staircase crack path and the horizontal axis is called 𝛼. A second axis system (𝑛,𝑡) is defined as
respectively normal and parallel to the crack. The angle between the 𝑛-axis and the horizontal axis is
called 𝛽. It can be seen that:

𝛽 = 𝜋
2 + 𝛼 (2.29)

where 𝛽 is the angle between the crack normal and the bed joint and 𝛼 is the angle between the diagonal
staircase crack and the bed joint, both defined in the (𝑥,𝑦)-axis system.

Figure 2.11: The local (፱,፲)-axis system and the diagonal (፧,፭)-axis system, to a background of a brick wall with a running bond.
The angle that the staircase crack path, given in dark grey, makes with the ፱-axis is called ᎎ. The angle from the ፱- to the ፧-axis
is called ᎏ.

Throughout this thesis all horizontal dimensions of bricks, joints, cracks etcetera will be denoted by
the symbol 𝑏 and all vertical dimensions will be denoted by the symbol ℎ. This is done to distinguish
these dimensions from the commonly used crack width or crack opening 𝑤 and crack length 𝑙. The
crack angle 𝛼 of masonry with a common running bond can thus be defined as:

tan𝛼 = ℎ፜፫ፚ፜፤
𝑏፜፫ፚ፜፤

=
2 ⋅ ℎ፛፫።፜፤ + 2 ⋅ ℎ፣፨።፧፭
𝑏፛፫።፜፤ + 𝑏፣፨።፧፭

(2.30)

where ℎ፜፫ፚ፜፤ is the height of a crack segment, 𝑏፜፫ፚ፜፤ is the width of a crack segment, ℎ፛፫።፜፤ is the brick
height, ℎ፣፨።፧፭ is the joint height, 𝑏፛፫።፜፤ is the brick width and 𝑏፣፨።፧፭ is the joint width.
15The second formula is incorrectly given as ፄ᎒᎘/(ኻ ዅ ᎘) in [14], [6, Section 38.12] and [16]. The correct formulae were found
in [2].

16See also footnote 12.
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Note that a brick wall with a running bond has two possible crack angles 𝛼ኻ = 𝛼 and 𝛼ኼ = −𝛼.
Thus it also has two crack normal directions 𝛽ኻ =

᎝
ኼ + 𝛼 and 𝛽ኼ =

᎝
ኼ − 𝛼 wherein the stress can be

evaluated.17

Strength Criterion
No separate constitutive relation is given for the diagonal direction. Only a diagonal tensile strength
criterion is evaluated:

𝜎፧፧ ≤ 𝑓፭ᎎ (2.31)

where 𝜎፧፧ is the stress normal to the diagonal staircase crack and 𝑓፭ᎎ is the diagonal tensile strength.
The diagonal tensile strength is computed from the horizontal and vertical tensile strengths by the

relation:18

𝑓፭ᎎ =
𝑓፭፱ ⋅ 𝑓፭፲

√𝑓ኼ፭፱ cosኼ 𝛼 + 𝑓ኼ፭፲ sinኼ 𝛼
(2.32)

where 𝑓፭፱ is the horizontal tensile strength derived with Equation 2.22 and 𝑓፭፲ is the vertical tensile
strength.19

17In some literature only the angles in the first quadrant (i.e. ᎎ and ᎏ ዆ ᒕ
Ꮄ ዅ ᎎ) are mentioned. Sometimes this is no problem,

because in the trigonometric functions used then ᎎᎳ and ᎎᎴ c.q. ᎏᎳ and ᎏᎴ are interchangeable, but it is important to realise
that ᎎ and ᎏ ዆ ᒕ

Ꮄ ዅ ᎎ do not correspond to the same crack.
18In [16] and [6, Section 38.12] this formula is found in a more extensive but equivalent form, writing sin(ᒕᎴ ዅᎎ) instead of cosᎎ
and vice versa. However, ᎎ is not defined in the verification report, where instead ᎕ is used for diagonal crack angle.

19In [15], ᑥ፟ᑪ is replaced by ᎟ᑥ,ᑣᑖᑗ,ᑪ once the integration point has been past its vertical tension peak.





3
Analysis of the Engineering Masonry

Model
This chapter analyses the Engineering Masonry Model. First, some aspects of the theory behind the
model are examined. Then the usability of the Engineering Masonry Model is discussed.

3.1. Analysis of the Theory
Section 2.4 described the theory behind the Engineering Masonry Model as it was found in literature.
This section presents own work that examines some aspects of this theory in more detail.

3.1.1. Compressive Behaviour
Because the formula for the constitutive compressive relation found in literature are erroneous, they
were re-derived. This derivation starts with assuming that the last segment for 0 > 𝜀 > 𝜀∗ is described
by a third order function 𝜎ኻ(𝜀), and the second last segment for 𝜀∗ > 𝜀 > 𝜀፩ by a second order function
𝜎ኼ(𝜀). The boundary conditions that these functions should comply to are:

At 𝜀 = 0{
𝜎ኻ = 0
𝑑𝜎ኻ
𝑑𝜀 = 𝐸

, at 𝜀 = −𝜀 ∗

⎧
⎪⎪

⎨
⎪⎪
⎩

𝜎ኻ = 𝜎ኼ
𝑑𝜎ኻ
𝑑𝜀 = 𝑑𝜎ኼ

𝑑𝜀
𝑑ኼ𝜎ኻ
𝑑ኼ𝜀 = 𝑑ኼ𝜎ኼ

𝑑ኼ𝜀

and at 𝜀 = −𝜀፩ {
𝜎ኼ = −𝑓፜
𝑑𝜎ኼ
𝑑𝜀 = 0

. (3.1)

This yields the third and fourth formulas for the loading curve. As was described in Section 2.4.4,
the first segment of the loading curve in Figure 2.10 is a constant value, and the second segment is
either this same constant value or a linear interpolation. The first bullet point in Section 2.4.4 can thus
be expanded to:

• If 𝜀 < 𝛼፜,፫፞፟ there is new compressive extreme, so:

𝛼፜,፫፞፟ = 𝜀 (3.2)

𝜎 =

⎧
⎪
⎪
⎪
⎪

⎨
⎪
⎪
⎪
⎪
⎩

−0.1𝑓፜ for 𝜀 < −𝜀፜,፮

min(−0.1𝑓፜ ,
𝜀 + 𝜀፜,፮
𝜀፩ − 𝜀፜,፮

⋅ 𝑓፜) for − 𝜀፜,፮ < 𝜀 ≤ −𝜀፩

2
𝑛(3𝑛 − 2) ⋅

𝐸ኼ
𝑓፜
⋅ 𝜀ኼ + 4

3𝑛 − 2 ⋅ 𝐸 ⋅ 𝜀 −
−2 + 𝑛
3𝑛 − 2 ⋅ 𝑓፜ for − 𝜀፩ < 𝜀 ≤ −𝜀∗

−2 + 𝑛
3𝑛 − 2 ⋅

𝐸ኽ
𝑓ኼ፜
⋅ 𝜀ኽ + 3𝑛

ኼ − 6𝑛 + 2
𝑛(3𝑛 − 2) ⋅ 𝐸

ኼ

𝑓፜
⋅ 𝜀ኼ + 𝐸 ⋅ 𝜀 for 𝜀 > −𝜀∗

(3.3)

23
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𝜎፜,፫፞፟ = 𝜎 (3.4)

As was shown before in Figure 2.10, the area above the loading curve given by Equation 3.3 is
defined by the compressive fracture energy and the crack band width. Integration of the loading curve
and equalizing the result to 𝐺፟፜/ℎ yields the following formulation for the ultimate strain:

𝜀፜,፮ = 𝜀፩ +
2𝐺፟፜
ℎ ⋅ 𝑓፜

− (3𝑛 + 4) ⋅ 𝑓፜6𝑛 ⋅ 𝐸 − 2(7𝑛
ኽ − 9𝑛ኼ + 2) ⋅ 𝑓፜
3𝑛(3𝑛 − 2) ⋅ 𝐸 (3.5)

where 𝐺፟፜ is the compressive fracture energy.

3.1.2. Derivation of the Horizontal Tensile Strength
This section shows the derivation of the formulation for the horizontal tensile strength in Equation 2.22,
which is used for the head joint failure options Direct input head-joint tensile strength and Tensile
strength head-joint defined by friction. The horizontal tensile strength is based on the failure mech-
anism in Figure 3.1. In this failure mechanism tension failure occurs in the head joints and shear
sliding occurs in the bed joints.

Figure 3.1: Deformed masonry after failure due to horizontal normal stress. The vertical toothed crack opens up horizontally.
The dotted-dashed rectangle is the cut-out in Figure 3.2.

Figure 3.2: Free body diagram of a cut out just right of a vertical toothed crack due to horizontal extension. The horizontal
stresses that act upon this body are depicted.

Figure 3.2 shows a free body diagram of the cut-out marked by the dotted-dashed rectangle in
Figure 3.1 at the moment of failure due to horizontal extension. Along the cracks, the stresses are
equal to the resistance of the material. The shear stress along the cracks through the bed joints is
equal to the bed joint shear strength. The stress normal to the cracks in the head joints is equal to the
horizontal head joint tensile strength. The stresses inside the intact masonry are the effect of the load,
here equal to the horizontal stress due to the horizontal extension. The horizontal force equilibrium
reads:
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Effect of the load ≤ Resistance of the material

𝜎፱፱ ⋅ 2(ℎ፛፫።፜፤ + ℎ፣፨።፧፭) ≤ 𝜏፦ፚ፱ ⋅ 2 ⋅
ኻ
ኼ(𝑏፛፫።፜፤ + 𝑏፣፨።፧፭) + 𝑓፭፱,፣ ⋅ 2(ℎ፛፫።፜፤ + ℎ፣፨።፧፭)

𝜎፱፱ tan𝛼 ≤ 𝜏፦ፚ፱ + 𝑓፭፱,፣ tan𝛼 (3.6)

where 𝜎፱፱ is the average horizontal stress over the cut-out, ℎ፛፫።፜፤ is the brick height, ℎ፣፨።፧፭ is the joint
height, 𝑏፛፫።፜፤ is the brick width, 𝑏፣፨።፧፭ is the joint width, 𝜏፦ፚ፱ is the bed joint shear strength,1 𝑓፭፱,፣ is the
horizontal head joint tensile strength and 𝛼 is the angle as defined by Equation 2.30.

The horizontal head joint tensile strength is generally smaller than the bed joint shear strength. [18]
Moreover, the tensile behaviour of the head joints is stiffer than the shear behaviour of the bed joints,
resulting in head joint cracking long before the shear stresses in the bed joints reach their maximum.
The contribution of the head joint strength to the total strength is therefore negligible and Equation 3.6
can be simplified to Equation 2.22.

The Implication of this Concept of Horizontal Strength
The Engineering Masonry Model is defined in a local coordinate system corresponding to the directions
of the bed joints and head joints. This gives the impression that the model is valid for masonry with
bonds in all possible directions, as long as the local 𝑥-axis is defined along the bed joint. However, both
the Tensile strength head-joint defined by friction and the Diagonal stair-case cracks options are based
on the idea that the head joints are significantly weaker than the bed joints. With common horizontal
masonry, this is due to the fact that the bed joints are compressed by the weight of the bricks on top of
them during construction, which is beneficial for the joint strength. The head joints, on the other hand,
are barely compressed by the bricks left and right of them, resulting in a lower strength. Thus this idea
only holds for horizontal masonry and one should carefully contemplate before using the two options
mentioned above for masonry laid in any other direction.

3.1.3. Derivation of the Diagonal Strength

Figure 3.3: The elliptical relation between ᑥ፟ᑩ, ᑥ፟ᑪ and ᑥ፟ᒆ.

Figure 3.3 graphically shows the relationship between 𝑓፭፱ ,𝑓፭፲ and 𝑓፭ᎎ. For simplicity, only the first
quadrant is pictured, but the equations hold for 𝛽-values larger than 90° as well. The curved line is an
ellipse described by Equation 3.7. A point on this curve at an angle 𝛽 from the 𝑥-axis has a distance
𝑓፭ᎎ to the origin. The 𝑥- and 𝑦-coordinates of this point are given by Equations 3.8 and 3.9, where
Equation 2.29 is substituted for 𝛽. Substituting these coordinates into Equation 3.7 and isolating 𝑓፭ᎎ
yields the formulation of the diagonal strength that was displayed in Equation 2.32.

( 𝑥𝑓፭፱
)
ኼ
+ ( 𝑦𝑓፭፲

)
ኼ
= 1 (3.7)

𝑥 = 𝑓፭ᎎ cos𝛽 = −𝑓፭ᎎ sin𝛼 (3.8)
1The bed joint shear strength is the same value as the overall masonry shear strength from Equation 2.13.
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𝑦 = 𝑓፭ᎎ sin𝛽 = 𝑓፭ᎎ cos𝛼 (3.9)

The graph in Figure 3.3 clearly shows that when one of the orthogonal strength values is significantly
lower than the other, the diagonal strength is mainly governed by that low strength. This happens, for
instance, in case of vertical tension. The shear strength 𝜏፦ፚ፱ and thus the horizontal tensile strength
𝑓፭፱ can then easily go to zero, resulting in zero diagonal strength 𝑓፭ᎎ. To prevent this, a residual tensile
strength can optionally be provided in Diana’s user interface.

Furthermore, the Engineering Masonry Model subroutine engmas.f uses two additional minimal
values for the shear strength. [15] When the shear strength description that is used in this subrou-
tine code (Equation 3.10) is compared to the shear strength criterion as found in all EMM literature
(Equation 2.13), it can be seen that a minimal value of the current cohesion and a minimal value of one
percent of the ”would-be” elastic shear stress are added to the shear strength criterion.

𝜏፦ፚ፱ =max ( 𝑐, 𝑐 − 𝜎፲፲ tan𝜑, 0.01|𝛾|𝐺፱፲ ) (3.10)

3.1.4. Rotation of the Stress and Strain Tensors
The head joint failure option Diagonal stair-case cracks of the Engineering Masonry Model evaluates
stress in the (𝑛,𝑡)-axis system, see also Figure 2.11 for its definition. [14] gives the relations to compute
the stresses and strains in this axis system from those in the (𝑥,𝑦)-axis system, but those relations
contain some sign errors. They are therefore recomputed here.

[𝜎፧፧ 𝜎፧፭
𝜎፭፧ 𝜎፭፭

] = RT ⋅ [𝜎፱፱ 𝜎፱፲
𝜎፲፱ 𝜎፲፲

] ⋅R, with R = [cos𝛽 − sin𝛽
sin𝛽 cos𝛽 ] (3.11)

We prefer, however, to write the stress 𝜎 as a vector. Expanding Equation 3.11 and rearranging the
terms – taking into account that 𝜏፧፭ = 𝜎፧፭ = 𝜎፭፧ and 𝜏፱፲ = 𝜎፱፲ = 𝜎፱፲ – yields the rotation relationship
in vector format:

[
𝜎፧፧
𝜎፭፭
𝜏፧፭
] = R᎟ ⋅ [

𝜎፱፱
𝜎፲፲
𝜏፱፲
] , with R᎟ = [

cosኼ 𝛽 sinኼ 𝛽 2 sin𝛽 cos𝛽
sinኼ 𝛽 cosኼ 𝛽 −2 sin𝛽 cos𝛽

− sin𝛽 cos𝛽 sin𝛽 cos𝛽 cosኼ 𝛽 − sinኼ 𝛽
] (3.12)

Similarly, the rotation of the strain tensor is:

[𝜀፧፧ 𝜀፧፭
𝜀፭፧ 𝜀፭፭

] = RT ⋅ [𝜀፱፱ 𝜀፱፲
𝜀፲፱ 𝜀፲፲

] ⋅R, with R = [cos𝛽 − sin𝛽
sin𝛽 cos𝛽 ] (3.13)

This can also be rewritten into vector format, now taking into account that 𝛾፧፭ = 𝜀፧፭ + 𝜀፭፧ and
𝛾፱፲ = 𝜀፱፲ + 𝜀፲፱.

[
𝜀፧፧
𝜀፭፭
𝛾፧፭
] = R᎒ ⋅ [

𝜀፱፱
𝜀፲፲
𝛾፱፲
] , with R᎒ = [

cosኼ 𝛽 sinኼ 𝛽 sin𝛽 cos𝛽
sinኼ 𝛽 cosኼ 𝛽 − sin𝛽 cos𝛽

−2𝑠𝑖𝑛𝛽 cos𝛽 2 sin𝛽 cos𝛽 cosኼ 𝛽 − sinኼ 𝛽
] (3.14)

Note that it holds that:
RT
᎒ = Rዅኻ᎟ and RT

᎟ = Rዅኻ᎒ (3.15)

3.1.5. Rotation of the Stiffness Matrix
When masonry is cracked diagonally, the Engineering Masonry Model subroutine engmas.f [15] re-
turns the crack strains normal and tangential to the crack. These crack strains are equal to the total
strain, i.e. the fictive smeared strain over the entire element that contains the crack, minus the elastic
strain, i.e. the strain of the linear elastic zones inside the element alongside the crack. Therefore it
uses the following equations:

𝜀፧፧,፜፫ፚ፜፤ = (𝜀፧፧ − 𝜀፧፧,፞፥ፚ፬፭።፜) = (𝜀፧፧ −
𝜎፧፧
𝐸፧
) (3.16)

𝛾፧፭,፜፫ፚ፜፤ = (𝛾፧፭ − 𝛾፧፭,፞፥ፚ፬፭።፜) = (𝛾፧፭ −
𝜏፧፭
𝐺፧፭

) (3.17)
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The Engineering Masonry Model code uses the following approximations of the diagonal normal stiff-
ness and the diagonal shear stiffness:

𝐸፧ =max (𝐸፱ , 𝐸፲) (3.18)

𝐺፧፭ = 𝐺፱፲ (3.19)
It was investigated whether these approximations are realistic by deriving the entire rotated stiffness

matrix. In the (𝑥,𝑦)-axis system, the Engineering Masonry Model uses a diagonal stiffness matrix.
The Poisson’s ratio 𝜈 is taken as zero and the constitutive relations in the orthogonal directions are
uncoupled.

[
𝜎፱፱
𝜎፲፲
𝜏፱፲
] = E(፱,፲) ⋅ [

𝜀፱፱
𝜀፲፲
𝛾፱፲
] , with E(፱,፲) = [

𝐸፱ 0 0
0 𝐸፲ 0
0 0 𝐺፱፲

] (3.20)

(a) The stiffness normal to the crack ፄᑟ (b) The shear stiffness along the crack ፆᑟᑥ

Figure 3.4: Normal stiffness ፄᑟ and shear stiffness ፆᑟᑥ as a function of the crack normal direction ᎏ, for ፄᑩ = 2200 MPa, ፄᑪ =
3400 MPa and ፆᑩᑪ = 800 (low Gxy), 1100 (Gxy= ᎳᎴEx), 1300 (estimated Gxy), 1700 (Gxy=

Ꮃ
ᎴEy) and 2000 (high Gxy) MPa. The

values of ፄᑩ and ፄᑪ and the estimated ፆᑩᑪ are based on [8, Chapter 5].

The stiffness in the direction normal to the crack can be derived using the rotation formulations of
the stresses and the strains. Inverting and substituting Equations 3.12 and 3.14 into Equation 3.20
yields:

Rዅኻ᎟ ⋅ [
𝜎፧፧
𝜎፭፭
𝜏፧፭
] = E(፱,፲) ⋅Rዅኻ᎒ [

𝜀፧፧
𝜀፭፭
𝛾፧፭
] , (3.21)

Pre-multiplying both sides with R᎟ gives:

[
𝜎፧፧
𝜎፭፭
𝜏፧፭
] = R᎟ ⋅ E(፱,፲) ⋅Rዅኻ᎒ [

𝜀፧፧
𝜀፭፭
𝛾፧፭
] , (3.22)

Or:

[
𝜎፧፧
𝜎፭፭
𝜏፧፭
] = E(፧,፭) ⋅ [

𝜀፧፧
𝜀፭፭
𝛾፧፭
] , with E(፧,፭) = R᎟ ⋅ 𝐸(፱,፲) ⋅Rዅኻ᎒ (3.23)
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Note that the stiffness matrix E(፧,፭) is a fully filled matrix. Though the constitutive relations were
uncoupled in the (𝑥,𝑦)-direction, they are coupled in the (𝑛,𝑡)-direction. Because the terms in this
matrix are quite extensive, they are not expanded here. To get a sense of the relationship between the
two terms used by [15], 𝐸፧ and 𝐺፧፭, and the material properties 𝐸፱, 𝐸፲ and 𝐺፱፲, they are drawn as a
function of 𝛽 in Figure 3.4. Note that for ፄᑩኼ ≤ 𝐺፱፲ ≤

ፄᑪ
ኼ it always holds that 𝐸፱ ≤ 𝐸፧ ≤ 𝐸፲. Note that

𝐺፧፭ is always between 𝐺፱፲ and
ፄᑩዄፄᑪ
ኼ .

In conclusion, the formulations in Equation 3.16 and 3.17 deviate from the rest of the EMM theory.
Firstly, they assume that the constitutive relations in the (𝑛,𝑡)-axis system are uncoupled, which is a
direct contradiction with the general EMM assumption that the constitutive relations in the (𝑥,𝑦)-axis
system are uncoupled. Secondly, the simplification of the stiffness matrix components that àre used is
quite crude compared to the otherwise so detailed material model.

3.1.6. Yield Surface of the Diagonal stair-case cracks option
The yield criterion of the Diagonal stair-case cracks option consists of several equations. All these
equations can be brought together to summarize the yield criterion into one formulation. Substituting
Equations 2.13, 2.22, 2.32 and 3.12 into Equation 2.31 yields for both diagonal cracks (i.e. 𝛽። can be
𝛽ኻ =

᎝
ኼ + 𝛼 or 𝛽ኼ =

᎝
ኼ − 𝛼):

cosኼ 𝛽። ⋅ 𝜎፱፱ + sinኼ 𝛽። ⋅ 𝜎፲፲ + 2 sin𝛽። cos𝛽። ⋅ 𝜏፱፲ ≤max(0,
(𝑐 − 𝜎፲፲ tan𝜑)

tan𝛼 ⋅ 𝑓፭፲

√(𝑐 − 𝜎፲፲ tan𝜑)
ኼ

tanኼ 𝛼
cosኼ 𝛼 + 𝑓ኼ፭፲ sinኼ 𝛼

)

(3.24)
Together with the vertical tensile failure criterion 𝜎፲፲ ≤ 𝑓፭፲, the vertical compressive failure criterion

𝜎፲፲ ≥ −𝑓፜፲ and the shear failure criterion |𝜏፱፲| ≤ 𝜏፦ፚ፱, they form a three-dimensional yield surface,
see Figure 3.5.2

Figure 3.5: The yield surface of the Engineering Masonry Model with the Diagonal stair-case cracks option. The top and bottom
are symmetric, the back side is a flat surface. Stresses in MPa, for material properties ᎎ ዆ 0.5 rad, Ꭳ ዆ 0.6 rad, ፜ ዆ 0.15 MPa,
ᑥ፟ᑪ ዆ 0.10 MPa and ᑔ፟ ዆ 14 MPa.

2This yield surface follows from the theoretical description and does not include the deviations in the engmas.f-code mentioned
in Section 2.4.5 and Equation 3.10.
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There is no horizontal compressive bound, so the yield surface continues infinitely for 𝜎፱፱ → −∞.
There is no separate horizontal tensile bound, so horizontal tensile stresses much larger than 𝑓፭፱ are
possible in combination with vertical compression. Only reaching the top, bottom, front or back surface
(i.e. the maximum positive shear, negative shear, vertical tension or vertical compression, respectively)
will lead to softening, reaching the left (i.e. the two maximum diagonal stresses) will not.

3.2. Analysis of the Usability
The Engineering Masonry Model is a great addition to the available masonry crack models. Never-
theless, it does not always yield the results desired. [13] Here some remarks on the accuracy and
efficiency of the Engineering Masonry Model (EMM) are listed.

Advantages of the Engineering Masonry Model
• The EMM is a smeared cracking approach. Compared to the discrete micro model approach, this
makes it easier for the user to mesh a model and less material parameters have to be provided.
Therefore, the EMM takes less computational effort, so it is suitable for longer analyses like cyclic
analysis. [10]

• The EMM is an orthogonal model. Different strength and stiffness properties can be used for
the directions along and perpendicular to the bed joints. In contrast to the isotropic Total Strain
Rotating Crack model, this represents the nature of masonry more accurately.

• On top of failure in the two orthogonal directions, the Engineering Masonry Model provides the
option Diagonal stair-case cracks to consider diagonal cracks by evaluation of the stress in the
direction normal to the expected staircase crack. Besides the horizontal and vertical direction,
these directions are the most frequent directions of cracks observed in unreinforced masonry
typical to the Groningen region. [10] In contrast to the Rankine-Hill Plasticity model, this option
does include all the most relevant crack directions.

• The EMM shows better energy dissipation under in-plane cyclic loading (hysteresis) than the Total
Strain Rotating Crack model. [16]

• The EMM is quite accurate in modelling in-plane cyclic horizontal loading of slender shear walls,
that display rocking. [16]

• The EMM with the Tensile strength head-joint defined by friction option yields good force-drift
results for light damage shear walls. [9]

Disadvantages of the Engineering Masonry Model
• When the Diagonal stair-case cracks option is used, only the stress in the diagonal direction is
limited. There is no separate constitutive relation in this direction, so deformation in this direction
does not directly contribute to softening.

• The EMM tensile behaviour has secant unloading and reloading, which dissipates zero energy.

• The horizontal tensile behaviour can be partly based on the vertical toothed crack failure mode.
The horizontal tensile strength is then derived from the shear strength of the bed joints, but the
rest of the tensile behaviour is inconsistently not derived from this same failure mode.

• Analyses using the EMM often have convergence issues and are even known to diverge.

• The crack patterns found in analyses with the EMM is more smeared out than in experimental
results.

• Diagonal cracks found in analyses with the EMM are steeper than in experimental results. [9]

• The EMM underestimates the energy dissipation when used for modelling wide shear walls under
cyclic horizontal loading. [16]





II
Creation of a Novel Material Model
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4
Inspiration

This chapter describes three aspects of masonry shear walls and diagonal staircase cracks that formed
the inspiration for the proposed material model, namely the deformation of diagonal staircase cracks in
shear walls, the crack pattern of horizontal tensile failure and the shape of the hysteresis loop of shear
walls under cyclic loading.

4.1. Deformation of a Diagonal Staircase Crack
The Engineering Masonry Model’s diagonal cracking failure criterion evaluates the normal stress in a
rotated axis system, normal to the possible staircase crack. See also failure mode F in Table 2.1. When
the material cracks due to this diagonal tensile stress, the crack is expected to open up in the same
direction as the tensile stress, as in Figure 4.1.

Figure 4.1: Failure mechanism of a diagonal crack that opens
up diagonally.

Figure 4.2: Failure mechanism of a diagonal crack that opens
up horizontally.

However, in experimental observations of diagonally cracked masonry, like Figure 4.4, the crack
seems to open up horizontally rather than diagonally. This phenomenon looks similar to the illustration
in Figure 4.2. The diagonal staircase crack seems to be a combination of tensile failure of the head
joints and shear sliding along the bed joint. It looks like a hybrid version of the failure mechanisms
in Figures 2.6 and 2.9, plain shear sliding along the bed joint and the vertical toothed crack due to
horizontal loading.

It is unknown at which point during the experiment the photo in Figure 4.4 was taken. It could be
taken after the sideways loading was removed. Although the uncrackedmiddle of the hourglass shaped
part suggests otherwise, there could have been a vertical component to the crack opening the moment
the material reached its peak strength and the crack just started to form. To be thorough, more detailed
Digital Image Correlation (DIC) imagery of another laboratory test are studied.

Figure 4.3 shows the displacements of TUD-COMP-48, a double clamped masonry wall undergoing
cyclic horizontal loading of increasing amplitude. The image shows a large staircase crack at the top,
some smaller cracks in the middle and a more recent crack at the bottom. At the moment of this image
was taken (i.e. 𝑡 = 486 s), the top displacement just reached a new extreme of 2.09 mm. The bottom
crack is now propagating upwards, so at the very top of this crack material is observed that has just

33
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(a) the horizontal displacements.

(b) the vertical displacements.

Figure 4.3: Digital images of the horizontal and vertical displacements of test TUD-COMP-48 at t=486 s, at a new horizontal top
displacement extreme. Images courtesy of [9].
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Figure 4.4: Observed crack pattern during the TUD-COMP-4Q test, a double clamped shear wall under cyclic horizontal loading
of the top. Photo courtesy of [12].

started to crack. Notice the sharp discontinuity of colour in the horizontal displacement in Figure 4.3(a)
and the absence of such a discontinuity in the vertical displacement in Figure 4.3(b).1 This indicates
that this crack is opening up horizontally.

In conclusion, these two examples have shown that some diagonal cracks in shear walls open up
horizontally rather than diagonally.

4.2. Crack Pattern of Horizontal Tensile Failure
[7] reports tests performed to determine the material properties of masonry. Several shear and com-
pressive test were executed, but for practical reasons no axial tensile test was conducted. What was
performed is a horizontal in-plane bending test in order to determine the tensile fracture energy. This
four-point bending test is the best alternative source of information for a uni-axial tensile stress test.

In the middle field of a four-point bending test of a slender beam, the shear force is zero, see
Figure 4.5. This middle field is a constant moment zone. The stresses that are present in this zone are
normal stresses due to bending: horizontal tensile stresses at the bottom and horizontal compressive
stresses at the top. One could thus say that any crack occurring in this zone is the result of horizontal
tensile stresses.

As Figure 4.6 shows, the crack patterns that occurred during the four point bending tests in [7]
consist mainly of cracks through the bed and head joints inside the constant moment zone.2 Some
parts of these patterns show resemblance to the vertical toothed crack we saw in Figure 2.9. Most,
1Some other diagonal staircase cracks do clearly have a vertical crack opening component, for instance the one at the top. That
said, this particular piece of crack, does not.

2Only one expected weak zone (i.e. head joint) lies at each extremity in the constant moment zone. Thus it is considered a
logical consequence that the cracks also begin or end just outside of the constant moment zone, or even go straight through
the brick, due to spatial variation in the material properties.
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Figure 4.5: Schematic display of a slender beam subjected to four point bending, with its moment line and its shear force line
below. The horizontal stress distribution over a cross section in the constant moment zone is given on the right, both initially and
once the bottom of the cross section has started to crack.

Figure 4.6: Crack patterns of single wythe masonry specimens subjected to a horizontal in-plane four-point bending test, where
፝Ꮃ is the distance between the supports and ፝Ꮄ is the distance between the loads. Image courtesy of [7].

however, look more like a diagonal staircase crack.
This example shows that horizontal stress can cause a diagonal staircase crack, too, not only a

vertical toothed crack. The crack simply starts in a head joint and then continues to form along a
segment of bed joint, be it left or right of the head joint. The crack then goes up the nearest head
joint, continues along another segment of bed joint, and so on. Because the middle field is a constant
moment zone – and thus the horizontal bending stresses are also constant –, the choice to go left or
right is theoretically arbitrary. In practice it is determined by local strength deviations in the material.
Nevertheless, whether the total crack pattern will look like a staircase or toothed is arbitrary.
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4.3. Shape of the ForceDisplacement Diagramof aDouble Clamped
Shear Wall under Cyclic Loading

Figure 4.7 shows the force-displacement diagram of the TUD-COMP-4Q test, the shear wall that was
portrayed in Figure 4.4. The diagram shows a parallelogram shaped hysteresis loop that looks similar
to the parallelogram shaped unloading-reloading loop of the shear behaviour of the bed joints. This
similarity suggests that it could be beneficial to exploit the shear behaviour of the bed joints for the
overall material behaviour.

Figure 4.7: Measured horizontal force versus horizontal top displacement of the TUD-COMP-4Q experiment. Image courtesy of
[12].

4.4. Conclusion
The examples in the previous paragraphs suggest that it could be interesting to regard the diagonal
staircase crack as a horizontal phenomenon, as a crack that opens up horizontally under the influence
of horizontal forces, see the visual in Table 4.1. It would also be interesting to utilize the shear behaviour
of the bed joints for the overall material behaviour. In the next chapter these ideas will be developed
into a usable material model.

Table 4.1: Failure mode considered by the proposed material model.

G Shear and horizontal tension, i.e.
horizontally opening diagonal staircase crack





5
The Equivalent Shear Masonry Model

The Equivalent Shear Masonry Model is an augmentation of the Engineering Masonry Model. It is a
similar orthotropic smeared cracking material model, defined in the same (𝑥,𝑦)-axis system with the 𝑥-
axis (i.e. horizontal axis) parallel the bed joint. It considers the horizontal and vertical compression
behaviour as in Section 2.4.4, the vertical tensile behaviour as in Section 2.4.3 and additionally a
combined shear-horizontal tension behaviour. This combined behaviour uses the concept of Equivalent
Shear that will be described in this chapter.

5.1. The Equivalent Shear Failure Criterion
Consider a brick wall at the moment a horizontally opening diagonal crack occurs, like the one in
Figure 5.1. For schematization purposes, the crack is assumed to form in the centre of the joints.
Now let’s zoom in to investigate the forces in play at the onset of failure, similar to what was done to
determine the friction based horizontal tensile strength in Section 3.1.2.

Figure 5.1: Deformed masonry after failure due to horizontal normal stress and shear stress. The crack is a diagonal staircase
shape, the crack opening is horizontal. The dotted-dashed rectangle is the cut-out in Figure 5.2.

Figure 5.2 shows the cut-out that is marked with the dotted-dashed rectangle in Figure 5.1 and
shows all horizontal stresses involved at the onset of failure. The shear stress 𝜏፱፲ and the horizontal
normal stress 𝜎፱፱ due to the load act on the intact edges of this cut out, i.e. the top and the right
side. These stresses are the average internal stresses over the masonry cut-out. Stresses equal to the
material resistance can be found on the edges that coincide with the newly forming crack, i.e. the bottom
and the left side. These stresses are a shear stress equal to the maximum bed joint shear strength
𝜏፦ፚ፱1 and a horizontal stress equal to the horizontal head joint tensile strength 𝑓፭፱,፣, respectively. The
horizontal force equilibrium reads:

Effect of the load ≤ Resistance of the material

𝜏፱፲ ⋅
ኻ
ኼ(𝑏፛፫።፜፤ + 𝑏፣፨።፧፭) + 𝜎፱፱ ⋅ (ℎ፛፫።፜፤ + ℎ፣፨።፧፭) ≤ 𝜏፦ፚ፱ ⋅

ኻ
ኼ(𝑏፛፫።፜፤ + 𝑏፣፨።፧፭) + 𝑓፭፱,፣ ⋅ (ℎ፛፫።፜፤ + ℎ፣፨።፧፭)

𝜏፱፲ + 𝜎፱፱ tan𝛼 ≤ 𝜏፦ፚ፱ + 𝑓፭፱,፣ tan𝛼 (5.1)

where ℎ፛፫።፜፤ is the brick height, ℎ፣፨።፧፭ is the joint height, 𝑏፛፫።፜፤ is the brick width, 𝑏፣፨።፧፭ is the joint width
and tan𝛼 is the height-width ratio of the diagonal staircase crack as defined by Equation 2.30.
1The bed joint shear strength is the same value as the overall masonry shear strength from Equation 2.13.
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Figure 5.2: Free body diagram of half a brick and its adjacent joints, at the moment a staircase crack forms along its bottom and
left side. The horizontal stresses that act upon this body are depicted.

As was explained in Section 3.1.2, the contribution of the head joint strength to the resistance can
be neglected for horizontally laid masonry. This yield the failure criterion proposed in this thesis:

𝜏፱፲ + 𝜎፱፱ tan𝛼 ≤ 𝜏፦ፚ፱ (5.2)

Note that the failure criterion in Equation 5.2 also serves for negative shear. Besides, it only applies
to horizontal tensile stress, not to compression. Therefore, a more universal formulation of the failure
criterion is:

|𝜏፱፲| +max (𝜎፱፱ , 0) tan𝛼 ≤ 𝜏፦ፚ፱ (5.3)

The left-hand side of this equation will be referred to as equivalent shear stress 𝜏፞፪:

𝜏፞፪ = |𝜏፱፲| +max(𝜎፱፱ , 0) tan𝛼 (5.4)

In absence of horizontal tension Equation 5.3 can be reduced to Equation 2.12. In absence of shear
stress it can be reduced to:

𝜎፱፱ ≤
𝜏፦ፚ፱
tan𝛼 (5.5)

The failure criterion in Equation 5.3 defines the stress state (or rather, stress states) up until which
thematerial behaviour is linear elastic and beyond which the post-peak behaviour begins. The pre-peak
linear elastic shear and horizontal behaviour can be regarded separately. Their post-peak behaviour
on the other hand, is coupled and path dependent, meaning that the shear and horizontal tensile stress
depend on both the shear and horizontal extension strain state and their histories. Therefore, the
deformation of the considered failure mechanism should be further investigated and especially how
this can be described as a strain state.

5.2. Kinematic Relations
Once more the failure mechanism depicted in Figure 4.2 is considered. Now imagine a rectangular
element that is two bricks and two head joints wide and four bricks and four bed joints high. First, it is
assumed that the element includes half of the bed joint at the top, half of the bed joint at the bottom, no
head joint at the left, but the entire head joint at the right, see Figure 5.3. Since the crack is assumed to
occur in the joint centre, this means the left two corner points are located in the darker triangle on the
left side of the crack. The right two corner points, on the other hand, are located in the lighter triangle
at the right side of the crack. The deformation of masonry can thus be perceived as a horizontal strain,
see Equation 5.6.
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Figure 5.3: Rectangular element that shows horizontal extension, to a background of cracked masonry. The solid line shows the
original shape, the dashed line shows deformed shape.

𝜀፱፱ =
𝜕𝑢፱(𝑥, 𝑦)
𝜕𝑥 = Δ𝑢

𝑏፜፫ፚ፜፤
Δ𝑢 = 𝜀፱፱ ⋅ 𝑏፜፫ፚ፜፤ (5.6)

where 𝜀፱፱ is the horizontal strain, 𝑢፱(𝑥, 𝑦) is the horizontal displacement field, 𝑥 is the horizontal location
coordinate, Δ𝑢 is the horizontal crack deformation and 𝑏፜፫ፚ፜፤ is the horizontal crack dimension.

Alternatively, it can be assumed that the element includes half the head joints on the left, half the
head joints on the right, no bed joint at the bottom, but the entire bed joint at the top, see Figure 5.4. In
this case, the bottom two corner point are located in the darker triangle left of the crack and the top two
corner points are located in the lighter triangle right of the crack. Now, the deformation of the masonry
can be perceived as a shear deformation, see Equation 5.7.

Figure 5.4: Rectangular element that shows shear deformation, to a background of cracked masonry. The solid line shows the
original shape, the dashed line shows deformed shape.

𝛾፱፲ =
𝜕𝑢፱(𝑥, 𝑦)
𝜕𝑦 +

𝜕𝑢፲(𝑥, 𝑦)
𝜕𝑥 = Δ𝑢

ℎ፜፫ፚ፜፤
+ 0

Δ𝑢 = 𝛾፱፲ ⋅ ℎ፜፫ፚ፜፤ (5.7)

where 𝛾፱፲ is the shear strain, 𝑢፲(𝑥, 𝑦) is the vertical displacement field, 𝑦 is the vertical location coor-
dinate and ℎ፜፫ፚ፜፤ is the vertical crack dimension.

Finally, consider the same element as before, but now assume that the corner points are not just
inside the rectangle, but exactly at its boundaries, see Figure 5.5. In that case, both the top left and the
bottom right corner point are located right on top of the line where the crack will form. After cracking,
these nodes can be perceived to be somewhere in the crack opening. Therefore, the deformation can
be seen as a combination of extension and shear deformation, see Equation 5.8.
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Figure 5.5: Rectangular element that shows a combination of horizontal extension and shear deformation, to a background of
cracked masonry. The solid line shows the original shape, the dashed line shows deformed shape.

Δ𝑢 = Δ𝑢፬ + Δ𝑢፞ = 𝛾፱፲ ⋅ ℎ፜፫ፚ፜፤ + 𝜀፱፱ ⋅ 𝑏፜፫ፚ፜፤ (5.8)

where Δ𝑢፬ is the horizontal crack deformation due to shear and Δ𝑢፞ is the horizontal crack deformation
due to horizontal extension.

The total deformation Δ𝑢 can be described as a combination of shear strain 𝛾፱፲ and horizontal
normal strain 𝜀፱፱. For this purpose, the amount of 𝛾፱፲ that results in the same deformation Δ𝑢 as 𝜀፱፱
is derived. Combining Equation 5.6 and 5.7 and eliminating Δ𝑢 gives:

𝛾፱፲, ፞፪፮።፯ፚ፥፞፧፭ ፭፨ ᎒ᑩᑩ ⋅ ℎ፜፫ፚ፜፤ = 𝜀፱፱ ⋅ 𝑏፜፫ፚ፜፤

𝛾፱፲, ፞፪፮።፯ፚ፥፞፧፭ ፭፨ ᎒ᑩᑩ = 𝜀፱፱ ⋅
𝑏፜፫ፚ፜፤
ℎ፜፫ፚ፜፤

= 𝜀፱፱
tan𝛼 (5.9)

The total equivalent deformation can be then described as the equivalent shear strain 𝛾 ፪:

𝛾 ፪ = 𝛾፱፲ +
𝜀፱፱
tan𝛼 (5.10)

Note that the total equivalent deformation in Equation 5.10 also serves for negative shear. Besides,
it only applies to horizontal tensile strain, not to compression. Therefore, a more universal formulation
of the total equivalent deformation is:

𝛾 ፪ = |𝛾፱፲| +
max (𝜀፱፱ , 0)

tan𝛼 (5.11)

5.3. Constitutive Relation
Now the equivalent shear stress and the equivalent shear strain are defined, their relationship is dis-
cussed. The resistance of the material to this failure mechanism is governed by the shear sliding
behaviour of the bed joints. Therefore, the equivalent shear stress and equivalent shear strain are
assumed to behave according to a similar stress-strain diagram as is used for the shear sliding of the
bed joints, see Figure 5.6.

As mentioned at the end of Section 5.1, before the combined failure criterion is reached, the shear
and extension stress-strain relationships are linear and independent of each other. Note that this
part of the graph is not necessarily a straight line, as the two individual strains can increase non-
simultaneously, each with their own stiffness. Unloading, too, happens for both shear and extension
linearly and independently of each other.

The equations used to describe the behaviour are similar to those that were introduced in Sec-
tion 2.4.2. The behaviour in Figure 5.6 can be summarized as follows:

𝜏፞፪ =
⎧
⎪
⎨
⎪
⎩

−𝜏፦ፚ፱ for 𝜏፞፪,፥ < −𝜏፦ፚ፱

𝜏፞፪,፥ for − 𝜏፦ፚ፱ ≤ 𝜏፞፪,፥ ≤ 𝜏፦ፚ፱

𝜏፦ፚ፱ for 𝜏፞፪,፥ > 𝜏፦ፚ፱

, with 𝜏፞፪,፥ = 𝜏ኺ +𝐺፱፲Δ𝛾 + (𝜎፱፱,ኺ + 𝐸፱Δ𝜀፱፱) tan𝛼 (5.12)
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Figure 5.6: Stress-strain diagram illustrating the equivalent shear behaviour.

where 𝜏፞፪ is the new equivalent shear stress, 𝜏፞፪,፥ is the initial linear prediction of the new equivalent
shear stress, Δ𝛾 is a shear strain increment, Δ𝜀፱፱ is a simultaneous horizontal normal strain increment,
𝜏ኺ is the shear stress before the application of the strain increments, 𝜎፱፱,ኺ is the horizontal normal stress
before the strain increments, 𝐺፱፲ is the shear stiffness and 𝐸፱ is the horizontal stiffness.

Should the material be cracked in any direction, the cohesion is reduced to zero immediately. Oth-
erwise, once the material reaches the maximum shear stress, the cohesion is reduced by the following
equation:

𝑐 = 𝑐ኺ
𝛾፮,፞፪ − 𝛾፜፮፦,፞፪

𝛾፮,፞፪
(5.13)

where 𝑐 is the current cohesion, 𝑐ኺ is the initial cohesion, 𝛾፜፮፦,፞፪ is the cumulative equivalent shear
strain over all the time that the equivalent shear stress was equal to themaximum shear stress, and 𝛾፮,፞፪
is the equivalent ultimate shear strain, the cumulative equivalent shear strain at which the cohesion is
fully gone. This value intrinsically depends on the shear fracture energy and due to the smeared crack
approach also depends on the element size, by:

𝛾፮,፞፪ =
2𝐺፟፬
𝑐 ⋅ ℎ −

𝑐
𝐺፱፲,፞፪

(5.14)

where 𝐺፟፬ is the shear fracture energy, 𝑐 is the cohesion, ℎ is the crack band width and 𝐺፱፲,፞፪ is defined
as the apparent equivalent shear stiffness at peak:

𝐺፱፲,፞፪ =
𝜏፦ፚ፱
𝛾፩,፞፪

(5.15)

5.4. Points of Interest
Equations 5.3 and 5.11 and Section 5.3 almost completely describe the equivalent shear failure mode
of the Equivalent Shear Masonry Model. Some aspects require some extra attention, though. They are
discussed here separately, because their solutions are not logical extensions of the rest of the theory,
but rather artificial choices.

Tensile and Compressive Behaviour Compatibility
In many material models, both compressive and tensile unloading go to the origin. See for instance
the compression and tension stress-strain diagrams of the Engineering Masonry Model in Figure 5.7.
That way, the tensile and compressive part are always connected.

In the Equivalent Shear Masonry Model, the horizontal tensile behaviour is derived from the shear
behaviour of the bed joints. This means that during unloading, negative horizontal normal stress can
occur for positive horizontal normal strains, see Figure 5.8. This way, unloading does not go trough the
origin and the tensile and compressive part of the stress-strain diagram are not connected.
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σxx

εxx

Figure 5.7: Compatibility between the tensile and compressive part of the horizontal stress-strain diagram according to the
Engineering Masonry Model, with unloading to the origin.

σxx

εxx

Figure 5.8: Compatibility between the tensile and compressive part of the horizontal stress-strain diagram in the case that the
tensile behaviour is derived directly from the shear behaviour of the bed joints.

σxx

εxx

Figure 5.9: Compatibility between the tensile and compressive part of the horizontal stress-strain diagram with tensile unloading
adjusted for compatibility.

To resolve this issue, the horizontal tensile behaviour is adapted so that it remains in the first quad-
rant, see Figure 5.9. To achieve this, a minimal value of zero is assigned to the horizontal tensile
stress:

𝜎፱፱ ≥ 0 (5.16)
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Equivalent Shear Stress Division into the Shear Stress and the Tensile Stress
The stress-strain diagram in Figure 5.6 and the Equations 5.14 and 5.15 describe the total equivalent
shear stress for any given strain state and strain history. They do not, however, give any information
on what part of this total equivalent stress should be the shear part, and which should be the normal
stress part. To divide the total equivalent shear stress into its two components, it is assumed that
the ratio between the two components remains unchanged during softening and further sliding. This
assumption is expected to be realistic because with separate (shear) yielding, the stress also stays the
same regardless of the (shear) strain increments. For simplicity, this aspect is extended to the softening
phase by means of proportionally reducing the shear stress and horizontal tension stress.

5.5. Yield Surface
The yield criterion of equivalent shear |𝜏፱፲| +max (𝜎፱፱ , 0) tan𝛼 ≤ 𝜏፦ፚ፱ is combined with the vertical
tensile failure criterion 𝜎፲፲ ≤ 𝑓፭፲, the vertical compressive failure criterion 𝜎፲፲ ≥ −𝑓፜፲ and the horizontal
compressive failure criterion 𝜎፱፱ ≥ −𝑓፜፱ to draw the three-dimensional yield surface of the Equivalent
Shear Masonry Model, see Figure 5.10.

Compared to the yield surface of the Engineering Masonry Model’s Diagonal stair-case cracks op-
tion in Figure 3.5, this yield surface is smaller. The horizontal compression stress is limited to the
compression strength. The horizontal tensile stress can never be larger than the horizontal tensile
strength derived from friction in the bed joints. Reaching any of the surfaces will lead to softening (i.e.
shrinkage of the yield surface).

Figure 5.10: The yield surface of the Equivalent Shear Masonry Model. The top and bottom are symmetric, the back side is a
flat surface. Stresses in MPa, for material properties ᎎ ዆ 0.5 rad, Ꭳ ዆ 0.6 rad, ፜ ዆ 0.15 MPa, ᑥ፟ᑪ ዆ 0.10 MPa and ᑔ፟ ዆ 14 MPa.





6
User Supplied Subroutine

Implementation
This chapter explains the Fortran code that was written for the Equivalent Shear Masonry Model user
supplied subroutine. Note that this material model is meant for horizontally laid masonry and that the
local axis system must be defined such that the 𝑥 is parallel to the bed joints. Codes snippets of the
most interesting parts of the subroutine will be provided and discussed in detail. In addition, the full
Fortran code of the User Supplied Subroutine usrmat_eqshma.f is given in Appendix B.

6.1. Introduction
The code presented here builds on an earlier user supplied subroutine for the Engineering Masonry
Model material model called usrmat_quad2.f. The sections SHEAR RETENTION and DIAGONAL
CRACK FAILURE CRITERION were replaced by a new section FRICTIONAL CRITERION that de-
scribes the combined shear and horizontal extension failure. Also, the formulas that describe the com-
pressive behaviour were adjusted to the formulas in Equation 3.3, because the original equations in
the usrmat_quad2.f-code did not give the expected stress-strain relationship from the EMM theory
and the EMM as implemented in Diana, see also Figure 7.3(c). Besides, some lines were removed or
simplified, because the function called in it was not supported by the available function libraries. Other
lines were rearranged to a more logical place in the document.

6.2. Front Matter
In the first lines the if statement around the ATTRIBUTES DLLEXPORT::USRMAT-command was re-
moved to make the compiling work on a 64 bit Windows pc.

Line 2 to 4 contain the subroutine statement. This statement mirrors the subroutine name USRMAT
and all its arguments precisely as it should be called in the main frame.

In line 5 to 35 all the dummy arguments that can be used in a user supplied subroutine are explained
in comments. The ones that the Equivalent Shear Masonry Model uses are summarized in Table 6.1.
Some arguments are only given as input, such as the strain, the strain increment, the iteration number
and the user parameters (i.e. among others the material properties). Others are given as input, but
must also be updated and returned to the main frame as output. These are the stress, the stiffness,
the user state variables and the user state indicators. The other arguments, starting with N, inform on
the size of the arrays.

The content of the three user arrays is explained by Tables 6.4 to 6.2. The user parameters USRVAL
are mainly the material properties, complemented with the crack band width. This last one had to be
added manually due to the fact that the function used to automatically obtain the crack band width is not
supported by the available function library. The user state variables USRSTA and users state indicators
USRIND contain information on the current state of the integration point, such as whether it is crushed
or cracked. This is abundantly given in several double precision and integer values, and summarized
into one indicator called FAIMEC. This indicator is set to zero at the start of the document, and then

47
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Table 6.1: In- and output arguments used by the usrmat_eqshma.f user supplied subroutine.

EPS0 double precision array In Strain vector at start of step.
DEPS double precision array In Total strain increment.
NS integer In Number of stress components
ITER integer In Current iteration number.
USRVAL double precision array In User parameters.
NUV integer In Number of user parameters.
USRSTA double precision array InOut User state variables at start of step.

Should be updated at output.
NUS integer In Number of user state variables.
USRIND integer array InOut User indicators at start of step.

Should be updated at output.
NUI integer In Number of user state indicators.
SIGMA double precision array InOut Total stress at start of step.

Current stress at output.
STIFF double precision array InOut Previous tangent stiffness.

Current tangent stiffness at output.

increased by 1, 2 or 4 etc. when a section on a certain failure mode shows it is cracked or crushed,
see also Table 6.3.

Table 6.2: The user indices (integer) as used in the user supplied subroutine in usrmat_eqshma.f.

USRIND

1 1 if CRACKD for I=1 1 if cracked in 𝑥-direction
2 1 if CRACKD for I=2 1 if cracked in 𝑦-direction
3 1 if CRUSHD for I=1 1 if crushed in 𝑥-direction
4 1 if CRUSHD for I=2 1 if crushed in 𝑦-direction
5 FRCFAI 1 if cracked in shear

Table 6.3: Descriptions of the meaning of the failure mechanism indicator FAIMEC

FAIMEC 0 uncracked
FAIMEC uneven cracked in 𝑥-direction
⌊FAIMEC/2⌋ uneven cracked in 𝑦-direction
⌊FAIMEC/4⌋ uneven crushed in 𝑥-direction
⌊FAIMEC/8⌋ uneven crushed in 𝑦-direction
⌊FAIMEC/16⌋ uneven cracked in shear

The user state variables USRSTA also contains information on the loading history of the integration
point in question, such as the maximum reached strains and their corresponding reference stresses
and the cumulative post-peak shear strain. Furthermore it contains information that might interest the
user as output, like the remaining cohesion, the current shear strength, the current load-resistance ratio
and the crack width.

In line 36 to 67 all arguments (i.e. parameters or variables) that are used in the subroutine code are
defined. This includes their type, which can be integer (1, 2, ...), double precision (2.20000E+09 and
suchlike), parameter (fixed integer value), character (A, B, ...) or logical (true, false). This section also
defines the size of the array arguments, for instance EPS0(NS).
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Table 6.4: The user parameters (double precision) as used in the user supplied subroutine in usrmat_eqshma.f.

USRVAL

1 YOUN0(1) 𝐸፱ Horizontal stiffness
2 YOUN0(2) 𝐸፲ Vertical stiffness
3 SHRM0 𝐺፱፲ Shear stiffness
4 TANPHI tan𝜑 Tangent of friction angle
5 FT(1)a 𝑓፭፱ Horizontal tensile strength
6 FT(2) 𝑓፭፲ Vertical tensile strength
7 GFT(1)a 𝐺፟፭፱ Horizontal tensile fracture energy
8 GFT(2) 𝐺፟፭፲ Vertical tensile fracture energy
9 FC(1) 𝑓፜፱ Horizontal compressive strength
10 FC(2) 𝑓፜፲ Vertical compressive strength
11 GFC(1) 𝐺፟፜፱ Horizontal compressive fracture energy
12 GFC(2) 𝐺፟፜፲ Vertical compressive fracture energy
13 UNLFAC 𝜆 Compressive unloading factor
14 COH0 𝑐 Cohesion
15 GFS 𝐺፟፬ Shear fracture energy
16 ANLGE0 𝛼 Diagonal crack angle
17 EPSCFA(1) 𝑛 Factor strain at compressive strength, horizontal
18 EPSCFA(2) 𝑛 Factor strain at compressive strength, vertical
19 HCRAC ℎ Crack band width
a The values entered for these horizontal tensile properties are not used by the Equivalent Shear Masonry Model. Their
presence in the USRVAL-array are merely an inheritance from the usrmat_quad2.f-code.

Table 6.5: The user state variables (double precision) as used in the user supplied subroutine in usrmat_eqshma.f.

USRSTA

1 ALPHA(1) for I=1 𝛼፭,፫፞፟,፱ Horizontal tensile extreme strain
2 ALPHA(1) for I=2 𝛼፭,፫፞፟,፲ Vertical tensile extreme strain
3 ALPHA(2) for I=1 𝛼፜,፫፞፟,፱ Horizontal compressive extreme strain
4 ALPHA(2) for I=2 𝛼፜,፫፞፟,፲ Vertical compressive extreme strain
5 SIGRF(1) for I=1 𝜎፭,፫፞፟,፱ Horizontal tensile reference stress
6 SIGRF(1) for I=2 𝜎፭,፫፞፟,፲ Vertical tensile reference stress
7 SIGRF(2) for I=1 𝜎፜,፫፞፟,፱ Horizontal compressive reference stress
8 SIGRF(2) for I=2 𝜎፜,፫፞፟,፲ Vertical compressive reference stress
9 SHRMAX 𝛾፜፮፦ Cumulative post-peak shear strain

10 DBLE(FAIMEC) Indicator failure mechanism
11 COH1 Remaining cohesion
12 DBLE(FRCFAI) 1.D0 if cracked in shear
13 TAUEQ/TAUMAX 𝜏፞፪/𝜏፦ፚ፱ Load-resistance ratio
14 1.D0 if CRSHED 1.D0 if crushed in either direction
15 DBLE(USRIND(1)) 1.D0 if cracked in 𝑥-direction
16 DBLE(USRIND(2)) 1.D0 if cracked in 𝑦-direction
17 TAUMAX 𝜏፦ፚ፱ Shear strength
18 SHRMEQ 𝐺፱፲,፞፪ Equivalent shear modulus

19
(EPSHEQ-TAUMAX/
SHRMEQ)*HCRAC

𝑤፜፫ፚ፜፤ Crack width
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6.3. Preparation
A piece of code that, among other things, loaded in data about the element type and the crack band
width was removed here, because it used functions that were not available. The element type is as-
sumed to be MEMBRA (plane stress) throughout the document, so all if statements regarding the element
type were removed accordingly. The crack band width has to be provided manually through the user
parameters.

In line 68 to 91 the user parameters are loaded into their argument.
A section calculating minimal fracture energy values, ultimate strains and plastic strains was re-

moved here. Its content was moved into the sections about the tensile, compressive and shear be-
haviour respectively.

In line 92 to 105 the current strain and a first estimate of the current stress are calculated according
to Equations 6.1 to 6.3.

𝜀 = 𝜀ኺ + Δ𝜀 (6.1)
𝜎 = 𝜎ኺ + 𝐸 ⋅ Δ𝜀 (6.2)
𝜏 = 𝜏ኺ + 𝐺፱፲ ⋅ Δ𝛾 (6.3)

In line 106 to 118 all crack indicators, counters and output are initialized.

6.4. Tensile and Compressive Behaviour
In line 119 to 127 a loop is started to execute the next section of code for both the 𝑥- and the 𝑦-direction.
Then all extreme strains and reference stresses are loaded from the user state variables. It is evaluated
whether the integration point has been cracked or crushed before using the user state indicators.

Line 128 to 166 handle the tensile behaviour the same as the usrmat_quad2.f does. The only
difference is that this is only done for I=2, i.e. only for the 𝑦-direction. If the integration point is under
vertical tension, this section returns the current vertical stress and a stiffness.

Line 167 to 248 handle the compressive behaviour. This section is similar to the compressive
section in usrmat_quad2.f with the difference that the formulas for a new compressive extreme are
those in Equation 3.3. If the integration point is in horizontal and/or vertical compression, this section
returns the current horizontal and/or vertical stress and respective stiffness.

In line 249 to 268 the crack data are updated. The new extreme strains and reference stresses are
written into the user state variables. The loop is then closed.

Stiffness
Though the mainframe asks for the current tangent stiffness as output, this value is not always returned,
for reasons explained in Section 2.1.2. The stiffnesses returned be the material model are mostly the
secant stiffness, only the tangent stiffness during compressive unloading, but the linear stiffness if it is
the first iteration and always a minimum of 0.0001 times the linear stiffness.

6.5. Frictional Criterion
Line 273 to 382 contain the frictional criterion proposed in Chapter 5. In the first lines the values of the
cumulative shear strain and the remaining cohesion are loaded in from the user state parameters.

Listing 6.1: Line 273 to 275 of usrmat_eqshma.f

273 C... FRICTIONAL CRITERION
274 SHRMAX = USRSTA(9)
275 COH1 = USRSTA(11)

Then in line 276 an if statement is started with the condition that the integration point is under horizontal
tension. In that case a combination of shear and horizontal tension is evaluated.

Listing 6.2: Line 276 and 277 of usrmat_eqshma.f

276 IF ( EPS(1) .GT. 0.D0 ) THEN
277 C... COMBINATION OF SHEAR AND HORIZONTAL TENSION

The shear strain and stress are inverted in case of negative shear, so that the rest of this if statement1

1That is the statement following the if condition in line 276, running from line 277 to line 346.
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can also be used in case of negative shear. An indicator I is set to register whether or not this inversion
has taken place.

Listing 6.3: Line 278 to 286 of usrmat_eqshma.f

278 IF ( SIGSHR .LT. 0.D0 ) THEN
279 SIGSHR = -SIGSHR
280 SI0SHR = -SI0SHR
281 EPSSHR = -EPSSHR
282 DEPSHR = -DEPSHR
283 I = 1
284 ELSE
285 I = 0
286 END IF

The equivalent shear stress is calculated.

Listing 6.4: Line 287 of usrmat_eqshma.f

287 EPSHEQ = EPSSHR + EPS(1)/TAN(ANGLE0)

It is checked whether the shear has reached the maximum shear strength before. This is done by
evaluating the 18th entry of the user state parameters, where the equivalent shear stiffness is stored
once the peak has been reached. Pre-peak, however, this entry should be zero. If that is the case,
the current equivalent shear stiffness is calculated as the current equivalent shear stress divided by
the equivalent shear strain. If this equivalent shear strain would be very small, dividing by it would be
problematic. Therefore, if it is smaller than 106 times themachine precision DPMPAR(1)2, an alternative
approximation of the equivalent shear stiffness is used. Else the integration point has already reached
its peak before, so the equivalent shear stiffness is loaded in from the user state parameters.

Listing 6.5: Line 288 to 299 of usrmat_eqshma.f

288 IF ( USRSTA(18) .EQ. 0.D0 ) THEN
289 C... PRE-PEAK
290 IF ( EPSHEQ .LT. 1.D+6*DPMPAR(1) ) THEN
291 SHRMEQ = SHRM0
292 ELSE
293 SHRMEQ = ( SHRM0*EPSSHR + YOUN0(1)*EPS(1)*TAN(ANGLE0) )
294 $ / EPSHEQ
295 END IF
296 ELSE
297 C... POST-PEAK
298 SHRMEQ = USRSTA(18)
299 END IF

Next, the ultimate shear strain is calculated according to Equation 5.14. The remaining cohesion is
calculated according to Equation 5.13, with a minimum value of zero. When the user supplied a unre-
alistically small value for the shear fracture energy, the value of the ultimate shear strain can become
to small to divide by, or even negative. It was chosen to then still allow the material to reach its peak
strength. For this purpose, the cohesion is equal to the initial cohesion before the peak is reached and
abruptly lowered to zero after, see Figure 7.4(e) for an illustration of this behaviour. If the integration
point is cracked as a result of either horizontal or vertical tension, the cohesion is reduced to zero.

Listing 6.6: Line 300 to 311 of usrmat_eqshma.f

300 SHRULT = 2.D0*GFS/(HCRAC*COH0)-COH0/SHRMEQ
301 IF ( SHRULT .GT. 1.D+6*DPMPAR(1) ) THEN
302 COH1 = COH0*(SHRULT-SHRMAX)/SHRULT

2For double precision numbers the machine precision is in the order of 10-16, so this small value is about 10-10. The relevant
strain values range from 0 to the order 10-3, so 10-10 is indeed a very small value in this context.
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303 COH1 = MAX( 0.D0, COH1 )
304 ELSE IF ( SHRMAX .EQ. 0.D0 ) THEN
305 C... GFS TOO SMALL, PRE-PREAK
306 COH1 = COH0
307 ELSE
308 C... GFS TOO SMALL, POST-PEAK
309 COH1 = 0.D0
310 END IF
311 IF ( CRCKED ) COH1 = 0.D0

Then the shear strength is calculated according to Equation 2.13. The shear stress is restricted by the
shear strength according to Equation 2.12 and the horizontal stress is restricted by the shear strength
divided by tan𝛼 according to Equation 5.5. Subsequently, the two stresses are combined into the
equivalent shear stress according to Equation 5.4.

Listing 6.7: Line 312 to 315 of usrmat_eqshma.f

312 TAUMAX = MAX(0.D0, COH1-SIGMA(2)*TANPHI)
313 SIGSHR = MIN( SIGSHR, TAUMAX )
314 SIGMA(1) = MIN( MAX(SIGMA(1),0.D0) , TAUMAX/TAN(ANGLE0))
315 TAUEQ = SIGSHR + SIGMA(1)*TAN(ANGLE0)

Now we have reached the combined failure criterion. If the equivalent shear strain is larger than the
current shear strength, the failure mechanism indicator FAIMEC is increased with 16 to indicate shear
failure, see also Table 6.3 for more information.

Listing 6.8: Line 316 and 317 of usrmat_eqshma.f

316 IF ( ABS(TAUEQ) .GE. TAUMAX ) THEN
317 FAIMEC = FAIMEC + 16

Then there are three possible loading situations. The first is shear loading and simultaneous tensile
unloading. This is the case when the tensile strain increment is negative. The horizontal tensile stress is
assumed to unload with its linear stiffness, and it is kept the same as the first estimate by Equation 6.2.
The shear stress is then assumed to be responsible for the rest of the equivalent shear stress.

Listing 6.9: Line 318 to 320 of usrmat_eqshma.f

318 IF ( DEPS(1) .LT. 0.D0 ) THEN
319 C... SHEAR LOADING, TENSILE UNLOADING
320 SIGSHR = TAUMAX - SIGMA(1)*TAN(ANGLE0)

The second possible loading situation is tensile loading and simultaneous shear unloading.This is the
case when the shear strain increment is negative3. This time, the shear stress is assumed to unload
with its linear stiffness, and is kept the same as its first estimate by Equation 6.3. The horizontal tensile
stress is now assumed to be responsible for the rest of the equivalent shear stress.

There is one special case, though, and that is when the shear unloading goes to zero shear. That
is the case when the shear stress at the start of the increment and the first estimate of the shear stress
do not have the same sign, so their product is negative. Then the shear stress is assumed to be zero
and the horizontal tensile stress is thus assumed to be responsible for all equivalent shear stress.

Listing 6.10: Line 321 to 327 of usrmat_eqshma.f

321 ELSE IF ( SIGSHR*SI0SHR .LT. 0.D0 ) THEN
322 C... SHEAR UNLOADING TO ZERO, TENSILE LOADING
323 SIGSHR = 0.D0
324 SIGMA(1) = TAUMAX/TAN(ANGLE0)
325 ELSE IF ( DEPSHR .LT. 0.D0 ) THEN
326 C... TENSILE LOADING, SHEAR UNLOADING
327 SIGMA(1) = (TAUMAX - SIGSHR)/TAN(ANGLE0)

3Or in case of negative shear stress, the shear strain increment is positive, but being inverted in line 282 it has a negative value
now.
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The third possible loading situation is simultaneous shear and horizontal tensile loading. The ratio
between the shear stress and the horizontal tensile stress is then kept the same as at the beginning of
the increment, as described in Section 5.4. The RATIO is the fraction of the equivalent shear stress that
is due to the shear stress. An alternative approximation of this ratio is provided is case the equivalent
shear stress at the start of the increment (the denominator for calculating the ratio) is very small in order
to prevent problems.

Listing 6.11: Line 328 to 339 of usrmat_eqshma.f

328 ELSE
329 C... SIMULTANEOUS SHEAR AND TENSILE LOADING
330 IF ( ( SIG0(1)*TAN(ANGLE0) + SI0SHR )
331 $ .LT. 1.D+6*DPMPAR(1) ) THEN
332 RATIO = 0.5D0
333 ELSE
334 RATIO = SI0SHR / (SIG0(1)*TAN(ANGLE0) + SI0SHR)
335 END IF
336 C... RATIO BETWEEN SHEAR AND HORIZONTAL TESNION IS MAINTAINED

DURING SOFTENING AND YIELDING
337 SIGSHR = RATIO*TAUMAX
338 SIGMA(1) = (1.D0 - RATIO)*TAUMAX/TAN(ANGLE0)
339 END IF

The equivalent shear modulus is stored in the user state parameters array. The equivalent shear
increment is calculated and added to the cumulative shear strain. The shear crack indicator FRCFAI is
set to one. The if statement started in line 316 is ended. If the shear stress was negative up until line
278, it is now inverted back to negative.

Listing 6.12: Line 340 to 346 of usrmat_eqshma.f

340 USRSTA(18) = SHRMEQ
341 C... SHRMEQ IS KEPT CONSTANT AFTER PEAK
342 DEPSEQ = DEPSHR + DEPS(1)/TAN(ANGLE0)
343 SHRMAX = SHRMAX + ABS( DEPSEQ )
344 FRCFAI = 1
345 END IF
346 IF ( I .EQ. 1 ) SIGSHR = -SIGSHR

Here the if statement started in line 276 continues with an else statement. If there is no horizontal
tension, than the code checks for shear without horizontal tension. The equivalent shear stress is now
simply the absolute value of the shear stress4. The pre-peak equivalent shear modulus is the shear
modulus and the post peak shear modulus is what was stored in the user state parameters the first time
the shear strength was reached. The ultimate shear strain and the remaining cohesion are calculated
as in line 300 to 311.

Listing 6.13: Line 347 to 366 of usrmat_eqshma.f

347 ELSE
348 C... SHEAR WITHOUT HORIZONTAL TENSION
349 TAUEQ = ABS(SIGSHR)
350 IF ( USRSTA(18) .EQ. 0.D0 ) THEN
351 C... PRE-PEAK
352 SHRMEQ = SHRM0
353 ELSE
354 C... POST-PEAK
355 SHRMEQ = USRSTA(18)
356 END IF

4In this case, the equivalent shear stress is only needed to calculate the load-resistance ratio in line 397.
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357 SHRULT = 2.D0*GFS/(HCRAC*COH0)-COH0/SHRMEQ
358 IF ( SHRULT .GT. 1.D+6*DPMPAR(1) ) THEN
359 COH1 = COH0*(SHRULT-SHRMAX)/SHRULT
360 COH1 = MAX( 0.D0, COH1 )
361 ELSE IF ( SHRMAX .EQ. 0.D0 ) THEN
362 COH1 = COH0
363 ELSE
364 COH1 = 0.D0
365 END IF
366 IF ( CRCKED ) COH1 = 0.D0

The shear strength is again calculated according to Equation 2.13. If the absolute value of shear stress
is larger then the shear strength, the integration point is cracked in shear, so the failure mechanism
indicator FAIMEC is increased with 16. In that case shear stress is reduced to the current shear strength
and the equivalent shear modulus is stored in the user state parameters. The equivalent shear strain
is now equal to the absolute value of the shear strain5. The cumulative shear strain is increased with
the absolute value of the shear strain increment. Finally, the if/else statement from lines 276 and 347
is ended.

Listing 6.14: Line 367 to 378 of usrmat_eqshma.f

367 TAUMAX = MAX(0.D0, COH1-SIGMA(2)*TANPHI)
368 IF ( ABS(SIGSHR) .GT. TAUMAX ) THEN
369 C... IF THE SHEAR STRESS IS LARGER THAN THE LIMIT THE PARAMETER

FAIMEC IS INCREASED OF 16
370 FAIMEC = FAIMEC + 16
371 IF ( SIGSHR .GT. TAUMAX ) SIGSHR = TAUMAX
372 IF ( SIGSHR .LT. -TAUMAX ) SIGSHR = -TAUMAX
373 USRSTA(18) = SHRMEQ
374 EPSHEQ = ABS(EPSSHR)
375 SHRMAX = SHRMAX + ABS( DEPSHR )
376 FRCFAI = 1
377 END IF
378 END IF

6.6. Post Processing
At the end of the user subroutine some user state parameters are updated with the current values of
the corresponding arguments. If the peak shear stress has been reached, a measure for the horizontal
crack opening due to shear sliding in the bed joints is given in line 379. This crack width is the plastic
part of the equivalent deformation:

𝑤፜፫ፚ፜፤ = 𝛾 ፪,፩፥ፚ፬፭።፜ ⋅ ℎ = (𝛾 ፪ − 𝛾 ፪,፞፥ፚ፬፭።፜) ⋅ ℎ = (𝛾 ፪ −
𝜏፦ፚ፱
𝐺፱፲,፞፪

) ⋅ ℎ (6.4)

Also, the output stiffness matrix is constructed. For the 𝑥- and 𝑦-direction, these are the stiffnesses
as described in Section 6.4. The returned shear stiffness is always equal to the initial linear shear
stiffness, because the tangent stiffness is always either that or negative in the softening part, or zero
during yielding.

Listing 6.15: Line 379 to 401 of usrmat_eqshma.f

379 IF ( USRSTA(18) .NE. 0.D0 ) USRSTA(19) =
380 $ (EPSHEQ-TAUMAX/SHRMEQ)*HCRAC
381 USRSTA(9) = SHRMAX
382 USRSTA(11) = COH1
383 C

5In this case, the equivalent shear strain is only used to calculate the crack width due to shear in line 379.
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384 C
385 CALL RSET( 0.D0, STIFF, NS*NS )
386 STIFF(1,1) = YOUN(1)
387 STIFF(2,2) = YOUN(2)
388 STIFF(3,3) = SHRMOD
389 SIGMA(3) = SIGSHR
390 CALL RSET( 0.D0, EPSP, 4 )
391 IF ( USRIND(1) .EQ. 1 ) EPSP(2) = MAX( 0.D0, EPS(1)*HCRAC )
392 IF ( USRIND(2) .EQ. 1 ) EPSP(1) = MAX( 0.D0, EPS(2)*HCRAC )
393 USRIND(5) = FRCFAI
394
395 USRSTA(10) = DBLE( FAIMEC )
396 USRSTA(12) = DBLE( FRCFAI )
397 USRSTA(13) = TAUEQ/TAUMAX
398 IF ( CRSHED ) USRSTA(14) = 1.D0
399 USRSTA(15) = DBLE( USRIND(1) )
400 USRSTA(16) = DBLE( USRIND(2) )
401 USRSTA(17) = TAUMAX

After line 401 the code concludes with post processing for the crack status in line 402 to 422. This part
is the same as in the usrmat_quad2.f-file. That file then continues with a similar post processing for
the plasticity status, but that part was removed because it again used an unsupported function.

Finally, in line 424, the subroutine command started in line 2 is ended.
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7
Single Element Model

A single element model was studied in order to test whether the code of the Equivalent Shear Masonry
Model work as it was intended. Several load cases where studied for the Equivalent Shear Masonry
Model and also for the Engineering Masonry Model with the Diagonal stair-case cracks option from
Diana 10.2, for comparison.

7.1. Model Description
Figure 7.1 shows the single element model. It is a four node first-order quadrilateral plane stress
element (Q8MEM) 0.1 m wide by 0.1 m heigh with a thickness of 0.1 m. Its local x-axis is horizontally
to the right and its local y-axis is vertically upwards. One single integration point is used. This is
summarized in Table 7.1.

Figure 7.1: The Single Element Model: a four node element with one integration point (the ×), loaded by a vertical overload and
horizontal prescribed displacements for horizontal extension (፮ᑖ) and shear (፮ᑤ).

The element is simply supported at the bottom nodes. An overload of 0.40 MPa is applied to the top
edge. A prescribed horizontal deformation 𝑢፞ = 𝑏፦፨፝፞፥ = 0.1 m applied to the bottom right node, and
another one 𝑢፬ = ℎ፦፨፝፞፥ = 0.1 m to the top left node. These displacements are chosen to correspond
to an extension strain and a shear strain respectively of 1.0, and are multiplied by a time dependent
function. A FIX-tying ensures that the horizontal displacement of node 1 is equal to the sum of the
horizontal displacements of node 2 and 4. The material properties are shown in Table 7.2. As an
example, the .dat-file of the single element analysis with the Equivalent Shear Masonry Model for
load case G1 is included as Listing C.1 in Appendix C.
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Table 7.1: Element properties of the single element model.

Model
component

Element
type

Integration
scheme

Mesh
size

Direction of
local 𝑥-axis Material Model

The single
element Q8MEM Reduced, i.e.

Gauss 1x1
100x100
mm Horizontal

Equivalent Shear Masonry
Model or Engineering Ma-
sonry Model – Diagonal stair-
case cracks respectively

Table 7.2: Material properties used in the single element model for both the Equivalent
Shear Masonry Model and the Equivalent Shear Masonry Model.

Horizontal stiffness 𝐸፱ 2200 MPa
Vertical stiffness 𝐸፲ 3400 MPa
Shear stiffness 𝐺፱፲ 1300 MPa
Tangent of friction angle tan𝜑 0.684137 [-]
Vertical tensile strength 𝑓፭፲ 0.10 MPa
Tensile fracture energy 𝐺፟፭ 5 N/m
Compressive strength 𝑓፜ 14 MPa
Horizontal compressive fracture energy 𝐺፟፜ 20000 N/m
Compressive unloading factor 𝜆 0.3 [-]
Cohesion 𝑐 0.15 MPa
Shear fracture energy 𝐺፟፬ 5 N/m
Diagonal crack angle 𝛼 0.5 rad
Factor strain at compressive strength 𝑛 4 [-]
Crack band widtha ℎ 0.1 m
Crack bandwidth specificationb Govindjee
a Used for the Equivalent Shear Masonry Model only.
b Used for the Engineering Masonry Model only.

7.2. Load Cases
Using time dependent functions, several load cases were investigated. The letters refers to the failure
modes shown in Tables 2.1 and 4.1.

A Vertical tensile loading, unloading and reloading.1

B Vertical compressive loading, unloading and reloading.2

C1 Shear loading.

C2 Shear loading and unloading halfway through the softening branch.

C3 Shear loading and unloading when a too small value for the shear fracture energy is provided
(here 𝐺፟፬ = 0.5 N/m).

DE Horizontal tensile loading and unloading to end in compression.

G1 Shear loading and simultaneous horizontal tensile loading that changes to tensile unloading to
end with compression.

G2 Horizontal tensile loading and simultaneous positive shear loading that changes to shear unload-
ing to zero.

G3 Horizontal tensile loading and simultaneous negative shear loading that changes during the soft-
ening phase to shear unloading to end with positive shear.

1For this load case, vertical prescribed displacements were applied to the top nodes 1 and 4 instead of the loads shown in
Figure 7.1.

2See footnote 1.
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All load cases were deformation controlled. For load cases C1, C2, C3, DE, G1, G2 and G3 a vertical
overload was applied in a separate phase before the deformation load and its accompanying supports
and tyings were applied. Horizontal compression was not studied separately because this uses the
same code as for vertical compression.

7.3. Analysis Procedure
A non-linear static analysis was performed with prescribed displacement loads that change over time.
First the overload was applied in ten load steps. Then the prescribed deformations were applied, in
time steps so that Δ𝜀፱፱ and/or Δ𝛾፱፲ were 10ዅ኿. The regular Newton-Raphson iteration method was
used, with a maximum number of iterations set at 50. Both the force and the displacement norm had to
be satisfied, both with a tolerance of 0.01, though the analysis should continue when convergence was
not reached. As an example, the .dcf-file of the single element analysis with the Equivalent Shear
Masonry Model for load case G1 is included as Listing C.2 in Appendix C.

7.4. Results
Figure 7.2 to 7.8 show the stress-strain diagrams that are the results of the single element model. The
Equivalent Shear Masonry Model is shown on the left and the Engineering Masonry Model’s Diagonal
stair-case cracks option on the right.

The lines in the graphs are coloured blue, teal and purple consecutively. This illustrates the loading
history and makes it easier to compare the separate graphs in each figure. In Figure 7.2 to 7.5 the blue
line represents loading, the teal line unloading and the purple line reloading. In Figure 7.6 to 7.8 the
colours correspond to the consecutive parts of the loading protocol given in each subfigure (a).

For each load case the relevant stress-strain diagram(s) is/are given. The non-visualized stresses
and deformations are (or should be) zero, with the exception of the vertical compression due to the
overload with load cases C1, C2, C3, DE, G1, G2 and G3. This is true for the Equivalent Shear Masonry
Model, but not completely for the Engineering Masonry Model’s Diagonal stair-case cracks option. This
model tends to ’invent’ small stress and strain values, even though the prescribed displacement of the
nodes does not allow any strain in that specific direction. It concerns horizontal stress and strain for
the vertical tension and compression and for both the shear load cases. These values are 103 to 1028
times smaller than the relevant stress and strain values.

For each of the combined load cases an additional stress-strain diagram is given, beside the hor-
izontal and shear diagrams. For the Equivalent Shear Masonry Model, the (fictive) equivalent stress-
strain diagram is added, see Figures 7.6(f), 7.7(f) and 7.8(f). The equivalent shear stress is calculated
with Equation 5.4 and the equivalent shear strain using Equation 5.11, but then cumulative over the
previous steps. These equivalent stress-strain diagrams are added to elucidate how the failure mode
works.

For the Engineering Masonry Model’s Diagonal stair-case cracks option, stress-strain diagram in
the 𝑛-direction normal to the expected diagonal staircase crack is added, see Figures 7.6(g), 7.7(g) and
7.8(g). The values are calculated with help of Equations 3.12 and 3.14. These diagonal stress-strain
diagrams are meant to elucidate what the Diagonal stair-case crack option of the Engineering Masonry
Model does.
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(a) Vertical stress-strain diagram using the Equivalent
Shear Masonry Model. Note that the reloading overlaps
the secant unloading.
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(b) Vertical stress-strain diagram using the Engineering
Masonry Model with Diagonal stair-case cracks option.
Note that the analysis was stopped just before reaching
zero strain due to divergence.

Figure 7.2: Results of the single element model for load case A, vertical tensile loading (in blue), unloading (in teal) and reloading
(in purple).
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(a) Vertical stress-strain diagram using the Equivalent
Shear Masonry Model.
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(b) Vertical stress-strain diagram using the Engineering
Masonry Model with Diagonal stair-case cracks option.
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(c) Vertical stress-strain diagram using the usr-
mat_quad2.f-code of the Engineering Masonry
Model.

Figure 7.3: Results of the single element model for load case B, vertical compressive loading (in blue), unloading (in teal) and
reloading (in purple).
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(a) Shear stress-strain diagram for load case C1 using the
Equivalent Shear Masonry Model.
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(b) Shear stress-strain diagram for load case C1 using
the Engineering Masonry Model with Diagonal stair-case
cracks option.
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(c) Shear stress-strain diagram for load case C2 using the
Equivalent Shear Masonry Model.
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(d) Shear stress-strain diagram for load case C2 using
the Engineering Masonry Model with Diagonal stair-case
cracks option.
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(e) Shear stress-strain diagram for load case C3 using the
Equivalent Shear Masonry Model.

Figure 7.4: Results of the single element model for load cases C1 shear loading (in blue), C2 shear loading (in blue) and unloading
(in teal) halfway through the softening and C3 shear loading (in blue) and unloading (in teal) for a too low value of the shear
fracture energy ፆᑗᑤ.
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Note that the unloading overlaps the linear loading.

Figure 7.5: Results of the single element model for load case DE, horizontal tensile loading (in blue) and unloading (in teal) to
end with compression.
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(c) Horizontal stress-strain diagram using the Engineering
Masonry Model with Diagonal stair-case cracks option.
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(e) Shear stress-strain diagram using the Engineering Ma-
sonry Model with Diagonal stair-case cracks option.
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(f) Equivalent shear stress-strain diagram using the Equiv-
alent Shear Masonry Model.
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(g) Diagonal stress-strain diagram using the Engineering
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a crack in direction ዅᎎ.

Figure 7.6: Results of the single element model for load case G1, shear loading and simultaneous horizontal tensile loading and
then tensile unloading to end with compression. Colours correspond to the consecutive parts of the loading protocol applied.
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(e) Shear stress-strain diagram using the Engineering Ma-
sonry Model with Diagonal stair-case cracks option.
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(f) Equivalent shear stress-strain diagram using the Equiv-
alent Shear Masonry Model.
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a crack in direction ዅᎎ.

Figure 7.7: Results of the single element model for load case G2, horizontal tensile loading and simultaneous positive shear
loading and then shear unloading to zero. Colours correspond to the consecutive parts of the loading protocol applied.
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(c) Horizontal stress-strain diagram using the Engineering
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(f) Equivalent shear stress-strain diagram using the Equiv-
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Figure 7.8: Results of the single element model for load case G3, horizontal tensile loading and simultaneous negative shear
loading, then shear unloading during the softening phase to end with positive shear. Colours correspond to the consecutive parts
of the loading protocol applied.
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7.5. Discussion
Discussion of the Equivalent Shear Masonry Model Results
The previous section presented the stress-strain diagrams of the single element model that display the
behaviour of the Equivalent Shear Masonry Model. The vertical curves are all fluent and the behaviour
is exactly as intended in the theory. The separate shear and horizontal tension curves both resemble
the shear behaviour of the bed joints, except that the horizontal stress does not become negative for
positive strain. Figure 7.4(e) shows that the code ensures that the maximum shear strength is reached,
even when the user provides a too small value for the shear fracture energy. This does lead to a sudden
drop in the shear stress-strain diagram.

The equivalent shear curves in Figures 7.6(f), 7.7(f) and 7.8(f) show that the equivalent shear stress
softens and yields according to the shear behaviour of the bed joints. The first two combinations of
horizontal tensile stress and shear stress (in Figures 7.6 and 7.7) show that when either one unloads,
the other adopts the released capacity. The unloading of direction happens independent of the other
and with its own linear stiffness. The third combination (in Figure 7.8) shows that thematerial model also
works for negative shear. It also shows that if one component (here the shear) unloads relatively quickly,
the other component (here the horizontal tension) only loads with its own linear stiffness, causing the
equivalent shear stress to decrease. Only when the combined equivalent shear once more becomes
larger than the shear strength, it continues to soften and yield according to the shear behaviour of the
bed joints.

Discussion of the Engineering Masonry Model’s Diagonal stair-case cracks Option Results
Figures 7.3 and 7.4 show that the analyses with the Engineering Masonry Model’s Diagonal stair-case
cracks option show similar results for the vertical compression and the (separate) shear. Figure 7.3(c)
illustrates that the usrmat_quad2.f-code’s formulas for the compressive behaviour do not represent
the desired behaviour, as mentioned in Section 2.4.4. Figure 7.5 shows that the Engineering Masonry
Model’s Diagonal stair-case cracks option uses a linear elastic relation for horizontal tension.

The Engineering Masonry Model’s Diagonal stair-case cracks option shows unexpected results
for the combined load cases G1, G2 and G3. The stress-strain diagrams show sudden drops at the
moment the diagonal strength criterion is reached. Instead of the expected plateau, the stress just
drops instantly and then continues to increase with the same linear stiffness. Also, the crack status
is confused. For example, it says PARTIALLY OPEN UNLOADING when loading continues after the
first sudden drop in Figures 7.6(c) and (e), 7.7(c) and (e) and 7.8(c) and (e). Also, the vertical tension
load case A in Figure 7.2 diverged during the unloading. There seems to be a bug that should be
investigated further. For now, the stress-strain diagrams normal to the expected diagonal staircase
crack in Figures 7.6(g), 7.7(g) and 7.8(g) can regrettably not elucidate the operation of the Engineering
Masonry Model’s Diagonal stair-case cracks option.



8
Masonry Unit Cell

A masonry unit cell is studied to observe stress-strain behaviour of a piece of masonry for the same
load cases studied in Chapter 7.

8.1. Model Description
The masonry in the unit cell model is modelled the same way as by [9, Chapter 4]. Therefore, a
micro-modelling approach was used, where the bricks are modelled as linear elastic plane stress el-
ements; and the mortar and mortar-brick interface are modelled together as plane stress elements
whose behaviour is described by the Engineering Masonry Model with the Direct input head-joint ten-
sile strength1. The joints are thus modelled as a orthotropic material with tensile and compressive
behaviour as in Sections 2.4.3 and 2.4.4 and shear behaviour as in Section 2.4.2 parallel to their own
orientation. For this purpose, the local 𝑥-axis of the joint elements is defined parallel to the joint orien-
tation.

The masonry unit cell is defined as the smallest repeated unit in the masonry pattern. For the
running bond, this is a cell that is a single brick plus mortar joint wide and two bricks plus two mortar
joints high, see Figure 8.1. The brick dimensions are 210 mm wide and 50 mm high. The joints are 10
mm thick. The thickness of the masonry is 100 mm. The mesh size is 10x10 mm. Second-order eight
node quadrilateral plane stress elements (CQ16M) are used. The integration scheme is regular. This
is summarized in Table 8.1.

Table 8.1: Element properties used in the masonry unit cell.

Model
component

Element
type

Integration
scheme

Mesh
size

Direction of
local 𝑥-axis Material Model

Bricks CQ16M Regular, i.e.
Gauss 2x2

50x50
mm n.a. Linear Elastic Isotropic

Head joints CQ16M Regular, i.e.
Gauss 2x2

50x50
mm Vertical

Engineering Masonry Model
– Direct input head-joint ten-
sile strength

Bed joints CQ16M Regular, i.e.
Gauss 2x2

50x50
mm Horizontal

Engineering Masonry Model
– Direct input head-joint ten-
sile strength

Figure 8.1(a) shows the loads and boundary conditions that are active during the first phase of the
analysis, when the overload is applied. The overload is 0.40 MPa. The bottom of the model is simply
supported in the 𝑦-direction. The bottom left node is also supported in the 𝑥-direction. The vertical
displacements of the top nodes of the model are all equal.

Figure 8.1(b) shows the additional loads and boundary conditions that become active during the
second phase of the analysis, when the horizontal extension and/or shear loading is applied. This load
1Remember that this actually means direct input of the tensile strength of the masonry in the direction normal to the head joints.
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(a) Loads and boundary conditions that are active during the first phase.

(b) Additional loads and boundary conditions that become active during the second phase. One left-right node pair and one
top-bottom node pair are illustrated as examples for the tyings of all node pairs.

Figure 8.1: The masonry unit cell model, with the brick in brown, the bed joints in dark grey and the head joints in light grey.

is applied as prescribed displacements to the corner nodes. Similar to the Single Element Model, a
horizontal displacement 𝑢፬ = ℎ፦፨፝፞፥ = 120 mm is applied to the top corner nodes, and a horizontal
displacement 𝑢፞ = 𝑏፦፨፝፞፥ = 220 mm is applied to the right corner nodes. These displacements are
chosen to represent a shear strain and an extension strain respectively of 1.0, and are multiplied by a
time dependent function.

Periodic boundary conditions are defined using FIX-tyings, that allow for a displacement to be set
as a linear equation of several other displacements, see [3, Section 2.2.7.1]. This tying is not available
in Diana’s user interface, but can be scripted in the .dat-file2. Each two nodes on the left and right
side that have the same 𝑦-coordinate are tied together. For each of these left-right node pairs, the
vertical displacement is set equal and the horizontal displacement is defined such that the horizontal
displacement of the right node is equal to the sum of the horizontal displacement of the left node and
the applied extension displacement 𝑢፞. Similarly, each two nodes on the top and bottom side that have
the same 𝑥-coordinate are tied together. Also for each top-bottom pair, the horizontal displacement of
the top node equals the sum of the horizontal displacement of the bottom node and the applied shear
2Take care that when this .dat-file is imported into the user interface, the FIX-tyings will work fine at first, but once the model
is saved as a .dpf-file and reopened, they do not work anymore.
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displacement 𝑢፬.
The material properties of the bricks are given in Table 8.2 and the material properties of the bed

joint are given in Table 8.3. The material properties of the head joints are the same as those of the the
bed joint, with the exception that the tensile strength and stiffness are halved.

Table 8.2: Material properties used for the bricks in the masonry unit cell model.

Young’s modulus 𝐸 8049 MPa
Poisson’s ratio 𝜈 0.16 [-]
Mass density 𝜌 1624 kg/m3

Table 8.3: Material properties used for the bed joints in the masonry unit cell model.

Horizontal Young’s modulus 𝐸፱ 1050 MPa
Vertical Young’s modulus 𝐸፲ 1050 MPa
Shear modulus 𝐺፱፲ 453 MPa
Mass density 𝜌 1624 kg/m3

Head-joint tensile strength 𝑓፭፱ 0.08 MPa
Bed-joint tensile strength 𝑓፭፲ 0.08 MPa
Fracture energy in tension 𝐺፟፭ 6.9 N/m
Compressive strength 𝑓፜ 3.59 MPa
Fracture energy in compression 𝐺፟፜ 6400 N/m
Factor strain at compressive strength 𝑛 3 [-]
Unloading factor 𝜆 0 [-]
Friction angle 𝜑 0.688 rad
Cohesion 𝑐 0.13 MPa
Fracture energy in shear 𝐺፟፬ 3 N/m
Residual tensile strength [-] MPa
Crack bandwidth specification Govindjee

These material properties are adopted from [9, Chapter 4], though the following aspects were
changed. The intersection between the head joint and the bed joint is assumed to have the weaker
properties of the head joint. These weaker properties consist of not only a lower stiffness, but also a
lower strength. Furthermore, the shear fracture energy was reduced from 300 N/m to 3 N/m, so that
the softening branch is steep enough for the softening to be visible in the result graphs.

8.2. Load Cases
Of all the load cases studied in Section 7.2, the relevant ones for horizontal extension, shear loading
and combinations thereof were studied for the Masonry Unit Cell model, too. They are:

C1 Shear loading.

C2 Shear loading and unloading halfway through the softening branch.

DE Horizontal tensile loading and unloading to end in compression.

G1 Shear loading and simultaneous horizontal tensile loading and then tensile unloading to end with
compression.

G2 Horizontal tensile loading and simultaneous positive shear loading and then shear unloading to
zero.

G3 Horizontal tensile loading and simultaneous negative shear loading, then shear unloading during
the softening phase to end with positive shear.
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In addition, two extra variants of load cases G1, G2 and G3 are studied. In these variants the load
paths are scaled, so that the ratio between the shear loading and the extension loading is varied. The
a-variant is the same as in Chapter 7, for the b-variant the shear loading is doubled and for the c-variant
both the shear load is doubled and the extension load is halved.

8.3. Analysis Procedure
A non-linear static analysis was performed with prescribed displacement loads that change over time.
First, the overload was applied in ten load steps. Then the prescribed deformations were applied, in
time steps so that Δ𝜀፱፱ and/or Δ𝛾፱፲ were 10ዅ኿ in the load cases C1, C2, DE, G1a, G2a and G3a. The
regular Newton-Raphson iteration method was used, with a maximum number of iterations set at 50.
Both the force and the displacement norm had to be satisfied, both with a tolerance of 0.01, though the
analysis should continue when convergence was not reached.

8.4. Results
Figure 8.2, 8.4, 8.6, 8.8 and 8.10 show the stress-strain diagrams that are the results of the masonry
unit cell model. The horizontal normal stress is the average stress over the left (or right) side of the
unit cell and the shear stress is the average shear stress along the top (or bottom) of the unit cell. The
horizontal strain is 𝜀፱፱ = 𝑢፞/𝑏፦፨፝፞፥ and the shear strain is 𝛾፱፲ = 𝑢፬/ℎ፦፨፝፞፥.

Like in Chapter 7 the lines in the stress-strain graphs are coloured blue, teal and purple consecu-
tively. In Figure 8.2 and 8.4 the blue line represents loading, the green line unloading and the purple
line reloading. In Figure 8.6 to 8.10 the colours correspond to the consecutive parts of the loading
protocol given in each subfigure (a).

Figure 8.3, 8.5, 8.7, 8.9 and 8.11 show the deformed shapes and the principle strain of al the load
cases. These are given either at the end of the load case, or at the end of the first (blue) part of the
loading.
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(a) Horizontal stress-strain diagram for load case C1.
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(b) Shear stress-strain diagram for load case C1.
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(c) Horizontal stress-strain diagram for load case C2.
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(d) Shear stress-strain diagram for load case C2.

Figure 8.2: Stress-strain diagrams of the masonry unit cell model for load cases C1 shear loading (in blue) and C2 shear loading
(in blue) and unloading (in teal) halfway through the softening.



8.4. Results 73

(a) Principle strain plot at the end of load case C1, at max-
imum positive shear strain.

(b) Principle strain plot at the end of load case C2, at max-
imum negative shear strain.

Figure 8.3: Principle strain plot of the masonry unit cell model at the end of load case C1 shear loading and at the end of load
case C2 shear loading halfway through the softening. The deformation is magnified by a factor 100.
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(a) Horizontal stress-strain diagram for load case DE.
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(b) Shear stress-strain diagram for load case DE.

Figure 8.4: Stress-strain diagrams of the masonry unit cell model for load case DE, horizontal tensile loading (in blue) and
unloading (in teal) to end with compression.

(a) Principle strain plot at the end of the loading of load
case DE, at maximum horizontal tensile strain.

(b) Principle strain plot at the end of the unloading of load
case DE, at maximum horizontal compressive strain.

Figure 8.5: Principle strain plot of the masonry unit cell model at the end of the (tensile) loading and at the end of the unloading
of load case DE, horizontal tensile loading and unloading to end with compression. The deformation is magnified by a factor
100.
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(a) Loading protocols applied, the solid line for load case
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for load case G1c.
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(b) Horizontal stress-strain diagram for load case G1a.
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(c) Shear stress-strain diagram for load case G1a.

-2.5

-2

-1.5

-1

-0.5

0

0.5

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

N
o
rm

a
l 
s
tr

e
s
s
 σ
xx
[M
P
a]

Normal strain εxx [‰]

Horizontal (xx)

(d) Horizontal stress-strain diagram for load case G1b.
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(e) Shear stress-strain diagram for load case G1b.
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(f) Horizontal stress-strain diagram for load case G1c.
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(g) Shear stress-strain diagram for load case G1c.

Figure 8.6: Stress-strain diagrams of the masonry unit cell model for load case G1, for three different ratios between the shear
and tensile deformation. Colours correspond to the consecutive parts of the loading protocol applied.
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(a) Principle strain plot at the end of the first (blue) part of
load case G1a, at maximum horizontal tensile strain.

(b) Principle strain plot at the end of load case G1a, at
maximum shear strain and maximum horizontal compres-
sive strain.

(c) Principle strain plot at the end of the first (blue) part of
load case G1b, at maximum horizontal tensile strain.

(d) Principle strain plot at the end of load case G1b, at
maximum shear strain and maximum horizontal compres-
sive strain.

(e) Principle strain plot at the end of the first (blue) part of
load case G1c, at maximum horizontal tensile strain.

f) Principle strain plot at the end of load case G1c, at max-
imum shear strain and maximum horizontal compressive
strain.

Figure 8.7: Principle strain plot of the masonry unit cell model at the end of the first (blue) part and at the end of load case G1,
for three different ratios between the shear and tensile deformation. The deformation is magnified by a factor 100.
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(b) Horizontal stress-strain diagram for load case G2a.
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(c) Shear stress-strain diagram for load case G2a.
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(d) Horizontal stress-strain diagram for load case G2b.
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(e) Shear stress-strain diagram for load case G2b.
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(f) Horizontal stress-strain diagram for load case G2c.
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(g) Shear stress-strain diagram for load case G2c.

Figure 8.8: Stress-strain diagrams of the masonry unit cell model for load case G2, for three different ratios between the shear
and tensile deformation. Colours correspond to the consecutive parts of the loading protocol applied.
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(a) Principle strain plot at the end of the first (blue) part of
load case G2a, at maximum shear strain.

(b) Principle strain plot at the end of load case G2a, at
maximum horizontal tensile strain and zero shear strain.

(c) Principle strain plot at the end of the first (blue) part of
load case G2b, at maximum shear strain.

(d) Principle strain plot at the end of load case G2b, at
maximum horizontal tensile strain and zero shear strain.

(e) Principle strain plot at the end of the first (blue) part of
load case G2c, at maximum shear strain.

f) Principle strain plot at the end of load case G2c, at max-
imum horizontal tensile strain and zero shear strain.

Figure 8.9: Principle strain plot of the masonry unit cell model at the end of the first (blue) part and at the end of load case G2,
for three different ratios between the shear and tensile deformation. The deformation is magnified by a factor 100.
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(a) Loading protocols applied, the solid line for load case
G3a, the dashed line for load case G3b and the dotted line
for load case G3c.
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(b) Horizontal stress-strain diagram for load case G3a.
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(c) Shear stress-strain diagram for load case G3a.
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(d) Horizontal stress-strain diagram for load case G3b.
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(e) Shear stress-strain diagram for load case G3b.
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(f) Horizontal stress-strain diagram for load case G3c.
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(g) Shear stress-strain diagram for load case G3c.

Figure 8.10: Stress-strain diagrams of the masonry unit cell model for load case G3, for three different ratios between the shear
and tensile deformation. Colours correspond to the consecutive parts of the loading protocol applied.
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(a) Principle strain plot at the end of the first (blue) part of
load case G3a, at maximum negative shear strain.

(b) Principle strain plot at the end of load case G3a, at
maximum horizontal tensile strain and maximum positive
shear strain.

(c) Principle strain plot at the end of the first (blue) part of
load case G3b, at maximum negative shear strain.

(d) Principle strain plot at the end of load case G3b, at
maximum horizontal tensile strain and maximum positive
shear strain.

(e) Principle strain plot at the end of the first (blue) part of
load case G3c, at maximum negative shear strain.

f) Principle strain plot at the end of load case G3c, at maxi-
mum horizontal tensile strain andmaximum positive shear
strain.

Figure 8.11: Principle strain plot of the masonry unit cell model at the end of the first (blue) part and at the end of load case G3,
for three different ratios between the shear and tensile deformation. The deformation is magnified by a factor 100.
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8.5. Discussion
The stress-strain diagrams and deformed shapes of the masonry unit cell model that were presented
in the previous section will be discussed for each load case.

Shear Load Cases
The shear load cases C1 and C2 (Figure 8.2) show similar stress-strain diagrams as the Equivalent
Shear Masonry Model (Figure 7.4(a) and (c)). Also, the model ’invents’ small horizontal tensile stress
and strain, in spite of the prescribed displacements. This is attributed to the Engineering Masonry
Model used for the joints.

The deformed shapes (Figure 8.3) show that the failure mode of shear is sliding in the top bed joint.

Horizontal Tension Load Case
The horizontal tension load case DE (Figure 8.4) shows a similar stress-strain diagram to the Equivalent
Shear Masonry Model (Figure 7.5(a)). The stress-strain diagram does, however, goes through the
fourth quadrant. This is precisely what was expected before the simplification in Section 5.4 was made.
This part of the material model could be refined. Also, the model ’invents’ small shear stress and strain,
in spite of the prescribed displacements. Again, this is attributed to the Engineering Masonry Model
used for the joints.

The deformed shape (Figure 8.5(a)) shows that the failure mode of horizontal tension is a vertical
merlon shaped crack.

Combined Load Cases
The shear load cases G1, G2 and G3 show similar stress-strain diagrams (Figures 8.6, 8.8 and 8.10) as
the Equivalent Shear Masonry Model for some of the investigated ratios between the shear loading and
the extension loading. Compare the results for load case G1b in Figure 8.6(d) and (e) to Figure 7.6(b)
and (d), the results for load case G2b in Figure 8.8(d) and (e) to Figure 7.7(b) and (d), and the results for
load case G3a in Figure 8.10(b) to (e) to Figure 7.8(b) and (d): they show clear resemblance. For the
other ratios between the shear loading and the extension loading, the resemblance is less evident. The
assumption that was made in Section 5.4 about the ratio between the shear stress and the horizontal
tensile stress remaining the same during yielding, does not seem to hold.

Table 8.4 presents the deformation increment ratios between horizontal tension and shear loading
Δ𝜀፱፱/Δ𝛾፱፲. It can be seen that the load phases for which the absolute value of the deformation in-
crement ratio is closest to the height-width ratio of the diagonal staircase crack,3 are the same load
phases that show the best resemblance to the single element model results. The ratio between the
shear stress (increment) and the horizontal tensile stress (increment) during combined softening and
yielding seems to be related to the deformation increment ratio. The ratio between the shear stress and
the horizontal tensile stress only remains unchanged if the absolute value of the deformation increment
ratio is equal to the height-width ratio of the staircase crack.

Table 8.4: Deformation increment ratio ጂ᎒ᑩᑩ/ጂ᎐ᑩᑪ for the combined load cases G. The first phase correspond to the blue parts
of the loading protocols in Figures 8.6(a), 8.8(a) and 8.10(a), the second phase to the teal and purple parts.

G1a G1b G1c G2a G2b G2c G3a G3b G3c
First phase 1.0 0.50 0.25 1.0 0.50 0.25 -0.67 -0.33 -0.17
Second phase -1.0 -0.50 0.25 -2.0 -1.0 -0.50 0.67 0.33 0.17

Although the stress-strain diagrams are quite different for the three variants of each load case, the
deformed shapes are very similar to each other. The deformed shapes of load case G1 (Figure 8.7)
show that the failure mode of combined shear and horizontal tension is a diagonal stair case crack, that
then evolves into shear sliding in both bed joints for shear and horizontal compression. The deformed
shapes of load case G2 (Figure 8.9) again show that the failure mode of combined shear and horizontal
tension is a diagonal stair case crack, that then evolves into a vertical merlon shaped crack when only
horizontal tension remains. The deformed shapes of load case G3 (Figure 8.11) once more show that
the failure mode of combined shear and horizontal tension is a diagonal stair case crack, that then
evolves into a diagonal stair case crack in the other direction when only shear of the opposite sign
remains.
3The height-width ratio of the expected staircase crack in the masonry unit cell model is tanᎎ ዆ ኻኼኺ/ኼኼኺ ዆ ኺ.኿኿.



9
Prediction of Shear Wall Experiment

This chapter presents a full scale finite element analysis of a shear wall using the Equivalent Shear
Masonry Model, meant to approximate real life masonry laboratory tests.

9.1. Description of the Laboratory Experiments
The experimental shear wall tests that are simulated in this chapter are TUD-COMP-47 and TUD-
COMP-48, both double clamped shear walls under light damage asymmetric cyclic horizontal loading.
The walls are single wythe with a running bond. The materials are representative of existing masonry
in the Groningen region, with solid clay bricks of approximately 210x100x50 mm and BM2 v2 mortar
joints of approximately 10 mm thick. See the report of [9] for more detailed information.

9.2. Model Description
The experimental shear wall tests are simulated by a finite element analysis of a macro model using
the Equivalent Shear Masonry Model, and for comparison also with the Engineering Masonry Model
with the head joint option Diagonal stair-case cracks. The modelling is executed similarly to the macro
model in [9, Chapter 4], that used the Engineering Masonry Model with the head joint option Tensile
strength head-joint defined by friction. That report also presents a micro modelled analysis, whose
approach is similar to the micro modelling approach in Chapter 8. The results of this Sections analysis
can therefore be compared not only with each other and the experimental results, but also with the
macro and micro model results from [9, Chapter 4].

Table 9.1: Element properties used in the shear wall model.

Model
component

Element
type

Integration
scheme

Mesh
size

Direction of
local 𝑥-axis Material Model

Masonry CQ16M High, i.e.
Gauss 3x3

50x50
mm Horizontal

Equivalent Shear Masonry Model or
Engineering Masonry Model – Diago-
nal stair-case cracks respectively

Steel CL9BE High, i.e.
Gauss 7

50
mm n.a. Linear Elastic Isotropic

The masonry wall is modelled as a two-dimensional rectangular sheet of 3050 mm wide and 2700
mm high, see Figure 9.1. This sheet is meshed with 50x50 mm second-order membrane elements
(CQ16M) with a 100 mm thickness. The 𝑥-axis of these elements is aligned horizontally. The masonry
material model is the Equivalent Shear Masonry Model for the first analysis and the Engineering Ma-
sonry Model with the Diagonal stair-case cracks option for the other analysis. This is summarized in
Table 9.1. The material properties used are adopted from [9, Chapter 4] and are shown in Table 9.2.

81
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Figure 9.1: Mesh of the shear wall as modelled in Diana’s graphical user interface. Visible are the masonry (grey), the translation
supports (red triangles), the overload (yellow arrows), the prescribed displacement load (dark green arrow), the slave nodes of
the vertical displacement tying of the top (light orange line) and its master node (dark orange dot). Not visible are the steel beams
at the top and bottom and the rotation supports at the top and bottom.

Table 9.2: Material properties used for the masonry in the shear wall model.

Horizontal stiffness 𝐸፱ 2497 MPa
Vertical stiffness 𝐸፲ 3751 MPa
Shear stiffness 𝐺፱፲ 1500 MPa
Tangent of friction angle tan𝜑 0.821979 [-]
Vertical tensile strength 𝑓፭፲ 0.16 MPa
Tensile fracture energy 𝐺፟፭ 11.3 N/m
Compressive strength 𝑓፜ 12.93 MPa
Compressive fracture energy 𝐺፟፜ 35590 N/m
Compressive unloading factor 𝜆 1 [-]
Cohesion 𝑐 0.17 MPa
Shear fracture energy 𝐺፟፬ 209 N/m
Diagonal crack angle 𝛼 0.5 rad
Factor strain at compressive strength 𝑛 4 [-]
Crack band widtha ℎ 0.05 m
Mass density 𝜌 1624 kg/m3

Crack bandwidth specificationb Govindjee
a Used for the Equivalent Shear Masonry Model only.
b Used for the Engineering Masonry Model only.

Table 9.3: Material properties used for the steel beams in the shear wall model.

Young’s modulus 𝐸 210,000 MPa
Poisson’s ratio 𝜈 0.30
Mass density 𝜌 10-15 kg/m3

At the top of the sheet, a HEB-600 steel beam is modelled using eccentric one-dimensional class III
beam elements (CL9BE). An overload is applied to this top beam and the in-plane rotation is restrained
here. Also, the vertical deformation is tied so the beam stays horizontal. A prescribed horizontal
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displacement is applied to the top left corner. The material properties of the steel are given in Table 9.3.
At the bottom of the sheet, a HEB-300 steel beam is modelled similarly to the top beam. Both the

vertical and horizontal translations and the in-plane rotation are restrained here.

9.3. Loading Protocol
The shear wall model was subsequently loaded by its own weight and an overload of 0.46 MPa, that
represents both the weight of the test setup carried by the wall and the extra applied overload. Then
a horizontal deformation load was applied to the top in time steps of 0.01 mm. The horizontal loading
protocol is pictured in Figure 9.2. It consists of six cycles with increasing amplitudes, that each consist
of three repetitions of a load that statically resembles the Zeerijp earthquake from January 2018. This
an asymmetric cyclic load that combines larger and smaller peaks.

Figure 9.2: Horizontal loading protocol of the shear wall: six cycles of increasing amplitude, each consisting of three repetitions
of a load that statically resembles the Zeerijp earthquake from January 2018. The last large drift peak of the first half of the
loading ፭ ዆ 3556 and the final large drift peak of the loading protocol ፭ ዆ 9495 that will be referred to later are indicated.

9.4. Analysis Procedure
A non-linear static analysis was performed with a prescribed displacement load that changes over time.
First, the self weight was applied in ten load steps. Subsequently the overload was applied, also in
ten load steps. Then the prescribed displacement was applied. The regular Newton-Raphson iteration
method was used, with amaximum number of iterations set at 100. Both the force and the displacement
norm had to be satisfied, both with a tolerance of 0.01, though the analysis should continue when
convergence was not reached.

9.5. Results
An important result of the finite element analysis is the overall force-deformation relations, given in
the form of horizontal force-drift diagrams1. Figures 9.3, 9.4 and 9.5 show the horizontal force on the
top versus the drift of the shear wall, as found in the experiments, with the Equivalent Shear Masonry
Model and with the Engineering Masonry Model with Diagonal stair-case cracks option, respectively.
Note that in the experiments, each cycle consisted of ten repetitions.
1The drift is equal to the horizontal top displacement divided by the height of the wall.
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(a) of wall TUD-COMP-47.
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(a) of wall TUD-COMP-48.

Figure 9.3: Force-drift diagram of the experimental results, coloured per cycle. Data courtesy of [9].
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Figure 9.4: Force-drift diagram of the finite element analysis with the Equivalent Shear Masonry Model, coloured per cycle and
with the unconverged steps marked in red.
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Figure 9.5: Force-drift diagram of the finite element analysis with the Engineering Masonry Model’s Diagonal stair-case cracks
option, coloured per cycle and with the unconverged steps marked in red.
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The experimental force-drift diagrams (Figure 9.3) show that the initial behaviour is almost linear.
The overall stiffness reduces over the consecutive cycles and the force-drift lines are slightly curved with
a decreasing steepness. The behaviour to the left remains almost linear. Some permanent inelastic
deformation is found, up to a drift of approximately 1‰. The peak forces reduce over the repetitions
within each cycle, but are subsequently exceeded in the next cycle. The peak force is 114 kN. With
the TUD-COMP-47, the peak force increases each cycle. With the TUD-COMP-48, the maximum is
reached in cylce 5. The hysteresis loop is widest in the middle and small near the peak drift values.
TUD-COMP-48 shows a significantly wider hysteresis loop than TUD-COMP-47.

The Equivalent Shear Masonry Model’s force-drift diagram (in Figure 9.4) shows initial linear be-
haviour, followed by softening and then a residual plateau, both to the right and the left. The diagram is
generally smooth. Permanent inelastic deformation is found, up to a drift of approximately 1.5‰. The
peak forces reduce over the repetitions within each cycle, but are subsequently exceeded in the next
cycle. The peak force is 96.5 kN, which is reached in cycle 3. The hysteresis loop has a similar width
over its entire height.

The Engineering Masonry Model with Diagonal stair-case cracks option’s force-drift diagram (in
Figure 9.5) also shows initial linear behaviour, followed by softening and then a residual plateau, both to
the right and the left. The diagram is partly smooth and partly serrated. Permanent inelastic deformation
is found, up to a drift of approximately 2.5‰. The peak forces increase over the repetitions within each
cycle. The peak force is 96.6 kN, which is reached in cycle 3. The hysteresis loop is smallest in the
middle and wide near the peak drift values.

Convergence
The analysis with the Equivalent Shear Masonry Model had an average number of iterations per step
of 6.8. 0.11% of these steps did not converge, see the red segments in Figure 9.4. The non-converging
steps all occurred unaccompanied or in groups of two or three and all coincided with softening.

The analysis with the Engineering Masonry Model had an average number of iterations per step
of 2.8. 0.95% of these steps did not converge, see the red segments in Figure 9.5. Most of the non-
converging steps occurred unaccompanied or in groups of two, three or four, except two a long series
of respectively 18 and 33 consecutive non-converging steps. Most of the non-converging steps also
occurred during softening, but some others occurred during pre-peak loading or during unloading.

Peak Force Reduction
In the experiments, the force reached at the extreme drift of each cycle decreases with the repetitions.
This peak force reduction is in the order of 10% over the ten repetitions of each cycle. The peak
force reduction observed in the two finite element analysis are quantified in Table 9.4. The Equivalent
Shear Masonry Model clearly displays reductions in the order of a few percent for the post-softening
load cycles. The Engineering Masonry Model’s Diagonal stair-case cracks option does not show any
obvious peak force reduction. Instead, its peak forces rather seem to increase with each repetition.

Table 9.4: Peak force reduction (here negative) of the second and third repetitions of each cycle, given as the change relative
to the force at the first peak of the cycle in question. The peak forces are considered at the extreme displacements to the right
(positive displacement and force) and left (negative displacement and force) of each cycle.

Cylce 1 Cylce 2 Cylce 3 Cylce 4 Cylce 5 Cylce 6

Equivalent Shear
Masonry Model

right 2nd -0.051% -0.067% -11% -1.4% -1.0% -0.82%
3rd -0.076% -0.13% -16% -2.5% -1.8% -2.4%

left 2nd +0.23% +0.32% +2.0% -5.5% -5.1% -2.8%
3rd +0.34% +0.53% +2.7% -6.6% -6.2% -3.5%

Engineering
Masonry Model –
Diagonal stair-
case cracks

right 2nd -0.051% -0.10% -4.1% +9.4% +1.7% +2.3%
3rd -0.051% -0.16% -6.8% +3.1% +1.8% +3.0%

left 2nd +0.26% +0.26% +3.8% +3.6% +1.1% -0.3%
3rd +0.34% +0.38% +5.6% +1.8% +0.39% -1.1%
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Crack Pattern
The other important results of the finite element analysis are plots that provide insight into the failure
mechanism and crack pattern. Figure 9.6 shows the crack patterns found in the experimental the TUD-
COMP-47 and TUD-COMP-48 shear wall tests. To provide insight into the failure mechanism, these
are given at two moments, at a large peak halfway trough the loading protocol and at the final large
peak of the loading protocol. The diagonal crack segments follow the staircase paths through the head
joints and bed joints. The diagonal cracked zones are steeper, at angles of approximately -55° and
-45° with the bed joints.

(a) of TUD-COMP-47 at the last large drift peak of the first half
of the loading protocol.

(b) of TUD-COMP-47 at the final large drift peak of the loading
protocol.

(c) of TUD-COMP-48 at the last large drift peak of the first half
of the loading protocol.

(d) of TUD-COMP-48 at the final large drift peak of the loading
protocol.

Figure 9.6: Cumulated crack patterns of the experimental shear wall tests. Courtesy of [9].

Three different types of finite element model outputs are included that each provide information
about the crack pattern. These are the remaining cohesion, the crack width and the principle strain.
The first two measures are insightful, but they are not generated in the same way for each of the two
models. To allow for a fair comparison between the two models, the more fundamental measure of
principle strain is displayed.

The cracks observed with the Equivalent Shear Masonry Model are at an angle of approximately
±68° with the horizontal 𝑥-axis. The cracks observed with the Engineering Masonry Model’s Diagonal
stair-case cracks option are at an angle of approximately ±74° with the horizontal 𝑥-axis.
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The remaining cohesion is a useful model output to asses the cumulated damage, because it pro-
vides information about what points have at least once already reached the shear strength. Figure 9.7
presents cohesion plots of the analysis with the Equivalent Shear Masonry Model. The non-red points
in these plots have reached their peak shear stress, peak horizontal tensile stress or peak combination
of the two. Figure 9.8 presents cohesion plots of the analysis with the Engineering Masonry Model
with the head joint option Diagonal stair-case cracks. The non-red points in these plots have reached
their maximum shear stress. Points that have (only) reached their maximum diagonal stress are not
represented here.

(a) at the last large drift peak of the first half of the loading
protocol, at ፭ ዆ 3556.

(b) at the final large drift peak of the loading protocol, at ፭ ዆
9495.

Figure 9.7: Cohesion (USRSTA(11)) plots of the finite element analysis with the Equivalent Shear Masonry Model. The red
parts still behave linearly, the blue parts are post-softening. The deformation is magnified by a factor 100.

(a) at the last large drift peak of the first half of the loading
protocol, at ፭ ዆ 3556.

(b) at the final large drift peak of the loading protocol, at ፭ ዆
9495.

Figure 9.8: Cohesion plots of the finite element analysis with the Engineering Masonry Model’s Diagonal stair-case cracks option.
The red parts still behave linearly, the blue parts are post-softening. The deformation is magnified by a factor 100.

Another useful aspect is the crack width, that relates to the current deformed state of the model and
can be straightforwardly compared with experimental results. Figure 9.9 presents crack width plots of
the analysis with the Equivalent Shear Masonry Model. This crack width is the horizontal crack opening
due to both shear and horizontal extension. Figure 9.10 presents crack width plots of the analysis with
the Engineering Masonry Model with the head joint option Diagonal stair-case cracks. These crack
widths are the deformations normal to and parallel to the prescribed crack direction 𝛼 or −𝛼2.

2Note that these crack widths are not related to the actual occurring crack direction.
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(a) at the last large drift peak of the first half of the loading
protocol, at ፭ ዆ 3556.

(b) at the final large drift peak of the loading protocol, at ፭ ዆
9495.

Figure 9.9: Crack width (USRSTA(19)) plots of the finite element analysis with the Equivalent Shear Masonry Model. The crack
widths presented are the horizontal crack opening due to shear and horizontal extension, as defined by Equation 6.4. The
deformation is magnified by a factor 100.

(a) at the last large drift peak of the first half of the loading
protocol, at ፭ ዆ 3556.

(b) at the final large drift peak of the loading protocol, at ፭ ዆
9495.

(c) at the last large drift peak of the first half of the loading
protocol, at ፭ ዆ 3556.

(d) at the final large drift peak of the loading protocol, at ፭ ዆
9495.

Figure 9.10: Crack width plots of the finite element analysis with the Engineering Masonry Model’s Diagonal stair-case cracks
option. Presented are the crack widths normal (Ecw1) and parallel (Ecw3) to the prescribed diagonal crack direction ᎎ or ዅᎎ.
The deformation is magnified by a factor 100.
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When a good crack width output unavailable, the principle strain also gives a good indication of the
current deformed shape. Because the reduction of the cohesion and the definition of the crack widths
are different for the Equivalent Shear Masonry Model and the Engineering Masonry Model, Figures 9.11
and 9.12 give the principle strain plots for a fair comparison between the two.

(a) at the last large drift peak of the first half of the loading
protocol, at ፭ ዆ 3556.

(b) at the final large drift peak of the loading protocol, at ፭ ዆
9495.

Figure 9.11: The principle strain plots of the finite element analysis with the Equivalent Shear Masonry Model. The deformation
is magnified by a factor 100.

(a) at the last large drift peak of the first half of the loading
protocol, at ፭ ዆ 3556.

(b) at the final large drift peak of the loading protocol, at ፭ ዆
9495.

Figure 9.12: The principle strain plots of the finite element analysis with the Engineering Masonry Model’s Diagonal stair-case
cracks option. The deformation is magnified by a factor 100.

Additional Finite Element Results from Literature
For comparison, Figure 9.13(a) and (b) show the results of the macro models with the Equivalent
Shear Masonry Model and with the Engineering Masonry Model with Diagonal stair-case cracks option
for Figures 9.4 and 9.5 again, now compared with the experimental results. Figure 9.13(c) and (d)
show the results of the micro model and of the macro model with the Engineering Masonry Model with
Tensile strength head-joint defined by friction option, both from [9, Chapter 4]. Note that in the micro
model, each cycle consisted of only one repetition rather than the three repetitions drawn in Figure 9.2.

The micro model’s force-drift diagram (in Figure 9.13(c)) shows initial linear behaviour. The overall
stiffness then reduces over the consecutive cycles and the force-drift lines are slightly curved with a
decreasing steepness. The unloading is almost linear. The diagram is generally smooth. Permanent
inelastic deformation is found, up to a drift of approximately 2‰. The peak forces increase over the
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(a) of analysis of a macro model with the Equivalent Shear
Masonry Model.
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(b) of analysis of a macromodel with the EngineeringMasonry
Model with Diagonal stair-case cracks option.
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(d) of analysis of a macromodel with the EngineeringMasonry
Model with Tensile strength head-joint defined by friction op-
tion.

Figure 9.13: Force-drift diagram of four finite element analyses of the shear walls TUD-COMP-47 and TUD-COMP-48, compared
with the experimental results. Experimental data and analysis data of (c) and (d) courtesy of [9].

repetitions within each cycle. The peak force is 104 kN, which is reached in last cycle. The hysteresis
loop has a constant width over its entire height.

The Engineering Masonry Model with Tensile strength head-joint defined by friction option’s force-
drift diagram (in Figure 9.13(d)) also shows initial linear behaviour, followed by slight softening and then
a residual plateau on the right side. The behaviour to the left is almost linear. The diagram is generally
smooth. Permanent inelastic deformation is found, up to a drift of approximately 1‰. The peak forces
increase over the repetitions within each cycle. The peak force is 91.0 kN, which is reached in cycle 3.
The hysteresis loop is small in the middle and to the left, but wide near the positive peak drift values.

Figure 9.14 presents cohesion plots of the micro model analysis. The red points in these plots have
reached their peak shear stress. The cracked zone is at an angle of approximately -63° with the bed
joints.

Figure 9.15 presents cohesion plots of the analysis with the Engineering Masonry Model’s Tensile
strength head-joint defined by friction option. The grey and black points in these plots have reached
their peak shear stress. The cracks observed are at an angle of approximately ±71° with the horizontal
𝑥-axis.
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(a) at the last large drift peak of the first half of the loading
protocol. (b) at the final large drift peak of the loading protocol.

Figure 9.14: Cohesion plots of the micro model analysis. The white parts still behave linearly, the red parts are post-softening.
The deformation is magnified by a factor 100. Images courtesy of [9].

(a) at the last large drift peak of the first half of the loading
protocol, at ፭ ዆ 3556.

(b) at the final large drift peak of the loading protocol, at ፭ ዆
9495.

Figure 9.15: Cohesion plots of the finite element analysis with the Engineering Masonry Model’s Tensile strength head-joint
defined by friction option. The white parts still behave linearly, the black parts are post-softening. Images courtesy of [9].

9.6. Discussion
The results of the shear wall experiments and analyses presented in the previous Section are discussed
and compared here.

Discussion of the Results Obtained with the Equivalent Shear Masonry Model
The force-drift diagram obtained with the Equivalent Shear Masonry Model (Figure 9.4) shows almost
linear behaviour during the first two cycles. The second cycle shows plastic deformation on the positive
side of the graph. The wall reaches its peak strength of 96.5 kN and then commences to soften. Over
the fourth, fifth and sixth cycle, almost horizontal yielding is observed. During the fifth and sixth loop,
the wall commences to soften on the negative side, too. The hysteresis loop has a slight S-shape and
a similar width over its entire height. The peak forces are slightly reduced with each repetition in each
cycle by a few percent, but are subsequently exceeded in the next cycle.

The crack width output USRSTA(19) gives some unwanted negative values, see Figure 9.9. There-
fore, the principle strain is plotted for an alternative impression of the deformation, Figure 9.11. The
crack pattern starts with two horizontal cracks at the top right and the bottom left. Then one large di-
agonal crack appears, later accompanied by some smaller diagonal cracks. The diagonal cracks are
at an angle of approximately ±68° with the horizontal 𝑥-axis.

Additionally, the cohesion plots in Figure 9.7 show that diagonal cracks have formed from the loading
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in the other direction, too. The cohesion plots also show that the locations where the material has failed
are more numerous than the locations where cracks actually open up.

Comparison with the Experimental Results
When the force-drift data obtained with the Equivalent Shear Masonry Model are compared with the
experimental results, it is seen that the predicted peak force is too low. Therefore, the finite element
model starts to soften and follow the residual plateau, where the real wall did not. Note that the model
used the same material properties as in [9, Chapter 4] and the model was not calibrated to the experi-
mental results. Increasing the shear strength parameters could improve this aspect. Compared to the
TUD-COMP-48 results, the softening seems to be to steep. Increasing the shear fracture energy could
improve this aspect.

The cracks found in the analysis are a little steeper than in reality. This could partially be due to mesh
directional bias, the tendency of localisations to follow the mesh edges. Nonetheless, the localisation
of the cracks is satisfactory. The peak force reduction over the repetitions of each cycle is of the same
magnitude as observed in the experimental data. Furthermore, the softening, the residual plateau and
the shape of the hysteresis loop do resemble test results of other shear walls that were loaded further,
to more severe damage, for instance the LOWSTA, CS03, PMW2 and TUD-COMP-Q6 tests shown
in [16]. Thus the model’s ability to represent this kind of post-peak behaviour is regarded a positive
characteristic.

Comparison with the Engineering Masonry Model’s Diagonal stair-case cracks option
Compared to the Engineering Masonry Model with theDiagonal stair-case cracks option, the Equivalent
Shear Masonry Model shows similar peak strength and softening characteristics. The shape of the
hysteresis loop and the amount of inelastic deformation are slightly better. Moreover, the peak force
reduction is more realistic.

The force-drift diagram of the Equivalent Shear Masonry Model is smoother. Also, the model has
less convergence issues, less unconverged steps and significantly shorter series of consecutive un-
converged steps. It does, however, need more iterations per step.

According to the principle strain plots in Figures 9.11 and 9.12, the cracks of both models are too
steep, but the direction of the cracks of the Equivalent Shear Masonry Model is slightly better. Besides,
its crack localisation is significantly better, featuring one major diagonal crack in the middle of the wall
instead of numerous diagonal cracks

Comparison with the Two Other Finite Element Models from Literature
Compared to the macro model with the Engineering Masonry Model with the Tensile strength head-joint
defined by friction option, the Equivalent Shear Masonry Model shows a lower strength and thus more
softening and yielding. It shows more plastic deformation and a wider hysteresis loop. The peak force
reduction is more in line with the experiments than with the Engineering Masonry Model. The cracks
of both models are too steep, but the direction of the cracks of the Equivalent Shear Masonry Model is
slightly better. Besides, its crack localisation is significantly better.

Compared to the micro model, the Equivalent Shear Masonry Model also shows a lower strength
and thus more softening and yielding. The inelastic deformation is less and the hysteresis loop is
narrower. The peak force reduction cannot be compared, because the micro model was only loaded
with one repetition for each load cycle. The cracks of both models are too steep, but the direction of
the cracks of the micro model is slightly better. The localization of the cracks of the micro model is most
similar to the experimental results.
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10
Conclusions

The Equivalent Shear Masonry Model is an improvement of the Engineering Masonry Model that seems
to model diagonal stair-case cracks better than that model’s Diagonal stair-case cracks option.

Like the EngineeringMasonryModel, the Equivalent ShearMasonryModel is an orthotropic material
model for masonry that uses a smeared cracking approach. It adopts that model’s constitutive relations
for the behaviour normal to the bed joints and for the compressive behaviour normal to the head joints.
However, the shear failure criterion and the tensile head joint failure options are replaced by a new
failure criterion for diagonal staircase cracks.

This failure criterion, the equivalent shear failure criterion, evaluates both the shear stress and the
tensile stress normal to the head joints. The combined constitutive relation is based on the Coulomb
friction shear behaviour of the bed joints, thus hysteresis occurs in case of cyclic equivalent shear
loading. Both the tensile strain and the shear strain directly contribute to the softening of the material.

The theoretical advantages of the Equivalent Shear Masonry Model over the Engineering Masonry
Model’s Diagonal stair-case cracks option are that the formulation is simpler and more true to the
actual failure mechanism. A constitutive relation is defined for the diagonal cracking, opposed to just a
maximum stress. This constitutive relation provides for hysteresis, inelastic deformation and softening
due to the deformations of the diagonal crack.

The improved material model has been implemented as a Fortran subroutine to be used as a user
supplied material model in Diana’s finite element analysis software. This implementation has been
verified for a single integration point for several load paths. These load paths consisted of loading,
unloading and reloading; in vertical tension and compression, horizontal tension, shear and three com-
binations of shear and horizontal tension; all but the vertical ones while under a constant vertical pre-
compression. For these cases, the code properly produced the intended material behaviour. Further-
more, for this single integration point model, the stress-strain relations of the Equivalent Shear Masonry
Model were more consistent than those of the Engineering Masonry Model’s Diagonal stair-case cracks
option, which suffered sudden drops.

Next, a validation was made against a micro modelled unit cell for the same (combined) shear and
horizontal extension load cases as before. This showed that thematerial model represents themasonry
behaviour quite well, though some improvements are recommended. The connection between the
horizontal tensile unloading and the compressive loading could be modelled more realistically and the
division of the equivalent shear stress into the horizontal tensile stress and the shear stress should be
investigated further.

Subsequently, the model was validated at structural level, against a laboratory experiment of shear
wall under cyclic horizontal light damage loading. A macro model using the Equivalent Shear Masonry
Model was analysed to approximate the experimental results. This showed promising characteristics.
Though the diagonal cracks were still slightly too steep, their localisation was satisfactory. The force-
drift diagram showed linear behaviour in the first cycles, then continued non-linear with some inelastic
deformation, and then showed softening and a residual plateau in later cycles. The hysteresis loop had
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a slight S-shape and a similar width over its entire height. The peak force was slightly reduced with
each repetition in each cycle.

Compared to the Engineering Masonry Model’s Diagonal stair-case cracks option, the model gave
smoother results and had less convergence issues. However, it did need more iterations per step.
Therefore it is recommended to adjust the ’tangent’ shear stiffness returned by the code. The crack
direction of the Equivalent Shear Masonry Model is slightly better and its crack localisation is muchmore
realistic. Both models did not reach the experimental peak strength and showed a too steep softening
regime, though calibration might be able to improve this. The peak force reduction of the Equivalent
Shear Masonry Model was not matched by either the Engineering Masonry Model’s Diagonal stair-case
cracks option or its Tensile strength head-joint defined by friction option.

In the context of this thesis, only a limited amount validations could be done. The validity of these
conclusions is therefore also limited to these specific load cases and applications. Further verification
for other load cases is recommended, for instance the shear behaviour under a varying or even tensile
overload. Also, further validation against different experiments is recommended, for instance slender
shear walls that show rocking, window banks that suffer tensile bending failure and wide shear walls
that are loaded much further than light damage.

In conclusion, the Equivalent Shear Masonry Model shows promising characteristics to model di-
agonal staircase cracking in masonry. It produces smooth force-displacement diagrams and has less
convergence problems than the Engineering Masonry Model’s Diagonal stair-case cracks option. It
generates cracks that are less steep and more localized. The model is able to represent post-peak
behaviour of shear walls and even displays peak force reduction. Therefore, it is recommended that
the material model is developed further, so that hopefully one day it can be used in practice to provide
more accurate masonry cracking predictions.



11
Recommendations

The following recommendations are made for the further development of the Equivalent Shear Masonry
Model. It is recommended that the theory is eventually expanded for shell elements or even for three-
dimensional solid elements. But first, the following improvements are proposed to the theory and its
implementation, and the following further validation is proposed.

11.1. Recommended Improvements of the Theory
It is recommended that the two point of interest from Section 5.4 are further investigated. The con-
nection from the horizontal tensile unloading to the compression behaviour could be modelled more
realistically. A sophisticated description of this connection should be sought for.

Also, the ratio between the shear stress and the horizontal tensile stress during softening and yield-
ing did not always remain the same, like assumed in Section 5.4. It seemed from the unit cell results
that this ratio is related to the ratio between the respective strain increments and the height-width ratio
of the expected diagonal crack. Study of more combinations of strain increments is needed to properly
define this relation.

11.2. Recommended Improvements of the Code
As Figure 9.9 showed, the crack width output included in the Equivalent Shear Masonry Model subrou-
tine gave undesired negative values. Some of the failure mechanism indicators in the USRVAL-array
that were adopted directly from the usrmat_quad2.f-code also gave unexpected results. These
minor issues should both be fixed.

Furthermore, it is recommended that the shear stiffness returned by the Equivalent Shear Masonry
Model subroutine is adapted. As was described in Section 6.6, the shear stiffness returned by the
material model is always the linear stiffness. Themain advantage of this is that it always works, because
be it loading, softening, yielding or unloading, this is always equal to or larger than the actual stiffness.
During softening and yielding, however, the linear stiffness is quite far from the actual stiffness, so
the model might need many iterations, what was reflected by the shear wall results in Section 9.5.
Therefore, this choice of stiffness makes the model robust, but slow. Perhaps a more sophisticated
choice is possible.

Though the real current tangent stiffness is not an option – because that is zero or negative during
those phases–, a much smaller positive stiffness could be used, for instance 0.01 times the linear shear
stiffness. This could, however, raise problems if the integration point wants to start to unload, because
then the estimated stiffness is lower than the actual stiffness, which – as explained in Section 2.1.2 –
gives convergence issues. To mitigate this, the linear stiffness could be used for the first and every
tenth iteration of each step, in order to overcome the bifurcation point.

11.3. Recommended Further Validation
Last but not least, many further validations are required. This thesis only assessed the validity of the
Equivalent Shear Masonry Model for a very limited amount of load cases and applications.
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More load paths should be studied with a single element model, like simultaneous shear and hori-
zontal tensile unloading, horizontal tensile and/or shear loading under a varying (also tensile) overload.
These should then also be validated against the masonry unit cell model.

Post-diction calibration is proposed in order to improve the accuracy of the results of the shear wall
model from Chapter 9. The material model should also be applied to different types of laboratory test,
for instance slender shear walls that show rocking, window banks that suffer tensile bending failure and
wide shear walls that are loaded much further than light damage.
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A
Overview of Symbols Used in Literature

on the Engineering Masonry Model
This appendix gives an overview of the different names and symbols that are used in this thesis and in
literature to describe the Engineering Masonry Model. It compares:

• the symbols used in this thesis,

• the symbols used in the SAHC conference paper Computational modelling of masonry with a
view to Groningen induced seismicity,[14]

• the symbols used in the DIANA Validation report for Masonry modelling,[16]

• the symbols used in section 38.12EngineeringMasonryModel of the TheoryManual in theDIANA
User’s Manual,[6, Section 38.12]

• the arguments used in section 6.5 Engineering Masonry Model of the Material Library in the
DIANA User’s Manual,[5, Section 6.5]

• the arguments used in the Engineering Masonry Model subroutine engmas.f,[15] and

• the descriptions given in the graphical user interface Diana Interactive Environment of the Diana
software.[4]
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Table A.1: General symbols

This thesis SAHC
paper

Validation
report Theory Manual Material Library Code engmas.f Diana Interactive Environment

𝐸, 𝐸፱, 𝐸፲ 𝐸።, 𝐸፱, 𝐸፲ 𝐸, 𝐸፱, 𝐸፲ 𝐸, 𝐸፱, 𝐸፲ YOUNG, 𝑒𝑥, 𝑒𝑦 YNG Young’s modulus, E x*, E y*
𝐺፱፲ 𝐺 𝐺 𝐺, 𝐺፱፲ SHRMOD, 𝑔𝑥𝑦 SHRM0 Shear modulus, G xy*
ℎ ℎ ℎ ℎ CRACKB, ℎ HCRCEM Crack band width

FAIFAC, 𝑓𝑎𝑐 FAILIN Linearize material at failure
𝜌 𝜌 Mass density
𝜎 𝜎። 𝜎 𝜎 SIGMA
𝜎ኺ 𝜎ኺ። 𝜎ኺ 𝜎ኺ SIG0
𝜀 𝜀። 𝜀 𝜀 EPS
𝜀ኺ 𝜀ኺ። 𝜀ኺ 𝜀ኺ EPS0
Δ𝜀 Δ𝜀። Δ𝜀 Δ𝜀 DEPS
𝜏 𝜏፱፲ 𝜏 𝜏 SIGSHR
𝜏ኺ 𝜏ኺ 𝜏ኺ 𝜏ኺ SI0SHR
𝛾, 𝛾፱፲ 𝛾፱፲ 𝛾 𝛾 EPSSHR
Δ𝛾 Δ𝛾፱፲ Δ𝛾 Δ𝛾 DEPSHR

Table A.2: Symbols used to describe the tensile behaviour
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𝑓፭ 𝑓፭።, 𝑓፭ኻ, 𝑓፭ኼ 𝑓፭, 𝑓𝑡፱, 𝑓𝑡፲ 𝑓፭ TENSTR, 𝑓𝑡𝑦, 𝑓𝑡𝑥 TSTR Tensile strength
𝜎፭,፫፞፟ 𝜎፭። 𝜎፫፟, 𝜎፫፟,፭፞፧፬።፥፞ 𝜎፫፟ SIGRF(1)

𝛼፭,፫፞፟ 𝜀፭።
𝛼፭፞፧፬።፥፞,
𝛼፭፞፧፬።፨፧

𝛼፭፞፧፬።፥፞ ALPHA(1)

𝜀፭,፮ 𝜀፮፭። 𝜀፮፥፭ 𝜀፮፥፭ EPSULT
𝐺፟፭ 𝐺፟፭። 𝐺፟፭, 𝐺𝑓𝑡 𝐺፟፭ GFI, 𝑔𝑓1 GFT Fracture energy in tension*

𝑓፭,፮፧፥ RESTST, 𝑠𝑖𝑔𝑟𝑒𝑠 RESTST Residual tensile strengtha
𝑓፭፱,min Minimum tensile strength head-joint*b

a The residual tensile strength is asked for when the head joint failure option Diagonal stair-case cracks is chosen.
b The minimal tensile strength is asked for when the head joint failure option Tensile strength head-joint defined by friction is chosen. What is meant is actually the minimal masonry
tensile strength in the direction normal to the head joints.
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Table A.3: Symbols used to describe the compressive behaviour
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𝑓፜ 𝑓፜። 𝑓፜, −𝑓፜, 𝑓𝑐 𝑓፜, −𝑓፜ COMSTR, 𝑓𝑐 FC Compressive strength*

𝜎፜,፫፞፟ 𝜎፜።
𝜎፫፟,
𝜎፫፟,፜፨፦፩፫፞፬፬።፯፞

𝜎፫፟ SIGRF(2)

𝛼፜,፫፞፟ 𝜀፜። 𝛼፜፨፦፩ 𝛼፜፨፦፩ ALPHA(2)
𝜀፜,፮ 𝜀፮፜። 𝜀፮፥፭ 𝜀፮፥፭ EPSULC
𝜀፩ 𝜀፩። 𝜀፩፞ፚ፤ 𝜀፩፞ፚ፤ EPSCP
𝐺፟፜ 𝐺፟፜። 𝐺፜, 𝐺𝑓𝑐 𝐺፜ GC, 𝑔𝑐 GFC Fracture energy in compression*
𝜀∗ ESTAR

𝑛 𝑛። 𝑛 𝑛 EPSCFA, 𝑛 EPSCFA
Factor to strain at compressive
strength*

𝜆 𝜆, (1 − 𝜆)c 𝜆, (1 − 𝜆)c 𝜆, (1 − 𝜆)c UNLFAC, 𝑙𝑎𝑚𝑏𝑑𝑎 UNLFAC Unloading factor, 1=secant, 0=linear*
c In these three sources, the formulas and the visuals attribute dissimilar meanings to ᎘.

Table A.4: Symbols used to describe the shear behaviour
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𝜏፦ፚ፱ 𝜏፦ፚ፱ 𝜏፦ፚ፱ 𝜏፦ፚ፱ TAUMAX
𝑐 𝑐 𝑐, 𝐶 𝑐 COHESI, 𝑐ℎ COH0 Cohesion*
𝜑 𝜑 𝜑, 𝜙, Φ 𝜙 PHI, 𝑝ℎ𝑖 PHIANG Friction angle*
𝜎፲፲ 𝜎፲፲ 𝜎፲፲ 𝜎፲፲ SIGMA(2)
𝛾፮ 𝛾፮፥፭d 𝛾፮፥፭ 𝛾፮፥፭ SHRULT
𝛾፩
𝐺፟፬ 𝐺፟፬ 𝐺፟፬, 𝐺𝑓𝑠 𝐺፟፬ GFS, 𝑔𝑓𝑠 GFS Fracture energy in shear
𝛾፜፮፦ 𝛾፜፮፦ 𝛾፜፮፦ 𝛾፜፮፦ CUMSHR

OOPSHR Out of plane shear failure
d In this source ᎐ᑦᑝᑥ is defined as the total shear strain at the end of the softening regime, so ᎐ᑦᑝᑥ ዆ ᎐ᑡ ዄ ᎐ᑦ.
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Table A.5: Symbols used to describe the diagonal behaviour
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𝑓፭ᎎ 𝑓፭ᎎ 𝑓፭ᎎ 𝑓፭ᎎ FTALPH
𝑓፭፱ 𝑓፭ኻ, 𝑓፭፱ 𝑓፭፱ 𝑓፭፱ FT(1) Head-joint tensile strength*
𝑓፭፲ 𝑓፭ኼ, 𝑓፭፲ 𝑓፭፲ 𝑓፭፲ FT(2) Bed-joint tensile strength*

𝛼 𝛼 𝜃, Θ, (𝛼)e 𝛼 DIAANG, 𝑎𝑙𝑝ℎ𝑎 DIAANG
Angle between stepped diagonal
crack and bed-joint*

𝛽 𝛽f
e The angle ᎎ is not defined as such in this source, but it is used in the formula for ᑥ፟ᒆ.
f In this source ᎏ is defined as either ᎏᎳ or ᎏᎴ, with the formula ᎏ ዆

ᒕ
Ꮄ ± ᎎ.



B
Fortran Code of User Supplied
Subroutine usrmat_eqshma.f

Listing B.1: The user supplied subroutine written for the Equivalent Shear Masonry Model usrmat_eqshma.f

1 CDEC$ ATTRIBUTES DLLEXPORT::USRMAT
2 SUBROUTINE USRMAT( EPS0, DEPS, NS, AGE0, DTIME, TEMP0, DTEMP,
3 $ ELEMEN, INTPT, COORD, SE, ITER, USRMOD, USRVAL

,
4 $ NUV, USRSTA, NUS, USRIND, NUI, SIGMA, STIFF )
5 C......................................................................
6 C$DDOC
7 C$DDOC User-supplied subroutine for general nonlinear behaviour.
8 C$DDOC Return updated stress and tangential stiffness matrix.
9 C$DDOC

10 C$DDOC ARGUMENTS:
11 C$DDOC EPS0 D() In - Strain vector at start of increment.
12 C$DDOC DEPS D() In - Total strain increment.
13 C$DDOC NS I In - Number of stress components
14 C$DDOC AGE0 D In - Age of element.
15 C$DDOC DTIME D In - Total time increment.
16 C$DDOC TEMP0 D In - Temperature.
17 C$DDOC DTEMP D In - Total temperature increment.
18 C$DDOC ELEMEN I In - Current element number.
19 C$DDOC INTPT I In - Current integration point number.
20 C$DDOC COORD D() In - Coordinates of integration point.
21 C$DDOC SE D() In - Elastcity matrix.
22 C$DDOC ITER I In - Current iteration number.
23 C$DDOC USRMOD C In - User model name.
24 C$DDOC USRVAL D() In - User parameters.
25 C$DDOC NUV I In - Number of user parameters.
26 C$DDOC USRSTA D() InOut - User state variables at start of increment

.
27 C$DDOC Should be updated at output.
28 C$DDOC NUS I In - Number of user state variables.
29 C$DDOC USRIND I() InOut - User indicators at start of increment.
30 C$DDOC Should be updated at output.
31 C$DDOC NUI I In - Number of user state indicators.
32 C$DDOC SIGMA D() InOut - Total stress at start of increment.
33 C$DDOC Current stress at output.
34 C$DDOC STIFF D() InOut - Previous tangent stiffness.

107
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35 C$DDOC Current tangent stiffness at output.
36 C

...........................................................................

37 C... LIST OF SYMBOLS
38 INTEGER MSTR, MOPCRK, MCR
39 PARAMETER ( MSTR=6, MOPCRK=4, MCR=3 )
40 DOUBLE PRECISION STFFAC, SHRFAC, SHRF
41 PARAMETER ( STFFAC=0.0001D0, SHRFAC=0.01D0, SHRF=1.2D0 )
42 C
43 DOUBLE PRECISION DPMPAR
44 LOGICAL XSGTC
45 C
46 INTEGER NS, ELEMEN, INTPT, ITER, NUV, NUS, NUI,
47 $ USRIND(NUI)
48 DOUBLE PRECISION EPS0(NS), DEPS(NS),
49 $ COORD(3), USRVAL(NUV), USRSTA(NUS),
50 $ SIGMA(NS), STIFF(NS,NS), SE(NS,NS)
51 CHARACTER*6 USRMOD
52 C
53 INTEGER I, NCRACK, NOPCRK, NUMCR(3), CRACKS(2), IDIR(2),
54 $ ISCRK(6), ICRACK, NCR, FRCFAI, SHRCRK, FAIMEC
55 DOUBLE PRECISION YOUN(3), SIG0(MSTR), GFT(2), GFC(2), HCRAC,
56 $ FT(2), FC(2), EPS(MSTR), ALPHA(2), UNLFAC,
57 $ TANPHI, EPSULT(2), EPSULC, SIGRF(2), COH0,
58 $ ELAXES(3,3), EPSCR(MCR*MOPCRK), GFS,
59 $ SIGCR(MCR*MOPCRK), SHRMOD, TAUMAX, YOUN0(2),
60 $ CRAXES(MCR*MCR), SHRULT,
61 $ COH1, EPSP(MSTR), SHRMAX, SIGSHR, EPSSHR,
62 $ DEPSHR, SI0SHR, SHRM0,
63 $ EPSCP(2), EPSCFA(2), ESTAR,
64 $ N, TAUEQ, SHRMEQ, EPSHEQ, DEPSEQ, RATIO
65 C
66 CHARACTER*6 STRTYP
67 LOGICAL MEMBRA, SHELL, CRACKD, CRCKED, CRSHED, CRUSHD
68
69 C
70 C... RETRIEVING DATA FROM USER VALUES
71 YOUN(1) = USRVAL(1)
72 YOUN(2) = USRVAL(2)
73 CALL RMOVE( YOUN, YOUN0, 2 )
74 SHRM0 = USRVAL(3)
75 SHRMOD = SHRM0
76 TANPHI = USRVAL(4)
77 FT(1) = USRVAL(5)
78 FT(2) = USRVAL(6)
79 GFT(1) = USRVAL(7)
80 GFT(2) = USRVAL(8)
81 FC(1) = USRVAL(9)
82 FC(2) = USRVAL(10)
83 GFC(1) = USRVAL(11)
84 GFC(2) = USRVAL(12)
85 UNLFAC = USRVAL(13)
86 COH0 = USRVAL(14)
87 GFS = USRVAL(15)
88 ANGLE0 = USRVAL(16)
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89 EPSCFA(1) = USRVAL(17)
90 EPSCFA(2) = USRVAL(18)
91 HCRAC = USRVAL(19)
92 C
93 C... UPDATING STRAIN AND STRESS
94 CALL UVPW( EPS0, DEPS, NS, EPS )
95 CALL RMOVE( SIGMA, SIG0, NS )
96 NCR = 2
97 CALL GTC( ’../ELAXES’, ELAXES, 9 )
98 CALL RMOVE( ELAXES(1,1), CRAXES(1), NCR )
99 CALL RMOVE( ELAXES(1,2), CRAXES(NCR+1), NCR )

100 SI0SHR = SIG0(3)
101 EPSSHR = EPS(3)
102 DEPSHR = DEPS(3)
103 SIGMA(1) = SIG0(1) + YOUN0(1)*DEPS(1)
104 SIGMA(2) = SIG0(2) + YOUN0(2)*DEPS(2)
105 SIGSHR = SI0SHR + SHRM0*DEPSHR
106 C
107 C... AT THE BEGINNING OF THE STEP THE PARAMETER FAIMEC (RELATED TO THE

FAILURE MECHANISM) IS SET TO ZERO
108 FAIMEC = 0
109 C... INITIALIZE CRACK INDICATORS, COUNTERS, OUTPUT
110 FRCFAI = USRIND(5)
111 CRCKED = .FALSE.
112 CRSHED = .FALSE.
113 NCRACK = 0
114 NOPCRK = 0
115 CALL ISET( 0, NUMCR, 3 )
116 CALL RSET( 0.D0, EPSCR, NCR*MOPCRK )
117 CALL RSET( 0.D0, SIGCR, NCR*MOPCRK )
118 CALL ISET( 0, ISCRK, 6 )
119 C
120 C... THE TENSILE AND COMPRESSIVE BEHAVIOUR OF THE ELEMENT IS EVALUATED
121 DO 100, I = 1, 2
122 ALPHA(1) = USRSTA(I)
123 ALPHA(2) = USRSTA(I+2)
124 SIGRF(1) = USRSTA(I+4)
125 SIGRF(2) = USRSTA(I+6)
126 CRACKD = USRIND(I) .EQ. 1
127 CRUSHD = USRIND(I+2) .EQ. 1
128 IF ( EPS(I) .GT. 0.D0 .AND. I .EQ. 2) THEN
129 C... ELEMENT IN VERTICAL TENSION
130 IF ( EPS(I) .GT. FT(I)/YOUN0(I) ) THEN
131 C... IF THE STRAIN IS LARGER THAN THE ELASTIC LIMIT IN

TENSION THE PARAMETER FAIMEC IS INCREASED OF 1 OR 2 (ACCORDING TO
THE DIRECTION)

132 FAIMEC = FAIMEC + I
133 END IF
134 EPSULT(I) = 2.D0*GFT(I)/HCRAC/FT(I)
135 EPSULT(I) = MAX( EPSULT(I) , FT(I)/YOUN0(I) )
136 IF ( EPS(I) .GT. ALPHA(1) ) THEN
137 C... NEW TENSILE EXTREME
138 ALPHA(1) = EPS(I)
139 IF ( EPS(I) .GT. EPSULT(I) ) THEN
140 SIGMA(I) = EPS(I)*STFFAC
141 CRACKD = .TRUE.
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142 ELSE IF ( EPS(I) .GT. FT(I)/YOUN0(I) ) THEN
143 SIGMA(I) = FT(I)*(1.D0 - (EPS(I)-FT(I)/YOUN0(I))/
144 $ (EPSULT(I)-FT(I)/YOUN0(I)))
145 CRACKD = .TRUE.
146 ELSE
147 SIGMA(I) = EPS(I)*YOUN0(I)
148 END IF
149 SIGRF(1) = SIGMA(I)
150 IF ( ITER .EQ. 0 ) THEN
151 YOUN(I) = YOUN0(I)
152 ELSE
153 YOUN(I) = MAX( STFFAC*YOUN0(I), SIGRF(1)/ALPHA(1) )
154 END IF
155 ELSE IF ( ABS(ALPHA(1)) .GT. 1.D+6*DPMPAR(1) ) THEN
156 C... TENSILE UNLOADING AND RELOADING
157 SIGMA(I) = EPS(I)*SIGRF(1)/ALPHA(1)
158 IF ( ITER .EQ. 0 ) THEN
159 YOUN(I) = YOUN0(I)
160 ELSE
161 YOUN(I) = MAX( STFFAC*YOUN0(I), SIGRF(1)/ALPHA(1) )
162 END IF
163 ELSE
164 SIGMA(I) = YOUN0(I) * EPS(I)
165 YOUN(I) = YOUN0(I)
166 END IF
167 ELSE IF ( EPS(I) .LE. 0.D0 ) THEN
168 C... ELEMENT IN COMPRESSION
169 IF ( EPS(I) .LT. -FC(I)/YOUN0(I) ) THEN
170 C... IF THE STRAIN IS LARGER THAN THE ELASTIC LIMIT IN

COMPRESSION THE PARAMETER FAIMEC IS INCREASED OF 4 OR 8 (ACCORDING
TO THE DIRECTION)

171 FAIMEC = FAIMEC + 4 * I
172 END IF
173 IF ( EPS(I) .LT. ALPHA(2) ) THEN
174 C... NEW COMPRESSIVE EXTREME
175 ALPHA(2) = EPS(I)
176 C... SEQUENCE OF 3RD ORDER AND PARABOLIC
177 ESTAR = FC(I)/YOUN0(I)
178 EPSCP(I) = EPSCFA(I)*ESTAR
179 N = EPSCFA(I)
180 EPSULC = EPSCP(I) + 2.D0*GFC(I)/(HCRAC*FC(I))-
181 $ (3.D0*N+4.D0)*FC(I)/(6.D0*N*YOUN0(I)) -
182 $ 2.D0*FC(I)*(7.D0*N**3.D0-9.D0*N**2.D0+2)/
183 $ (3.D0*YOUN0(I)*N*(3.D0*N-2))
184 EPSULC = MAX( EPSULC, EPSCP(I) )
185 EPS(I) = -EPS(I)
186 IF ( EPS(I) .LT. ESTAR ) THEN
187 SIGMA(I) = (-2.D0+N)/(3.D0*N-2.D0)*
188 $ YOUN0(I)**3.D0/FC(I)**2.D0*EPS(I)**3.D0 -
189 $ (3.D0*N**2.D0-6.D0*N+2.D0)/(N*(3.D0*N-2.D0))*
190 $ YOUN0(I)**2.D0/FC(I)*EPS(I)**2.D0 +
191 $ YOUN0(I)*EPS(I)
192 CRUSHD = .TRUE.
193 ELSE IF ( EPS(I) .LT. EPSCP(I) ) THEN
194 SIGMA(I) = -2.D0/(N*(3.D0*N-2.D0))*
195 $ YOUN0(I)**2.D0/FC(I)*EPS(I)**2.D0 +
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196 $ 4.D0/(3.D0*N-2.D0)*YOUN0(I)*EPS(I)+
197 $ (-2.D0+N)/(3.D0*N-2)*FC(I)
198 CRUSHD = .TRUE.
199 ELSE IF ( EPS(I) .LT. EPSULC ) THEN
200 SIGMA(I) = FC(I)*(EPS(I)-EPSULC)/(EPSCP(I)-EPSULC)
201 SIGMA(I) = MAX( SIGMA(I), 0.1D0*FC(I) )
202 CRUSHD = .TRUE.
203 ELSE
204 SIGMA(I) = 0.1D0*FC(I)
205 CRUSHD = .TRUE.
206 END IF
207 SIGMA(I) = -SIGMA(I)
208 EPS(I) = - EPS(I)
209 SIGRF(2) = SIGMA(I)
210 IF ( ITER .EQ. 0 ) THEN
211 YOUN(I) = YOUN0(I)
212 ELSE
213 YOUN(I) = MAX( STFFAC*YOUN0(I), SIGRF(2)/ALPHA(2) )
214 END IF
215 ELSE IF ( EPS(I) .LT. EPS0(I) ) THEN
216 C... COMPRESSIVE RELOADING
217 IF ( ABS( ALPHA(2)-EPS0(I) ) .LT. 1.D+6*DPMPAR(1) ) THEN
218 SIGMA(I) = SIG0(I) + YOUN0(I)*DEPS(I)
219 ELSE
220 SIGMA(I) = SIG0(I)+DEPS(I)*(SIGRF(2)-SIG0(I))/
221 $ (ALPHA(2)-EPS0(I))
222 END IF
223 IF ( ITER .EQ. 0 .OR.
224 $ ABS( ALPHA(2) ) .LT. 1.D+6*DPMPAR(1) ) THEN
225 YOUN(I) = YOUN0(I)
226 ELSE
227 YOUN(I) = MAX( STFFAC*YOUN0(I), SIGRF(2)/ALPHA(2) )
228 END IF
229 ELSE IF( ALPHA(2) .EQ. 0 ) THEN
230 SIGMA(I) = 0.D0
231 ELSE
232 C... COMPRESSIVE UNLOADING
233 IF ( EPS(I) .LT.
234 $ ALPHA(2)-(1.D0-UNLFAC)*SIGRF(2)/YOUN0(I) ) THEN
235 SIGMA(I) = SIGRF(2)+YOUN0(I)*(EPS(I)-ALPHA(2))
236 ELSE
237 SIGMA(I) = EPS(I)*UNLFAC*SIGRF(2)/
238 $ (ALPHA(2)-(1.D0-UNLFAC)*SIGRF(2)/YOUN0(I))
239 END IF
240 IF ( ITER .EQ. 0 .OR.
241 $ ABS( DEPS(I) ) .LT. 1.D+6*DPMPAR(1) ) THEN
242 YOUN(I) = YOUN0(I)
243 ELSE
244 YOUN(I) = MAX( STFFAC*YOUN0(I),
245 $ (SIGMA(I)-SIG0(I))/DEPS(I) )
246 END IF
247 END IF
248 END IF
249 IF ( CRACKD ) THEN
250 USRIND(I) = 1
251 NCRACK = NCRACK + 1
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252 IDIR(NCRACK) = I
253 NUMCR(NCRACK) = NCRACK
254 IF ( EPS(I) .GT. 0.D0 ) THEN
255 NOPCRK = NOPCRK + 1
256 ISCRK(NCRACK) = 2
257 ELSE
258 ISCRK(NCRACK) = -2
259 END IF
260 END IF
261 IF ( CRUSHD ) USRIND(I+2) = 1
262 USRSTA(I) = ALPHA(1)
263 USRSTA(I+2) = ALPHA(2)
264 USRSTA(I+4) = SIGRF(1)
265 USRSTA(I+6) = SIGRF(2)
266 CRCKED = CRCKED .OR. CRACKD
267 CRSHED = CRSHED .OR. CRUSHD
268 100 CONTINUE
269
270
271 C... SHEAR RETENTION
272 C
273 C... FRICTIONAL CRITERION
274 SHRMAX = USRSTA(9)
275 COH1 = USRSTA(11)
276 IF ( EPS(1) .GT. 0.D0 ) THEN
277 C... COMBINATION OF SHEAR AND HORIZONTAL TENSION
278 IF ( SIGSHR .LT. 0.D0 ) THEN
279 SIGSHR = -SIGSHR
280 SI0SHR = -SI0SHR
281 EPSSHR = -EPSSHR
282 DEPSHR = -DEPSHR
283 I = 1
284 ELSE
285 I = 0
286 END IF
287 EPSHEQ = EPSSHR + EPS(1)/TAN(ANGLE0)
288 IF ( USRSTA(18) .EQ. 0.D0 ) THEN
289 C... PRE-PEAK
290 IF ( EPSHEQ .LT. 1.D+6*DPMPAR(1) ) THEN
291 SHRMEQ = SHRM0
292 ELSE
293 SHRMEQ = ( SHRM0*EPSSHR + YOUN0(1)*EPS(1)*TAN(ANGLE0) )
294 $ / EPSHEQ
295 END IF
296 ELSE
297 C... POST-PEAK
298 SHRMEQ = USRSTA(18)
299 END IF
300 SHRULT = 2.D0*GFS/(HCRAC*COH0)-COH0/SHRMEQ
301 IF ( SHRULT .GT. 1.D+6*DPMPAR(1) ) THEN
302 COH1 = COH0*(SHRULT-SHRMAX)/SHRULT
303 COH1 = MAX( 0.D0, COH1 )
304 ELSE IF ( SHRMAX .EQ. 0.D0 ) THEN
305 C... GFS TOO SMALL, PRE-PREAK
306 COH1 = COH0
307 ELSE
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308 C... GFS TOO SMALL, POST-PEAK
309 COH1 = 0.D0
310 END IF
311 IF ( CRCKED ) COH1 = 0.D0
312 TAUMAX = MAX(0.D0, COH1-SIGMA(2)*TANPHI)
313 SIGSHR = MIN( SIGSHR, TAUMAX )
314 SIGMA(1) = MIN( MAX(SIGMA(1),0.D0) , TAUMAX/TAN(ANGLE0))
315 TAUEQ = SIGSHR + SIGMA(1)*TAN(ANGLE0)
316 IF ( ABS(TAUEQ) .GE. TAUMAX ) THEN
317 FAIMEC = FAIMEC + 16
318 IF ( DEPS(1) .LT. 0.D0 ) THEN
319 C... SHEAR LOADING, TENSILE UNLOADING
320 SIGSHR = TAUMAX - SIGMA(1)*TAN(ANGLE0)
321 ELSE IF ( SIGSHR*SI0SHR .LT. 0.D0 ) THEN
322 C... TENSILE LOADING, SHEAR UNLOADING TO ZERO
323 SIGSHR = 0.D0
324 SIGMA(1) = TAUMAX/TAN(ANGLE0)
325 ELSE IF ( DEPSHR .LT. 0.D0 ) THEN
326 C... TENSILE LOADING, SHEAR UNLOADING
327 SIGMA(1) = (TAUMAX - SIGSHR)/TAN(ANGLE0)
328 ELSE
329 C... SIMULTANEOUS SHEAR AND TENSILE LOADING
330 IF ( ( SIG0(1)*TAN(ANGLE0) + SI0SHR )
331 $ .LT. 1.D+6*DPMPAR(1) ) THEN
332 RATIO = 0.5D0
333 ELSE
334 RATIO = SI0SHR / (SIG0(1)*TAN(ANGLE0) + SI0SHR)
335 END IF
336 C... RATIO BETWEEN SHEAR AND HORIZONTAL TESNION IS MAINTAINED

DURING SOFTENING AND YIELDING
337 SIGSHR = RATIO*TAUMAX
338 SIGMA(1) = (1.D0 - RATIO)*TAUMAX/TAN(ANGLE0)
339 END IF
340 USRSTA(18) = SHRMEQ
341 C... SHRMEQ IS KEPT CONSTANT AFTER PEAK
342 DEPSEQ = DEPSHR + DEPS(1)/TAN(ANGLE0)
343 SHRMAX = SHRMAX + ABS( DEPSEQ )
344 FRCFAI = 1
345 END IF
346 IF ( I .EQ. 1 ) SIGSHR = -SIGSHR
347 ELSE
348 C... SHEAR WITHOUT HORIZONTAL TENSION
349 TAUEQ = ABS(SIGSHR)
350 IF ( USRSTA(18) .EQ. 0.D0 ) THEN
351 C... PRE-PEAK
352 SHRMEQ = SHRM0
353 ELSE
354 C... POST-PEAK
355 SHRMEQ = USRSTA(18)
356 END IF
357 SHRULT = 2.D0*GFS/(HCRAC*COH0)-COH0/SHRMEQ
358 IF ( SHRULT .GT. 1.D+6*DPMPAR(1) ) THEN
359 COH1 = COH0*(SHRULT-SHRMAX)/SHRULT
360 COH1 = MAX( 0.D0, COH1 )
361 ELSE IF ( SHRMAX .EQ. 0.D0 ) THEN
362 COH1 = COH0
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363 ELSE
364 COH1 = 0.D0
365 END IF
366 IF ( CRCKED ) COH1 = 0.D0
367 TAUMAX = MAX(0.D0, COH1-SIGMA(2)*TANPHI)
368 IF ( ABS(SIGSHR) .GT. TAUMAX ) THEN
369 C... IF THE SHEAR STRESS IS LARGER THAN THE LIMIT THE PARAMETER

FAIMEC IS INCREASED OF 16
370 FAIMEC = FAIMEC + 16
371 IF ( SIGSHR .GT. TAUMAX ) SIGSHR = TAUMAX
372 IF ( SIGSHR .LT. -TAUMAX ) SIGSHR = -TAUMAX
373 USRSTA(18) = SHRMEQ
374 EPSHEQ = ABS(EPSSHR)
375 SHRMAX = SHRMAX + ABS( DEPSHR )
376 FRCFAI = 1
377 END IF
378 END IF
379 IF ( USRSTA(18) .NE. 0.D0 ) USRSTA(19) =
380 $ (EPSHEQ-TAUMAX/SHRMEQ)*HCRAC
381 USRSTA(9) = SHRMAX
382 USRSTA(11) = COH1
383 C
384 C
385 CALL RSET( 0.D0, STIFF, NS*NS )
386 STIFF(1,1) = YOUN(1)
387 STIFF(2,2) = YOUN(2)
388 STIFF(3,3) = SHRMOD
389 SIGMA(3) = SIGSHR
390 CALL RSET( 0.D0, EPSP, 4 )
391 IF ( USRIND(1) .EQ. 1 ) EPSP(2) = MAX( 0.D0, EPS(1)*HCRAC )
392 IF ( USRIND(2) .EQ. 1 ) EPSP(1) = MAX( 0.D0, EPS(2)*HCRAC )
393 USRIND(5) = FRCFAI
394
395 USRSTA(10) = DBLE( FAIMEC )
396 USRSTA(12) = DBLE( FRCFAI )
397 USRSTA(13) = TAUEQ/TAUMAX
398 IF ( CRSHED ) USRSTA(14) = 1.D0
399 USRSTA(15) = DBLE( USRIND(1) )
400 USRSTA(16) = DBLE( USRIND(2) )
401 USRSTA(17) = TAUMAX
402 C
403 C... POST PROCESSING ITEMS
404 CALL PTL( ’ISCRK’, ISCRK, 6 )
405 IF ( CRCKED ) THEN
406 C... WRITE POSTPROCESSING STUFF FOR CRACKS
407 CRACKS(1) = NCRACK
408 CRACKS(2) = NOPCRK
409 DO 400, ICRACK = 1, NCRACK
410 CALL PTXL( ’CRACK/ICRDIR’, ICRACK, IDIR(ICRACK), 1 )
411 CALL PTXL( ’CRACK/AXES’, ICRACK, CRAXES, NCR*NCR )
412 EPSCR((ICRACK-1)*NCR+1) = MAX( 0.D0, EPS(IDIR(ICRACK)) )
413 SIGCR((ICRACK-1)*NCR+1) = MAX( 0.D0, SIGMA(IDIR(ICRACK)) )
414 EPSCR((ICRACK-1)*NCR+2) = EPS(3)
415 SIGCR((ICRACK-1)*NCR+2) = SIGMA(3)
416 400 CONTINUE
417 C
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418 CALL PTL( ’CRACKS’, CRACKS, 2 )
419 CALL PTL( ’NUMCR’, NUMCR, 3 )
420 CALL PTL( ’EPSCR’, EPSCR, NCR*MOPCRK )
421 CALL PTL( ’SIGCR’, SIGCR, NCR*MOPCRK )
422 END IF
423 C
424 END





C
Exemplary Input Files for the Single

Element Model Analysis

Listing C.1: The .dat-file used for the single element model analysis with the Equivalent Shear Masonry Model for load case
G1

: Diana Datafile written by Diana 10.2
’DIRECTIONS’

1 1.00000E+00 0.00000E+00 0.00000E+00
2 0.00000E+00 1.00000E+00 0.00000E+00
3 0.00000E+00 0.00000E+00 1.00000E+00

’MODEL’
DIMENS ”2D”
GRAVDI 2
GRAVAC -9.81000E+00
’COORDINATES’

1 1.00000E-01 1.00000E-01 0.00000E+00
2 1.00000E-01 0.00000E+00 0.00000E+00
3 0.00000E+00 0.00000E+00 0.00000E+00
4 0.00000E+00 1.00000E-01 0.00000E+00

’MATERI’
1 USRMAT

YOUNG 3.40000E+09
POISON 0.00000E+01
USRVAL 2.20000E+09 3.40000E+09 1.30000E+09 6.84137E-01

1.00000E+05 1.00000E+05 5.00000E+00 5.00000E+00
1.40000E+07 1.40000E+07 2.00000E+04 2.00000E+04
3.00000E-01 1.50000E+05 5.00000E+00 0.50000E+00
4.00000E+00 4.00000E+00 1.00000E-01

USRSTA 0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
0.00000E+00 0.00000E+00 0.00000E+00 0.00000E+00
0.00000E+00 0.00000E+00

USRIND 0 0 0 0 0
ASPECT

’GEOMET’
1 GCNAME SHEET

GEOMDL MEMBRA
XAXIS 1.00000E+00 0.00000E+00 0.00000E+00
THICK 1.00000E-01
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’DATA’
1 INTEGR REDUCE

’ELEMENTS’
SET ”Sheet 1”
CONNECT

1 Q8MEM 2 1 4 3
MATERIAL 1
GEOMETRY 1
DATA 1
’LOADS’
CASE 1
NAME ”overload”
ELEMEN
1 EDGE KSI2

FORCE -4.00000E+04
DIRECT 2

CASE 2
NAME ”shear”
DEFORM
4 TR 1 1.00000E-01
CASE 3
NAME ”horizontal extension”
DEFORM
2 TR 1 1.00000E-01
’SUPPOR’
NAME ”support bottom”
/ 2 3 / TR 2
/ 2 3 / TR 1
NAME ”support top”
4 TR 1
’TYINGS’
NAME ”tying top right node”
FIX TR 1

1 4 TR 1 1.
2 TR 1 1.

EQUAL TR 2
1 4
’TIMELO’
LOAD 2
TIMES 0.00000E+00 1.50000E+02 /
FACTOR 0.00000E+00 1.50000E-03 /
LOAD 3
TIMES 0.00000E+00 0.50000E+02 1.50000E+02 /
FACTOR 0.00000E+00 0.50000E-03 -0.50000E-03 /
’END’

Listing C.2: The .dcf-file used for the single element model analysis with the Equivalent Shear Masonry Model for load case
G1

*FILOS
INITIA
*INPUT
*FORTRAN
USE ”usrmat_eqshma.dll”
*NONLIN LABEL=”Structural nonlinear”

BEGIN EXECUT
TEXT ”application overload”
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BEGIN LOAD
LOADNR 1
STEPS EXPLIC SIZES 0.100000(10)

END LOAD
ITERAT METHOD NEWTON

END EXECUT
BEGIN EXECUT
TEXT ”application shear”
TIME STEPS EXPLIC SIZES 1.00000(150)
BEGIN ITERAT

MAXITE 50
METHOD NEWTON
BEGIN CONVER

FORCE CONTIN
DISPLA CONTIN

END CONVER
END ITERAT

END EXECUT
SOLVE PARDIS
BEGIN OUTPUT
TEXT ”Output”
TABULA
LAYOUT LINPAG 0
SELECT STEPS ALL /
BEGIN STRAIN

BEGIN TOTAL
BEGIN GREEN

BEGIN GLOBAL
XX YY ZZ XY YZ ZX
INTPNT

END GLOBAL
END GREEN

END TOTAL
END STRAIN
BEGIN STRESS

BEGIN TOTAL
BEGIN CAUCHY

BEGIN GLOBAL
XX YY ZZ XY YZ ZX
INTPNT

END GLOBAL
END CAUCHY

END TOTAL
END STRESS
STATUS CRACK
STATUS USER

END OUTPUT
*END
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