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Figure 1: Users use the chat interface to spin the windmills at different speeds and in different directions.

Abstract

Designing meaningful tangible and embodied interactions remains
challenging due to their situated nature, complex user needs, and
the limited programming skills of many users as well as design-
ers. We developed an interaction model where users and LLMs
co-perform tangible actions through prompt engineering beyond
deterministic logic of commercial smart systems. In this model Al
systems interpret natural language descriptions of environmen-
tal context, internalize technical functionalities and spatial cues,
and translate these into tangible actions. We encapsulated the in-
teraction model within a LLM-enabled tangible artifact as a HCI
provotype and conducted an initial exploratory study around it.
Our preliminary findings point to opportunities in refinement and
reappropriation of such systems over the use period as well as
challenges in adapting deictic spatial references.
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1 Introduction and background

The rapid adoption of Generative Al, particularly following the
emergence of tools like ChatGPT, has brought attention to the
possibilities for integration of Large Language Models (LLMs) into
the fabric of everyday life. In particular, by offering naturalistic
interaction through prompting, [3], LLMs can serve as interfaces to
computational systems, being given access to web browsers [10, 18],
API calls [23, 28] or command lines [31] to allow users to describe
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Figure 2: The system consists of three primary components: (a) a chat interface built through a Telegram bot that captures user
input and displays system responses natural language, (b) an Al assistant that has a system instruction describing the setup
as well as an output structure of the JSON commands it should produce; and (c) a diorama of three windmills powered by a
electronic microcontroller with motors to simulate spinning which can receive JSON commands (over MQTT) to control its

function.

what they would like to happen and have the model take care of the
computation. There are parallels here with end user programming
[22] where users are given simplified interfaces to design behaviors
for technical systems. This can be seen with complex technology
such as robotics [26], where exploring possibilities requires specific
hardware, functional libraries, and fixed laboratory environments
[15], as well as in a simplified form in voice assistant systems to
carry out home automation tasks [8]. While Brich et al. [8] found
rule based approaches too simple for important tasks, and process-
based approaches challenging for end users [8], LLMs offer an
alternative, declarative approach, where users can describe what
they would like to happen, and the system make it so, potentially
allowing for reappropriation of functionality and a fluid approach
to personalization and customization in response to their complex,
situated needs. We were curious to investigate opportunities
and challenges of ways in which users engage with such
LLM-enabled tangible artifacts (RQ).

To explore this space, we developed a pipeline where an LLM is
given a description of an artifact’s physical appearance, configura-
tion and context, along with technical details enabling it to establish
a correspondence between computational variables and real-world
actions. Unlike commercial systems such as SmartThings or Alexa,
our pipeline supports improvisation, ambiguity, and redefining in-
teraction rules on the fly. Users describe the desired tangible action,
and the LLM sends out the relevant commands to the hardware.
This work is centered in HCI for Al practices, i.e. the development
of techniques for creating Al powered interactions [2, 14, 20, 21],

rather than approaches that use tangibility for explanation and un-
derstanding [e.g. 9, 13] or that use Al as part of the design process
[29]. We contribute a research artifact [30] in close connection to
Boer and Donovan [5]’s framing of such artefacts as provotype, in
order to stimulate discourse [32] around new possibilities for LLM
mediated interaction with tangible digital systems. We explored
what kinds of prompt experiments the users carry out, their as-
sumption of artifact’s understanding of their prompts, and how
they are able to modify the system through conversational repair
and rule setting.

2 Prompting Realities: an LLM-based
experiential pipeline

To explore this space, we developed a pipeline where users can
control a physical artifact through conversational interactions with
an LLM. We utilized a Research through Design approach [11, 25,
32] to refine and develop the software, hardware, and physical part
of the pipeline through prototyping, starting with two key criteria:
(a) an LLM mediates between the user and a physical artifact (b)
the system provides enough openness to encourage non-technical
users to improvise and explore through prompting. Through design
iteration and unstructured reflective sessions we added two more
criteria to provide better affordances for prompt experimentation:
(c) the prototype should maintain a conversational memory to
support customizing interactions and (d) the system accompanies
textual response in alignment with its tangible feedback to enrich
the conversational experience. Our overall intention was that the
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system would allow users to reappropriate, manipulate, and alter
the functionalities of physical and tangible artifacts through natural
language descriptions and LLM-based prompting techniques.

2.1 Provotype

Over the course of the project, we have experimented with various
objects to control, for example tactile sensor creating patterns of ac-
tion and a LED strips creating color patterns. Finally, we deliberately
used a diorama (Figure 1) of a set of windmills in an out-of-context
situation in which the windmills spin upon request, instead of being
driven by wind. This encouraged users to see the windmills as both
familiar and unfamiliar artifacts opening the space for reinterpreta-
tion and non-functional use [16]. We adapted this defamiliarization
[4, 27] in our provotype—a prototype that provokes reflection and
speculation rather than solving a known problem[5]—to encourage
alternative interpretations of LLM-powered everyday interactions
distanced from the experience of everyday smart devices. This
strategic ambiguity [12] allowed users to focus on the open spec-
ulations around exploring new interaction and relations with the
artifact like "calling the windmills names" or "asking them to dance
together" without being constrained by preconceptions of how
voice-controlled automation are commonly proceeded.

2.2 Implementation in-brief

The users send their desired prompt through a chatbot using their
own mobile devices which then is processed via an LLM. The LLM
generates both a natural language response—returning to the chat
interface—and a JSON message—going to the diorama (Figure 2).
This actuates the windmills appropriately based on user’s descrip-
tive instruction.

Users can type instructions such as ‘make all the windmills spin
fast’ and the LLM will produce the relevant JSON commands to
achieve the desired output as well as giving the user a feedback
through the chat interface. We used a 700-word-long description
as the system instruction (full version in supplementary materials).
This consisted of i) context "You are part of a system that controls
three windmills."; ii) information about other parts of the system:
"motors are adjusted via JSON commands sent to a CircuitPython
controller using MQTT"; iii) overall information about the prototype:
"The whole thing looks like a topographic scaled model"; iv) names and
descriptions for the windmills and; v) a list of dos and don’ts. This
configuration creates an iterative, tangible loop from the user’s
prompt to the resulting physical actuation—shifting the role of
system designers from direct programming to describing and setting
initial system behavior.

3 Exploratory pilot study

We conducted an initial exploratory study (Ethics Review number:
4788) investigating the prototype’s potential to probe the oppor-
tunities and challenges of this interaction model (interview guide,
system logs, and transcriptions are available in supplementary
documents). We conducted a try-out sessions with 6 participants
from the first author’s professional network focused on early-stage
experiential engagement. Therefore, all tasks were followed by a
consistent set of open-ended questions to capture the participants’
thoughts and reflections. The study had three distinct sections,
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with gradually moving from familiarization with the system to
increasing opportunities for more open exploration.

Firstly, to familiarize the participants with the process of giving
natural language instructions in their own ways, we showed them a
pre-recorded video of specific windmill movements and asked them
to replicate it through the chatbot interface. This video was chose
to resolve the issue of giving the users a verbal instruction about
the task risking the chance of leading their wording and natural
language articulation. Second, to explore how conversational mem-
ory influence prompt experimentation, participants were asked to
create a ‘trigger word’ that intrigue certain system behavior. This
explored whether users could map conversational tokens to physi-
cal states, enabling improvisational rule-setting on-the-go. Finally,
we asked participants to physically modify the prototype by creat-
ing a river using blue tape followed by editing the description in the
system instruction to adapt the new element. Participants then were
asked to use the river as a spatial reference in their prompting. This
activity probed the opportunities of higher agency of participants
by modifying the contextual awareness in the system in the initial
setup layer.

We collected i) audio recordings of responses to open-ended
questions; ii) system logs; iii) photographs of modifications made
in the diorama and the modified system instruction. We reflectively
looked at user engagement logs and interview transcripts, using a
Reflexive thematic analysis approach [6, 7] to short list interesting
moments of interactions. We performed a brief data analysis session
to extract "unanticipated possibilities” [24] that our experiential
pipeline can provide for future inquiries on this area of research.

4 Discussion of results and implementation

This section explores insights from our study to identify emergent
interaction patterns between users and the representative prototype,
as well as opportunities and challenges that LLMs can bring into
the tangible and embodied interaction design space.

General responses. Overall, the participants appreciated the flu-
idity of this approach, particularly the declarative aspect: ‘T was
surprised at how enjoyable it was to have it work according to my
instructions.” (P3) This leads to an ease of exploration, of “setting
up rules, testing them, breaking them, and figuring out what made it
tick” (P4), and reduced frustration: “if a chatbot gives me a wrong
answer, I get annoyed. But if the windmill does the wrong thing, I feel
like I should adjust my command” (P2).

Conversational memory and fluid rules. The conversational mem-
ory enabled users to establish rules through natural language and
recall them later. In the second part of the study, we asked users to
assign ‘trigger words’ to windmill behaviors, testing whether the
system could retain these associations across conversational turns.
This shaped expectations of the AT’s ability to store functional rules
or a perceived learning which allowed a fluid, lighthearted approach
to rule-setting: “& When I say "day" in a sentence, you should do the
behavior [previously set]. € All windmills are now stopped. & The
day is beautiful. €¥Day detected! Windmills are now spinning as set.
& Okay stop. € Windmills are stopped now. & Today started on a
positive note. €¥Day wasn’t mentioned, so no changes were made.
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Para (the windmill in Lowest Level of the model):
~Tower: Medium height (in between the other two windmills in terms of its height) height, square
~cross-section, with a flat top, featuring sharp and angular lines.

-Blades: Three long, straight blades, adding a geometric and edgy look.

- folded, bold and uncommon, positioned between 7 and 8 o'clock.

inning) Direction: Designed to work best with wind from 12 o'clock to 7 o'clock, but can be

B Clooded
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Figure 3: Incorporating a new element into the physical prototype through physical and descriptive modification of prototype

& Okay, how about: Until this day, I feel a part of the studio. €2 Day
detected! Windmills are spinning as set. & Perfect!”

This flexibility extended to redefining references within the sys-
tem. For instance when P5 said: “& Stop the medium one.”, intending
windmill "Para’ and the system spun "Old’, he replied: “& No, that
was the small one!”, and the system adapted its response accordingly,
treating Para’ as the ‘'medium’ windmill regardless of what was
originally established in the system instruction (the ’old” windmill
was installed in a medium part of the topographic model, which
made the choice of 'medium’ unexpected for the model). For P5, it
was “more engaging [than prompting with ChatGPT]. Because it was
a physical system and [they] could immediately see whether [the]
commands worked.” (P5)

From rules to co-performing tangible interactions. The combina-
tion of conversational memory with a “tangible intermediary” (P3)
enabled participants to utilize incremental adjustments through in-
tuitive measurements. For example, P6 tried to reduce the speed of
a windmill: “€ The tallest windmill is now spinning faster clockwise.
& Too fast, a little slow.” which shows a surprisingly flexible form
of co-performance [17]. P2 referred to this as well:

“it felt more like a negotiation [...] it would just do
something, and then either I would correct it or not.
Where at home, if I say "Hey Google, turn on the room
light,’ then it would just turn it on. And I would never
say ‘turn it on to 75% brightness’ or “dim it a little bit.”
(P2)

The tangible actuation of windmills reinforced understanding
through material change rather than abstract texts. This highlighted
deviations from desired outcomes, leading some participants to ra-
tionalize inconsistencies, expectations and performance. The physi-
cal actuation seemed to reinforce participants sense that the model
was following some sort of logic “because it’s moving in the real
world.” (P5), even though the logic was absent and the result is
stochastically generated. Participants engaged in iterative prompt-
ing “to figure out what kind of words actually triggered actions” (P6)
through significant conversational repair to cover a lack of under-
lying understanding behind performance: ‘I realized it doesn’t take
height that well. So I had to think a lot—how can I make it very simple

and very direct, something which is not confusing, something which
does not have another meaning...” (p2)

Collaborative deictic references. The third part of the study asked
participants to incorporate a river into the diorama and reference
it in their descriptive prompts. This brought focus to the use of
deictic reference, or referring to things by their relative positions.
This is a common concern with tangible systems, as it fits naturally
with human descriptive instructions within an physical context[1]:
“& Turn on the windmill that is closest to the river.” (P2) This is a
challenging area for the LLM, as it has only a very limited linguistic
description of the relative positions, and needs to make some heroic
leaps of inference. Users adopted different strategies to reference
locations, from simple “& Turn on the windmill that is underneath
the river.” (P2) to more complex: “& Turn on the windmill which
is closest to the merging spot of the river.” (P4) or “& Turn on the
windmill that is surrounded by a river.” (P6) Here users often ran
to unexpected system behavior, inconsistent responses, or limita-
tions in spatial reasoning. This aligns with prior research on human
mental models of Al systems, where users construct their own un-
derstanding of underlying rules based on observed patterns[19].
The relational notions (e.g., close, far, behind) were often problem-
atic. For instance P2 tried to enforce his spatial reasoning “&
already told you in the past that the old one or the most right-hand
one is closest to the river.” There were also moments of repair: “
& I think the one in the back is the furthest away from the river.
€} Understood. Moving the correct windmill now.”

The ability to repair these pretended reasoning allowed for a
relatively fluid interaction, as the system adjusted to expectations,
although the limitations of the LLM’s spatial reasoning were quite
clear. Some users struggled with the spatial reasoning themselves,
feeling that the “most challenging part of incorporating the river [was]
creating this mental model of space that would be interpretable for the
AI” (P3) They also reached for extremely complex commands, e.g.,
“& turn on the one that is the middle distance away from the entrance
or exit of the rivers” (P4) indicating both that they felt comfortable
in setting up desired outcomes that would have been difficult to
specify more formally, and easy it is to get lost in spatial references.

From deixis to physical reasoning. There was a natural shift in
several interactions from using deictic references to bringing in
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physical and spatial reasoning, e.g. “& There is a storm on the ocean.
€Al windmills will spin clockwise at maximum speed.” (P5) or
“& Turn on the driest mill” (P1). Interestingly, some multi-turn rea-
soning examples worked correctly, for example: “ & all the wind-
mills broke down. € All windmills will stop now. & they are repaired,
but there’s no wind. € All windmills will remain stopped without
wind. ” (P5) In the case of unexpected system behavior, some par-
ticipants were able to investigate, and to some extent repair, the
disconnect in reasoning: “& there’s no water in the lake. € The
lowest windmill will stop now. & water in the lake doesn’t influence
wind and windmills & there’s no water in the lake € No change;
water doesn’t affect windmills. ” (P5) There were also moments of
unexpectedly accurate response. One user modified the Assistant’s
system instructions by adding the phrase “You are flooded!” to de-
scription of the "Para" windmill. They later tested this modification
by asking the prototype to“& Turn off the driest mill.” P1 later re-
flected on this: “when I told it to shut off the driest windmill, it turned
the one furthest away from the one that is flooded [... ] probably it
has an idea.”

5 Conclusion and future research

This preliminary work explored how LLMs can enable tangible
interaction through natural language, revealing both opportunities
and challenges with LLM-enabled artifacts. Our contribution is the
research artifact as elaborated in Section 2, as well as the articula-
tion of how conversational improvisation, ambiguity, and repair
can serve as design materials for future LLM-based tangible interac-
tions. Our findings suggest that while users successfully leveraged
prompting to establish and recall rules leading to tangible actuation,
inconsistencies in deictic references highlight fundamental gaps
between human spatial reasoning and Al interpretation.

These insights present multiple avenues for future research. First,
future work could investigate how LLM-enabled tangible systems
can balance user expectations of memory persistence with the
probabilistic behavior of LLMs, potentially through intermediary
rule-based mechanisms and opportunities for refinement on-the-go.
Second, the challenges observed in deictic articulation suggest a
potential for incorporating spatial modeling or real-time sensory
data to enhance spatial reasoning of LLMs as well as implementing
Vision Language Models to constantly enhance system’s context
awareness.

These insights invite the HCI community to explore new inter-
action paradigms that embrace uncertainty, co-performance, and
improvisation in Al-mediated tangible systems shaped by natural
language prompting.
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