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a high abstraction level. Currently, SystemC tools can not cope with SystemC
models for which the module hierarchy depends on dynamic parameters.

We present a novel approach to extract the dynamically generated module
hierarchy and its behavior from a SystemC model. In this approach the hierarchi-
cal information is retrieved by executing the model under control of a debugger.
Thereafter, the behavioral information is retrieved by using a C++ compiler exten-
sion. Finally, the behavioral information is linked with the hierarchical information.
Our approach is completely non-intrusive. The SystemC model and the SystemC
reference implementation can be used without any modification.

To identify the information which must be extracted by a SystemC front-end a
SystemC metamodel is defined. Currently, no other detailed SystemC metamodel
has been published.

We have implemented our approach in an open-source SystemC front-end
called Systemc Hierarchy and Behavior Extractor (SHaBE). SHaBE is developed
using a test-first approach during which more than 250 test cases were successfully
implemented. The extraction of the module hierarchy of the model has a time
complexity of O(n · log n), where n is the number of SystemC objects used in the
model.

This front-end facilitates the development of SystemC visualization, debug-
ging, static verification, and synthesis tools.
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Abstract

Modern embedded systems are far to complex to describe their hardware and software
at a low-level of abstraction. SystemC is a popular modeling language which can be
used to specify systems at a higher abstraction level. The primary way to deal with
complexity in SystemC is to apply modularization. The module hierarchy of a SystemC
model is dynamically constructed during the execution of the elaboration phase of the
model. This means that a system designer can build regular structures using loops and
conditional statements. Currently, SystemC tools can not cope with SystemC models
for which the module hierarchy depends on dynamic parameters. We present a novel
approach to extract the dynamically generated module hierarchy and its behavior from
a SystemC model.

In our approach the hierarchical information of a SystemC model is retrieved by
executing the elaboration phase of the model under control of a debugger. Thereafter,
the behavioral information of the model is retrieved by using a C++ compiler extension.
Finally, the behavioral information is linked with the hierarchical information. Our
approach is completely non-intrusive. The SystemC model and the SystemC reference
implementation can both be used without any modification. The only precondition is
that they both are compiled to include debug information.

To identify the information which must be extracted by a SystemC front-end a
SystemC metamodel is defined. This metamodel, models the module hierarchy of a
SystemC model at the end of the elaboration phase. Currently, no other detailed
SystemC metamodel has been published.

We have implemented our approach in an open-source SystemC front-end called
Systemc Hierarchy and Behavior Extractor (SHaBE). SHaBE can extract all relevant
hierarchical information and a well defined subset of all behavioral information from a
model. The implementation is based on open-source tools and is developed using a test-
first approach during which more than 250 test cases were successfully implemented. To
extract the module hierarchy from the model the source code of the SystemC reference
implementation has been carefully analyzed to determine the function calls which need
to be monitored. Breakpoints are placed on these function calls and crucial information
is extracted by using debug commands to inspect the stack, the function arguments,
the members of an object, etc. The extraction of the module hierarchy of the model
has a time complexity of O(n · log n), where n is the number of SystemC objects used in
the model. The behavior of the model is extracted by a compiler plug-in which extracts
the abstract syntax tree in static single assignment form from the source code of the
functions which define the behavior of the SystemC processes.

The output of SHaBE is saved in an XML based format which describes the module
hierarchy and the behavior of a SystemC Model. Presently, there is no other XML
format available which can be used to describe the module hierarchy of a SystemC
model as well as its behavior.

This front-end facilitates the development of SystemC visualization, debugging,
static verification, and synthesis tools.
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Introduction 1
SystemC is a modeling language which can be used to describe embedded systems
at different abstraction levels. An open-source SystemC simulator is available free of
charge. But simulation is not the only thing for which a SystemC model can be used.
Users of such a model may want to visualize, debug, statically verify, or synthesize it.
Tools which fulfill these needs must have a SystemC front-end which is able to retrieve
the dynamically generated hierarchy and its behavior from the model. The Circuits
and Systems (CaS) group at Delft University of Technology wants to incorporate Sys-
temC models in their design flow. A SystemC front-end must therefore be selected or
developed, which is the subject of this thesis. In this introduction the problem context
is given, the need to develop a SystemC front-end is explained, the main contributions
of this thesis are listed and its organization is given.

1.1 Motivation

An embedded system is an electronic system which is integrated into a device or an
appliance, the aim being to make the behavior of the device more intelligent. An em-
bedded system makes the device or appliance in question easier to operate or use, more
energy efficient, safer, friendlier for the environment, and/or perform better. Nowadays,
almost every device with a power plug, solar cell, or battery contains an embedded sys-
tem. To enlarge the flexibility and the maintainability most embedded systems not
only contain hardware but also contain software. Many modern embedded systems
are implemented as multi-processor systems on a single chip. Such systems are far to
complex to describe their hardware and software at a low-level of abstraction. An es-
tablished approach to cope with this complexity is to specify systems at the Electronic
System-Level (ESL). A recent overview of ESL tools is given by Gajski et al. [38].

An ESL design flow typically starts with the development of a functional model of
the system. This model is described, for example in C++ or Matlab, and verified by
means of simulation. During the next step of the system-level design flow a design space
exploration is performed to optimize design metrics under a given set of constraints.
The resulting system specification usually consist of a complex hierarchical structure.
According to Gajski et al. such an architecture-level system model will predominantly
be a Transaction-Level Model (TLM) described in a system-level design language such
as SystemC. This optimized model will then be further refined into implementation-
level models for the system’s software and hardware.

SystemC is developed by the Open SystemC Initiative (OSCI), is described in IEEE
standard 1666-2005 [58], and is implemented as a C++ framework. The primary way
to deal with complexity in SystemC is to apply modularization. The module hierarchy
of a SystemC model is dynamically constructed during the execution of the elaboration
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phase of the model. This means that a system designer can build regular structures
using loops and conditional statements. Writing code which dynamically generates
the hierarchical structure of a system instead of statically laying out this structure is
strongly preferred because the dynamic generation can be parameterized which makes
the model easier to modify, easier to extend, and easier to reuse. Currently, most ESL
tools can not cope with SystemC models for which the hierarchy depends on dynamic
parameters. In theory, there is no need to restrict the designer to a subset of C++ for
the part of the SystemC code which describes the construction of the model i.e. the
elaboration phase, but in practice, these ESL tools do have such restrictions.

The CaS group has developed a High-Level Synthesis (HLS) tool [107] which accepts
a high-level description that specifies the data flow of a system. This tool can perform
a design space exploration and the design can be synthesized as Register Transfer-Level
(RTL) Very-high-speed integrated circuit Hardware Description Language (VHDL) us-
ing various scheduling algorithms. This tool is implemented in Matlab and also gen-
erates Matlab and VHDL test benches. The CaS group wants to include SystemC
models somewhere in their future design flow. A necessary first step to incorporating
SystemC code is the selection or development of a SystemC front-end. This SystemC
front-end should convert the SystemC model into an Intermediate Representation (IR)
which describes the dynamically generated module hierarchy and its behavior. The
exact format of the IR depends on the purpose of the back-end of the tool for which
this front-end is used. A SystemC visualization tool may need a different IR than a
SystemC synthesis tool. Because the CaS group would like to use the SystemC front-
end for more than one kind of tool, the IR needs to be as general as possible. The
selection or development of such an IR is also described in this thesis.

1.2 Goals

The goal formulated at the start of this thesis project was to select or develop a Sys-
temC front-end which can extract the dynamically generated module hierarchy and its
behavior form a SystemC model. After a survey of SystemC front-ends, which will be
presented in this thesis, we have drawn the conclusion that there is no open-source Sys-
temC front-end available which can retrieve the module hierarchy as well as its behavior
from a SystemC model. This conclusion is confirmed in [73] which was published after
our survey was completed. Therefore we have decided to develop such a front-end.

Because of my experience with using debug information for High-Level Language
(HLL) simulation of microcontroller programs [11] it occurred to me that most, maybe
all, of the information which needs to be extracted from a model after the execution
of the elaboration phase can be retrieved by using debug information. The only re-
quirement to use this debug information is that the SystemC model is compiled with
an option to include this information.

The main research question which will be addressed in this thesis is:

Is it possible to retrieve the dynamically generated module structure as well as
the behavior of all modules from an executable SystemC model that includes
debug information?
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1.3 Contributions

The contributions of this thesis are:

• A novel approach to develop a SystemC front-end. In our approach, the hierar-
chical information of a SystemC model is retrieved by executing the elaboration
phase of the model under control of a debugger. Thereafter, the behavioral infor-
mation of the model is retrieved by using a C++ compiler extension. Finally, the
hierarchical information and the behavioral information are combined and stored
as an IR which can be used by tools build upon this front-end. Our approach is
completely non-intrusive, i.e., no changes are required in the standard tool flow.
The SystemC model and OSCI’s SystemC implementation can both be used as
is. The only precondition is that both are compiled to include debug information.

• A SystemC front-end called Systemc Hierarchy and Behavior Extractor (SHaBE)
implemented using this approach. This implementation is based on open-source
development tools. SHaBE can extract all relevant hierarchical information and
a well defined subset of all behavioral information from a model. The implemen-
tation is developed using a test-first approach during which more than 250 test
cases were successfully implemented. The execution of SHaBE on an executable
SystemC model takes only slightly longer than the compilation of this model.
Furthermore, the extraction of the module hierarchy of the model has a time
complexity of O(n · log n), where n is the number of SystemC objects used in the
model.

• A SystemC metamodel which models the module hierarchy of a SystemC model at
the end of the elaboration phase. This model is described in the Unified Modeling
Language (UML).

• An eXtensible Markup Language (XML) based format to describe the module
hierarchy and the behavior of a SystemC Model. This XML-based language is
called SystemC Model Description Language (SCMDL) and an XML Schema
definition is provided which can be used for the verification of SCMDL documents.

• A parser for the output messages of the GNU Debugger Machine Interface
(GDB/MI) which only depends on standard C++ data structures.

• A GNU Compiler Collection (GCC) plug-in which extracts the Abstract Syntax
Tree (AST) in Static Single Assignment (SSA) form from the source code of a
function.

1.4 Outline

Chapter 2 contains a brief SystemC primer and provides a motivating example of a
SystemC model. Different categories of SystemC front-ends found in the literature are
presented in Chapter 3. Chapter 4 analysis the problem of developing a SystemC front-
end which can extract the dynamically generated module hierarchy and its behavior
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from a model. Several solutions we have considered are discussed and our approach
is introduced. The requirements for the SystemC front-end are given, the information
which must be extracted is identified, and an IR which can represent this information
is presented. The development method we used and the test cases we have developed
are described in Chapter 5. The design and implementation of our SystemC front-end
called SHaBE is presented in Chapter 6. The experimental results of using SHaBE are
presented in Chapter 7. In the last chapter of this thesis conclusions are drawn and
directions for future work are given.
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SystemC 2
In the previous chapter the need to develop a SystemC front-end was explained. This
chapter starts with a brief SystemC primer. Thereafter a motivating example is pre-
sented.

2.1 SystemC Introduction

SystemC is a modeling language [89] that can be used to describe the hierarchical struc-
ture and the behavior of complex embedded systems. SystemC can be used to describe
the system at different levels of abstraction. Using SystemC a system can be described
at functional level, architectural level, and implementation level. The SystemC mod-
eling language is developed by the Open SystemC Initiative (OSCI) and is described
in IEEE standard 1666-2005 [58]. OSCI provides an open-source implementation of
the SystemC framework which is available free of charge. Using this implementation a
SystemC model can be compiled by any standard conforming C++ compiler and can
be executed. This execution simulates the model and provides information that can be
used to dynamically verify the model.

SystemC is implemented as a C++ framework which consists of a class library and
a simulation kernel. The library consists of classes, macros, and templates which can
be used to model a concurrent system using hardware-oriented data types and com-
munication mechanisms. A SystemC model is structured by using modules. A module
encapsulates a part of the system which is being modeled and has communication ports
to communicate with other modules within the model. A module can contain other
modules. Communication ports can be interconnected by using channels. The simula-
tion kernel can be used to execute a SystemC model. This execution is divided into two
phases: the elaboration phase and the simulation phase. During the elaboration phase
the modules are instantiated and initialized by executing their constructors. During
this initialization the connections between the modules are set up. Because the mod-
ules are instantiated and connected by executing C++ code any valid C++ language
construct can be used. For example: the configuration of the modules can be read from
a file or may depend on command-line arguments.

The behavior of a SystemC module is defined by one or more SystemC processes.
A SystemC process is defined in the form of a C++ member function that is regis-
tered with the SystemC simulation kernel by using the SC_THREAD, SC_CTHREAD, or
SC_METHOD macro. Each of these macros has different semantics. Each process has a
sensitivity list which is a list of SystemC events. An event is something that happens at
a specific point in time, for example a change of value on an input port. An SC_METHOD

process is started by the SystemC simulation kernel whenever one of the events on its
sensitivity list occurs. It always runs to completion before it returns control to the
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simulation kernel. An SC_THREAD process is only started once by the simulation kernel.
An SC_THREAD process can suspend itself by calling the SystemC wait function. The
SC_THREAD process is resumed by the simulation kernel when one of the events on its
sensitivity list occurs. An SC_CTHREAD process is a special kind of SC_THREAD which is
only sensitive to a certain edge of a clock input port. This explains the extra C in the
macro name SC_CTHREAD. Because the behavior of the model is defined in C++ member
functions, all valid C++ language constructs can be used. For example: the behavior of
a module can be described by using advanced data structures and algorithms from the
standard C++ library or any other C++ library. Any valid C++ language construct
can also be used to annotate the behavior of the model. For example: some informa-
tion that is useful for the verification of the model can be written to a file during the
execution of the model.

2.1.1 Elaboration Phase

Modules are defined by deriving from the SystemC library class sc_module. Modules
define connection points called ports as data members. A port is instantiated from the
class sc_port or from a class derived from this class. Ports can be connected by means
of channels. Several primitive channels are defined in the SystemC class library and
are derived from the class sc_prim_channel. The module hierarchy of a model is built
during the execution of the elaboration phase of the model using objects instantiated
from classes which derive from sc_module, sc_port, or sc_prim_channel. All these
building blocks have the same base class called sc_object.

A SystemC model is defined as a C++ program and must include the SystemC
header file. When this program is compiled and linked with the SystemC library an
executable version of the model is produced. This executable can be used to simulate
and to dynamically verify the model. A SystemC program should not define a main

function because this main function is defined inside the SystemC library. The program
should define a sc_main function instead. This function must create and initialize
the module hierarchy and call the SystemC library function sc_start to start the
simulation of the model.

When an executable model is executed the elaboration phase starts with the execu-
tion of the function main inside the library. This function performs some initializations
and then calls the sc_main function which is defined by the developer of the model.
This function creates and initializes the module hierarchy by instantiation the top-level
module and channel objects and their connections. The constructors of these objects
are executed and these constructors can create and initializes submodules, ports, pro-
cesses, channels and their connections. Eventually sc_start is called. On page 19
of the SystemC standard [58] it is incorrectly stated that the elaboration phases ends
when sc_start is called. As is explained on page 21 of the standard, the sc_start

function calls all before_end_of_elaboration callback functions which are defined by
the developer of the model. Each class which is defined by the user and inherits from the
base class sc_object can define such a callback. The developer of the model is allowed
to extent the module hierarchy in these before_end_of_elaboration callback func-
tions. After all before_end_of_elaboration callback functions have been executed,
the sc_start function calls all end_of_elaboration callback functions which are de-
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fined by the developer of the model. Each class which is defined by the user and inherits
from the base class sc_object can define such a callback. The developer of the model
is not allowed to extent or change the module hierarchy in these end_of_elaboration

callback functions. These callback functions can be used to perform some design rule
checks or to print some diagnostics at the end of the elaboration phase. After all
end_of_elaboration callback functions have been executed, the elaboration phase is
finished and the sc_start function will enter the simulation phase.

2.1.2 Inspecting the SystemC Module Hierarchy

In SystemC modules can only be instantiated and connected to each other before the
end of the elaboration phase [58]. When the module hierarchy is created it can be in-
spected by using some member functions from the class sc_object. This class provides
member functions which can be used to travel through the module hierarchy. For exam-
ple: get_child_objects and get_parent_object. The member function kind can be
used to identify the kind of a specific building block. The function display_hierarchy

given in Figure 2.1 displays the name and kind of a building block that is passed as
a sc_object* parameter. If a building block contains other building blocks then the
name and kind of these building blocks are also displayed by calling the function re-
cursively.

void display_hierarchy ( sc_object∗ objp , int level=0) {
for ( int space (0 ) ; space<level ∗4 ; ++space )

cout<<" " ;
cout<<objp−>kind ( )<<" named "<<objp−>name ( )<<endl ;
const vector<sc_object∗>& children (objp−>get_child_objects ( ) ) ;
for ( vector<sc_object ∗> : : size_type i (0 ) ; i < children . size ( ) ; ++i )

display_hierarchy ( children [ i ] , level+1) ;
}

Figure 2.1: A function which displays the module hierarchy of a SystemC building block.

2.1.3 SystemC Data Introspection

Introspection is a capability of a programming language to determine some properties
of its state at run-time. Reflection is a more powerful capability of a program language
to modify its own structure and behavior. C++ only provides type introspection which
is called Run-Time Type Information (RTTI). RTTI makes it possible to do dynamic
type casting using the dynamic_cast<> operation. Using the typeid keyword, RTTI
can also be used to determine at run-time the class from which an object is instantiated.
The typeid(obj) operation provides a reference to an object from the class type_info.
This class has a very limited interface. It only provides comparison operators and a
member function name which returns a human readable-name of the class from which
the object obj was instantiated.

A program written in a programming language which supports data introspection
can observe objects within that program at run-time. C++ does not provide any direct
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support for data introspection. The SystemC Verification (SCV) standard library [59]
uses data introspection to enable the observation of arbitrary data types. Using a
C++ meta programming technique called type traits [82] the SCV library provides an
interface scv_extensions_if through which type information can be retrieved from
all data objects within the SystemC model. This interface is provided for all standard
SystemC data types and also for all standard C++ data types. A SystemC model
designer can also provide this interface for user-defined types within the model by
using template specialization. The SCV library also supports value access from, and
value assignment to, data objects as well as value randomization. Although this is
called introspection in the SCV library’s documentation the library actually provides
the more powerful concept of reflection.

Because SystemC does not provides data introspection in the core language a Sys-
temC tool can only use introspection if the SCV library is used in the model. This
means that SystemC data introspection cannot be utilized by a tool which aims to
support all SystemC models.

2.1.4 Configuration, Control and Inspection Working Group

In February 2009 the OSCI Configuration, Control, and Inspection Working Group
(CCIWG) was established. This working group’s initial focus is on configuration ac-
cording to the working group’s chair Trevor Wieman [109]. As far as we know this
working group has not performed any work in the area of SystemC introspection.

2.2 Motivating Example

In this section a SystemC model for a specific kind of Finite Impulse Response (FIR)
filter is presented. This model shows why it is difficult to statically retrieve the SystemC
module hierarchy from a model. The FIR filter module uses three different kind of
submodules: module S models a simple adder, module M models a simple multiplier
which multiplies an input value with a constant filter coefficient, and module D models
a register. All modules are defined as templates so they can be used with different
data types, e.g., double, sc_fixed, etc. The module S is shown in Figure 2.2. It has
two input ports in1 and in2, and one output port out. The behavior is described in
an SC_METHOD process which executes the member function behavior when triggered.
This process is statically sensitive to any change of value at one of its inputs. The
member function behavior is therefore executed each time the value on one of the
inputs changes. When this member function executes, it reads the input values from
the input ports, calculates their sum, and writes this sum to the output port.

The module M is shown in Figure 2.3. This module multiplies the value on the input
port with a constant value and writes the result to the output port, every time the
input value is changed. Please note that the write and read functions are not called
explicitly but are called implicitly by overloaded operators which are defined in the
SystemC library. The constant value to be used in the multiplication is provided to
the module upon creation as a constructor argument. Therefore, this module can not
use the macro SC_CTOR but must explicitly define a constructor which explicitly calls
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template<typename T>
SC_MODULE (S ) {

sc_in<T> in1 , in2 ;
sc_out<T> out ;
SC_CTOR (S ) {

SC_METHOD ( behavior ) ;
sensitive << in1 << in2 ;

}
private :

void behavior ( ) {
out . write ( in1 . read ( ) + in2 . read ( ) ) ;

}
} ;

Figure 2.2: A simple SystemC adder module.

the base class sc_module constructor. Because this module defines a process and the
macro SC_CTOR is not used the macro SC_HAS_PROCESS must be used instead.

template<typename T>
SC_MODULE (M ) {

sc_in<T> in ;
sc_out<T> out ;
M ( const sc_module_name& name , const T& cc ) : sc_module ( name ) , c (cc ) {

SC_METHOD ( behavior ) ;
sensitive << in ;

}
private :

void behavior ( ) {
out = c ∗ in ;

}
const T c ;
SC_HAS_PROCESS (M ) ;

} ;

Figure 2.3: A SystemC constant amplifier module.

Figure 2.4 shows the module SynchronousModule which can be used as a base class
for modules with a clock input, a reset input, and an SC_CTHREAD process. This process
is sensitive to a falling edge on the input port clk. The input port reset is declared to
be an active high reset signal for the SC_CTHREAD process. The member function which
should describe the behavior of the SC_CTHREAD is defined as a pure abstract member
function. This means that this function must be overridden in a derived class to create
a concrete module which can be instantiated. The process is declared and the reset
signal is defined in the member function init which is called from the constructor of
the module. The use of this init member function makes it more complicated for a
SystemC front-end to find the module that is associated with the process and the reset
signal.
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SC_MODULE ( SynchronousModule ) {
sc_in_clk clk ;
sc_in<bool> reset ;
SC_CTOR ( SynchronousModule ) {

init ( ) ;
}

private :
void init ( ) {

SC_CTHREAD ( behavior , clk . neg ( ) ) ;
reset_signal_is ( reset , true ) ;

}
virtual void behavior ( ) = 0 ;

} ;

Figure 2.4: A SystemC base module which can be used to derive synchronous modules.

The module D which is shown in Figure 2.5 is derived from the base class
SynchronousModule and models a simple register. The member function behavior

is overridden to define the behavior of this module. This function will be called when
the simulation phase is started and will be suspended when the function wait is called.
The member function behavior is resumed upon a falling edge of the clk input port.
If the reset input port is active during a falling edge of the clk input port, then
the SC_CTHREAD process is reset by calling the member function behavior from the
beginning. Defining the module D this way makes it more complicated for a SystemC
front-end to find the code that is associated with the SC_SCTHREAD which is declared
in the base class.

template<typename T>
struct D : public SynchronousModule {

sc_in<T> in ;
sc_out<T> out ;
D ( const sc_module_name& nm ) : SynchronousModule (nm ) {
}

private :
virtual void behavior ( ) {

out . write (T ( ) ) ;
while (1 ) {

wait ( ) ;
out . write (in . read ( ) ) ;

}
}

} ;

Figure 2.5: The SystemC delay module D is derived from SynchronousModule.

The module FIR, which is shown in Figure 2.6, defines a hierarchical model for an
Nth order FIR filter with symmetric coefficients. The order of the filter is passed to
the module using the template parameter ORDER and the coefficients are passed to the
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module using the constructor parameter coeff. These coefficients can be unknown at
compile time because they can be, for example, read from a file during the execution
of the elaboration phase of the model. The hierarchical structure of the filter is dy-
namically generated during the elaboration phase by executing the constructor of the
FIR module. The multipliers, adders, and delay submodules are dynamically created
by calling new. The hierarchical structure of the FIR filter is created by binding the
ports of these submodules to internal signals of the FIR module or to ports of this
module. These connections are made during the execution of the elaboration phase.
For example, the output of the last adder submodule must be connected to the output
port result of the filter. The output of every other adder submodule *s[i] must be
connected to an internal signal sout[i]. This is described by the if statement shown
in Figure 2.6. Please note that the submodules must be dynamically created by using
new because they have a non empty constructor as required by the SystemC standard
[58] p. 31 and therefore can not be placed in a static array.

Figure 2.7 shows an instantiation of the FIR module. The filter coefficients are read
from a file and passed to the module fir. The date type to be used (sc_fixed<32, 2>)
and the order of the filter (5) are passed as template parameters to the FIR module. This
instantiation generates the module hierarchy shown in Figure 2.8 during the execution
of the elaboration phase of the model. The names of the signals and ports are the
expressions which are used to access these objects from the C++ code which describes
the behavior of the model. The clk and reset inputs of the fir module are connected
to all d modules but these internal signals are not shown in Figure 2.8. To prevent
clutter only a few internal signal names are shown. Determining this structure from a
static analysis of the code of Figure 2.6, i.e., without executing the code, is very difficult
to say the least.

The behavior of the filter is determined by its hierarchical structure and by the
behavior of its submodules. For example, the behavior of each adder is described in
the member function behavior shown in Figure 2.2. This behavior can be visualized as
an Abstract Syntax Tree (AST), see Figure 2.9a. This information can be combined
with the hierarchical information. For example, the AST for the submodule *s[4] is
shown in Figure 2.9b. Please note that the actual signals which are read and written
are shown in the AST of Figure 2.9b. This makes it possible to construct the complete
AST of the FIR filter by connecting all individual ASTs.

The complete code for the example presented in this section can be found at http:
//shabe.sourceforge.net/test_programs/fir_trans_sym.
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template <typename T , unsigned int ORDER>
SC_MODULE ( FIR ) {

sc_in_clk clk ;
sc_in<bool> reset ;
sc_in<T> sample ;
sc_out<T> result ;
FIR ( sc_module_name name , const T coeff [ ORDER ] ) : sc_module ( name ) {

for ( unsigned int i (0 ) ; i<MULT ; ++i ) {
m [ i ] = new M<T>("" , coeff [ i ] ) ;
m [ i]−>in ( sample ) ;
m [ i]−>out ( mout [ i ] ) ;

}
for ( unsigned int i (0 ) ; i<ORDER ; ++i ) {

s [ i ] = new S<T>("" ) ;
s [ i]−>in1 ( dout [ i ] ) ;
s [ i]−>in2 (i<MULT−1 ? mout [ i+1] : mout [ ORDER−(i+1) ] ) ;
if (i==ORDER−1)

s [ i]−>out ( result ) ;
else

s [ i]−>out ( sout [ i ] ) ;
d [ i ] = new D<T>("" ) ;
d [ i]−>clk ( clk ) ;
d [ i]−>reset ( reset ) ;
d [ i]−>in (i==0 ? mout [ 0 ] : sout [ i−1]) ;
d [ i]−>out ( dout [ i ] ) ;

}
}
˜FIR ( ) {

for ( unsigned int i (0 ) ; i<MULT ; ++i ) {
delete m [ i ] ;

}
for ( unsigned int i (0 ) ; i<ORDER ; ++i ) {

delete s [ i ] ;
delete d [ i ] ;

}
}

private :
static const unsigned int MULT = ORDER/2 + 1 ;
M<T> ∗m [ MULT ] ;
S<T> ∗s [ ORDER ] ;
D<T> ∗d [ ORDER ] ;
sc_signal<T> mout [ MULT ] , sout [ ORDER−1] , dout [ ORDER ] ;

} ;

Figure 2.6: A SystemC model for an Nth order FIR filter with symmetric coefficients.

sc_fixed<32, 2> coeff [ 3 ] ;
read_from_file ( coeff , 3) ;
FIR<sc_fixed<32, 2>, 5> fir ("fir" , coeff ) ;

Figure 2.7: Instantiating a 5th order FIR filter.
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Figure 2.8: A module hierarchy for a 5th order FIR filter as instantiated in Figure 2.7.
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Figure 2.9: The AST of a) the adder module S and b) the adder module instantiation *s[4].
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Related Work 3
In this chapter, three different categories of SystemC front-ends found in the literature
are identified. Examples from each category are described and discussed. We were not
able to find a SystemC front-end which can retrieve the module hierarchy as well as
the behavior of all modules from a SystemC model. An approach for developing such
a SystemC front-end is described in the next chapter.

Because the Circuits and Systems (CaS) group is especially interested in the
synthesis of SystemC models we have also studied some academic and commercial
C/C++/SystemC synthesis tools. We were aiming to find a tool with a well defined
Intermediate Representation (IR) which we could use as the output format of our Sys-
temC front-end, but did not succeed. This study is presented in Appendix A.

3.1 SystemC Front-end Approaches

We have identified three different approaches taken by existing SystemC front-ends:

• develop a SystemC parser. This parser can be based on an existing C++ parser
or an existing tool containing a C++ parser or it can be developed from scratch.
A SystemC parser must be able to parse C++ because SystemC can be seen as
a language extension of C++. Therefore a SystemC parser can easily extract the
behavior of a SystemC model because this behavior is specified in C++ code. A
SystemC parser recognizes the SystemC classes and constructs and can statically
retrieve part of the module hierarchy from the SystemC model by using pointer
analysis [52]. We call this the static approach.

• avoid the use of a SystemC parser by providing a modified version of the SystemC
framework. When the SystemC model is compiled and executed within this mod-
ified framework the output produced will not be the simulation results. Instead,
the execution will produce the hierarchical and behavioral information. We call
this the dynamic approach.

• combine the two methods described above. We call this the hybrid approach.

3.1.1 SystemC Front-ends using the Static Approach

Front-ends which follow the static approach look upon SystemC as a C++ language
extension. This approach can be relatively simple if the SystemC parser is based on an
existing C++ parser. The biggest challenge for the SystemC font-ends in this category
is to retrieve the module hierarchy of the SystemC model. In fact, it is impossible to do
this in the front-end if the module hierarchy depends on certain information which is
only supplied to the model at run-time, like for instance when the structure depends on
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a run-time argument. Advocates of this approach argue that this is not a major defect
because models for which the module hierarchy cannot be retrieved without running
the model are not used very much in practice. But this is a sophism because almost all
current tools use the static approach so the causality should be reversed.

The SystemC Front-ends described in the literature which follow this static approach
are: KaSCPar, ParSyC, SCOOT, and SystemCXML.

3.1.1.1 KaSCPar

The Karlsruhe SystemC Parser Suite (KaSCPar) [90] was developed at the
Forschungszentrum Informatik (FZI). This parser suite consists of two components.
SC2AST is a SystemC parser which retrieves the behavioral information from the Sys-
temC model and saves the AST in a file formated in eXtensible Markup Language
(XML) code. SC2XML uses the AST created by SC2AST to interpret the elaboration
phase of the SystemC model. The hierarchical information retrieved in this way is saved
in a file also formated in XML code. The SC2AST tool is distributed as an open source
but the SC2XML tool is only distributed as a compiled Java program. KaSCPar is
implemented in the Java programming language [45] using JavaCC [67]. Java Compiler
Compiler (JavaCC) is an open-source parser generator which generates a parser in Java
source code from a formal grammar provided in Extended Backus-Naur Form (EBNF).
In the SC2XML documentation [90] several limitations are acknowledged. For example,
not all SystemC functionality is implemented and the C++ conditional operator (?:)
is not implemented either.

The FERMAT research group at Virginia Tech used KaSCPar in the development
of MCF: a Meta modeling based visual Component composition Framework [77]. In
this framework the components from a SystemC Intellectual Property (IP) library can
be composed in a visual way, like in a schematic entry tool. KaSCPar was used to
extract meta-information about the SystemC IP models in an XML format.

The University of Berlin has used KaSCPar to develop a tool for the formal verifica-
tion of a SystemC model [51]. To make this possible, the SystemC model is transformed
into an UPPAAL model. UPPAAL [5] is an integrated tool environment for the mod-
eling, validation, and verification of real-time systems modeled as networks of timed
automata, extended with data types. It is developed in collaboration between the
Uppsala University and the Aalborg University which explains the name UPPAAL.

3.1.1.2 ParSyC

Parser for SystemC (ParSyC) [36] is a SystemC front-end which was developed at the
University of Bremen. The Purdue Compiler Construction Tool Set (PCCTS) [92] was
used to build ParSyC. ParSyC inputs a SystemC model and produces an AST which
captures the behavioral information from the model.

ParSyC is part of SystemC Environment (SyCE) [33], an Integrated Development
Environment (IDE) for system design in SystemC developed at the University of Bre-
men. ParSyC is used in several parts of this IDE. For example it is used in CheckSyC
[46], a formal verification tool for the equivalence checking and the property checking
of SystemC models.
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The SyCE also contains ViSyC [47], a tool which can be used to create a schematic
view of the structure of a SystemC model. Curiously, this tool did not originally use
ParSyC but used a modified SystemC simulation kernel to extract the hierarchical
information needed in the visualization tool at execution time. Later [43] this tool
used ParSyC to visualize the structure as well as the behavior of a SystemC model.
The ParSyC parser generates a symbol table that is linked to an AST. While the
symbol table represents the structure of user-defined types and functions, the AST
describes the behavior of the model. In the following step, this information is used as
an input for the interpreter. An interpretation simulates the SystemC elaboration phase
that instantiates and interconnects the modules. This tool still has some limitations
since it only deals with dataflow elements which means that iterations and conditional
statements have to be transferred into expressions. All conditional statements are
transferred into switch statements which are visualized as multiplexers. Loops are
unrolled which means that the number of iterations must be determinable after the
elaboration phase.

The source code of ParSyC is not publicly available as Professor Drechsler explained
to us by email:

“The software is not available, since parts resulted in the context of industrial
projects.”

3.1.1.3 SCOOT

SCOOT [13] is a tool which statically analyses systems described using SystemC and
extracts models that can be passed to verification tools. It was developed in cooper-
ation between the “Eidgenössische Technische Hochschule” (ETH) Zürich and Oxford
University. SCOOT uses its own C++ front-end to translate the SystemC model into
a Control Flow Graph (CFG). Subsequently, static analysis techniques such as field-
sensitive pointer analysis [93] are used to determine the module hierarchy, the sensitivity
list of the processes, and the port bindings. After extraction this information SCOOT
can re-synthesize a C++ program that does not depend on the SystemC library and
that can be recompiled to produce a simulator for the original SystemC model. This
simulator executes the model faster than the OSCI SystemC simulator. The source
code for SCOOT is not publicly available.

3.1.1.4 SystemCXML

SystemCXML [9] was originally developed as part of the INRIA Espresso project. It
is also part of the CARH framework [8] from the FERMAT research group at Virginia
Tech. CARH is named after the famous computer scientist C.A.R. Hoare and it is
used for the validation of system-level SystemC models. SystemCXML is a SystemC
front-end that uses Doxygen a tool that generates documentation formatted in XML
code. The static part of the hierarchical information can be easily retrieved from a
SystemC model when the model is first processed by Doxygen. The XML file produced
by Doxygen is transformed into an XML file which describes the structure of each
module. SystemCXML is not capable of determining which modules are instantiated
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and how they are connected. SystemCXML does create an internal data structure
which can be accessed via an API for further processing. Using Doxygen eliminates
the need to interface with a complex SystemC/C++ parser. SystemCXML is not able
to retrieve the behavioral information from a SystemC model as acknowledged by the
authors [9]:

“In the current release version, we ignore behavioral information, disallowing
use of SystemCXML for some applications such as synthesis.”

3.1.2 SystemC Front-ends using the Dynamic Approach

The main appeal of the dynamic approach is the the fact that a complicated System-
C/C++ parser is not needed. Technically this approach uses a C++ parser because
the C++ compiler which is used to compile the SystemC model within the SystemC
framework must obviously contain one. But there is no need for a SystemC front-end in
the dynamic category to interact with the parser. Because in this approach the model is
actually executed, it is not so difficult to retrieve the module hierarchy of the SystemC
model because the SystemC standard defines a very simple API for navigating around
and discovering the module hierarchy, see Section 2.1.2.

The biggest challenge for the SystemC font-ends in the dynamic category is the re-
trieval of the behavior of the SystemC model. The SystemC API for module navigating
can be used to find the process handles of the processes which are used to implement
the behavior of the module. These process handles reveal some properties of these pro-
cesses, like for example the process type: SC_METHOD, SC_THREAD, or SC_CTHREAD. The
process handle also refers to the machine code which implements the module behavior
but it does not contain any reference to the C++ code which was used to specify this
behavior.

A dynamic approach can obviously only be used for a SystemC model which can
be compiled and run within the modified framework. This can be a disadvantage if
the front-end is used as a visualization tool. For example, a user of a visualization tool
might want to view a partially developed model.

A SystemC Front-end described in the literature which follows this dynamic ap-
proach is: Quiny.

3.1.2.1 Quiny

Quiny [98] is a SystemC front-end developed as part of the “Interface and Communica-
tion based Design of Embedded Systems” (ICODES) European project. Quiny makes
use of a complete run-time approach to retrieve the hierarchical and the behavioral in-
formation from the SystemC model. The name Quiny, is a blend of “Quine” and “tiny”.
A Quine is a program which prints out its own source code and was an inspiration for
the self-reflective approach used by Quiny. Quiny was used in a SystemC synthesis
tool which produces a VHDL Register Transfer-Level (RTL) description. The SystemC
model is compiled and linked against the Quincy library which replaces the SystemC li-
brary. When this model is executed it subsequently produces the VHDL code. All C++
types, operators and statements as well as all SystemC types, overloaded operators etc.
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must be replaced by C++ code which builds the IR of the SystemC model during the
execution of the model. For example: the execution of the expression a = b + c should
not perform a calculation but should build the AST for the expression instead. If the
variables used in the expression have a SystemC data type, for example sc_int, then
this can be accomplished simply by operator overloading. If the variables used in the
expression have a C++ built-in type, for example int, then operator overloading can-
not be used. To solve this problem, Quiny uses C++ preprocessor macros to replace
all built-in data types with user-defined data types. Built-in types which are specified
by using concatenated keywords such as unsigned int cause a problem because they
cannot be replaced by a preprocessor macro. Quiny can only overcome this problem
with the help of the end-user. The end-user must use, for example, the type Q_UINT

instead of the built-in type unsigned int. A similar problem arises for pointer and
array declarations. There is no way Quiny can detect pointer and array variable dec-
larations at run-time because operator* and operator[] can only be overloaded in
the context of an expression and cannot be overloaded in the context of a declaration.
Therefore the end-user must use the generic abstract data types Array and Pointer

which are defined in the Quiny library instead of built-in arrays and pointers.

3.1.3 SystemC Front-ends using the Hybrid Approach

SystemC front-ends that fall into the hybrid category try to combine the best features
of the static and the dynamic approach. The biggest challenge for this approach is to
find the link between the information retrieved by the parser and the information found
by executing the elaboration phase of the SystemC kernel.

SystemC Front-ends described in the literature which follow this hybrid approach
are: an unnamed successor of ParSyC, PINAPA, and its successor PinaVM.

3.1.3.1 Unnamed Successor of ParSyC

The authors of ParSyC, see Section 3.1.1.2 briefly describe a hybrid approach in [42].
They use a PCCTS [92] based parser to collect the static information and a code
generator to evaluate run time information. The described approach is split into four
phases. First, the SystemC model is converted into an AST by the parser. During the
second phase recorder functions are added to this AST and an instrumented version of
the original model is generated. The elaboration phase of this model is executed during
the third phase. The injected recorder functions now record the state of all variables
of the model after a change of their value. This dynamic information is added to the
AST during the last phase. An implementation of this approach is not available nor
presented.

3.1.3.2 PINAPA

PINAPA Is Not A PArser (PINAPA) [81] is an open-source SystemC front-end which
was originally developed to support LusSy [80]. LusSy is a toolbox for the analysis of
a System-on-a-Chip (SoC) model described as a SystemC TLM. PINAPA provides an
API to the back-end application which uses the visitor pattern [39]. PINAPA stores
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the IR in the form of an AST. This AST also contains hierarchical information of the
SystemC model after the elaboration phase. PINAPA is implemented as a patch for
SystemC (which is only available for the old SystemC versions 2.1.1 and 2.0.1 but not
for the current SystemC version 2.2.0) and a patch for GNU Compiler Collection (GCC)
(only available for version 3.4.1). The patched version of GCC produces the AST of the
SystemC model and the patched SystemC version is used to execute the elaboration
phase to retrieve the hierarchical information from the model. PINAPA then links the
behavioral information from the AST with the hierarchical information.

In the PINAPA download package there is a directory called SPINAPA which con-
tains a SystemC to SPIRIT IP-XACT converter. The PINAPA web page gives the
following information about this tool:

“It’s a prototype (understand this as “half finished” if you wish). Currently,
it just reads a platform with one module, and generate the SPIRIT descrip-
tion for the module and its registers, if the module complies with some coding
standards. The tool can hardly be useful by itself, but it’s an example of
usage of PINAPA.”

No further information about SPINAPA could be found. A detailed description
of the implementation of PINAPA can be found in Chapter 4 of the Ph.D. thesis of
Matthieu Moy [79]. In 2006 Moshe Vardi gave a seminar at Rice University in which
he discussed this thesis. As part of this seminar his students had to write a review of
the thesis. One of the students wrote:

“The weakest part of this thesis is the way tools were implemented. It is
clear that PINAPA’s implementation for example is a hack that involved
modifying a specific version of GCC. This basically means that as soon as
the used GCC version becomes obsolete, PINAPA will have to be rewritten.”

We share this observation.

3.1.3.3 PinaVM

There have been some cross-pollinations between the different SystemC front-ends de-
scribed in the literature.

David Berner the author of SystemCXML, see Section 3.1.1.4 is the co-author of
a paper [64] which describes an approach for the translation of a SystemC model into
the synchronous formalism SIGNAL [41], in order to use a model-checker to verify
properties of the source code. The translation uses Static Single Assignment (SSA)
[31] as an intermediate formalism, and the GCC compiler as a front-end. This tool
is part of the French institute “Institut national de recherche en informatique et en
automatique” (INRIA) Espresso project. Another paper [10] about the same tool is
co-authored by Matthieu Moy, the author of PINAPA. The last sentence of this paper
reads:

“We are working on a new version of PINAPA that would use an SSA-
based compiler, but this requires a substantial rework of the approach, and
a complete rewrite of the code itself.”
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The result of this work is PinaVM [72]. PinaVM uses LLVM-GCC [69] to compile
the SystemC source code into Low Level Virtual Machine (LLVM) bitcode. It uses
this bitcode to execute the elaboration phase which reveals the module hierarchy of the
SystemC model. The SystemC constructs in the bitcode which describes the behavior
of the model are recognized by PinaVM and this information is linked to the module
hierarchy which was found by executing the elaboration phase. To do this PinaVM
recognizes the mangled names of calls into the SystemC library such as read, write,
and wait. When PinaVM has identified the function calls into the SystemC library it
must link specific parameters of such a call with the SystemC module hierarchy. For
example, in a call to the write function of an output port, the parameter this which
specifies the port which is written to must be identified. The value of this parameter can
be the result of any arbitrary computation. The key idea of PinaVM is to identify the
bitcodes which are used to compute the parameter of interest and then to construct
a new LLVM function which contains those bitcodes and produces the value of the
parameter. Once build, this function is executed and the value of the parameter can be
linked with the appropriate object in the model’s module hierarchy. According to the
authors, this approach is limited to models in which the ports which are being used in
the behavioral description can be determined statically.

3.2 Conclusions Drawn from the Survey of SystemC front-
ends

The results of our survey of SystemC front-ends can be summarized as follows: KaSC-
Par is not capable of parsing all C++ code and the part of KaSCPar which is capable
of retrieving the module structure (SC2XML) is only distributed as a compiled Java
program. The source code of ParSysC is not publicly available. The same holds for
SCOOT. SystemCXML is not capable of retrieving the behavior of a SystemC module.
Quiny offers a unique dynamic approach but cannot retrieve the behavior of a SystemC
module without the help of the end-user. In other words, Quiny is intrusive, it cannot
be used for general SystemC code. PINAPA patches GCC and it also patches the
SystemC library. It uses outdated versions of GCC and the SystemC library and is
therefore itself outdated. The use of PinaVM is limited to models in which the ports
which are being used in the behavioral description can be determined statically. There-
fore, we conclude that currently no open-source SystemC front-end is available which
can retrieve the module hierarchy and its behavior from a SystemC model if the module
hierarchy depends on dynamic parameters. This conclusion is confirmed in [73]1. For
all currently available open-source SystemC tools, the system designer can not utilize
the full expressive power of C++ to describe the dynamic generation of the hierarchical
structure of the model. Therefore, we have decided to develop an open-source SystemC
front-end ourselves.

1This article in which several SystemC front-ends are reviewed was published June 2010 after we finished
our initial literature study in November 2009.
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Analysis 4
We reported in the previous chapter our failure to find an open-source SystemC front-
end, which can extract the dynamically generated module hierarchy and its behavior
from a model, and our decision to develop such a front-end. In this chapter, the require-
ments for the SystemC front-end that we want to develop are specified, the information
which must be extracted from a SystemC model is identified, and an IR which can rep-
resent this information is presented. We have considered several approaches to develop
a SystemC front-end which fulfills our requirements. These approaches are discussed
and the final approach we have taken is introduced in this chapter.

4.1 Requirements

We want to give a designer of a SystemC model as much expressive power as possible.
In particular we want to make it possible to use the full expressive power of C++
during the elaboration phase of the model. This enables the system designer to dy-
namically generate the hierarchical structure of the model using loops and conditional
statements. A designer must be able to use this tool in combination with the freely
available SystemC framework provided by OSCI and a freely available C++ compiler.
The following requirements for a SystemC front-end are specified.

The front-end should:

1. be able to retrieve the dynamically generated module hierarchy as well as the
behavior of all modules from a SystemC model at the end of the elaboration
phase of the execution of the model.

2. be able to handle models with parameters which are unknown when the model is
compiled but are provided to the model during the execution of the elaboration
phase of the model. For example, via command-line arguments, console input or
file input.

3. be able to process every SystemC model which complies to the C++ standard
ISO/IEC 14882:1998 [60] and the SystemC standard IEEE 1666-2005 [58].

4. not be intrusive. This means that any SystemC model can be processed as it is,
without any modification.

5. be developed within the time available for an Embedded Systems master’s project
(40 ECTS points1).

6. be as independent from other tools as possible. Modifying the SystemC library
or kernel is not desirable, modifying a compiler is not desirable either.

140 European Credit Transfer System (ECTS) points represent a workload of 2/3 man-year.
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The last two requirements may seem to contradict one another. Given the limited
development time (the fifth requirement) the use of existing tools is inevitable. But
if we can use these tools without modifying them via the interfaces provided by these
tools we can still fulfill the sixth requirement.

To fulfill the first and second requirement listed above using the static approach
(see Section 3.1.1) a parser capable of parsing SystemC/C++ as well as an interpreter
which can interpret the elaboration phase of a SystemC model has to be developed.
We do not think this is possible if we take the fifth requirement into account. The
only implementation of a SystemC front-end using the hybrid approach (PINAPA, see
Section 3.1.3.2), found at the time we made these considerations2, does not fulfill the
sixth requirement. The only implementation of a SystemC front-end using the dynamic
approach (Quiny, see Section 3.1.2.1) does not fulfill the fourth requirement and it also
does not fulfill the sixth requirement because it uses a modified SystemC framework.
We conclude that none of the approaches used so far are able to fulfill our requirements.

4.2 Considered Approaches

If the hierarchy of a SystemC model can be dynamically generated then an obvious
way to find this hierarchy is to execute the elaboration phase of the model. In the
OSCI SystemC implementation there is no way to stop the execution after the elabo-
ration phase. Therefore all currently available front-ends require a modification of the
SystemC kernel to stop the execution of a model just before the simulation phase is
started. After or during the execution of the elaboration phase the SystemC module
hierarchy must be retrieved. The SystemC library has primitive support for retrieving
the module hierarchy after the elaboration phase, see Section 2.1.2. Although these
functions can reveal some of the properties of a SystemC model, other properties e.g.
the type of a channel or the C++ name of a port remain hidden. This hidden infor-
mation is crucial though, because without this information it is impossible to link the
behavior of the model with the module hierarchy.

Introspection is the capability of a programming language to determine some prop-
erties of its state at run-time. As explained in Section 2.1.3, C++ only provides type
introspection which is called RTTI. RTTI is far too limited to extract useful informa-
tion from a SystemC model. A program written in a programming language which
supports data introspection can observe objects within that program at run-time. The
SystemC Verification (SCV) standard library, also described in Section 2.1.3, uses data
introspection to enable the observation of arbitrary data types. Because SystemC does
not provides data introspection in the core language, a SystemC tool can only use in-
trospection if the SCV library is used in the model. This means that SystemC data
introspection cannot be utilized by a tool which aims to support all SystemC models.

We conclude that the relevant information from the module hierarchy can not com-
pletely be retrieved after the execution of the elaboration phase. Therefore, the creation
of this hierarchy must somehow be monitored during the execution of the elaboration
phase. This can be implemented by calling recorder functions from the SystemC library

2November 2009
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to register important event such as the creation of a SystemC object or the binding
of a port to the interface of a channel. If we do not want to modify the SystemC
library we could use Aspect-Oriented Programming (AOP) [65] to add the recorder
functions without changing the library source. Standard C++ does not support AOP
but it would be possible to use AspectC++ [99]. This aspect weaver is used in [25] to
implement a test coverage tool for SystemC models. Assuming that we will be able to
record the relevant events during the elaboration phase it still will not be possible to
retrieve information which is lost when the model is compiled, such as the C++ names
of ports end channels. As mentioned in Section 3.1.3.1, the authors of ParSyC briefly
describe an approach to solve this problem [42]. They purpose to add the recorder
functions in the AST of the code which is executed during the elaboration phase. Be-
cause the recorder code is added in the compiler, compile time information such as
the C++ names of ports and channels can be passed on to the recorder functions. An
implementation of this idea is not available at the moment and we do not think this
idea is easy to implement because it involves modification of the AST.

It occurred to us that the compile time information needed by a SystemC front-
end can be included in the executable of a model by compiling the model to include
debug information. If the model is linked with a debug version of the SystemC library
then it is also possible to monitor and control the execution of the elaboration phase
using breakpoints and watchpoints. So we decided to use a debugger to retrieve the
dynamically generated module hierarchy from a SystemC model.

Using an executable of the model as input for the front-end will enable it to process
SystemC models which depend on run-time arguments or other end-user input during
the elaboration phase of the execution of the model. But it limits its use to SystemC
models which can be compiled without any compilation errors and which can run the
elaboration phase without crashing.

We have investigated the possibility to extract the behavior of the model directly
from the executable. In [103] an survey of binary synthesis techniques is presented.
Binary synthesis generates a hardware implementation from an executable and uses
decompilation techniques [26] to extract the Control Data Flow Graph (CDFG) from
the executable. Decompilation is needed because otherwise the parallelism in the ex-
tracted behavioral description will be limited to the instruction level parallelism of the
binary code. For example, loops unrolling without knowledge of the loop structure and
its bounds is not possible. In [102] and [6] techniques are described to recreate the
loop constructs used in the source code from the executable code. An algorithm to
reconstruct basic and compound data types from the executable of a program written
in C is described in [32]. We identified the following problems which prevents us to
extract the behavior of a SystemC model from the executable of that model:

• Specific types are defined as template classes in the SystemC library e.g.
sc_fixed. We were not able to find an algorithm capable of reconstructing such
complicated template data types from the executable of a C++ program.

• The description of the behavior of the model is intertwined with calls into the
SystemC kernel. Some calls into the SystemC kernel are implemented via virtual
function calls which makes it difficult to identify such calls. In [35] a method to
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decompile indirect call instructions is described which, according to the author,
has the potential for enabling the recovery of object oriented virtual function calls.

Therefore we have searched for an alternative method to retrieve the behavior from
a model. The locations of the source files are present in the debug information which
can be incorporated in the executable of the model. Our front-end already requires
the model to be compiled with an option to include debug information, so we can use
this debug information to locate the source files in which the behavior of the model is
defined.

The behavior of a model can be retrieved from the source code of the model by a
parser. A parser converts (parses) the C++ source code into some form of IR. Therefore
it is important to have some knowledge of the IRs that are being used by C++ parsers.
All parsers use some kind of AST as IR. This AST is a representation of the simplified
syntactic structure of the source code. An AST can be transformed into SSA form
[31]. This SSA form is currently used in almost every modern compiler because several
optimizations such as constant propagation, dead code elimination, strength reduction,
and register allocation can be preformed more easily when the AST is in SSA form.
In an AST in SSA form all variables are read and written only once and all native
operations are represented by 3-address instructions x = f(y, z).

Only the member functions which describe the behavior of the SystemC model
need to be parsed. Because these member functions can use any valid C++ language
construct, our front-end must be able to parse the complete C++ language. C++
is a complex language and so it is not easy to develop a C++ parser from scratch.
Therefore we have chosen to use an existing compiler to generate the AST in SSA form
of the member functions which are used to define the behavior of the SystemC model.
Several open-source C++ compiler infrastructures where considered: GCC-XML [66],
LLVM [69], ROSE [94], ANother Tool for Language Recognition (ANTLR) [91], and
GCC [100].

GCC-XML was developed for the purpose of generating an XML description of a
C++ program. Unfortunately GCC-XML does not transfer function bodies to XML.
Because we are only interesting in parsing function bodies, GCC-XML is of no use
to us. LLVM uses a modified version of GCC i.e., LLVM-GCC by default because
the project’s own front-end called Clang is reported to be still somewhat immature
for parsing C++. Therefore it is more straightforward to use GCC directly instead of
using LLVM-GCC. ROSE uses the Edison Design Group (EDG) front-end3 to parse
C++ code. Although the EDG source code and interfaces are protected, they may be
distributed freely in binary form. Because we want to develop a open source tool we
decided not to use ROSE. ANTLR is the successor of PCCTS [92] which was used to
develop the SystemC front-end ParSyC, see Section 3.1.1.2. There is a C++ grammar
for ANTLR available so using ANTLR for the second step of our front-end is feasible.
But due to time limitations we have not investigated this any further. GCC was used in
the development of the SystemC front-end PINAPA Section 3.1.3.2. PINAPA modified
a specific version of GCC. This version of GCC (3.4.1) is now outdated and therefore
PINAPA is outdated too. Since version 4.5.04 GCC can be extended and/or modified

3http://www.edg.com
4Version 4.5.0 of GCC was released on April 14, 2010.
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without modifying its source code [21]. A new option -fplugin=name.so tells GCC to
load the shared object name.so and execute it as part of the compiler. We therefore
decided to write a plug-in for GCC to extract the behavior of the SystemC model.

4.3 Our Approach

We present our solution which 1) controls the elaboration phase of the execution of
the model and extracts the model hierarchy, 2) retrieves the AST from the SystemC
model, and 3) combines all collected information to produce the dynamically generated
hierarchy and the behavior of the SystemC model. During the first step the gener-
ated hierarchy is retrieved by executing the elaboration phase of the SystemC model
under the control of the open-source GNU DeBugger (GDB) [101]. The C++ mem-
ber functions used to describe the behavior of the SystemC processes, and the source
files in which these member functions are defined, are also identified during the first
step. In step two the AST of the functions which describe the behavior of the model
are retrieved from their source files. We have written a plug-in for open-source GCC
[100] which can extract these ASTs. In the last step of our approach the ASTs of all
analyzed functions are combined with the information found in the first step. Finally
an IR is produced which contains all hierarchical and behavioral information from the
model. We have implemented our approach in a SystemC front-end called Systemc
Hierarchy and Behavior Extractor (SHaBE), Figure 4.1. In Chapter 6 the three steps
of our approach are fully explained.
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Figure 4.1: The architecture of SHaBE.
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4.4 Information which has to be Extracted from a SystemC
Model

The SystemC standard [58] has been carefully studied to determine which hierarchical
information is encapsulated in a SystemC model at the end of the elaboration phase.
This information must be retrieved by the SystemC front-end that we want to develop.
It would have been very convenient if a model of the modeling language SystemC, i.e., a
metamodel, would have been available. The SystemC standard does not provide such
a metamodel. We have search for such a metamodel in the literature and found a few
papers which describe a simplified SystemC metamodel [95][24]. These models are far to
simple to use for our purpose so we decided to develop our own SystemC metamodel.
The Unified Modeling Language (UML) [87] is used to create this metamodel. The
metamodel is presented in Section 4.4.1 and is split up in several different figures to
prevent clutter. For each class defined in the SystemC standard it was determined which
data and which relations are relevant to extract. Using this metamodel the information
which has to be retrieved from a SystemC model at the end of the elaboration phase
is identified and listed in tables. These information items are prioritized using the
following priorities:

1. An information item with this priority must absolutely be retrieved from the model
because otherwise the module hierarchy can not be constructed or the hierarchical
information can not be linked with the behavioral information.

2. An information item with this priority item is nice to know and will be useful for
several kind of back-ends, including a synthesizer.

3. An information item with this priority is not included in the SystemC synthesiz-
able subset [88] and is therefore not necessary to retrieve if the front-end will be
used with a synthesizer back-end.

4. An information item with this priority is only needed by a specific kind of back-end
e.g., a debugger.

The behavior of a SystemC model is described in member functions which are registered
with the SystemC simulation kernel. These member functions can use any valid C++
language construct and any valid C++ data type. In addition to this, these member
functions can use several specific function calls, overloaded operators, and data types
which are defined in the SystemC standard. These function calls, overloaded operators,
and data types are described in Section 4.4.2 and must be recognized by the SystemC
front-end that we want to develop. There are restrictions on the C++ language con-
structions and data types as well as on the SystemC function calls, operators, and
data types which can be used if the model must conform to the SystemC synthesizable
subset.

4.4.1 SystemC Metamodel

SystemC was already introduced in Chapter 2. A SystemC model is structured by using
modules which are derived from the base class sc_module. A module can communicate
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to other modules via ports and exports. These ports and exports can be interconnected
by using channels. A port requires an interface which must be provided by the external
channel which is bound to the port. An export, on the other hand, provides an interface
which is implemented by the internal channel which is bound to the export. The
behavior of a module is defined by one or more processes. As can be seen in Figure 4.2
all building blocks for the module hierarchy are derived from the base class sc_object.

sc module sc prim channelsc process b
IF:class

N:int

POL:sc_port_policy

sc port

IF:class

sc export

sc object

-systemc_name:string

-systemc_type:string

-name:string

-type:string

-address:long

+name():const char *

+kind():const char *

Figure 4.2: Modules, ports, exports, processes, and channels are all derived from the same
base class.

Every sc_object which has been created during the elaboration phase of the model
has an unique hierarchical SystemC name and a SystemC type. The member function
name() returns the hierarchical name and the member function kind() returns the
SystemC type. For example, the second port declared in Figure 2.6 has the SystemC
name fir.port_1 and has the SystemC type c_in. An object which has to be identified
elsewhere in the model must be stored as a C++ variable. The C++ name of this
variable is essential to find the relation between the hierarchical and the behavioral
information of the model. The type of this variable is useful to know because it reveals
the values of the template parameters used, in case the type is a template. For example,
the second port declared in Figure 2.6 has the C++ name reset and has the SystemC
type sc_core::sc_in<bool>. The address of the variable is only relevant in case the
back-end is a debugger.

Table 4.1: The information which must be retrieved from every SystemC object.

object information cardinality priority

sc object SystemC name 1 1
sc object SystemC type 1 1
sc object C++ name 0..1 1
sc object C++ type 1 2
sc object address 1 4
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A module is used as a container of other SystemC objects and can contain: ports,
exports, processes, submodules, and channels, see Figure 4.3. There are two types
of channels in SystemC. A primitive channel is derived from sc_prim_channel and
sc_interface and can not contain any other SystemC objects. A hierarchical channel
is derived from sc_module and sc_interface. Because it is a module, a hierarchical
channel can contain other SystemC objects such as submodules and processes.

0..*top level modules

0..*

submodules

subprocesses

0..*

top level primitive channels

0..*

exports

0..*

processes

0..*

primitive channels

0..*

ports

module

hierarchy sc module

sc prim channel

IF:class

sc export

IF:class

N:int

POL:sc_port_policy

sc port

hierachical channel

sc process b

sc interface

Figure 4.3: A module can contain: channels, ports, exports, processes, and submodules.

Table 4.2: The information which must be retrieved from every SystemC module.

object information cardinality priority

module ports 0..* 1
module exports 0..* 1
module processes 0..* 1
module primitive channels 0..* 1
module submodules 0..* 1

Processes can be created inside modules during the elaboration phase of the exe-
cution of the model by using the macros SC_METHOD, SC_THREAD, and/or SC_CTHREAD.
These processes are called unspawned processes. Unspawned processes are also called
static processes because they are created during the elaboration phase. Processes can
also be created by calling the sc_spawn SystemC library function. This function can be
called from the constructor of a module and, in addition, can be called from a process.
If sc_spawn is called from a process this process contains a subprocess as shown in Fig-
ure 4.3. Processes which are created by calling sc_spawn are called spawned processes.
Spawned processes can be static or dynamic processes. A spawned process which is
created during the elaboration phase is called a static process. On the other hand,
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a spawned process which is created during the simulation phase is called a dynamic
process. The SystemC synthesizable subset only supports unspawned processes, see
Table 4.3.

As can be seen in Figure 4.3, modules and primitive channels can be declared outside
a module and are in this case called top-level objects. The SystemC module hierarchy
consists of these top level objects and of all the objects which are declared inside the
top-level modules.

Table 4.3: The process hierarchy and the top-level information which must be retrieved from
a SystemC model.

object information cardinality priority

process subprocess 0..* 3
hierarchy top-level primitive channels 0..* 1
hierarchy top-level modules 0..* 1

Figure 4.4 shows the different associations that can be made between the different
kind of SystemC objects. An export can be bound to a channel or to an other export.
An export must be bound exactly once. A port can be bound to zero or more channels,
zero or more ports, and/or zero or more exports. A port can be bound at most N
times. This parameter N is provides as the second template parameter of the sc_port

template. If N is larger than one, then the ports is called a multiport. The different
bindings of such a multiport can be selected by using the operator[] of the port. If
N is zero the port is a multiport which can be bound an arbitrary number of times.
The third parameter of the sc_port template determines the binding policy of the
port. The policy SC_ONE_OR_MORE_BOUND means that the port must be bound at least
once, the policy SC_ZERO_OR_MORE_BOUND means that port binding is optional, and the
policy SC_ALL_BOUND means that the port must be bound N times. Object Constrain
Language (OCL) [86] can be used to describe constrains which apply to UML models.
The constrains for Figure 4.4 described in OCL are shown in Figure 4.5.

Each process has a static sensitivity list which is defined during the elaboration
phase of the model. A process is sensitive to certain events. An event is something
that happens at a specific point in time during the execution phase of the model. During
the execution the static sensitivity list can be replaced by a dynamic sensitivity list but
this is not relevant for a front-end which only needs to analyze the elaboration phase
of the model. A process can be declared to be statically sensitive to an event which is
provided by a channel, an export or a port. If a process is made sensitive to an event
which is provided by a channel then this event must be declared in the interface which
is implemented by the channel. If a process is made sensitive to a channel the event can
be explicitly specified. If an event is not explicitly specified then the process is made
sensitive to the default event provided by the channel. If a process is made sensitive
to an export then the process is made sensitive to the default event of the channel
which is bound to the export. If a process is made sensitive to a port an explicit event
finder can be used to make the process sensitive to a specific event at the time that
the port is bound to a channel. This event finder is needed if the port has not been
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sc port
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Figure 4.4: The associations between ports, exports, channels, and processes.

context sc_export

inv : self . bound to−>size=1
context sc_port

inv : POL=SC_ALL_BOUND and self . bound to−>size=N or

POL=SC_SC_ONE_OR_MORE_BOUND and self . bound to−>size>=1 and self .
bound to−>size<=N

POL=SC_SC_ZERO_OR_MORE_BOUND and self . bound to−>size<=N

Figure 4.5: The constrains for Figure 4.4 expressed in OCL.

bound to a channel at the time that the static sensitivity list is declared. If a process
is made sensitive to a port without using an explicit event finder the process will be
made sensitive to the default event of the channel instance to which the port is bound

If a process is made sensitive to a multiport then the process will be sensitive to the
default events of all ports, exports and channels which are bound to the multiport.

Table 4.4: The associations that must be retrieved from the SystemC module hierarchy.

object information cardinality priority

export bound to export 0..1 1
export bound to channel 0..1 1
port bound to ports 0..N 1
port bound to exports 0..N 1
port bound to channels 0..N 1
process sensitive to events from channels bound to ports 0..* 1
process sensitive to events from channels bound to exports 0..* 1
process sensitive to events from channels 0..* 1
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There are several primitive channels defined in the SystemC standard as shown in
Figure 4.6.

T:class

sc signal

T:class

sc signal

T:class

sc signal

T:class

sc buffer
sc clock

-period:sc_time&

-duty_cycle:double

-start_time:sc_time&

-posedge_first:bool

sc signal resolved

T:class

sc fifo

-size:int

sc mutex sc semaphore

-value:int

sc prim channel

Figure 4.6: The primitive channels which are defined in the SystemC standard.

Table 4.5: The information which must be retrieved from the SystemC primitive channels.

object information cardinality priority

clock period 1 2
clock duty cycle 1 2
clock start time 1 2
clock posedge first 1 2
fifo size 1 3
semaphore value 1 3

The primitive channel sc_signal and its derivatives are the only channels which
are included in the synthesizable subset of SystemC. A signal can generate a
value_changed_event which is the default event for a signal. There are template
specializations provided for sc_signal<bool> and sc_signal<sc_logic>. These spe-
cialized signals can, in addition, generate a posedge_event and a negedge_event. An
sc_signal<T> is derived from the interface class sc_signal_inout_if<T> which is
derived from the interface classes sc_signal_in_if and sc_signal_write_if.

Figure 4.7 shows the different kind of ports which are defined in the SystemC stan-
dard. The fifo ports are the only once which are not included in the synthesizable subset.
Each port requires to be bound to a channel which implements a specific interface. For
example, an input port sc_in<T> requires to be bound to a channel which implements
the interface sc_signal_in_if<T>. This interface is implemented by the standard
primitive channel sc_signal. An sc_in provides an event finder value_changed which
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Figure 4.7: The ports which are defined in the SystemC standard.

can be used to find the value_changed_event of a channel at the time the input port
is bound to this channel. There are template specializations provided for sc_in<bool>
and sc_in<sc_logic>. These specialized inputs provide, in addition, event finders pos
and a neg which can be used to find the posedge_event or negedge_event respec-
tively. So a SystemC front-end for a SystemC synthesizer must recognize the following
events: value_changed_event, posedge_event, and negedge_event.

More details about signals, the interfaces they implement, and the ports to which
they can be bound can be found in Appendix B.

0..* 0..*

0..*1

behavior is described in

0..1

0..1

reset port

reset signal

sc process b

-dont_initialize:bool

module

member function

-name:string

-source_file:string

-address:long

sc in<bool>

sc method process sc thread process

-stack_size:size_t

sc cthread process

-reset_active_level:bool

sc signal<bool>

Figure 4.8: The processes which are defined in the SystemC standard.

As already explained in Chapter 2, there are several kind of processes defined in the
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SystemC standard, see Figure 4.8. The behavior of a process is defined in a member
function of the module in which the process is declared. The qualified name of this
member function and the source file in which this member function is defined must
be retrieved from the model because this member function must be parsed to retrieve
its behavior. The address of this member function can be useful in case the back-
end is a debugger. If the variable dont_initialize is true the process is not called
automatically at the start of the simulation phase but is only called when an event
which is on the static sensitivity list of the process occurs. The stack size of a thread
process can be set during the elaboration phase. A clocked thread process can have a
reset signal or a reset port, but not both. If a reset is defined, the active level of this
reset must be specified.

Table 4.6: The information which must be retrieved from each SystemC process.

object information cardinality priority

process name of the member function which
describes the behavior

1 1

process source file of the member function which
describes the behavior

1 1

process address of the member function which
describes the behavior

1 4

process don’t initialize 1 2
thread process stack size 1 4
clocked thread process reset signal or reset port 0..1 1
clocked thread process reset active level 0..1 2

All hierarchical information items which must be retrieved from the SystemC model
at the end of the elaboration phase have been identified in this section. An combined
list of these information items is presented in Appendix C.

4.4.2 SystemC Function Calls, Overloaded Operators, and Data Types
used to Define the Behavior of a Model

The behavior of a SystemC model is described in member functions which are registered
with the SystemC simulation kernel. These member functions can use several specific
function calls, overloaded operators, and data types which are defined in the SystemC
standard. There are restrictions on the C++ language constructions and data types as
well as on the SystemC function calls, operators, and data types which can be used if the
model must conform to the SystemC synthesizable subset [88]. The SystemC standard
[58] has been carefully studied to determine which operations and data types can be
used to describe the behavior of a SystemC model. The SystemC operations which can
be used on objects within the module hierarchy are listed in Table 4.7 and the SystemC
data types and their special operations are listed in Table 4.8 and Table 4.9 respectively.
The operations and data types which are included in the synthesizable subset are given
priority 1 and the once which are not included in this subset are given priority 2. The
return types and all const qualifiers are hidden in Table 4.7 to prevent clutter. This
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table refers to input and output objects. An input object is instantiated from any of
the derived port classes shown in Figure 4.7. An output object is instantiated from any
of the port classes shown in Figure 4.7 that have the word “out” in their name. The
operations which can be performed on a fifo, mutex, or semaphore are not specified in
the table but can be found in [58].

All C++ data types can be used to define the behavior of a SystemC model. If
the model must conform to the synthesizable subset then only the integral types (with
the exception of wchar_t) can be used. A static array of integral type is included
in the synthesizable subset. A pointer to an integral type is also included in the
synthesizable subset with the restriction that during compilation, synthesis must be
able to determine the actual object to which the pointer refers, i.e., the pointee must
be statically determinable. Table 4.8 shows the most important data types which
are defined in the SystemC standard. A logic variable can be ’0’, ’1’, ’Z’ (high-
impedance), or ’X’ (unknown) in SystemC. Limited-precision integers are limited to
a certain width which is implementation dependent but must be at least 64 bits. The
OSCI implementation of SystemC uses 64 bits for this limit. The limited-precision
fixed-point data types are implemented by using the C++ double data type. The
mantissa of this type is limited to 53 bits, so bit-true behavior cannot be guaranteed
with the limited-precision fixed point types. These types are meant for fast simulations
which do not need bit-true behavior.

All arithmetic, relational, logical, bitwise, and compound-assignment operators are
overloaded for the SystemC data-types given in Table 4.8. In addition to these opera-
tions some special operation are defined which can be used on objects of these types.
These special operations are listed in Table 4.9 The details can be found in [58] and
the restrictions for synthesis can be found in [88].

4.5 Intermediate Representation

The SystemC front-end has to convert the SystemC model into an IR which contains
the hierarchical and behavioral information described in the model. The preferred
format of this IR depends on the purpose of the back-end of the tool for which this
front-end is used. Because we want to develop a generic front-end, we have chosen
to store all information extracted from the model in an XML document. The XML
format is chosen because this format can be easily read and parsed by future tools
which use our front-end. To our best knowledge there is no XML markup language
for SystemC models defined at the moment. The IP-XACT format [7] can be used to
describe the module hierarchy of a SystemC model but can not be used to describe the
behavior of the model. The IP-XACT description just refers to files written in some
HDL which describe the behavior of the IP. The DotML format is an XML based syntax
for the input language of the Dot graph drawing tool from the AT&T GraphViz suite
[34]. DotML can be used to describe the behavior of a SystemC module as an AST or
CDFG but can not be used to describe the module hierarchy of the model. DotML can
not describe a module hierarchy because it does not provide ports or some other form
of named connection points. State Chart XML (SCXML) [3] can be used to describe
the behavior of a SystemC module as a finite state machine but can not be used to
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Table 4.7: The SystemC function calls which must be recognized by a SystemC front-end.

object operation description priority

process sc_stop() stop the execution of all processes
within the model

2

process sc_spawn(...) create a child process 2
method next_trigger(...) define the dynamic sensitivity of the

method
2

thread wait(...) define the dynamic sensitivity of the
thread

2

cthread wait() wait for the next active clock edge 1
cthread wait(int n) wait for the next n active clock edges 1
signal read() read the current value of the signal 1
signal operator T&() return the current value of the signal 1
signal write(T& v) write the value v to the signal 1
signal operator=(T& v) write the value v to the signal 1
signal operator=(signal& s) write the value read from s to the

signal
1

port operator->() return a pointer to the first channel to
which the port is bound

1

port operator[](int n) return a pointer to the nth channel to
which the port is bound

2

export operator->() return a pointer to the channel to
which the export is bound

1

input read() read from the channel to which the
input port is bound

1

input operator T&() read from the channel to which the
input port is bound

1

output write(T& v) write the value v to the channel to
which the output port is bound

1

output operator=(T& v) write the value v to the channel to
which the output port is bound

1

output operator=(signal& s) write the value read from s to the
channel to which the output port is
bound

1

output operator=(port& p) write the value read from p to the
channel to which the output port is
bound

1

fifo ... all operations defined for a fifo 2
mutex ... all operations defined for a mutex 2
semaphore ... all operations defined for a semaphore 2

describe the module hierarchy of the model. GraphML [15] can describe hierarchical
graphs and also supports ports but the graph editor yEd that uses GraphML does not
support ports (last checked for version 3.6). Therefore, we decided to define our own
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Table 4.8: The SystemC data types which must be recognized by a SystemC front-end.

data type description priority

sc_bit single bit value, this type is deprecated,
use bool instead

1

sc_bv bit vector 1
sc_logic single logic value 1
sc_lv logic vector 1
sc_int, sc_uint limited-precision integer 1
sc_bigint, sc_biguint finite-precision integer 1
sc_fix_fast, sc_ufix_fast limited-precision fixed-point with

constructor parameters
2

sc_fixed_fast, sc_ufixed_fast limited-precision fixed-point with
template parameters

2

sc_fix, sc_ufix finite-precision fixed-point with
constructor parameters

2

sc_fixed, sc_ufixed finite-precision fixed-point with template
parameters

1

Table 4.9: The special operations on SystemC data types which must be recognized by a
SystemC front-end.

operation description priority

operator[int] bit select 1
range(int, int) range select 1
operator()(int, int) range select 1
concat(..., ...) concatenation 1
operator,(..., ...) concatenation 1
xxx _reduce(...) reduction operators xxx can be and, nand, or, nor,

xor, or xnor
1

to_xxx() conversion operators xxx can be int, uint, long,
ulong, int64, or uint64

1

"..." conversion from string literal 2

XML format to describe SystemC models. This XML format which we have named
SystemC Model Description Language (SCMDL) is based on the SystemC meta-model
we have described in Section 4.4.1 and on the GCC AST format [78].

We have chosen to describe the behavior of a SystemC process as an AST because
most compiler front-ends also use an AST as an IR. The AST is an exact representation
of the original code and algorithms exists to transform an AST into an CDFG [83] or
Finite State Machine with Data (FSMD) [96] [50] in case a tool build upon our SystemC
font-end needs one of these representations.

A tool build upon our SystemC front-end should be able to easily parse the IR
it produces. Therefore, this IR must represent SystemC objects and operations di-
rectly. For example, the behavior of the module M shown in Figure 2.3 was described
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as: out = c * in; in which out is an output port, in is an input port and c is a
constant. The IR for this expression should represent this and nothing more. When a
FIR filter is instantiated as given in Figure 2.7, the C++ compiler will expand this
expression into something like: operator=(out, sc fixed<32, 2>(operator*(c,

operator sc fixed<32, 2>(in)));. The operator= is implemented in the C++
library and performs a write on the channel bound to the output port. The con-
version operator operator sc_fixed<32, 2> is implemented in the C++ library and
performs a read from the channel bound to the input port. The operator* is imple-
mented in the C++ library for objects of the class sc_fxnum which is a base class for
the sc_fixed template. This operator* returns an sc_fxval which is converted to
an sc_fixed<32, 2> by calling the constructor of this template class. All these imple-
mentation details should be hidden in the IR and the expression given as an example
should be represented as the AST presented in Figure 4.9.

write

read

port out

port in

const c

*

Figure 4.9: The AST for the expression out = c * in, where out is an output port, in is an
input port, and c is a constant.

An XML Schema [105] [12] for SCMDL is provided which describes its format and
which can be used to validate SCMDL documents. Using eXtensible Stylesheet Lan-
guage Transformations (XSLT) [27] specific parts of a SystemC model described in
SCMDL can be transformed in one of the aforementioned formats.

4.5.1 SystemC Model Description Language (SCMDL)

We have defined SCMDL, an XML format which can be used to describe SystemC mod-
els. This format is described in an XML Schema which is presented in Appendix D.
An SCMDL document has a root element called <systemc-model>. This element con-
tains a <hierarchy> element which describes the module hierarchy and a <behavior>

element which describes the behavior of the model.
The structure which can be used within the <hierarchy> element strictly follows

the SystemC metamodel which was defined in Section 4.4.1. The <hierarchy> element
can contain zero or more <primitive-channel> elements and zero or more <module>

elements which is consistent with Figure 4.3. A <module> element can contain zero or
more of the following elements: <port>, <export>, <process>, <primitive-channel>,
and/or <module>, which is also consistent with Figure 4.3. Each of these elements
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has the required attributes name, systemc-name, type, systemc-type, and address,
which is consistent with Figure 4.2. A <process> has a required attribute function

which specifies the fully qualified function name which describes the behavior of the
function. This attribute can be used to find the description of the behavior of this
process. A complete description of all elements and attributes which can be used to
describe the structure of the SystemC model is not presented here but can be found at
http://shabe.sourceforge.net/systemc-model/systemc-model.html. This docu-
mentation also contains visual representations of all element types. For example the
structure of a <module> element is shown in Figure 4.10.

Figure 4.10: The structure of a <module> element as defined in the XML Schema.

The <behavior> element can contain zero or more <function> elements. Each
<function> element has a required name attribute which specifies the fully quali-
fied function name. This attribute can be used to link this behavior with a pro-
cess which is located inside the module hierarchy. The structure which can be used
within the <function> element follows the structure of the AST in SSA form used
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within the GCC compiler. The data types, function calls, and overloaded oper-
ators which are defined in the SystemC library and which can be used to define
the behavior of a SystemC model, see Section 4.4.2 are recognized and represented
as a simple element. A <function> element can contain zero or more of the fol-
lowing elements: <basic-block>, <edge>, and/or <condition>. A <basic-block>

element can contain <wait>, <read>, <write>, and <assign> elements. A com-
plete description of all elements and attributes which can be used to describe the
behavior of the SystemC model is not presented here but can be found at http:

//shabe.sourceforge.net/systemc-model/systemc-model.html.

4.5.2 Resource Directory for SCMDL

All elements defined in SCMDL are placed inside the XML namespace
http://shabe.sourceforge.net/systemc-model. This makes it possible to combine
SCMDL elements with elements from other XML namespaces such as, for example
http://www.w3.org/1999/xhtml. An XML namespace is identified by using an Uni-
form Resource Identifier (URI). This URI does not have to be accessible. We have
chosen to place a Resource Directory Description Language (RDDL) [14] document,
called a resource directory, at the location of the URI. This resource directory con-
tains a human-readable description and a machine readable link which describes the
resources available at the URI. In our case the available resource is the XML Schema
for SCMDL documents. This resource directory can be found in Appendix E.
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Software Development
Methodology: Test First 5
Both the SHaBE program as well as the SHaBEPlugIn are developed without the use
of a formal development method. But, during the development of this software several
eXtreme Programming (XP) practices [4] have been used. The SHaBE program is
developed by the author of this thesis and the first version of the GCC plug-in was
developed by Bas van den Aardweg under the supervision of the author. Bas is a
Bachelor student of The Hague University which worked full-time on the GCC plug-in
as an internship for a period of 3 months in the spring of 2010. The report he wrote
(in Dutch) [106] is available at http://shabe.sourceforge.net/.

The XP practices followed during the development of the software are: planning
game, small releases, simple design, tests, and refactoring. See [4] for a short description
of these practices. The planning game was played between Bas and the author during
the development of the GCC plug-in. The SHaBE program and the GCC plug-in were
both developed in short iterations. Every iteration implemented a single requirement.
Using a test-first approach, a test case was written for each requirement before any
implementation code was written. During the development all code was continuously
refactored to keep the design simple and the code clean [76]. The SHaBE program
which extracts the hierarchical information and the SHaBEPlugIn which extracts the
behavioral information were at first developed as separate programs and were only
integrated later on.

Because both programs read an input file and produce an output file, testing was
fairly simple. For every information item which must be extracted by the program
a SystemC input file was written which contained only a single simple test case. An
output file with the expected output for this test case was created before any implemen-
tation code was written. A simple script was used to compare the actual output of all
test programs with their expected output. When the program produced the expected
output for the simple test case, the input file was extended with an other test case.
The file with the expected output was also extended with the expected output for the
new test case, etc. Several test cases for the extraction of the module hierarchy are de-
scribed in this chapter because these test cases together with their expected output can
be seen as the specification for the SystemC front-end. Table C.1 lists all information
items for which test cases must be developed.

The SystemC input files used to test the GCC plug-in were not written by the
student who implemented this plug-in but by the author of this thesis. The document in
which these test cases are described [16] can be found at http://shabe.sourceforge.net/.

This simple test method was extended with unit testing [75] to test the tree data
structure which is used in the GCC plug-in and to test the GNU Debugger Machine
Interface (GDB/MI) message parser which is used in the main program.

This chapter gives an overview of the 288 test cases which are used during the
development of SHaBE. A selection of these test cases are presented here, some can
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be found in Appendix F and all others can be found at http://shabe.sourceforge.

net/test_programs.

5.1 Test Cases for Signals

A signal is a simple primitive channel which can be declared as a top level object.
Therefore very simple SystemC programs which only declare a signal can be written.
This is a good starting point for the development of the program which has to extract
the module hierarchy from such a SystemC program. The first test case with its
expected output in SCMDL is given in Figure 5.1. For this first test we only expect to
find the SystemC name and SystemC type of the signal.

#include <systemc>
using namespace sc_core ;
int sc_main ( int argc , char∗ argv [ ] ) {

sc_signal<bool> s0 ;
sc_start ( ) ;
return 0 ;

}

<?xml version="1.0" encoding="UTF-8" ?>
<systemc−model xmlns="http://shabe.sourceforge.net/systemc-model"

xmlns :x s i="http://www.w3.org/2001/XMLSchema -instance"

xs i : s chemaLocat ion="http://shabe.sourceforge.net/systemc-model http://

shabe.sourceforge.net/systemc-model/systemc-model.xsd" name="signals">
<h i e ra r chy>

<pr imi t ive−channel systemc−name="signal_0" systemc−type="

sc_signal" />
</ h i e ra r chy>
<behavior />

</ systemc−model>

Figure 5.1: A very simple test case for an sc signal object and its expected output.

Starting with this simple test case several other variations of signal declarations can
be added. For example, Figure 5.2 shows a signal with a user-defined SystemC name
The expected output line in SCMDL is also shown. For this second test we also expect
to find the C++ name and C++ type of the signal.

sc_signal<bool> s1 ("mySignal" ) ;

<pr imi t ive−channel name="s1" type="sc_core::sc_signal&lt;bool&gt;

" systemc−name="mySignal" systemc−type="sc_signal" />

Figure 5.2: A test case for an sc signal object with a user-defined SystemC name.

When an array of signals is declared the array must be split up into individual
elements which are identified by attaching the index operator with the appropriate
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index to the array name. We have chosen to handle arrays in this way because the
signals in the array can only be used as individual elements when building the module
hierarchy and in describing the behavior of the model. The test case for an array of
signals is shown in Figure 5.3.

sc_signal<bool> a [ 3 ] ;

<pr imi t ive−channel name="a[0]" type="sc_core::sc_signal&lt;bool&

gt;" systemc−name="signal_0" systemc−type="sc_signal" />
<pr imi t ive−channel name="a[1]" type="sc_core::sc_signal&lt;bool&

gt;" systemc−name="signal_1" systemc−type="sc_signal" />
<pr imi t ive−channel name="a[2]" type="sc_core::sc_signal&lt;bool&

gt;" systemc−name="signal_2" systemc−type="sc_signal" />

Figure 5.3: A test case for an array of sc signal objects.

Figure 5.4 shows a test case for a multidimensional array of signals.

sc_signal<bool> ma [ 2 ] [ 2 ] ;

<pr imi t ive−channel name="ma[0][0]" type="sc_core::sc_signal&lt;

bool&gt;" systemc−name="signal_0" systemc−type="sc_signal" />
<pr imi t ive−channel name="ma[0][1]" type="sc_core::sc_signal&lt;

bool&gt;" systemc−name="signal_1" systemc−type="sc_signal" />
<pr imi t ive−channel name="ma[1][0]" type="sc_core::sc_signal&lt;

bool&gt;" systemc−name="signal_2" systemc−type="sc_signal" />
<pr imi t ive−channel name="ma[1][1]" type="sc_core::sc_signal&lt;

bool&gt;" systemc−name="signal_3" systemc−type="sc_signal" />

Figure 5.4: A test case for a multidimensional array of sc signal objects.

A signal can also be dynamically created by using new. The address returned by
new can be stored in a pointer. In this case the C++ name for this object is the name of
the pointer prefixed with the dereference operator. We have chosen to handle pointers
in this way because the signal to which the pointer is referring can only be used in
combination with a dereference operator when building the module hierarchy and in
describing the behavior of the model. The test case for a dynamically created signal is
shown in Figure 5.5.

sc_signal<bool>∗ p ( new sc_signal<bool>("myDynamicSignal" ) ) ;

<pr imi t ive−channel name="*p" type="sc_core::sc_signal&lt;bool&gt;

" systemc−name="myDynamicSignal" systemc−type="sc_signal" />

Figure 5.5: A test case for a dynamically created sc signal objects.

Figure 5.6 shows a test case for an array of dynamically created signals.
Figure 5.7 shows a test case for a dynamically created array of signals. In this case

each individual signal is expected to be identified by the name of the pointer followed
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sc_signal<bool>∗ pa [ 2 ] ;
for ( int i (0 ) ; i<2; ++i )

pa [ i ]=new sc_signal<bool>;

<pr imi t ive−channel name="*pa[0]" type="sc_core::sc_signal&lt;bool

&gt;" systemc−name="signal_0" systemc−type="sc_signal" />
<pr imi t ive−channel name="*pa[1]" type="sc_core::sc_signal&lt;bool

&gt;" systemc−name="signal_1" systemc−type="sc_signal" />

Figure 5.6: A test case for an array of dynamically created sc signal objects.

by the index operator with the appropriate index. This is expected because in C++ a
pointer to the first element of an array can be used as if it is the name of the array.

sc_signal<bool>∗ pda ( new sc_signal<bool> [ 2 ] ) ;

<pr imi t ive−channel name="pda[0]" type="sc_core::sc_signal&lt;bool

&gt;" systemc−name="signal_0" systemc−type="sc_signal" />
<pr imi t ive−channel name="pda[1]" type="sc_core::sc_signal&lt;bool

&gt;" systemc−name="signal_1" systemc−type="sc_signal" />

Figure 5.7: A test case for a dynamically created array of sc signal objects.

In all seven test cases for signals discussed so far, the signals are declared as local
variables of the function sc_main. It is also possible to call a function from sc_main

and declare all signals as local variables of this function. Of course sc_start, see
Section 2.1.1, must also be called from this function because otherwise the local objects
of the function will be destroyed upon return of the function. Seven more test cases,
which are not shown here, have been written to test this.

As can be seen in Figure 5.8 it is possible to declare two signals with the
same C++ name. The SystemC name of the signal will always be unique,
even if we try to give two object the same SystemC name. During the ex-
ecution of the elaboration phase of this model the OSCI SystemC implementa-
tion reports: “Warning: (W505) object already exists: mySignal. Latter

declaration will be renamed to mySignal 0”.
According to the SystemC standard [58] p. 12, signals may only be created within

a module or within function sc_main. So it is illegal to define a global signal. But it is
legal to store the address of a dynamically created signal in a global pointer as shown
in 5.9 or in a global array of pointers which is not shown here.

5.2 Test Cases for Modules

A module can be declared as a top-level object. This means that similar test cases
as presented for signals can be written for models. These test cases are not shown
here. A module can not have a default constructor [58] p. 31, therefore a module can
not be stored in an array. Although, pointers to models can be placed in arrays as
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void init ( ) {
sc_signal<bool> s1 ("mySignal" ) ;
sc_start ( ) ;

}
int sc_main ( int argc , char∗ argv [ ] ) {

sc_signal<bool> s1 ("mySignal" ) ;
init ( ) ;
return 0 ;

}

<pr imi t ive−channel name="s1" type="sc_core::sc_signal&lt;bool&gt;

" systemc−name="mySignal" systemc−type="sc_signal" />
<pr imi t ive−channel name="s1" type="sc_core::sc_signal&lt;bool&gt;

" systemc−name="mySignal_0" systemc−type="sc_signal" />

Figure 5.8: A test case in which two sc signal objects get the same C++ name but do not
get the same SystemC name.

sc_signal<bool>∗ gp ;
int sc_main ( int argc , char∗ argv [ ] ) {

gp = new sc_signal<bool>;
sc_start ( ) ;
return 0 ;

}

<pr imi t ive−channel name="*gp" type="sc_core::sc_signal&lt;bool&gt

;" systemc−name="signal_0" systemc−type="sc_signal" />

Figure 5.9: A test case in which the address of a dynamically created sc signal objects is
stored in a global pointer.

shown in Figure 2.6. Modules can be declared inside other modules. The SystemC
standard strongly recommends to store submodules as data members of their parent
module or to store their addresses in pointer members of their parent module, but it
does not require this. Static submodules can only be created in the constructor of
their parent module and they must be initialized in the member initialization list of
this constructor. Dynamic submodules, which are created with new, can be created
in the constructor of a module, in a function which is called from the constructor of
the module, or from the before_end_of_elaboration() callback member function
of the module, or in a function which is called from that callback. As explained in
Section 2.1.1, the before_end_of_elaboration() callback member function of the
module is called by the SystemC kernel just before the execution of the elaboration
phase is finished. The address of such a dynamically created submodule can be stored
in a pointer data member of its parent module, in an array of pointers data member,
in a local variable, or not at all. There are 1 + 4 · 4 = 17 test cases needed to test all
possibilities for static and dynamic submodules.

One of these test cases is shown in Figure 5.10. In the module Module2 there are
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two submodules created. Both submodules are dynamically created and the pointers
which are returned by new are stored in an array of pointers called subModules. One
submodule is created in the constructor of Module2 and the other one is created in the
before_end_of_elaboration() callback member function of this module.

SC_MODULE ( Module1 ) {
SC_CTOR ( Module1 ) {
}

} ;
SC_MODULE ( Module2 ) {

SC_CTOR ( Module2 ) {
subModules [ 0 ] = new Module1 ("subm0" )

}
private :

Module1∗ subModules [ 2 ] ;
virtual void before_end_of_elaboration ( ) {

subModules [ 1 ] = new Module1 ("subm1" )
} ;
int sc_main ( int argc , char∗ argv [ ] ) {

Module2 m2 ("m2" ) ;
return 0 ;

}

<module name="m2" type="Module2" systemc−name="m2" systemc−type="

sc_module">
<module name="*subModules[0]" type="Module1" systemc−name="m2

.subm0" systemc−type="sc_module" />
<module name="*subModules[1]" type="Module1" systemc−name="m2

.subm1" systemc−type="sc_module" />
</module>

Figure 5.10: One of the test cases for submodules.

If the address of a dynamic submodule is stored in a local variable or if this address
is not stored at all, then this object will not have a C++ name at the end of the
elaboration phase. A test case is shown in Figure 5.11. As said before, this way of
declaring a submodule is not recommended, but is allowed in the SystemC standard.

Modules can be derived from other modules. This means that submodules of a
module can also be created and stored in its base modeles. A test case is shown in
Figure 5.12 and the UML diagram of this test class is shown in Figure 5.13. Class
Module3 is not directly derived from sc_module but it is derived from Module2 which
is derived from sc_module by using the macro SC_MODULE. An object instantiated
from Module3 contains two submodules both of type Module1. One submodule is
created in the constructor of Module3 and is stored in its private data member m1.
The other submodule is inherited from its base class Module2. This base class cre-
ates this submodule in its constructor and stores it in its private member m1. Please
note that both submodules have been given the same name. The SystemC ker-
nel detects this and renames the second submodule which is created. It issues the
following message: Warning: (W505) object already exists: m3.m1. Latter
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SC_MODULE ( Module1 ) {
SC_CTOR ( Module1 ) {
}

} ;
SC_MODULE ( Module3 ) {

SC_CTOR ( Module3 ) {
new Module1 ("hidden" )

}
} ;
int sc_main ( int argc , char∗ argv [ ] ) {

Module3 m3 ("m3" ) ;
return 0 ;

}

<module name="m3" type="Module3" systemc−name="m3" systemc−type="

sc_module">
<module name="" type="Module1" systemc−name="m3.hidden"

systemc−type="sc_module" />
</module>

Figure 5.11: A submodule can be declared without giving it a C++ name.

declaration will be renamed to m3.m1 0. As can be seen in Appendix F, Fig-
ure F.3 deriving a module from an other module can be a useful coding idiom.

5.3 Test Cases for Ports

Ports can only be created inside a module and every port must be bound to a channel,
an export, or an other port. Test cases for the creation of ports are given in Section 5.3.1
and test cases for the binding of ports are given in Section 5.3.2.

5.3.1 Test Cases for the Creation of Ports

A port can be statically created in its parent module. Because a port has a default
constructor, it is also possible to declare a static array of ports in a module. It is also
possible to dynamically create a port, in the constructor of its parent module, in a
member function which is called from the constructor of its parent module, from the
before_end_of_elaboration() callback member function of its parent module, or in a
function which is called from that callback. The address of such a dynamically created
port can be stored in a pointer data member of its parent module or in an array of
pointers data member. There are 2 + 4 ·2 = 10 test cases needed to test all possibilities
for static and dynamic ports.

A useful implementation for a static array of ports is given in Appendix F, Fig-
ure F.1. It is also possible to create ports in the base classes of a module. A test case
which utilizes this useful coding idiom can be found in Appendix F, Figure F.3.
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SC_MODULE ( Module1 ) {
SC_CTOR ( Module1 ) {
}

} ;
SC_MODULE ( Module2 ) {

SC_CTOR ( Module2 ) : m1 ("m1" ) {
}

private :
Module1 m1 ;

} ;
class Module3 : public Module2 {
public :

Module3 ( const sc_module_name& nm ) : Module2 (nm ) , m1 ("m1" ) {
}

private :
Module1 m1 ;

} ;

<module name="m3" type="Module3" systemc−name="m3" systemc−type="

sc_module">
<module name="m1" type="Module1" systemc−name="m3.m1" systemc

−type="sc_module" />
<module name="m1" type="Module1" systemc−name="m3.m1_0"

systemc−type="sc_module" />
</module>

Figure 5.12: A submodule can be created and stored in a base module.

Figure 5.13: The UML diagram for the test case shown in Figure 5.12.

5.3.2 Test Cases for the Binding of Ports

Ports can be bound by name or by position. A port can be bound to a primitive
channel, a hierarchical channel, an other port, or an exports. The binding of ports
can be performed in the function sc_main, in the constructor of a module, in the
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before_end_of_elaboration() callback member function, or in an other function
called from any of these. There are 2 ·4 ·6 = 48 test cases needed to test all possibilities
for port bindings. These test cases are not shown here.

Multiports can be bound more than once. A simple test case for a multiport is
shown in Figure 5.14. An instantiation of this module can be found in Figure 5.15.
The expected output in SCMDL of the SystemC front-end for this instantiation is also
shown.

SC_MODULE ( And ) {
sc_port<sc_signal_in_if<bool>, 0> in ;
sc_out<bool> out ;
SC_CTOR ( And ) {

SC_METHOD ( run ) ;
sensitive << in ;

}
private :

void run ( ) {
bool value (in [0]−>read ( ) ) ;
for ( int i (1 ) ; i<in . size ( ) ; ++i ) {

value = value && in [ i]−>read ( ) ;
}
out . write ( value ) ;

}
} ;

Figure 5.14: An And gate using an input multiport.

5.4 Test Cases for Exports

Exports can only be created inside a module and every export must be bound to a
channel or another export. Exports creation is completely analog with port creation,
see Section 5.3.1. Exports can be bound by name only. An export can be bound to
a primitive channel, a hierarchical channel, or an other exports. The possible ways to
bind an export is a subset of the possible ways to bind a port. Therefore, the test cases
for exports are a subset of the test cases for ports. These test cases are not shown here.

5.5 Test Cases for Processes

The second argument of an SC_CTHREAD macro call must be an event finder, as explained
in Section 4.4.1. We have only written test cases for event finders which are returned
by the member functions value_changed(), pos(), and neg() member functions of
ports. The pos() and neg() member functions are only provided for the port template
specializations for types bool and sc_logic. The port which is used can be a member
variable, an array element, or a pointee. The SC_CTHREAD macro can be called inside the
constructor of a module, in a member function which in called from this constructor, in
the before_end_of_elaboration() callback member function, or in a function called
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sc_signal<bool> in0 , in1 , in2 , out ;
And and ("and" ) ;
and . in ( in0 ) ; and . in ( in1 ) ; and . in ( in2 ) ; and . out ( out ) ;

<module name="and" type="And" systemc−name="and" systemc−type="

sc_module">
<port name="in" type="sc_core::sc_port&lt;

sc_core::sc_signal_in_if&lt;bool&gt;, 0, (

sc_core::sc_port_policy)0&gt;" systemc−name="and.port_0"

systemc−type="sc_port">
<bound−to to="primitive -channel" name="in0" systemc−name=

"signal_0" />
<bound−to to="primitive -channel" name="in1" systemc−name=

"signal_1" />
<bound−to to="primitive -channel" name="in2" systemc−name=

"signal_2" />
</ port>
<port name="out" type="sc_core::sc_out&lt;bool&gt;" systemc−

name="and.port_1" systemc−type="sc_out">
<bound−to to="primitive -channel" name="out" />

</ port>
</module>

Figure 5.15: An instantiation of the module And which is declared in Figure 5.14.

from this callback. There are 3 · 3 · 4 = 36 test cases needed to test the sensitivity of
an SC_CTHREAD. These test cases are not shown here. In Appendix F, Figure F.3 an
SC_CTHREAD macro call is used, The expected output in SCMDL is shown in Figure F.5
.

The static sensitivity of an SC_METHOD or an SC_THREAD is set by using a sensitivity
list. In this sensitivity list the following objects can be used: signals, ports, event
finders, exports and events. We have limited ourself to the events which are returned
by the value_changed_event(), posedge_event(), and negedge_event() member
functions which are provided by signals and the event finders which are returned by
the member functions value_changed(), pos(), and neg() member functions of ports.
Sensitivity lists can be defined inside the constructor of a module, in a member function
which in called from this constructor, in the before_end_of_elaboration() callback
member function, or in a function called from this callback. The object which is used in
the sensitivity list, or which is used to call a member function which returns an event or
an event finder, can be a member variable, an array element, or a pointee. Therefore,
there are (1 + 1 + 3 + 1 + 3) · 4 · 3 = 108 test cases needed to test all combinations.
In this case we only used a subset of all possible test cases. These test cases are not
shown here. In Figure F.2 an SC_METHOD macro call which is sensitive to several ports
and the expected output in SCMDL is shown.

A reset signal or reset port can be defined for an SC_CTHREAD process, as can be
seen in Figure 4.8. A sample test case is shown in Figure 5.16.
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SC_MODULE (D ) {
sc_in<bool> clk , reset , in ;
sc_out<bool> out ;
SC_CTOR (D ) {

SC_CTHREAD (run , clk . pos ( ) ) ;
reset_signal_is ( reset , true ) ;

}
private :

void run ( ) ;
} ;

<module name="d" type="D" systemc−name="d" systemc−type="

sc_module">
<port name="clk" type="sc_core::sc_in&lt;bool&gt;" systemc−

name="d.port_0" systemc−type="sc_in" />
<port name="reset" type="sc_core::sc_in&lt;bool&gt;" systemc−

name="d.port_1" systemc−type="sc_in" />
<port name="in" type="sc_core::sc_in&lt;bool&gt;" systemc−

name="d.port_2" systemc−type="sc_in" />
<port name="out" type="sc_core::sc_out&lt;bool&gt;" systemc−

name="d.port_3" systemc−type="sc_out" />
<proce s s name="run" type="D::run()" systemc−name="d.run"

systemc−type="sc_cthread" f unc t i on="D::run">
<s e n s i t i v e−to to="port" name="clk" systemc−name="d.port_0

" event="positive-edge" />
<r e s e t−to to="port" name="reset" systemc−name="d.port_1"

act ive−l e v e l="high" />
</ proce s s>

</module>

Figure 5.16: A module with an SC CTHREAD with an active high reset input port.
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Systemc Hierarchy and
Behavior Extractor (SHaBE) 6
Our approach to develop a SystemC front-end was introduced in Section 4.3. SHaBE
will retrieve the hierarchical and behavioral information from the SystemC model in
three steps, see Figure 4.1.

In the first step the hierarchical information is retrieved by executing the elaboration
phase of the SystemC model under the control of the debugger GDB. This will reveal
the module hierarchy of the SystemC model including compile time information like, for
example the C++ variable name used for a SystemC object. Also the complete C++
type of a SystemC object is revealed. For example, the template parameter T used in
an sc_in<T> input port of a SystemC module is found. The C++ member functions
used to define the behavior of the SystemC processes are also identified during this first
step. The location of the source files in which these member functions are defined are
available in the debug information.

These source files are analyzed in the second step of SHaBE. In this second step
GCC is called with a special plug-in we have developed and named SHaBEPlugIn.
This plug-in transforms the AST in SSA [31] form produced by GCC into the SCMDL
format defined in Section 4.4.1. GCC creates a separate AST for each function so
we provide the plug-in with a list of member functions which must be analyzed. The
plug-in recognizes calls to the SystemC library such as read, write and wait and also
recognizes the specific SystemC data types such as sc_logic and sc_fixed. Operations
on these specific types are also recognized.

In the last step of SHaBE the IRs of all analyzed member functions are combined
with, and linked with, the information found in the first step. Finally an SCMDL
document is produced which contains all hierarchical and behavioral information from
the SystemC model. This IR can be used as input for a variety of SystemC tools. In
Section 6.1, 6.2, and 6.3 the three steps of SHaBE are further explained.

6.1 Extracting the Dynamically Generated Module Hierarchy

SHaBE uses GDB to retrieve the module hierarchy from a SystemC model by running
and monitoring the elaboration phase of the executable model. During this execution
SHaBE builds up an internal data structure which represents the module hierarchy of
the model. This is achieved by using GDB commands to set breakpoints, continue the
execution, inspecting the stack, inspecting function arguments, inspecting the members
of an object, etc. The source code of the SystemC library and kernel has been carefully
analyzed to determine the function calls which need to be monitored. Section 6.1.1
explains how SHaBE communicates with GDB. How SHaBE extracts the information
items listed in Table C.1 is explained in Section 6.1.2 to 6.1.9. This information is
important for readers who want to extend, or modify our open source implementation
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of SHaBE. Readers who are not interested in these implementation details may skip
these sections.

6.1.1 Communicating with GDB

SHaBE executes the elaboration phase of the SystemC model under the control of GDB.
This debugger has a special interface called GDB/MI which is specifically intended to
support the development of systems which use GDB as a component. GDB/MI is a line
based machine oriented text interface which can be used to send commands to GDB.
The debugger will reply to these commands with lines of text which are formatted in
a specific way and are named GDB/MI output records. GDB will also send status
messages informing the application which uses the GDB/MI about important events.
The syntax of all possible output records is specified in Bachus Naur Form (BNF) in
the GDB user manual [101].

We tried to reuse an existing parser for GDB/MI output records. Some open-source
debuggers and IDEs which use GDB/MI were investigated. The IDE RHIDE and the
debugger DDD both use the Command Line Interface (CLI) of GDB instead of the
GDB/MI. The Emacs editor uses the GDB/MI and its parser for output records is
written in Lisp. The Eclipse IDE also uses the GDB/MI and its parser for output
records is written in Java. The IDEs Qt Creator and KDevelop both use the GDB/MI
and they both have a parser for output records written in C++. Because we have
chosen to implement SHaBE in C++ the last two parsers where further investigated.
The parser from Qt Creator uses Qt specific data types such as QByteArray, QList,
QVariant, and QTextStream. The parser from KDevelop uses KDevelop specific data
types such as QString, QValueList, QMap, and QMemArray. Because we do not want to
depend on these specific data types and because the syntax for output records is quite
simple (only 22 production rules) we decided to develop our own parser. This parser
only uses standard C++ data types like string, and vector. The implementation of
this parser is not further discussed in this report, its UML class diagram can be found
in Appendix G.

SHaBE starts GDB in a separate process, and uses two pipes to communicate with
it. GDB controls the input and output of the executable SystemC model as shown in
Figure 6.1.

A complication is the fact that the executable SystemC model which is executed
by GDB can also produce output which is intertwined with the output records which
are produced by GDB. The executable program can also read input from its standard
input stream. Therefore, SHaBE uses multiplexed input when the executable model
is running by calling the system call select to wait for input from GDB or from
the user. When user input is received it is send to GDB which will send it to the
executable model which is running. When SHaBE receives input from GDB which can
not be parsed as an output record, the output is send to the output stream of SHaBE,
normally a console window. This approach has two minor problems. If a SystemC
program produces output which can be parsed as a GDB output record then SHaBE
will be confused. But this is unlikely to happen by accident because the GDB output
records have a specific structure. The second minor problem is caused by the fact that
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Figure 6.1: The communication between SHaBE, GDB, and the executable SystemC model.

the output of the SystemC program is only received by SHaBE and presented to the
user line by line. The well known IDE Eclipse suffers from the same minor problems.

6.1.2 Finding the SystemC Name

Every object which is a member of a SystemC model’s module hierarchy is derived
from the base class sc_object. Therefore it is possible to record the creation of
all sc_objects by setting a breakpoint on the constructors of sc_object. The
class sc_object has two constructors sc_object() and sc_object(const char* nm).
Both constructors call the private member function sc_object_init, so a breakpoint
on this function will catch the creation of all sc_objects. Because the SystemC name
for the object is determined in the beginning of this function and this name must be
retrieved, the breakpoint is not set at this function. At the end of this function the
function sc_simcontext::add_child_object is called for a top level sc_object, the
function sc_module::add_child_object is called for an sc_object which is located
inside an sc_module, and the function sc_process_b::add_child_object is called for
an sc_object which is located inside an sc_process. When breakpoints are set on
these functions the sc_object which is being created can be inspected via the object_
function argument and the enclosing object (module or process) can be inspected by
the this function argument. Via the object_ function argument the SystemC name
of the sc_object can be found.

6.1.3 Finding the SystemC Type

To find the most derived SystemC type of the sc_object the stack is inspected.
The sequence of function calls leading to the breakpoint is traced back until
a user-defined function or sc_main is found. The function called from there
will be the most derived SystemC constructor, for example sc_module, sc_in,
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sc_out, or sc_signal. For an sc_object which represents a SystemC process
there is no constructor found using the just described procedure. Instead one
of the member functions: create_method_process, create_thread_process, or
create_cthread_process from class sc_simcontext is found. This fact is used to
identify the three different kinds of SystemC processes.

6.1.4 Finding the C++ Type

When the constructor of the most derived SystemC type is found then the type of the
this pointer will reveal the complete C++ type of this object. For example, when the
output port result from the fir filter which is instantiated in Figure 2.7 is created
then the type of the this pointer of the most derived SystemC constructor, which is
sc_out, is reported by GDB as: class sc core::sc out<sc dt::sc fixed<32, 2,

SC TRN, SC WRAP, 0> >. In this way SHaBE can retrieve the template parameters
used in the instantiation of the object.

If the sc_object which is being created has an sc_module as its most derived
SystemC type then the most derived C++ type of this sc_module must be found. This
is necessary because other SystemC objects, such as ports and channels, can be stored
inside these user-defined modules. The most derived C++ type is found by tracing the
sequence of function calls further back. The trace is continued as long as a function is
found which is a member function and therefore does have a this function argument
and as long as the this function argument equals the address of the sc_object which
is being inspected. Using this procedure the most derived C++ type for the SystemC
module is found. Because a SystemC submodule can also be constructed from within
the before_end_of_elaboration callback which is called by the SystemC kernel just
before the end of the elaboration phase the sequence of function calls is traced further
back to see if this sc_module constructor is called from this callback. This fact is
recorded for later use.

When the constructor of the most derived C++ type is found then the type of
the this pointer will reveal this type. For example, when the fir filter which is
instantiated in Figure 2.7 is created then the type of the this pointer of the most de-
rived C++ constructor is reported by GDB as: class fir<sc dt::sc fixed<32, 2,

SC TRN, SC WRAP, 0>, 5>. In this way SHaBE can retrieve the template parameters
used in the SystemC model.

6.1.5 Finding the C++ Name

The C++ names of all channels, ports, and exports within the SystemC module hier-
archy must be found because these C++ names will be used in the member functions
which are used to describe the behavior of the SystemC modules in the SystemC pro-
cesses. These member functions will be analyzed in the second step of SHaBE and this
will reveal for example a write to a SystemC output port named out. So the C++
name of this SystemC output port must be found in the first step of SHaBE because
otherwise the hierarchical information and the behavioral information for this port can
not be linked together. A complication is the fact that the channels, ports, and exports
declared within a SystemC module can also be stored in a pointer or array variable.
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To find the most derived C++ type of a SystemC module we have to set a breakpoint
and trace back the sequence of function calls as described above. Because the base class
sc_object is constructed before the derived class it is not possible to inspect the data
members of the derived class. It is possible though, by using GDB, to find the names
and addresses of all data members declared in the derived class (and all off its base
classes). This is possible because in C++ the memory for an object is allocated before
the constructor for this object is called. For plain data members the name and address
is stored in a look-up table inside SHaBE. This table can be used to find the name of
an sc_object, using its address, when it is created later on.

If the data member is an array each element of the array is treated as a separate
data member. If for example the name of the array is portArray then the elements are
treated as separate variables named portArray[0], portArray[1], etc. These array
elements are processed again to facilitate multidimensional arrays and arrays filled with
pointers.

If the data element is a pointer a problem occurs. It is not possible to determine
the pointee (i.e. the object to which this pointer is pointing). The pointer is not
assigned a value yet. This value will probably be assigned inside the constructor of the
SystemC module which is not called yet. Assigning a value to the pointer can even be
postponed until the before_end_of_elaboration callback. This problem is solved as
follows. Using GDB a watchpoint is set for each pointer data member of the module
under investigation. If this watchpoint is triggered later on, the address assigned to the
pointer is stored in the look-up table together with the name of the pointer preceded by
a the dereference operator, i.e., a “*”. So, if a SystemC input port is stored in a data
member pointer named pin then the name stored in the lookup table will be *pin.

In C++ the name of an array is equivalent to a constant pointer to the first element
of the array. This enables some weird syntax. The second element of an array named
a can for example be accessed with the expressions a[1], 1[a], and *(a+1). In a
similar way a pointer variable can be used in C++ as if it was declared as an array.
For example the object pointed to by a pointer p can be accessed with the expressions
*p, p[0], and 0[p]. At the moment SHaBE assumes that an array element is accessed
by using a subscript and that a pointee is accessed by dereferencing the pointer.

Watchpoints in GDB can be hardware watchpoints or software watchpoints. A
hardware watchpoint uses specific hardware in the target platform to implement the
watchpoint. The SystemC model can be run at full speed when hardware watchpoints
are set. A software watchpoint is implemented in GDB by executing the SystemC model
step by step and checking the variable that is being watched after each step. Therefore
the execution of the SystemC model will be very slow when software watchpoints are
set. The number of available hardware watchpoints depends on the platform on which
SHaBE is executed. To keep the performance of SHaBE acceptable only hardware
watchpoints are used. When the number of pointers to watch exceeds the number of
available hardware watchpoints some pointers will not be watched directly. When a
watchpoint is triggered all pointers which need to be watched are inspected. As soon
as a pointer is assigned it is marked as being updated and the available hardware
watchpoints are used to watch pointers which are not updated yet.

A further complication is the fact that a module can contain submodules. The
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submodule is called the child module and the surrounding module is called the parent
module. The constructor of the child module can be called somewhere during the
constructor of the parent module. If the child module also has pointer data members
then the watchpoints for the parent module must be disabled and other watchpoints
must be set for the child module. When the watchpoints for the child module get out of
scope this is reported by GDB. SHaBE will then enable the watchpoints for the parent
module again. A child module can also have submodules etc. To facilitate this SHaBE
keeps a stack of pointer groups. Each group consists of the pointer data members of a
specific module. If a module constructor is analyzed by SHaBE the watchpoints for all
pointers in the group currently on the top of the stack are disabled and a new group
of pointers is placed on this stack and the watchpoints for these pointers are enabled.
As a watchpoint is reported to be out of scope all currently enabled watchpoints are
deleted, the group of pointers is removed from the stack, and the watchpoints for the
group of pointers currently on top of the stack are enabled.

If an sc_object is created in the before_end_of_elaboration callback of a Sys-
temC module then this module is inspected for array and pointer data members. Array
data members are split into separate data members as described above. If one or more
pointers are found all pointers are read and stored in the look-up table as described
above. Watchpoints are set to catch any assignment to these pointers during the exe-
cution of the callback in the same way as described above.

There are two exceptional situations in which SHaBE is not able to retrieve the
C++ names of channels, ports, and exports. The first problem occurs when a pointer
is used which points to an array of channels, ports or exports. An example of such a
situation is shown in the test case which can be found in Figure 5.6. This problem is
caused by the fact that the C++ language does not differentiate between a pointer to a
single object and a pointer to the first object of an array. The debugger GDB therefore
can not detect the difference between a pointer which points to a single object and a
pointer which points to an array of objects. Because SHaBE depends on GDB it has
the same limitation.

The second problem occurs when channels, ports or exports are stored in container
objects.

If a standard container class is used, the implementation of this container is known,
and the debug information is available then the data stored in the container can be
found by GDB. Because the way elements of a standard container are accessed is known
it is possible in the second step of SHaBE to determine which elements are accessed in
the member function which describes the behavioral of the module. For example when
input ports are stored in a std::vector called vin then the expressions vin[1] and
*(vin.begin()+1) will both access the second input port stored in the vector. Storing
channels, ports, or exports in a standard container, e.g. std::vector, can be useful
in a SystemC model. SHaBE does not support the use of standard containers to store
channels, ports, or exports at the moment.

If a user-defined container class is used to store channels, ports, or exports it is not
possible to find the data stored in the container using GDB because the implementation
of the container is unknown. Because the way elements of a user-defined container are
accessed is not known, it is impossible to determine in the second step of SHaBE which
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elements are accessed by the member function which describes the behavioral of the
module. Therefore SHaBE can not support the use of user-defined containers to store
channels, ports, or exports.

6.1.6 Finding the C++ Name of a Top-Level Module or Channel

It may be useful for a tool, e.g., a SystemC debugger, which uses SHaBE as its front-
end to also know the C++ names of SystemC modules and channels which are not
enclosed inside of a module. These ”stand-alone” modules and channels are called
top-level objects in SystemC. These top level objects can be statically or dynamically
created. A statically created object can be stored as a local variable in sc_main or any
other function called from sc_main. The address of a dynamically created object can
be stored in a local variable in sc_main or any other function called from sc_main, or
can be stored in a global variable.

Of course, top-level objects can also be stored in an array or the addresses of top-level
objects can be stored in an array of pointers. SHaBE can detect the creation of a top-
level object because in this case the breakpoint on sc_simcontext::add_child_object

is triggered. In this case, the function which calls the most derived constructor is
inspected for local variables. For plain local variables the name and address is stored
in the look-up table. As explained before, this table will be used to find the name of
an sc_object, using its address, when it is created later on. Local arrays and pointers
are treated in exactly the same way as array and pointer data members.

After the elaboration phase is finished GDB can list the names and types of all
global objects. This is a long list which is filtered to find all global objects with
a user-defined type or with one of SystemC’s predefined channel types, for example
sc_core::sc_signal or sc_core::sc_clock. Array type variables are recursively
split into elements to support multidimensional arrays. The address of a plain global
variable or plain global array element is retrieved by using GDB and the SystemC
module hierarchy is searched for this address. When the address is found the name of
the global variable or the subscript expression for the array element is stored as the
C++ name of the SystemC object. This means that SHaBE can find the name of
globally defined top-level object despite the fact that such object are not allowed by
the SystemC standard. SystemC models which define top-level objects globally work
without problems when the OSCI SystemC implementation is used.

A global pointer variable or a global pointer array element is recursively dereferenced
to support pointers to pointers. The address of the farmost pointee is retrieved by using
GDB and the SystemC module hierarchy is searched for this address. When the address
is found the dereference expression which is needed to access the object via the pointer
is stored as the C++ name of the SystemC object.

Because not all tools which will use SHaBE as a front-end will be interested in
the C++ names of globally accessible top-level SystemC objects the retrieval of these
names can be conditionally compiled into SHaBE.
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6.1.7 Finding the Static Sensitivity of a SystemC Process

The sensitivity of a SystemC process is the set of events that can potentially cause the
process to be resumed or triggered. The static sensitivity of an unspawned process is
fixed during elaboration. SHaBE only supports unspawned pocesses i.e., processes de-
clared by using SC_METHOD, SC_THREAD or SC_CTHREAD. The static sensitivity is recorded
during the first step of SHaBE.

The sensitivity of an SC_CTHREAD is determined by the second argument supplied
to this macro. This must be the return value of an event finder. An event finder is
a member function of a port class which permits a specific event from the channel to
be retrieved through the port instance before the port is bound to a channel. At the
time the port is bound the specific event is added to the static sensitivity of the process
instance.

The sensitivity of an SC_METHOD and an SC_THREAD is set by using the sensitive

data member of the base class sc_module. This data member can only be used as the
left operand of an overloaded operator<<. An SC_METHOD or SC_THREAD can be made
statically sensitive to zero or more events. On the right side of the operator<< which
is used to define the static sensitivity of an SC_METHOD or an SC_THREAD objects of
four different SystemC types can be used: sc_event, sc_interface, sc_port_base,
or sc_event_finder.

6.1.7.1 Finding the Sensitivity if an sc event is used in the Sensitivity List

If an object of type sc_event is used the process will be statically sensitive to this event.
For example a process can be made sensitive to the rising edge of a sc_logic signal
named sig as follows: sensitive<<sig.posedge_event(). At the moment SHaBE
can only handle events from the channels sc_signal, sc_buffer and, sc_clock. Both
sc_buffer and sc_clock are derived from sc_signal and all three classes are described
with the general name signal in this thesis report.

To associate each event with the signal which can notify this event the creation of
each event is registered by SHaBE in a lookup table for events. Using GDB a breakpoint
is set on the constructor of the class sc_event. When this breakpoint is hit SHaBE
will inspect the stack to retrieve the name of the function which called the sc_event

constructor. If this function name is default_event or value_changed_event then the
event is identified to be of type change. If the name of this function is posedge_event
then the event is identified to be of type pos. Finally, if the name of this function is
negedge_event then the event is identified to be of type neg. For all these functions,
the function argument this points to the sc_signal which can notify the event. The
address of the sc_event together with the address of the sc_signal and the type of
the event i.e., change, pos, or neg are placed in a lookup table for events.

SHaBE sets a breakpoint on sc sensitive::operator<<(const

sc core::sc event&) and when this breakpoint is hit it retrieves the address of
the function argument event_. Using this address the signal which will notify the
event and the type of event can be found in the lookup table for events. Because the
static sensitivity of a process can only be set in the constructor of a module, in the
before_end_of_elaboration or end_of_elaboration callbacks of a module, or in a
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member function called from the constructor or callback, the data member m_handle

from the class sc_module can always be used to identify the process for which the
static sensitivity is being defined.

It is not possible to retrieve the events that a signal can notify at the time this signal
is constructed because an event is only created and stored inside a signal when some pro-
cess is sensitive to this event. The functions default_event, value_changed_event,
posedge_event, and negedge_event which were mentioned above dynanically create
an event when they are called for the first time for a specific signal. This event is then
stored inside the signal to be notified during simulation time. If the same function
is called more than once for a specific signal the event which was created when the
function was called for the first time, is returned.

6.1.7.2 Finding the Sensitivity if an sc interface is used in the Sensitivity List

If an object derived from the type sc_interface is used on the right side of the
operator<< the process will be statically sensitive to the default event of this ob-
ject. The object derived from sc_interface must be the channel which implements
the interface. For example a process can be made sensitive to the default event of
the signal named sig as follows: sensitive<<sig. SHaBE sets a breakpoint on
sc_sensitive::operator<<(const sc_core::sc_interface&) and when this break-
point is hit it retrieves the address of the function argument interface_. This address
can be used to find the channel which implements this interface. The process for which
the static sensitivity is being defined is identified as described above.

Exports are provided by SystemC to export the interface of a channel located inside a
module to the part of the model outside that module. A process can be made sensitive
to an export. But there is no overloaded sc_sensitive::operator<< available for
sc_export objects. A note on page 50 of the SystemC standard [58] explains that the
operator<< which is overloaded for objects of type sc_interface can be used instead,
because of the existence of the conversion operator sc_export<IF>::operator IF&.
This operator is intended for use during elaboration as an implicit conversion when
passing an object of class sc_export in a context that requires an sc_interface, for
example, when binding a port to an export or when adding an export to the static
sensitivity of a process.

The consequence of this specification is that SHaBE is not able to detect that a
process is sensitive to an export. SHaBE detects that the process is sensitive to the
interface which is exported by the export. Although the effect of making a process
sensitive to the interface exported by an export and making a process sensitive to the
export itself is completely the same, it is still a pity that this implementation detail of
the SystemC model is lost. But, as explained, this is due to the fact that SystemC does
not provide a properly overloaded sc_sensitive::operator<< for export objects. It
is remarkable inconsequent that the set_sensitivity function which is used to set
the sensitivity of spawned processes is overloaded for export objects.
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6.1.7.3 Finding the Sensitivity if an sc port base or an sc event finder is used
in the Sensitivity List

If an object of type sc_port_base is used on the right side of the operator<< the
process will be statically sensitive to the default event of the channel which will be
bound to the port later on. For example a process can be made sensitive to the default
event of an input port named in as follows: sensitive<<in.

If an object of type sc_event_finder is used on the right side of the operator<<

the process will be statically sensitive to a specific event of the channel which provides
the sc_event_finder. An event finder is necessary to create static sensitivity to a
specific event defined in the channel. For example a process can be made sensitive
to the rising edge of an input port named clk by using an event finder as follows:
sensitive<<clk.pos().

At the time that a process is made statically sensitive to a port the port does not
have to be bound to a channel yet. So it is not possible to retrieve the event to which
the process will eventually be made sensitive. The process will be made sensitive to
this event after the port binding has been completed. If a process is made sensitive to
a port eventually the make_sensitive member function of the class sc_port is called.
There are two overloaded versions of this member function one version which is called
if an SC_METHOD is made sensitive to a port and an other version which is called if an
SC_THREAD is made sensitive to a port. The latter is also called if an SC_CTHREAD is
created which is always made sensitive to a port via an event finder.

Using GDB a breakpoint is set on these two functions and the function arguments
are inspected. The function argument this points to the port to which the process is
made sensitive. The function argument handle_p identifies the process which is made
sensitive to this port. Finally, the function argument event_finder_ points to the
event_finder which will be used to find the event later on when this port is bound. If
the event_finder_ argument is zero, then the process will be sensitive to the default
event of the channel to which it will be bound later on.

If the event_finder_ argument is pointing to an event_finder object this ob-
ject must be identified to determine the kind of event the process will be sensitive to.
Because SHaBE only supports sc_signal, sc_buffer, and sc_clock channels at the
moment, this event_finder object must have been returned by a event finder member
function of an sc_in, sc_out, or sc_inout port i.e., value_changed(), pos() or neg().
The event_finder objects returned by these functions are saved in private data mem-
bers respectively named m_change_finder_p, m_pos_finder_p, and m_neg_finder_p.

The addresses of these event_finder objects can not be retrieved at the time a port
is created because the SystemC library only creates a specific event_finder object for
a port when the event finder member function is called for the first time. If an event
finder member function for a specific port is called more than once, the event_finder

object created during the first call is returned. Every sc_in, sc_out, and sc_inout

template instantiation provides the value_changed() event finder member function.
Only the sc_in, sc_out, and sc_inout template specializations for sc_logic and bool

provide the pos() and neg() event finder member functions.
The type of the event i.e., change, pos, or neg to which the process will be sensi-

tive after the port is bound can be found by comparing the event_finder_ function
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argument of the make_sensitive member function with the private data members
m_change_finder_p, m_pos_finder_p, and m_neg_finder_p. This is not straight for-
ward because the make_sensitive member function is defined in the class sc_port_b
which is an abstract base class for class sc_port which is a base class for sc_in, sc_out,
and sc_inout. It is impossible to find the data members of the derived class from a
pointer to its base class object. The this pointer of the make_sensitive member
function points to an object of type sc_port_b.

This problem is solved as follows. Because a process can only be made sensitive to
an existing port, the C++ name of the port can be looked up in the part of the module
hierarchy which is already extracted from the model. The address of the derived port
class will be the same as the address for the sc_port_b object, so the C++ name
of the derived port can be found by using this address. Because make_sensitive

is called from sc_sensitive::operator<< which is called from the constructor or
member function in which the sensitivity for the process is being set the C++ name for
the port must be known in the third stack frame found on the stack when the breakpoint
on make_sensitive is hit. Using GDB the private data members m_change_finder_p,
m_pos_finder_p, and m_neg_finder_p of this variable are retrieved and compared with
the event_finder_ function argument of the make_sensitive member function. In
this way the type of the event i.e., change, pos, or neg to which the process will be
sensitive after the port is bound is found by SHaBE.

In SystemC a port can be declared to be a multiport. A process can be made
statically sensitive to a specific event of one specific channel or port which is bound
to a multiport. Alternatively, a SystemC process can be made statically sensitive to
the default event of all channels and/or ports which are bound to a multiport. SHaBE
fully supports multiports.

6.1.8 Finding the Connections Between the Modules

In SystemC modules are connected with one another via channels using the ports and
exports of the modules. Ports can be bound to channels, to other port instances, or to
export instances. Exports can be bound to channels or to other export instances, but
not to port instances. Ports can be bound by name or by position, but exports can
only be bound by name. A port can be declared as a multiport. A single multiport
can be bound to multiple channel or ports. An export can only be bound once.

SHaBE can reveal all these bindings by setting breakpoints on appropriate functions
in the SystemC library and by analyzing the function arguments when these breakpoints
are hit. The binding of a port to another port is found by setting a breakpoint on
the member function bind(sc_port_base&) from class sc_port_base. When this
breakpoint is hit, the function argument this reveals the address of the port being
bound and the function argument parent_ reveals the port to which the port pointed
to by this is bound. The binding of a port to a channel is found by setting a breakpoint
on the member function bind(sc_interface&) from class sc_port_base. When this
breakpoint is hit, the function argument this reveals the address of the port being
bound and the function argument interface_ reveals the channel to which the port
pointed to by this is bound. The actual type of the interface_ function argument is
derived from sc_interface. It is the channel which implements the interface.
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There is no overloaded bind member function for exports defined in the class
sc_port_base. When a port is bound to an export the conversion operator
sc_export<IF>::operator IF& is called and the function bind(interface&) is called.
The consequence of this implementation is that SHaBE is not able to detect that a port
is bound to an export. SHaBE detects that the port is bound to the interface which
is exported by the export. Although the effect of binding a port to the interface ex-
ported by an export and binding a port to the export itself is completely the same,
it is still a pity that this implementation detail of the SystemC model is lost. But,
as explained, this is due to the fact that SystemC does not provide a properly over-
loaded sc_port_base::bind for export objects. This problem is completely analog
with the problem of detecting the sensitivity of a process to an export as described in
Section 6.1.7.2.

The binding of a export to another export is found by setting a breakpoint on the
member function bind(IF&) from class sc_export<IF> as well as setting a breakpoint
on the operator()(IF&) from class sc_export<IF>. When one of these breakpoints is
hit the function argument this reveals the address of the export being bound and the
function argument interface_ reveals the channel to which the export pointed to by
this is bound. The actual type of the interface_ function argument is derived from
sc_interface. It is the channel which implements the interface.

Again, there is no overloaded bind member function for exports defined in the class
sc_export. The consequence of this implementation is that SHaBE is not able to detect
that an export is bound to an export. SHaBE detects that the export is bound to the
interface which is exported by the (second) export. Although the effect of binding an
export to the interface exported by an export and binding a export to the (second)
export itself is completely the same, it is again a pity that this implementation detail
of the SystemC model is lost.

All these bindings are administered by SHaBE in its internal representation of the
SystemC module hierarchy.

6.1.9 Finding the Reset Signal of a SC CTREAD and its Active Level

In SystemC a reset port or reset signal can be defined for an SC_CTHREAD process.
The active level of this reset signal must also be defined. An SC_CTHREAD process is
reset when the clock event to which the process is statically sensitive is notified and
the reset signal is active. SHaBE can retrieve the reset signal or port and its active
level by setting a breakpoint on the appropriate functions in the SystemC library and
analyzing the function arguments. The reset signal or reset port and the active level of
the reset are administered by SHaBE as an attribute of the SC_CTHREAD description in
its internal representation of the SystemC module hierarchy.

6.2 Retrieving the Behavior of the SystemC Modules

The behavior of the SystemC model is extracted by using a GCC plug-in. A GCC plug-
in can schedule the execution of specific code in between, or as a replacement of, some
passes of the GCC compilation process using the pass manager. We have developed a
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plug-in for GCC named SHaBEPlugIn which executes code after the SSA pass of GCC
is finished. SHaBEPlugin converts the AST in SSA form which is produced by GCC
into SCMDL. As already mentioned in the intoduction of Chapter 5 the first version
of SHaBEPlugIn was developed by Bas van den Aardweg under the supervision of the
author of this thesis. Many implementation details can be found in the report he wrote
(in Dutch) [106].

Section 6.2.1 gives a very short overview of the internal structure of the GCC C++
compiler. The communication between SHaBE, GCC, and SHaBEPlugIn is explained in
Section 6.2.2. Some implementation details of SHaBEPlugIn are given in Section 6.2.3.

6.2.1 GCC Internals

The internal structure of GCC is described in [85]. The GCC compiler has three main
parts: front-end, middle-end, and back-end. The C++ front-end of GCC produces an
AST in the GENERIC format. In this GENERIC format the C++ specific features
are explicitly represented. This GENERIC format is transformed into the GIMPLE
format [78]. GIMPLE is a simplified GENERIC, in which all constructs are lowered into
a simpler form. In transforming the GENERIC tree into GIMPLE, complex expressions
are split into a three address code using temporary variables. In the middle-end the
GIMPLE format is transformed into SSA form and a large number of powerful language-
independent and architecture-independent optimizations are performed on this SSA
GIMPLE tree [84]. In the back-end of the GCC compiler the optimized GIMPLE
tree is converted into an architecture dependent RTL which is finally converted into
assembly code for a specific target architecture. A GIMPLE tree consists of basic
blocks which contain GIMPLE instructions. These basic blocks are connected with
edges which represent the control flow of the source code. The pass manager of GCC
will call each pass once for each function or member function.

6.2.2 Communicating with SHaBEPlugin

The C++ member functions which define the behavior of the SystemC model are
already identified during the first step of SHaBE. SHaBE used GCC and SHaBEPlu-
gIn to extract the AST in SSA form from the source codes of these functions. The
communication between SHaBE, GCC, and SHaBEPlugIn is shown in Figure 6.2. All
communication takes place via command line parameters and by using temporally files.

The locations of the source files in which the member functions that must be an-
alyzed are defined, are extracted from the debug information during the first step of
SHaBE. SHaBE creates an internal list of files which must be analyzed and their loca-
tions. For every source file which is identified an internal list of fully qualified function
names which must be analyzed is produced by SHaBE.

For every source file which must be analyzed SHaBE creates a subdirectory
with an unique name. The list of function names located in this specific source
file is written into the file shabeplugin-arguments.xml inside this directory. This
list is formated in a simple XML format. Every function name is presented in
this XML document by a <function> element. These <function> elements are
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Figure 6.2: The communication between SHaBE, GCC, and SHaBEPlugIn.

enclosed by a <shabeplugin-arguments> element. SHaBE starts GCC in a sepa-
rate process using the following command line: gcc -fplugin=shabeplugin.so

-fplugin-arg-shabeplugin-arguments=shabeplugin-arguments.xml

-fno-inline -S -o /dev/null -Ipath-to-systemc-include filename. The
command line argument -fplugin=shabeplugin.so tells GCC to use the specified
plug-in and the argument -fplugin-arg-... is used to pass an argument to this
plug-in. Because we want to recognize all calls into the SystemC library we do not
want GCC to inline these calls. Inlining is prevented by using the command line
argument -fno-inline. The -S command line argument is used to stop GCC after
the compilation phase is finished. This prevents GCC from calling the assembler and
linker. Because we do not need the output which is produced by GCC we send it to
the bit bucket by using the command line argument -o /dev/null. The path to the
SystemC include file is provided by the -I... command line argument. This path is
extracted from the debug information included in the executable SystemC model by
SHaBE.

When GCC starts, it dynamically links the library shabeplugin.so and it calls the
plugin_init function which must be present in this dynamic library. The argument
for this plug-in which are provided on the command line is passed as an argument of
this plugin_init function. The plugin_init function of SHaBEPlugin retrieves this
argument and reads the function names from this XML document. Then SHaBEPlugIn
calls the register callback function within GCC to register a callback function and
returns control to GCC. GCC calls the registered callback function inside SHaBEPlugIn
for every function which is compiled just after the SSA AST for that function is created.
When this callback function is called, SHaBEPlugIn checks if the function which is being
compiled is on the list of functions which must be analyzed. If not, the callback return
immediately. Otherwise, SHaBEPlugIn retrieves the AST from GCC and stores it into
its own internal structure. When GCC has processed the complete source file it will
exit. We have declared a global variable inside SHaBEPlugIn. The destructor of this
object is called just before GCC exists. Inside this destructor the AST of all analyzed
functions is written into an SCMDL document shabeplugin-output.xml inside the
temporally directory.

SHaBE waits for the GCC process to finish, reads the information from the
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shabeplugin-output.xml file, and finally destroys the temporally directory.

6.2.3 SHaBEPlugIn

SHaBEPlugIn executes code after the SSA pass of GCC is finished. At that moment the
GENERIC tree is completely converted into GIMPLE and all conditional statements
will have both a then and an else part, but no optimizations are performed yet. We
have chosen to use the non optimized GIMPLE tree so the IR is simplified into SSA
form but still resembles the source code as close as possible. SHaBEPlugin converts
this non optimized GIMPLE tree into an internal tree structure.

The GIMPLE tree is simplified by SHaBEPlugin. Calls to functions and overloaded
operators of the SystemC library must be represented as simple nodes in the resulting
SCMDL document, see Section 4.5. These functions and overloaded operators are
recognized by their fully qualified name i.e. a concatenation of their namespace, class
name, and function or operator name. At this moment SHaBEPlugin can only recognize
a limited number of functions and operators. All read, write, and wait function
calls are recognized. The operators which call read or write in their implementations
are recognized and transformed into an explicit read or write node in SCMDL. The
operators *, + and - are recognized for standard C++ integral and floating types and
for the SystemC sc_fixed type.

The GIMPLE tree is stored inside SHaBEPlugin in a tree data structure which
implements the visitor pattern [39]. Using this pattern separate visitors are written
which perform simplifications on this internal tree. The GIMPLE form retrieved from
GCC uses a lot of unnecessary temporally variables which are removed by one of the
visitors. An other visitor will replace every operator which calls read or write in its
implementation into a read or write node in the internal tree. Finally this internal
tree is stored in an SCMDL document.

A member function which defines the behavior of a process can call other user-
defined functions. At this moment these calls appear in the internal tree as call nodes.

6.3 Combining the Hierarchical Information with the Behav-
ioral Information

As described in Section 6.1, SHaBE retrieves the C++ names of all ports and channels
in a SystemC model. These ports and channels can be used in the description of the
behavior of the model which is analyzed in the second step of SHaBE. Ports are used to
access the channels which are bound to these ports during the elaboration phase of the
execution of the model. These bindings are also retrieved in the first step of SHaBE. If
the channels and ports used in the member functions that describe the behavior of the
model are stored in a plain data member, then the name found in the analysis of the
member function are the C++ names of these data members. In this case ports and
channels found in the second step can be simply linked with the port and channels found
in the first step by using the fully qualified C++ names of these ports and channels.

If ports and/or channels are stored inside arrays or accessed via pointers the asso-
ciation of ports and channels between the two steps of SHaBE is a bit more involved.
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Arrays of ports and arrays of channels are split into individual objects in the first step
of SHaBE. The name of these objects is the expression needed to access such an in-
dividual object within the array, for example a[2]. When such an array element is
accessed in the member function which describes the behavior of a SystemC process
then the subscript operator appears in the IR produced by the second step of SHaBE.
If the subscript used in the subscript operator is a compile time constant then SHaBE
can associate the access with a specific array element found during the first step. In this
case the subscript operator can be removed from the behavioral IR produced by the
second step of SHaBE. But, if the subscript used in the subscript operator is a variable
then the subscript operator models a multiplexer or demultiplexer. A multiplexer is
modeled if the subscript operator is used as an rvalue and a demultiplexer is modeled
if the subscript operator is used as an lvalue. In this case, the array access found in the
second step of SHaBE will be associated with all elements of the array found during
the first step of SHaBE. Which of these elements is selected during run-time depends
on the values of run-time variables and this behavior is captured in the IR produced
by the second step of SHaBE. Figure F.1 shows the SystemC model of a simple N:1
multiplexer.

If a port of channel is accessed via a pointer then the name of this object found in
the first step of SHaBE is the expression needed to access the object, for example *p.
When such a pointee is accessed in the member function which describes the behavior
of a SystemC process then the dereference operator appears in the IR produced by
the second step of SHaBE. If the dereference operator is applied to a pointer variable
which was identified by SHaBE in step one, then SHaBE can associate the access
with a specific object. In this case the dereference operator can be removed from the
behavioral IR produced by the second step of SHaBE. But, if the dereference is used
on a pointer which is not identified by SHaBE in step one, or if pointer arithmetic is
used then the dereference operator models some behavior of the model. In this case the
pointer dereference found in the second step of SHaBE can not be associated with an
object found during the first step of SHaBE and the dereference behavior is captured
in the IR produced by the second step of SHaBE.

A tool which is build upon SHaBE can replace reads and writes to ports with reads
and writes to the channels which are bound to these ports. This makes it possible to
construct the complete CDFG of the model.
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Results 7
Due to the limited time available to us SHaBE is not fully implemented. The first
section of this chapter gives an overview of what is implemented and what is not. The
implementation of SHaBE is build upon GCC, GDB and the OSCI SystemC library.
This creates certain dependencies which are listed in this chapter, see Section 7.2. The
test results of using SHaBE are also presented in this chapter. In Section 7.4 the
theoretically determined run-time complexity is compared with the actual execution
time of SHaBE. During the time we were developing SHaBE an other SystemC front-
end called PinaVM was introduced, see Section 3.1.3.3. In Appendix K SHaBE is
compared with PinaVM.

7.1 Implementation Status

Almost all of the hierarchical information which must be retrieved from a SystemC
model, see Appendix C is extracted by SHaBE. The hierarchical information which
actually can be extracted from a SystemC model at the end of the elaboration phase
by SHaBE is reported in Table 7.1. The information items are sorted by priority.
The priority values used are explained in Chapter 4. An information item which is
extracted by SHaBE is marked in the column SHaBE in Table 7.1 with the symbol√

. The symbol ∅ is used to mark information items which can not be extracted
due to limitations in the SystemC standard. Information items which are currently
not extracted by SHaBE due to the limited time available to us are marked with the
symbol �. These information items can be extracted in the future in a similar manner
as other information items which are already successfully extracted. All information
items which were given the highest priority in Section 4.4 and which can be extracted
are in fact successfully extracted by SHaBE.

It is not possible to extract the binding to an export and the sensitivity to an export
due to limitations in the SystemC standard. Section 6.1.7.2 explains why it is not
possible to detect that a process is sensitive to an export. In this case SHaBE extracts
the information that the process is sensitive to the interface which is exported by the
export. This has no consequences for the behavior of the model but an implementation
detail of the SystemC model is lost. As explained in Section 6.1.8 it is not possible to
detect that a port is bound to an export and it is also not possible to detect that an
export is bound to another export. In these cases SHaBE extracts the information that
the port or export is bound to the interface which is exported by the (second) export.
This has no consequences for the behavior of the model but an implementation detail
of the SystemC model is lost.

As explained in Section 6.1.5, SHaBE is not able to find the names of objects which
are accessed via a pointer to an array of objects. This is caused by the limitation

71



Table 7.1: The hierarchical information which can, and which can not, be extracted by
SHaBE.

object information cardinality priority SHaBE

sc object SystemC name 1 1
√

sc object SystemC type 1 1
√

sc object C++ name 0..1 1
√

module ports 0..* 1
√

module exports 0..* 1
√

module processes 0..* 1
√

module primitive channels 0..* 1
√

module submodules 0..* 1
√

hierarchy top-level primitive channels 0..* 1
√

hierarchy top-level modules 0..* 1
√

export bound to export 0..1 1 ∅
export bound to channel 0..1 1

√

port bound to ports 0..N 1
√

port bound to exports 0..N 1 ∅
port bound to channels 0..N 1

√

process sensitive to event from
channels bound to ports

0..* 1
√

process sensitive to event from channel
bound to exports

0..* 1 ∅

process sensitive to event from
channels

0..* 1
√

process name of the member function
which describes the behavior

1 1
√

process source file of the member
function which describes the
behavior

1 1
√

clocked thread process reset signal or reset port 0..1 1
√

sc object C++ type 1 2
√

clock period 1 2 �
clock duty cycle 1 2 �
clock start time 1 2 �
clock posedge first 1 2 �
process don’t initialize 1 2 �
clocked thread process reset active level 0..1 2

√

process subprocess 0..* 3 �
fifo size 1 3 �
semaphore value 1 3 �

sc object address 1 4
√

process address of the member function
which describes the behavior

1 4
√

thread process stack size 1 4 �
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of the C++ language to differentiate between a pointer to an array of objects and
a pointer to a single object. Currently, SHaBE is not able to detect the names of
objects which are stored in standard or user-defined containers. The detection of the
names of objects which are stored in standard containers is not implemented due to
time limitations. We estimate this to be at least a man-month of work due to the
amount of standard containers which are available and the various ways in which the
elements stored in those containers can be accessed. The detection of the names of
objects which are stored in user-defined containers is not possible due to the fact that
the way these objects are stored and can be accessed is unknown. More details were
given in Section 6.1.5.

Most of the information items which were given a lower priority in Section 4.4 can
not be extracted by SHaBE at the moment. These information items can be extracted in
the future in a similar manner as other information items which are already successfully
extracted. The extraction of all information items which are currently not extracted,
because of time limitations, can be fairly easy implemented. We estimate that this
work can be performed in a few man-weeks.

Only a limited amount of the behavioral information which can be retrieved from
a SystemC model, see Section 4.4.2, is actually extracted by SHaBE at the moment.
The first version of SHaBEPlugIn which was implemented by Bas van den Aardweg
recognizes all read, write, and wait function calls into the SystemC kernel. The
overloaded operators which call read or write in their implementations are recognized
and transformed into an explicit read or write node in SCMDL. The operators *, +
and - are recognized for standard C++ integral and floating types and for the SystemC
sc_fixed type. A test case used to test SHaBEPlugIn together with the relevant part
of the actual SCMDL document produced by SHaBE is shown in Appendix I. Quite a
lot of work has to be performed if all behavioral information described in Section 4.4.2
must be recognized and extracted by SHaBE. We estimate this amount of work to take
at least 3 man-months.

The third step of SHaBE described in Section 6.3 is not implemented yet. We
estimate this to be a few man-weeks of work.

7.2 Dependencies

Because SHaBE is build upon GDB it has to be used in combination with a C++ com-
piler which is capable of generating the debug information GDB needs. SHaBE uses
GDB to set breakpoints on certain functions in the SystemC library and to inspect
certain data members of classes defined in the SystemC library. Therefore, SHaBE
depends on a specific implementation of the SystemC library i.e. the OSCI implemen-
tation of SystemC version 2.2.0. SHaBE is tested with GDB version 7.1.

SHaBE uses a GCC plug-in to extract the behavior of a SystemC process. GCC
plug-ins are only supported for GCC 4.5 or higher and only on platforms which use the
ELF object file format at the moment. Therefore SHaBE can not be used with Gygwin
nor with MinGW on Microsoft Windows.
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7.3 Test Results

We have used a test-first approach while developing SHaBE, see Chapter 5. More
than 250 test cases are used during the development of SHaBE. Each test case was
implemented immediately after it was written. A test case was either successfully im-
plemented or it was established that it was impossible to implement it due to limitations
of the SystemC language or the C++ language. All earlier developed test cases were
executed after a new test case was implemented to prevent breaking code which was
already correctly working.

Almost all test cases presented in Chapter 5 can be successfully executed by SHaBE.
Only the test case presented in Figure 5.7 can not be successfully executed because sig-
nals are stored in an array which is dynamically created. As explained in Section 6.1.5,
SHaBE is not able to find the names of objects which are accessed via a pointer to an
array of objects due to a limitation of the C++ language.

The SCMDL documents produced by SHaBE must follow the structure which is
defined in Section 4.5.1. This can be checked by validating these documents with the
XML Schema which is presented in Appendix D. All documents produced by SHaBE
for all test cases are successfully validated using Xerces1.

It is mentioned in Section 4.5 that an XSLT [27] script can be used to transform
specific parts of a SystemC model described in SCMDL into an other format. To
test this, an XSLT stylesheet is written which can transform the hierarchical module
structure described in SCMDL that is produced by SHaBE into GraphML. Appendix H
presents this XSLT stylesheet and also shows the graph produced for the FIR filter
which is instantiated in Figure 2.7 as shown by the graph editor yEd.

During the acceptance test for SHaBE it was found that the current implementation
strongly depends on the GDB version used. SHaBE did not work with a version of GDB
with the same major and minor version number (7.1) but with a different subversion
number. This was unexpected because we only communicate with GDB via GDB/MI
which is meant to be a stable interface.

7.4 Execution Time of SHaBE

The first step of SHaBE has a time complexity of O(n · log n), where n is the number
of SystemC objects used in the model. A breakpoint is set and some inspections are
performed at the creation of each object. Such an inspection can include a lookup
by address of an object found earlier. A search tree, implemented in the standard
C++ type map is used to store all objects and their address is used as the search key.
Therefore, the lookup will take O(log n) time and will have to be applied for a maximum
of n times which results in an overall time complexity of O(n · log n). The time required
by the second step of SHaBE is comparable with the time needed by the GCC C++
front-end. The time complexity of the third step of SHaBE is O(n · log n) where n is
the number of SystemC objects used in the model. All objects found in the second step
must be linked by name to the objects found in the first step.

1http://xerces.apache.org/
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Figure 7.1 shows the execution time2 of SHaBE for the FIR filter presented in
Figure 2.6 for different values of the template parameter ORDER which specifies the order
of the filter. The data can be found in Appendix J. The duration of the second step of
SHaBE is independent of the value of ORDER because the functions which describe the
behavior of the FIR filter are independent from the order of the filter. The number of
sc_objects in the model (n) is directly proportional to order of the filter. Figure 7.1
shows that the execution time of the first and last step of SHaBE equals 0.1822 ·
order + 6.1541. This formula and the coefficient of determination (R2) are calculated
by the spreadsheet program which was used to create the graph. R2 is a statistic that
shows how well the regression line approximates the real data points. The R2 value of 1
indicates that the regression line perfectly fits the data. Therefore, the time complexity
of the first and last step of SHaBE seems to be O(n). This seems to be better than
the true complexity of O(n · log n) which can be explained by the fact that the look-up
time is very small compared with the time needed to communicate with GDB.
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Figure 7.1: The execution time of SHaBE for different orders of the FIR filter presented in
Figure 2.6.

Table 7.2 shows the execution time of SHaBE for some SystemC models. The first
model is the FIR model which is instantiated in Figure 2.7. The other two models
are provided by OSCI and can be found in the examples directory of their SystemC
2.2.0 distribution. A modified version of the RISC CPU3 was used because the version
provided by OSCI produces run-time errors. The column gcc -S shows the execution

2All execution times were measured on a PC equipped with 2 GB of RAM and an AMD Athlon 64 processor
running at 2 GHz.

3http://funningboy.blogspot.com/2010/09/risc-cpu-systemc.html
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time of the front-end of the GCC compiler. The execution time of SHaBE is at most 1.6
times the execution time which is needed by the front-end of the GCC C++ compiler.

Table 7.2: Execution times of SHaBE.

Model # SystemC objects # Source lines
Execution time (s)

gcc -S SHaBE

FIR 94 214 4.7 7.5

FIR OSCI 37 296 8.3 8.4

RISC CPU OSCI 310 1960 20.8 29.0
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Conclusions and Future Work 8
In this chapter some conclusions are drawn, some suggestions for improving SHaBE are
put forward, and some directions for future work are given.

8.1 Conclusions

The open-source SystemC front-end SHaBE presented in this thesis is currently the
only freely available SystemC front-end which is capable of extracting the module hier-
archy and its behavior from a SystemC model when this hierarchy depends on dynamic
parameters. This enables SystemC designers to write C++ code which dynamically
generates the hierarchical structure of their models. SHaBE can handle models which
use dynamic input such as console input, file input, and command-line arguments.

SHaBE uses a novel approach. In our approach the hierarchical information of a
SystemC model is retrieved by executing the elaboration phase of the model under
control of a debugger. Thereafter, the behavioral information of the model is retrieved
by using a C++ compiler extension. Finally, the hierarchical information and the
behavioral information are combined and stored as an IR which can be used by tools
build upon this front-end. Our approach is completely non-intrusive, i.e., no changes
are required in the standard tool flow. The SystemC model and OSCI’s SystemC
implementation can both be used as is. The only precondition is that both are compiled
to include debug information.

The implementation of SHaBE is based on open-source development tools. SHaBE
can extract all relevant hierarchical information and a well defined subset of all be-
havioral information from a model. The implementation is developed using a test-first
approach during which more than 250 test cases were successfully implemented. The
execution of SHaBE on an executable SystemC model takes only slightly longer than
the compilation of this model. Furthermore, the extraction of the module hierarchy of
the model has a time complexity of O(n · log n), where n is the number of SystemC
objects used in the model.

To identify the information which must be extracted by a SystemC front-end a Sys-
temC metamodel is defined. This metamodel, which is described in UML, models the
module hierarchy of a SystemC model at the end of the elaboration phase. Currently,
no other detailed SystemC metamodel has been published.

The output of SHaBE is saved in an XML based format which describes the mod-
ule hierarchy and the behavior of a SystemC Model. This XML-based language is
called SCMDL and an XML Schema definition is provided which can be used for the
verification of SCMDL documents. Presently, there is no other XML format available
which can be used to describe the module hierarchy of a SystemC model as well as its
behavior.
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To implement SHaBE we have implemented a parser for the output messages of
the GDB/MI which only depends on standard C++ data structures and a GCC plug-
in which extracts the AST in SSA form from the source code of a function. These
components can be useful in the development of other tools.

SHaBE can be used as a front-end for future SystemC development tools which can
visualize, debug, statically verify, or synthesize the model. A designer can use this tool
in combination with the freely available SystemC framework provided by OSCI and the
freely available GNU compiler and debugger.

8.2 Improving SHaBE

When we look back on the development of SHaBE we suggest the following improve-
ments:

• When extracting the module hierarchy, the C++ names and C++ types of ports,
exports, channels, and submodules, which are declared inside an user-defined
module are retrieved. Other data members of such an user-defined module are
discarded. It will be an improvement if these data members would also be de-
scribed in the hierarchical part of the SCMDL document produced by SHaBE.
These data members can be used in the description of the behavior of the model.
The type of these data members can be retrieved by SHaBEPlugIn but it is much
simpler to do this in the first step of SHaBE because all data members of a user-
defined module are already inspected during this step, see Section 6.1.5.

• A member function which is registered as a SystemC process can call other user-
defined functions. At the moment these calls are included as call AST nodes
in the behavioral part of the SCMDL document produced by SHaBE. It will
be an improvement if SHaBEPlugIn would be recursively called for these user-
defined functions. This would make the ASTs which defines the behavior of these
functions available to the tools build upon our front-end.

• If the source codes of the member functions are divided among several source files,
GCC is called once for every source file, see Section 6.2.2, during the second step
of SHaBE. At the moment, GCC is called several times consecutively. Because
the files which are used to communicate between SHaBE and the GCC plug-in
SHaBEPlugIn are placed in an unique directory for each source file these calls to
GCC can be performed in parallel. This can significantly speed up the execution
time of SHaBE especially on multi-core machines. For example, to process the
model of the OSCI RISC CPU SHaBE spends more than 70% of its execution
time in the second step (executing GCC), see Table 7.2. The source code of the
OSCI RISC CPU model is distributed over more than ten files, so the second
step of SHaBE GCC can be parallelised. For example, if a speedup of 4 can
be achieved in the second step for this model, then the total speedup will be
1/(0.3 + 0.7/4) = 2.1.
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8.3 Future Work

A possible application which uses SHaBE as a front-end, would be a tool which converts
a SystemC model comprising a parameterized dynamic hierarchy into a SystemC model
with a fully expanded hierarchy. The resulting SystemC model can then be further
processed using existing tools.

Also, it would be interesting to investigate if the approach used in SHaBE can
also be applied to SystemC models which use the SystemC TLM and/or the SystemC
Analog/Mixed-signal (AMS) extensions.
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C/C++/SystemC Synthesis
Tools A
Because the CaS group is especially interested in the synthesis of SystemC models we
have also studied some C/C++/SystemC synthesis tools. In this appendix we briefly
describe some commercial and academic High-Level Synthesis (HLS) tools. In these
descriptions we focus on the way in which the input language is parsed and on the
IR used by the tool. We are hoping to find a tool with a well-defined intermediate
representation which we can use for the SystemC front-end that we want to develop.

A.1 Commercial Tools

There are quite a few commercial C/C++/SystemC synthesis tools available. A selec-
tion is given below.

Cascade from CriticalBlue is an automated co-processor synthesis solution. Using
the profiling results of the application the specific tasks to be migrated to the co-
processor are identified by the user. Cascade then generates the RTL code for the
co-processor hardware. It also generates the interface hardware necessary to connect
this co-processor with the CPU.

Catapult C Synthesis from Mentor Graphics takes an algorithm written in ANSI
C++ and a set of user directives as input and generates an RTL implementation. The
input specification is sequential and does not include any notion of time or explicit
parallelism. It does not specify the interface nor the architecture of the design. The
synthesizable subset of the SystemC integer and fixed-point data types are supported
by Catapult. It also generates the required verification infrastructure in SystemC.

The Nios II C-to-Hardware Acceleration Compiler (C2H) from Altera transforms
a function specified in C/C++ into a hardware accelerator which is mapped into the
memory map of the Nios softcore. Some implementation details are revealed in [2].
The Nios II C2H compiler extracts instruction-level parallelism from the C/C++ code
through construction and analysis of control and data flow graphs similar to those de-
scribed in [30]. A number of compiler optimizations are performed including pointer
analysis. The user can assist the compiler by using the ISO C99 restrict keyword which
specifies that writes through this pointer will not effect the values read through other
pointers available in the same context which are also declared as restricted. The sched-
uler is aware of the specific memory latencies and therefore Latency-aware scheduling
and pipelining are used. The execution of successive loop iterations is pipelined. Opera-
tions in control blocks are executed speculatively and multiplexed using their condition
expression at the merging of control paths if possible.

In the C2R compiler from Cebatech the hardware architecture is defined in the
untimed C source by coding the datapath and parallelism needed using compiler direc-
tives. The compiler generates an RTL implementation.
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C-to-Silicon Compiler from Cadence generates synthesizable RTL starting from an
untimed C/C++/SystemC model. Some implementation details are revealed in [20].
The IR is saved in the Behavior Structure Timing (BST) database.

CyberWorkBench (CWB) from NEC is a C-based behavioral synthesis tool. CWB
supports various C-based language including SystemC as an input description. The
SystemC code is parsed into CWB’s IR which is called tree-structured Control Flow
Graph (tCFG). This tCFG is transformed into a unique CDFG. According to [29] all
synthesis tasks are performed on those two data structures but we were not able to find
any details about these structures.

Cynthesizer from Forte Design Systems generates an RTL description from a high-
level SystemC TLM model. This model describes a pin-accurate and protocol-accurate
model of the design. The protocol is specified by SystemC port read, port write,
and wait statements. The behavioral SystemC code which specifies the computation
is written without wait statements and is scheduled by Cynthesizer to satisfy latency,
pipelining, and other constraints given by the designer.

The Impulse C software-to-hardware compiler can Compile C code into a processor-
attached accelerator.

PICO Algorithmic Synthesis from Synfora creates application accelerators from un-
timed C. PICO is intended for applications that process data streams. This application
is modeled as a Kahn process network [63], in which a set of sequential processes com-
municate via streams through unbounded FIFOs. PICO generates the RTL description
for the hardware and its related software. It also produces a SystemC TLM model of
the hardware at two levels of abstraction: an untimed programmer’s view and a timed
programmer’s view.

SystemCrafter (SC) is a SystemC synthesis tool for Xilinx FPGAs. Not all off
the OSCI SystemC synthesizable subset [88] is supported by SystemCrafter. For ex-
ample: input-output ports (sc_inout), fixed point data types, continue, and break

statements in loops, overloading, inheritance, and templates are not supported [104].

There is a lot of movement in the world of HLS tools. Take for example Handel-C,
a rich subset of C with non-standard extensions to control hardware instantiation and
parallelism which can easier be translated into RTL than standard C. It was originally
developed at the Oxford University and commercialized by a company called Celox-
ica around 2000. In 2006 Celoxica’s HLS business was acquired by Catalytic. Soon
thereafter, Celoxica and Catalytic merged into a new company called Agility. In 2009,
Mentor Graphics acquired Agility’s C synthesis assets.

In a recent article [74] Mentor Graphics is qualified as the leader in the C to RTL
SoC design market, and in the C to FPGA market. According to this article Forte
leads in the SystemC to RTL area for SoC design.

A more in depth description of some of these tools (Catapult, PICO, Cynthesizer,
AutoPilot, and CyberWorkBench) can be found in the book High-Level Synthesis -
From Algorithm to Digital Circuit [29].

We can conclude from our survey of commercial available C/C++/SystemC HLS
tools that most tools do not reveal their inner workings. This does not surprise us
because these inner workings are valuable business assets. The list of customers on
the website of the commercial EDG C++ front-end includes Mentor Graphics which

90



suggest that Catapult uses EDG as its front-end.

A.2 Academic Tools

HLS is a popular research topic in the academic world. Therefore many academic HLS
tools are available. A selection is given below.

A.2.1 CASH

Compiler for Application Specific Hardware (CASH) [18] is part of the Phoenix project
at Carnegie Mellon University. The Phoenix project explores the direct implementation
of programs in (reconfigurable) hardware. CASH translates ANSI-C programs into
asynchronous circuits. The CASH front-end translates the C code into a dataflow IR
called Pegasus. This IR is expressed in SSA [31] form and is described in detail in [19].
The C front-end is based on Stanford University Intermediate Format (SUIF) 1 [110].
See also Section A.2.5. CASH and Pegasus are extensively described in the Ph.D. thesis
of Mihai Budiu [17]. There seems to be no activity in the Phoenix project beyond June
2007. As far as we know, the CASH compiler is not publicly available.

A.2.2 Fossy

The tool called “Functional Oldenburg System Synthesizer” (Fossy) [97] is developed as
part of the “Analysis and Design of run-time Reconfigurable, heterogeneous Systems”
(ANDES) European project. Fossy is a tool for transforming system-level SystemC
models to synthesizable VHDL. It is written in the pure functional programming lan-
guage Haskell [62]. The commercial EDG C++ front-end parser is used and augmented
with a thin layer converting the front-end specific IR to XML. Fossy is currently freely
available for evaluation purposes in the form of an online tool. A SystemC module
description can be entered in an HTML form and the resulting VHDL RTL description
is returned by email. The Fossy source code is not publicly available.

A.2.3 GAUT

Universit de Bretagne Sud has developed GAUT [28] an HLS tool dedicated to digital
signal processing applications. Starting from a C function, GAUT generates an RTL
description in VHDL. It also generates a SystemC cycle-accurate simulation model
for simulation-based validation. The compiler of GAUT derives GCC 4.2 to extract
a Data Flow Graph (DFG) representation of the application. The GCC GIMPLE
form [78] is translated into the GAUT IR. The DFG generated by the GAUT compiler
can be visualized in the GAUT IDE. From this IR GAUT generates a potentially
pipelined architecture. This architecture consists of a processing, a memory, and a
communication unit.
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A.2.4 NISC

The No-Instruction-Set-Computer (NISC) [37] is developed at the University of Cali-
fornia, Irvine. It can be used as a C to RTL HLS tool. NISC can be evaluated online.
First the design constraints must be specified. Then the C code can be paste into an
HTML form and finally the output files including an RTL Verilog implementation can
be downloaded. NISC can also be user to generate a control unit to execute the C code
on a given datapath. This datapath can be defines using Generic Netlist Representa-
tion (GNR) [44] an XML format defined by the NISC developers to describe the target
architecture. The NISC source code is not publicly available. The release notes of the
latest release at the time of this writing say:

“You can use the NiscToolset to synthesize other languages such as SystemC
all you need to do is to generate the CDFG of the application in XML format
for the NiscCompiler. The format is very straight forward and you can use
the Msil2Nisc as guideline example.”

This last advise is difficult to follow because the source code for the Msil2Nisc program
is not available. The development of the C front-end for NISC was the subject of a
master’s thesis [71]. The front-end is implemented as an additional pass inside the
GCC compiler version 4.3.0. This additional pass converts GCC’s GIMPLE IR [78] to
XML files. The XML files are read as input by the NISC compiler for its compilation
process.

A.2.5 ROCCC

The Riverside Optimizing Configurable Computing Compiler (ROCCC) [48] is an open-
source C-to-VHDL compiler infrastructure tool. Using profiling techniques ROCCC
identifies the frequently executing code kernels in a given application. ROCCC then
compiles these kernels to HDL code which is synthesized using commercial tools. The
ROCCC system is built using SUIF 2 [110] and Machine-SUIF [57] platforms. Within
the SUIF compiler infrastructure several C++ libraries are available to manage and
analyze CFGs [56][55] and DFGs [54] and there is also a library available to convert a
DFG into SSA form [53].

A.2.6 sc2v

SystemC to Verilog (sc2v) [22] is an open-source tool which translates SystemC RTL
code into Verilog RTL code. The SystemC front-end was build using the well known lex
[70] and yacc [61] parsing tools. It performs a relatively simple one-to-one translation
and the supported SystemC subset is very small.

A.2.7 SPARK

SPARK is a C to VHDL HLS tool developed at the University of California, San
Diego (UCSD). The IR format used by SPARK is described in detail in [49]. SPARK
uses a CFG, a DFG, and a Hierarchical Task Graph (HTG). The HTG captures the
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program structure in the input description. The nodes of these three graphs are in-
terconnected and together form a 3-layered graph. These graphs can be visualized by
using command-line options. When these command line options are used SPARK will
produce output files in the DOT language. These files can be visualized using the
Graph Visualization Software (Graphviz) [40] an open-source tool initiated by AT&T
Research Labs. SPARK uses the commercial EDG C/C++ front end. The most recent
version of SPARK available for download at the time of this writing is build almost 5
years ago. Around that same time Wang [108] investigated SPARK and she reported:

“By doing several tests, we found out SPARK cannot support array access
and SPARK cannot support while loop statement. The adder component
and multiplier component generated automatically by SPARK are not cor-
rect; they have value out of range problem. There are code errors in the
VHDL code generated by SPARK. The dataflow is not correct. In summary,
SPARK is a lab tool.”

A.2.8 xPilot

xPilot [23] is developed at the University of California, Los Angeles (UCLA). It can
synthesize a behavioral SystemC model into an RTL implementation given the design
constraints. The SystemC front-end is developed using the LLVM compiler infrastruc-
ture [69]. LLVM is a compiler infrastructure and a virtual instruction set [68]. The
virtual instruction set is a low-level code representation that provides rich type and
dataflow information. The DFG is in SSA form [31]. The LLVM compiler infrastruc-
ture includes a GCC-based C and C++ front-end. The IR representation produced
by LLVM is converted by xPilot into a System-level Synthesis Data Model (SSDM).
The SSDM consists of processes which describe the behavior of the SystemC modules
and channels which describe the connections between the processes. The behavior of
each process is captured in a CDFG. The xPilot system is being licensed by AutoESL
Design Technologies, Inc. as the basis for a commercial Electronic System-Level (ESL)
synthesis tool called AutoPilot.

A.3 Conclusions Drawn from the Survey of C/C++/SystemC
Synthesis Tools

From our survey of C/C++/SystemC Synthesis Tools there are several conclusions
that can be drawn. As far as we can determine all of these tools use a parser to
extract the behavioral information from the C/C++/SystemC model. Some use the
commercial EDG C/C++ front-end. Even two academic tools SPARK and Fossy are
using this commercial front-end. Other academic front-ends use yacc (sc2v) or the
compiler infrastructure LLVM (xPilot) or the SUIF compiler infrastructure (ROCCC
and CASH). One academic tool (NISC) uses GCC (version 4) as a front-end.

We can also conclude that no standard IR is available. Most tools use some kind of
AST in SSA form. If we want to connect our SystemC front-end to an RTL generating
back-end we must design our IR in such a way that it can easily be converted to the
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IR used in the back-end of our choice. The ROCCC and GAUT back-ends are the best
candidates at the moment because these tools are actively being developed and both
have a documented IR.
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SystemC Metamodel B
The SystemC metamodel which models a SystemC model at the end of the elaboration
phase is described in Section 4.4.1. Some detailed diagrams are shown in this Appendix.

The primitive channel sc_signal and its derivatives are the only channels which
are included in the synthesizable subset of SystemC. These channels are shown in Fig-
ure B.1. An sc_signal<T> is derived from the interface class sc_signal_inout_if<T>
which is shown in Figure B.2.

T:class

sc signal

+read():const T&

+write(:const T&):void

+default_event():const sc_event&

+value_changed_event():const sc_event&

sc signal<bool>

+read():const bool &

+write(:const bool &):void

+default_event():const sc_event&

+value_changed_event():const sc_event&

+posedge_event():const sc_event&

+negedge_event():const sc_event&

T:class

sc buffer

sc clock

-period:sc_time&

-duty_cycle:double

-start_time:sc_time&

-posedge_first:bool

sc signal resolved

sc signal<sc logic>

+read():const sc_logic&

+write(:const sc_logic&):void

+default_event():const sc_event&

+value_changed_event():const sc_event&

+posedge_event():const sc_event&

+negedge_event():const sc_event&

Figure B.1: The primitive channels which are defined in the synthesizable subset of SystemC.

An input port sc_in<T> requires to be bound to a channel which implements the
sc_signal_in_if<T> for example an sc_signal<T>, see Figure B.3. Similar diagrams
can be drawn for the other synthesizable ports.
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sc interface

+default_event():const sc_event&

T:class

sc signal in if

+read():const T&

+value_changed_event():const sc_event&

sc signal in if<bool>

+read():const bool &

+value_changed_event():const sc_event&

+posedge_event():const sc_event&

+negedge_event():const sc_event&

sc signal in if<sc logic>

+read():const sc_logic&

+value_changed_event():const sc_event&

+posedge_event():const sc_event&

+negedge_event():const sc_event&

T:class

sc signal write if

+write(:const T&):void

T:class

sc signal inout if sc signal inout if<bool> sc signal inout if<sc logic>

Figure B.2: The interfaces which are implemented by signals.

IF:class

N:int

POL:sc_port_policy

sc port

T:class

sc in

+read():const T&

+value_changed():sc_event_finder&

sc in<bool>

+read():const bool &

+value_changed():sc_event_finder&

+pos():sc_event_finder&

+neg():sc_event_finder&

sc in<sc logic>

+read():const sc_logic&

+value_changed():sc_event_finder&

+pos():sc_event_finder&

+neg():sc_event_finder&

sc in resolved
W:int

sc in rv

IF = sc_signal_in_if<T>

N = 1

POL = SC_ONE_OR_MORE_BOUND

Derived from

sc_in<sc_lv<W>

>

Figure B.3: The input ports which are defined in the SystemC standard.
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Information which has to be
Retrieved from a SystemC
Model C
The hierarchical information which has to be retrieved from a SystemC model at the
end of the elaboration phase is identified in Section 4.4.1 and listed in this Appendix.
The information items are sorted by priority. The priority values used are explained in
Chapter 4.
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Table C.1: The hierarchical information which must be retrieved from a SystemC model.

object information cardinality priority

sc object SystemC name 1 1
sc object SystemC type 1 1
sc object C++ name 0..1 1
module ports 0..* 1
module exports 0..* 1
module processes 0..* 1
module primitive channels 0..* 1
module submodules 0..* 1
hierarchy top-level primitive channels 0..* 1
hierarchy top-level modules 0..* 1
export bound to export 0..1 1
export bound to channel 0..1 1
port bound to ports 0..N 1
port bound to exports 0..N 1
port bound to channels 0..N 1
process sensitive to event from channels bound

to ports
0..* 1

process sensitive to event from channel bound to
exports

0..* 1

process sensitive to event from channels 0..* 1
process name of the member function which

describes the behavior
1 1

process source file of the member function which
describes the behavior

1 1

clocked thread process reset signal or reset port 0..1 1

sc object C++ type 1 2
clock period 1 2
clock duty cycle 1 2
clock start time 1 2
clock posedge first 1 2
process don’t initialize 1 2
clocked thread process reset active level 0..1 2

process subprocess 0..* 3
fifo size 1 3
semaphore value 1 3

sc object address 1 4
process address of the member function which

describes the behavior
1 4

thread process stack size 1 4
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SystemC Model Description
Language D
A SystemC model can be described in XML using the SCMDL. This XML format is
defined in the XML Schema shown below.

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"

xmlns : t a rge t="http://shabe.sourceforge.net/systemc-model"

targetNamespace="http://shabe.sourceforge.net/systemc-model"

elementFormDefault="qualified"

version="1.0">
<annotat ion>

<documentation xml:lang="en">
This XML Schema can be used to describes a SystemC model .
Author: Harry Broeders mailto:j . z . m . broeders@hhs . nl
Date: November 25 , 2010

</ documentation>
</ annotat ion>
<attr ibuteGroup name="object-identifier">

<a t t r i b u t e name="name" type="string" use="required"/>
<a t t r i b u t e name="systemc-name" type="string" use="required">

<annotat ion>
<documentation xml:lang="en">

This attribute stores the SystemC hierarchical name .
</ documentation>

</ annotat ion>
</ a t t r i b u t e>

</ attr ibuteGroup>
<complexType name="abstract-object-type" abs t r a c t="true">

<attr ibuteGroup r e f="target:object -identifier"/>
<a t t r i b u t e name="type" type="string" use="required"/>
<a t t r i b u t e name="address" type="string" use="required"/>

</complexType>
<complexType name="primitive -channel-type">

<complexContent>
<extens i on base="target:abstract -object-type">

<a t t r i b u t e name="systemc-type" use="required">
<simpleType>

< r e s t r i c t i o n base="string">
<enumeration value="sc_prim_channel"/>
<enumeration value="sc_buffer"/>
<enumeration value="sc_clock"/>
<enumeration value="sc_signal"/>
<enumeration value="sc_signal_resolved"/>
<enumeration value="sc_signal_rv"/>
<enumeration value="sc_fifo"/>
<enumeration value="sc_mutex"/>

99



<enumeration value="sc_semaphore"/>
</ r e s t r i c t i o n>

</ simpleType>
</ a t t r i b u t e>

</ extens i on>
</complexContent>

</complexType>
<complexType name="to-type" abs t r a c t="true">

<a t t r i b u t e name="to" use="required">
<simpleType>

< r e s t r i c t i o n base="string">
<enumeration value="primitive -channel"/>
<enumeration value="port"/>
<enumeration value="hierarchical -channel"/>

</ r e s t r i c t i o n>
</ simpleType>

</ a t t r i b u t e>
<attr ibuteGroup r e f="target:object -identifier"/>

</complexType>
<complexType name="bound-to-type">

<complexContent>
<extens i on base="target:to -type">
</ extens i on>

</complexContent>
</complexType>
<complexType name="sensitive -to-type">

<complexContent>
<extens i on base="target:to -type">

<a t t r i b u t e name="event">
<simpleType>

< r e s t r i c t i o n base="string">
<enumeration value="UNKNOWN"/>
<enumeration value="default"/>
<enumeration value="any-change-of-value"/>
<enumeration value="positive-edge"/>
<enumeration value="negative-edge"/>

</ r e s t r i c t i o n>
</ simpleType>

</ a t t r i b u t e>
</ extens i on>

</complexContent>
</complexType>
<complexType name="port-type">

<complexContent>
<extens i on base="target:abstract -object-type">

<sequence>
<element name="bound-to" type="target:bound -to-type" minOccurs=

"0" maxOccurs="unbounded"/>
</ sequence>
<a t t r i b u t e name="systemc-type" use="required">

<simpleType>
< r e s t r i c t i o n base="string">

<enumeration value="sc_port"/>
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<enumeration value="sc_in"/>
<enumeration value="sc_out"/>
<enumeration value="sc_inout"/>
<enumeration value="sc_in_resolved"/>
<enumeration value="sc_out_resolved"/>
<enumeration value="sc_inout_resolved"/>
<enumeration value="sc_in_rv"/>
<enumeration value="sc_out_rv"/>
<enumeration value="sc_inout_rv"/>
<enumeration value="sc_fifo_in"/>
<enumeration value="sc_fifo_out"/>

</ r e s t r i c t i o n>
</ simpleType>

</ a t t r i b u t e>
</ extens i on>

</complexContent>
</complexType>
<complexType name="export-type">

<complexContent>
<extens i on base="target:abstract -object-type">

<sequence>
<element name="bound-to" type="target:bound -to-type" minOccurs=

"0"/>
</ sequence>
<a t t r i b u t e name="systemc-type" use="required" type="string" f i x e d

="sc_export"/>
</ extens i on>

</complexContent>
</complexType>
<complexType name="process-type">

<complexContent>
<extens i on base="target:abstract -object-type">

<sequence>
<element name="sensitive -to" type="target:sensitive -to-type"

minOccurs="0" maxOccurs="unbounded"/>
<element name="reset-to" minOccurs="0">

<complexType>
<a t t r i b u t e name="to" use="required">

<simpleType>
< r e s t r i c t i o n base="string">

<enumeration value="primitive -channel"/>
<enumeration value="port"/>

</ r e s t r i c t i o n>
</ simpleType>

</ a t t r i b u t e>
<a t t r i b u t e name="active-level" use="required">

<simpleType>
< r e s t r i c t i o n base="string">

<enumeration value="high"/>
<enumeration value="low"/>

</ r e s t r i c t i o n>
</ simpleType>

</ a t t r i b u t e>
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<attr ibuteGroup r e f="target:object -identifier"/>
</complexType>

</ element>
</ sequence>
<a t t r i b u t e name="systemc-type" use="required">

<simpleType>
< r e s t r i c t i o n base="string">

<enumeration value="sc_method"/>
<enumeration value="sc_thread"/>
<enumeration value="sc_cthread"/>

</ r e s t r i c t i o n>
</ simpleType>

</ a t t r i b u t e>
<a t t r i b u t e name="function" type="string" use="required"/>

</ extens i on>
</complexContent>

</complexType>
<complexType name="module-type">

<complexContent>
<extens i on base="target:abstract -object-type">

<sequence>
<element name="port" type="target:port -type" minOccurs="0"

maxOccurs="unbounded"/>
<element name="export" type="target:export -type" minOccurs="0"

maxOccurs="unbounded"/>
<element name="process" type="target:process -type" minOccurs="0

" maxOccurs="unbounded"/>
<element name="primitive -channel" type="target:primitive -

channel-type" minOccurs="0" maxOccurs="unbounded"/>
<element name="module" type="target:module -type" minOccurs="0"

maxOccurs="unbounded"/>
</ sequence>
<a t t r i b u t e name="systemc-type" use="required" type="string" f i x e d

="sc_module"/>
</ extens i on>

</complexContent>
</complexType>
<complexType name="real-constant-node-type">

<a t t r i b u t e name="value" type="string" use="required"/>
<a t t r i b u t e name="precision" type="positiveInteger" use="required"/>
<a t t r i b u t e name="is-signed" type="boolean" use="required"/>

</complexType>
<complexType name="integer-constant-node-type">

<a t t r i b u t e name="value" type="decimal" use="required"/>
<a t t r i b u t e name="precision" type="positiveInteger" use="required"/>
<a t t r i b u t e name="is-signed" type="boolean" use="required"/>

</complexType>
<complexType name="variable-node-type">

<sequence minOccurs="0">
<cho i c e>

< ! -- only needed for array-element -->
<element name="integer-constant" type="target:integer -constant-

node-type"/>
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< ! -- only needed for array-element or for phi -->
<element name="variable" type="target:variable -node-type"

maxOccurs="unbounded"/>
</ cho i c e>

</ sequence>
<a t t r i b u t e name="name" type="string" use="required"/>
<a t t r i b u t e name="type">

<simpleType>
< r e s t r i c t i o n base="string">

<enumeration value="data-member"/>
<enumeration value="ssa-name"/>
<enumeration value="local"/>
<enumeration value="temporally"/>
<enumeration value="phi"/>
<enumeration value="array-element"/>

</ r e s t r i c t i o n>
</ simpleType>

</ a t t r i b u t e>
</complexType>
<group name="operand">

<cho i c e>
<element name="variable" type="target:variable -node-type"/>
<element name="real-constant" type="target:real -constant-node-type"

/>
<element name="integer-constant" type="target:integer -constant-node

-type"/>
</ cho i c e>

</group>
<complexType name="unary-expression -node-type">

<sequence>
<group r e f="target:operand"></group>

</ sequence>
<a t t r i b u t e name="type" use="required">

<simpleType>
< r e s t r i c t i o n base="string">

<enumeration value="real-to-fix-trunc"/>
<enumeration value="integer-to-real"/>
<enumeration value="negate"/>
<enumeration value="abs"/>
<enumeration value="bit-not"/>
<enumeration value="truth-not"/>
<enumeration value="paren"/>
<enumeration value="convert"/>
<enumeration value="addr-space-convert"/>
<enumeration value="fixed-convert"/>
<enumeration value="nop"/>
<enumeration value="non-lvalue"/>
<enumeration value="view-convert"/>
<enumeration value="compound-literal"/>
<enumeration value="save"/>
<enumeration value="addr"/>
<enumeration value="conj"/>
<enumeration value="va-arg"/>
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</ r e s t r i c t i o n>
</ simpleType>

</ a t t r i b u t e>
</complexType>
<complexType name="binary-expression -node-type">

<sequence>
<group r e f="target:operand"></group>
<group r e f="target:operand"></group>

</ sequence>
<a t t r i b u t e name="type" use="required">

<simpleType>
< r e s t r i c t i o n base="string">

<enumeration value="plus"/>
<enumeration value="minus"/>
<enumeration value="mult"/>
<enumeration value="pointer-plus"/>
<enumeration value="trunc-div"/>
<enumeration value="ceil-div"/>
<enumeration value="floor-div"/>
<enumeration value="round-div"/>
<enumeration value="trunc-mod"/>
<enumeration value="ceil-mod"/>
<enumeration value="floor-mod"/>
<enumeration value="round-mod"/>
<enumeration value="rdiv"/>
<enumeration value="exact_div"/>
<enumeration value="min"/>
<enumeration value="max"/>
<enumeration value="lshift"/>
<enumeration value="rshift"/>
<enumeration value="lrotate"/>
<enumeration value="rrotate"/>
<enumeration value="bit-ior"/>
<enumeration value="bit-xor"/>
<enumeration value="bit-and"/>
<enumeration value="less-than"/>
<enumeration value="less-than-or-equal"/>
<enumeration value="greater-than"/>
<enumeration value="greater-than-or-equal"/>
<enumeration value="equal"/>
<enumeration value="not-equal"/>
<enumeration value="truth-andif"/>
<enumeration value="truth-orif"/>
<enumeration value="truth-and"/>
<enumeration value="truth-or"/>
<enumeration value="truth-xor"/>
<enumeration value="unordered"/>
<enumeration value="ordered"/>
<enumeration value="unordered -less-than"/>
<enumeration value="unordered -less-than-or-equal"/>
<enumeration value="unordered -greater-than"/>
<enumeration value="unordered -greater-than-or-equal"/>
<enumeration value="unordered -equal"/>
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<enumeration value="less-than-greater-than"/>
<enumeration value="range"/>
<enumeration value="fdesc"/>
<enumeration value="complex"/>
<enumeration value="predecrement"/>
<enumeration value="preincrement"/>
<enumeration value="postdecrement"/>
<enumeration value="postincrement"/>

</ r e s t r i c t i o n>
</ simpleType>

</ a t t r i b u t e>
</complexType>
<complexType name="port-node-type">

<sequence>
<element name="variable" type="target:variable -node-type"/>

</ sequence>
</complexType>
<complexType name="target-node-type">

<sequence>
<element name="variable" type="target:variable -node-type"/>

</ sequence>
</complexType>
<complexType name="source-node-type">

<sequence>
<cho i c e>

<group r e f="target:operand"></group>
<cho i c e>

<element name="unary-expression" type="target:unary -expression -

node-type"/>
<element name="binary-expression" type="target:binary -

expression -node-type"/>
</ cho i c e>

</ cho i c e>
</ sequence>

</complexType>
<complexType name="function-type">

<sequence minOccurs="0" maxOccurs="unbounded">
<cho i c e maxOccurs="unbounded">

<element name="basic-block">
<complexType>

<sequence minOccurs="0" maxOccurs="unbounded">
<cho i c e>

<element name="wait">
<complexType>

<a t t r i b u t e name="cycles" type="nonNegativeInteger"

use="required"/>
</complexType>

</ element>
<element name="read">

<complexType>
<sequence>

<element name="target" type="target:target -node-

type"/>
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<element name="port" type="target:port -node-type"/>
</ sequence>

</complexType>
</ element>
<element name="write">

<complexType>
<sequence>

<element name="port" type="target:port -node-type"/>
<element name="source" type="target:source -node-

type"/>
</ sequence>

</complexType>
</ element>
<element name="assign">

<complexType>
<sequence>

<element name="target" type="target:target -node-

type"/>
<element name="source" type="target:source -node-

type"/>
</ sequence>

</complexType>
</ element>

</ cho i c e>
</ sequence>
<a t t r i b u t e name="identifier" type="string" use="required"/>

</complexType>
</ element>
<element name="unknown">

<complexType>
<a t t r i b u t e name="type" type="string" use="required"/>

</complexType>
</ element>
<element name="edge">

<complexType>
<a t t r i b u t e name="source" type="string" use="required"/>
<a t t r i b u t e name="destination" type="string" use="required"/>
<a t t r i b u t e name="condition" type="string"/>
<a t t r i b u t e name="value" type="boolean"/>

</complexType>
</ element>
<element name="condition">

<complexType>
<a t t r i b u t e name="type" use="required">

<simpleType>
< r e s t r i c t i o n base="string">

<enumeration value="less-than"/>
<enumeration value="less-than-or-equal"/>
<enumeration value="greater-than"/>
<enumeration value="greater-than-or-equal"/>
<enumeration value="equal"/>
<enumeration value="not-equal"/>

</ r e s t r i c t i o n>
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</ simpleType>
</ a t t r i b u t e>
<a t t r i b u t e name="identifier" type="string" use="required"/>

</complexType>
</ element>

</ cho i c e>
</ sequence>
<a t t r i b u t e name="name" type="string" use="required"/>

</complexType>
<complexType name="hierarchy -type">

<sequence>
<element name="primitive -channel" type="target:primitive -channel-

type" minOccurs="0" maxOccurs="unbounded"/>
<element name="module" type="target:module -type" minOccurs="0"

maxOccurs="unbounded"/>
</ sequence>

</complexType>
<complexType name="behavior-type">

<sequence>
<element name="function" type="target:function -type" minOccurs="0"

maxOccurs="unbounded"/>
</ sequence>

</complexType>
<element name="systemc-model">

<complexType>
<sequence>

<element name="hierarchy" type="target:hierarchy -type"/>
<element name="behavior" type="target:behavior -type"/>

</ sequence>
<a t t r i b u t e name="name" use="required"/>

</complexType>
</ element>

</schema>
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Resource Directory for SCMDL E
A Resource Directory Description Language (RDDL) document, which
is called a resource directory, is used to describe the XML namespace
http://shabe.sourceforge.net/systemc-model and refers to the XML Schema for
the SCMDL. This RDDL document can be found at http://shabe.sourceforge.

net/systemc-model and is shown below.

< ! DOCTYPE html PUBLIC "-//XML-DEV//DTD XHTML RDDL 1.0//EN"

"http://www.rddl.org/rddl-xhtml.dtd">
<html xmlns="http://www.w3.org/1999/xhtml"

xmlns :x l ink="http://www.w3.org/1999/xlink"

xmlns : rdd l="http://www.rddl.org/">
<head>

< t i t l e>
Resource Directory Description Language ( RDDL ) Document

for SystemC Model Description Language ( SCMDL )
</ t i t l e>

</head>
<body>

<h1>
Resource Directory Description Language ( RDDL ) Document

for SystemC Model Description Language ( SCMDL ) .
</h1>
<p>

This document describes an XML format to describe SystemC Models .
</p>
<r d d l : r e s o u r c e

x l i n k : r o l e="http://www.w3.org/2000/10/XMLSchema"

x l i n k : a r c r o l e="http://www.rddl.org/purposes#schema-validation"

x l i n k : h r e f="http://shabe.sourceforge.net/systemc-model/systemc-

model.xsd"

x l i n k : t i t l e="The SystemC Model Description Language">
<p>

The XML Schema for SCMDL documents is <a h r e f="systemc-model.xsd"

> available from here</a> .
The documentation for this schema can be found <a h r e f="systemc-

model.html">here</a> .
</p>

</ r d d l : r e s o u r c e>
<hr />
Copyright 2010 <a h r e f="http://bd.eduweb.hhs.nl/">Harry Broeders</a><

br />
Last Modified November 25 , 2010

</body>
</html>
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Test Cases F
A selection of test cases is presented in Chapter 5. Some other test cases are presented
in this appendix and all others can be found at http://shabe.sourceforge.net/

test_programs.
A useful implementation for a static array of ports is given in Figure F.1: a generic

N : 1 multiplexer. The data type of the signals which must be multiplexed and the
number of inputs (N) are declared as template parameters of this module. The number
of bits needed for the select input is calculated at compile time by using the function
Log2 which is not shown here. This function is implemented using a technique called
template metaprogramming [1] and calculates dlog2Ne.

template <typename T , size_t N>
SC_MODULE ( Mux ) {

sc_in<T> in [ N ] ;
sc_in<sc_uint<Log2<N> : : result> > select ;
sc_out<T> out ;
SC_CTOR ( Mux ) {

SC_METHOD ( run ) ;
for ( size_t i (0 ) ; i<N ; ++i )

sensitive << in [ i ] ;
sensitive << select ;

}
private :

void run ( ) {
out . write (

select . read ( )<N ?
in [ select . read ( ) ] . read ( ) :
in [ N−1] . read ( )

) ;
}

} ;

Figure F.1: A generic N : 1 multiplexer.

Figure F.2 shows how this generic multiplexer can be used to instantiate a 3 : 1
multiplexer for ints. The expected output in SCMDL for this instantiation is also
shown.

It is also possible to create ports in the base classes of a module. This can be a
useful coding idiom. Figure F.3 shows a test case in which a module ResetableDff

is derived from a base module SynchronousModule and from a mixin class ResetPin.
Both base classes declare a port which is inherited by the ResettableDFF class. Using
the base module SynchronousModule as a base class for all synchronous modules in a

111

http://shabe.sourceforge.net/test_programs
http://shabe.sourceforge.net/test_programs


Mux<int , 3> mux ("mux" ) ;

<module name="mux" type="Mux&lt;int, 3ul&gt;" systemc−name="mux"

systemc−type="sc_module">
<port name="in[0]" type="sc_core::sc_in&lt;int&gt;" systemc−

name="mux.port_0" systemc−type="sc_in" />
<port name="in[1]" type="sc_core::sc_in&lt;int&gt;" systemc−

name="mux.port_1" systemc−type="sc_in" />
<port name="in[2]" type="sc_core::sc_in&lt;int&gt;" systemc−

name="mux.port_2" systemc−type="sc_in" />
<port name="select" type="sc_core::sc_in&lt;sc_dt::sc_uint&lt

;2&gt; &gt;" systemc−name="mux.port_3" systemc−type="sc_in

" />
<port name="out" type="sc_core::sc_out&lt;int&gt;" systemc−

name="mux.port_4" systemc−type="sc_out" />
<proce s s name="run" type="Mux&lt;int, 3ul&gt;::run()" systemc

−name="mux.run" systemc−type="sc_method" f unc t i on="

Mux::run">
<s e n s i t i v e−to to="port" name="in[0]" systemc−name="mux.

port_0" event="default" />
<s e n s i t i v e−to to="port" name="in[1]" systemc−name="mux.

port_1" event="default" />
<s e n s i t i v e−to to="port" name="in[2]" systemc−name="mux.

port_2" event="default" />
<s e n s i t i v e−to to="port" name="select" systemc−name="mux.

port_3" event="default" />
</ proce s s>

</module>

Figure F.2: A submodule can be created and stored in a base module.

system has the advantage that the code which declares the clock input, the process,
and its sensitivity only has to be declared once. If we want the system to be clocked
on the negative edge instead of the positive edge of the clock then we only have to
change a single line of code. Using the mixin base class ResetPin as a base class for all
resettable modules in a system has the advantage that the code which declares the reset
input only has to be declared once. If we want the reset input to be a sc_login input
instead of a bool input then we only have to change a single line of code. Multiple
inheritance from the classes derived sc_object is not permitted in SystemC [58] p. 93.
Therefore we must declare the mixin class as a separate class which does not inherits
from sc_module.

The UML diagram, Figure F.4, shows the classes declared in Figure F.3 and their
inheritance relationships.

Figure F.5 an instantiation of a ResetableDff. The expected output in SCMDL
for this instantiation is also shown.
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SC_MODULE ( SynchronousModule ) {
sc_in_clk clk ;
SC_CTOR ( SynchronousModule ) {

SC_CTHREAD (run , clk . pos ( ) ) ;
}

private :
virtual void run ( ) = 0 ;

} ;
struct ResetPin {

sc_in<bool> reset ;
} ;
template <typename T>
struct ResettableDff : public SynchronousModule , public ResetPin {

sc_in<T> din ;
sc_out<T> dout ;
ResettableDff ( const sc_module_name& nm ) : SynchronousModule (nm ) {
}

private :
virtual void run ( ) ;

} ;

Figure F.3: A module which inherits ports from two different base classes.

Figure F.4: The UML diagram for the test case shown in Figure F.3.
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ResettableDff<int> r ("r" ) ;

<module name="r" type="ResettableDff&lt;int&gt;" systemc−name="r"

systemc−type="sc_module">
<port name="clk" type="sc_core::sc_in&lt;bool&gt;" systemc−

name="r.port_0" systemc−type="sc_in" />
<port name="reset" type="sc_core::sc_in&lt;bool&gt;" systemc−

name="r.port_1" systemc−type="sc_in" />
<port name="din" type="sc_core::sc_in&lt;int&gt;" systemc−

name="r.port_2" systemc−type="sc_in" />
<port name="dout" type="sc_core::sc_out&lt;int&gt;" systemc−

name="r.port_3" systemc−type="sc_out" />
<proce s s name="run" type="ResettableDff&lt;int&gt;::run()

" systemc−name="resettableDff.run" systemc−type="

sc_cthread" f unc t i on="ResettableDff::run">
<s e n s i t i v e−to to="port" name="clk" systemc−name="r.

port_0" event="positive-edge" />
</ proce s s>

</module>

Figure F.5: An instantiation of the module ResettableDff which is declared in Figure F.3.
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Parser for GDB/MI Output
Records G
The UML class diagram of the parser for GDB/MI output records is shown in Fig-
ure G.1. All private member functions and data members are hidden to prevent clutter.
The composite design pattern [39] is used to create ListOfResults which can contain
ListOfResults.

Figure G.1: The primitive channels which are defined in the synthesizable subset of SystemC.
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Transformation of SCMDL
documents using XSLT H
As an example, an eXtensible Stylesheet Language Transformations (XSLT) stylesheet
is written which can transform the hierarchical module structure described in SystemC
Model Description Language (SCMDL) into GraphML. The SCMDL document for the
FIR filter which is instantiated in Figure 2.7 can be produced by SHaBE. Using the
XSLT stylesheet presented below this SCMDL document can be transformed into an
GraphML document which can be viewed in the graph editor yEd1. This GraphML
document is shown in Figure H.1. We have used the Saxon XSLT processor2 to execute
the transformation.

<?xml version="1.0" encoding="UTF-8"?>
<x s l : s t y l e s h e e t version="2.0"

xmlns :x s l="http://www.w3.org/1999/XSL/Transform"

xmlns="http://graphml.graphdrawing.org/xmlns"

xmlns:y="http://www.yworks.com/xml/graphml">
<x s l : o u t p u t method="xml" indent="yes"/>
<x s l : s t r i p −space e lements="*"/>
<x s l : t e m p l a t e match="/">

<graphml xmlns :x s i="http://www.w3.org/2001/XMLSchema -instance"

xs i : s chemaLocat ion="http://graphml.graphdrawing.org/xmlns http:

//www.yworks.com/xml/schema/graphml/1.1/ygraphml.xsd">
<key f o r="node" id="d0" y f i l e s . type="nodegraphics"/>
<x s l : e l e m e n t xmlns:scm="http://shabe.sourceforge.net/systemc-model"

name="graph">
<x s l : a t t r i b u t e name="edgedefault">

<x s l : v a l u e−o f>undirected</ x s l : v a l u e−o f>
</ x s l : a t t r i b u t e>
<x s l : a t t r i b u t e name="id">

<xs l : copy−o f s e l e c t="/scm:systemc -model/@name"/>
</ x s l : a t t r i b u t e>
<xs l : app ly−templates s e l e c t="/scm:systemc -model/scm:hierarchy/

scm:module"/>
</ x s l : e l e m e n t>

</graphml>
</ x s l : t e m p l a t e>
<x s l : t e m p l a t e xmlns:scm="http://shabe.sourceforge.net/systemc-model"

match="scm:module">
<xs l :param name="basename"/>
<x s l : e l e m e n t name="node">

<x s l : v a r i a b l e name="id" s e l e c t="concat($basename, ’n’, position()

-1)"/>
<x s l : a t t r i b u t e name="id">

1http://www.yworks.com/en/products_yed_about.html
2http://saxon.sourceforge.net/
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<x s l : v a l u e−o f s e l e c t="$id"/>
</ x s l : a t t r i b u t e>
<data key="d0">

<y:ProxyAutoBoundsNode>
<y : R e a l i z e r s a c t i v e="0">

<y:GroupNode>
< x s l : i f t e s t="not(scm:module)">

< ! -- module is a leaf -->
<x s l : e l e m e n t name="y:Geometry">

<x s l : a t t r i b u t e name="height">
<x s l : v a l u e−o f>80</ x s l : v a l u e−o f>

</ x s l : a t t r i b u t e>
<x s l : a t t r i b u t e name="width">

<x s l : v a l u e−o f>100</ x s l : v a l u e−o f>
</ x s l : a t t r i b u t e>
<x s l : a t t r i b u t e name="x">

< ! -- pos must be a simple counter -->
<x s l : v a r i a b l e name="pos">

<xsl :number l e v e l="any"/>
</ x s l : v a r i a b l e>
< ! --<x s l : v a l u e−o f s e l e c t="$pos*200"/>-->
<x s l : v a l u e−o f s e l e c t="count(preceding::scm:module[not

(scm:module)])*200"/>
</ x s l : a t t r i b u t e>
<x s l : a t t r i b u t e name="y">

<x s l : v a l u e−o f>0</ x s l : v a l u e−o f>
</ x s l : a t t r i b u t e>

</ x s l : e l e m e n t>
</ x s l : i f>
<y : F i l l c o l o r="#F8ECC9" t ransparent="false"/>
<y:NodeLabel al ignment="right" autoS i z ePo l i cy="node_width"

backgroundColor="#404040" fontFamily="Dialog" f o n t S i z e="

16" f o n t S t y l e="plain" hasLineColor="false" modelName="

internal" modelPos i t ion="t" t extCo lor="#FFFFFF" v i s i b l e=
"true">

<x s l : v a l u e−o f s e l e c t="@name"/>
</ y:NodeLabel>
<y : S t a t e c l o s e d="false" innerGraphDisplayEnabled="false"/>

</y:GroupNode>
<y:GroupNode>

<y : F i l l c o l o r="#F8ECC9" t ransparent="false"/>
<y:NodeLabel al ignment="right" autoS i z ePo l i cy="node_width"

backgroundColor="#404040" fontFamily="Dialog" f o n t S i z e="

16" f o n t S t y l e="plain" hasLineColor="false" modelName="

internal" modelPos i t ion="t" t extCo lor="#FFFFFF" v i s i b l e=
"true">

<x s l : v a l u e−o f s e l e c t="@name"/>
</ y:NodeLabel>
<y : S t a t e c l o s e d="true" innerGraphDisplayEnabled="false"/>

</y:GroupNode>
</ y : R e a l i z e r s>

</y:ProxyAutoBoundsNode>
</ data>

118



<x s l : e l e m e n t name="graph">
<x s l : a t t r i b u t e name="edgedefault">

<x s l : v a l u e−o f>undirected</ x s l : v a l u e−o f>
</ x s l : a t t r i b u t e>
<x s l : a t t r i b u t e name="id">

<x s l : v a l u e−o f s e l e c t="concat($id, ’:’)"/>
</ x s l : a t t r i b u t e>
<xs l : app ly−templates s e l e c t="scm:module">

<xs l :w i th−param name="basename" s e l e c t="concat($id, ’::’)"/>
</ x s l : app ly−templates>

</ x s l : e l e m e n t>
</ x s l : e l e m e n t>

</ x s l : t e m p l a t e>
</ x s l : s t y l e s h e e t>

fir

*m[0]

*d[4]

*s[4]*d[3]*s[3]

*d[2]*s[2]*d[1]

*s[1]*d[0]*s[0]

*m[2]*m[1]

testBench

Figure H.1: The module hierarchy of the FIR filter which is instantiated in Figure 2.7 as
shown by yEd.
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An SCMDL document
produced by SHaBE. I
In this appendix a SystemC model of a simple FIR filter is shown and the SCMDL doc-
uments produced for this model is presented. The model, shown below, consists of the
module Test_FIR, the module FIR and the function sc_main. The module Test_FIR

models the test bench. It produces a sample and reads in the result on every negative
edge of the clock signal. The behavior of the test bench is described in an SC_THREAD

process. The member function behavior which is associated with this process can, for
example, generate an impulse or a step function and check the responses. The imple-
mentation of this function is not shown here to prevent clutter. The module FIR models
the FIR filter, the delay elements are implemented as sc_buffer member variables. In
the sc_main function a sc_clock instance of each module is created

#include <systemc>
using namespace sc_core ;

SC_MODULE ( Test_FIR ) {
sc_in_clk clk ;
sc_out<double> sample ;
sc_in<double> result ;
SC_CTOR ( Test_FIR ) {

SC_THREAD ( behavior ) ;
sensitive << clk . neg ( ) ;

}
private :

void behavior ( ) ;
} ;

SC_MODULE ( FIR ) {
sc_in_clk clk ;
sc_in<double> sample ;
sc_out<double> result ;
SC_CTOR ( FIR ) {

SC_METHOD ( behavior ) ;
sensitive << clk . neg ( ) ;

}
private :

sc_buffer<double> i1 , i2 , i3 , i4 , i5 ;
void behavior ( ) {

result . write (
−0.07556556070608 ∗ sample . read ( ) +
0.09129209297815 ∗ i1 . read ( ) +
0.47697917208036 ∗ i2 . read ( ) +
0.47697917208036 ∗ i3 . read ( ) +
0.09129209297815 ∗ i4 . read ( ) +
−0.07556556070608 ∗ i5 . read ( )
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) ;
i1 . write ( sample . read ( ) ) ;
i2 . write (i1 . read ( ) ) ;
i3 . write (i2 . read ( ) ) ;
i4 . write (i3 . read ( ) ) ;
i5 . write (i4 . read ( ) ) ;

}
} ;

int sc_main ( int argc , char ∗argv [ ] ) {
sc_clock clock ("clock" , 10 , SC_NS ) ;
sc_signal<double> sample ;
sc_signal<double> result ;

Test_FIR testBench ("testBench" ) ;
testBench . clk ( clock . signal ( ) ) ;
testBench . sample ( sample ) ;
testBench . result ( result ) ;

FIR fir ("fir" ) ;
fir . clk ( clock . signal ( ) ) ;
fir . sample ( sample ) ;
fir . result ( result ) ;

sc_start ( ) ;
return 0 ;

}

This SystemC program must be compiled and linked with the debug version of the
OSCI SystemC library version 2.2.0. If this executable is called fir_example1 then
the hierarchical and behavioral information from the model can be extracted by using
the command shabe fir_example1. The SCMDL document produced by SHaBE is
shown below.

<?xml version="1.0" encoding="UTF-8" ?>
<systemc−model xmlns="http://shabe.sourceforge.net/systemc-model"

xmlns :x s i="http://www.w3.org/2001/XMLSchema -instance"

xs i : s chemaLocat ion="http://shabe.sourceforge.net/systemc-model http://

shabe.sourceforge.net/systemc-model/systemc-model.xsd" name="fir_2">
<h i e ra r chy>

<pr imi t ive−channel name="clock" type="sc_core::sc_clock" systemc−name
="clock" systemc−type="sc_clock" address="0x7fffffffde70" />

<pr imi t ive−channel name="sample" type="sc_core::sc_signal&lt;double&

gt;" systemc−name="signal_0" systemc−type="sc_signal" address="0

x7fffffffe0a0" />
<pr imi t ive−channel name="result" type="sc_core::sc_signal&lt;double&

gt;" systemc−name="signal_1" systemc−type="sc_signal" address="0

x7fffffffe020" />
<module name="testBench" type="Test_FIR" systemc−name="testBench"

systemc−type="sc_module" address="0x7fffffffdc80">
<port name="clk" type="sc_core::sc_in&lt;bool&gt;" systemc−name="

testBench.port_0" systemc−type="sc_in" address="0x7fffffffdd38">

122



<bound−to to="primitive -channel" name="clock" systemc−name="clock

" />
</ port>
<port name="sample" type="sc_core::sc_out&lt;double&gt;" systemc−

name="testBench.port_1" systemc−type="sc_out" address="0

x7fffffffdda8">
<bound−to to="primitive -channel" name="sample" systemc−name="

signal_0" />
</ port>
<port name="result" type="sc_core::sc_in&lt;double&gt;" systemc−

name="testBench.port_2" systemc−type="sc_in" address="0

x7fffffffde10">
<bound−to to="primitive -channel" name="result" systemc−name="

signal_1" />
</ port>
<proce s s name="behavior" type="Test_FIR::behavior()" systemc−name="

testBench.behavior" systemc−type="sc_thread" address="0x706950"

f unc t i on="Test_FIR::behavior">
<s e n s i t i v e−to to="port" name="clk" systemc−name="testBench.port_0

" event="negative-edge" />
</ proce s s>

</module>
<module name="fir" type="FIR" systemc−name="fir" systemc−type="

sc_module" address="0x7fffffffd830">
<port name="clk" type="sc_core::sc_in&lt;bool&gt;" systemc−name="

fir.port_0" systemc−type="sc_in" address="0x7fffffffd8e8">
<bound−to to="primitive -channel" name="clock" systemc−name="clock

" />
</ port>
<port name="sample" type="sc_core::sc_in&lt;double&gt;" systemc−

name="fir.port_1" systemc−type="sc_in" address="0x7fffffffd958">
<bound−to to="primitive -channel" name="sample" systemc−name="

signal_0" />
</ port>
<port name="result" type="sc_core::sc_out&lt;double&gt;" systemc−

name="fir.port_2" systemc−type="sc_out" address="0x7fffffffd9b8"

>
<bound−to to="primitive -channel" name="result" systemc−name="

signal_1" />
</ port>
<proce s s name="behavior" type="FIR::behavior()" systemc−name="fir.

behavior" systemc−type="sc_method" address="0x709160" f unc t i on="

FIR::behavior">
<s e n s i t i v e−to to="port" name="clk" systemc−name="fir.port_0"

event="negative-edge" />
</ proce s s>
<pr imi t ive−channel name="i1" type="sc_core::sc_buffer&lt;double&gt;

" systemc−name="fir.buffer_0" systemc−type="sc_buffer" address="

0x7fffffffda20" />
<pr imi t ive−channel name="i2" type="sc_core::sc_buffer&lt;double&gt;

" systemc−name="fir.buffer_1" systemc−type="sc_buffer" address="

0x7fffffffda98" />
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<pr imi t ive−channel name="i3" type="sc_core::sc_buffer&lt;double&gt;

" systemc−name="fir.buffer_2" systemc−type="sc_buffer" address="

0x7fffffffdb10" />
<pr imi t ive−channel name="i4" type="sc_core::sc_buffer&lt;double&gt;

" systemc−name="fir.buffer_3" systemc−type="sc_buffer" address="

0x7fffffffdb88" />
<pr imi t ive−channel name="i5" type="sc_core::sc_buffer&lt;double&gt;

" systemc−name="fir.buffer_4" systemc−type="sc_buffer" address="

0x7fffffffdc00" />
</module>

</ h i e ra r chy>
<behavior>

<f unc t i on name="FIR::behavior">
<bas ic−block i d e n t i f i e r="0x7f710ae43680">

<read>
<t a r g e t>

<v a r i a b l e type="ssa-name" name="3" />
</ t a r g e t>
<port>

<v a r i a b l e type="data-member" name="sample" />
</ port>

</ read>
<a s s i g n>

<t a r g e t>
<v a r i a b l e type="ssa-name" name="6" />

</ t a r g e t>
<source>

<binary−exp r e s s i on type="mult">
<v a r i a b l e type="ssa-name" name="3" />
<r ea l−constant value=" -7.556556070608e-2" p r e c i s i o n="64" i s

−s igned="true" />
</ binary−exp r e s s i on>

</ source>
</ a s s i g n>
<read>

<t a r g e t>
<v a r i a b l e type="ssa-name" name="8" />

</ t a r g e t>
<port>

<v a r i a b l e type="data-member" name="i1" />
</ port>

</ read>
<a s s i g n>

<t a r g e t>
<v a r i a b l e type="ssa-name" name="10" />

</ t a r g e t>
<source>

<binary−exp r e s s i on type="mult">
<v a r i a b l e type="ssa-name" name="8" />
<r ea l−constant value="9.129209297815e-2" p r e c i s i o n="64" i s−

s igned="true" />
</ binary−exp r e s s i on>

</ source>
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</ a s s i g n>
<a s s i g n>

<t a r g e t>
<v a r i a b l e type="ssa-name" name="11" />

</ t a r g e t>
<source>

<binary−exp r e s s i on type="plus">
<v a r i a b l e type="ssa-name" name="6" />
<v a r i a b l e type="ssa-name" name="10" />

</ binary−exp r e s s i on>
</ source>

</ a s s i g n>
<read>

<t a r g e t>
<v a r i a b l e type="ssa-name" name="13" />

</ t a r g e t>
<port>

<v a r i a b l e type="data-member" name="i2" />
</ port>

</ read>
<a s s i g n>

<t a r g e t>
<v a r i a b l e type="ssa-name" name="15" />

</ t a r g e t>
<source>

<binary−exp r e s s i on type="mult">
<v a r i a b l e type="ssa-name" name="13" />
<r ea l−constant value="4.7697917208036e-1" p r e c i s i o n="64" i s

−s igned="true" />
</ binary−exp r e s s i on>

</ source>
</ a s s i g n>
<a s s i g n>

<t a r g e t>
<v a r i a b l e type="ssa-name" name="16" />

</ t a r g e t>
<source>

<binary−exp r e s s i on type="plus">
<v a r i a b l e type="ssa-name" name="11" />
<v a r i a b l e type="ssa-name" name="15" />

</ binary−exp r e s s i on>
</ source>

</ a s s i g n>
<read>

<t a r g e t>
<v a r i a b l e type="ssa-name" name="18" />

</ t a r g e t>
<port>

<v a r i a b l e type="data-member" name="i3" />
</ port>

</ read>
<a s s i g n>

<t a r g e t>
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<v a r i a b l e type="ssa-name" name="20" />
</ t a r g e t>
<source>

<binary−exp r e s s i on type="mult">
<v a r i a b l e type="ssa-name" name="18" />
<r ea l−constant value="4.7697917208036e-1" p r e c i s i o n="64" i s

−s igned="true" />
</ binary−exp r e s s i on>

</ source>
</ a s s i g n>
<a s s i g n>

<t a r g e t>
<v a r i a b l e type="ssa-name" name="21" />

</ t a r g e t>
<source>

<binary−exp r e s s i on type="plus">
<v a r i a b l e type="ssa-name" name="16" />
<v a r i a b l e type="ssa-name" name="20" />

</ binary−exp r e s s i on>
</ source>

</ a s s i g n>
<read>

<t a r g e t>
<v a r i a b l e type="ssa-name" name="23" />

</ t a r g e t>
<port>

<v a r i a b l e type="data-member" name="i4" />
</ port>

</ read>
<a s s i g n>

<t a r g e t>
<v a r i a b l e type="ssa-name" name="25" />

</ t a r g e t>
<source>

<binary−exp r e s s i on type="mult">
<v a r i a b l e type="ssa-name" name="23" />
<r ea l−constant value="9.129209297815e-2" p r e c i s i o n="64" i s−

s igned="true" />
</ binary−exp r e s s i on>

</ source>
</ a s s i g n>
<a s s i g n>

<t a r g e t>
<v a r i a b l e type="ssa-name" name="26" />

</ t a r g e t>
<source>

<binary−exp r e s s i on type="plus">
<v a r i a b l e type="ssa-name" name="21" />
<v a r i a b l e type="ssa-name" name="25" />

</ binary−exp r e s s i on>
</ source>

</ a s s i g n>
<read>
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<t a r g e t>
<v a r i a b l e type="ssa-name" name="28" />

</ t a r g e t>
<port>

<v a r i a b l e type="data-member" name="i5" />
</ port>

</ read>
<a s s i g n>

<t a r g e t>
<v a r i a b l e type="ssa-name" name="30" />

</ t a r g e t>
<source>

<binary−exp r e s s i on type="mult">
<v a r i a b l e type="ssa-name" name="28" />
<r ea l−constant value=" -7.556556070608e-2" p r e c i s i o n="64" i s

−s igned="true" />
</ binary−exp r e s s i on>

</ source>
</ a s s i g n>
<a s s i g n>

<t a r g e t>
<v a r i a b l e type="ssa-name" name="31" />

</ t a r g e t>
<source>

<binary−exp r e s s i on type="plus">
<v a r i a b l e type="ssa-name" name="26" />
<v a r i a b l e type="ssa-name" name="30" />

</ binary−exp r e s s i on>
</ source>

</ a s s i g n>
<wr i t e>

<port>
<v a r i a b l e type="data-member" name="result" />

</ port>
<source>

<v a r i a b l e type="ssa-name" name="31" />
</ source>

</ wr i t e>
<read>

<t a r g e t>
<v a r i a b l e type="ssa-name" name="34" />

</ t a r g e t>
<port>

<v a r i a b l e type="data-member" name="sample" />
</ port>

</ read>
<wr i t e>

<port>
<v a r i a b l e type="data-member" name="i1" />

</ port>
<source>

<v a r i a b l e type="ssa-name" name="34" />
</ source>
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</ wr i t e>
<read>

<t a r g e t>
<v a r i a b l e type="ssa-name" name="38" />

</ t a r g e t>
<port>

<v a r i a b l e type="data-member" name="i1" />
</ port>

</ read>
<wr i t e>

<port>
<v a r i a b l e type="data-member" name="i2" />

</ port>
<source>

<v a r i a b l e type="ssa-name" name="38" />
</ source>

</ wr i t e>
<read>

<t a r g e t>
<v a r i a b l e type="ssa-name" name="41" />

</ t a r g e t>
<port>

<v a r i a b l e type="data-member" name="i2" />
</ port>

</ read>
<wr i t e>

<port>
<v a r i a b l e type="data-member" name="i3" />

</ port>
<source>

<v a r i a b l e type="ssa-name" name="41" />
</ source>

</ wr i t e>
<read>

<t a r g e t>
<v a r i a b l e type="ssa-name" name="44" />

</ t a r g e t>
<port>

<v a r i a b l e type="data-member" name="i3" />
</ port>

</ read>
<wr i t e>

<port>
<v a r i a b l e type="data-member" name="i4" />

</ port>
<source>

<v a r i a b l e type="ssa-name" name="44" />
</ source>

</ wr i t e>
<read>

<t a r g e t>
<v a r i a b l e type="ssa-name" name="47" />

</ t a r g e t>
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<port>
<v a r i a b l e type="data-member" name="i4" />

</ port>
</ read>
<wr i t e>

<port>
<v a r i a b l e type="data-member" name="i5" />

</ port>
<source>

<v a r i a b l e type="ssa-name" name="47" />
</ source>

</ wr i t e>
</ bas ic−block>
<edge source="0x7f710ae43680" d e s t i n a t i o n="0x7f710ae43618" />

</ func t i on>
<f unc t i on name="Test_FIR::behavior">

< ! -- REMOVED -->
</ func t i on>

</ behavior>
</ systemc−model>

As can be seen above all hierarchical and behavioral information is retrieved from
the model. Using this SCMDL document the structure of the model and the AST which
describes its behavior can be drawn as shown in Figure I.1 respectively Figure I.2. The
AST is only partially drawn.

sample

clk

fir
result

testBench

clock

clk

sample

result

Test_FIR

sc_clock

sc_signal<double>sc_in<double> sc_method
FIR::behavior()

Sensitive to negative-edge 
of port clk

i1  i2   i3   i4   i5

sc_buffer<double>

Figure I.1: The module structure used to test the FIR filter.
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-7.556556070608e-2

*

read

sample ssa_name 3

9.129209297815e-2

*

read

i1

ssa_name 6

ssa_name 8

ssa_name 10

+
ssa_name 11

+ssa_name 16

+ssa_name 21

+ssa_name 26

+ssa_name 31

write

result

i2 * 4.7697917208036e-1

i3 * 4.7697917208036e-1

i4 * 9.129209297815e-2

i5 * -7.556556070608e-2

Figure I.2: Part of the AST of the behavior function of the FIR filter.
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Execution Time of SHaBE J
Table J.1 shows the execution time of SHaBE for the FIR filter presented in Figure 2.6
for different values of the template parameter ORDER which specifies the order of the
filter. All execution times were measured on a PC equipped with 2 GB of RAM and an
AMD Athlon 64 processor running at 2 GHz by using the Unix command time. The
execution time was measured 5 times for each value of ORDER and the average value
and the sample standard derivation s were calculated.

Table J.1: The execution time of SHaBE for different orders of the FIR filter presented in
Figure 2.6.

ORDER # SystemC objects
Execution time (s)

s
1 2 3 4 5 average

10 168 8.19 8.03 7.96 8.04 7.98 8.04 0.09
20 323 9.82 9.79 9.79 9.79 9.78 9.79 0.02
30 478 11.67 11.64 11.62 11.64 11.61 11.64 0.02
40 633 13.49 13.42 13.49 13.45 13.49 13.46 0.03
50 788 15.21 15.19 15.26 15.18 15.24 15.22 0.03
60 943 17.12 17.42 17.03 17.20 17.09 17.17 0.15
70 1098 19.02 18.98 18.71 19.01 18.86 18.91 0.13
80 1253 20.71 20.68 20.53 20.59 20.75 20.65 0.09
90 1408 22.40 22.51 22.53 22.51 22.58 22.51 0.07

100 1563 24.36 24.35 24.43 24.54 24.37 24.41 0.08
110 1718 26.26 26.23 26.07 25.89 25.90 26.07 0.17
120 1873 27.95 27.98 27.89 27.93 27.87 27.92 0.04
130 2028 29.78 29.95 29.89 29.85 29.74 29.84 0.08
140 2183 31.79 31.85 31.79 31.81 31.61 31.77 0.09
150 2338 33.48 33.49 33.49 33.50 33.70 33.53 0.09
160 2493 35.20 35.20 35.25 35.16 35.28 35.22 0.05
170 2648 37.11 37.10 36.94 36.99 37.20 37.07 0.10
180 2803 39.12 39.09 38.86 38.96 38.76 38.96 0.15
190 2958 40.69 40.76 40.84 40.68 40.67 40.73 0.07
200 3113 42.83 42.85 42.44 42.98 42.60 42.74 0.22
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SHaBE versus PinaVM K
During the time we were developing SHaBE an other SystemC front-end called PinaVM
was introduced, see Section 3.1.3.3. The developers of PinaVM and we have, indepen-
dently from each other, concluded that the hybrid approach, see Section 3.1.3, is the
only viable approach if we do not want to restrict the SystemC code which can be
used during the elaboration phase. PinaVM and SHaBE are the only freely available
open-source SystemC front-end which take this hybrid approach. There are some more
similarities between them.

PinaVM and SHaBE both:

• describe the behavior of the model in an AST in SSA form.

• recognize the calls into the SystemC library and analyze the arguments used in
these calls.

The differences between PinaVM and SHaBE are:

• PinaVM uses LLVM-GCC to retrieve the ASTs, while SHaBE uses its own GCC
plug-in called SHaBEPlugIn.

• PinaVM stores the information retrieved from the model in LLVM IR, while
SHaBE stores the information in an SCMDL document which is based on XML.
The XML format will be much easier to use for a tool based on the front-end
because it is must closer to the SystemC vocabulary than LLVM IR which are
instructions for a virtual machine. In addition, SCMDL can much easier be read
by humans.

• Because SHaBE uses the debug version of the SystemC library, it can identify
the calls into the SystemC library by their qualified names. PinaVM uses LLVM
to extract the ASTs which describe the behavior and therefore it must find the
calls into the SystemC library in the LLVM IR. Because this is compiled code, the
names used in the LLVM IR are mangled. This means that the types of the ar-
guments are encoded in the function names. For example, PinaVM can recognize
a call to the read member function of a sc_signal<int> by looking for a call to
the function with the mangled name _ZNK7sc_core5sc_inIiE4readEv [72]. But,
to recognize a call to the read member function of a sc_signal<double> it has
to look for a different mangled name. In fact it is impossible for PinaVM to rec-
ognize a call to the read member function of a sc_signal<user_defined_type>

in this way, because the mangled name of this type can not be predicted in ad-
vance. The authors of PinaVM propose a solution to this problem in [72] which is
not implemented yet as far as we know. SHaBE can recognize a call to the read

member function of any class in the SystemC library (not only sc_signals but
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also sc_ports, etc) by simply checking if the fully qualified function name start
with sc_core:: and ends with ::read.

• To link the hierarchical information with the behavioral information PinaVM
needs to determine the value of certain arguments which are used in the calls into
the SystemC library. It uses the novel approach of using just-in-time compilation
to execute the code fragments which determine these values. This approach is,
according to the authors of PinaVM, limited to models in which the ports which
are being used in the behavioral description can be determined statically. SHaBE
on the other hand has extracted the C++ names of the object which can be used
as arguments for these calls into the SystemC library during the execution of
the elaboration phase. Therefore it can simply link the behavioral information
with the hierarchical information by using the fully qualified C++ names of these
arguments.

• PinaVM needs a slightly modified version of the SystemC library. SHaBE can use
the SystemC library without modifications.

• PinaVM can be used with any (slightly modified) implementation of the SystemC
standard, while SHaBE can only be used with the OSCI implementation version
2.2.0.
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