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 A B S T R A C T

Thermal energy recovery is being investigated by leading aerospace companies as a means to improve the 
efficiency of next-generation propulsion systems. The organic Rankine cycle (ORC) system, due to the flexibility 
of the concept, is arguably the best technology for waste heat recovery and, thus, a promising solution to 
develop recuperated engines. In such systems, heat exchangers are arguably the most critical components, 
as their design must balance thermal performance with constraints on weight and volume. Consequently, 
integrating the optimization of heat exchangers into the overall system design may lead to substantial 
performance enhancement compared to more traditional iterative design methods.

The objective of this study was the development of a systematic methodology for optimizing airborne 
thermal systems, with a focus on addressing the computational challenges of integrated design. Three design 
strategies are compared: (i) optimization of the sole cycle parameters while performing heat exchanger sizing 
for values of the geometrical characteristics defined a priori based on a preliminary investigation of the design 
space of these components, (ii) concurrent optimization of both the thermodynamic cycle and of the most 
critical heat exchanger, e.g., the condenser, and, (iii) use of a data-driven surrogate model of the condenser to 
predict the optimal heat exchanger geometry as a function of any feasible thermodynamic conditions to reduce 
the number of optimization variables of the integrated design problem. The surrogate model is constructed 
based on datasets of Pareto-optimal HX designs in the objective space defined by heat exchanger weight and 
pressure drops.

The three design strategies are applied to two case studies featuring supercritical ORC systems utilizing 
cyclopentane as the working fluid: a combined cycle auxiliary power unit (CC-APU) and a combined cycle 
turboshaft (CC-TS) engine. Findings indicate that integrated optimization yields performance gains that 
vary depending on the heat exchanger topology, application, and thermodynamic cycle. For instance, CC-
APU designs obtained with the integrated design optimization method are up to 15% lighter than designs 
obtained with the optimization of the thermodynamic cycle parameters alone, for the same net power output. 
Microchannel condenser designs with offset strip fins allow for obtaining a better performance than louvered 
fin-based designs if a low-pressure drop is targeted, whereas louvered fins are advantageous if a higher pressure 
drop is allowed. The design strategy employing the surrogate model considerably reduces the computational 
cost, without significantly affecting accuracy: the relative deviation between the Pareto front obtained with 
the surrogate model and that obtained with the integrated optimization strategy ranges between 1% and 2.9%. 
These values are comparable to the uncertainty of the predictions of the heat exchanger model. The reduction 
in computational time required to generate the Pareto fronts associated with the two case studies is up to 
200%.
1. Introduction

In recent years, there has been a surge in research aimed at de-
veloping innovative technical solutions to improve the efficiency and 
sustainability of aircraft propulsion and power systems. Notably, MTU 
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Aero Engines researched a water-enhanced turbofan (WET) concept, 
which is designed to utilize residual heat from the engine’s exhaust. 
This system incorporates a steam generator that injects vaporized water 
into the combustor to reduce NO𝑥 emissions [1,2]. Furthermore, the 
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Pratt & Whitney HySIITE engine concept [3] is based on the com-
bustion of hydrogen as part of a thermodynamic cycle incorporating 
steam injection. Thus, in this case, greenhouse gas emissions could 
be reduced. Another promising solution involves the adoption of an 
organic Rankine cycle (ORC) waste heat recovery (WHR) unit to har-
vest thermal energy from the gas turbine exhaust and convert it into 
additional power  [4]. The feasibility and performance of these engine 
concepts depend on the optimal design of compact and lightweight heat 
exchangers. According to conventional design practices, the prelimi-
nary design of heat exchangers of stationary ORC power plants is based 
on specifications prescribed by the results of the thermodynamic cycle 
optimization for the specific application. Established design guidelines 
provide indications only if the optimal ranges for key variables, such 
as minimum temperature difference and allowable pressure drop, are 
prescribed [5]. In this case, the techno-economic performance of the 
system depends on the weight and size of heat exchangers (HX), while 
these factors are not critical for plant technical feasibility. Conversely, 
weight and size are crucial for HXs of propulsive applications such as 
automotive, marine, and aircraft engines. More specifically, selecting 
an appropriate HX topology and determining the optimal geometry are 
closely linked to the design of the thermodynamic cycle and imposed 
space constraints. For instance, the performance and feasibility of ORC 
WHR units depend not only on conversion efficiency – directly tied 
to HX effectiveness and thermo-hydraulic performance – but also on 
overall system weight and spatial constraints.

Currently, only a few studies document the integrated design of 
HXs together with the associated thermodynamic processes of WHR 
units. For instance, Lecompte et al. [6] studied the coupling of the 
thermodynamic model of an ORC system serving as a bottoming unit of 
a stationary gas turbine with a thermo-hydraulic design methodology 
for plate heat exchangers. The integrated optimization of the system 
and HX specifications (inlet temperatures, mass flow rates, etc.) allows 
for the quantification of the trade-off between net power output and 
investment cost. Similarly, Chatzopoulou et al. [7] investigated the 
off-design performance of a medium power capacity ORC unit recov-
ering thermal energy from stationary internal combustion engines. The 
subcritical non-recuperated ORC system was optimized to maximize 
the net power output of the combined power plant for both nomi-
nal and off-design operations. The geometrical characteristics of the 
HXs and the expander were fixed. The study compared the off-design 
performance of the system featuring two different HX and expander 
architectures. The optimal design procedures reported in Refs. [6,7] 
rely on predefined values of the HX geometric parameters, while weight 
and size are not constrained.

The optimization of the HX geometry is crucial for the effec-
tive design of aerospace thermal systems. For instance, Yu et al. [8] 
demonstrated that optimizing the precooler of an unconventional air-
breathing engine operating at high Mach number is essential not 
only for enhancing performance but also for ensuring the operational 
feasibility of the engine. Ascione et al. [9] documented a method for 
the design of vapor compression cycle systems in aerospace applications 
based on the integrated optimization of the thermodynamic cycle and 
the preliminary sizing of the main system components. The proposed 
design approach allows for the optimization of the system performance 
by simultaneously accounting for component performance and working 
fluid characteristics. Results show that more efficient systems are only 
possible at the expense of heavier components and that the constraints 
on the condenser size impact the system efficiency. The results of this 
study also show that the optimal HX size depends on the selected 
thermodynamic conditions, working fluid, as well as the targeted figure 
of merit for the optimization.

In this context, the work reported here is related to the development 
of a computationally efficient methodology to predict the performance 
of optimal HXs in the early design phase of aerospace thermal systems. 
The performance benefit of the simultaneous optimization of the ther-
modynamic cycle and the most critical HX (the condenser) is assessed. 
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Moreover, the procedure is improved from a computational point of 
view by replacing the conventional preliminary sizing procedure of the 
condenser with a data-driven surrogate model. The target is a reduction 
in the degrees of freedom associated with the integrated optimization 
procedure, with the consequent decrease in computational time and 
complexity of the design problem.

The use of data-driven surrogate models to predict the perfor-
mance of thermodynamic systems or their components is documented 
in the literature. Artificial neural networks (ANN) have been used 
for estimating the thermal performance of HXs. Common ANN archi-
tectures employed for this purpose include multilayer feed-forward 
networks [10], generalized regression neural networks, and adaptive 
neuro-fuzzy interface systems [11]. The application of these models 
ranges from predicting the overall HX thermal performance to simu-
lating the flow phase change. In particular, Yang et al. [10] developed 
a neural network model to predict the performance of fin-and-tube 
condensers used in air-cooled systems. A multi-layer perceptron (MLP) 
with one hidden layer, also known as a three-layer perceptron, was 
trained on a dataset obtained with a first-principle rating model to 
predict the refrigerant- and air-side pressure drops, given the HX inlet 
conditions. Though the data-driven model predictions show a good 
level of accuracy if compared to experimental results, the range of 
applicability is very limited, as the HX geometry was fixed in the defini-
tion of the training dataset. González et al. [12] developed data-driven 
models of a turbocharger and air intake for the dynamic simulation of 
the gas exchange process of an internal combustion engine. Two MLPs 
with one hidden layer are used to replace the models of the two com-
ponents and predict over time the charge flow and the intake manifold 
pressure under varying engine operating conditions. Giuffre’ et al. [13] 
reported a methodology to implement a data-driven model of single-
stage centrifugal compressors to facilitate the design optimization of 
an electrically driven vapor compression cycle system for aircraft. The 
surrogate model of the compressor is based on a MLP trained on a large 
synthetic dataset of centrifugal compressor designs. Specifically, two 
distinct regression models have been trained to predict the performance 
of a compressor design for given geometrical and thermodynamic 
specifications. The results demonstrated the computational benefit of 
replacing the mean line design procedure of the centrifugal compressor 
with a data-driven model, both in terms of the number of objective 
function evaluations needed to converge to an optimal solution and 
in terms of improved robustness of the system model. However, the 
literature currently lacks the documentation of studies about the use 
of ANN-based surrogate models to predict the performance of optimal 
HXs with size constraints. The development of such models can yield 
a significant reduction of the computational cost associated with the 
integrated design optimization of a thermodynamic system and its 
components.

The main objectives of this study are (i) to quantify the performance 
improvements that can be obtained if the HX with the largest influence 
on the system performance is optimized together with the thermo-
dynamic cycle and, (ii) to assess the computational cost reduction 
associated with using a data-driven surrogate model of optimized HXs 
to obtain the same optimal performance that is achieved through an 
integrated system-and-HX optimization. This paper is structured as 
follows. First, Section 2 introduces two case studies in which a super-
critical ORC system is used as a bottoming cycle to harvest thermal 
energy from aerospace-grade gas turbines. The thermodynamic model-
ing of the ORC WHR unit and the HX design methodology are described 
in Section 3. Subsequently, the differences between the three system 
design approaches investigated in this study are discussed. Then, Sec-
tion 3 details how the HX design method was employed to generate a 
dataset of optimized HX geometries for the ORC condenser. This dataset 
is then used to train an ANN-based regression model that predicts 
sets of Pareto optimal solutions of different condenser topologies over 
varying thermodynamic design specifications. The results of the system 
optimization employing the surrogate model in place of the detailed 
condenser model are reported and discussed in Section 4. Finally, the 
main outcomes of the study are summarized in Section 5 together with 
an outlook on future developments.
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Fig. 1. Process flow diagram of the CC-APU system concept.
Source: Adapted from Ref. [14].
2. Case studies

The feasibility and advantages of the proposed method over the 
conventional approach to system preliminary design are demonstrated 
by solving the optimal design problem of an ORC system recovering 
thermal energy from aircraft power and propulsion systems.

2.1. CC-APU

The first case study deals with the auxiliary power unit (APU) 
of a short-medium range single-aisle aircraft. The APU is equipped 
with a bottoming supercritical non-recuperated ORC WHR unit. Fig.  1 
shows the process flow diagram of the combined cycle system [14]. 
The gas turbine is a single-spool turboshaft engine providing power 
to a generator and an air compressor. The system operates only when 
the aircraft is on the ground. The ambient conditions assumed for 
system design correspond to atmospheric pressure and an ambient air 
temperature of 40 ◦C. The temperature and mass flow rate of the hot 
exhaust gases flowing through the primary HX are fixed at 847 K and 
0.84 kg/s, based on the nominal operating conditions of the APU gas 
turbine as reported by [14]. The exhaust gases are discharged to the 
ambient after passing through the primary HX of the ORC unit, thus 
heating up the working fluid, which is in a supercritical state. The ORC 
turbine gross power is converted into electrical power via a dedicated 
generator. The output of the system model, which is described in 
Section 3.1, includes the net power output of the ORC unit (𝑊̇net,ORC) 
and its mass (𝑀ORC). The optimization variables associated with this 
thermodynamic system correspond to the degrees of freedom associated 
with the cycle configuration, which are the maximum temperature 
(𝑇max) and minimum temperature (𝑇min) of the working fluid, the max-
imum cycle pressure (𝑃max), as well as the evaporator and condenser 
pinch point temperature differences (𝛥𝑇pp,ev and 𝑇pp,cnd).

2.2. CC-TS

The second case study is about the design of a combined cycle 
engine powering the fans of the turboelectric ONERA Dragon aircraft 
concept [15]. More in detail, the proposed combined-cycle engine 
features a non-recuperated two-spool turboshaft engine and a bottom-
ing supercritical ORC unit that harvests thermal energy from the gas 
turbine exhaust. Krempus et al. [16] assessed the potential of this 
propulsion concept, hereafter named CC-TS, via system simulations. 
The combined-cycle engines, whose process flow diagram is reported in 
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Fig.  2, are placed in dedicated pods positioned aft of the aircraft. They 
provide electrical power to the under-the-wing distributed propulsion 
system consisting of electrically driven ducted fans. Each engine has 
two ram air ducts symmetrically positioned above and below the 
midplane housing the condensers of the ORC WHR unit. The thermal 
energy rejected to the cold air by the condenser is partially converted 
into thrust by accelerating the ram air through a nozzle. The generated 
thrust offsets the drag of the ducts [16]. The primary HX is positioned 
aft of the gas turbine and transfers thermal energy from the exhaust 
gases to the working fluid in a supercritical state. The design point of 
the combined-cycle engine corresponds to the cruise condition, which 
is defined by a cruise speed of 𝑀0 = 0.78 and an altitude of 10 km. 
The net power that the combined cycle engines must generate (𝑊̇net) is 
determined by solving the following thrust-drag balance 
𝜂p𝜂tr𝑊̇net

𝑣0
= 𝐷 − (𝑇duct + 𝑇jet ), (1)

where 𝜂p and 𝜂tr are the ducted fan propulsive and transmission ef-
ficiencies, 𝐷 is the aircraft drag, 𝑇duct is the thrust associated with 
the ram air duct, 𝑇jet is thrust resulting from the discharge of the gas 
turbine exhaust gases and 𝑣0 is the cruise speed. In Eq.  (1), (𝑊̇net) is 
given by the sum of the net power generated by the turboshaft (𝑊̇net,TS) 
and by the ORC unit (𝑊̇net,ORC). A Newton–Raphson gradient-based 
solver is employed to solve the equations resulting from coupling the 
gas turbine, ORC system, and ram air duct models. The optimization 
variables of this system are the five degrees of freedom associated with 
the thermodynamic cycle, plus the number of passes of the primary HX 
(𝑁𝑝), the condenser tilt angle (𝜃), and the ram air duct intake mass flow 
rate ratio (MFR). These three additional design variables have been 
included to optimize the main dimensions of the ram air duct and allow 
for a wider range of primary HX designs.

3. Methodology: Models and design

3.1. Waste heat recovery unit

The two heat exchangers of the ORC system under consideration are 
the primary HX, or supercritical evaporator, which recovers part of the 
thermal energy of the exhaust of the gas turbine, and the condenser 
which rejects to the ambient the thermal energy required to condense 
the working fluid.

The ORC unit is modeled using an in-house tool for on-design ther-
modynamic cycle calculations. The Helmoltz-energy explicit equation 
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Fig. 2. Process flow diagram of the CC-TS engine concept.
Source: Adapted from Ref. [16].
of state (HEOS) model implemented in an open source program [17] is 
used for thermodynamic property modeling of the ORC working fluid, 
while the ideal gas model [18] is adopted for the gas turbine exhaust, 
whose mass-specific composition is fixed and assumed to be 74% N2, 
15.9% O2, 6.4% CO2, 2.5% H2O, 1.2% Ar for both test cases. The 
ORC turbine power output 𝑊̇ORC,turb is calculated assuming a constant 
isentropic efficiency of 0.94 [14], a mechanical efficiency of 0.99, and 
a generator efficiency of 0.97 for both test cases. The working fluid 
is pressurized by a centrifugal pump, whose isentropic efficiency 𝜂is,p
and electromechanical conversion efficiency 𝜂m,p are assumed constant 
and equal to 0.65 and 0.98, respectively [19]. The electromechanical 
conversion efficiency is the product of the mechanical and electrical 
motor efficiencies.

While for the CC-TS the ram air flows through the condenser duct 
thanks to the dynamic pressure resulting from the aircraft motion, in 
the case of the CC-APU the required condenser air mass flow rate 𝑚̇air is 
provided by a dedicated fan, driven by electrical power generated by 
the ORC turbo-generator. The isentropic efficiency of the electrically 
driven fan is assumed to be 0.6, while the electromechanical conversion 
efficiency is set equal to 0.98. As a result, the net power output of the 
WHR unit 𝑊̇net,orc is obtained by subtracting the pump and, if present, 
the fan power consumption from the turbo-generator power output.

The ORC system mass 𝑀ORC is estimated as the sum of the mass 
of the main ORC system components. The HX mass is an outcome of 
the design procedure (see Section 3.2). Assuming that the primary HX 
is fully flooded at start-up, the working fluid mass is estimated as the 
product of the fluid density at standard ambient conditions times the 
volume of the primary HX cold side, augmented by 20% to account 
for system piping. The turbo-generator mass is estimated assuming a 
specific power of around 5.5 kW/kg, based on the results reported 
by Van Der Geest et al. [20]. The same approach is adopted for the 
centrifugal pump, whose specific power is assumed to be 4 kW/kg 
as documented by Kwak et al. [19]. The balance-of-plant weight is 
assumed to be 5% of the overall system mass. This factor is increased 
to 10% if the fan and its electric motor are present.

3.2. Heat exchangers

The preliminary design of heat exchangers is a procedure that 
consists of finding the heat transfer area that satisfies the heat duty 
requirement given the inlet temperature, pressure, and mass flow rate 
of both the hot and cold streams. For this task, the in-house software
HeXacode is employed. HeXacode is written in Python and allows for 
the sizing, rating, and optimization of heat exchangers as standalone 
components or if placed in ram air ducts. Its accuracy has been verified 
against the results of a widely adopted commercial software [21]. For 
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both the heat exchangers of the ORC unit, the gas-side height 𝑌  and 
width 𝑋, which determine the frontal area, are input to the design 
routine. The heat exchanger depth 𝑍 is instead calculated to meet the 
design specifications.

The HX models are based on a discretization of the heat exchanger 
in control volumes, or cells, encompassing a portion of the fluids on 
each side and the core material acting as a dividing wall. These cells 
are characterized by a specific heat duty and may differ in size. The 
first guess of the heat transfer area in each cell is estimated to be 
proportional to their heat duty. Heat and momentum balance equations 
are solved for each cell to calculate the heat transfer area needed 
to satisfy the imposed local thermal power load and the associated 
pressure drops. The number of discretization cells of the condenser is 
set to three, such that the enthalpy drop distribution among the cells 
is characterized by only one working fluid phase at a time, e.g., super-
heated vapor, condensing fluid, or subcooled liquid. The enthalpy drop 
associated with the control volumes is updated at each iteration based 
on the estimated pressure drop to ensure that the fluid phase of the 
cell remains the same. In the case of the primary HX, which features 
multiple fluid passes in a counter-crossflow arrangement, the number of 
cells is set equal to the number of passes, which is a degree of freedom 
of the design problem.

In each cell, local heat transfer and pressure drop coefficients are 
estimated using specific correlations, depending on the fluid phase and 
adopted geometry. These are formulated in nondimensional terms and 
listed in Table  1. The local gas side ℎ𝑛𝑔 and working fluid side ℎ𝑛wf
heat transfer coefficients are used to calculate the overall heat transfer 
coefficient of the cell relative to the working fluid area as 

𝑈wf
𝑛 =

(

𝛼𝑅
𝜂𝑛0,𝑔 ℎ𝑛𝑔

+ 1
𝜂𝑛0,wf ℎ𝑛wf

+ 𝑅̂𝑊 𝛼W

)−1

, (2)

in which 𝛼𝑅 is the ratio between the heat transfer surface compact-
ness of the working fluid side and that of the gas side, 𝜂0 is the 
surface efficiency, 𝛼W is the ratio between the heat transfer area of 
the working fluid side and that of the separating wall, and 𝑅̂W is the 
wall thermal resistance estimated according to the method described 
by Ranganayakulu et al. [22]. Thus, the required cell heat transfer area 
of the working fluid side is calculated as 

𝐴𝑛
wf =

𝑄𝑛

𝑈𝑛
wf 𝐹 𝑛 𝛥𝑇 𝑛

lm
, (3)

in which 𝑄𝑛 is the cell heat duty, 𝛥𝑇lm𝑛 is the local mean logarithmic 
temperature difference and 𝐹 𝑛 is its correction factor [23]. Note that 
𝐹 𝑛 is lower than unity for any flow arrangement different from the pure 
counterflow and depends on the local effectiveness and heat capacity 
ratio, except in the case of phase change and negligible pressure drop. 
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Fig. 3. Sketch of the flat tube microchannels with louvered or offset strip fins.
Table 1
List of correlations used in the HX models.
 HX Fluid Property Reference  
 
Primary HX

Exhaust gas 𝑁𝑢 Martin [24]  
 𝐶𝑓 VDI [23, Ch. L1.4]  
 WF 𝑁𝑢 Laminar:

Shan and Bhatti [25]
Turbulent:
Kang and Chang [26]

 

 (supercritical) 𝑓 Laminar:
Shah [27, Ch. 7] 
Turbulent: 
Colebrook-White [23, L1.2]

 

 

Condenser

Air 𝑗 Chang and Wang [28]  
 (Louvered fins) 𝑓 Chang et al. [29]  
 Air 𝑗 Manglik and Bergles [30]  
 (Offset-strip fins) 𝑓 Manglik and Bergles [30]  
 WF 𝑁𝑢 Gnielinski [31]  
 (single phase) 𝑓 Laminar:

Shah [27, Ch. 7] 
Turbulent: 
Colebrook-White [23, L1.2]

 

 WF 𝑁𝑢 Shah [32]  
 (condensation) 𝑑𝑃∕𝑑𝑍 Del Col et al. [33]  

If this condition occurs, the heat capacity ratio is equal to 0, and it is 
possible to demonstrate that 𝐹 𝑛 is equal to 1. Moreover, as the number 
of discretization cells increases, the change in temperature in the hot 
and cold streams across a cell gets smaller, and the correction factor 
tends to unity. The design routine updates the heat transfer area of 
each cell until the relative difference in the calculated HX core depth 
between two consecutive iterations is smaller than 1%. The output of 
the design calculation is the heat exchanger size, total mass, and overall 
pressure drops over both fluid sides.

3.2.1. Condenser
Two main topologies are considered for the ORC condenser: (1) flat-

tube microchannel compact heat exchangers with louvered fins, and (2) 
flat-tube configurations with offset-strip fins (see Fig.  3). In both cases, 
the working fluid flows in small rectangular channels within the flat 
tubes, while the air flows through the fins. Both offset and louvered fins 
enable high levels of compactness (over 1100 m2∕m3 [5]) at the expense 
of larger pressure drops due to the recurrent breaking of the thermal 
boundary layer, which also increases heat transfer performance. These 
fin topologies promote small and light HX designs as shown by Guo 
et al. [34], and are often used in the automotive and aerospace sectors. 
The fin and flat tube thicknesses are both set to 0.2 mm, while the 
height of the microchannels ℎmc is set to 1.6 mm. The louver fin 
length 𝐿𝑙 is fixed to 90% of the fin height. These fixed geometry-
specific parameters are chosen based on engineering judgment and 
manufacturability considerations. All the other geometric parameters 
(see Table  2) are degrees of freedom of the integrated design strategy. 
The condenser core material is a manganese-based aluminum alloy 
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Table 2
Overview of the chosen HX geometry-specific parameters and their bounds.
 Variable Bounds Parameter Imposed value 
 
HX

𝑤mc [mm] 1–2.5 ℎf t [mm] 1.8  
 AR [−] 0.5–2 𝑡mc [mm] 0.2  
 𝐴fr [m2] 1  
 
Louvered fins

𝐹h [mm] 6–16 𝑡f [mm] 0.2  
 𝐹p [mm] 1.2–4 𝐿l [mm] 0.9 𝐹h  
 𝐿𝛼 [◦] 10–30 –  
 𝐿p [mm] 1.2–3.6 –  
 
Offset-strip fins

𝛼 [−] 0.1–1 𝑡f [mm] 0.2  
 𝛿 [−] 0.012–0.037 –  
 𝛾 [−] 0.038–0.122 –  

of the 3000 series, characterized by high levels of strength, good 
formability, and corrosion resistance Kaltra GmbH [35] . While the core 
height 𝑌  and width 𝑋 of the air side are input to the design routine, the 
heat exchanger depth 𝑍 is calculated to meet the design specifications. 
In the case of the condenser, the depth is proportional to the number 
of microchannels of width 𝑤mc within the flat tubes and can be directly 
determined from the heat transfer area as 

𝑍 = 𝑡mc +

(𝑁cells
∑

𝑖=0
𝐴𝑛
wf

)

𝑇p(𝑤mc + 𝑡mc)
2 𝑋 𝑌 (𝑤mc + ℎmc)

, (4)

where 𝑇𝑝 and 𝑡mc are the flat tube pitch and thickness, respectively. 
Upon convergence of the design routine, the total weight of the heat 
exchanger is estimated by summing the weight of the core and the 
weight of the casing. The casing consists of four flat plates enclosing the 
HX core and providing structural stability. The weight of the manifolds 
is not accounted for.

3.2.2. Primary heat exchanger
The chosen topology for the primary HX consists of a multi-pass 

bare-tube bundle where the working fluid circulates inside the tubes, 
in a counter-crossflow arrangement with respect to the exhaust gases 
(see Fig.  4). A nickel-based alloy named HastelloyX is chosen as the 
material of the primary HX core due to its high oxidation resistance 
up to 1200 ◦C and good mechanical properties up to temperatures 
greater than the maximum exhaust temperature of aeroengine gas 
turbines [36]. The tube outer diameter 𝑑o is fixed to 1.8 mm, while 
the tube thickness is calculated given the pressure difference between 
the working fluid and the exhaust gases, assuming 0.2 mm as the 
minimum value. The optimal values of transverse 𝑥t and longitudinal 
𝑥l pitches between the tubes were determined through a sensitivity 
study, in which the preliminary design of the primary HX was repeated 
while varying the values of these variables along with the design spec-
ifications of the component. Fig.  5 shows the results of the sensitivity 
study in terms of pressure drop on the exhaust gas side, normalized 
by the dynamic pressure in this stream at the HX inlet, and the ratio 
between the overall core weight and the heat duty. The trends in the 
design map indicate that the optimal transverse 𝑥t and longitudinal 𝑥l
pitches between the tubes are 3 and 1.25 outer diameters, respectively. 
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Fig. 4. Sketch of the multipass bare tube bundle primary heat exchanger, with an inline tube arrangement.
Fig. 5. Effect of the dimensionless circular tube pitches on the hot-side Euler number (Euh and HX weight over the heat duty 𝑀HX∕𝑄̇ for an inline bare tube bundle HX.
These values minimize the hot-side pressure drop while ensuring a 
lightweight HX design. As the frontal area of the core is fixed, the heat 
transfer area requirement is satisfied by adjusting the depth of the heat 
exchanger core, calculated as 

𝑍 = 𝑑o + 𝑥l

(𝑁cells
∑

𝑖=0
round

(𝐴𝑛
wf 𝑥t 𝑑o

𝜋 𝑋 𝑑i 𝑌

)

− 1

)

, (5)

where 𝑑𝑜 and 𝑑𝑖 are the outer and inner tube diameters, respectively. 
Advantages of bare tube bundles with small tube diameters (<2 mm) in-
clude lighter designs if the working fluid inside the tubes is at medium 
to high pressure, easier moisture removal, and lower susceptibility to 
fouling than finned topologies. However, tube bundles exposed to cross-
flow are susceptible to flow-induced vibrations, which may compromise 
the structural integrity of the HX core if they occur near the tubes’ 
lowest natural frequency [37]. A solution to this problem is to reduce 
the unsupported length of the tubes by positioning 𝑛pt structural plates 
that constrain the tube oscillations in the radial direction. These plates, 
whose thickness is set to 0.5 mm, are evenly distributed along the 
length of the tubes (𝑋). The number of plates is such that the maximum 
local flow velocity within the tube bundle is at least 1.5 times lower 
than the critical velocity 𝑢crit , estimated according to Gelbe et al. [38] 
as 

𝑢crit =
𝑛2pt𝜆𝑖

2

2𝜋𝑋2

√

𝐸 𝐼t
𝑚′
t
𝑑o𝐾

√

MDP. (6)

In Eq.  (6) 𝜆𝑖 is the first natural frequency factor of a hinged-hinged 
beam with negligible axial tension [39], 𝐸 is the Young modulus of 
the tube material, 𝐼t is the tube moment of inertia considering it filled 
with the working fluid, 𝑚′

t is the mass per unit length of one tube filled 
with the working fluid, while MDP and 𝐾 are two empirical parameters 
expressing the mass damping coefficient and the fluid elastic instability 
constant. Guidelines for the estimation of these two coefficients are 
reported by Pettigrew and Taylor [40] and Schroder and Gelbe [41]. 
Finally, the total weight of the HX is given by that of the dry core, 
together with the weight of the structural stability plates and the casing.

3.3. Design strategies

The thermodynamic specifications and size constraints strongly af-
fect the maximum mass-specific performance and optimal configuration 
6 
of aerospace-grade HXs. Three design strategies are employed to opti-
mize two different ORC WHR units that harvest thermal energy from 
the exhaust of gas turbines. While for all three design strategies the 
primary HX core geometry is fixed, i.e., an inline tube bundle char-
acterized by tube pitches that minimize the gas side pressure drop, 
the condenser geometry and model differ depending on the adopted 
strategy. In the baseline design strategy, the combined cycle system 
design is optimized for two different condenser topologies with fixed 
core geometries. The values of these geometrical parameters were 
selected based on a preliminary investigation of the design space of 
the condenser and choosing a combination of parameters enabling a 
trade-off between air-pressure drop and HX weight.

Conversely, in the integrated design strategy, the condenser geom-
etry is simultaneously optimized together with the CC-APU or CC-TS 
system design variables. The decision to solely optimize the design of 
the condenser, together with the system, stems from its critical effect 
on overall system performance. The design variables associated with 
each condenser topology vary depending on the selected topology and 
can range from 3 to 6 or more. As a consequence, the total number 
of design variables increases significantly for each HX whose geometry 
is optimized, thus increasing the computational cost associated with 
solving the integrated design problem.

The surrogate-model strategy is aimed at demonstrating the benefits 
of employing a data-driven surrogate model to predict the optimal 
performance of the condenser within the integrated system design opti-
mization framework. In this approach, the conventional condenser siz-
ing model is replaced by a data-driven surrogate model that estimates 
the performance of an optimized condenser for given thermodynamic 
design specifications. The surrogate model consists of neural networks 
trained on datasets of optimized condenser geometries obtained using 
the heat exchanger sizing tool described in 3.2.1. The advantage of 
this design strategy is a drastic reduction in the computational cost. 
The number of design variables associated with a heat exchanger being 
replaced by the surrogate model is reduced from any number to always 
one, as explained in 3.4.3, regardless of the topology.

The NSGA2 multi-objective optimization algorithm [42] is em-
ployed to obtain a set of Pareto-optimal solutions. The design space 
is constrained in all the optimizations to ensure that this is consistent 
with the validity range of the surrogate model. The objective functions 
are tailored to the specific case study under consideration. For the 
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CC-APU design optimization, the primary goals are the minimization 
of the ORC system mass 𝑀ORC and the maximization of the net 
power output, 𝑊̇net,ORC. Conversely, the CC-TS design optimization 
objective is to identify a set of Pareto-optimal solutions that minimize 
the thrust-specific fuel consumption TSFC = 𝑚̇f∕𝑇tot while simulta-
neously maximizing the mass-specific power generated by the waste 
heat recovery unit 𝑒ORC = 𝑊̇ORC∕𝑀ORC. The resulting Pareto front is 
independent of the aircraft model and mission constraints, providing a 
clear representation of the trade-offs between the fuel mass flow rate 
and the corresponding mass-specific power of the ORC WHR unit.

3.4. Surrogate model

Fig.  6 shows the flow chart of the proposed methodology to derive a 
data-driven surrogate model of an optimally designed heat exchanger. 
Each action of the flow chart is described in the following. The first 
action consists in generating a database of optimized HX geometries 
for a range of process conditions and for each considered HX topology 
(Section 3.4.1). The database contains 𝑛s number of samples, each 
identified by a specific set of thermodynamic specifications, and a set 
of Pareto solutions featuring minimum mass 𝑀HX and air-side pressure 
drop 𝛥𝑃c. After non-dimensionalizing the Pareto fronts in a so-called 
fitting space, the data are post-processed by removing outliers and 
Pareto fronts whose fit accuracy is too low (i.e., the R2 score is lower 
than 0.95) until a dataset suitable for regression analysis is generated 
(Section 3.4.2). This dataset is then used to train the surrogate model 
in predicting the Pareto front of a heat exchanger topology for a given 
set of dimensionless thermodynamic inputs (Section 3.4.3).

3.4.1. Dataset of optimal heat exchanger designs
First, to generate the dataset of optimal HX designs, the values of 

geometric parameters that are not optimized, such as the flat tube 
height and thickness of the fins and microchannels, need to be spec-
ified. Similarly, the lower 𝑥LD and upper 𝑥UD bounds of the optimization 
variables must also be defined, see Table  2. These values are normally 
chosen based on structural and manufacturability considerations and 
the applicability range of the adopted heat transfer coefficient and 
friction factor correlations. The multi-objective optimization of the HX 
design is subjected to two constraints. The working fluid pressure drop 
𝛥𝑃wf  cannot exceed 5% of the working fluid side inlet pressure 𝑃wf ,in, 
such that its effect on the performance of the system is negligible. 
The value of the depth 𝑍 of the HX core, i.e., the flat tube width, 
must be larger than 0.025 m, due to manufacturability considerations. 
Thus, being 𝑥D the array of geometry-related optimization variables, 
the HX design problem can be formulated as the following constrained 
multi-objective optimization problem 
minimize 𝑀HX(𝑥D) ; 𝛥𝑃c(𝑥D),

subject to 𝛥𝑃wf ≤ 0.05 𝑃wf ,in,

𝑍 ≥ 0.025m,

𝑥LD ≤ 𝑥D ≤ 𝑥UD .

(7)

Next, the thermodynamic specifications obtained from the cycle 
calculation and required to solve the HX design problem are nondimen-
sionalized to be independent of the HX size, working fluid, and ambient 
conditions. These are 

TDin =
[

𝑃g,in, 𝑃wf ,in, 𝑇g,in, 𝑇wf ,in, 𝑚̇g, 𝑚̇wf , 𝑄̇
]

. (8)

Assuming that the working fluid at the outlet of the condenser is 
saturated liquid conditions, and that the working fluid side pressure 
drop must satisfy Eq.  (7), the number of required inputs decreases from 
7 to 6, because the specified heat duty can be defined as 

𝑄̇ = 𝑚̇
(

𝐻 (𝑇 , 𝑃 )
)

−
(

𝐻 (0.95𝑃 , 𝑣 = 0)
)  . (9)
wf wf wf ,in wf ,in wf wf ,in q
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Table 3
Bounds of the dimensionless variables of the input vector T̃Din, Eq. (10).
 𝑅𝑒g,in 𝑅 𝑃g 𝑇̃g 𝑇̃cnd 𝛿dsh 
 Min 600 0.075 0.4 1 1.13 0  
 Max 1200 0.16 1.01 1.148 1.21 0.2 

In most cases, the working fluid pressure losses over desuperheating are 
negligible; therefore, the input vector of Eq.  (8) can be replaced with 
a set of dimensionless inputs that reads 

T̃Din =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑅𝑒g,in =
𝑚̇g𝑑ref

𝜇(𝑇g,in)𝐴f r

𝑅 = 𝑚̇wf∕𝑚̇g

𝑃g = 𝑃g,in∕𝑃g,ref

𝑇̃g = 𝑇g,in∕𝑇g,ref

𝑇̃cond = 𝑇cond∕𝑇boil

𝛿dsh =
𝑇wf ,in−𝑇cond

𝑇cond

(10)

where 𝐴f r is the HX frontal area, 𝑑ref  is the reference dimension for 
the Reynolds number, which for the considered condenser topology is 
assumed to be equal to the flat tube height, and 𝑇boil is the boiling 
temperature of the working fluid. Moreover, the gas side reference 
temperature 𝑇g,ref  and pressure 𝑃g,ref  are chosen to be 0 ◦C and 1 bar, 
respectively. The chosen dimensionless groups are not only valid for 
different HX topologies, sizes, and temperatures but also for different 
working fluids. Table  3 reports the chosen range for the dimensionless 
input quantities in Eq.  (10). The upper and lower limits are defined 
based on knowledge about the design space of ORC systems for airborne 
applications (see Refs. [14,16]).

Note that not all the combinations of the parameters listed in Table 
3 generate a valid set of design specifications. The outlet cold stream 
temperature must be less than the working fluid outlet condensation 
temperature. Thus, it can be demonstrated the input specifications are 
constrained by 

𝑇𝑔𝑇ref + 𝑅
𝛥𝐻wf (𝑇̃cnd, 𝛿dsh)

̄𝑐𝑝𝑔
− 𝑇̃cnd𝑇boil ≤ 0 , (11)

in which

̄𝑐𝑝𝑔 = 𝑐𝑝

(

𝑇𝑔𝑇ref + 𝑅
𝛥𝐻wf (𝑇̃cnd, 𝛿dsh)
2𝑐𝑝𝑔(𝑇𝑔 , 𝑃𝑔)

, 𝑃𝑔𝑃ref

)

is an estimate of the isobaric specific heat capacity of the gas stream, 
i.e., of the cold air in the case of the condenser. The working fluid 
enthalpy drop 𝛥𝐻wf  is estimated from Eq.  (9). The dataset for each 
HX topology is constructed using Latin hypercube sampling to generate 
approximately 3000 samples of TDin. The HX design is optimized only 
if the constraint of Eq.  (11) is satisfied.

3.4.2. Data reduction
Fig.  7 shows five exemplary sets of Pareto-optimal solutions in 

terms of mass and air side pressure drop for flat tube microchannel 
condensers with louvered fins. Each Pareto front is associated with a 
different set of thermodynamic design specifications, while each point 
of a Pareto curve is characterized by a different core geometry. Data 
reduction is necessary to (i) facilitate the regression analysis, (ii) make 
the optimal designs dimensionally independent of the HX size, and 
(iii) identify and remove outliers. More in detail, the reduction of the 
number of regression model outputs is achieved by fitting the Pareto 
fronts with common basis functions and coefficients that are unique for 
each curve. In mathematical form, an arbitrary set of Pareto optimal 
solutions {𝑃𝐹 } is approximated in a dimensionless plane (𝑥̃, 𝑦̃) ∈ R2 as
𝑦̃ = 𝜙(𝑥̃, 𝑐∗)  , with 𝑥̃ ≤ 𝑥̃ ≤ 𝑥̃  , (12)
min max
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Fig. 6. Flowchart of the methodology used to train the HX surrogate model.
where 𝜙 is a fitting basis function, and 𝑐∗ are curve-specific coefficients. 
The optimal basis function is obtained by testing all the functions of a 
predefined set and identifying the one that fits the largest number of 
Pareto curves with a coefficient of determination exceeding a specified 
threshold. By normalizing the heat exchanger mass and the pressure 
8 
drop over the cold air side of each optimal solution as 
⎧

⎪

⎪

⎨

𝑀̃HX =
𝑀HX

𝜌mat 𝐴f r 𝑑ref

2
(13)
⎪

⎪

⎩

𝛥𝑃 c =
𝜌𝑐,in𝛥𝑃c 𝐴f r

𝑚̇2
c

 ,
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Fig. 7. Pareto front in the original dimensional space.

Fig. 8. Pareto fronts in the dimensionless space.

the basis function form 

𝜙(𝑥̃) =

(

𝑥̃
𝑐20

)−𝑐21
+ 𝑐5∕32 (14)

is capable of fitting over 90% of the Pareto fronts with R2 scores above 
95%. The optimal basis function selection depends on both the heat ex-
changer topology and the considered thermodynamic design space. Fig. 
8 shows the sets of Pareto-optimal solutions of Fig.  7 in the dimension-
less plane; the solid black lines are the fits of the dimensionless Pareto 
curves obtained with Eq.  (14). As the accuracy of the basis function 
depends on the number of data points used to fit its coefficients, the 
Pareto fronts featuring fewer than 6 design points are discarded.

The range of validity of each fitted basis function is determined by 
identifying the minimum and maximum Euler number of each curve, 
i.e., the minimum and maximum value of the horizontal coordinate 
of each Pareto Front. The datasets used to fit the surrogate model, 
indicated in the flow chart of Fig.  6 as the regression database, are 
constructed by associating to each set of design specifications used to 
generate a Pareto front the coefficients 𝑐∗ and the two Euler numbers 
that define the validity range of the fitted basis function.

3.4.3. Regression methodology
The objective of the surrogate model is to predict the set of Pareto-

optimal solutions given a feasible set of design specifications. It is 
constructed by chaining three multi-layer perceptrons (MLP). The first 
MLP predicts the maximum and minimum dimensionless gas-side pres-
sure drop, the second MLP predicts the corresponding dimensionless 
mass, and the third MLP predicts the coefficients of the basis func-
tion 𝜙 that best fit the Pareto curves. The benefit of using cascading 
perceptrons is the possibility of training simpler yet more specialized 
models, which, despite the limited size of the training dataset, can 
achieve higher accuracy over multiple dependency structures compared 
to one single, more complex regression model. Each MLP comprises 
multiple layers of interconnected nodes, including an input layer, one 
9 
Table 4
Hyperparameter range and optimal set for the MLPs that predict the cold-side Euler 
number (Eu), the dimensionless core weight (w), and basis function coefficients (c).
 Hyperparameter Range MLP (Eu) MLP (w) MLP (c) 
 Layers 3–4 3 3 3  
 Hidden nodes 64–320 256 256 256  
 Regularization strength 10−5–10−2 10−5 10−4 10−4  

or more hidden layers, and an output layer. Each connection between 
nodes is associated with a weight, and each node within the hidden 
layers incorporates activation functions that introduce non-linearity 
into the model. This characteristic makes MLP particularly suitable for 
strongly nonlinear regression problems. The MLP operates in a feed-
forward manner: the information flows from the input layer through 
the hidden layers to the output layer. The training of the network is 
conducted using the Adam algorithm [43], a gradient-based optimizer 
with adaptive learning rate and momentum term, which leverages 
gradients computed via backpropagation [44] to efficiently adjust the 
network weights and biases. The accuracy of the regression models 
depends on their hyperparameters, which need to be tuned in the 
validation procedure. The hyperparameters are defined as parameters 
external to the model and whose value cannot be estimated from the 
data [45].

Due to the relatively small size of the MLPs, a grid search algorithm 
was employed to determine the optimal settings for each network. This 
required constructing a multi-layer perceptron for each combination 
of the parameters in Table  4, using the open-source Scikit-learn li-
brary [46]. The optimal set of parameters for each MLP is selected as 
the one that minimizes the mean squared error (MSE) loss function 

MSE(𝜃) = 1
𝑛s

𝑛s
∑

𝑖=1
(𝑦̂𝑖 − 𝑦𝑖)2 , (15)

in which 𝜃 is the set of hyperparameters, 𝑛s is the number of samples, 
and 𝑦̂𝑖 is the value estimated with the model.

The choice of input features for each neural network strongly affects 
the accuracy of the model. To identify which variables are most suited 
for the regression problem, the input vector for each MLP is obtained 
by performing a variance-based sensitivity analysis using the first and 
second-order Sobol indices [47]. The outcome of this analysis is sum-
marized here. The input vector of the MLP that predicts the minimum 
and maximum Euler number of the Pareto front reads 

XEu =

[

𝑅𝑒g,in , 𝑅 ,
𝛥𝑇lm,1𝑄̇dsh

𝑄̇ 𝑇g,in
,
𝛥𝑇lm,2

𝑇g,in
(1 −

𝑄̇dsh

𝑄̇
) , 𝛿dsh ,

𝜌g,out
𝜌g,in

]

.

(16)

In addition to the dimensionless design variables 𝑅𝑒g,in, 𝑅, and 𝛿dsh
used to generate the optimal datasets of HX designs, the input vector 
of the first perceptron XEu includes the gas-side density ratio across the 
condenser 

𝜌g,out
𝜌g,in

 and two terms that are proportional to the mean log-
arithmic temperature difference associated with the two main sections 
of the condenser, namely that of the desuperheating section 𝛥𝑇lm,1 and 
that of condensation section 𝛥𝑇lm,2. These temperature differences are 
estimated as 

𝛥𝑇lm,1 =
𝑇wf ,in − 𝑇cnd −

𝑄̇dsh
𝑚̇c𝑐𝑝

ln

[

𝑇wf ,in − 𝑇c,in − 𝑄̇∕(𝑚̇c𝑐𝑝)

𝑇cnd − 𝑇c,in − (𝑄̇ − 𝑄̇dsh)∕(𝑚̇c𝑐𝑝)

] (17)

𝛥𝑇lm,2 =

𝑄̇dsh − 𝑄̇
𝑚̇c𝑐𝑝

ln

[

𝑇cnd − 𝑇c,in − (𝑄̇dsh − 𝑄̇)∕(𝑚̇c𝑐𝑝)
]  . (18)
𝑇cnd − 𝑇g,in
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Table 5
Accuracy of the three MLP models.
 Topology Output R2 score MPE % MAPE % 
 
ft-lf

Eu 0.985 0.25 5.31  
 w 0.977 −0.77 5.97  
 c 0.991 −0.30 2.49  
 
ft-osf

Eu 0.969 −0.24 6.85  
 w 0.934 0.29 8.39  
 c 0.984 0.81 4.16  

These equations imply the assumptions that the specific heat capacity 
of the cooling air 𝑐𝑝c is constant and that the pressure drop has a 
negligible effect on the enthalpy decrease of the condensing fluid. 
These two temperature differences are used as input features to the 
first MLP by rescaling them with the corresponding fraction of thermal 
power exchanged in their corresponding section, i.e., desuperheating 
or condensing, and are nondimensionalized with the gas-side inlet 
temperature 𝑇g,in.

The predicted Euler numbers are then added to XEu together with a 
dimensional scaling parameter, namely the heat duty per frontal area 
of the HX, to form the input vector of the second MLP 

Xw =

[

𝑋Eu , 𝑄̇
𝐴f r

, 𝐸𝑢min , 𝐸𝑢max − 𝐸𝑢min

]

, (19)

which predicts the minimum 𝑤min and maximum 𝑤max dimensionless 
weight of the Pareto curves.

Similarly, the predicted dimensionless weights are included in the 
input vector of the third MLP, which reads 

Xc =
[

𝑅𝑒c,in , 𝑅 ,
𝛥𝑇lm,1

𝛥𝑇lm,2
, 𝛿dsh , 𝑄̇

𝐴f r
, 𝐸𝑢min , 𝑤max −𝑤min

]

. (20)

The final outputs are the coefficients 𝑐∗ of the basis function 𝜙 which 
approximates the shape of the Pareto front in the dimensionless space 
for a given HX topology and a given set of design specifications. The 
predicted dimensionless Pareto front can then be projected into the 
physical space according to Eq.  (13) by knowing the HX frontal area, 
material density, gas-side inlet conditions, and reference diameter.

If the surrogate model is used to explore the design space of a 
HX, the degrees of freedom associated with a given design reduce to 
one, namely the dimensionless air side pressure drop ̃𝛥𝑃c

∗, which, in 
the case of the condenser, is the metric that influences the overall 
system performance the most. However, the use of this parameter is 
impractical, as there is no way to know in advance if the value of 
a selected dimensionless pressure drop is within the range of values 
of the predicted Pareto front. To overcome this problem, an optimal 
HX design on the predicted Pareto front is selected by specifying the 
normalized optimal Euler number ratio 

𝐸𝑢∗ =
𝛥𝑃 ∗

c − 𝐸𝑢min

𝐸𝑢max − 𝐸𝑢min
 , (21)

whose values range between 0 and 1. The lower value indicates a design 
that minimizes the pressure drop associated with both sides of the HX 
regardless of the weight, while the upper value represents a geometry 
that minimizes the HX weight at the cost of high-pressure drops.

3.4.4. Model accuracy
Each MLP model is trained on 85% of the post-processed dataset, 

of which 10% is used as a validation set. The remaining 15% is used 
to assess the accuracy of the models. Fig.  9 allows for comparing the 
prediction of each MLP corresponding to the surrogate model of the flat 
tube and louvered fin condenser with the values of the whole dataset: 
over 95% of the points are contained in a ±15% relative uncertainty 
interval. Table  5 reports the accuracy of the three neural networks 
that constitute the surrogate model, in terms of mean percentage error 
(MPE) and mean absolute percentage error (MAPE).
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Table 6
Values of baseline condenser geometric parameters.
 Parameter Value Units Parameter Value Units 
 𝑤mc 1.1 mm 𝐿p 2.6 mm  
 AR 1 – 𝛼 0.32 –  
 𝐹h 9 mm 𝛿 0.03 –  
 𝐹p 2.6 mm 𝛾 0.077 –  
 𝐿𝛼 26 ◦  

Table 7
CC-APU cycle design variables and their corresponding bounds.
 Variables Description (Units) LB UB  
 𝑇min Minimum ORC temperature (K) 367 379  
 𝑇max Maximum ORC temperature (K) 517 549  
 𝑃max∕𝑃crit Maximum over critical ORC pressure ratio (–) 1.04 1.48 
 𝛥𝑇pp,ev Evaporator pinch point 𝛥𝑇  (K) 10 50  
 𝛥𝑇pp,cn Condenser pinch point 𝛥𝑇  (K) 15 50  

Although the neural network associated with the surrogate model 
of the optimal louvered-fins condenser is affected by lower error com-
pared to that of condensers with offset-strip fins, the accuracy of both 
surrogate models is deemed satisfactory. For given design specifications 
of the condenser, the pressure drop and mass reduction that can be 
achieved through design optimization of the geometry are usually 
much larger than the uncertainty associated with the predictions of 
the surrogate model. Moreover, the uncertainty related to the adopted 
friction factor and heat transfer coefficient correlations is of the order of 
10%–15%, thus also larger than the uncertainty related to the surrogate 
models.

4. Results

This simulation and design optimization method has been applied 
to two case studies, namely that of a combined cycle APU and that 
of a combined cycle turboshaft aero-engine providing power to an 
electrically driven distributed propulsion system. The objectives of this 
study are (i) to investigate the performance improvements achievable 
by simultaneously optimizing the HX geometry and thermodynamic 
cycle for an airborne ORC WHR unit, (ii) to compare two condenser 
topologies in terms of minimum weight and air-side pressure drop for 
the considered applications, and (iii) to demonstrate the effectiveness of 
the proposed surrogate modeling technique for the preliminary design 
optimization of aerospace-grade thermal systems.

4.1. CC-APU

The results of the optimizations of the design of the CC-APU WHR 
system according to the design strategies highlighted in Section 3.3 are 
reported in Fig.  10 for two condenser topologies, namely a flat tube 
microchannel condenser equipped with louvered fins (lf) or with offset 
strip fins (osf). The condenser geometry used in the design strategy # 1 
(baseline) is reported in Table  6. These values were selected based on 
previous results to enable a feasible design of the condenser across a 
wide range of thermodynamic specifications [14]. Table  7 reports the 
upper bounds (UB) and lower bounds (LB) of the thermodynamic cycle 
design variables considered in all three design strategies.

Fig.  10 displays the Pareto fronts associated with the design of the 
ORC system and highlights the relationship between the system net 
power 𝑊̇net output and mass 𝑀ORC. The net power output is displayed 
with negative values for visualization purposes: system designs featur-
ing condensers optimized for low pressure drops are on the leftmost 
side of the Pareto front in analogy with the trend of the Pareto fronts 
in Fig.  7. Several conclusions can be drawn by comparing the light blue 
and black lines of Figs.  10(a) and 10(b).
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Fig. 9. Surrogate model predictions plotted against the values of the dataset for flat tube louvered fins condensers. The dashed lines indicate the ±15% uncertainty band.
Fig. 10. Pareto optimal designs of the CC-APU ORC WHR unit obtained by (i) optimizing the cycle with a fixed condenser geometry (base), (ii) performing an integrated condenser 
geometry-and-cycle optimization (full), and (iii) using the optimal condenser surrogate model (SM).
1. For the same net power output, the value of the weight of 
the WHR unit designed with a fixed condenser geometry is, on 
average, 10%–15% larger than that of a system designed with 
the integrated HX design optimization strategy, and this is valid 
for both condenser topologies.

2. Offset strip fin condensers enable the design of systems that 
feature a higher maximum net power output for similar weight 
if compared to systems featuring a condenser with louvered fins. 
However, condensers with louvered fins allow for the design 
of lighter systems at the cost of larger pressure drops and thus 
lower net power output. It follows that, depending on the chosen 
trade-off between weight and net power output of the ORC 
system, the optimal HX topology changes.

3. The set of Pareto optimal solutions obtained with the condenser 
equipped with the offset strip fins covers a wider net power 
output and weight range compared to the solutions obtained 
with the louvered fins.

These results demonstrate that the optimization of the HX geome-
try together with the thermodynamic cycle, although computationally 
more expensive, allows for obtaining preliminary system designs whose 
performance is significantly improved with respect to designs obtained 
via conventional methods. Moreover, this integrated system design 
method allows for exploring a wider design space compared to a design 
strategy for which the HX geometry is fixed a priori.

Regarding the accuracy of the surrogate models, it can be observed 
that the mean relative deviation between the Pareto front associated 
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with the use of the condenser surrogate model and that associated with 
the use of the detailed model is 1.1% and 2.3% for the louvered fins 
and offset strip fin condenser topologies, respectively. This metric is 
calculated as 

𝜖𝑟 =
1

𝑁CP

𝑁CP
∑

𝑖=0

|𝐿SM(𝑥𝑖) − 𝐿full(𝑥𝑖)|
𝐿full(𝑥𝑖)

(22)

in which 𝑁CP is the number of comparison points between the two 
curves, 𝐿full is the linear interpolation of the Pareto front associated 
with the integrated system optimization based on detailed models, and 
𝐿SM is the Pareto front associated the integrated system optimization 
based on surrogate models. The difference between the black and red 
curves in Figs.  10(a) and 10(b) can be considered negligible from an 
engineering point of view. This proves that, as fas as this study is 
concerned, the surrogate model-based design strategy (SM) can be used 
to generate system Pareto fronts that are analogous to the ones obtained 
with the integrated optimization strategy employing detailed models, 
but at a much lower computational cost, as highlighted in Table  8.

Two factors contribute to the computational time reduction: (1) 
the dimensionality of the optimization problem is reduced, namely the 
number of optimization variables 𝑁opt decreases, together with the 
population size and number of generations required for the genetic 
algorithm to reach convergence; (2) since the surrogate model function 
evaluation is two orders of magnitude faster than the evaluation of the 
condenser sizing model, the evaluation time of the average objective 
function decreases by about 20%.
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Table 8
Computational time of the three design optimization strategies applied to the CC-
APU test case. The optimization computations are performed with an 8-core personal 
computer whose processor is an AMD Ryzen 4000.
 Design strategy 𝑁opt Population Generations Time /Min 
 Baseline 5 48 48 16  
 Detailed (lf) 11 80 80 42  
 Detailed (osf) 10 88 80 45  
 SM 6 48 48 13  

Table 9
Values of the geometric parameters of the condenser used in the baseline design strategy 
for the CC-TS case study. The fins are of the louvered type.
 Parameter Value Units Parameter Value Units 
 𝑤mc 1.28 mm 𝐹p 1.4 mm  
 AR 0.66 – 𝐿𝛼 29 ◦  
 𝐹h 10 mm 𝐿p 1.4 mm  

Table 10
CC-TS system design variables, excluding those related to the condenser geometry, and 
their corresponding bounds.
 Variables Description (Units) LB UB  
 𝑇min Minimum ORC temperature (K) 353 413  
 𝑇max Maximum ORC temperature (K) 520 570  
 𝑃max∕𝑃crit Maximum over critical ORC pressure ratio (–) 1.15 1.45 
 𝛥𝑇pp,ev Evaporator pinch point 𝛥𝑇  (K) 60 110  
 𝛥𝑇pp,cn Condenser pinch point 𝛥𝑇  (K) 30 90  
 𝑁p Primary HX number of working fluid passes (–) 7 10  
 MFR Ram air duct intake mass flow rate ratio (–) 0.45 0.7  
 𝜃 Condenser inclination angle (◦) 50 70  

4.2. CC-TS

The results of this design optimization case are reported in terms 
of Pareto optimal solutions for minimum TSFC and maximum mass-
specific power of the system. Again, each curve in Fig.  11 corresponds 
to the solutions of the multi-objective optimization problem defined by 
the design strategies discussed in Section 3.3. The mass-specific power 
𝑒ORC is displayed as negative values to visualize a Pareto type IV distri-
bution in analogy with the condenser Pareto curve. The optimization 
calculations have been performed for systems in which the condenser 
is a flat tube microchannel heat exchanger with louvered fins, in 
analogy to what is documented in the study of Krempus et al. [16]. 
The geometric parameters of the condenser used for design strategy 
#1 (baseline) are selected based on the system optimization results 
performed by Krempus et al. [16] and are reported in Table  9.

The range of the optimization variables associated with the ther-
modynamic cycle of the WHR unit is reported in Table  10. Fig.  11 
shows the results of the three optimizations in terms of Pareto fronts. 
The results show that solutions maximizing the mass-specific power 
are characterized by larger specific fuel consumptions. These optimal 
design points feature lightweight condensers, which, however, are 
characterized by a significant pressure drop over the ram air path and 
thus additional drag. As a result, the combined cycle engine power 
requirement increases, and with it, the fuel consumption. Moreover, 
the thermodynamic cycles associated with designs whose outcome is 
lighter systems feature lower cycle efficiency. This effectively reduces 
the benefit of harvesting thermal energy from the exhaust gases to 
improve the combined cycle efficiency. As a result, for a fixed total 
thrust requirement, the fuel consumption decreases as the ORC WHR 
units are (i) more effective with respect to thermal energy recovery and 
(ii) feature ram air duct designs that cause low additional drag.

Similarly to the CC-APU case study, the application of the integrated 
system-HX design optimization method allows for obtaining significant 
performance improvement and enables the exploration of a larger 
design space. By fixing the ORC condenser geometry, the minimum 
TSFC that can be obtained is 12.91 with an ORC unit weighing 0.87 kg 
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Fig. 11. Pareto optimal designs of the CC-TS obtained by (i) optimizing the cycle with 
a fixed condenser geometry (base), (ii) performing an integrated condenser geometry-
and-cycle optimization with detailed models, and (iii) using the optimal condenser 
surrogate model (SM).

Table 11
Computational performance parameters associated with the three design optimization 
strategies applied to the CC-TS test case. The optimization calculations were performed 
with an 8-core personal computer featuring an AMD Ryzen 4000 processor.
 Design strategy 𝑁opt Population Generations Time/Min 
 Baseline 8 64 48 354  
 Detailed (lf) 13 112 64 724  
 SM 9 98 48 399  

for every kW of net power output. However, if the HX geometry 
is allowed to change for every combination of system variables, the 
minimum TSFC is 12.85 with a specific power of the ORC unit of 
1.04 kW/kg. Furthermore, the results of this case study prove that 
the Pareto optimal solutions in terms of system performance obtained 
with a standard integrated system optimization are similar to those 
obtained with the surrogate model at a much lower computational cost. 
More in detail, taking the solution of the detailed system model as a 
reference, the mean relative deviation between the two Pareto fronts 
is 2.9%. Table  11 reports the size of the population and the number of 
generations required to reach convergence for each design strategy. The 
average objective function evaluation time is reduced by about 22%, 
which is very similar to the improvement in computational efficiency 
determined for the CC-APU test case. The overall computational time 
associated with the design strategy with the surrogate model is slightly 
more than half of the time required with that employing the condenser 
sizing model. In the other case study, the total computational time 
benefit is more significant due to the larger impact of reducing the 
number of optimization variables on the total function evaluations 
needed to reach convergence.

5. Conclusions

This work contributes to the definition of a surrogate modeling 
methodology for optimal HX designs that can be used in concep-
tual design studies about advanced power and propulsion systems. 
This methodology is particularly suitable for airborne thermal systems 
whose performance is strongly dependent on the preliminary design 
of HXs, as is the case for the applications analyzed in Section 4. 
The optimal design of HXs for airborne thermal systems is inherently 
conditional on the design of the thermodynamic cycle. It follows that 
the maximum performance can be estimated only by means of an in-
tegrated system design optimization method. The computational effort 
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of such a method is inherently large due to the large number of design 
parameters that need to be treated as system optimization variables.

For the specific case documented here, a data-driven surrogate 
model of a condenser was constructed using three chained multi-layer 
perceptrons. The neural networks are trained to predict the optimal 
design solutions in terms of minimum mass and pressure drop. Two 
suitable HX topologies were considered. The dataset used for the train-
ing and validation of the surrogate model was generated by using an 
in-house tool for the preliminary design and rating of heat exchangers. 
The design strategy relying on the surrogate model was applied to 
perform the preliminary design optimization of a bottoming ORC unit 
that harvests thermal energy from the exhaust gases of a gas turbine 
aeroengine. The first case study considers a combined cycle power plant 
as an auxiliary power unit of a passenger aircraft, while the second test 
case is about a combined cycle turboshaft engine providing electrical 
power to the distributed propulsion system of a passenger aircraft.

The following conclusions are therefore drawn:

• Performance gains associated with the integrated optimization 
method vary depending on HX topology, application, and ther-
modynamic cycle. For instance, the integrated optimization of the 
combined-cycle auxiliary power unit (CC-APU) results in designs 
of systems that are 10−15% lighter than the benchmark design 
for the same net power output. Moreover, the microchannel con-
denser equipped with offset strip fins features lower weight than 
its louvered fins counterpart for high net power outputs of the 
ORC unit, while the adoption of louvered fins allows for obtaining 
lighter system designs if higher pressure drops in the cooling air 
stream are acceptable. This demonstrates that the optimal HX 
topology depends on the system design specifications. Finally, 
the results of the combined-cycle turboshaft (CC-TS) case study 
highlight how the integrated optimization allows for obtaining 
a much wider range of feasible system designs compared to an 
optimization method for which the condenser geometry is fixed a 
priori.

• The proposed methodology to develop a surrogate model for the 
prediction of the optimal design space of a HX has proven to 
be effective. The use of the surrogate model enables a reduction 
of the computational cost of the solution of an optimal system 
design problem without compromising model accuracy. The aver-
age deviations between the Pareto fronts associated with system 
designs obtained with the condenser surrogate model and the 
ones obtained with the detailed HX model range from 1% to 
2.9% depending on the case study and condenser topology. The 
match between the results of the integrated and surrogate model-
based optimizations is deemed satisfactory as these deviations 
are within the uncertainty range of the models. Furthermore, 
the results indicate that the accuracy of the surrogate model is 
comparable to that of the preliminary design tool, regardless of 
the HX topology, although its predictive capabilities are affected 
by the limited dataset size.

• The benefit derived from the integrated system optimization ap-
proach is larger than the uncertainty of the surrogate model, and 
the computational time reduction is significant. More in detail, 
in addition to a decrease of ≈ 20% of the time to evaluate the 
objective function due to the surrogate model (its evaluation 
time is two orders of magnitude shorter than that of the detailed 
model), the total number of function evaluations required to 
reach convergence decreases significantly. This occurs because 
replacing the HX sizing model with the surrogate model reduces 
the number of optimization variables associated with the HX 
geometry, thus included in the system design vector, to just one, 
regardless of the HX topology. For the analyzed test cases, this 
variable is the normalized optimal dimensionless pressure drop 
over the cooling air side. The replacement of more HX sizing 
models with data-driven surrogate models is expected to further 
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increase the advantage in terms of computational time at the 
cost of increasing the uncertainty of the results. It is thus recom-
mended to use the surrogate model in place of the sizing model 
for preliminary design assessments in case (i) the geometries 
of heat exchangers are complex, thus the number of geometric 
parameters to optimize is large, and (ii) the HX design has a 
significant effect on system performance.

The predictive capabilities of the developed surrogate model are 
limited by the size of the training dataset and the range of design 
specifications considered for its generation. To increase the validity 
range and accuracy of the model, future work should thus focus on the 
generation of a larger dataset for the training of the surrogate model, 
including different working fluids. Furthermore, the surrogate model 
could be extended to deal simultaneously with multiple HX topologies. 
This would eliminate the need to repeat the integrated system and 
component design optimization for each HX topology.

CRediT authorship contribution statement

Fabio Beltrame: Writing – original draft, Software, Methodology, 
Investigation, Conceptualization. Piero Colonna: Writing – review & 
editing, Supervision, Funding acquisition. Carlo Maria De Servi: Writ-
ing – review & editing, Supervision, Methodology, Funding acquisition.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
tionships which may be considered as potential competing interests: 
Carlo De Servi reports financial support was provided by Dutch Re-
search Council. Piero Colonna reports financial support was provided 
by Dutch Research Council. Fabio Beltrame reports financial support 
was provided by Dutch Research Council. If there are other authors, 
they declare that they have no known competing financial interests or 
personal relationships that could have appeared to influence the work 
reported in this paper.

Acknowledgments

The research work was supported by the Dutch Technology Foun-
dation TTW, Applied Science Division of NWO, Netherlands, via the 
Technology Program of the Ministry of Economic Affairs (grant no. 
17906). The financial and in-kind support of partner companies is 
also gratefully acknowledged. The authors are also grateful to Dr. D. 
Krempus for his support in the development of the system optimization 
framework.

Data availability

Data will be made available on request.

References

[1] O. Schmitz, H. Klingels, P. Kufner, Aero engine concepts beyond 2030: Part 
1—The steam injecting and recovering aero engine, J. Eng. Gas Turbines Power 
143 (2) (2021) 021001, http://dx.doi.org/10.1115/1.4048985.

[2] R. Pouzolz, O. Schmitz, H. Klingels, Evaluation of the climate impact reduction 
potential of the Water-Enhanced Turbofan (WET) concept, Aerospace 8 (3) 
(2021) 1–11, http://dx.doi.org/10.3390/aerospace8030059.

[3] G. Norris, Pratt & Whitney unveils details of hydrogen-steam hybrid engine 
cycle, 2025, https://aviationweek.com/aerospace/emerging-technologies/pratt-
whitney-unveils-details-hydrogen-steam-hybrid-engine-cycle.

[4] D. Krempus, Organic Rankine Cycle Waste Heat Recovery Systems for Aircraft 
Engines (Ph.D. thesis), Delft University of Technology, 2025, URL https://
resolver.tudelft.nl/uuid:5e565f99-a9f4-4208-95e9-2c542fd720f8.

[5] B. Zohuri, Compact Heat Exchangers, Springer International Publishing, 2017, 
http://dx.doi.org/10.1007/978-3-319-29835-1.

http://dx.doi.org/10.1115/1.4048985
http://dx.doi.org/10.3390/aerospace8030059
https://aviationweek.com/aerospace/emerging-technologies/pratt-whitney-unveils-details-hydrogen-steam-hybrid-engine-cycle
https://aviationweek.com/aerospace/emerging-technologies/pratt-whitney-unveils-details-hydrogen-steam-hybrid-engine-cycle
https://aviationweek.com/aerospace/emerging-technologies/pratt-whitney-unveils-details-hydrogen-steam-hybrid-engine-cycle
https://resolver.tudelft.nl/uuid:5e565f99-a9f4-4208-95e9-2c542fd720f8
https://resolver.tudelft.nl/uuid:5e565f99-a9f4-4208-95e9-2c542fd720f8
https://resolver.tudelft.nl/uuid:5e565f99-a9f4-4208-95e9-2c542fd720f8
http://dx.doi.org/10.1007/978-3-319-29835-1


F. Beltrame et al. International Journal of Heat and Mass Transfer 253 (2025) 127502 
[6] S. Lecompte, M. Van den Broek, M. De Paepe, Optimal selection and sizing of 
heat exchangers for organic Rankine cycles (ORC) based on Thermo-Economics, 
in: Proceedings of the 15𝑡ℎ International Heat Transfer Conference, 2014, pp. 
7381–7394, http://dx.doi.org/10.1615/IHTC15.rne.008989.

[7] M. Chatzopoulou, S. Lecompte, M. De Paepe, C.N. Markides, Off-design optimi-
sation of organic Rankine cycle (ORC) engines with different heat exchangers 
and volumetric expanders in waste heat recovery applications, Appl. Energy 53 
(2019) 113442, http://dx.doi.org/10.1016/j.apenergy.2019.113442.

[8] S. Yu, S. Jones, H. Ogawa, N. Karwa, Multi-objective design optimization of 
precoolers for hypersonic airbreathing propulsion, J. Thermophys. Heat Transfer 
31 (2016) 421–433, http://dx.doi.org/10.2514/1.T4921.

[9] F. Ascione, P. Colonna, C. De Servi, Integrated design optimization method 
for novel vapour-compression-cycle-based environmental control systems, Appl. 
Therm. Eng. 236 (2024) 121261, http://dx.doi.org/10.1016/j.applthermaleng.
2023.121261.

[10] L. Yang, Z.-Y. Li, L.-L. Shao, C.-L. Zhang, Model-based dimensionless neural 
networks for fin-and-tube condenser performance evaluation, Int. J. Refrig. 48 
(2014) 1–9, http://dx.doi.org/10.1016/j.ijrefrig.2014.01.006.

[11] M. Mohanraj, S. Jayaraj, C. Muraleedharan, Applications of artificial neural 
networks for thermal analysis of heat exchangers – A review, Int. J. Therm. 
Sci. 90 (2015) 150–172, http://dx.doi.org/10.1016/j.ijthermalsci.2014.11.030.

[12] J.P. González, K. Ankobea-Ansah, Q. Peng, C.M. Hall, On the integration 
of physics-based and data-driven models for the prediction of gas exchange 
processes on a modern diesel engine, Proc. Inst. Mech. Eng. D: J. Automob. 
Eng. 236 (5) (2022) 857–871, http://dx.doi.org/10.1177/09544070211031401.

[13] A. Giuffre’, F. Ascione, C. De Servi, M. Pini, Data-driven modeling of high-speed 
centrifugal compressors for aircraft Environmental Control Systems, Int. J. Refrig. 
151 (2023) 354–369, http://dx.doi.org/10.1016/j.ijrefrig.2023.03.019.

[14] D. Krempus, F. Beltrame, M. Majer, C.M. De Servi, M. Pini, R. Vos, P. Colonna, 
Organic Rankine cycle waste heat recovery systems for aircraft auxiliary power 
units, J. Glob. Power Propuls. Soc. (2025) in press.

[15] P. Schmollgruber, O. Atinault, I. Cafarelli, C. Doll, C. François, J. Hermetz, R. 
Liaboeuf, B. Paluch, M. Ridel, Multidisciplinary exploration of DRAGON: an 
ONERA hybrid electric distributed propulsion concept, in: AIAA Scitech 2019 
Forum, American Institute of Aeronautics and Astronautics Inc., 2019, pp. 1–27, 
http://dx.doi.org/10.2514/6.2019-1585.

[16] D. Krempus, F. Beltrame, M. Majer, C.M. De Servi, R. Vos, ORC Waste Heat 
Recovery System for the Turboshaft Engines of Turboelectric Aircraft (correc-
tion), Technical Report, Delft University of Technology, Aerospace Engineering 
Faculty, 2023, URL https://research.tudelft.nl/en/publications/orc-waste-heat-
recovery-system-for-the-turboshaft-engines-of-turb.

[17] I.H. Bell, J. Wronski, S. Quoilin, V. Lemort, Pure and pseudo-pure fluid 
thermophysical property evaluation and the open-source thermophysical property 
library CoolProp, Ind. Eng. Chem. Res. 53 (6) (2014) 2498–2508, http://dx.doi.
org/10.1021/ie4033999.

[18] P. Colonna, T. van der Stelt, FluidProp (version 3.1): A program for the 
estimation of thermophysical properties of fluids, 2019, URL https://asimptote.
com/fluidprop/.

[19] H.D. Kwak, S. Kwon, C.H. Choi, Performance assessment of electrically driven 
pump-fed LOX/Kerosene  cycle rocket engine: Comparison with gas generator 
cycle, Aerosp. Sci. Technol. 77 (2018) 67–82, http://dx.doi.org/10.1016/J.AST.
2018.02.033.

[20] M. Van Der Geest, H. Polinder, J.A. Ferreira, M. Christmann, Power density limits 
and design trends of high-speed permanent magnet synchronous machines, IEEE 
Trans. Transp. Electrif. 1 (2015) 266–276, http://dx.doi.org/10.1109/TTE.2015.
2475751.

[21] GRETh, EchTherm, 2024, https://greth.fr/en/echtherm/.
[22] C. Ranganayakulu, K. Seetharamu, K. Sreevatsan, The effects of longitudinal 

heat conduction in compact plate-fin and tube-fin heat exchangers using a 
finite element method, Int. J. Heat Mass Transfer 40 (6) (1997) 1261–1277, 
http://dx.doi.org/10.1016/S0017-9310(96)00182-2.

[23] VDI, VDI Heat Atlas, second ed., Springer, 2010.
[24] H. Martin, The generalized Lévêque equation and its practical use for the 

prediction of heat and mass transfer rates from pressure drop, Chem. Eng. Sci. 
57 (16) (2002) 3217–3223, http://dx.doi.org/10.1016/S0009-2509(02)00194-X.

[25] R. Shan, M. Bhatti, Laminar convective heat transfer in ducts, in: Handbook 
of Single Phase Convective Heat Transfer, John Wiley and Sons, 1987, http:
//dx.doi.org/10.1016/C2013-0-06152-X.
14 
[26] K.-H. Kang, S.-H. Chang, Experimental study on the heat transfer charac-
teristics during the pressure transients under supercritical pressures, Int. J. 
Heat Mass Transfer 52 (21) (2009) 4946–4955, http://dx.doi.org/10.1016/j.
ijheatmasstransfer.2009.06.005.

[27] D. Shah, Fundamentals of Heat Exchanger Design, John Wiley and Sons, 2003, 
http://dx.doi.org/10.1002/9780470172605.

[28] Y. Chang, C. Wang, A generalized heat transfer correlation for louver fin 
geometry, Int. J. Heat Mass Transfer 40 (3) (1997) 533–544, http://dx.doi.org/
10.1016/0017-9310(96)00116-0.

[29] Y. Chang, K. Hsu, Y. Lin, C. Wang, A generalized friction correlation for 
louver fin geometry, Int. J. Heat Mass Transfer 43 (12) (2000) 2237–2243, 
http://dx.doi.org/10.1016/S0017-9310(99)00289-6.

[30] R. Manglik, A. Bergles, Heat transfer and pressure drop correlations for the 
rectangular offset strip fin compact heat exchanger, Exp. Therm. Fluid Sci. 10 
(2) (1995) 171–180, http://dx.doi.org/10.1016/0894-1777(94)00096-Q.

[31] V. Gnielinski, On heat transfer in tubes, Int. J. Heat Mass Transfer 63 (2013) 
134–140, http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.04.015.

[32] M. Shah, Prediction of heat transfer during condensation in non-circular 
channels, Inventions 4 (2) (2019) 1–22, http://dx.doi.org/10.3390/
inventions4020031.

[33] D. Del Col, A. Bisetto, M. Bortolato, D. Torresin, L. Rosetto, Experiments 
and updated model for two-phase frictional pressure drop inside minichannels, 
Int. J. Heat Mass Transfer 67 (2013) 326–337, http://dx.doi.org/10.1016/j.
ijheatmasstransfer.2013.07.093.

[34] K. Guo, N. Zhang, R. Smith, Design optimization of multi-stream plate-fin heat 
exchangers with multiple fin types, Appl. Therm. Eng. 131 (2018) 30–40, http:
//dx.doi.org/10.1016/j.applthermaleng.2017.11.099.

[35] Kaltra GmbH, Microchannel condensers: heat exchangers for condenser 
applications, 2020, https://www.kaltra.com/wp-content/uploads/2020/04/TM_
Microchannel-Condensers_Ver.3.0_EN.pdf. (Accessed 17 January 2023).

[36] W.-G. Kim, S.-N. Yin, W.-S. Ryu, J.-H. Chang, S.-J. Kim, Tension and creep design 
stresses of the ‘‘Hastelloy-X’’ alloy for high-temperature gas-cooled reactors, 
Mater. Sci. Eng.: A 483–484 (2008) 495–497, http://dx.doi.org/10.1016/j.msea.
2006.12.184, 14th International Conference on the Strength of Materials.

[37] M. Pettigrew, C. Taylor, N. Fisher, M. Yetisir, B. Smith, Flow-induced vibration: 
recent findings and open questions, Nucl. Eng. Des. 185 (2) (1998) 249–276, 
http://dx.doi.org/10.1016/S0029-5493(98)00238-6.

[38] H. Gelbe, M. Jahr, K. Schröder, Flow-induced vibrations in heat exchanger 
tube bundles, Chem. Eng. Process.: Process. Intensif. 34 (3) (1995) 289–298, 
http://dx.doi.org/10.1016/0255-2701(94)04016-8.

[39] S.S. Chen, Flow-Induced Vibration of Circular Cylindrical Structures, Hemisphere 
Publishing, New York, NY, 1987, URL https://www.osti.gov/biblio/5939136.

[40] M. Pettigrew, C. Taylor, Fluid elastic instability of heat exchanger tube bundles: 
review and design recommendations, J. Press. Vessel. Technol. 113 (2) (1991) 
242–256, http://dx.doi.org/10.1115/1.2928752.

[41] K. Schroder, H. Gelbe, New design recommendations for fluidelastic instability 
in heat exchanger tube bundles, J. Fluids Struct. 13 (3) (1999) 361–379, http:
//dx.doi.org/10.1006/jfls.1999.0208.

[42] K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective 
genetic algorithm: NSGA-II, IEEE Trans. Evol. Comput. 6 (2) (2002) 182–197, 
http://dx.doi.org/10.1109/4235.996017.

[43] D. Kingma, J. Ba, Adam: A method for stochastic optimization, in: International 
Conference on Learning Representations, ICLR, San Diego, CA, USA, 2015, 
http://dx.doi.org/10.48550/arXiv.1412.6980.

[44] S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall, 1999.
[45] M. Kuhn, K. Johnson, Applied Predictive Modeling, Springer, 2023, http://dx.

doi.org/10.1007/978-1-4614-6849-3.
[46] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. 

Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. 
Cournapeau, M. Brucher, M. Perrot, E. Duchesnay, Scikit-learn: Machine learning 
in Python, J. Mach. Learn. Res. 12 (2011) 2825–2830, http://dx.doi.org/10.
48550/arXiv.1201.0490.

[47] I. Sobol, Global sensitivity indices for nonlinear mathematical models and their 
Monte Carlo estimates, Math. Comput. Simulation 55 (1) (2001) 271–280, http:
//dx.doi.org/10.1016/S0378-4754(00)00270-6, The Second IMACS Seminar on 
Monte Carlo Methods.

http://dx.doi.org/10.1615/IHTC15.rne.008989
http://dx.doi.org/10.1016/j.apenergy.2019.113442
http://dx.doi.org/10.2514/1.T4921
http://dx.doi.org/10.1016/j.applthermaleng.2023.121261
http://dx.doi.org/10.1016/j.applthermaleng.2023.121261
http://dx.doi.org/10.1016/j.applthermaleng.2023.121261
http://dx.doi.org/10.1016/j.ijrefrig.2014.01.006
http://dx.doi.org/10.1016/j.ijthermalsci.2014.11.030
http://dx.doi.org/10.1177/09544070211031401
http://dx.doi.org/10.1016/j.ijrefrig.2023.03.019
http://refhub.elsevier.com/S0017-9310(25)00840-3/sb14
http://refhub.elsevier.com/S0017-9310(25)00840-3/sb14
http://refhub.elsevier.com/S0017-9310(25)00840-3/sb14
http://refhub.elsevier.com/S0017-9310(25)00840-3/sb14
http://refhub.elsevier.com/S0017-9310(25)00840-3/sb14
http://dx.doi.org/10.2514/6.2019-1585
https://research.tudelft.nl/en/publications/orc-waste-heat-recovery-system-for-the-turboshaft-engines-of-turb
https://research.tudelft.nl/en/publications/orc-waste-heat-recovery-system-for-the-turboshaft-engines-of-turb
https://research.tudelft.nl/en/publications/orc-waste-heat-recovery-system-for-the-turboshaft-engines-of-turb
http://dx.doi.org/10.1021/ie4033999
http://dx.doi.org/10.1021/ie4033999
http://dx.doi.org/10.1021/ie4033999
https://asimptote.com/fluidprop/
https://asimptote.com/fluidprop/
https://asimptote.com/fluidprop/
http://dx.doi.org/10.1016/J.AST.2018.02.033
http://dx.doi.org/10.1016/J.AST.2018.02.033
http://dx.doi.org/10.1016/J.AST.2018.02.033
http://dx.doi.org/10.1109/TTE.2015.2475751
http://dx.doi.org/10.1109/TTE.2015.2475751
http://dx.doi.org/10.1109/TTE.2015.2475751
https://greth.fr/en/echtherm/
http://dx.doi.org/10.1016/S0017-9310(96)00182-2
http://refhub.elsevier.com/S0017-9310(25)00840-3/sb23
http://dx.doi.org/10.1016/S0009-2509(02)00194-X
http://dx.doi.org/10.1016/C2013-0-06152-X
http://dx.doi.org/10.1016/C2013-0-06152-X
http://dx.doi.org/10.1016/C2013-0-06152-X
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.06.005
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.06.005
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.06.005
http://dx.doi.org/10.1002/9780470172605
http://dx.doi.org/10.1016/0017-9310(96)00116-0
http://dx.doi.org/10.1016/0017-9310(96)00116-0
http://dx.doi.org/10.1016/0017-9310(96)00116-0
http://dx.doi.org/10.1016/S0017-9310(99)00289-6
http://dx.doi.org/10.1016/0894-1777(94)00096-Q
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.04.015
http://dx.doi.org/10.3390/inventions4020031
http://dx.doi.org/10.3390/inventions4020031
http://dx.doi.org/10.3390/inventions4020031
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.07.093
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.07.093
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.07.093
http://dx.doi.org/10.1016/j.applthermaleng.2017.11.099
http://dx.doi.org/10.1016/j.applthermaleng.2017.11.099
http://dx.doi.org/10.1016/j.applthermaleng.2017.11.099
https://www.kaltra.com/wp-content/uploads/2020/04/TM_Microchannel-Condensers_Ver.3.0_EN.pdf
https://www.kaltra.com/wp-content/uploads/2020/04/TM_Microchannel-Condensers_Ver.3.0_EN.pdf
https://www.kaltra.com/wp-content/uploads/2020/04/TM_Microchannel-Condensers_Ver.3.0_EN.pdf
http://dx.doi.org/10.1016/j.msea.2006.12.184
http://dx.doi.org/10.1016/j.msea.2006.12.184
http://dx.doi.org/10.1016/j.msea.2006.12.184
http://dx.doi.org/10.1016/S0029-5493(98)00238-6
http://dx.doi.org/10.1016/0255-2701(94)04016-8
https://www.osti.gov/biblio/5939136
http://dx.doi.org/10.1115/1.2928752
http://dx.doi.org/10.1006/jfls.1999.0208
http://dx.doi.org/10.1006/jfls.1999.0208
http://dx.doi.org/10.1006/jfls.1999.0208
http://dx.doi.org/10.1109/4235.996017
http://dx.doi.org/10.48550/arXiv.1412.6980
http://refhub.elsevier.com/S0017-9310(25)00840-3/sb44
http://dx.doi.org/10.1007/978-1-4614-6849-3
http://dx.doi.org/10.1007/978-1-4614-6849-3
http://dx.doi.org/10.1007/978-1-4614-6849-3
http://dx.doi.org/10.48550/arXiv.1201.0490
http://dx.doi.org/10.48550/arXiv.1201.0490
http://dx.doi.org/10.48550/arXiv.1201.0490
http://dx.doi.org/10.1016/S0378-4754(00)00270-6
http://dx.doi.org/10.1016/S0378-4754(00)00270-6
http://dx.doi.org/10.1016/S0378-4754(00)00270-6

	Optimal design of aircraft thermal systems and their heat exchangers leveraging a data-driven surrogate model
	Introduction
	Case studies
	CC-APU
	CC-TS

	Methodology: Models and Design
	Waste Heat Recovery Unit
	Heat Exchangers
	Condenser
	Primary Heat Exchanger

	Design Strategies
	Surrogate Model
	Dataset of optimal heat exchanger designs
	Data Reduction
	Regression methodology
	Model Accuracy


	Results
	CC-APU
	CC-TS

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


