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Robust Heading Estimation from Polarization Images by
Deep Neural Networks

L. Yadala Chanchu? R.E.G. Zuidgeest: D.M. Stam! G.C.H.E de Croon*

ABSTRACT

Heading estimation is vital for the autonomous
flight of unmanned aerial vehicles. Magnetome-
ters are typically used for this purpose, but they
are not robust to electro-magnetic interferences.
As a promising alternative, we investigate the
insect-inspired solution of skylight polarization
sensing. In particular, we develop a robust po-
larization compass for azimuth estimation. Two
datasets are created - one based on a Mie scat-
tering simulation, and one containing real-world
pictures captured with a polarization camera un-
der a variety of weather conditions. We em-
ploy the ResNet-18 model, which is trained and
tested on both datasets separately. The trained
model is robust to different weather conditions,
and is able to directly analyze maps in the instru-
mental plane. The median error on the (mostly
cloudy) real-world images of 4.30 degrees makes
it a promising new method for the navigational
toolkit of UAVs. We publish the real-world po-
larization dataset as open access data, in order to
facilitate improvements by the community.

1 INTRODUCTION

The rise of autonomous systems has brought with it the
challenge of navigating effectively and robustly in the mul-
titude of environments these systems can be used. As the
demand for unmanned aerial vehicles (UAVs) continues to
grow in a variety of sectors, challenges associated with re-
liable navigation under non-ideal conditions become more
relevant. UAVs need to navigate effectively also under ad-
verse environmental conditions which can include limited or
blocked visibility and disrupted satellite signals.

Conventionally, drone navigation is done through the use
of GPS, inertial measurement units (IMUs), and magnetome-
ters [1], but these methods have significant shortcomings.
GPS relies on clear signal communication to satellites, which
is not possible in the case of large obstructions. On the other
hand, IMUs will accumulate errors while the drone is fly-
ing [2]. Magnetometers are sensitive to external influences
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Figure 1: Sun direction estimation by a deep neural network
based on polarization images. Red lines are ground-truth sun
directions based on location and time. Blue dashed lines rep-
resent the predictions of the trained ResNet model. Predic-
tions shown for (left) a clear sky and (right) an overcast sky.

like electrical cables or large metal structures such as ships
[3]. For this reason, skylight polarization is being heavily re-
searched as an alternative navigation method.

Work on skylight polarization has mainly focused on az-
imuthal angle determination in clear sky conditions to test
their efficacy. Traditional hand-made methods are often ver-
ified with captured clear sky images or simulations based
on Rayleigh scattering. Newer models based on machine
learning (ML) are predominantly validated on simulation
datasets, which might not reflect the real world imperfections
that occur - especially with the presence of heavily overcast
skies. Related work has utilised many different approaches,
from exploiting the anti-symmetry present [4] along the solar
meridian in Angle of Polarisation (AOP) maps to ML-based
techniques which experiment with different data label encod-
ings [5]. However these methods focus on performance under
ideal conditions, typically under near-ideal sky conditions or
simulation data.

It has been observed that non-ideal environmental con-
ditions like cloud cover significantly reduce the efficacy of
present methods to determine heading [6]. In this study, the
aim is to further investigate how a machine learning-based
approach behaves under less-than-ideal sky conditions and
compare performance when trained on simulated images.

2 BACKGROUND
Polarization preliminaries

Polarization cameras capture polarized light intensity in
four different directions using a polarization array, shown in
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Figure 2: The polarization array of a single pixel.

AOP

Figure 3: Intensity map with corresponding DOP and AOP.

figure 2. This polarization information is then translated to
the Stokes parameters I/, ( and U using equation 1. These
values describe the polarization state of electromagnetic radi-
ation [6]. There is a fourth parameter, V, describing circular
polarization and is negligible for sunlight in the earth’s atmo-
sphere.

I=1(Io+ Ius + Igo + I135)
Q= Iy — Iy (D
U= I — I35

With the Stokes parameters of all pixels, polarization
maps can be created. Two common maps are degree of po-
larization (DOP) and angle of polarization (AOP) maps. Ex-
amples of these maps are shown in figure 3. The formula for
calculating these maps is shown in equation 2.

Q2+U2
DOP = ~—~— )
AOP = % arctan <Q)

Q

There are two reference frames that can be used for the
angle of polarization (see figure 5): the instrumental frame
(left, fig. 5) - representing the polarisation directly from the
measured input and the global frame (right, fig. 5) - repre-
senting the polarisation angle with respect to the solar merid-
ian. Conventionally, navigation algorithms rely on the use of
an AOP map in the global reference plane. In this reference
frame, the solar meridian is a straight line - the axis of cen-
tral symmetry. This reference frame can be identified by the
characteristic *8-shape’ visible in the AOP map. AOP-based
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navigation is a popular choice, as the AOP map is more robust
to cloud cover and other aerosols [7].

principal plane

zenith
polarised flux

local meridian
plane

Figure 4: The 2 reference planes projected on a 2D plane,
B = 120 deg (measured clockwise).

The problem arises in obtaining maps in the global refer-
ence plane (also known as the principal plane). To transition
from the local (instrumental) plane, the stokes parameters are
adjusted according to equation 3. A variable rotation Mueller
matrix is applied to each pixel, with angle 5 measured clock-
wise in degrees from the pixel to the solar meridian [8]. Fig-
ure 4 schematically shows how the transformation is carried
out. Then the AOP is updated with formula 2. The problem
with this transformation, however, is that the location of the
solar meridian must be known beforehand. This means that
this approach is not usable for applications where the solar
meridian is unknown to begin with.

r 1 0 0 I
Q=10 cos(28) sin(28)| [Q] B
U’ 0 —sin(28) cos(28)| |U

Non-ML Algorithms

Several hand-made approaches have been proposed to
find the solar meridian in the global plane AOP map. A com-
monly used baseline is a least squares fit. One such method

Global AOP

o
Angle (deg)

Figure 5: The two reference planes for AOP maps.
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tries to find the optimal fit with a symmetry scanning ap-
proach of randomly sampled pixel pairs [7]. Other methods
are based on fits with a moment of inertia approach [4] or
comparing the rotation of pixel rings of sequential AOP maps
[9].

DOP-based navigation do not rely on fitting a symmetry
line. For example, SkyPole is a novel method that is able to
find the celestial pole from a sequence of DOP measurements
[10]. In contrast, we are interested in a method that maps a
single image to the sun direction.

ML-Based Methods

ML models are able to learn what polarization features
are useful for decoding orientation information.

One such approach is based on the intensity map, DOP
and AOP [5]. These maps are fed to a fully connected
(FC) network, which then outputs a heading estimation. Pre-
processing of images with neural networks is also being re-
searched. PCA-Net has showed to be useful in denoising real-
life AOP maps [11].

3 METHODOLOGY

In this article, we investigate the use of deep neural net-
works for mapping sky polarization images to sun direction
directly. In this section, we explain the neural network model
and dataset.

3.1 ResNet Model

We utilized the ResNet-18 model, which has been
pretrained on the ImageNet dataset, due to its capability to
effectively learn and extract significant features from a vari-
ety of images automatically [12]. Polarization information
from the sky can contain subtle patterns and gradients that are
crucial for determining heading direction, and ResNet-18’s
deep architecture can effectively capture these features.

Special care must be taken in the way the azimuth angle is
encoded. Previous research has shown that the best neural
network performance is achieved when azimuth estimation
is transformed to multi-class classification, as opposed to a
regression task [5]. The proposed encoding method is known
as exponential encoding, N, (k).

0<m<1

{Ne(k» = mll,

i=k—¢
J

Where k£ € |0, % denotes the index of the output node,

0 < ¢ < 360 is the encoded angle in degrees, j is the res-
olution, and m is the constant determining the exponential
decay. In essence, i describes how many indices a node k is
located away from the encoded angle. Exponential encoding
ensures that nodes coherently share the information of orien-
tational mapping. Figure 6 shows an example of an exponen-
tial encoding probability density function with a resolution of
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Figure 6: Exponential encoding (m = 0.99, ¢ = 350.0) nor-
malized with a Softmax

j = 0.1 deg. For this resolution, the last fully connected layer
of the ResNet model is altered to contain 3600 output nodes.
Note that by normalizing the exponential encoding to re-
semble a probability mass function (using a Softmax), the
cross-entropy loss metric can be used during training.

3.2 Setup and Dataset

We used two different methods to gather the data re-
quired to train the model. The first method creates a syn-
thetic dataset, based on a theoretical model for polarization.
This model takes into account Mie scattering and is therefore
more realistic than the standard Rayleigh model [13].

The simulation outputs Gaussian quadrature points for a
map of the sky hemisphere. With the help of the Python
OpenCV library, the Iy, I45, Igg, I135 intensity maps are
acquired and scaled to 224 x 224 pixels. To simulate the in-
formation loss that a cloudy atmosphere would introduce, it is
possible to randomly obscure information in elliptical areas.
This approach mimics the loss of information a cloud can in-
troduce, and is used in the PSNS dataset [14]. Between 1 and
5 ellipsoidal clouds are randomly added to the images, with
center pixel locations drawn from A/(112,282), axis lengths
of N'(224/5,(224/25)?) pixels, and a random integer rota-
tion of /(0, 90) degrees.

The second method captures real-world data with a phys-
ical setup, located on the rooftop of the faculty of aerospace
engineering at TU Delft, in Delft, the Netherlands. Real-
world pictures were captured with the Sony XCG-CP510
camera and the FE185C057HA-1 Fujifilm fisheye lens. The
experimental setup is shown in figure 7. The images were col-
lected from 8:00 until 19:00 with picture intervals of 10 min-
utes to get a varied dataset. At the time of writing, the setup
has collected 2618 images over the course of 4 months, from
January 2024 until April 2024*. The camera was regularly

*With some breaks between due to overheating and exposure issues
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Figure 7: Set-up as mounted on the rooftop

rotated during this period. More details about this dataset can
be found in the Appendix.

Rotation of the camera is necessary, as there are fixed ob-
structions on the rooftop which might provide the model in-
formation about the camera orientation. This provides the
model with information. By rotating the camera, it is made
more difficult for the neural network to infer the sun’s az-
imuthal angle.

Images are captured using the open-source Aravis viewer
[15] (version 0.8.30). Utilizing the process of demosaicing,
we proceed to extract the Iy, l45, Igo, I135 intensity maps
from the collected raw images.

Each instance in the dataset consist of the Stokes param-
eters [, ), U. Equation 1 shows that the Stokes parameters
can be retrieved using minimal pre-processing of the original
intensity maps. Only +/- operations and rescaling by a factor
1/2 is necessary. For both the simulation and real data, the
maps have been saved as 3 x 224 x 224 tensors. The 3 chan-
nels are for each Stokes’ parameter respectively. This data
shape is required to be used as input to ResNet-18 and many
other standard convolution neural networks.

In order to investigate the effect of noise generated by
clouds on the final error of the trained model, we used a 3x3
kernel on the AOP maps, which computes the standard devi-
ation of the pixels contained in the kernel. This gives an esti-
mate for the noisiness of an image, which corresponds well to
how ”cloudy” an image is, since clouds introduce noise into
the AOP mapping [16]. Figure 8 shows this rudimentary ap-
proach can successfully classify cloudiness, although outliers
still exist.

4 RESULTS

For ResNet, hyperparameter tuning is run for the real data
with a train/test split of 85/15. The result of 5-fold cross-
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Figure 8: Example intensity maps, sorted by their cloudiness
values
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Figure 9: ResNet simulation error distribution
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Figure 10: Brightest spot prediction on (left) a clear sky and
(right) an overcast sky

ResNet Loss Curves ResNet Performance Curves
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Figure 11: ResNet training curves on the real images

validation on the training set is shown in table 1. The selected
parameters of Ir = Se-3 and m = 0.98 are used for the next sub-
sections. The optimizer used is Adam with default PyTorch
settings [17].

Learning rate | Exponential encoding decay, m
097 | 098 | 0.99 | 0.995

le-4 29.86 | 22.72 | 26.29 | 26.83
Se-4 253 | 21.81 | 23.75 | 3091
le-3 30.69 | 24.60 | 27.68 | 24.02

Table 1: Average error (degrees) of different hyper-
parameters during gridsearch with a 65/20/15 train-val-test
split after training for 50 epochs

Simulation

An augmented dataset of 2500 images is used as a ba-
sis for training the Resnet model using transfer learning [18].
The distribution of errors is visible in figure 9, with a final
median absolute error of 1.00 degrees and a mean absolute
error of 3.28 degrees.

To show the result of the model training, a simple visual-
ization is shown in figure 12a. The Resnet model is able to
mimic the exponential target output. This means the azimuth
angle is accurately estimated, while being robust to the cloud
mask.
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(a) Simulation example
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Figure 12: Examples of maps with their corresponding Soft-
max outputs. The top figures are simulated examples (a, b),
and the bottom figures are real examples (c, d).

Real Data

Using the same train-test split of 85/15 that was used in
the hyperparameter tuning, the model is trained on the dataset
of 2618 real images. Figure 11 shows the learning curves, av-
eraged over 5 training runs of 100 epochs each. The shaded
area signifies a single standard deviation. The best perform-
ing model achieves a median absolute error of 4.30 degrees,
and an mean absolute error of 12.10 degrees. The error dis-
tribution is visible in figure 15b. Figure 1 shows two exam-
ple predictions of the trained ResNet model under different
weather conditions.

We compare the robustness of the model by using a
brightest spot predictor. This brightest spot model assumes
the brightest spot in the image to be the sun as shown in fig-
ure 10. The best median error performance was found by
pre-processing the images with a 33x33 Gaussian blur ker-
nel. The resulting distribution of errors in shown in figure
15a. Figure 10 shows example predictions of the brightest
spot model.

The brightest spot estimator performs worse than ResNet,
with a median absolute error of 10.9 degrees and a mean abso-
lute error of 27.24 degrees. The scatter plot in figure 14b and
14a shows the influence of cloud cover on both model per-
formances. In general, a higher degree of cloudiness leads to
both models estimating the solar meridian poorly (the bright-
est spot algorithm more so than the ResNet model). This re-
inforces the hypothesis of clouds introducing noise in polar-
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ization information.

Looking at one such cloudy picture (figure 12c¢), the influ-
ence of the ResNet model becomes clear. The peak is lower
when compared to 12a, which means the model is less certain
about its prediction. Note that a second, lower peak is located
180 degrees from the predicted angle. Although the model
correctly predicts the angle, this indicates the model is cer-
tain about the solar meridian orientation, but uncertain about
the direction of the sun.

5 DISCUSSION

The accuracy of the model with simulated clouds is much
higher compared to using real images. The median simula-
tion accuracy is 1.0 degrees, whereas with real images it is
4.3 degrees. This highlights that the simulated clouds do not
obscure polarization information in the same way that real
clouds do. Another explanation for this difference in perfor-
mance is the fact that the simulation produces maps in the
global reference frame, where AOP symmetry is easily found.

From the plot in figure 14b, it is clear that from cloudi-
ness levels above 0.7, the model accuracy is impacted. This
demonstrates that our model is able to determine heading to
some extent even with patchy skies, but it becomes increas-
ingly difficult when there is less direct sky visibility.

In terms of performance, our model shows a clear advan-
tage over the brightest spot algorithm, especially for cloudier
skies. This indicates that our model is able to effectively esti-
mate the solar meridian even in challenging conditions.

The collected dataset has limitations that need to be con-
sidered. The images have obstacles that obstruct the clear
view of the sky, which can impact the accuracy of our model.
These obstacles could have been used by the model as land-
marks to help determine the solar angle. However, training
the model with the objects all masked out with a circular
mask, as shown in Figure 13, doesn’t seem to significantly
affect model performance. When trained on these masked
images, even with a narrower field of view, the median error
is 5.4 degrees compared to the original median error of 4.3
degrees. This shows that the model is in fact determining the
heading from the polarisation information and not the obsta-
cles. The Appendix shows the distribution of the azimuthal
angles in our dataset is imbalanced. This might introduce bias
in the model’s performance.

6 CONCLUSION

In this paper, a polarization dataset has been created of
skylight hemisphere pictures. The dataset contains 2618
images with various weather conditions. Additionally, a
ResNet-18 model has been trained to perform solar azimuth
estimation based on Stokes’ parameters in the instrumental
plane. The model attains a median absolute error of 1.0 de-
grees on simulation data with cloud masks, and 4.3 degrees
on the real data. To compare, a brightest spot algorithm that
predicts the direction of the brightest intensity achieves a me-
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Figure 13: Masked image to determine effect of obstacles on
model accuracy
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Figure 14: Influence of cloudiness on error
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Figure 15: Comparative error distributions
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dian absolute error of 10.9 degrees on the real data. This
research showcases that azimuthal angle estimation is possi-
ble with reasonable accuracy even under non-ideal weather
conditions.

Future research is possible in expanding the polarization
dataset to contain more images and improving the balance
of the azimuth distribution. Also, a more refined metric for
cloudiness could be developed to better quantify the influence
of weather conditions on model performance. More advanced
or custom machine learning models for azimuth estimation
can be developed and validated on the dataset.
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APPENDIX A: DATASET DETAILS

The cloudiness values of the collected images are bimodal
as the collection period was characterized by many mainly
cloudy weeks followed by mainly clear skies as shown in fig-
ure 16.

Figure 17 shows that the azimuthal angles distribution in
the dataset is very unbalanced. This will most likely introduce
significant bias in trained models, so this is something to be
aware of.
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Figure 16: Distribution of cloudiness values in the dataset
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Figure 17: Distribution of azimuthal angles in dataset
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