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Abstract. Data assimilation methods have been implemented on a slope stability
problem, and the performance of different constitutive models and data assimila-
tion schemes has been investigated. In the first part, a data assimilation scheme
called the ensemble Kalman filter (EnKF) is implemented using a finite element
model (FEM) and its performance with different constitutive models (the Mohr-
Coulomb (MC) and Hardening Soil (HS) material models) is investigated to study
their effect on the parameter and the factor of safety (FoS) estimation. Measure-
ments of horizontal displacement are assimilated. The results from a synthetic
example show that the HS model can generally be used to get reliable results for
parameter and FoS estimation. However, using the MC model does not always
output reliable parameter and FoS estimation. In the second part, the performance
of different data assimilation schemes, i.e., the EnKF and ensemble smoother
with multiple data assimilation (ESMDA), is studied with the preferred consti-
tutive material model (the HS model). The results of a synthetic case show that
the EnKF results in a narrower distribution for the FoS than the ESMDA method,
while the latter results in FoS estimation which is closer to the ‘truth’.

Keywords: Slope stability - Data assimilation - Constitutive models - Ensemble
Kalman filter - Ensemble smoother

1 Introduction

Soil slopes are common geotechnical structures in many infrastructural applications such
as embankments, transport facilities, flood protection and open-pit mining. The stability
of these slopes is of great concern due to the high consequences of their failure. There
are various assessment methods for slope stability, e.g. the limit equilibrium method,
the finite element method, empirical methods and probabilistic methods.

Nowadays, FEM is a popular method to assess slope stability. FEM has several
features which make it popular, for example the inclusion of advanced constitutive
models, the ability to model coupled processes, the modelling of complex geometries
etc. Despite these features of FEM, the slope behaviour obtained from FEM analysis often
differs from what is observed in reality. This can be due to many reasons, e.g. numerical
approximation (both in FEM and/or in constitutive models), complex geometry, complex
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initial and boundary conditions, poorly known parameters or the combination of these.
These limitations can be mitigated by using data assimilation.

Data assimilation is an approach in which measurements are assimilated into a
numerical model to estimate a system’s state, parameters, or both by considering the
uncertainties in the model and measurements.

An increasing number of geotechnical structures are equipped with measurement
devices, for example measuring surface displacements, pore water pressure, strain, etc.
Such measurements can be used to improve the estimate of uncertain model parameters.

Various types of constitutive models can be used in an FEM slope stability model.
These constitutive models vary from simpler models, such as the MC model, to advanced
soil models such as the HS model. In addition, various ensemble-based data assimilation
schemes exist, such as the EnKF and ESMDA. In this study, we investigate (i) what sort
of constitutive model should be used in a data assimilation scheme for FoS estimation
(this summarises work presented in Mohsan et al. (2021), and (ii) what sort of data
assimilation techniques should be used in slope stability (geotechnical) problems.

2 Methodology

The overall methodology consists of a forward model and a data assimilation scheme.
The forward model is used to simulate the problem physics, and data assimilation is used
to assimilate the measurements into the forward model to estimate the model parameters.
In this study, measurements of horizontal displacements are assimilated into an FEM
model to estimate the strength and stiffness parameters of the constitutive model. The
estimated parameters are then used to estimate the system state and the FoS.

2.1 Forward Model

In this study, the forward model is an FEM model of slope stability that considers the
hydro-mechanical coupled system of equations as implemented in Plaxis (Brinkgreve
et al. 2016). The change of hydraulic boundaries in the slope system cause slope defor-
mations, which are computed by performing a hydro-mechanical analysis. Stability
analysis follows this hydro-mechanical analysis to compute the FoS, using the strength
reduction method. The mechanical constitutive behaviour is modelled by either of the
two following models:

Mohr-Coulomb (MC) Model: The MC modelis alinear elastic perfectly plastic model
which is widely used to model the material in geotechnical analyses. The linear elastic
part of the MC model is based on Hooke’s law and is modelled by the stiffness parameters.
The onset of the plasticity in this model is based on the failure criterion, and hence the
perfect plasticity is considered. This model does not consider several soil features, such
as stress-dependent stiffness, nonlinear elasticity, pre-failure plasticity, etc. A total of five
parameters are required for the MC model in geotechnical analyses: Young’s modulus
(E), Poisson’s ratio (v), cohesion (c), friction angle (¢) and dilatancy angle (¢). The
representation of this model in a deviatoric stress vs. strain plot is shown in Fig. la.
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Hardening Soil (HS) Model: The HS model is a nonlinear elasto-plastic model. The
model considers the nonlinear elasticity and irreversible plasticity (see Fig. 1b). The
stress path due to the primary loading is highly nonlinear and modelled by a parameter
Es,, the stress-dependent stiffness due to the primary loading:
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where Ege({ is the reference stiffness modulus corresponding to the reference stress pjer

and m is the stress dependency parameter. The nonlinear elastic part is modelled by the
stress-dependent unloading reloading stiffness E,,;- as:
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This model is a double hardening plasticity model, i.e., it models both shear hardening
and cap hardening. As soon as the material starts yielding, the material’s shear strength
is mobilised, and the load generates plastic strains. The material fails once the failure
criterion is reached after shear strength is fully mobilised.

The input parameters of the HS model are the strength parameters: cohesion (c),
friction angle (¢) and dilatancy angle (). The stiffness parameters are the secant stiffness
at reference pressure in a standard drained triaxial test (ng‘)f ), the tangent stiffness at

reference pressure for primary odometer loading (E:i - the loading-unloading stiffness

at reference pressure (Ef,‘;f ), the Poisson’s ratio for unloading-reloading (v,,) and a
parameter m which controls the stress-level dependency for stiffness parameters.
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Fig. 1. Representation of constitutive models (a) MC model (b) HS model

2.2 Data Assimilation Scheme

In a data assimilation scheme, the measurements from the field are assimilated into a
numerical model to estimate the parameters, the state, or both the parameters and the state
of a system given the uncertainty in the model and measurements. In an ensemble-based
data assimilation method, multiple realisations of a forward model are considered to
approximate the model error covariance. There is a variety of ensemble-based methods
currently available, e.g. the EnKF, ensemble smoother (ES) and ESMDA.



258 M. Mohsan et al.

Ensemble Kalman Filter (EnKF) (Evensen 1994): the EnKF is an ensemble based
Kalman filter formulation that sequentially assimilates the measurements (Fig. 2a). In
this case, multiple ensembles of the forward model are run from the start to a certain
time when measurements are available. These measurements are then assimilated into
the numerical model to update parameter estimates. With these updated parameters, the
numerical model is run from the start and continues until the next time when measure-
ments are available. The parameter update is performed every time new measurements
are available.

Ensemble Smoother (ES): the ES (Van Leeuwen and Evensen 1996) is an alterna-
tive data assimilation method that does not assimilate the data sequentially. Instead, it
assimilates all the measurements at all the time steps in a single assimilation step and pro-
vides a global update of the system’s parameters and/or state. The ES provides a single
potentially large Gauss-Newton correction that may not provide satisfactory results.

Ensemble Smoother with Multiple Data Assimilation (ESMDA): ESMDA (Emer-
ick and Reynolds 2012) is an adjusted form of the ES in which the same measurements
are assimilated multiple times (Fig. 2b) with an inflated measurement error covariance
matrix to ensure that the ensemble update is based on multiple linear smaller correc-
tions rather than a single linear correction like in the ES. In this study, we compare the
performance of the EnKF and ESMDA.
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Fig. 2. Illustration of the data assimilation schemes (a) EnKF-modified from Evensen (2009) (b)
ESMDA

3 Experimental Plan

This study assimilates synthetic measurements at the crest and slope of a simplified
slope geometry into a numerical model of this slope to update the strength and stiffness
parameters. The synthetic measurements are in the form of horizontal nodal displace-
ments and are produced from a single simulation using ‘true’ model parameters. These
synthetic measurements mimic the observed reality. The data assimilation methods aim
to find the ‘truth’ within the assumed accuracy of measurements. The experimental plan
is divided according to the research questions:
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i. What sort of constitutive model should be used in a data assimilation scheme?

In the first data assimilation experiments, the EnKF is implemented with an FEM slope
stability model. This FEM model considers different material models (the MC and the
HS models). The data assimilation estimates parameters and the resulting FoS estimation
gives insight into which constitutive models are preferable. We prefer results where the
posterior distribution of the FoS incorporates the true FoS (accurate) and is narrow so the
estimate is precise. These results imply that the evidence contains sufficient information
to improve the prior estimation. In addition, we prefer a distribution of results consistent
with the prior estimate and Bayes rule, ensuring that the data assimilation is performing
well.

ii. What sort of data assimilation technique should be used in the slope stability
model (geotechnical problems)?

In the second data assimilation experiments, the preferred constitutive model from the
first part results is used in the FEM model. Then, two different data assimilation schemes
are tested with this model, i.e., the EnKF and ESMDA. The presented results are the
parameter- and FoS estimation. Two synthetic examples are considered to perform these
experiments. The geometrical properties for these cases are mentioned in Table 1 and as
shown in Fig. 3 with water level fluctuation on the side indicated with the letters CE on
the top right. The measurements for case i and ii are considered on the crest (i) and on
both the crest and the slope (ii) respectively.

Table 1. Geometrical properties of slope in meters, water level fluctuation and measurement
location

Case hl h2 wl w2 w3 Dw Measurement location
i) 16 4 24 24 72 Water level 1 Crest
(i) 7 2 8 5 18 Water level 2 Crest and slope

4 Results and Discussions

i. What sort of constitutive model should be used in a data assimilation scheme?

The EnKF has been implemented with the MC and the HS constitutive models to estimate
the parameters (stiffness and strength) and the FoS. The (effective) friction angle (¢")
estimation and FoS estimation are summarised in this section for brevity, for more details
see Mohsan et al. (2021).

In Fig. 4a, the true, initial (prior) distribution and estimated distribution of ¢’ are
presented. The prior estimation of ¢’ is distant from the true parameter and has a wide
spread. This means that our initial guess of parameters is poor and far from reality.

It can be seen from Fig. 4a that with the HS model, the data assimilation moves
the mean of ¢’ towards the true value and narrows the spread of the ¢’ distribution. On
the other hand, the MC model does not show any improvements with data assimilation,
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Fig. 3. Slope geometry with the geometrical properties mentioned in Table 1. The measurements
points are indicated with black circles and the water-level fluctuation on the side indicated with the
letters CE are presented in the inset on the top right. The red stars are the measurements considered
in the data assimilation.

i.e., the estimated parameter distribution mean does not move towards the true ¢’ value.
This implies that when assimilating into the HS model, the information contained in
the measurements can effectively improve the estimation, and not when using the MC
model. The FoS (in Fig. 4b) is shown for the same analysis and shows the same trend
as the ¢’ estimation. This is because the FoS is computed with the strength reduction
method, and ¢’ has a major effect on its computation. The results suggest that if the MC
model is used in data assimilation, it does not give a reliable estimation of FoS. This
can be explained by the sharp switch between elastic and plastic behaviour in the MC
model, which does not occur in the HS model (Fig. 1).
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Fig. 4. Data assimilation results from the different constitutive models (a). Parameter estimation:
True, prior distribution and estimated (effective) frictional angle (¢’) distribution with MC and

HS model (b). Factor of safety estimation (FoS) with true, prior and estimated parameters with
MC and HS
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ii. What sort of data assimilation technique should be used in the slope stability
model (geotechnical problems)?

Two different types of data assimilation techniques are tested using the HS constitutive
model, i.e., the EnKF and ESMDA. In the ESDMA model, the same measurements are
assimilated four times (this is termed ESMDA(x4d)). Furthermore, again only the ¢’
estimation and FoS estimation is presented in this section for simplicity.

It can be seen in Fig. 5a that the initial guess (prior estimate) is again a poor estimate,
i.e., far from the true value. With both data assimilation methodologies, the ¢’ mean
approaches the true value. On the other hand, a narrower spread in parameter distribution
is seen to be obtained by the EnKF. Figure 5b shows the resulting FoS estimate. It can be
seen that both data assimilation schemes estimate parameters and FoS reasonably well
when using the HS model. ESMDA gives a good mean (approximately equal to the true
value of FoS), and the EnKF gives a narrower distribution, both encompassing the true
value. This narrower distribution of EnKF can be due to the sequential parameter update
and could be a form of over-fitting, i.e., over-relying on the last data set. On the other
hand, ESMDA can represent the non-linearity of the model more easily resulting in a
more accurate mean.
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Fig. 5. Data assimilation results from different data assimilation methods (a). Parameter estima-
tion: True, prior distribution and estimated (effective) frictional angle (¢”) distribution with EnKF
and ESMDA (x4d) (b). Factor of safety (FoS) estimation with true, prior and estimated parameters
EnKF and ESMDA(x4d).

5 Conclusions

In this study, data assimilation is implemented in a synthetic slope-stability analysis. The
suitability of different constitutive models and data assimilation schemes are studied.
The results suggest that the HS models give more reliable FoS estimation than more
conceptual models when using a data assimilation scheme, due to the more realistic
soil features which require a correlation between the model parameters. The EnKF and
ESMDA(x4d) data assimilation methods both give reliable FoS estimation with the HS
constitutive model. ESMDA(x4d) gives a better mean estimation, whereas the EnKF
gives a narrower spread. It can be concluded that data assimilation can improve the
reliability of FoS assessment, but that attention should be paid to the constitutive model,
especially when the prior parameters are highly uncertain.
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