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Chapter 1

Introduction

1.1 Data Assimilation

An important use of numerical models of physical phenomena is forecasting the future
from the known present state and history. Forecast models, however, depend on unknown
parameters, such as model initial and boundary conditions, or other tunable parameters
(not necessarily having any physical meaning), which affect the accuracy of the results.
Calibration of these parameters is necessary to minimize errors between forecasted and
observed states, otherwise the predictions made by the numerical model have no value
in real life. Finding optimal values of these parameters by combining numerical model
results with observations of the state of the physical system is called data assimilation
(DA). A review of DA techniques can be found in [7] and [20].

Two basic approaches are known in DA:

• sequential assimilation, which uses only observations made before the time of analysis
and

• non-sequential or retrospective assimilation, which uses also observations from the
future of the time of analysis.

In sequential assimilation, a statistical technique called the Kalman filter is best known.
Using the assumption of a linear underlying dynamical model and Gaussian distribution
of error terms, it identifies the state of the system which has the highest probability given
the previous state and measurements. It was introduced by R. E. Kalman in 1960 [21] and
has since then seen numerous extensions, among which we mention G. Evensen’s modifi-
cation for systems with many variables, known as the Ensemble Kalman filter [13].

The focus of this thesis, however, is the non-sequential method of four-dimensional varia-
tional data assimilation, or 4D-VAR. This method estimates the unknown parameter set

1



2 CHAPTER 1. INTRODUCTION

by defining a cost function that takes as arguments the current parameter choices and
penalizes misfits between observations and the corresponding numerical model results,
obtained by running the model with the chosen configuration. This is done both in the
spatial and temporal dimensions (thus the 4D in the name of the method). Optimization
with regard to this cost function leads to an improved set of parameters with smaller
misfits to the observed data.

Among the first and most prominent fields where 4D-VAR has been used, are weather
systems [30, 19, 26], but applications in other fields also exist, such as oceanography [6],
groundwater flows [32], tidal flows [1] and atmospheric chemistry [34]. In [4], 4D-VAR has
also been proved effective with nested models.

One of the main problems when performing optimization in the context of 4D-VAR is
obtaining the gradient of the cost function. Recognized as an efficient way of doing this is
the adjoint method, which requires one forward model run and additionally only a single
integration of the adjoint dynamical model back in time to obtain the required gradient.
The computational complexity of the adjoint integration, however, can be equivalent to
several forward model simulations [17, 18]. Depending on the complexity of the original
dynamical model, programming its adjoint can also be difficult to do, owing to the need
of in-depth understanding of the model code required to implement the partial derivatives
of the model. Further programming load is added when making changes to the forward
model, since the adjoint then also needs to be modified accordingly.

1.2 Model Order Reduction

Despite the enormous growth in computational power in recent decades, demands on
complexity and volume of computations always seem to be one step ahead. Dynamical
models with millions, if not billions of variables, that have become common today can be
extremely computationally intensive even when using the latest hardware.

The goal of model order reduction is to approximate a large dynamical system with
one that has (as far as possible) the same input-output behaviour, but lower dimension,
thereby reducing computational times and storage requirements. There exist a variety of
techniques to achieve this, all of which attempt to identify redundant information in the
system’s state and eliminating it from the computation, effectively reducing the system
to fewer variables that encompass the majority of its dynamics. A common tool used
to achieve this is the singular value decomposition (SVD), a matrix factorization that
exposes dominant vector pairs involved in the corresponding transformation. These are
called singular vectors and are associated with scalar singular values, which measure the
contribution of each vector pair. Most well-known methods in model order reduction thus
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include:

• SVD-based methods such as

– Balanced truncation, which uses balancing to bring the system into a form
where states that are hard to reach or hard to observe can easily be identified.
Truncation then eliminates those states.

– Hankel-norm approximation, a refinement of balanced truncation which is opti-
mal in the 2-induced norm of finite-dimensional matrices and operators.

– Proper orthogonal decomposition, which is an entirely data-driven method that
uses system state snapshots in combination with the singular value decomposi-
tion to identify dominant states.

• Krylov-based methods using moment matching to approximate the transfer function
of the system by a rational function of a lower degree. This is facilitated by expanding
the transfer function into its Laurent series at various points of the complex plane.

An overview of model order reduction techniques as well as details on each of them can
be found in [3].

1.2.1 Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD) was first introduced by K. Pearson in 1901 [27]
and first named as POD by J. L. Lumley in 1967 when applied to turbulent flows in [24].
POD has since then proved to be a powerful and elegant method of data analysis, de-
signed for the purpose of obtaining low-dimensional approximations to high-dimensional
processes and data sets [9]. Also known as the Karhunen-Loeve decomposition, principal
component Analysis and the Hotelling transform, it has been successfully applied to prob-
lems in a variety of fields, including thermal dynamics [25], fluid mechanics [16], structural
dynamics [22] but also speech classification [23], reconstruction of images (particularly im-
ages of faces in [14]) and even inverse air foil design [8]. See also [28] for more examples
of POD applications.

Essentially, POD analysis attempts to extract dominant components, called ”modes”,
from sets of high-dimensional data obtained from experiments or simulations by a singular
value decomposition (SVD) of the so-called correlation matrix. Using a Galerkin projec-
tor constructed from the dominant POD modes, low-dimensional approximate dynamical
models can be obtained. A powerful property of POD is the guarantee of optimality, i.e.
the basis of modes calculated by POD is guaranteed to provide minimal projection error
in a least squares sense. Furthermore, since POD is entirely data-driven, it can be applied
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to problems where the underlying mathematical model is unknown, but numerical data is
available (such as in [25]).

1.3 Motivation and Research Goals

Many successful applications of the adjoint method in data assimilation have been per-
formed in recent years. See for example [5], [11] and [6]. However, in order to reduce the
programming effort involved in developing the adjoint model, order reduction techniques
have been considered in this context. In [12] and [29], the model physics are first simplified
and an approximate adjoint is built afterwards. This means that the optimization is done
entirely in reduced space, which accelerates convergence, but there is no guarantee that
the final solution in reduced space is the correct one in the full state space as well. In [33],
the above was done in an efficient way using POD as the order reduction tool, but still op-
erating entirely in POD-reduced space. A modification to this idea was proposed in [2] in
2013, using the POD-reduced adjoint only in gradient computation, keeping the full order
forward model elsewhere and thus optimizing in the full order state space. This means that
the programming and computational effort connected to the adjoint model is alleviated,
but accuracy is improved because the full order space is used for cost function evaluations.

In this thesis, the method proposed in [2], named the Reduced Adjoint method, is studied
and comparisons in terms of accuracy and computational intensity under various condi-
tions are made with two other alternatives, namely the full order adjoint method and the
method of Reduced Model Variation, where the low order model is used both in forward
and adjoint directions.

To this end, the named methods are applied to two numerical models. Firstly, a linear
model of subsurface contaminant transport from [1] is adopted and some of the experi-
ments in the paper are examined to illustrate the effect of the methods on a linear model.
Secondly, the same techniques are applied on a finite element model of the Shallow Water
Equations developed by Chen and Navon in [11], where the methods are tested on a more
complex non-linear model.

1.4 Content outline

The thesis is structured in the following manner.

Chapter 2 includes more detailed descriptions of techniques used later in the thesis. Proper
orthogonal decomposition and 4D-variational data assimilation is described.

Chapter 3 applies inverse reduced order modelling techniques to a linear subsurface con-
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taminant model [2]. POD is applied to the model in the forward direction and results of
some of the experiments are examined to illustrate the methods of model order reduction
on a relatively simple model.

Chapter 4 introduces the Shallow Water Equations and their Galerkin finite element model
developed by Chen and Navon in [11]. The adjoint method is used in inverse modelling
in the paper, which means that the adjoint model is available for comparison with its
reduced order counterpart. Experiments are done with all three adjoint method versions
(Adjoint method, Reduced Adjoint method, Reduced Model Variation). Dependence on
the number of observation points and sensitivity to perturbations in observations is also
tested.

Chapter 5 collects and summarizes results from previous chapters and gives some out-
look on possible future research.





Chapter 2

Preliminaries

2.1 Proper Orthogonal Decomposition

Starting with a set of data from a vector space V , proper orthogonal decomposition (POD)
aims at finding a vector subspace Vr of fixed dimension r , such that the error of projection
(in a least square sense) is minimal. POD is entirely data-dependent, which means that,
in principle, nothing of the underlying dynamics of the system that produced the data
needs to be known. This makes it a very versatile tool, used in this thesis in the context
of model order reduction.

2.1.1 The Singular Value Decomposition

The singular value decomposition (SVD) is defined in [15] in the following manner.

Theorem 2.1.1. If A is an m-by-n matrix, then there exist orthogonal matrices

U = [u1, ..., um ] ∈ Rm×m and V = [v1, ..., vn ] ∈ Rn×n

such that
U T AV = diag(σ1, ..., σp) ∈ Rm×n p = min{m,n}

where
σ1 ≥ σ2 ≥ ... ≥ σp ≥ 0.

Proof of existence of the SVD for any real matrix A is omitted here, but also given in
[15]. The σi are the singular values of A and the vectors ui and vi are the ith left singular
vector and the ith right singular vector respectively. Normally, the diagonal matrix of
singular values is denoted with Σ, by which we get the decomposition

A = U ΣV T .

The SVD can be viewed as an eigenvalue problem by noting that

AT A = (U ΣV T )T U ΣV T = V Σ2V T

7



8 CHAPTER 2. PRELIMINARIES

and
AAT = U ΣV T (U ΣV T )T = U Σ2U T

which means that left and right singular vectors can be calculated as eigenvectors of AAT

and AT A, respectively.

Why the SVD is present in so many approximation schemes is illustrated in the following
theorem from [31].

Theorem 2.1.2 (Low rank approximation). For any ν with 0 ≤ ν ≤ r define

Aν =
ν∑

j=1
σjujv∗j ;

if ν = p = min{m,n}, define σν+1 = 0. Then

‖A−Aν‖2 = inf
B∈Rm×n ,rank(B)≤ν

‖A− B‖2 = σν+1

Singular vector pairs thus capture as much of the energy of A as possible, where by energy
the 2-norm or the Frobenius norm is meant.

2.1.2 The POD Method

Let Σ be a dynamical system of the form

Σ : ẋ(t) = f (x(t), u(t)), y(t) = g(x(t), u(t)). (2.1)

We begin by collecting a set of state snapshots at times t1, ..., tN , assembling the so-called
snapshot matrix X

X = [x(t1), x(t2), ..., x(tN )] ∈ Rn×N . (2.2)

We now define X b as the background state and the subtract it from each snapshot, ob-
taining the corrected snapshot matrix E having columns Ei as

Ei = Xi −X b, i = 1, ...,N , (2.3)

where Xi is the i-th column of X. The objective is to find an orthonormal basis of vectors
uj ∈ Rn , j = 1, 2, ...,N such that

Ei =
N∑

j=1
γjiuj , i = 1, 2, ...,N . (2.4)

Additionally, we require that the truncated set of vectors uj , j = 1, 2, ..., k for any k < N
approximates the family {Ei} optimally, i.e. denoting

Êi =
k∑

i=1
γjiuj
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and

[Ê1 · · · ÊN ]︸ ︷︷ ︸
Ê

= [u1 · · · uk ]︸ ︷︷ ︸
Uk


γ11 · · · γ1N
... . . . ...
γk1 · · · γkN

 (2.5)

we want ‖Ê − E‖2 to be minimal.

It can be shown that the singular value decomposition (SVD) solves exactly the prob-
lem described. Given the matrix E , let

E = U ΣV ∗ (2.6)

be its SVD. The columns of U are the orthonormal basis of vectors uj that we were looking
for and the coefficients γij are contained in the matrix Γ = ΣV ∗.

Computation of the SVD can be done by solving either the eigenvalue problem,

EE∗ = U Σ2U ∗,

thereby getting the matrix U directly, or the eigenvalue problem

E∗E = V Σ2V ∗,

computing the required eigenvectors as U = EV Σ−1/2. Which option we choose depends
on which of the matrices EE∗ and E∗E has smaller dimension.

Having computed the appropriate orthonormal basis, we can now define the Galerkin
projection consisting of the leading k left singular vectors of the snapshot matrix, denoted
by Uk in (2.5). The original dynamical system

Σ : ẋ(t) = f (x(t), u(t)), y(t) = g(x(t), u(t))

can then be approximated by the projected system

Σ̂ : ˙̂x(t) = U ∗k f (Uk x̂(t), u(t)), y(t) = g(Uk x̂(t), u(t)). (2.7)

The quality of approximation depends on the decay of the singular values of the snapshot
matrix E . A useful concept in this context is the energy captured by the j-th singular
vector, defined as

ψj = σj∑N
i=1 σi

, (2.8)

where σj is the j-th singular value. The total energy captured by the first r singular
vectors is then simply the sum of their individual energies, i.e.

ψr =
r∑

i=1
ψi .
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We summarize the POD procedure in the following algorithm

Algorithm 2.1 The POD algorithm
1: INPUT: dynamical system Σ, state snapshot matrix E
2: OUTPUT: reduced order dynamical system Σ̂
3: compute SVD: E = U ΣV ∗

4: Uk = first k columns of U
5: if necessary compute initial reduced state x̂0 = U ∗

k x0

6: define Σ̂ : ˙̂x(t) = U ∗
k f (Uk x̂(t), u(t)), y(t) = g(Uk x̂(t), u(t))

2.1.3 Example

Consider the tri-diagonal linear operator M, defined as

M = 1
4



4 1 0 0 · · · 0
1 4 1 0 · · · 0
... . . . ...
0 · · · 0 1 4 1
0 · · · 0 0 1 4


∈ R20×20.

We generate a matrix of snapshots X by starting with the vector

X1 = (0, 0, 0, 0, 1, 0, 0, 0, 0, 2, 0, 0, 0, 0, 3, 0, 0, 0, 0, 4)T ∈ R20

and defining the columns of X as

Xi = M i−1X1, i = 1, 2, ..., 10.

For this example, we assume the background state to be zero and thus no corrections are
made to the snapshots. Figure 2.1 shows the singular value plot of the matrix X. Fast
decay of the singular values is visible, therefore we assume that POD can be applied with
success to this dataset. Following the POD procedure, we calculate the SVD of X and
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Figure 2.1: Singular value plot for the snapshot matrix X.

extract 3 dominant modes from the singular vector matrix U that represent 99.96% total
energy. They are shown in Figure 2.2.
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Figure 2.2: First 3 POD modes (left to right) for snapshot matrix X.

2.2 Four Dimensional Variational Data Assimilation

We consider a discrete non-linear dynamical system, where the transition of the state X
from time ti to time ti+1 is governed by the non-linear dynamics operator Mi : Rn → Rn

according to the equation

X(ti+1) = MiX(ti), i = 1, 2, ...,m − 1. (2.9)

Also given are observations of the system state, which we denote by Y (ti) ∈ Rq . These
are related to the system state by the observation operator H : Rn → Rq by

Y (ti) = H (X(ti)) + η(ti) (2.10)

The term η(ti) models imperfections in the observations (such as measuring errors) and is
assumed to be a white Gaussian observation noise process with mean zero and covariance
matrix Ri .

The objective of four-dimensional variational data assimilation is to find the set of initial
conditions to the system (2.9) that give the best fit to the available observed data. Put
into more rigorous terms, we are looking for the initial state X0 for which the function
value

J (X0) =1
2(X0 −X b)T B−1

0 (X0 −X b)+

1
2

m∑
i=0

(Y (ti)−H (X(ti)))T R−1
i (Y (ti)−H (X(ti))) (2.11)

is minimal. The first term in the cost function J (X0) is the so-called background term and
X b is a prior estimate of X0, assumed uncorrelated with covariance matrix B0. The second
term penalizes misfits between observations and obtained model data over the simulated
time window. It is therefore clear that the J -minimal X0 (constrained by the dynamics of
the model) is the initial state which we are looking for.

Minimizing J is normally done with methods that require computing the gradient of J
with respect to X0 (which we denote with ∇J ). This is most efficiently done by the adjoint
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method, replacing the constrained optimization problem by unconstrained optimization
of the functional

J̄ (X0) =1
2(X0 −X b)B−1

0 (X0 −X b)+

1
2

m∑
i=1

(Y (ti)−H (X(ti)))T R−1
i (Y (ti)−H (X(ti)))+

m∑
i=1

ν(ti)T (X(ti)−MiX(ti−1)). (2.12)

The vector ν(ti) of Lagrange multipliers is then defined as the state vector of the adjoint
system (see Appendix A for a more complete derivation). An expression for the gradient
∇J is given by

∇J (X0) = −B−1
0 (X b −X0)− ν(t0). (2.13)

Since we know that ν(tm) = 0, this requires solving the adjoint system backwards in time
from tm to t0. Skipping the details of the derivation (see Appendix A), the backward time
step scheme is given by

ν(ti) = MT
i ν(ti+1) + H T R−1

i (Y (ti)−H (X(ti))), (2.14)

where Mi denotes the Jacobian of Mi with respect to Xi .

Summarizing the above steps is the following algorithm:

Algorithm 2.2 4D-VAR
1: INPUT: initial parameter set X0 of dynamical system Σ
2: OUTPUT: improved parameter set X1

0

3: determine background state Xb from previous knowledge
4: execute optimization with X0 as initial guess, use (2.11) as cost function and (2.13) as gradient

to obtain X1
0 as optimal initial state

One step of minimizing the cost function J then consists of one forward model run to
determine the states X(ti) for i = 1, ...,m and a backward run of the adjoint model,
starting with ν(tm) = 0 and progressing towards ν(t0), which is required to compute the
gradient. The adjoint method is an efficient way of gradient computation in 4D-VAR, but
its drawbacks include high computational complexity for large scale problems and even
more unfortunate is the difficulty of actually programming the adjoint model. This is why
approximate methods that avoid the full order adjoint model have become an important
approach to the problem.

2.3 Inverse modelling using POD

Two approaches to reduced order inverse modelling will be considered, both formulated
in [2]. The difference between the two methods is how the forward model is treated, as
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we use the reduced order version in POD-reduced model variation and keep the full order
forward model in the POD-reduced adjoint method.

2.3.1 POD-reduced Model Variation

The first idea of using model order reduction to approximate 4D-VAR by the adjoint
method is to simply replace the entire model by its POD-derived approximate. The
approximate state X̂(ti) is used, satisfying

X̂(ti) = Pξ(ti) + X b (2.15)

where the matrix P contains as columns the dominant POD modes of the system dynamics
operator Mi . The approximate state X̂(ti) is thus a linear combination of the dominant
POD modes and ξ(ti), the reduced state vector, contains the corresponding coefficients.
Its evolution in time is governed by

ξ(ti+1) = M̃iξ(ti), (2.16)

where M̃i is the simplified dynamics operator, obtained from the Jacobian Mi as

M̃i = PTMiP.

Since we are now optimizing with respect to the reduced state, we modify also the cost
function itself. We introduce the approximate cost function Ĵ and define it as

Ĵ (ξ0) =1
2ξ

T
0 PT B−1

0 Pξ0+

1
2

m∑
i=0

(Y (ti)−H (X̂(ti)))T R−1
i (Y (ti)−H (X̂(ti))), (2.17)

Since the reduced model is linear, its adjoint in reduced space is easy to obtain. The
backward evolution equation for the adjoint states ν̂(ti) then reads as

ν̂(ti) = M̃ T
i ν̂(ti+1) + PT H T R−1

i (Y (ti)−H X̂(ti)), (2.18)

and the gradient of the approximate cost function Ĵ can be computed as

∇Ĵ (ξ0) = −PT B−1
0 Pξ0 − ν̂(t0). (2.19)

Summarizing the above steps is the following algorithm:

Algorithm 2.3 POD-reduced Model Variation
1: INPUT: initial parameter set X0 of dynamical system Σ, state snapshot matrix E
2: OUTPUT: improved parameter set X1

0

3: use POD to obtain the projection matrix P
4: compute the simplified dynamics operator M̃i

5: calculate initial reduced state as ξ0 = PT(X0 −Xb)
6: execute optimization with ξ0 as initial guess, use (2.17) as cost function and (2.19) as gradient

to obtain ξ1
0 as optimal reduced initial state

7: output X1
0 = Pξ1

0 + Xb
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This approach therefore performs the entire optimization in reduced space. This gives
control over the speed of computation, since the number of used POD modes directly
affects performance. The sacrifice, however, is lower accuracy. Furthermore, by optimizing
in reduced space and then projecting back to the full space, no guarantee exists that the
minimum found in reduced space is also the global minimum in the full space. To tackle
these downsides, a different method was proposed by Altaf, Gharamti, Heemink and Hoteit
in [2].

2.3.2 POD-reduced Adjoint Method

As mentioned in the previous section, optimizing with reference to the reduced cost func-
tion Ĵ has the drawback of decreased accuracy and possibly even convergence to the wrong
solution. The POD-reduced adjoint method thus aims to rectify that by performing the
cost function calculations in full space. In order to achieve that, this approach keeps the
original forward model (2.9) and approximates the adjoint model only. The POD method
is used to generate an approximate adjoint model by projecting the forward linear tangent
operator onto the dominant POD modes and transposing it to get the approximate adjoint
operator. This gives the following evolution equation for the adjoint states:

ν̂(ti) = M̃ T
i ν̂(ti+1) + PT H T R−1

i (Y (ti)−HX(ti)). (2.20)

The corresponding gradient calculation is now in full space and is given by

∇J (X0) = −B−1
0 (X0 −X b))− P ν̂(t0). (2.21)

In algorithmic form, the method reads as follows:

Algorithm 2.4 POD-reduced Adjoint Method
1: INPUT: initial parameter set X0 of dynamical system Σ, state snapshot matrix E
2: OUTPUT: improved parameter set X1

0

3: use POD to obtain the projection matrix P
4: compute the simplified dynamics operator M̃i

5: execute optimization with X0 as initial guess, use (2.11) as cost function and (2.21) as gradient
to obtain X1

0 as optimal initial state

Since the forward model is now of full order, complexity is increased. We need to integrate
the original model in every optimization iteration in order to compute the adjoint states
needed in the gradient calculation (this can be seen from (2.20)). However, it was shown
in [2] that accuracy is improved significantly by this approach.

2.4 The L-BFGS method

Optimization of the cost function requires a numerical minimization algorithm. A com-
mon choice in this area in 4D-VAR are quasi-Newton methods. In particular, the limited
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memory Broyden-Fletcher-Goldfarb-Shanno update (L-BFGS) is widely used [2, 11].

Considering the minimization of an objective function F(x) with respect to a vector x,
the iterative scheme

xk+1 = xk − αkH−1∇F(xk), (2.22)

where H is the Hessian matrix, ∇F is the gradient vector and k the iteration number, is
called Newton’s method. In a large scale problem such as data assimilation, the calcula-
tion of the Hessian matrix H is too expensive. Quasi-Newton methods avoid its explicit
computation by approximating H with first derivatives.

An example of such a method is the L-BFGS update, in which the approximation Ĥ
of H in the k-th iteration is given by

Ĥk+1 = V T
k ĤkVk + ρkdkdT

k , (2.23)

where

ρk = 1
yT

k dk
, (2.24)

Vk = I − ρkykdT
k (2.25)

and

dk = xk+1 − xk , (2.26)

yk = ∇F(xk+1)−∇F(xk). (2.27)

To avoid storing the full matrices Ĥk , a fixed number of pairs dk , yk is only stored. With
these pairs, the k-th approximation of the Hessian Ĥk is defined implicitly and the product
Ĥk∇F(xk) can be computed as a series of inner products involving ∇(xk) and the most
recent pairs dk , yk , thus avoiding ever explicitly forming the Hessian and therefore saving
memory.





Chapter 3

Ground Water Subsurface Contaminant
Model

To demonstrate the effectiveness of model order reduction without having to deal with
effects of non-linearities, we first consider a linear model, i.e. the ground water subsurface
contaminant model. By applying proper orthogonal decomposition, a forward model of
smaller dimension can be constructed and only small errors observed in the simulation
of the reduced model. Furthermore, the same technique can be used in four-dimensional
variational data assimilation to reduce the order of the adjoint model.

3.1 The Model

Modelling subsurface contaminant transport, the following two-dimensional advection-
diffusion equation is considered:

∂(φC )
∂t +∇ · (UC −D(U )∇C ) = r(C ) + S , (3.1)

where U = (Ux ,Uy) is the two-dimensional velocity field, φ is the porosity of the medium,
C is the concentration of the contaminant, D the diffusion term, r the adsorption term
and S the source term. For our purposes, we ignore the diffusion and adsorption terms as
well as the source term, thereby reducing equation (3.1) to the form

∂(φC )
∂t + ∂

∂x (UxC ) + ∂

∂y (UyC ) = 0. (3.2)

This is now a linear partial differential equation, which will allow easy assessment of the
quality of our order reduction method.

3.1.1 Experiment set-up and POD suitability

A cell-centered finite difference scheme is used for discretization and the test domain is
a 50 × 50 square grid, where a small rock with permeability 1 millidarcy is embedded
into a surrounding layer with permeability 100 millidarcy. The cells in the subdomain

17
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[12, 12]× [38, 38] belong to the small rock and the rest to the surrounding layer. The ini-
tial velocity field is obtained by solving the Darcy flow equation for incompressible flows
and is assumed constant in time (i.e. the flow is steady). For the initial state, a contami-
nant plume is inserted in the subdomain [4, 5]× [6, 45] with concentration 100 ppm and 0
ppm is assumed elsewhere. The simulated time is 50 years with a time step of 2 months.
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Figure 3.1: Test domain. Permeability is 1 millidarcy for black cells and 100 millidarcy for orange
cells.

An indicator of the model being suitable for order reduction is the distribution of the
singular values of the snapshot matrix E . Since the grid is of size 50× 50, when taking all
305 time steps into account, the snapshot matrix has dimension 2500 × 305. Computing
the eigenvalues of EET gives the energy plot that can be seen in Figure 3.2. The first 15
singular values already amount to 99.99% of the total energy, which indicates suitability
for model order reduction.

Denoting with F the fraction of snapshots (out of the 305 available) used in the snapshot
matrix and with N the number of singular vectors used, the projection matrix was con-
structed as described in the previous section for F = 1%, 3%, 5%, 8%, 10%, 15%, 20%, 25%,
33%, 50%, 100% and N = 1, 5, 10, 15, 20, 25. Each time the reduced order model was run
with the same initial data as the full order model and the root mean square error (RMSE)
was computed as a measure of the error introduced by the order reduction:

RMSE =

√√√√305∑
t=1

2500∑
i=1

(yi
t − ỹi

t )2

2500 · 305 , (3.3)

where yi
t is the ith grid point value of time step t generated by the full order model and

ỹi
t is the corresponding grid point value of the reduced order model.

Table 3.1 gives the computed RMSE values. Increasing both the number of snapshots
and leading singular vectors increases accuracy of the reduced order model. However,
as shown in the table, values as low as 10−5 can be achieved with as few as 20% of all
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Figure 3.2: Plot of the singular values of the full snapshot matrix S .

RMSE N = 1 N = 5 N = 10 N = 15 N = 20 N = 25
F = 1% 7,57 6,52 6,46 6,42 6,41 6,41
F = 3% 7,17 1,53 0,61 0,60 0,59 0,57
F = 5% 6,63 1,39 0,14 0,073 0,067 0,065
F = 8% 6,54 1,33 0,072 0,0073 0,0023 0,0016
F = 10% 6,54 1,31 0,069 0,0037 0,00078 0,00037
F = 15% 6,55 1,28 0,067 0,0018 0,00012 2,61e-05
F = 20% 6,57 1,27 0,066 0,0016 3,53e-05 2,51e-06
F = 25% 6,57 1,26 0,065 0,0016 2,39e-05 7,67e-07
F = 33% 6,58 1,26 0,065 0,0015 2,03e-05 2,61e-07
F = 50% 6,60 1,26 0,064 0,0015 1,98e-05 1,63e-07
F = 100% 6,61 1,26 0,064 0,0015 1,96e-05 1,55e-07

Table 3.1: RMSE values for different reduced-order models.

snapshots and 20 leading singular vectors, Therefore it is safe to say that forward model
order reduction can be applied successfully to this model.

Figures 3.3 and 3.4 show a visual comparison of the time evolution of the concentration
field C over time. Figure 3.3 corresponds to the full order model, while Figure 3.4 shows
the reduced order model with 15% of all snapshots and 15 leading singular vectors utilized.
No visible differences can be observed.

3.2 Numerical experiments

As before, the ground water subsurface contaminant model with the same simplifications
was considered. To test the application of a POD-reduced model in four dimensional
variational data assimilation, a set of measurements (the truth) had to be chosen. This
was done by taking the initial conditions described above and running the full model for
305 time steps, corresponding to a time of 50 years. Values from the solution of the final
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Figure 3.3: Evolution of the concentration field solution of the full order system over time. Evading
the low permeability cells is clearly visible.
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Figure 3.4: Evolution of the concentration field solution of the reduced order system with F = 15%
and N = 15.



3.2. NUMERICAL EXPERIMENTS 21

time step were taken in vertical columns spanning from the 6th to the 45th row at column
numbers 10, 20, 30 and 40 in the 50-by-50 grid as shown in Figure 3.5.
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Figure 3.5: Observation points in the 50× 50 domain.

From this known data in the final time step, the hope is to reconstruct the correct ini-
tial conditions (i.e. the vertical plume described earlier) by using the three different
approaches: the full adjoint method, POD-reduced model variation and the POD-reduced
adjoint method. The initial guess X0 was the same for all three approaches and was taken
as the average solution of the forward model over all time steps.

For the purposes of POD, 60 snapshots were taken with 5 time steps between them. In
separate experiments, three sets of dominant singular vectors were included in the POD
projection matrix P, namely 18 vectors capturing 99.999% of the total energy, 10 vectors
capturing 99.99% of the total energy and 6 vectors capturing 99% of the total energy.

The reduced dynamical operator is not problematic in this case, since the model itself
is linear and we can use

M̃ = PT MP

directly to compute the reduced dynamical operator M̃ .

The optimization itself was carried out with a MATLAB implementation of a quasi New-
ton method with an L-BFGS update. The optimization procedure was stopped when the
difference of two consecutive function values was less than 0.1. Considering that the ini-
tial cost function value is 2.95 million, this is certainly a small enough increment to stop
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Figure 3.6: Cost function value over number of optimization iterations for full adjoint(green),
POD-reduced adjoint(blue) and POD-reduced variation(red).

optimizing.

For the 18-vector POD basis, Figure 3.6 shows the cost function values over the num-
ber of iterations of the optimization process. Both POD-reduced methods show good
convergence at first, but POD-reduced model variation starts to show a lack in accuracy
after 10 iterations, eventually converging to a state with cost function value of about 5700.
Keeping the original forward model space in the POD-reduced adjoint method, however,
seems to have a great positive impact on accuracy, since the cost function decreases quickly
(in 20 iterations) to a value of about 200. After that, the process terminates because no
suitable step length can be found in the calculated gradient direction. Since the gradient
calculation is approximate, this kind of termination is not unexpected.

The full adjoint method, somewhat surprisingly, shows slower convergence in addition to
its higher computational complexity (which results from additional costly adjoint model
runs backwards in time that are required to compute the gradient in each iteration). The
cost function value is driven down to values as low as 10, but to achieve this, about 300
minimization iterations are required. In addition, the final solution, shown in figure 3.7,
is not identical to the initial conditions of the forward simulation even though the cost
function value is very low. A possible explanation to this is that the problem of minimizing
the cost function J is ill-conditioned and/or solutions other than the one we expect exist
[2]. Both POD-driven methods, however, result in the vertical plume with a width of two
cells that we expected. The evolution of the approximation of X0 can be seen in Figures
3.8, 3.9 and 3.10.



3.2. NUMERICAL EXPERIMENTS 23

5 10 15 20 25 30 35 40 45 50

5

10

15

20

25

30

35

40

45

50

 

 

0

1

2

3

4

5

6

7

8

9

10

(a) Full adjoint
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(b) POD-reduced adjoint
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(c) POD-reduced variation

Figure 3.7: Final solutions of X0 as produced by the three methods (number of iterations varies
with each method).

No. of POD modes POD-reduced variation POD-reduced adjoint
18 5711.8 215.65
10 46232.3 13983.4
6 175891 327642

Table 3.2: Final cost function values for POD-reduced variation and POD-reduced adjoint methods
depending on the number of POD modes in the POD basis.

Figure 3.8: Initial state approximations by full adjoint method.

Using a lower-dimensional POD basis has a detrimental impact on the accuracy of
the two POD-derived methods. The POD-reduced adjoint method exhibits the same be-
haviour as before, reducing the cost function value quickly, but at some point stopping
because the line search in the computed gradient direction failed to find a suitable step
size to continue. This point occurs sooner if the POD basis has lower dimension (after
13 iterations for 10 POD modes and after only 4 iterations for 6 POD modes). Table 3.2
shows the final cost function values for 10 and 6 POD modes.
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Figure 3.9: Initial state approximations by POD-reduced adjoint method.
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Figure 3.10: Initial state approximations by POD-reduced model variation.



Chapter 4

Shallow Water Equations

4.1 The Shallow Water Equations

The shallow water equations are a model of motion of incompressible fluids for which
the depth is relatively small in comparison to the horizontal dimensions. The equations
describe the evolution of an incompressible fluid on which gravitational and rotational
accelerations are applied. Typically these conditions are associated with modelling an
atmosphere.

By defining a vector function of velocity components u in x direction and v in y direction:

~v = (u(x, y, t), v(x, y, t)).

the shallow water equations can be written in vector form as
∂~v
∂t + ~v · ∇~v +∇φ+ f~k × ~v = 0 (4.1)

∂φ

∂t +∇ · (φ~v) = 0 (4.2)

for
(x, y) ∈ [0,L]× [0,D], t ≥ 0,

where

• [0,L]× [0,D] is a rectangular domain of dimensions L and D,

• φ = gh is the geopotential height

• h is the depth of the fluid

• g is the gravitational acceleration

• ~k is the vertical unit vector pointing away from the center of the Earth

• f is the Coriolis parameter, i.e. a scalar function defined by the β-plane approxima-
tion as outlined in [11].

25
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Initial and boundary conditions need to be specified for the shallow water equations model.
Denoting the state variables as

w(x, y, t) = (u(x, y, t), v(x, y, t), φ(x, y, t)) (4.3)

we prescribe the initial condition w(x, y, 0) = ψ(x, y).

Boundary conditions in x-direction are assumed periodic:

w(x + kL, y, t) = w(x, y, t) , k ∈ Z (4.4)

and a solid wall boundary condition is employed in the y-direction:

~v(x, 0, t) = ~v(x,D, t) = 0. (4.5)

The initial geopotential φ(x, y) = gh(x, y) is derived from the same height field as in [11]:

h(x, y) = H0 + H1 tanh(9(D/2− y)
2D ) + H2

sin(2πx
L )

cosh2(9(D/2)−y
D )

. (4.6)

From the geopotential, the initial wind field is calculated by using the geostropic relation-
ship

u = −
(g

f

)
∂h
∂y , v =

(g
f

)
∂h
∂x (4.7)

Keeping to [11], we use the following values for the parameters needed to calculate the
height field:

L = 4400 km, D = 6000 km

β = 1.5× 10−11 s−1m−1

f = 10−4 s−1, g = 10 ms−1

H0 = 2000 m, H1 = 220 m, H2 = 133 m.

The corresponding initial geopotential field on a grid of size 15× 15 can be seen on figure
4.1. The wind vector field, calculated from the height field for this configuration, is shown
in figure 4.2. Recovering these initial conditions will be the goal of the optimization
procedure later on.

4.2 Discretization

In the implementation by Navon and Chen [11], a Galerkin finite element approach is used
to discretize the shallow water equations (4.1)-(4.2) using a regular triangular mesh.

Denote with Vj the basis functions defined by node interpolation. Then the wind and
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Figure 4.1: Initial geopotential field on a 15-by-15 grid.
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Figure 4.2: Initial wind field on a 15-by-15 grid.

geopotential fields are given by:

~v =
3∑

j=1
~vj(t)Vj(x, y)

φ =
3∑

j=1
φj(t)Vj(x, y) (4.8)

After applying Green’s theorem to shift the derivative from the variable to the basis func-
tion in (4.1) and (4.2), substituting in (4.8) and finally employing a time-extrapolated
Crank-Nicholson scheme for integration in time, we arrive at the following linear systems
to be solved (for details see [11]):
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First, to obtain φ at time n + 1, solve:

M(φn+1
j − φn

j )− ∆t
2 K1(φn+1

j + φn
j ) = 0 (4.9)

where
M =

∫∫
ele

ViVjdA (4.10)

and
K1 =

∫∫
ele

VjVku∗k
∂Vi
∂x dA +

∫∫
ele

VjVkv∗k
∂Vi
∂y dA. (4.11)

Here, u∗ and v∗ denote approximations of the state variables at time n + 1
2 , for which we

use the second order formula

w∗ = 3
2wn − 1

2wn−1 + o(∆t2). (4.12)

Second, from the u-momentum equation, we get

M(un+1
j − un

j ) + ∆t
2 K2(un+1

j + un
j )

+∆t
2 (Kn+1

21 + Kn
21) + ∆tP2 = 0 (4.13)

where
K2 =

∫∫
ele

ViVkun
k
∂Vj
∂x dA +

∫∫
ele

ViVkv∗k
∂Vj
∂y dA, (4.14)

Kn
21 =

∫∫
ele

Viφ
n
k
∂Vk
∂x dA (4.15)

and
P2 = −

∫∫
ele

fViVkv∗k dA. (4.16)

Note that, since φn+1 has already been calculated, we use the available value instead of
the extrapolated one.

Finally, from the v-momentum equation, we get:

M(vn+1
j − vn

j ) + ∆t
2 K3(uv+1

j + vn
j ) (4.17)

+∆t
2 (Kn+1

31 + Kn
31) + ∆tP3 = 0 (4.18)

where
K3 =

∫∫
ele

ViVkun+1
k

∂Vj
∂x dA +

∫∫
ele

ViVkvn
k
∂Vj
∂y dA, (4.19)

Kn
31 =

∫∫
ele

Viφ
n
k
∂Vk
∂x dA (4.20)

and
P3 =

∫∫
ele

fViVkun+1
k dA. (4.21)

Solutions of the systems are obtained by a Gauss-Seidel iterative solver, taking into account
that due to the local support nature of the finite element structure, only at most 7 non-
zero entries are possible in each row of the matrices, allowing for compacting the storage
and optimizing the iteration process.
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4.3 The adjoint models

As in the linear case, we consider three different approaches to inverse modelling:

• POD-reduced model variation, using reduced models for both forward and adjoint
simulation,

• POD-reduced adjoint method, using the full forward model but the reduced adjoint
one,

• full adjoint method, using the full adjoint model provided in [11].

An extra difficulty arises from the non-linearity of this model, however, since the reduced
dynamical operator M̃i cannot be computed directly, as it could be in the subsurface
contaminant transport case. Instead, linearization is required.

4.3.1 Computing the reduced dynamical operator

A model can be reduced (see [1]) if its approximate linearised state X̄ can be written as

X̄(ti+1) = X b(ti+1) + Pξ(ti+1) (4.22)

where ξ is the reduced state vector, whose time-varying dynamics are described by the
reduced dynamical operator M̃i as

ξ(ti+1) = M̃iξ(ti). (4.23)

and X b is the background state, which in this case is taken as the average state of all time
steps, i.e.

X b =
∑tmax

i=1 X(ti)
tmax

(4.24)

The reduced dynamical operator is an approximation of the full Jacobian ∂Mi
∂Xb :

M̃i = PT ∂Mi
∂X b P. (4.25)

We obtain the Jacobian by linearising the full non-linear operator Mi around the back-
ground state X b. However, in order to avoid computing the perturbations Mi(X b(ti)+εEj)
for every j-th unit vector Ej , in turn having to do this as many times as there are nodes
in the mesh, only the perturbations in the direction of POD modes pj are computed by

∂Mi
∂X b pj = Mi(X b(ti) + εpj)−Mi(X b(ti))

ε
. (4.26)

This way we get for reduced state space of dimension r
∂Mi
∂X b P = (∂Mi

∂X b p1, ...,
∂Mi
∂X b pr) (4.27)

and finally, to obtain the reduced dynamical operator M̃i , we pre-multiply by PT

M̃i = PT (∂Mi
∂X b p1, ...,

∂Mi
∂X b pr). (4.28)
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4.4 Numerical experiments

4.4.1 POD-reduced Model Variation

Set-up

In order to maximize speed of computations, we first attempt to apply POD-based order
reduction to both the forward and the adjoint directions of the simulation.

To obtain observations (the ”truth”), the full forward model is run for a timespan of
30.000 seconds with the initial geopotential and wind fields described in Section 4.1. In
two different set-ups, the time step is 300 seconds for one and 600 seconds for the other,
meaning 100 and 50 time steps, respectively. To get the POD basis vectors, a snapshot
matrix is constructed with state vectors from all time steps included and a singular value
decomposition is performed. The projection matrix P is composed of 8 dominant singular
vectors, which correspond to more than 99, 9999% total energy (see Figure 4.3).
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Figure 4.3: Distribution of singular values for time steps of 300 seconds (left) and 600 seconds
(right).

From there, the reduced dynamical operator M̃i is constructed by perturbing the non-
linear full model operator Mi (which in this case is the procedure that advances the
current state by one time step) in the directions of the dominant POD modes. Once this
is available, the adjoint model can easily be constructed, since we only need to transpose
the operator M̃i . Also, we assume the reduced dynamical operator to be constant for all
time steps, so the index i can be removed: M̃i ≡ M̃ .

Because the optimization using L-BFGS updates runs in reduced space for this method
and we are not using any background terms, the appropriate version of the cost function
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is (see equation (2.17))

Ĵ (ξ0) = 1
2

m∑
i=0

(Y (ti)−H (X̂(ti)))T R−1
i (Y (ti)−H (X̂(ti))),

with

X̂(ti) = Pξ(ti) + X b

and the gradient of the approximate cost function Ĵ is computed as

∇Ĵ (ξ0) = −ν̂(t0), (4.29)

where the adjoint state evolves in time by

ν̂(ti) = M̃ T ν̂(ti+1) + PT H T R−1
i (Y (ti)−H X̂(ti)). (4.30)

Results

If the POD-reduced model variation method worked reasonably well with the subsurface
contaminant transport model, the same cannot be said for the shallow water model.

In the smaller time step case, the initial reduced cost function value is 1259 and is lowered
in five iterations down to 1184, which is a reduction of only 6%. The full space cost func-
tion was also calculated by projecting the reduced solution back into the original state
space. Its value is 1755 before and 1751 after optimization, which is a 0.2% decrease, that
is hardly any decrease at all.

For the larger time step, the initial cost function values are 598.9 in the reduced space and
863.6 in the full space before optimization. Afterwards, they are 566.8 and 835.6, which
means a 7% and 3.2% decrease, respectively.

Optimization terminates in both experiments after five iterations due to line search not
finding a suitable point in the computed direction. Most likely this is due to the addi-
tional error in gradient approximation, introduced by the need to compute the reduced
dynamical operator by linearization. Figure 4.4 shows the cost function value progressions
for both time step settings. A confirmation of the optimization being bound to terminate
early is also the infinity norm of the gradient, which goes from 71 to 0.003 for the smaller
time step and from 34.2 to 0.001 for the larger time step. The gradient norm values are
shown in Figure 4.5. Visual feedback of the final approximate of the initial conditions be-
ing rather far from the truth can be observed in Figure 4.6, which shows the geopotential
state after optimization for the 300 second and 600 second time step.
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Figure 4.4: Cost function values by optimization iteration for time steps of 300 seconds (left) and
600 seconds (right).
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Figure 4.5: Gradient norm by optimization iteration for time steps of 300 seconds (left) and 600
seconds (right).

4.4.2 POD-reduced Adjoint Method

Set-up

Since the order reduction in both forward and adjoint models did not deliver satisfactory
results, we attempt to utilize the POD-reduced adjoint method, suggested in [2] and
employed already in chapter 3 of this thesis. In this method, the forward model is used
to evaluate the cost function

J (X0) = 1
2

m∑
i=0

(Y (ti)−H (X(ti)))T R−1
i (Y (ti)−H (X(ti))) (4.31)

which means that the optimization is performed in the full state space, as opposed to the
POD-reduced model variation, where we optimized in reduced space.

The adjoint model, however is still constructed as before by linearization around the
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Figure 4.6: Final approximate of initial geopotential field for 300 second time step (left) and 600
second time step (right).

background state, obtaining the reduced dynamical operator M̃ and using

ν̂(ti) = M̃ T ν̂(ti+1) + PT H T R−1
i (Y (ti)−HX(ti)) (4.32)

to calculate the gradient of the cost function via

∇J (X0) = −P ν̂(t0). (4.33)

Results

Performing the optimization in the full state space improves the performance drastically
over the POD-reduced model variation method for both versions of the experiment.

For the 300 second time step case, the initial cost function value is 1755 and drops down to
17.6 in four iterations for a decrease of two orders of magnitude or more precisely, 99.0%.
After that, no more decrease can be found along the computed direction. Table 4.1 shows
the cost function values and the gradient norms for this case.

Iteration cost value gradient norm
0 1755 139.0
1 133.7 33.7
2 19.40 4.37
3 17.62 0.31
4 17.57 0.39

Table 4.1: Cost function values and gradient norms for Reduced Adjoint method with 300 second
time step.

For the 600 second time step case, the initial cost function value is 863.7 and decreases
similarly rapidly to 8.43 in four iterations. The relative decrease is again 99.0%. In the
fifth iteration, no further decrease can once again be found. Table 4.2 shows the corre-
sponding values for the cost function and the gradient norm for this experiment.
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Figures 4.7 and 4.8 show the values from tables 4.1 and 4.2 graphically while the evo-
lution of the initial geopotential field can be seen in figures 4.9 and 4.10. Compared to
Figure 4.6, the final approximations are visibly closer to the correct initial conditions as
depicted in Figure 4.1. It is thus shown that using the full forward model to evaluate the
cost function is very beneficial as opposed to using the reduced model in both directions.

Iteration cost value gradient norm
0 863.7 68.5
1 61.85 16.0
2 9.18 1.92
3 8.45 0.13
4 8.43 0.16

Table 4.2: Cost function values and gradient norms for Reduced Adjoint method with 600 second
time step.
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Figure 4.7: Cost function values by optimization iteration for time steps of 300 seconds (left) and
600 seconds (right).
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Figure 4.8: Gradient norm by optimization iteration for time steps of 300 seconds (left) and 600
seconds (right).
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Figure 4.9: Initial geopotential field evolution for 300 second time step.
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Figure 4.10: Initial geopotential field evolution for 600 second time step.
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4.4.3 Comparison with Full Adjoint Method

In [11], a full order adjoint model was programmed by X. Chen and I. M. Navon with the
purpose of calculating optimal control for the shallow water equations. We compare the
performance of this full adjoint to the reduced order one obtained by POD in this thesis.

Contrary to the reduced adjoint method, the full order version never terminates because
no further decrease can be found. It reaches the set minimal cost function value of 10−6

in 8 iterations. This is of course possible due to the more accurate gradient computation,
giving better search directions in each step of the optimization process. The price to pay
for increased accuracy, though, is higher computational cost.

Figure 4.11 shows the comparison between the two methods per iteration for the first
four iterations (until a decrease of two orders of magnitude is reached). It seems that the
two adjoint methods exhibit similar behaviour until at some point the reduced adjoint
terminates. However, this iteration-based view does not give the full story, as we can see
if we set the number of function evaluations as the horizontal axis in place of the number
of iterations. Every cost function evaluation is a forward model run and this corresponds
roughly to the time spent in optimization (not completely so, because some function calls
include gradient computations and some do not). This comparison is shown in Figure
4.12 and it is clear that, until it terminates, the reduced adjoint method is considerably
faster, using in this case only 10 cost function evaluations to reduce it by two orders
of magnitude, while the full adjoint takes 22 evaluations, more than twice as many, to
achieve about the same result. In addition, gradient computations in the reduced adjoint
method are performed in reduced order space, which makes them faster than their full
order counterparts as well.

The conclusion from this experiment is that the reduced adjoint method performs very
well and computationally more efficiently than the adjoint method. Furthermore, it avoids
the difficulties of actually programming the full order adjoint model.
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Figure 4.11: Cost value by iteration for full (red) and reduced (blue) adjoint. 600 second time step
left, 300 second time step right.
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Figure 4.12: Cost value by forward model runs for full (red) and reduced (blue) adjoint. 600 second
time step left, 300 second time step right.
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4.4.4 Perturbing Observations

Throughout the experiments so far we have assumed the observations (our measured
”truth”) to be perfect, meaning that they were exactly the values calculated by the model
in a separate run. In practical applications, however, observations are collected by mea-
surements and those are prone to measurement errors. Therefore, it is sensible to investi-
gate sensitivity of the data variation method, specifically the reduced adjoint variant, to
these errors. The full adjoint method need not be tested because its gradient computation
is independent of the observed truth.

Set-up

To simulate the situation of measurements with errors, perturbations were induced in the
process of obtaining the truth. Each entry in the observations set was multiplied with a
random number between 1 + ε and 1− ε, corresponding to measuring with a relative error
of ε. The reduced adjoint method was used and the rest of the optimization procedure
remained unchanged. The experiment was done with ε values of 1%, 3%, 5%, 10%, 20%,
30% and 50%. The grid size remained as before at 15-by-15 in this and the following
section.

One obvious effect of perturbing observation we expect is a change in the initial cost
function value, since it evaluates the differences between the model results and the mea-
sured truth. If we were using the full adjoint method, this would also be the only effect of
the perturbations. The reduced adjoint method, however, also includes the truth values
in the calculation of the approximate gradient. This means that the results are possibly
further affected by perturbing observations.

Results

As expected, the amount of perturbation to the observations has a significant impact on
the cost function values due to the larger deviations between the initial guess and the now
slightly skewed truth, which are accumulated in the cost function. For the smaller time
step case the initial cost goes from 1755 without perturbation up to as high as 9205 for
the 50% perturbing factor. For the larger time step, the initial cost without perturbation
is 863.7 and is increased up to as far as 4619 in the extreme case.

The optimization procedure lowers these values as shown in Table 4.3 for the 300 sec-
ond time step and Table 4.4 for the 600 second time step. The final cost values are clearly
very much impacted by the inaccurate observations. Figures 4.13 and 4.14 show this
graphically for all the different perturbation factors.
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Iteration 0 1 2 3
1% perturbation 1760 137.3 22.32 20.55
3% perturbation 1779 159.4 45.9 44.1
5% perturbation 1839 208.3 92.56 90.73
10% perturbation 2051 432.8 313.9 312.7
20% perturbation 2919 1319 1206 1204
30% perturbation 4383 2773 2675 2673
50% perturbation 9205 7547 7458 7456

Table 4.3: Cost function values per iteration for 300 second time step with different observation
perturbation magnitudes.

Iteration 0 1 2 3
1% perturbation 864.6 63.22 10.62 9.88
3% perturbation 875.8 74.53 22.86 22.12
5% perturbation 898.8 97.52 45.25 44.53
10% perturbation 1018 208.4 154.4 153.7
20% perturbation 1459 657.4 601.2 600.6
30% perturbation 2178 1384 1338 1337
50% perturbation 4619 3790 3721 3720

Table 4.4: Cost function values per iteration for 600 second time step with different observation
perturbation magnitudes.

However, this is not necessarily bad news. Inaccurate observations add to the penalty
terms of the cost function, thus we cannot expect to converge to a zero cost. Finding its
minimum, however, perhaps still leads to the correct solution. To check this, the final
approximations for each perturbation factor were evaluated again, but this time against
the unperturbed truth. Results are shown in Figure 4.15 and actual cost function values
are shown to be, in fact, quite low. Significant deviation from the minimal value is not
visible with perturbations up to 10%.
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Figure 4.13: Cost function values per iteration for 300 second time step with different observation
perturbation magnitudes.
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Figure 4.14: Cost function values per iteration for 600 second time step with different observation
perturbation magnitudes.
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Figure 4.15: Final corrected cost function values for increasing perturbation magnitude from left
to right. 300 second time step red, 600 second time step blue.

4.4.5 Using Fewer Observation Points

Another assumption that has been made in the first experiments was that every point
in the discretization grid was included in the set of observations. In practice this would
most likely not be the case, which is why in the following experiment the optimization
procedure is done with smaller sets of observed grid points.

Because the cost function J reads as

J (X0) = 1
2

m∑
i=0

(Y (ti)−H (X(ti)))T R−1
i (Y (ti)−H (X(ti))), (4.34)

which includes the observation operator H , the cost of the same approximate X0 varies
with the choice of the points included in observations. The fewer the points being observed,
the lower the cost function value is likely to be. Whether and how this affects convergence
to the correct minimum is what we want to see.
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Set-Up

As before, two time step scenarios were kept, i.e. the 300 second and 600 second time step
version of the model. Sets of observed points were generated such that the ratio of observed
points to all points was 25%, 17%, 14%, 12%, 10%, 5% and 2%. The points observed were
spaced equally through the grid to avoid areas starved of observation. An example is
shown in Figure 4.16 for the 25% observation ratio. The data variation procedure was
done with all these sets in the same manner as in previous experiments.
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Figure 4.16: Geopotential field points included in observation set for the 25% observed ratio. Black
points are observation points.

Results

Reductions in the amount of observed points do not have a drastic effect on the data
variation procedure in terms of hindering convergence. In all experiments, the cost func-
tion was decreased by at least two orders of magnitude, but the individual values differed
between observation point sets because of the differences in the cost function calculation
described in the beginning of this experiment. Generally, the initial cost function was
lower for fewer points being observed, but sometimes, presumably because of some critical
high magnitude points being observed, this was also not the case. Figure 4.17 shows the
cost function values by iteration for the 300 second time step and Figure 4.18 the same
for the 600 second time step.

As in the perturbed observation experiments, because of the different cost function cal-
culations, comparison between results is not possible directly. Instead, the end approxi-
mations are re-evaluated using the original cost function which includes all grid points in
the observation set. These values then serve to assess the quality of the final approximates.



42 CHAPTER 4. SHALLOW WATER EQUATIONS

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
0

50

100

150

200

250

300

350

400

450

500

 

 
25%
17%
14%
12%
10%
5%
2%

Figure 4.17: Cost function values per iteration for 300 second time step with different observation
point ratios.
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Figure 4.18: Cost function values per iteration for 600 second time step with different observation
point ratios.

Figure 4.19 depicts the corrected cost values for approximates obtained with different
observation sets. Significant deteriorations in the final cost do not appear for observation
ratios above 15% for both time steps, which indicates a high level of robustness of the
methods used.

Finally, Figures 4.20 and 4.21 show approximates of the geopotential field obtained with
the observation ratios of 25%, 17%, 12%, 10%, 5% and 2%. A visual confirmation of what
the cost function values indicated can be seen, since artefacts in the image start to become
visible once the observation ratio falls below 15%.
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Figure 4.19: End cost function values for 300 second time step in red and 600 second time step in
blue. Horizontal axis marks per cent ratio of observed grid points.
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Figure 4.20: Geopotential field approximations for 300 second time step with 25%, 17% and 12%
points observed in top row and 10%, 5% and 2% points observed in bottom row.
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Figure 4.21: Geopotential field approximations for 600 second time step with 25%, 17% and 12%
points observed in top row and 10%, 5% and 2% points observed in bottom row.





Chapter 5

Summary and Future Research

5.1 Summary

Inverse modelling and parameter estimation can be done using variational methods, of
which specifically four dimensional data variation is considered in this thesis. Associated
with this type of methods, however, are difficulties in connection with programming the
adjoint model, which is needed to compute the exact gradient of the cost function. Ad-
ditionally, having to integrate the adjoint model backwards in time adds significantly to
the computational cost of the data assimilation process. To avoid manual implementation
of adjoint code and to reduce computational complexity, approximation of the gradient
calculation is considered.

In this thesis, proper orthogonal decomposition is studied as a model order reduction
method. Being a fully data-driven method, it is exceptionally flexible in the sense that
nothing of the physics of the underlying model needs to be known for its implementation.
This can also be viewed as a weakness of the method, however, since the quality of ap-
proximation depends greatly on the set of snapshots, which is required to compute the
POD projection matrix. The snapshots thus need to capture as much of the dynamics of
the model as possible.

Two ways of using POD in 4D-VAR are presented in the thesis, namely reduced model
variation and the reduced adjoint method. Both of these methods employ proper orthog-
onal decomposition to obtain a reduced order approximation of the forward linear tangent
operator, which is itself an approximation of the Jacobian matrix. The difference between
the two methods lies in the treatment of the forward model. Reduced Model Variation
performs optimization of the parameter set entirely in reduced space, thereby achieving
very low computational costs, but sacrificing accuracy of the end result. On the other
hand, the reduced adjoint method uses POD to approximate only the adjoint model and
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keeps the full order forward model in cost function evaluations. This slows down the op-
timization procedure, but significantly improves the quality of the final parameter set.

Firstly, both of the described methods as well as the full order adjoint method were
tested with a linear model, i.e. the ground water subsurface contaminant model. Twin
experiments were done, comparing the three methods in terms of accuracy and compu-
tational speed. Reduced model variation exhibited high speed of computation, but after
some iterations eventually converged to a considerably higher cost function value that the
other two methods. In terms of convergence, the reduced adjoint method performed best
of all three, outperforming even the full adjoint method. The latter also converged, but
required a significantly larger number of iterations.

The same methods were then tested on a more complex non-linear model, namely the
Shallow Water Equations implementation by I. M. Navon and X. Chen. In the non-linear
case, the additional approximation error that is introduced by using the tangent linear
operator in place of the Jacobian, contributes significantly to the error of both approxi-
mate methods. In the case of reduced model variation, the effect is especially detrimental,
since experiments showed that hardly any improvement of the cost function was achieved,
rendering the method unsuitable for further experimentation. The reduced adjoint ver-
sion, however, still achieved cost function reductions of at least two orders of magnitude
and also still outperformed the full adjoint method in computational speed up to that
point, using considerably fewer cost function evaluations, less than half as many, in fact.
This put the reduced adjoint method at an advantage among the three approaches. In
the situation, however, when exceptionally low cost values are required, they can only be
reached by using the full adjoint method.

Additionally, sensitivity of the methods to perturbations in observations (i.e. the val-
ues that are available either as measurements or numerical experiments and that we take
as the truth) and the number of observation points was examined. In the first set of
experiments, very little deviation from the unperturbed results was visible when using
perturbation factors up to 10%. Furthermore, the same behaviour was observed when the
ratio of observation points was above 15%. Both of these results suggest that the reduced
adjoint method is an easy to implement, robust way of achieving reasonably high cost
function reductions in the context of variational data assimilation.

5.2 Future Research

In this section, some further research directions are outlined, which might improve on the
work of this thesis.
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Non-linear Approximation

When using POD to reduce the order of non-linear models, the tangent operator is in-
troduced in order to obtain a linear reduced model. Otherwise the original non-linear
operator would have had to be kept in (2.7). This was identified as a considerable source
of approximation error, as is visible by the deterioration of experimental results when com-
paring the non-linear to the linear case. Additional gain in accuracy might be achieved
by considering methods specifically designed to approximate non-linearities, such as the
discrete empirical interpolation method (DEIM), introduced in 2010 by Chaturantabut
and Sorensen in [10].

The Optimization Procedure

By example of other data assimilation work (see [2, 11]), the L-BFGS quasi Newton
method was adopted throughout the thesis for all optimization. Since no other methods
were considered in the extent of this work, it is a possibility that a different choice of
optimization method might have beneficial effects on the results.

Choosing Snapshots for the POD basis

In this thesis, the set of model state snapshots required to compute the POD basis was
collected by integrating the forward model once and selecting either all state vectors or
part of them to be included in the snapshot matrix. If the snapshots could be chosen in
a more intelligent way, this would likely benefit the reduced order model, decreasing its
approximation error and thus improving the accuracy of the final estimate of the parameter
set.
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Appendix A

Adjoint Model Derivation

Recalling the objective function J , we expand it with Lagrange multipliers in (2.12) to
the form

J̄ = J (x0, ..., xm) +
m∑

i=1
νT

i gi(xi , xi−1). (A.1)

Taking total differentials, we obtain

dJ̄ = dJ +
m∑

i=1
νT

i
∂gi
∂xi

dxi +
m∑

i=1
νT

i
∂gi
∂xi−1

dxi−1 (A.2)

and by shifting the index of the second sum to join terms

dJ̄ = dJ +
m∑

i=1
(νT

i
∂gi
∂xi

dxi + νT
i+1

∂gi+1
∂xi

dxi)

+νT
1
∂g1
∂x0

dx0 + νT
m+1

∂gm+1
∂xm

dxm . (A.3)

We require the boundary term νT
m+1

∂gm+1
∂xm

dxm to be zero for any differential dxm , which
implies νm+1 = 0. Plugging in the differential of J , i.e.

dJ =
m∑

i=0

∂J
∂xi

dxi (A.4)

we arrive to

dJ̄ =
m∑

i=1
(νT

i
∂gi
∂xi

+ νT
i+1

∂gi+1
∂xi

+ ∂J
∂xi

)dxi + ∂J
∂x0

dx0 + νT
1
∂g1
∂x0

dx0. (A.5)

The adjoint model is obtained by setting the coefficients for terms dx1, ...dxm to zero:

νT
i
∂gi
∂xi

+ νT
i+1

∂gi+1
∂xi

+ ∂J
∂xi

= 0. (A.6)

Taking the transpose gives us the system of adjoint equations for i = 1, ...,m(
∂gi
∂xi

)T
νi +

(
∂gi+1
∂xi

)T
νi+1 +

(
∂J
∂xi

)T
= 0, (A.7)
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which is solved backwards in time with the initial condition νm+1 = 0. The total differ-
ential of J̄ is then given by

dJ̄ = ( ∂J
∂x0

)T dx0 + (∂g1
∂x0

)Tν1dx0 (A.8)

and from there we get the gradient

dJ̄
dx0

= ( ∂J
∂x0

)T + (∂g1
∂x0

)Tν1. (A.9)

Inserting the actual terms for gi and J into this general form gives us the formulae pre-
sented in sections 2.2 and 2.3.


	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Acknowledgements
	Introduction
	Data Assimilation
	Model Order Reduction
	Proper Orthogonal Decomposition

	Motivation and Research Goals
	Content outline

	Preliminaries
	Proper Orthogonal Decomposition
	The Singular Value Decomposition
	The POD Method
	Example

	Four Dimensional Variational Data Assimilation
	Inverse modelling using POD
	POD-reduced Model Variation
	POD-reduced Adjoint Method

	The L-BFGS method

	Ground Water Subsurface Contaminant Model
	The Model
	Experiment set-up and POD suitability

	Numerical experiments

	Shallow Water Equations
	The Shallow Water Equations
	Discretization
	The adjoint models
	Computing the reduced dynamical operator

	Numerical experiments
	POD-reduced Model Variation
	POD-reduced Adjoint Method
	Comparison with Full Adjoint Method
	Perturbing Observations
	Using Fewer Observation Points


	Summary and Future Research
	Summary
	Future Research

	Bibliography
	Appendices
	Adjoint Model Derivation

