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Chapter 1

Introduction

1.1 Background

Travel time is an important aspect of transportation. It reflects the performance of road
networks and has a direct meaning for all people. Travel time is of interest for both the
individual traveler and for the network authorities who manage the road networks. Pro-
viding travel time information to road users allows them to make more informed decisions
on their choices (e.g. mode, route and departure time) (Bovy & Stern 1990). These indi-
vidual behavioral changes have a positive impact on the network as a whole (potentially
reduce congestion and improve network efficiency) (Ben-Akiva et al. 1991). From the
perspective of the whole network, the desire of travelers to reduce their travel times over
a road network has led to a necessity for network authorities to reduce the overall travel
time on the road network.

Moreover, accurate and reliable travel time predictions can also benefit the road users
by decreasing uncertainty and reducing stress (Adler & Blue 1998). Clearly, travel time
information is becoming increasingly important for a variety of real-time transportation
applications, such as Advanced Traveler Information Systems (ATIS), Route Guidance
Systems (RGS), etc. As a direct result, refining or creating new travel time prediction
models used in real time operations is a research area with growing interests (Paterson
2000).

Travel time prediction for freeways has been studied intensively in the past decade (e.g.
Van Lint 2004, Vanajakshi 2004, Paterson 2000, and Bovy & Thijs 2000). However,
limited work has been done for urban networks (Lin et al. 2004, Robinson 2005). This
Ph.D. research concentrates on travel time prediction for urban networks based on the
analysis of the differences between freeways and urban networks.

Traffic flows on freeways are often treated as uninterrupted flows. However, the traffic
flows on urban networks are considered as interrupted flows. Vehicles traveling on urban
networks are subject to not only queuing delays but also signal delays as well as delays
caused by vehicles entering from the cross streets (Lin et al. 2004). The mechanism of
traffic propagation along urban networks is quite different from that on freeways. Since
freeway traffic operations are considerably different from urban traffic operations, travel

1
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time prediction models for freeways are not directly usable in an urban context. This
motivates our intention to create a model which can be applicable in an urban context.

From the practical application point of view, the availability of traffic data will influence
the methodologies used for urban travel time prediction. Besides the differences in traffic
operations, urban networks differ also in terms of the available data from sensors. Urban
networks are usually not as comprehensively covered by measurement equipments as
freeway networks are (Van Lint 2004). A shortage of data slows down the development
of models for urban networks since few data are available for the calibration and validation
of these models.

Presently, the monitoring of traffic flows on urban networks is enhanced through the use
of cameras that recognize license plate numbers. More and more cities, such as Bei-
jing (China), Delft (The Netherlands) and Stockholm (Sweden), have installed license
plate cameras for monitoring large-scale urban networks. Those direct travel time mea-
surements are available for calibrating and validating models for the prediction of travel
times. Utilizing these new travel time measurements along with traditional loop detector
measurements for travel time prediction on urban arterials is the main motivation for the
research described in this dissertation.

Another potential data resource is the Globle Position System (GPS). With the successful
commercial marketing, GPS equipments on taxies can provide tremendous amounts of
traffic data covering the whole urban network. These data, so called floating car data
(FCD), can be a good complementary resource in the future. However, this thesis will not
take the use of FCD into account.

Urban networks are usually equipped with single loop detectors, while double loop de-
tectors are often installed on freeways. The single loop detectors are only able to provide
volumes and occupancies, unlike the double loop detectors which also provide speeds.
Moreover, freeways usually have a more uniform spacing of detector locations (e.g. 500
meters in the Netherlands), but for urban streets the detector locations vary with the length
of the urban links.

In this Chapter, the background of this Ph.D. research is described in order to identify the
intention of this effort. Next, research objectives are presented and the research scope is
defined in order to describe a clear boundary of the research problem. Then, the main
contributions and relevance of this dissertation are summarized. The final section outlines
the structure of the entire dissertation.

1.2 Research Objectives and Scope

In this section, research objectives and scope will be elaborated in order to make a clear
description of the urban travel time prediction problem.

Travel times are the results of traffic flow operations, which in turn are governed by the
interactions between traffic demand (e.g. commute traffic demand, etc.) and traffic sup-
ply characteristics (e.g. road capacity, traffic signal timing, weather, etc.). In other words,
traffic conditions result in different travel times. The traffic conditions are governed by
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complex non-linear interactions of heterogeneous groups of driver-vehicle-road combina-
tions. The drivers, vehicles and roads are characterized by their own specific technical
and behavioral properties, such as vehicle dimensions and acceleration characteristics,
drive-style (aggressive, conservative), and traffic signal controls. Predicting travel times
requires predicting traffic conditions in the future. However, in a practical situation we
only know the traffic conditions up to the current time instant. Thus, predicting future
traffic conditions is a major issue of addressing the travel time prediction problem. For
applicability purposes, not all (inter)relationships between these demand and supply fac-
tors will be taken into account.

1.2.1 Research Objectives

The main objective of this dissertation is to develop a methodology that can provide robust
and accurate travel time predictions for urban networks.

First, the accuracy of travel time predictions is an important criterion for evaluating the
proposed model. The smaller the difference between predicted travel times and actual
travel times, the better the model performs. To quantify this, a simple baseline model,
which is widely used in practice, will be compared with the proposed model. The baseline
model simply uses measured travel times as predicted travel times (see details in Chapter
5). Obviously, the purpose is to develop a model which outperforms the baseline model.
In addition, one or more existing models will be used for comparison.

Secondly, the proposed model should be robust. The robustness requires the proposed
model to be capable of coping well with variations in its operating environment. Robust-
ness is a quality which is difficult to assess quantitatively. In this dissertation, robustness
is defined two-fold: the ability of coping with the variations of traffic conditions (free
flow and congestion); and the ability of coping with the variations of the quality of input
data. The former is assessed by comparing the accuracy of travel time predictions under
different traffic conditions. The later is addressed by assessing how well the model devel-
oped in this research with corrupted and missing (bad quality) data, which are common
problems in a real time situation.

1.2.2 Research Scope

Travel time prediction is a broad research problem. In the literature, a wide variety of
travel time prediction models have been developed. Those models can be classified in
terms of road type, spatial scope, prediction horizon, input traffic data, etc. In this re-
search, the scope will be limited in the following way.

First, this research only focuses on signalized urban arterials. Unsignalized urban streets
are not considered. Also, urban streets with roundabouts are not addressed. The spatial
scope and road type will be restricted to route level and signalized urban networks (details
of the definitions of the link, segment, route, network will be presented in Chapter 2). Of
course, the concept of predicting urban route travel time can be easily extended to a net-
work level by disaggregating the network into routes. Thus, from the spatial application
perspective, this research will focus on signalized urban routes.
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Although there are a lot of factors influencing urban travel times, such as road geometry,
public transit, traffic composition, weather, the focus here is on two important factors,
namely, traffic demand and intersection control. Apparently, travel times are strongly
influenced by traffic demand. A common experience is that drivers take long travel time
with the increase of traffic volumes. As mentioned above, the interrupted operation of
urban arterials causes stochastic delays, which constitute a large part of travel time on
urban streets (Viti & Zuylen 2004).

The availability of data dominantly influences the modeling approach and methodology
which will be used for travel time prediction. Single loop detectors are the common detec-
tion equipments installed on urban networks. In most Dutch cities, single loop detectors
are installed at signalized intersections for the vehicle actuated signal control. Those
single loop detectors are located at either just upstream of the stop line or even further
upstream. Those single loop detectors provide volume data. The signal timing data can be
obtained from signal controllers. Measured travel times are provided from license plate
camera systems. Note that the layout of detectors might be different for networks with
different traffic control methods, e.g. SCOOT (Hunt et al. 1981), SCATS (Wilson et al.
2006), UTOPIA (www.peektraffic.nl), etc. In this research, we use the Dutch layout of
detectors.

Finally, this research focuses on short term travel time prediction. In general, short term
travel time prediction is used for real time route guidance, while long term travel time pre-
diction is widely used for transport planning purpose. Obviously, the longer the prediction
horizon, the more models rely on either statistical or theoretical assumptions regarding fu-
ture traffic conditions (Van Lint 2004). In fact, there is no a clear boundary between the
short term and the long term. In this dissertation, 30 minutes is selected as the maximal
prediction ahead for testing the performance of the proposed model because most urban
trips are shorter than 10km, a distance that can be traveled within 30 minutes.

1.3 Contributions and Relevance of the Dissertation

The main contributions of this dissertation are listed below:

1. It develops a neural network based traffic flow model for urban route travel time
prediction (Chapter 4). The approach is a hybrid of data-driven and model-based
approaches. The concept of a hybrid model for a neural network is applied for
the first time in this dissertation. Some of the innovative aspects of this model are
specified as follows:

e A single segment model based on the State Space Neural Network is devel-
oped for modeling the traffic flow on a single signalized segment. The segment
model is generic and not location-specific, at least in terms of its mathematical
structure and the overall input-output relationship.

e The segment based model can be extended to predict urban travel times from
segment level to route level. The extension can be accomplished by concate-
nating separate segment models which correspond to the segments of the route
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of interest. The traffic flow on the urban routes are modelled by propagating
from (upstream) segments to (downstream) segments.

e The model is able to take traffic signal timings into account.

2. Two strategies have been proposed to preprocess raw data. A procedure of dealing
with corrupted volume data collected by single loop detectors has been proposed
(Chapter 6). In addition, a method to detect the outliers of travel time observations,
and then fill in the empty gaps, has been developed (Appendix E).

1.3.1 Scientific Relevance

The use of neural networks for freeway travel time prediction is certainly not new. But,
the applications of neural networks on urban networks have not been found in the liter-
ature. A neural network based traffic flow model for urban route travel time prediction,
as described in this dissertation, has been presented. By considering the main features
of urban networks, the proposed model decomposes modelling complex urban networks
into modelling urban segments and concatenating them afterwards. Modelling travel time
on urban segments is based on a neural network, while the concatenation of those models
is based on traffic flow theory. In this sense, it shows that the domain knowledge (in our
case traffic flow theory) can be integrated into neural networks. It is a promising attempt
to combine a data-driven method with a model-based approach.

1.3.2 Practical Relevance

The research results can be applied for Advanced Traveler Information Systems (ATIS)
and Route Guidance Systems (RGS), which are two parts of the Intelligent Transporta-
tion Systems (ITS). In Beijing situation, for example, an increasing number of variable
message signs (VMSs) have been set up at strategic bifurcations in the urban network,
where drivers could choose alternative routes. In addition, two real-time traffic informa-
tion websites (one is based on loop detector data, the other is based on floating car data)
are open to the public. Now, both the VMSs and the two websites only display speeds
in colors (red represents congestion, yellow represents slight congestion, green represents
free flow). Those displayed speeds only represent rough traffic states in the urban net-
work. However, there is a clear need for accurate travel time predictions, which can be
displayed on the VMSs, online websites, or in-car navigation systems. The practical rel-
evance of this dissertation is to develop a urban travel time prediction model, which is
applicable in a real-time environment.

We demonstrate how the proposed model can be deployed in a single loop detector based
data collection system. Since the proposed model is essentially a data driven approach,
it could also be applied for other traffic data collection systems which measure other
quantities that are physically or statistically related to travel times. For example, more
and more cities in China build up floating car data collection systems (based on GPS and
GSM), and automatic vehicle identification systems (AVI).

In practice, missing and corrupted data frequently occur. There is a need for dealing with
the quality of loop detector data and measured travel times. Two methods have been
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presented to address the problem of raw data. Certainly, the methods can be used by
other researchers who need a good-quality database from loop detectors and license plate
recognition systems.

1.4 Dissertation Qutline

Apart from the introduction in Chapter 1, the dissertation is composed of the following
chapters and appendixes. Figure 1.1 shows the entire structure of this dissertation.

Chapter 2 gives some definitions of travel times (the theme of this dissertation) and urban
networks (the application focus). Those definitions will be used through the whole disser-
tation. Since delays dominate the main part of urban travel times, a detailed explanation
of the delays caused by different sources is included. The complexity of many influenc-
ing factors results in the variability of urban travel times. In the end of this Chapter, some
basic relationships between travel times and traffic quantities are presented.

Chapter 3 provides a comprehensive overview of existing travel time prediction approaches
solely for urban networks. Those approaches are categorized into two groups: model
based and data driven. The advantages and disadvantages of each approach will be dis-
cussed. Based on this overview, a state space neural network for predicting urban travel
times is proposed.

Chapter 4 describes the development of the proposed model for predicting urban travel
times. First, a basic and generic model is developed at the urban segment level. Then, it
shows how to concatenate the generic models to predict travel times at urban route level.

Chapter 5 applies the proposed model in a simulation environment. Three typical traffic
conditions (slightly saturated, moderately saturated and seriously oversaturated condi-
tions) have been generated to test this proposed model. This Chapter also addresses the
issues of sensitivity and robustness.

Chapter 6 uses empirical date obtained from RegioLab Delft project (www.regiolab-
delft.nl) to assess the proposed model. The practical applications, not like simulations
(100% correct data), require extensive strategies to deal with the quality of actual obser-
vations. This Chapter presents methods to generate good quality data. Then, those data
will be used for test the proposed model.

Finally, Chapter 7 summarizes the main conclusions of this research and offers the direc-
tions of future research.

Appendix A lists common performance indicators used in Chapter 5 and 6.

In this dissertation, the license plate recognition system is used as a travel time collection
system. To have an overviews of various travel time collection systems, readers can find
in Appendix B.

In Chapter 2, it is stated that the locations of loop detectors do have a significant influence
on measured mean speeds, which can be used for deriving travel times. Details of the
analytical calculation of mean travel times and time/space mean speeds with respect to
locations can be found in Appendix C.
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Figure 1.1: Schematic overview of the structure of the dissertation and appendixes.

In Chapter 4, we present a neural network model for urban travel time prediction. The
detailed description of the batch training algorithm for the proposed model, Levenberg-
Marquardt and Bayesian Regularization, is described in Appendix D.

In Chapter 6, we put the proposed model into practice. In reality, the measured travel times
often consist of corrupted values, called outliers. Appendix E presents several algorithms
for detecting travel time outliers.
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Chapter 2

Fundamental Description of Urban
Travel Time

2.1 Introduction

In the literature, two distinct road types for the application of travel time prediction can
be easily identified: freeways and urban (signalized or unsignalized) streets. This is due
to the fact that the characteristics of freeways are significantly different from those of
urban streets. The focus here is on travel time prediction solely for urban streets. Before
we explore this problem, we refer the definitions of freeways and urban streets as those
in (Transportation Research Board 2000). A4 freeway is defined as a divided highway
with full control of access and two or more lanes for the exclusive use of traffic in each
direction. The term "urban street" refers to urban arterials and connectors, including those
in downtown areas. There are no signalized or stop-controlled at-grade intersections along
freeways, and access to and from the freeway is limited to ramp locations. The principal
difference between freeway traffic and urban traffic is that the former is uninterrupted
while urban traffic is interrupted at intersections. Depending on the control scheme and
the degree of saturation, the interruption causes stochastic delays. These delays constitute
a large part of travel times on urban streets (Viti & Zuylen 2004).

Apart from the principal difference, other important factors also influence the travel times
for urban streets: (1) Speed Condition: Urban streets usually operate at lower speeds (less
than 50km/h) compared to freeways (more than 80km/h). (2) Bus Blockage: The impact of
local transit buses that stop to discharge or pick up passengers at near-side or far-side bus
stops may result in increased delays. (3) Pedestrian and Cyclist Disturbance: Compared
with freeways, vehicles running on urban streets can be disturbed by pedestrians and
cyclists crossing streets. (4) Transit Priority: Transit priority signal timing gives green
time with high priority to public transit, while it sacrifices time for personal cars. (5)
Parking: The influences of parking are not only the reduction of the capacity of road
facilities but also the disturbances of the traffic. The disturbances include the ’frictional
effect’ of a parking lane on the flow in an adjacent lane and the ’occasional blocking’ of
an adjacent lane by vehicles moving into or out of parking spaces. In this dissertation, we
will not further investigate those factors.
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In the next section, some basic definitions of travel times on urban streets are presented.
As the dominant parts of travel times, delays that drivers experience on urban streets
have been investigated in detail. The analysis of delays will be helpful in distinguishing
urban travel times from freeway travel times. In the end, this Chapter introduces the basic
relationship between travel times and traffic variables (volumes and speeds). Particularly,
measured time mean speeds at different locations along an urban segment are analyzed.
The results show that stationarity and homogeneity may be satisfied on freeways but do
not hold on urban streets.

2.2 The Basic Definitions of Travel Time on Urban Streets

2.2.1 Definitions of the Elements of Urban Networks

In this dissertation, the following definitions are used.

Definition 1 An intersection is a road junction where two or more roads either meet or
cross at the same grade or level.

Definition 2 An urban link is a section of a urban street between two consecutive inter-
sections.

Definition 3 An urban segment is a combination of one urban link and one intersection.
Two types of urban segments can be defined according to the layout of the segment: type
A, an intersection is connected to the start of a urban link; type B, the end of an urban
link is followed by an urban intersection.

Definition 4 An urban street/route consists of a number of contiguous urban segments.

Figure 2.1 schematically outlines the different elements of a typical urban route. Unless
specifically stated otherwise, an intersection is denoted with index #, an urban link is
denoted with index /, an urban segment is denoted with index s, and an urban route is
denoted with index r.

2.2.2 Definitions of Travel Times
The following section presents some basic definitions of travel times used in this disser-

tation (based on Van Lint 2004 and Bovy & Thijs 2000).

Travel time is the duration of time that a driver takes from the start of a trip to the end of
a trip. The spatial scope of this trip can be an intersection, or an urban link, or a segment
or a route. Travel time can be expressed as

TT =t —1t (2.1

where ¢ denotes the time instant when a driver departs from the start of the trip, ¢’ denotes
the time instant when the driver arrives at the end of the trip.
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Figure 2.1: Schematic representation of a typical urban route and basic elements

Individual and Aggregated Travel Time

Definition 5 The individual travel time T T;(t) is the time that a single vehicle/driver i
traverses the route of interest at departure time instant t.

Definition 6 The aggregated travel time T T (p) is defined as the arithmetic mean travel
time of the population of all vehicles that traverse the route of interest during the depar-
ture time period p = [t,t + t]. The mean travel time of the aggregated interval can be
expressed as the average of individual travel times:

1 N
TT(p) =2 TT(), " € p

i=l

where N denotes the total number of vehicles departing during time period p.

Departure and Arrival Travel Time

Definition 7 Individual departure travel time, T Tl.d(t), is the travel time with departure
time instant, t. Aggregated departure travel time, TT(p), is the average travel time
within departure time period p.

Definition 8 Individual arrival travel time, TTF(t'), is the travel time with arrival time
instant, t'. Aggregated arrival travel time, TT(p), is the average travel time within
arrival time period p.

Note that each vehicle has both departure and arrival travel times when it traverses a finite
length of a route. For this vehicle i, TTl.d(t) = TT(') =t —t > 0. Figure 2.2
shows two vehicles’ trajectories graphically, and the departure and arrival travel times for
traveling from x to x;.
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Figure 2.2: The individual departure and arrival travel time are obtained from vehicle trajectories.

Travel Time Observations

The use of cameras to capture vehicle license plate numbers is widely accepted for mea-
suring travel times (other methods of measuring travel times seen in Appendix B). With
license plate cameras, travel time observations are only available when the vehicles com-
plete their trips. Therefore, each individual travel time observation cannot be calculated
unless both of the departure time instant and arrival time instant are available. Normally,
travel time collection systems provide only arrival travel times. But, departure travel times
are more convenient for travel time prediction. Therefore, there is a need to convert arrival
travel times to departure travel times. The simple way to obtain individual departure travel
times is by shifting arrival travel times backward with the absolute value of travel times
on the time axis. Figure 2.3(a) shows an example of the empirical individual travel time
observations collected from an urban street, Kruithuisweg, in Delft, in the Netherlands.

It is interesting that the aggregated departure travel time observations are not the results
of simply shifting the aggregated arrival travel time observations (seen in Figure 2.3(b)).
This is due to the different speeds of vehicles and overtaking activities. For a simple
example, vehicle A and B arrive at the end of a trip during the same arrival aggregated
period, while vehicle A departs one departure aggregated period before vehicle B. Obvi-
ously, vehicle B runs faster than vehicle A. Thus, they have the same aggregated arrival
time period, but separate contributions to two aggregated departure time periods.

Travel Time Estimation and Prediction

Travel time estimation refers to the calculation of the (mean) travel times of realized trips
based on known traffic quantities (e.g. speeds, flows, and densities, etc.) (Bovy & Thijs
2000). That is, estimated travel times are derived from traffic measurements up to the
present time instant/period (see Figure 2.4). Travel time estimation, by definition, is a
technique used in cases where directly measured travel times are not available.
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Figure 2.3: Travel time observations collected from a provincial road, Kruithuisweg, of Delft, in
the Netherlands during the period of 7:00 to 10:00AM on April 22, 2006. (a) individual travel
time observations (b) aggregated travel time with time interval of 5 minutes.

Travel time prediction refers to the calculation of the departure travel time for the future
traffic conditions. Predicted travel times are calculated based on not only the past traffic
conditions but also the future traffic conditions. The past traffic conditions are known and
can be measured. However, the future traffic conditions are unknown. There is no doubt
that travel time predictions are based on accurately predicting future traffic conditions.

Note that both estimated travel times and measured travel times can be expressed at the
departure or arrival time instant, depending on different applications. But, predicted travel
times always use the departure time instant unless explicitly stated. Predicted travel times
are more useful for travelers because they provide information affecting travelers’ deci-
sions on, for example, modes, routes, and departure times. Measured travel times only
contain past information when drivers have completed the trip of interest, which has less
or even no value for future traffic conditions.
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Figure 2.4: The difference between travel time observation, estimation and prediction (cite from
Van Lint 2004).

Instantaneous Travel Time

The specific term of instantaneous, used for travel time, should be emphasized. Instan-
taneous travel time pertains to the sum of travel time estimations of each segment at the
same time step. If it is assumed that the current traffic conditions remain stationary for an
infinite period, the instantaneous travel time can be used as the predicted travel time. This
is a simple way to ’predict’ future traffic conditions, which are widely used in practice.
Because of its simplicity and ease-of-implementation, this trick can be integrated into any
model. However, this simplicity will result in an underestimation of future congestion-
onset conditions and an overestimation of future congestion-dissolve conditions (Van Lint

2004).

2.3 Individual Travel Time and Trajectory Speed

In the trajectories the normal representation is that the position x of a vehicle is given
as a function of the time ¢#. The speeds of the vehicle is given as v(¢) = dx/dt and the
distance travelled is given by x = [0 (¢)dt. In order to obtain the travel time between two
positions along a road, xo and xs, the inverse is needed: the relation between the time as
determined by the distance. As visible from Figure 2.5, this relation is not a continuous
function, since at locations where a vehicle stops, the relation is multi-valued. That means
that only for o > 0 the derivative of the time with respect to space exists. Otherwise, at
the points where the vehicle stops, the derivative does not exist in a strict sense.

The time to travel from xg to x5 can be given in the following expression:
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Figure 2.5: Schematic space-time diagram illustrating delay terms at a signalized intersection.

TT = /‘P (x)dx (2.2)

where

¥ (x) = dt/dx = g fordx/dt > 0
Yx)=to(x—x5) fordx/dt=0

where the delta function is defined as

o(x) =0 forx #0

o(x) =00 forx =0
and/é(x)dx =1.
Using this approach we can rewrite the travel time from xg to x5 as

X5

TT = / [dxl/dt + (3 — )0 (x — X3)i| dx (2.3)

X0
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2.4 Components of Travel Times on Urban Streets

As stated earlier, delays at intersections play a dominant role in the travel times that drivers
experience on urban streets. Thus, travel time 7’7 on an urban street » can be subdivided
into two main components as follows:

T'T.(t) =Tr(1) + D() (2.42)

where T (¢) denotes the travel time in free-flow conditions at time instant 7, and D()
denotes the (mean) delay that drivers experience when departing at time instant 7. Free-
flow conditions refer to no other vehicles (volume is zero) and no intersections (no signal
control). In free-flow conditions, drivers are able to choose their desired speeds. It is cer-
tain that the desired speeds vary with driving behavior, speed limit, weather conditions,
etc. The investigation of the variability of desired speeds is out of the scope of this dis-
sertation. Let v r be constant. T can be expressed as a function of the route length L,
and the desired speed v s in free flow conditions, thatis 7y = f—; This results in 7'y being
constant for *free flow’ conditions, while D varies with the effects of different influencing
factors.

In the literature, several terms for delay have been used widely. In the interest of unifor-
mity the following definitions are given based on (Hoeschen et al. 2005 and Skabardonis
& Geroliminis 2005). The delays may (not exclusively) be from different sources: (1)
full stop, acceleration and deceleration; (2) the position of vehicles in a platoon; (3) sig-
nal control strategies for isolated intersections; (4) signal (offset) coordinations between
two intersections; (5) overflows due to high traffic demand. This implies that the influenc-
ing factors under consideration in this dissertation are traffic signals and traffic volumes,
but do not include others, like weather, transit priority, pedestrian disturbance, etc.

2.4.1 Delays of stop, acceleration and deceleration

To illustrate the delays caused by a full stop, acceleration and deceleration, a hypothet-
ical trajectory of a single vehicle is shown in Figure 2.5. As mentioned previously, the
urban traffic is interrupted due to the presence of traffic signals. In most cases, vehicles
decelerate when they approach a stop line and the traffic signal turns red. Then they
stand still until the traffic signal turns green. Afterwards, vehicles accelerate to pass the
intersection. These delay components are illustrated graphically in Figure 2.5 and are
summarized below.

Definition 9 The stop delay is the duration that a vehicle physically stops and waits for
the signal to turn green at the signalized intersection. This is shown as ds in Figure 2.5
and corresponds to the flat part (t; to t3) of the space-time trajectory.

dy=t—10 (2.5)
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The stop delay is strongly related to the time instant when the vehicle arrives at the traf-
fic signal. Obviously, vehicles have to decelerate and stop in the red phase, while they
continue to pass the intersection in the green phase if no queue is present.

Definition 10 The deceleration time is the duration that a vehicle goes from running
speed to standing still in the end of the queue at the signalized intersection. That is, the
vehicle runs from x| to x3, and deceleration time corresponds to the time period (1 to
ty) of the space-time trajectory. Decelerated delay, d,, is the time difference between
deceleration time and time running at free-flow speed from x| to x;:

X2 — X1

dg=( — 1)) — (2.6)

If we consider that the vehicle decelerates at a constant deceleration rate, y 4, then the
deceleration time can be calculated as

2
1 v
h—nh =—|:(X2—X1)——f:| (2.7)
vy
Substituting equation 2.7 in 2.6 gives

dy= 2L 2.8)
2y 4

Definition 11 The acceleration time is the duration that a vehicle takes to speed up from
zero to running speed. This corresponds to the time period (13 to ts). Accelerated delay,
d,, is the time difference between the acceleration time and time running at free-flow
speed from t3 to ty.

Analogously to equation 2.6, the accelerated delay can be expressed

vf
dy = = 2.9
2 (2.9)

in which y , is the acceleration rate.

Thus, the travel time for a single vehicle, assuming no interaction with other vehicles, can
be calculated by

TT.(t) = Ts(t)+ D(1) (2.10)
L,
= _+dd+ds+da (211)
vf
L, vr )
= Lin-n+-L+-L (2.12)
vf 2yg 2y,
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Figure 2.6: Trajectories of vehicles approaching a traffic signal. Vehicle A arrives at stopline
when the traffic signal turns red, which cause him wait for an entire red time. Vehicle B arrives
at stopline at the middel of red phase. Vehicle C do not need to stop still when he passes the
intersection.

Example 1 Suppose there is a free-flow condition and dy is highly dependent on the
time when the vehicle arrives at the signal (see in Figure 2.6). For example, vehicle A
decelerates at deceleration rate y ; and reaches the stop line exactly at the start of the
red phase (this is the worse case that a vehicle might experience for the longest delay);
re denotes the red time, vehicle B reaches the stop line when the signal turns green (this
is the last vehicle to stop at the signal); vehicle C decelerates but the signal turns green
before it stops so it accelerates from a non-zero speed v'. Note that the situation discussed
here is only for undersaturated intersections. For the three different vehicles, the travel
times are calculated respectively by

. a LV l)f l)f
Vehicle A: TT =—+re+7—+ — (2.13)
vy 2Ya  2Va
L
Vehicle B: TTrb:_V+()_|_v_f_|_v_f
vy 2Ya  2Va
N2 N
. L, (Uf_U) (Uf—v)
Vehicle C: TT = — 40+ +
vf 2yqvs 2y 07

For a simple example, given L, = 200m, r, = 36s, y, = 2m/s%, y, = 1.5m/s?,
v = 20km /h and vy = 60km/h, the percentage differences in delays are shown in
Figure 2.7. Note that in reality drivers do not slow down/speed up at constant decel-
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eration/acceleration rates. Readers who are interested in modeling a dynamic decelera-
tion/acceleration rate can refer to (Akcelik & Besley 2001).

14% 18%

32%

FT

11%
43% 4%

A 15%
43%

Vehicle A Vehicle B Vehicle C

RT: red time

FT: travel time with free flow speed v
DT: deceleration time

AT: acceleration time

Figure 2.7: The percentages of components of travel time (L, = 200m, r, = 36s, y ; = 2m/s?,
Vo= 1.5m/s*, v = 20km/h and v, = 60km / h)

2.4.2 Delays of vehicles in platoon

During congested periods, additional delays can be caused when the arrival rate exceeds
the service rate at the traffic signal. Figure 2.8 shows vehicle trajectories in a congested
situation. In the first cycle, a queue has been set up. When the green time of the second
cycle starts, vehicle A, B, and C start to pass the intersection. Vehicle D reaches in the
end of this queue, and decelerates to keep a safe distance after vehicle C. When vehicle
D reaches the stop line, the second red time is activated. Thus, vehicle D has to wait until
next green phase. Note that vehicle D experiences two-time decelerated, accelerated, and
stopped delays before it passes the intersection. As a result, vehicle D experiences a much
longer travel time than vehicle C, although they only have a small departure time lag. This
illustrates that the variability of delays (travel times) might be significant, depending on
the arrival patterns.

2.4.3 Delays of signal control strategies

The modes of signal control strategies can be divided into three main classes (Zuylen
2002):

e Fixed and pre-timed control, where the structure and timing of the traffic control
process are determined in advance and the whole control process is steered by a
program;

e Vehicle actuated control, where individual vehicles are detected and the information
from detectors is used to influence the structure and timing of the control program;
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Figure 2.8: Schematic representation of delays because of overflow queues

e Traffic dependent control, where information about the whole traffic situation is
used to make decisions about the progress of the control program.

Fixed time control is only suited for the traffic situations for which it has been designed.
If the actual traffic situations are different from the designed ones, delays will increase
even more than those of the conditions for which it was designed. Moreover, even if the
actual volumes are equal to the designed average volumes, delays might be larger due to
the random variations of arrivals. Thus, vehicle actuated and traffic dependent controls
can reduce these delays due to the demand fluctuations, thereby adapting traffic control to
the actual traffic situation.

Vehicle actuated control operates signals according to the detected arrivals of the vehicles
at the intersection. The principal difference between the vehicle actuated control and the
traffic dependent control is that the later attempts to optimize the traffic flow under the
consideration of the total delay, number of stops, queue length, etc.

For isolated and smaller intersections the fixed time control normally gives higher delays
than the vehicle actuated control, while traffic dependent control gives slightly better re-
sults than the vehicle actuated control. However, if the traffic volumes are larger than the
capacity of the intersection, the vehicle actuated control behaves like a fixed time control
(because the full green phases which run until their maximum times are realized).

In a network of closely space controlled intersections, the coordination between intersec-
tions has a large influence on the performance. The vehicle actuated control with coordi-
nation appears to give an inferior performance compared to the fixed time programs with
pre-calculated green waves. There are traffic dependent control programs for network
control that give a better performance than the fixed time or traffic actuated programs.
Examples are the programs, e.g. SCOOT (Hunt et al. 1981), SCATS (Wilson et al. 2006),
UTOPIA (www.peektraffic.nl), etc.
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Figure 2.9: Delays caused by different offset settings: (a) green wave (b) bad offset

2.4.4 Delays caused by signal offsets

So far we have discussed the delays for vehicles approaching an isolated intersection.
Along an urban street with two (or more) intersections, delays may also be influenced by
offsets between adjacent signals. The offsets determine the arrival pattern of vehicle pla-
toons at successive intersections (Geroliminis & Skabardonis 2005) and greatly affect the
vehicle delays (Gartner & Wagner 2004, Skabardonis & Geroliminis 2005). Under favor-
able progression most of the vehicles travel without stops and delays between successive
intersections. This is called a “green wave” (shown in Figure 2.9(a)). On the other hand,
“bad” offsets cause high delays and may result in spillover, especially for short signal
spacing (shown in Figure 2.9(b)). Gartner & Wagner (2004) used a Cellular Automata
model to investigate the characteristics of traffic flow on signalized urban streets. They
found that bad offset settings cause significant delays and reduce the throughput and ca-
pacity.

As mentioned above, the offset setting also influences the arrival pattern of traffic platoons
at downstream intersections. The arrival pattern of traffic platoons determines the delays
that those vehicles experience. The size of the platoon diminishes with the distance be-
tween signals due to the variability of vehicle behavior (Viti 2005). This phenomenon is
usually referred to as platoon diffusion or dispersion. Hillier & Rothery (1967) showed
the diffusion phenomenon using field data and the distance-dependency of this phenom-
enon. Geroliminis & Skabardonis (2005) propose an analytical methodology to predict
the platoon arrival profiles and queue length along arterials with signalized intersections,
based on a two-step Markov Decision Process (MDP) and the kinematic wave theory.
Based on the experiments at two urban arterials, they concluded that the proposed ap-
proach can predict the arrival profiles of many signals downstream from a known starting
flow.
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Figure 2.10: Evolution of arrivals and departures with overflow delay. (a) cumulative arrivals and
departures in an oversaturated condition (b) cumulative arrivals and departures in an undersatu-
rated condition with a non-zero initial queue (cite from Viti 2006)

2.4.5 Delays of overflow queues

The residual queue in the end of a green phase is usually called the overflow queue, and
the corresponding delay is called the overflow delay. If the traffic demand is higher than
the capacity of the intersection (oversaturated conditions), the assigned green phase is not
sufficient to serve all vehicles arriving during the cycle time. Then, a residual queue will
remain. The residual queue can be formed not only in oversaturated conditions but also in
undersaturated conditions, with a non-zero initial queue caused by previous oversaturated
flows (Viti 2006) or by stochastic variation in the arrival pattern.

Figure 2.10(a) illustrates the oversaturated queue with the assumption of zero initial queue
and an average flow larger than the capacity, while Figure 2.10(b) shows an undersaturated
case with a non-zero initial queue. It is clear that in the former case the overflow delay
increases with each of the cycles. In the later case, the overflow delay decreases until that
time when the two lines representing the cumulative arrivals and departure intersect each
other.

2.5 The Variability of Travel Time

A common experience that everyone has is that the travel times along the same route may
be very different for different days, even if the drivers depart at the same time of each day.
This can be identified from the distribution of travel times. There tends to be a minimum
travel time, but it is possible to have a very long travel time. In a real life, travel times vary
with a number of factors e.g. fluctuations in traffic demand, vehicle composition, adverse
weather, probabilistic distributions of traffic arrivals, signal timing and driver behavior,
etc. The stochastic nature of these factors results in the variation of travel times (Van
Lint 2004, Viti 2006). Those influencing factors interact with each other and result in the
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variability of travel times. However, a thorough analysis of all influencing factors seems
impossible so far.

Definition 12 The variability of travel time refers to the degree of variation of travel times
under certain conditions.

To indicate the degree of the variation of travel times a single indicator, a so called statis-
tical range method, is widely used as a measure for travel time variability (Tu et al. 2008).
The indicator can be expressed as the difference between two percentile travel times.

TTV = TT90th — TT10th (2.14)

where TTV denotes travel time variability, 7790tk and T T 10th denote 90th and 10th
percentile travel times, respectively.

Due to the difficulties of collecting empirical data of influencing factors, practical in-
vestigations of travel time variability (for urban streets and freeways) are very limited
(Robinson 2005). Only few studies have been conducted in terms of individual factors,
such as traffic flows (Tu et al. 2007b), adverse weather (Tu et al. 2007a), incident con-
dition (Li 2004). Apart from disaggregating travel time variability in terms of different
influencing factors, time window has also been widely accepted to disaggregate travel
time variability. In particular, four time windows (vehicle-to-vehicle, period-to-period,
day-to-day, season-to-season) outlined are often explicitly considered (Robinson 2005).

This dissertation categorizes the variability of travel time into two groups as follows.

(1) Vehicle-to-Vehicle travel time variability: the variability of individual travel times
within the same departure period. This type of variability is caused by driver dif-
ferences, the stochasticity of traffic signals along the route, etc. Different types of
vehicles (e.g. trucks or passenger cars) have specific vehicle performances, for ex-
ample, acceleration/deceleration characteristics and maximum speeds. Each driver
has specific driving behavior associated with his human factors (physical and men-
tal conditions). The variability between vehicles and drivers increases the probabil-
ity of breakdowns and affects the stability of the traffic conditions (Tampere 2004).
The resulting variability of travel times can be identified from the individual travel
time measurements. That is, two individual vehicles might experience different
travel times even though they depart within a short time of each other. Figure 2.11,
for example, shows individual travel time observations within a 5-minute depar-
ture period. The difference between maximal and minimal travel times equals 110
seconds.

(2) Same-condition travel time variability: the variability of individual travel times over
more departure time periods under similar conditions. The similar conditions could
be the same weather (rain, snow, foggy, etc.), time of day, day of week, inflow range,
etc. Figure 2.12 demonstrates the travel time uncertainty as a function of inflows.
Travel time variability before breakdown (77 ¥/ in Figure 2.12) does not change
with the increasing inflows, while travel time variability after breakdown (7T V7
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Figure 2.11: Individual travel time observations within a small departure period of 5 minutes
(from 9:00AM to 9:05AM). The observations are collected from an urban arterial, Kruithuisweg,
the Netherlands on Januray 20, 2004.

in Figure 2.12) increases with the increasing inflows. Figure 2.13 demonstrates
the travel time variability as a function of inflow levels under both normal weather
and rain conditions for six freeway corridors in the Netherlands. Figure 2.14, for
example, shows aggregated travel time observations collected on 7 days in terms of
the time of day. Clearly, different days have distinct shapes of travel times in the
rush hour period (8:00AM to 10:00AM). The variability of travel time in the rush
hour period is larger than those in the rest time of day.
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Figure 2.12: Travel time variability before and after breakdown as a function of inflow levels on
Beijing second ring urban freeway (Tu et al. 2007b).
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Figure 2.13: Travel time variability as a function of inflow level under both normal weather and
rainy weather conditions. (Tu et al. 2007a)

2.6 Basic Relationships between Urban Travel Times and
other Traffic Variables

In this section, some basic mathematics of urban segment travel time and traffic variables
are presented. Those basic relationships can be used to estimate/predict urban segment
travel times by converting traffic variables into travel times. The traffic variables are
speed and volume, which are commonly collected by single/double loop detectors. Note
that those basic mathematics need to be modified for urban route travel time prediction,
taking ’platoon’ and ’filtering’ effects between upstream and downstream intersections
into account. For more details about ’platoon’ and ’filtering’ effect we refer to (Rouphail
et al. 2000). First, a discussion of how to derive the individual travel times from the
volumes is presented. Then, the relationship between mean travel times and time/space
mean speeds is described.

2.6.1 Individual travel time and volume

By means of a so-called cumulative curves approach (Daganzo 1997), travel times can be
easily derived from volumes collected from inductive loop detectors. Suppose that two
inductive loop detectors are installed on an urban link to collect volumes at locations A
and B (see in Figure 2.15(a)). From the volumes, two cumulative curves, N4 and Np,
can be derived. If the traffic flows are conserved and satisfy a first-in-first-out (FIFO)
property, then the flows that enter up to time ¢ (i.e. N4(¢)) must all exit from the link by
exactly time ¢ + 77 (¢). We can use this to compute 77 (¢) from the cumulative curves
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Figure 2.14: Travel time variability in terms of time-of-day. 7-day travel time measurements
collected from an urban arterial, Kruithuisweg, the Netherlands in 2004.

N4 and Np. Simply, we can find the time ¢#* at which the cumulative curve Np(¢*) is
equal to the cumulative curve N (7). Then ¢* is the exit time and 77 (¢) = t* — ¢t. In
other words, 7' T (¢) is the horizontal time shift between the two cumulative curves N 4(¢)
and Np(¢*), as shown in Figure 2.15(b).
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Figure 2.15: (a) the layout of inductive loop detectors installed along an urban link (b) the deriva-
tion of travel time from cumulative curves

Obviously, the travel time from locations A to B only covers the urban link. Now, we
extend the spatial scope to an urban segment, from locations A to C. In order to derive
travel times from volumes collected at locations A and C, more extra loop detectors are
required. This is because loop detectors A and C cannot identify vehicles from other
streams, such as left-turning volumes from location F and right-turning volumes from
location D. With those extra loop detectors the exact throughput volumes from locations
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A to C will be identified. Then, the derivation of travel times from locations A to C is
similar to the method for the travel time from locations A to B.

The clear advantage of the cumulative curve approach is its simplicity. However, the
underlying assumptions of this approach include vehicle consistency and FIFO. These
requirements restrict its applications to only a small spatial scope (urban link) and a one-
lane road (without overtaking behaviors). For a multi-lane urban route, the requirement
of FIFO is hard to satisfy because of overtaking activities. Also, if an urban route covers
more than one intersection, additional loop detectors should be installed for each traffic
stream in order to guarantee vehicle consistency. The use of a numerous amount of induc-
tive loop detectors is not feasible from the practical perspective. Because of these reasons,
a real-time application of the cumulative curve approach only has been done on freeways
(Nam & Drew 1996), and no literature, to the best of the author’s knowledge, reports a
good example of implementation on urban routes.

2.6.2 Mean travel time and mean speed

Before we explore the relationship between mean travel times and mean speeds for urban
streets, the relationship for a link of a freeway will be presented. In a stationary and
homogeneous state of a freeway link, the mean travel time simply is the inverse of the
space mean speed times the length of the link:

L

Vg

TT =

Since the space mean speed is a variable which is quite difficult to derive from that directly
measured with loop detectors, the time mean speed is used to derive the space mean speed
according to

2

vy = Is + vy (2.15)
Uy

where o2 is the variance of the space mean speed. Readers who are interested in practical
implementation can refer to (Van Lint 2004).
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Figure 2.16: Schematic drawing of the layout of an urban segment
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Figure 2.17: VISSIM simulation results on an urban segment. The figure shows both mean travel
times (top graph) and a contour plot of mean speeds measured at inductive loop detectors (bottom

graph).

The clear drawback of putting this theoretical relationship into practice is the assumption
of stationarity and homogeneity. They will likely not hold on the road stretches of any
practical length (a couple of hundred meters), especially not in congested and / or unstable
traffic in which stop and go waves occur (Helbing 1997). For urban streets, traffic is
interrupted by traffic signals so that stationarity and homogeneity are not satisfied even in
free flow conditions. Also, the locations of loop detectors do have a significant influence
on the measured mean speeds. Details of the analytical calculation of mean travel times
and time/space mean speeds with respect to the locations can be found in Appendix C.
The following will illustrate the measured speeds at different locations along an urban
segment.

Due to the difficulty in finding a place where many detectors can be installed on the same
link, VISSIM3.70 (PTV AG 2003) was used to simulate an urban segment. There have
been 17 inductive loop detectors installed along a 250-meter urban segment. Travel time
observations are collected automatically after the start and end locations are determined.
Figure 2.16 gives a schematic drawing of the layout of the urban segment.

Time varying demand patterns were used, which simulate different traffic conditions (e.g.
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roughly free flow and congestion). The top and bottom plots of Figure 2.17 show the
mean travel times and time mean speeds, respectively. A short period of oversaturation
occurs due to a large traffic demand. As a result, a congestion builds on after about 22
minutes and dissolves until 32 minutes. Under congested conditions, travel times increase
up to 120 seconds, which is three times the mean free flow travel time (40 seconds).

Figure 2.18 shows the mean and standard deviation of measured time mean speeds at
different locations along the urban segment. Under free flow conditions, the mean of
the time mean speeds increases as the detector location is further from the traffic signal.
Detector 1 (the farthest detector from the traffic signal) has the highest value for the mean
of the time mean speeds, while it has the smallest standard deviation. Drivers are able
to choose their desired speeds when they are far away from the traffic signal. But, they
have to decelerate when they are close to the traffic signal, especially in a red phase.
Depending on the signal phase at the arrival times, drivers might have zero speeds if it is
red or maintain relatively high speeds as their desired speeds if it is green. This uncertainty
explains why the closest detector has the highest standard deviation of time mean speeds.

Under a congested condition, the average speeds in the queue is low, and the speeds
becomes large when cars pass the stop line. Consequently, the pattern of the mean and
standard deviation of the time mean speeds is opposite to the pattern under the free flow
condition.

In summary, the measured time mean speeds vary in terms of different locations, even
within a small spatial scope. It is certainly inappropriate to assume stationary and ho-
mogeneous states for an urban segment under both free flow conditions and congested
conditions. In other words, the time mean speed at any location cannot precisely reflect
the state of the entire segment. Therefore, equation 2.15 is not applicable within the urban
context.
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Figure 2.18: The mean and standard deviation of measured time mean speed at different locations
along the urban segment under free flow condition (left graph) and congested condition (right
graph).
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2.7 Summary

This dissertation focuses on short term travel time prediction solely for urban networks.
To distinguish this dissertation from those research studies on short term travel time pre-
diction for freeways, this Chapter started with some definitions for the elements of urban
networks. Some general definitions of travel times were given, such as individual and
mean travel time, arrival and departure travel time, and travel time observation, estima-
tion and prediction.

In this dissertation, only the traffic control strategy and traffic demand are considered as
the influencing factors. Correspondingly, the traffic signal and traffic volume are used for
modeling travel times. Clearly, we do not take into account other factors, like weather,
transit priority, pedestrian disturbance, etc.

As stated above, delays at intersections play a dominant role in the travel times that drivers
experience on urban networks. Many (not exclusively) factors which influence the travel
times were given. Among those influencing factors, five types of delays were discussed:
(1) the stop, deceleration and acceleration delays due to signal phases (e.g. red or green);
(2) delays in terms of vehicles’ position in the platoon; (3) delays caused by signal control
strategies for an isolated intersection; (4) delays caused by the signal offset between two
intersections; (5) delays caused by overflow queues. In accordance with those delays, a
brief overview of the variability of urban travel times was given. Delays highly depend
on the arrival times in the cycle (long delays for a driver arriving at the beginning of a red
phase, short delays for a driver arriving in the end of a red phase. The consequence is that
urban travel times have a large variability and exact predictions seem difficult.

Finally, the relationships between the urban travel times and traffic variables (volume and
speed) were investigated. Estimating travel time with volumes requires that each stream
of each urban link have one inductive loop detector. In a real operation, for a large network
this requirement of a tremendous amount of loop detectors is hard to be met at present.
This is why the cumulative curve approach is not applicable in practice. Given stationary
and homogeneous traffic conditions, the time/space mean speeds and travel times can be
analytically derived (see in Appendix C). A simulation shows that stationarity and homo-
geneity do not hold on an urban segment under both free flow conditions and congested
conditions.

In the next Chapter, a literature review of existing models for urban travel time prediction
will be presented.



Chapter 3

State-of-the-Art of Urban Travel Time
Prediction

3.1 Introduction

In order to better present an overview of urban travel time prediction, two principles are
used to limit the scope of this overview.

First, this overview only covers the prediction methods that have been used exclusively
for urban segments/streets but not for freeways. Those who are interested in travel time
prediction for freeways can refer to (Hinsbergen et al. 2007, You & Kim 2006, Van Lint
2004, Vanajakshi 2004, Liu 2004 and Paterson 2000).

Secondly, this overview only focuses on short term travel time prediction. Usually, the
term of short term here refers to predicting the travel time of vehicles departing in the
next 60 minutes, while the term of long term refers to predicting travel time of vehicles
departing tomorrow, next week, month or year (Van Lint 2004). The main difference
between the models for short term and long term is that the long term approaches usually
use historical average values by classifying days into day types with similar profiles. For
the topic of long term travel time prediction, we refer to (Vanajakshi 2004).

To categorize different travel time prediction models, two common classes are often used:
model based and data driven. Model based approaches explain traffic processes based on
a physical mechanism, while data driven approaches are based purely on data. In other
words, the principal difference between the two classes is that the data driven approaches
predict travel times without explicitly addressing the (physical) traffic processes. The
parameters used in data driven models are not interpreted by any physical meaning. This
implies that the data driven models are difficult to explain the physical mechanism relating
travel times to other traffic variables (e.g. flow, speed and density). In practice, however,
data driven models are implemented easily and show a good performance.

31
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Figure 3.1: Structure of microscopic and macroscopic simulation model for travel time prediction.

3.2 Model-based Approaches

3.2.1 Simulation models

Simulation models imitate the movement of vehicles along road networks and are applica-
ble for both freeways and urban streets. Based on the representation of traffic flow or ve-
hicle movement, traffic simulation models can be classified into microscopic, mesoscopic
and macroscopic. The main difference between microscopic and macroscopic models is
: microscopic traffic models describe each individual vehicle by different types (e.g., pas-
senger car, truck and bus), specific driver characteristics (e.g., aggressive or conservative),
and driving behavior (e.g., lane-change maneuver, car following logic, gap-acceptance
logic, and driver decision process). Macroscopic traffic models, on the other hand, sim-
ulate vehicle and driving behavior at an aggregated level, in which the traffic stream is
represented by the aggregated traffic flow, density and speed (see in Figure 3.1). Meso-
scopic traffic models simulate individual vehicles, but at an aggregate level, usually by
speed-density relationships and queuing theory approaches.

Simulation models usually rely on an Origin-Destination (OD) matrix and a route choice
model to assign vehicles onto road networks or to propagate vehicles with turning fraction.
The OD matrix, route choice and turning fraction can be static (derived from historical
data), or dynamic (estimated from online data). For a reference, see for example (Van der
Zijpp 1996, Bierlaire & Crittin 2004).

The clear advantage of simulation models is the ability to explicitly interpret the physical
traffic processes. They are able to isolate the factors influencing travel times and to in-
vestigate the cause and effect of travel times in different traffic conditions. Since they are
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based on (physical) traffic flow theories, they can be transferred and applied to any route
of interest by recalibration.

However, the major disadvantages of simulation models include highly computational
complexity, the high degree of expertise required for design and maintenance, intensive
model/parameter calibration, and the fact that they require the predictions of traffic de-
mand and supply at the model boundaries as inputs (Van Lint 2004, Liu 2004). In par-
ticular, two online tasks, OD and turning fraction estimation, are crucial for the real-time
application of simulation models. However, few successful practical applications of the
two online tasks can be found, although some research efforts have shown promising
concept designs in simulation environments (Bierlaire & Crittin 2004, Antoniou 2004).

3.2.2 Delay formulas

To precisely investigate the delays that vehicles experience at intersections, the pioneer-
ing work by (Webster 1958), which is expressed by equation 3.1, has been used widely
probably because of its simplicity.

c (1 - &)2 2 C 2, ge
D= S 065 3.1
20=xe) 291 —=x) q

where D is delay, s, is saturated flow rate, g, is effective green time, ¢y, is cycle time, g is
vehicle arrival flow rate, C, = s,g./cy is the capacity of a intersection branch, y = ¢/C,
is volume-to-capacity ratio.

Note that the equation 3.1 is only for average not for individual delays. Following Web-
ster’s work, other steady state stochastic models (Miller 1963, Newell 1960, McNeil 1968,
Heidemann 1994) were proposed. A main consequence of these models is that the esti-
mated delay rises to infinity as the traffic flow rate approaches saturation (y = 1.0).
Therefore, these models are valid only under the condition that the average flow rate does
not exceed the average capacity rate. This means that they are not able to deal with the
congested traffic conditions. To overcome this weakness, a general time-dependent de-
lay model was presented by (Kimber & Hollis 1979) and further enhanced by (Robertson
1979). The capacity guide delay models currently used in the United States, Australia and
Canada are based on the general time-dependent delay model. A general form of these
capacity guide delay models can be summarized as follows (Dion et al. 2004):

D=d x fpr+dr+d3 x f, (3.2)

with:

2
dy = 0.5¢, <1 _ g_y) (3.3)

[1 — & min(y, 1.0)]
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where d is uniform delay (delay assuming uniform arrivals), d; is incremental delay (ac-
counting for effect of random arrivals and oversaturation queues), ds is initial queue delay
for over-saturation queues that may have existed before the analysis period, fpr denotes
adjustment factor accounting for the quality of progression in coordinated systems, f,
denotes adjustment factor for residual delay component, f; denotes adjustment factor for
situations in which the platoon arrives during the green interval, » and m denote capacity
guide model parameters, P denotes proportion of vehicles arriving during effective green
interval, £ denotes incremental delay factor accounting for pre-timed or actuated signal
controller settings, / denotes adjustment factor for upstream filtering/metering, 7' denotes
evaluation period, y, denotes volume-to-capacity ratio below which the overflow delay
is negligible. Table 3.1 indicates the specific values assigned to the parameters in each
capacity guide model (Dion et al. 2004).

Table 3.1: Capacity guide delay model parameters (cite from Dion 2004)

Parameter Model

Australian(1981) Canadian(1995) HCM(1994) HCM(1997)
Ir 0 0 0 1
n 0 0 2 0
m 6or12¢ 4 4or16°¢ 8
k n/a nj/a n/a 0.04 —0.5¢
1 n/a n/a n/a 1.0/
T variable variable 15min variable
Xo 0.67 + Sg’og(f 0 0 0
frr 1 lorEq.3.4° 1,0.85,0rEq.3.47 Eq.3.4

¢ 12 for random arrivals; 6 when platooning occurs.
b'1.0 for isolated intersections; equation 3.4 in other cases.
¢ Function of arrival type (16 for random arrivals, 12 for favorable or non-favorable
progression, 8 for very poor or highly favorable progression, 4 for very unfavorable
progression).
1.0 for pre-timed, non-coordinated signals; 0.85 for actuated, non-coordinated
systems; equation 3.4 for coordinated systems.
¢ 0.5 for pre-timed signals; 0.04 — 0.5 for actuated controllers.
/"1 for isolated intersection only.

For the real time application, several /imitations of these delay formulas have been pointed
out by (Dion et al. 2004). First, the assumption that the number of arrivals follows a
known distribution, typically a Poisson distribution, does not change, but over time, is
hard to maintain in a real situation for a longer period. Secondly, they all assume that
the headways between vehicle departures from the stop line follow a known distribution
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with a constant mean, or are identical. Thirdly, these formulas assume to run long enough
to have a steady state condition. Fourthly, the purpose of equation 3.1 is to calculate the
expectation value not a specific delay in one situation. Overall, the complex behavior
of queues at traffic signals and the large variety of cases observed in real life limit the
validity and applicability of such formulas. An extensive overview of queue and delay
models at signalized intersections is given in (Viti 2006).

3.2.3 Queuing theory based models

The so-called sandglass travel time model is named for the image of sand flowing through
an hourglass and is an analogy for a vehicle queue discharging at an intersection. Usami
et al. (1986) were perhaps the first to propose a sandglass type of travel time model for
an oversaturated link. In their formulation, the delay is calculated by

N, L-L
TT =944~ 4
Sa vf

(3.5)

where N, denotes the number of vehicles in queue, L denotes the length of road segment,
L, denotes the length of queues, and v ; denotes free flow speed. The first term in equa-
tion 3.5 represents the time spent moving in the congested queues, and the second term
represents the time spent travelling at free-flow speed in the uncongested part of the road
segment.

Takaba et al. (1991) extended the sandglass model by further decomposing the travel time
on a congested section into two parts (the first and second terms of equation 3.6). The
link travel time is now expressed as

k km 1\ L—1L
TT =Lonr—Lg (—’" — —) + . (3.6)
q Sy ) vf

where v is the travel speed, k,, is the jam density. To apply this model, jam density,
saturation flow rate, and free-flow speed are estimated , while the traffic volume and
queue length are collected.

The requirement of a measured queue length in the model may hinder its applicability
because it is difficult to collect the queue length directly (Zhang & Kwon 1997). Further-
more, Anderson & Bell (1997) reported that the poor performance of the queuing models
was due to their sensitivity to the saturation flow and jam density. These two variables
tend to be fixed in queuing models, whereas the reality suggests they tend to vary (Robin-
son 2005). We tentatively argue that these static queuing models are not suitable for real
time applications.

3.3 Data-driven Models

Data driven models relate travel times linearly and/or nonlinearly to the influencing fac-
tors and/or their combinations. These models can be expressed in a general form as:
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TT = G(X, v) (3.7)

where X denotes a vector of influencing factors (e.g. occupancy, offsets, and green/cycle
ratio), and y denotes a vector of all the parameters in the regression model G.

3.3.1 Regression based models

Gault & Taylor (1981) proposed a simple model, taking into account the factors such as
degree of saturation and signal offset. The model is in the form

TT = (1 —d)at* + e’ + K (3.8)
in which #* denotes arrival time during the signal cycle, 0 = {é gzgg 2222}2 Ziz rgézen, ¢ is
measured occupancy, and a, b, ¢, and K are parameters that are functions of signal offset.

The clear limitation is that this model requires the knowledge of arrival time, a variable
that cannot be easily obtained from field operations. In recognizing the deficiency of this
model based on arrival time, Gault & Taylor (1981) developed an occupancy-based travel
time as follows:

TT = A¢+ B (3.9)
L

4 = a0+a10_+a2X+a3(Pd/Pu)
S

L
B = b0+blv_+bzx+b3(Pd/Pu)
S

where P; and P, are defined as the percentage of green time at the downstream and
upstream signal, respectively, a,, a,, a,, a,, b,, b,, b,, b, are parameters to be determined.

By taking into account the influence of detector locations, Sisiopiku et al. (1994) proposed
a general travel time regression model:

L
TT:D—+co+cl¢+cde+03Pu+c4PS (3.10)
/

where Py denotes the ratio of the detector setback distance to the link length, ¢, ¢,, ¢, ¢,,and
¢, are regression parameters.

In general, the above regression models have a simple model structure and are relatively
easy to be calibrated if all the data required are available. The major advantages of these
models is that they are easy to implement in practice. Various factors such as the signal
offset and degree of saturation can be easily incorporated into regression models. How-
ever, the drawbacks of these models are that, first, they are all only for urban segment
travel time prediction not for urban route travel time prediction. It is not indicated how to
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Figure 3.2: Example of the use of the k-NN method when k = 5 (cite from Steve 2005).

extend these regression models for a longer route. Secondly, in the sense that the parame-
ters and coefficients remain fixed, these models are static regression models. We doubt
whether those static regression models can produce a good performance in dynamic traffic
processes.

3.3.2 K-Nearest Neighbor models

The basic idea behind the k-Nearest Neighbor (k-NN) approach is to match the current
state vectors (input variables) with historical observations that have similar input vari-
ables. For simplicity, an example with 1-dimensional state vector is depicted in Figure
3.2. Suppose it is desired to use the k-NN method to estimate the value of y when mea-
sured state vector x = x;. If k£ is chosen to be 5, then the 5 historical observations with a
value of x closest, that is, the smallest distance (e.g. Euclidean distance), to x1, are iden-
tified. These observations are shown by the shaded points in the diagram. The y values
of these 5 closest observations are then used to estimate the value of y when x = x1. Itis
common to use the arithmetic mean of these five y values.

You & Kim (2000) incorporated the K-NN method with GIS technologies to implement a
hybrid travel time forecasting model. A highway and an urban area in Seoul were selected
as the test beds. They reported that this hybrid model performed well with satisfying
results. More recently, Bajwa et al. (2003a and 2003b) proposed to use genetic algorithm
for determining the optimal number of nearest neighbors. For a comprehensive review of
K-NN travel time model, the readers can refer to (Robinson 2005).

The clear advantages of K-NN are its straightforward concept and ease-of-implementation.
However, some disadvantages have been identified as well. First, there is no standard rule
to select variables which constitute the state vector. It is difficult to determine the spatial
and temporal seize of the variables. For the temporal size of the variables, an insufficient
size can cause an incomplete image of the traffic searched in historical databases. This
results in a poor prediction. However, the large size will require a large computational
effort. This can also result in a poor prediction as traffic patterns may consist of unneces-
sary details which are not affecting present travel times (Bajwa et al. 2003b). Similarly,
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the spatial size of variables in the state vector also need to be carefully investigated. Sec-
ondly, the K-NN needs a large amount of historical data. Accordingly, increasing the size
of the data increases the computation time to search out the K nearest neighbor in a large
database. Finally, if the input state vector is located at the boundary of the state space
of the existing observations, the results will be subjected to larger bias errors (Robinson
2005).

3.3.3 Markov Chain models
Markov Chain models for estimating delays

Zuylen (1985) firstly described a Markov model for queues at isolated intersections, as-
suming Poisson arrivals and normally distributed saturation flows. Olszewski indepen-
dently developed the idea of applying the Markov Chain technique to signal control prob-
lems (Olszewski 1990, Olszewski 1994). He showed how the different behavior of the
queues can change if a different initial value is assigned, together with a constant de-
mand during the whole evaluation period. Different demand conditions were later ana-
lyzed by assuming a stepwise constant demand. Following the approaches adopted by
Zuylen (1985) and Olszewski (1994), a similar Markov Chain model was developed by
Viti (2006) to compute the evolution in time of the queue length. Viti (2006) proposed
a new formula which is applicable for different types of traffic signal controls (i.e. fixed
time control and vehicle actuated control), for multiple lanes, and for general traffic pat-
terns. Moreover, the author derived new analytic formulas for the expectation value and
the standard deviation of overflow queues in time.

First, the main criticism to those Markov Chain models is on the assumption of homoge-
neous traffic conditions for a single vehicle type, which is embedded in those models. But
in reality the traffic composition is usually a very stochastic variable. This variability may
affect the dynamic and stochastic behavior of overflow queues and delays as well. Little
research has been carried out of the impact of traffic heterogeneity on the estimation of
delays at signalized intersections (Viti 2006).

In addition, most analytical models are based on some assumptions, which are likely
reasonable only in the idealized road traffic and signal controlled conditions. For instance,
they assume that saturation flow rate is constant, vehicle arrivals follow a certain known
probabilistic distribution, the average rate of vehicle arrivals during the evaluation time is
constant. However, the saturation flow rate and traffic demand are stochastic and variable
even in a short time period. The assumption of being constant is less applicable for the
real-time delay prediction. These assumptions restrict the validity of these models for
practical studies.

So far, most analytical models are only concerned with isolated intersections. Extending
them to a route with more than two intersections is a challenge which needs to be explored.

Markov Chain for estimating travel times

Lin (2004) proposed a Markov Chain model to estimate arterial travel times. The pro-
posed approach was developed by reducing the continuous delays experienced by drivers



Chapter 3. State-of-the-Art of Urban Travel Time Prediction 39

at intersections into two discrete states, a state of zero-delay and a state of nominal delay,
coupled with a one-step probability transition matrix. For a general case, the delay at
intersection i can be expressed in a matrix form as follows:

) (1) 1 — (1 (@) 1 — (@) E d(l)
DD =19 (0),1-9 (0)]| “}}, | P x| Pi | Pl [ (o ) ] (3.11)
Pio 1= Pio Pio 1~ Pio
.y __ ¢l vehicle is delayed at intersection i @) .-
where o) (l) - {0 vehicle is not delayed at intersection i’ Py Y (E-1) denotes the conditional prob-

ability of a vehicle being at state 1) (i) at an intersection i, given that the vehicle was at
state ¥ (i — 1) at the intersection i — 1. E(d”)) denotes nominal delay at intersection
i, which is computed by a well-defined delay formula, e.g. the popular Webster delay
formula (Webster 1958). Although this approach is quite simple, the calibration for this
conditional probability is a big challenging in practice. The authors did not provide a pro-
cedure for model calibration. Because of the intensive requirement of detailed data (e.g.
individual trajectory), we argue that this model is not suitable for practical applications.

3.4 Discussion

Based on the above overview, seven clear impressions can be identified: (1) compared
with the amount of literatures on travel time prediction for freeways, very few researches
into travel time prediction for urban routes can be found in the literature; (2) among the
existing works on travel time prediction, most of them are designed for urban segments,
not for urban routes/arterials; (3) none of those models presents how to predict future
traffic conditions; (4) very few of them have been validated with empirical data; (5) delay
formulas and Markov Chain are not suitable for real time applications of travel time pre-
diction, because they give expectation values over an ensemble of states that may differ
considerably from the actual situations; (6) only the simulation model and KNN take into
account the traffic flows turning from other streams; (7) due to the difficulties of collect-
ing empirical data of influencing factors, practical investigations of travel time variability
for urban routes are very limited.

Table 3.2 summarizes the main features of existing models in literature.

Table 3.2: Overview of existing urban travel time (delay) prediction models

Spatial ~ Data for Real-time Signals Turning Variance

Scope Validation  Application Traffic
Simulation route both yes yes yes yes
Delay formulas segment both no yes no no
Queuing models segment empirical  yes yes no no
Regression models segment empirical  yes yes no no
K-NN models segment empirical  yes no yes yes
Markov Chain (Zuylen) segment simulation no yes no yes

Markov Chain (Lin) route simulation no no no no
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An interesting result of this comparison is the required input data for each model (listed in
Table 3.3). Taking a close look into the required input data will show whether the model is
feasible for a practical application (also see the validation of the data in Table 3.2). It can
be seen that only the K-NN models give a promising performance for real time travel time
prediction with empirical data. The following will explore more details of each model.

Table 3.3: Overview of the required input for existing urban travel time (delay) prediction models

Input Data
Micro. Simulation individual driver behavior, OD and route choice

(or demand and turning fraction)
Macro. Simulation speed, OD and route choice (or demand and turning fraction)
Delay formulas saturated flow rate, signal timing, arrival flow, free flow travel time
Regression models occupancy, signal timing
K-NN models flow, occupancy

Markov Chain (Zuylen) initial state, arrival type
Markov Chain (Lin) delay probability

The limitations of the simulation models include the degree of expertise required for de-
sign and maintenance, and the fact that they require the predictions of traffic demand (e.g.
OD, route choice, or turning fraction) and supply (capacity) at the model boundaries as
inputs (Van Lint 2004, Liu 2004). The major disadvantages lie in the stochasticity and too
many degrees of freedom. Microscopic simulation models require many runs to simulate
the stochasticity (e.g. different driver behaviors). This time-consuming task is not suitable
for the real time application. In the simulation models, there are a lot of parameters that
have to be (offline or online) calibrated, which produces too many degrees of freedom.
Although microscopic simulation models provide us with valuable insight into the mech-
anisms of traffic flow and queue dynamics, those sophisticated models need to overcome
their inherent limitations (discussed above) before they can be successfully implemented
in practice.

These delay formulas are valid under the condition that the arrival distribution of vehicles
is a known probability distribution and vehicles arrive at an intersection with a known
initial queue. Then, the process of the queue evolution can be pre-determined. These
delay formulas suffer from the inherent assumptions which are most likely not satisfied in
real life circumstances. Thus, they serve mainly as scenario evaluation tools, but do not
aim to deal with real-time travel time prediction. Similarly, the Markov Chain models are
all based on hypothesized distributions which are likely inappropriate under real world
circumstances. The queuing theory based models are too sensitive to two variables, the
saturation flow and jam density, which are difficult to be determined in a real environment.
It is tentatively argued that these static queuing models are not suitable for real time
applications. The regression models are static and do not track dynamic traffic processes.
Moreover, they are all for urban links, not applicable in a large spatial scope (e.g. urban
routes).

The K-Nearest Neighbor models require a lot of efforts to design the state vectors. They
need to determine the spatial and temporal size of the variables in the state vectors. Since
no standard rule exists for how to select the variables which constitute the state vector, a
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very difficult task for the model designer exists. Moreover, because the KNN models are
location specific, a calibrated model setting that works well on one location may not work
at all on other ones.

Finally, those models have not been

3.5 Summary

This Chapter gave an overview of existing urban short term travel time prediction mod-
els. Those models have been categorized into either model based or data driven. Both
advantages and disadvantages of each model have been highlighted. From the discussion
above, it is clear that among the limited number of models, few of them aim at short term
travel time prediction for a large scale urban route. Since most of them only focus on
urban segments and do not take into account turning traffic flows, they fail to properly
work on urban routes in their present forms. Only the simulation and KNN can be used
for online/real time travel time prediction. However, the evaluations of simulation models
with empirical data are not available (Miska 2007). In addition, the predictions made by
the simulation models are never compared to any other model, making their predictive
quality of questionable value (Hinsbergen et al. 2007). Furthermore, the simulation mod-
els still have to be improved by tackling the problem of online parameter calibration and
OD estimation (Van Lint 2004, Miska 2007).

In conclusion, we state that there is great potential for the development of new urban
travel time prediction models, particularly using data driven approaches. Also, the new
model should be investigated for its robustness under real world measurements. A data
driven model will be introduced in the next Chapter.
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Chapter 4

Model Development for Urban Travel
Time Prediction

4.1 Introduction

In the previous Chapter an overview of the various approaches that have been developed to
tackle the urban travel time prediction problem has been presented. It has been found that
few research efforts have undertaken urban route travel time prediction. In this Chapter a
novel method within the category of data driven approaches is proposed to address urban
route travel time prediction. The selection of a data driven approach in this dissertation is
based on the discussion in Chapter 3, but does not imply that this approach is necessarily
better than model based approaches. As discussed in Chapter 3, both model based and
data driven approaches have advantages and disadvantages. The selection of data driven
or model based approaches depends on the application.

This Chapter first lists criteria for the model development. The issue of how to choose
an appropriate approach for urban travel time prediction is presented. A single segment
model based on the State Space Neural Network (SSNN) is used for modeling traffic flows
on one single signalized segment. Then, modeling a longer urban route covering several
signalized intersections is performed by assembling individual segment models. After
deriving mathematically the proposed model, two training methods for model calibration
are presented. The proposed model will be evaluated in both a simulation environment
and a real time test site. Chapter 5 will show the results of the proposed model evaluated
with synthetic data. Chapter 6 will put this model into practice. In the result sections of
both Chapters 5 and 6, a comparison is carried out between the results obtained from the
proposed model and the simple, but widely used in practice, baseline model.

4.2 Criteria for Model Development

The aim of this dissertation is the development of an accurate and robust short term urban
route travel time prediction model which can be implemented in practice. Before the
model is presented, several criteria should be clarified:
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Criterion 1 The model should be general and not location-specific, at least in terms of
its mathematical structure and the overall input-output relationship. In other words, the
model should be applicable for different urban routes.

Criterion 2 For practical implementation, the model should be based on available and
feasible data collected from existing measurement equipments.

Criterion 3 The model should show improved predictive performance compared with a
baseline model, which is widely used in practice (see details in Chapter 5).

Criterion 4 The model should be able to deal with different traffic conditions (free flow,
congested, etc.).

Criterion 5 The model should be able to produce reasonable outcomes under the condi-
tion of missing and corrupted data.

4.3 General Design Strategies

4.3.1 Problem Description

Subsequent to the criteria discussed above, some questions are presented to clarify the
development of the new model. The answers to these questions will make the main task of
this dissertation clear. Also, they will explicitly indicate the advantages and disadvantages
of the new model.

Problem 1 What is a typical urban street?

e In this dissertation, we define a typical urban street as a road facility which con-
sists of several urban segments (links and intersections) (for details see Chapter 2).
There are no minor streets crossing within the urban segments. The traffic only can
turn to other urban links at the intersections. This means that the traffic volume
will be conserved between the upstream and downstream intersections of the urban
segments.

e The traffic signal control strategy is a very important factor and should be taken
into account. Different signal control strategies (three strategies are discussed in
Chapter 2) produce different signal timings (e.g. red and green time). Note that in
a congested condition an actuated control strategy is similar to a fixed time control
strategy. More details will be presented in the following sections.

Problem 2 Which data are available for modeling urban travel time?

e The data that can be used depend on the available measurement equipments.
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e Single loop detectors are usually installed at the upstream of an urban link to mea-
sure traffic volumes (number of vehicle passages per unit time). Cameras are in-
stalled at the start and end of a trip to measure vehicles’ license number.

e Individual travel times can be calculated by comparing the elapsed time instant for
a single vehicle to pass from the start to the end of this trip.

e The signal timings (e.g. green time, red time) of each stream are provided by traffic
signal controllers.

e Volumes, individual travel times and signal timings are available data. Note that the
availability of data is a common case in the Netherlands but probably not in other
countries.

Problem 3 How should the performance of the new model be evaluated?

e As stated in Chapter 3, very limited research has been conducted on urban route
travel time prediction. Therefore, this dissertation will only use a simple baseline
model (details in Chapter 5), one which is widely used in practice, to compare the
performance of the proposed model. Accuracy and robustness are two measures
used to reflect the performance. Simply speaking, the smaller the errors, the better
the accuracy. The robustness will test the model in the situation where data are
corrupted or missing. This is a common problem in real time traffic data collection
systems.

4.3.2 Research Approach

In general, the research roughly consists of four steps: literature review, model derivation,
model validation and model application. Chapter 3 has presented a comprehensive liter-
ature review. This section will only focus on model derivation, the core of the research.
Chapters 5 and 6 will show the results of model validation and application.

To start a model derivation, the primary task is to answer the question: "which approach
is appropriate for our problem?"

The literature review of travel time prediction (including freeways and urban networks)
showed that a variety of approaches exist. Most are developed considering specific prob-
lem requirements. Travel time prediction models can be categorized into either direct and
indirect approaches or model based and data driven approaches.

Indirect travel time prediction starts with predicting traffic quantities (e.g. volume, speed,
occupancy, etc.) and then translating the predicted traffic quantities into travel time. For
example, the traffic flow theory model is an indirect approach. Direct travel time pre-
diction is to predict travel time based on previous travel times and is not involved in
predicting other traffic quantities. ARIMA is an example of a direct model. The principal
difference between an indirect and a direct travel time prediction model is the input data.
The indirect models use traffic quantities, except travel times, while the direct models use
only travel times. The direct models implicitly assume that the time series of travel time
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has an inherent mechanism. It can be used for predicting a future travel time based on
previous travel time data. However, travel time has no causal relationship with itself. That
is, a travel time is independent of the previous travel times. The dynamic change of travel
times is due to external factors (e.g. increasing volumes, traffic signals, accidents, etc.)
not in and of itself. Moreover, in real time situations, travel times can be obtained only
when vehicles complete their trips. This means that the measured travel times contain
‘past’ information. For instance, the measured travel time of 10 minutes means that the
travel time is 10 minute when vehicles departed ten minutes ago. In this dissertation, an
indirect approach for travel time prediction will be used.

Data driven approaches predict travel times using statistical relations, which are derived
from historical data (travel times, speeds, volumes, etc.). Model based approaches predict
travel times by using traffic flow models (based on traffic flow theory). Although the
model based approaches provide valuable insight into the mechanisms of traffic flows
and queue dynamics, their inherent limitations hinder their applications for urban travel
time prediction. The major limitations include computational complexity, the degree of
expertise required for design and maintenance, and intensive model/parameter calibration.
In addition, they require to predict traffic demand and supply at the model boundaries as
inputs (Van Lint 2004, Liu 2004). More details about the distinct features of both model
based and data driven approaches have been discussed in Chapter 3. On the contrary,
data driven approaches do not require extensive expertise on traffic flow modeling, and
they are fast and easy to implement (Dougherty 1995). In particular, a specific neural
network approach, the so-called state space neural network (a type of recurrent neural
network), has been proven to accurately predict freeway travel time (Van Lint 2004). This
dissertation will adopt a hybrid method of combining the state space neural network (data
driven) and model based approaches and apply it in an urban context.

In this dissertation, an indirect and hybrid approach is used in the following chapters.

4.3.3 Basic Concept for Model Development

An elaborate discussion of direct/indirect approaches and model based/data driven ap-
proaches has been given. In Chapter 3, a comprehensive overview of existing urban short
term travel time prediction approaches was presented. Each approach has been explored in
terms of advantages and disadvantages. With these investigations of existing approaches,
a data driven approach was chosen due to its ease of implementation in practice and (rea-
sonably) accurate performance. The positive aspect of the data driven approach is that the
complex spatiotemporal urban traffic processes can be modeled by learning directly from
data instead of building up sophisticated traffic flow models from prior assumptions. In
addition, because they ’learn’ from data, they can capture subtle functional relationships
among the data even if the underlying relationship is unknown or hard to describe. This
modeling approach, with the ability to learn from experience, is very useful for many
practical problems because it is often easier to obtain data than to have a good theoretical
understanding about the underlying laws governing the system from which the behavior
is measured (Vanajakshi 2004).

As shown in Chapter 2, an urban signalized route can be schematized by several con-
nected urban segments. Thus, the urban segments are treated as the basic elements of an
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urban route. Modeling travel time along a signalized urban route can be conducted by
assembling each basic segment model together.

11 12 13 14

(a)

1112 13 (14

(b)

Figure 4.1: Modelling an urban signalized route by decomposing it into urban segments

Figure 4.1(a) illustrates this concept. For example, we are going to model an urban route
which starts with urban link 8, then continues with link 9, and finally ends with link 10
(shown in dark in Figure 4.1(a)). The traffic turning left from link 1 and turning right
from link 12 will merge with throughput traffic from link 8. The merged traffic traverse
through link 9 and merge with left-turning traffic from link 3 and right-turning traffic
from link 14, and so on. Thus, link 1, 3, 9, 12 and 14 are very important for modeling this
urban route. The rest of the links will not be taken into account because they do not have
any influence on the travel time of interest. The final model representation of this urban
route is depicted in Figure 4.1(b). Modeling an urban route by decomposing it into urban
segments will provide the following benefits:

e general model for urban segments

Any typical urban route can be decomposed into several urban segments. Con-
versely, concatenating urban segments can comprise an urban route. The similarity
of each segment encourages the development of a general model to describe traffic
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dynamics at urban segment level. The general model may have different parame-
ters for different urban segments. But, the mathematical structure of the general
model should at least be generic. In other words, the model for one urban segment
is suitable for all urban segments with the same properties (e.g. length, the number
of lanes, speed limit, signal timing).

ability to describe traffic propagation

Figure 4.2 shows three trajectories which have the same travel time from segment
1 to N. This means the same travel time could be derived from different trajecto-
ries. The concept is to develop a general model for each segment that is able to
track the trajectory. Modeling an urban signalized route can be decomposed into
modeling each urban segment of the route. The traffic leaving from the upstream
urban segment will enter into the connecting downstream urban segment. With in-
flow constraint (more details will be provided in the following section), the model
is able to limit traffic flows to less than the capacity of downstream links. Travel
time of each segment can be calculated based on flow rates. This provides a simple
way to describe traffic propagation along the signalized urban street.
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Figure 4.2: Travel time prediction for a route (from segment 1 to segment N) can be conducted
by predicting travel time for each segment individually.

e less model parameters

If more parameters are embedded in the Artificial Neural Networks (ANNs) than
the essential ones, this will cause not only intensive calibration tasks but also make
the ANNs prone to over fit the data and hence generalize poorly. Except modeling
an urban signalized route by separate models for each urban segment (see Figure
4.3(b), we also can treat this route as a whole (Liu et al. 2006) (see Figure 4.3(a)).
That is, all the spatially separated inputs (volume measurements from each urban
segment) are augmented in a single input vector. This increases the number of
parameters. For instance, let assume a route with 3 segments, each segment has
3 input variables, and each segment requires 5 hidden neurons. Thus, the total
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number of weight parameters for an ANN model with one single input vector is
3753 x3x3x54+3x5x%x3x%x54+3 x5 x 1), whereas the number for a ANN
model with 3 basic segment input vectors is 135 (3 x3x54+3x5x5+3 x5x1).
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Figure 4.3: The spatially separated inputs can be augmented in two ways: (a) all in a single input
vector; (b) in separated input vectors.

Based on this concept, the ensuing sections will first present a generic model for modeling
urban segment travel time, and then show how to concatenate generic models to model
urban route travel time. In the following sections, the urban segment and urban route

travel time prediction models will be referred to as the USEG model and the UROU
model, respectively.

4.4 Model Development for Urban Segment Travel Time
Prediction (USEG)

The USEG model, like any other data driven model, can be formulated as follows

T'T(p) = Gu(p), W) 4.1

where u(p) and T T (p) denote the inputs (the volume measurements and signal timings)
and outputs (the travel time measurements) respectively, at time interval p. W denotes
the vector of all the parameters in the data driven model G(.). The main task of creating
a data driven model is to find out the relationship between inputs and outputs, that is, to
set up the model G(.) and find out the appropriate parameters. In the following section,
the USEG structure selection will deal with the problem of setting up the model G(.). In
the section about training the USEG two different approaches for finding the appropriate
parameters will be presented.
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4.4.1 USEG Structure Selection

First, we present some basic terms used for artificial neural network (ANN). ANN models
often consist of a large number of simple neuron-like processing neurons (nodes), orga-
nized in /ayers. Every node in a layer is connected with all or a selection of the nodes
in the previous layer. Each connection may have a different strength, a so called weight.
These weights are the adaptable parameters in an ANN.

Since the early 1990°’s ANNs have been widely used in transportation engineering. A
comprehensive review of the uses of ANNS in the field of transportation engineering can
be found in (Dougherty 1995). For a concise overview of modeling travel time prediction
with ANNs we refer to (Liu et al. 2006). It was found that most of those ANN models
were developed for freeway travel time prediction.

There are many different kinds of ANN models (Bishop 2005). From the perspective of
network topology, ANN models can be categorized into feed-forward and feedback. In a
feed-forward ANN (FNN), the connections between nodes do not form cycles. Data enter
at the input layer and pass through the neural network, layer by layer, until they arrive at
the output layer. In a feedback ANN, there are cycles in the connections. These cycles act
as a short term memory, allowing them to dynamically deal with input and output patterns.
Among feedback ANNSs, the State Space Neural Network (SSNN) has the ability to learn
temporal sequences of spatial patterns.

In this dissertation, we choose to use the SSNN instead of a FNN based on the following
reasons:

e The state of a particular road section (average speed and vehicular density) is de-
termined completely on its previous state and the inputs in the previous time period
(Hoogendoorn & Bovy 2001). FNNs are static, that is, they do not take memory into
account from the previous states. In contrast, the SSNN enable the previous states
to be temporally memorized into the neural network (Mandic & Chambers 2001).
Therefore, we argue that the SSNN is more suitable than FNNs for the nonlinear
dynamic problem of urban travel time prediction.

e [f FNNs would use historical input data, they require a prior choice of which inputs
and at which time lag is needed to capture the dynamics of the problem at hand (Van
Lint 2004). In contrast, the SSNN is able to avoid the selection of input settings.
The feedback (memory) mechanism in the SSNN allows the inputs to be fed at
consecutive time instants sequentially. A clear advantage of the SSNN is that the
selection of an input time lag is not required.

4.4.2 Mathematical Description of State Space Neural Network

The state space neural network (SSNN) model is a First Order Context Memory Neural
Network (Kremer 2001) consisting of four layers (shown in Figure 4.4). The input layer
X (p) receives the input data (incoming volume and green time), and distributes them to
the hidden layer. The hidden layer vector S(p) in period p is calculated from the input
vector X (p) and context layer vector S(p — 1) of the previous period p — 1, which stores
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Figure 4.4: State Space Neural Network (SSNN) topology for short term urban travel time pre-
diction.

the hidden layer states. The output layer finally processes the hidden layer outputs and
produces the output data (travel time and outgoing volume).

Input layer:

[x»]_Jd" W
X(p) = [ x2 (p) ] - [ g(p) ] (4-2)

where x; (p) denotes the value of the ith input neuron, ¢’ (p) denotes incoming volume
during time period p, and g(p) denotes green time during time period p.

Hidden layer:
I 2 < ch hph |

D Zwilx,-—l— ij.’lsj (p—1) +0v}b]

s1(p) i=1 j=1
S(p) = = : (4.3)

Sm (P) 2 m

(I)(lewf%xi + le;ff’msj (p—1+ vf’”bf’n)

i= j=

where s, denotes the value of the mth hidden neuron, wl"i’n denotes the weight connecting
the ith input neuron and the mth hidden neuron, w?hm denotes the weight connecting the
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jth context neuron and the mth hidden neuron, o/ denotes the weight of bias associated
with the mth hidden neuron, b” denotes a bias with fixed value 1 for the mth hidden
neuron, @ (.) is the transfer function.

Context layer:

The context layer only stores the hidden layer neurons’ one-step previous output. Thus,
this layer is not involved in any calculation.

Output layer:

m
()] (Z w,i’,olsk (p) + v‘fb‘f)
_ k=1

— = (4.4)
) (z w,’;gsk (p) + ogbg)
k=1

|
Y(p)_[yz(p)]

where y; (p) denotes the value of the ith output neuron, y; (p) denotes departure travel
time, y» (p) denotes outgoing volume, w,i"j denotes the weight connecting the Ath hidden
neuron and the ith output neuron, v denotes the weight of bias associated with the ith
output neuron, b7 denotes a bias with fixed value 1 for the ith output neuron, ®(.) is the
transfer function.

4.4.3 USEG Training

Training the SSNN refers to finding the appropriate parameters (weights and bias) which
minimize an objective function. The SSNN can be trained in a supervised manner, given
sufficient data pairs (inputs and outputs). There are many possible choices of the objective
function which can be used, depending on the particular application. For urban route
travel time prediction the primary objective of training the SSNN is to minimize the errors
between predictions and observations:

1 4 ~ 2
EW) =32 (Y (0) =Y (p) (45)
p=l1
where I denotes the parameters in the SSNN model, ¥ (p) denotes the output calculated
from the SSNN, Y (p) denotes the desired output, and M denotes the total number of data

pairs in the training data set.

Two main training algorithms have emerged: batch training, in which parameter opti-
mization is carried out with respect to the entire training data set simultaneously, and
incremental training, where model parameters are updated after the presentation of each
training example. The batch training and incremental training usually are also called
the offline and online training, respectively. The batch training and incremental training
methods can be used in the different phases of travel time prediction procedure. Nor-
mally, batch training is applicable for offline parameter optimization. The parameters
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which minimize the objective cost function are stored as the default optimal parameters,
which are used as the basis for online application. Instead of treating parameters as fix
values, incremental training methods use the available data to steer the model parameters
to values closer to the realized ones at each time step.

Batch training with Regularization

More parameters and larger weights can cause an excessive variance of the outputs (Ge-
man et al. 1992), and then lead to poorer generalization. A traditional way of dealing
with the negative effect of the large weights is regularization. The idea of regularization
is to make the neural network response smoother through modification in the objective
function by adding a penalty term for more and larger parameters, for example, the sum
of squared parameters. In this dissertation, we propose to use Levenberg-Marquardt and
Bayesian Regulation (LM-BR) algorithm (Mackay 1992). We present a concise descrip-
tion of LM-BR in the following paragraphs. More details of the algorithm used can be
found in Appendix D, which are largely based on (Mackay 1992, Foresee & Hagan 1997,
Bishop 2005).

Let D represent the data set and W represent the vector of the neural network parameters.
The objective function becomes to minimize a sum-of-squares error function while at the
same time trying to minimize the sum of squares of weights

M - N1
FOV) = BEp+aEy =P 5 (Y (p) =¥ )’ + aY W} (4.6)
p=I1

i=1

where N denotes the total number of weights in parameter vector W, and a, S are ob-
jective function parameters which dictate the emphasis of the training. The regularization
task is to find the optimal values of @ and f so that the trained model will have a good
performance but is not over fitted. In other words, the central to the LM-BR algorithm
is the objective to maximize the posterior probability of a particular weight vector given
the training data D, and the regularization parameters o and . Assuming the noise and
the prior distribution of the weights are both Gaussian distributed according to N (0, 1//)
and N (0, 1/p) respectively, the posterior distribution of the weights can be written:

P (Dlw, p) P (w|a)

A 2T @47)
1 1 1
= p (Dla, p) (ZD ) exp (=S Ep) Zw @) exp (—aED))
1 1 1
= P (Dla, B) ((n/ﬁ)P/2 exp(—ﬂED)Wexp(—aED))

1 1
P (Dla, ) (ZF (a, B)

exp (—F (W)))

In (Foresee & Hagan 1997), it is shown that the maximum likelihood estimates for a and
[ can be calculated as follows
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Y

aMP — 25y (W9P) (4.8)
M—y

pMP — 25y (FVP) (4.9)

where y = N — 2aMP . trace (H _1) is called the effective number of parameters. The
Bayesian optimization of the regularization parameters requires the computation of the
Hessian matrix at the minimum point W™?_ Foresee & Hagan (1997) proposed using the
Gauss-Newton approximation to the Hessian matrix H as follows

H=pBJ"J+al (4.10)

where J denotes the Jacobian matrix of the objective function with respect to the SSNN

weights, J = a}g (V;V) , and [ denotes the identity matrix. In short, the training procedure

can be summarized as

Step 1. Initialize weights W and the objective function parameters o and 5.

Step 2. Use the LM algorithm to calculate new weights with fixed o and £ based on the
output error e (W)

wrew = wold — (H(wy+ A1)~ JT (W)e (W) (4.11)

Step 3. Optimize a and £ given new weights.

Step 4. If stop criteria met (minimum performance goal, maximum number of epochs)
then stop, otherwise continue with step 2.

More details on the algorithm used can be found in Appendix D.

Incremental training

Since the parameter set obtained from the batch training represents the average condition
over the period represented in the data, it is not sensitive to the variability of prevailing
traffic conditions. For example, the change of weather or surface conditions may result
in variations in the parameters over time. Therefore, the objective of the incremental
training is to introduce a systematic procedure that will use the available data to steer the
model parameters to the values closer to the ones that are most applicable for the present
situation. The parameters obtained from batch training can be used as the initial estimates
for the incremental training.

The global Extended Kalman Filter (EKF) training algorithm was introduced for incre-
mental training neural networks (Haykin 2001). A neural network’s behavior can be
formulated by the following nonlinear discrete-time system:

Wi = Wi—1 + 0k—1 (4.12)
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Yy = G (X, Wi)+ Ck (4.13)
where W is the parameter set of the SSNN which is assumed to correspond to a stationary
process (random walk), ¢ and ¢ are process noise and measurement noise respectively, X

and Y are input and output respectively, and G (.) denotes the SSNN model. The algorithm
to solve this nonlinear discrete-time system is listed as follows

Algorithm 1 Incremental Training Neural Networks

1 Initialize the estimate parameter W and the error covariance Py with

Wo=E (W) (4.14)
Po=E (W = o) (W = o) | (4.15)
Algorithm 2 /.
2 Time update for time step k = 1,2, ...
Wite—1 = Wi—1 (4.16)
Pik—1 = Pie1 + E [0k—16{_1] (4.17)

3 Measurement update for time step k = 1,2, ...

ek = Vi — G (X, Wk|k—1) (4.18)
Prk—1J
Ky = Lk - (4.19)
Prje—1J;L Pejk—1 + E (exe) )
Wi = Wip—1 + Kiex (4.20)
Py = Prjk—1 — KiJk Prji—1 (4.21)

Roughly, such an online learning algorithm reads as follows, where y; = G (yw, uy) de-
picts a data-driven model.

1) Make a prediction yy = G (y/k, uk).

2) Set k = k+ 1, and update model weights y,_; with error €41 = dx—1 — yx—1 yielding
the updated weights .

3) Go to step 1.

Note that each prediction is based on the one-step updated weights. This implies that
each time step has one observation. In a travel time prediction context, this one-step-
ahead procedure is clearly not applicable since a realized (actually measured) travel time
dy 1s not available at time instant £ + 1 but, in fact, after £k + dj time periods. Van Lint
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presented a new extended Kalman filter (EKF) based online-learning approach, called
the online-censored EKF method, which can be applied online and offers improvements
over a delayed approach in which learning takes place only as realized travel times are
available (Van Lint 2006).

Consider that at some time period p, the last realized travel time d,, is available from
vehicles departing at period m, where m = p — d,,. Although, for those periods £,
m < k < p, no realized travel times are available yet, a censored observation (in fact, a
lower-bound value) is given by

de > di (p)=p—k (4.22)

Although the true prediction error ¢; = di — yx [Where yx = G (w, ux)] is not available,
again, a censored observation of this error is given by

ex(p) = dg(p) — yx (4.23)

Due to 4.22, 4.23 represents a monotonically increasing lower bound of the true error ¢,
1e.,

er(p) <ex,m <k <p (4.24)

At each time period p > k for which no realized travel time dj of vehicles departing
at k is available, the censored error 4.24 provides an incremental estimate of the model
prediction error.

Letting
Cr(p) =¢ex(p) —ef(p—1)>0 (4.25)
where
m+dm+1
> alp) =&
p=k+1

implies that for a particular departure time & for which no realized travel time is available,
the weights y;, can be updated stepwise at each p > k by substituting 4.25 into 4.20.
Such an update is retained if this update indeed improves the model performance, that is,
if

di (p) = Guk, yi) > di (p) = Guk, Yi41) (4.26)

which is the case if and only if

G s Wiy1) > Glug, vy) (4.27)
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In all other cases, the update is discarded. Constraint 4.27 implies that if the parameter
update results in a larger predicted travel time than before, it is retained; otherwise, it is
discarded, in which case, ¢ (p) must be reset to zero. Intuitively, this procedure makes
sense. For example, in cases where travel times (of, for example, 10 mins) are an order-
of-magnitude larger than the unit of discrete time k (of, for example, 1 min), the lower
bound of equation 4.22 will initially (as p is only a few time steps away from k) be much
smaller than free-flow travel times. Adapting the weights to these clearly underestimated
travel times would not improve performance at all. In situations of congestion build-up,
during which travel times tend to increase, it is clear that, according to equation 4.27,
updates are retained only if these contribute to the increasing trend. In case of declining
congestion, during which travel times tend to decrease, equation 4.27 has no effect since,
in those cases, realized travel times will become available increasingly faster.

Last, note that at any particular time period p, there will be a number of past time periods
k for which no realized travel times are available yet. This means that per time period p,
possibly more than one weight can be applied with censored errors. In this paper, this is
done sequentially, whereas at each update, equation 4.27 is evaluated with respect to the
last weight update, which could also have been applied during p.

4.4.4 Some Important Issues for Implementation
SSNN Structure Optimization

As shown above, the number of input and output neurons is fixed by nature of our prob-
lem. Because most theoretical works show that a single hidden layer is sufficient for
ANNS to approximate any complex non-linear function with any desired accuracy (Cy-
benko 1989, Hornik et al. 1989), one hidden layer is adopted in this dissertation. The
context layer has the same number of neurons as the hidden layer. Thus, the entire struc-
ture of the SSNN is determined by the hidden layer. In other words, the selection of
the appropriate number of hidden neurons is the major concern of designing a SSNN.
To determine the number of hidden neurons is a fundamental trade-off between model
complexity and model generality. A large number of hidden neurons imply more model
parameters, which provide more descriptive and predictive power of the model. On the
other hand, a complex model (more parameters) is prone to over fit the data and hence
generalize poorly. But, a too simple model (less parameters) is simply inadequate to
capture all the nonlinearity of the problem.

There are some algorithms, including pruning and growing algorithms, to determine an
’optimum’ number of neurons. Growing algorithms initiate networks with relatively small
number of neurons, and allow new neurons to be added during training (Bishop 2005). On
the contrary, pruning algorithms start with a relatively large network and gradually remove
neurons (Bishop 2005). This dissertation adopted the most common way of determining
the optimal number of hidden neurons by a sensitivity analysis. A trial and error procedure
using different number of neurons was used. Five different architectures of USEG were
developed (with 2, 4, 6, 8, and 10 hidden neurons).
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Initial Weights

Training neural networks with different initial weights might result in different weight set-
tings. Although some authors (Mackay 1992, Drago & Ridella 1992, Wessels & Barnard
1992, Chen et al. 2000) have proposed approaches to initiate weights, the weight dis-
tribution however in a trained neural network is not well understood, which is due to a
strong problem dependency for the weight distribution. There is no training algorithm
that guarantees to find a global optimum. One way to alleviate this problem and to in-
crease the likelihood of obtaining near-optimum local minima is to train several neural
networks with a random set of initial weights, and choose the one with the lowest error.
However, in practical application, we actually don’t know which network performs best
for future unseen data. There may be many parameter sets within a model structure that
are equally acceptable as simulators of a dynamic process of interest. Consequently, in-
stead of choosing one best single USEG model, we may make predictions based on an
ensemble of neural networks trained for the same purpose (Sharkey 1996). In this disser-
tation, the idea of the ensemble prediction is adopted, and the simple average ensemble
method is used. For each USEG model, we train it ten times so as to get 10 neural net-
works, and choose 5 best ones according to their training performances. With the selected
neural networks, we get 5 outputs for each segment travel time prediction. Then we take
a simple average of the 5 outputs to be the final output.

Transfer Function

Different transfer functions such as sigmoid, logistic, hyperbolic and linear etc. have
been widely used (Demuth & beale 1998) for prediction applications (e.g. weather fore-
cast, economy prediction, water flow forecast, etc.). Among them sigmoid function shows
good convergence properties for the training algorithm through its differentiability and en-
sured stability of the method through its finite range of values (Vanajakshi 2004, Van Lint
2004, Palacharla & Nelson 1999). In this dissertation, the sigmoid function is selected.

1
1+e>

fx) = (4.28)
This transfer function takes the input, which may have any value between plus and minus
infinity, and maps the output into the range 0 to 1. Clearly, the choice of the sigmoid
function is arbitrary. The selection of the sigmoid function is due to the property of
its monotone increasing behavior. This property is to a certain extent in line with the
obvious relation that travel times increases with volumes. That is, an increase of input
values (volume) produce an increase of output values (travel time).

Initial Internal States

Internal states actually refer to the value of hidden neurons. As shown above, the output
(travel time) is a product of hidden neurons. Thus, the initial internal states correspond to
initial output (travel time). If we sort data pairs (inputs and outputs) starting with free flow
condition (earlier in the morning), the initial internal states can be regarded as free flow
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condition as well. In free flow condition the volume has (approximately) no influence on
the travel time. Because of the monotone increasing property of sigmoid transfer function,
it is reasonable to assign zero-value for those initial internal states.

Time Resolution

The time resolution of the SSNN is the unit of one time step. Generally, a too small time
resolution requires a high performance of measurement equipments and a great demand
of communication networks for data transmission. Also, the too small time resolution
takes more time steps to calculate the same length of a time period than a large time
resolution, that is, the small time resolution requires more computation time. In addition,
for travel time observations, the too small time resolution will cause more time steps
likely to have null values (because there are no matched vehicles). This will increase the
work load of filling in the null data because the training of a neural network requires a
pair of input and output. In contrast, a too large time resolution might smooth significant
changes during this time resolution. The smoothing could neglect the details of the traffic
dynamics during the time step.

For urban signalized segment applications, we therefore choose the minimal cycle time
as a suitable time resolution. The reasons are twofold: first, the cycle time is normally
around 1 minute (not too small and too large), which is the common choice in practice as
well. In addition, the variable of green time can be removed out of the USEG when the
time resolution is equal to the cycle length (the green time is constant at each time step
for fixed time controlled intersections). Neglecting the green time will not influence the
USEG because the constant green time can be potentially treated as a bias in USEG.

Data Preparation

As shown above, there are four different variables involved in the USEG. Incoming and
outgoing volume are measured by single loop detectors. Green times can be obtained
from the signal controllers, especially for fixed time control the constant green time is
known in advance. The travel times are provided by license plate cameras. All these
variables are time series data. During the training phase, these variables are fed into the
USEQG at each time step. In this dissertation, we consider that signal timing data can be
correctly measured or provided. The volumes and travel times need to be treated carefully
(see details in Chapter 6).

Two crucial issues with respect to travel time measurements are taken into account in
this dissertation. First, travel time measurements might include outliers, which will be
discussed in detail in Chapter 6. Second, travel time is the only variable that might have
no observation for some time steps due to no vehicle finishes the trip of interest. Thus, we
need to fill in these empty gaps because training neural networks requires a pair of input
and output. Here, we only focus on how to deal with the second issue because simulation
data used in this Chapter can be considered 100% correct (no outliers). The detection of
outliers will be explored in Chapter 6 for real time application.

Figure 4.5 shows a typical representation of travel time measurements. Two kinds of
empty gaps occur frequently. The difference between type 1 and type 2 is that the later
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Type 1 Time step without measurement need to be filled in, which only has one
available neighbor observations before or after this time step. Normally, this
occurs at the beginning and end of time series.

Type2 Time step without measurements need to be filled in, which has two available
neighbor observations before and after this time step. Normally, this occurs
in the middle of time series.

Figure 4.5: Two different types of empty gaps in the time series of travel time observations.

has two ’neighbor’ observations (before and after the time step of interest), while the
former only has one ’neighbor’. Type 1 happens usually in the early of the morning or
late in the night, when there are few vehicles running on road networks. Type 2 occurs
often during the daytime. To fill in the empty gaps of type 2, linear interpolation method
is used in this dissertation. Since type 1 occurs in the free flow conditions (early in the
morning or late in the evening), it is appropriate to fill in with a default value (e.g. the
median of free flow travel times). A simple replacement strategy of giving default value
is applied for type 1.

Data Scaling

It is desirable to scale the data before training the neural network. There are two reasons
for this. First, the reason for scaling the data is that the desired outputs of the neural net-
work should fall into the range of the output transfer function. For example, if a standard
sigmoid transfer function is used for the output neuron, then the desired neural network
output should fall in the range between 0 and 1. Secondly, the scaled data cover the same
range for all variables, and therefore errors in each variable contribute in the same pro-
portion to the changes in the neural network weights. In other words, the weights are able
to learn at the same ’speed’ (Zijderveld 2003).

The simplest way of data scaling is the so called linear scaling. When the data is spread
evenly over its range, the data set can be squashed into a desired range. For example, to
linearly scale a datum p of data set Q within the range [a, b], the new scaled value p* can
be calculated as:

b —
pr=at—LTD o) (4.29)

Pmax — Pmin
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where p i, and p ., are the minimal and maximal value of data set €, respectively.

To rescale from p* to p, the inverse of a linearly scaled value is calculated as

Pmax — Pmi *
p=pmin+H(p — a) (4.30)

4.5 Model Development for Urban Route Travel Time
Prediction (UROU)

The above section has elaborated the basic ingredient (USEG) for an urban route travel
time prediction model (UROU). In this section we present how to concatenate USEG
models for modeling urban route travel time.

4.5.1 Inputs of USEG

After we have built up a basic neural network model (USEG) that describes the traffic
flows on a single signalized segment, an urban route can be modeled by assembling the
basic models. Two types of segments can be classified as: the boundary segment which
have no inflow traffic from upstream segments, and the internal segments which receive
inflow traffic from upstream segments (shown in Figure 4.6(b)). For example, segment 1
and segment 6 of intersection k are a boundary segment and internal segment, respectively.

The internal segments receive the outflow from upstream segments, while the boundary
segments are fed with boundary inputs directly. Each segment propagates the inflow to
a downstream segment. For example, at intersection k, segment 6 receives throughput
traffic flows from segment 5, left-turning traffic flows from segment 1 and right-turning
traffic flows from segment 8 (shown in Figure 4.6(a)). Since the rest segments (2, 3, 4,
and 7) do not propagate traffic flows to the segment 6, they are not used for modeling.
As a result, the physical urban route (filled in black color shown in Figure 4.6(a)) can be
modeled by concatenating several USEGs (shown in Figure 4.6(b)).

For each segment ki, the ith branch of intersection &, the USEG can be expressed as

follow:
" (p) | _ q (p)} i)
[TTkxp)}‘G([ g (p) |k #31)

where W,i denotes the vector of all the parameters in the USEG model G (.) of the segment
of interest, ¢'” (p) denotes incoming volume during time period p, g(p) denotes green
time, ¢°’ (p) denotes outgoing volume, and T'T (p) denotes travel time.

For any segment ki, g°*' (p) and T'T (p) can be calculated from ¢’” (p) and g(p). Thus,
for each time period p, ¢’ (p) and g(p) are needed to be updated. For fixed time control
signalized urban routes, g(p) are constant and known in advance. Here, we only consider
how to update (predict) ¢'” (p).
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Figure 4.6: Modelling an urban route by concatenating UROU

e Boundary segments

To predict the inflow volume of boundary segments is similar, to some extent, to
(dynamic) OD/demand prediction. A detailed overview of OD/demand prediction
can be found in (Lindveld 2003). Since OD matrices can hardly be measured (ex-
cept for closed networks with vehicle identification at the entry and exit points) it
is not easy to assess the existing methods with real world data (Miska 2007). In
this dissertation, we do not intent to introduce a new way of predicting the inflow
volume of boundary segments. A simple method is used in this dissertation, but
can be replaced by other methods in the future. The concept of this simple method
is that the real time volume is proportional to the historical profile. That means,
the prediction is corrected with a factor £, deriving from the actual measurements
q,’;’ (p) and the historical (average) data ?q",’; (p).

al (p+1) = Bxq)(p+1) (4.32)
ot ()
g 7 (p)

Internal segments

Let segment 6 be an example. The inflow volume for the segment 6 of intersection
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k can be calculated as:

gt (p+1) =a; (p+ 1) xqll" (p)+a, (p+ 1) x g% (p)+ar (p+1) x g2 (p)
(4.33)

where a; (p), a; (p) and a, (p) are the left-turning, throughput and right-turning
fractions. Obviously, the predicted inflow volume is based on the prediction of the
three fractions. Due to the absence of OD prediction, we assume that the dynamic
of the three fractions follows a random-walk process.

ar(p+1) = o1(p)+¢
ar(p+1) = a,(p)+¢,
Ay (p + 1) = Q0 (p) +5r

This is a common strategy applied in practice. It is reasonable to assume the traffic
would not change significantly within a small time step. For instance, the next step
fractions can be assumed to be equal to the previous ones plus noise.

e Inflow constraint

Note that the above computation of the inflow is based on an implicit assumption
that the downstream link have no restriction on its reserve capacity. However, in
congested conditions the reserve capacity of the downstream link does have strong
influence on the inflow of upstream links. The maximum inflow is the minimum of
the computed value and the rest of the reserve capacity. A simple way to compute
the rest of the reserve capacity is to divide the length of the downstream link by
the average vehicle space (vehicle length plus distance between two consecutive
vehicles), and minus the number of vehicles present on the link of interest. The
maximum inflow is a constraint in order to avoid the over load of the downstream
link.

4.5.2 Travel Time Prediction

The previous section has shown how to calculate the inputs (volumes) for each segment.
With those calculated inputs, travel time on each segment can be computed. For instance,
the USE G,5C of segment k5 produce travel time 7'Tjs and g%’ (see Figure 4.7). The
g7¢" merges with the left-turning flow from segment k1 and the right-turning flow from
segment k8, and then the merged flows are fed into the USE Gg of segment k6 to calculate
travel time 7 Tjg. This procedure is thus repeated until the travel time of the final segment
is calculated. Finally, the prediction of the route travel time can be conducted by summing

of travel times on each segment

N 6
TT =2 > TTq (4.34)
k=1i=5

where & denotes the intersection, i denotes the branch of intersection, N denotes the total
number of intersections.
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Figure 4.7: The predicted travel time from segment 15 to N6 is the sum of travel time on each
segment.

4.6 Summary

This Chapter presents a neural network based traffic flow model to address the problem
of travel time prediction on urban routes. A generic segment neural network model is
proposed to predict travel time and outgoing flows on a urban segment. The outgoing
flows will propagate from the segment into the connecting urban segments, and thus be
fed to calculate travel times on the connecting urban segments. This procedure is repeated
until the travel time of the final segment is calculated.

The remarkable features of this proposed model are: (a) using the state space neural
network to model complex non-linear traffic processes at urban segment level; and (b)
concatenating each urban segment model with traffic principles to predict travel times at
urban route level. Correspondingly, two benefits can be obtained: (a) learning the mech-
anism of urban traffic processes directly from measured data, liberating from building
sophisticated physical models; (b) fast and easy to implement in practice.

The proposed model will be evaluated in a simulated environment (Chapter 5) and a real
world (Chapter 6).



Chapter 5

Model Testing on a Simulated Urban
Route

In order to fully test the accuracy of the model formulated in Chapter 4 and techniques
employed in this work, we first choose to use synthetic data obtained from a microscopic
traffic simulation tool, VISSIM (PTV AG 2003), and then apply the model in a real-
time environment (Chapter 6). The main advantages of using synthetic data are: (1)
the flexibility of generating alternative scenarios (e.g. free-flow, intermediate, congested
conditions) to be tested, which would otherwise be too expensive and time-consuming to
be obtained from field test; (2) the provision of relatively clean and free-of-error data.

Three typical traffic conditions (slightly saturated, moderately saturated and seriously
oversaturated conditions) have been generated to test this proposed model. Based on the
model developed in Chapter 4, this Chapter also addresses the issues of sensitivity and
robustness. With the investigation on a simulated environment, it gives a clue for real
time application (Chapter 6). The remainder of this Chapter will show the results of the
test with synthetic data.

5.1 Simulation Scenario Description

Figure 5.1 shows an urban route in VISSIM that resembles a 2.05 kilometer urban arterial,
Kruithuisweg, in the south part of Delft, the Netherlands. Since the synthetic data are only
used to evaluate the performance of this proposed approach, we code this urban route with
the same geometry as in the real world, ignoring the pedestrian lanes and tram lines. The
simulated urban route has three signalized intersections (two four-leg intersections and
one T’ type intersection).

Single loop detectors are installed along this urban route and the segments crossing this
urban route (shown in Figure 5.1), measuring flows. Two cameras are installed at the start
and end of the urban route, measuring individual travel times.

65
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Figure 5.1: An urban street was simulated in microscopic traffic simulation tool VISSIM. This
urban street resembles the Kruithuisweg provincial road in Delft, the Netherlands.

5.1.1 Signal Control Design

For an urban route, except the cycle length and signal timing of each phase at each in-
tersection, the offset (the time difference between the start of the green phases on two
adjacent intersections) is also very important for designing a control strategy.

Traffic control in the simulation is fixed time control. Two distinct designs of offsets were
used in this study: green wave and red wave. The green wave pertains to the best design
of the offset which makes a platoon that arrives at upstream intersections gets green right
away at downstream intersections. The detailed calculation algorithm for green wave can
be found in (Zuylen 2002). Red wave pertains to a contrary design which provides the
platoon red phase when it arrives at downstream intersections.

Figure 5.2 shows the histograms of the ratio of red-wave travel times to green-wave travel
times under free flow and congested conditions. The left plot shows that the histogram
is slightly shifted to the right of the center point (ratio equals to 1). This indicates that a
significant number of vehicles with red wave control experience longer travel times than
those with green wave control. However, in congested conditions, the ratios distribute
approximately symmetric around 1. This illustrates that in congested conditions vehi-
cles experience long travel times no matter with green wave or red wave controls. Since
congested conditions are more interesting for our study, we will use green wave for the
following analysis.
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Figure 5.2: Histograms of the ratio of travel times (red wave) to travel times (green wave).

5.1.2 Input and Output Data

We have not calibrated the simulation with empirical data, because (1) with only single
loop detector data, it is difficult and time-consuming to calibrate a microscopic simulation
model, which involves in detailed driver behaviors (e.g. car following and lane changing);
This is due to the microscopic simulation model has many more degrees of freedom than
those can be detected by available macroscopic loop detectors. and (2) it is not necessary
for the purpose of the feasibility test on the proposed model in the simulated environment.

To generate different scenarios for the model test, we set up several simulations by choos-
ing different patterns of traffic demand. Since no sophisticated OD matrices were used,
the turning fractions were used in the simulations to assign vehicles into the urban route.
In this study, the turning fractions of each branch at each intersection were fixed as 10%
left-turning, 10% right-turning and 80% throughput.

The outputs generated from simulations are individual travel times.

5.1.3 General Simulation Settings

The simulations were conducted over three hours, which pertain to a morning peak pe-
riod from 7:00 to 10:00AM. Three traffic demand patterns were created to resemble three
basic traffic conditions (slightly saturated, moderately saturated and seriously oversatu-
rated conditions). Fixed time control was used in these simulations. A green wave offset
was implemented. Thus, we have three basic scenarios. For each scenario, we executed
ten simulation runs with different random seeds. In total, there are 30 data sets of in-
puts (flows at detectors) and outputs (mean travel times for vehicles departing in each
aggregated time period).

Note that training USEG was conducted at urban segment level, while testing the perfor-
mance of travel time prediction was carried out at urban route level. Among those data
sets, 18-segment sets were used for training and 12 sets of entire routes were used for
testing.



68 TRAIL Thesis series

Traffic Demand Pattern

Vehicles enter into the urban route through boundary segments (no vehicle generated from
internal segments). For each boundary segment, a similar profile of traffic demand, start-
ing with low flows (7:00-8:00), increasing to higher flows (8:00-9:00) and then decreasing
back to lower flows (9:00-10:00). Three distinct traffic demand patterns have been set up:
slightly saturated, moderately saturated and seriously oversaturated conditions. Traffic
demand is assigned as a stepwise average pattern with time interval of 30 minutes. The
actual flows released by VISSIM during the simulation, however, do vary from this av-
erage form due to the random probability functions used by VISSIM to release vehicles
into the urban route.

Pattern 1: slightly saturated condition

Table 5.1 shows the assigned traffic flows for each boundary segment (segment 1, 4, 5,
9, 14 and 15 shown in Figure 5.1). Each boundary segment has a similar traffic demand
pattern, which slightly exceeds the saturation flow during the period from 8:00 to 9:00.
For the rest of two hours, the traffic flows are less than the saturation flow, which can be
considered as free flow conditions. This slightly saturated flow causes queues to occur
during a short time period. As a result, this yields a small peak with the travel times of
approximately 200 seconds (shown in Figure 5.3).

Table 5.1: Time-varying traffic flow for all boundary segments (veh/h). Slightly high traffic flow
occurs during period of 8:00 to 9:00, which yields slightly saturated conditions.

Time segment number

1 4 5 9 14 15
7:00-7:30 200 50 50 50 50 50
7:30-8:00 400 300 400 400 250 300
8:00-8:30 800 700 750 750 550 650
8:30-9:00 800 700 750 750 650 650
9:00-9:30 400 600 500 400 250 300
9:30-10:00 200 200 200 200 50 50

Table 5.2: Time-varying traffic flow for all boundary segments (veh/h). Modestly high traffic flow
occurs during period of 8:00 to 9:00, which yields modestly saturated conditions.

Time segment number

1 4 5 9 14 15
7:00-7:30 200 50 50 50 50 50
7:30-8:00 400 200 350 400 250 300
8:00-8:30 800 800 650 800 450 500
8:30-9:00 1000 600 900 800 450 500
9:00-9:30 500 200 350 400 250 300
9:30-10:00 200 50 50 50 50 50
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Table 5.3: Time-varying traffic flow for all boundary segments (veh/h). Extremely high traffic
flow occurs during period of 8:00 to 9:00, which yields seriously oversaturated conditions.

Time segment number

1 4 5 9 14 15
7:00-7:30 200 50 50 50 50 50
7:30-8:00 500 300 400 400 250 300
8:00-8:30 1100 950 950 850 650 600
8:30-9:00 1100 950 950 850 650 600
9:00-9:30 600 400 500 600 250 300
9:30-10:00 200 200 200 200 50 50
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Figure 5.3: Travel time observations measured from VISSIM simulation on slightly saturated
traffic demand. The figure shows one-minute aggregated travel time observations for different
signal controls (green wave and red wave), respectively.

Pattern 2: moderately saturated condition

Compared with Patter 1, Patter 2 increases the traffic flows from 8:00 to 9:00 (see in Table
5.2. Under the moderately saturated condition, long queues occur along this route, which
forces vehicles wait two or even more cycles before they can pass the intersections. Two
peaks of travel times can be identified in Figure 5.4. This is due to the traffic flows still
increase though the traffic flows of segment 4 decrease from 8:30 to 9:00. This illustrates
that the traffic flows from crossing segments do have influence on the main urban route.
One of the peaks has the highest travel time reaching 300 seconds (shown in Figure 5.4),
which is two times the mean free flow travel time.

Pattern 3: seriously oversaturated condition

The third pattern has a relatively high traffic flow from 8:00 to 9:00. The queues along this
route build up quickly and spill back to upstream intersections. Overflow queues appear
at all the three intersections. Vehicles do not have opportunities to pass the intersections
within one cycle time, which causes long delays for the whole trip. As a consequence,
serious congestions on the main route occur during this period. Due to the serious block-
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Figure 5.4: Travel time observations measured from VISSIM simulation on modestly saturated
traffic demand. The figure shows one-minute aggregated travel time observations for different
signal controls (green wave and red wave), respectively.

age, travel times increase to approximately 450 seconds, which is three times of the mean
free flow travel time.
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Figure 5.5: Travel time observations measured from VISSIM simulation on seriously saturated
traffic demand. The figure shows one-minute aggregated travel time observations for different
signal controls (green wave and red wave), respectively.

Output pattern

For each traffic scenario, we executed ten 3-hour simulation runs with different random
seeds. Different random seeds yields different travel times per simulation run even if
the simulation setting remains same. Thus, there are 30 data sets for three scenarios.
Figure 5.6 gives an example of the results generated under the condition of the seriously
saturated traffic demand pattern and green wave signal control strategy. It can be seen
that during the peak period (from 8:40 to 9:10) the variability of travel times is larger than
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Figure 5.6: Mean travel times for 10 VISSIM simulation runs generated with seriously saturated
traffic demand and green wave signal control. Each line represent one simulation result.

those during off peak periods. The worse case (the largest variability) is approximately
250 seconds at 9:06.

5.2 Results

To better present the results, we categorized them into three subsections. In the first
subsection, we present the results of a baseline model, which is used for comparison. The
ensuing two subsections correspond to the two phases of the model application: training
the USEG and assessing the UROU. Note that the training process is done at segment
level, while the assessment is done at route level.

5.2.1 Results of the Baseline Model for Comparison

Table 5.4: Predictive performance of the baseline model.
MARE(%) MRE(%) SRE(%)
baseline model 20.4 4.7 17.9

As stated in Chapter 3, very limited amount of researches have been conducted on ur-
ban route travel time prediction. In the literature, few models have been proposed for
this specific topic. Therefore, this dissertation only use a simple baseline model, which
is widely used in practice (Beijing, Rotterdam), to compare the performance of the pro-
posed model. The baseline model simply uses measured arrival travel times 777¢ as the
predicted departure travel time, which can be expressed as:
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1 n
TT(p+1)=;§TT,~”(p) (5.1
i=1

where 7 denotes the number of vehicles arriving at the end of the trip during time interval
p.

Table 5.4 shows the predictive performance in terms of the mean relative error (MRE),
mean absolute relative error (MARE), standard deviation of relative error (SRE) (formu-
las are given in Appendix A). As expected, the baseline model produces biased travel
time predictions (MRE of 4.7%) with a SRE of 17.9%, and a large MARE 0f 20.4%. The
inherent problem of the baseline model is already outlined in Chapter 2. Roughly, arrival
travel times are the results of shifting departure travel times with the absolute value of cor-
responding travel times. Thus, simply using measured arrival travel times as the predicted
departure travel time will: (1) underestimate the travel time in congestion onset conditions
(prediction errors are negative), and (2) overestimate the travel time in the conditions of
dissolving congestions (prediction errors are positive).

Table 5.5: MARE of training USEG in terms of different learning epochs and the number of
hidden neurons.

Number of Learning epochs

hidden neurons 20 40 60 80 100 150 200
USEGI

2 22.1% 18.3% 17.7% 13.5% 11.4% 11.4% 11.4%
4 263% 21.3% 16.7% 123% 8.6% 72% 7.2%
6 29.5% 22.4% 17.5% 13.7% 7.1% 6.8% 6.8%
8 30.6% 24.9% 19.6% 12.8% 89% 7.7% 7.7%
10 32.4% 269% 183% 13.4% 9.4% 62% 6.2%
USEG7

2 30.6% 22.6% 18.5% 16.7% 14.3% 14.2% 14.2%
4 272% 22.1% 169% 123% 71% 7.1% 7.1%
6 28.6% 23.1% 192% 14.7% 63% 62% 6.2%
8 282% 21.3% 17.5% 122% 62% 62% 6.2%
10 30.6% 25.8% 20.6% 14.9% 8.7% 6.7% 6.7%
USEGI11

2 26.2% 23.4% 209% 164% 153% 153% 15.3%
4 283% 22.9% 162% 113% 8.6% 7.5% 7.5%
6 31.7% 26.4% 20.5% 15.1% 9.7% 63% 6.3%
8 30.6% 27.5% 22.4% 16.5% 10.1% 8.4% 8.4%
10 349% 29.8% 224% 17.2% 12.5% 7.4% 7.4%

5.2.2 Sensitivity Analysis of Training USEG

The training process is trying to find optimal parameter setting(s) of the USEG. There are
several important factors that influence the structure of the USEG, and hence influence
the performance of the UROU. These factors include the number of the hidden neurons,
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the transfer function, the initial weights, and the initial internal states. The former two
determine the structure of the USEG and the later two initiate the start point for training
the USEG. Recall that the sigmoid function is selected as the transfer function and initial
internal states all equal zero. Therefore, the following will only explore the sensitivity of
the USEG to variations in the number of hidden neurons and initial weights.

The number of hidden neurons

To investigate the sensitivity of the training procedure on the number of hidden neurons,
six different structures of the USEGs were developed (with 2, 3, 4, 6, 8, and 10 hidden
neurons). For each USEG, the weight initialization is optimized based on (Nguyen &
Widrow 1990). Table 5.5 shows the training results in terms of different numbers of
hidden neurons for segment 1, 7 and 11 (see Figure 5.1). As expected, errors decrease
with the increase of learning epochs, and after 100 epochs errors decrease slowly or even
keep constant.

After being trained, those USEGs with different structures have been evaluated based on
test data. Those test data are different from the data used above for training.

Table 5.6: MARE of assessing USEGs with different number of hidden neurons on independent
data.

Number of hidden neurons

2 3 4 6 8 10
USEG1 134% 13.1% 102% 93% 152% 12.3%
USEG7 15.7% 113% 84% 7.5% 11.5% 12.9%
USEGI1 162% 154% 9.5% 13.8% 82% 17.3%

In the training process, the USEGs with more hidden neurons give smaller errors than
those with less hidden neurons. This illustrates that complex (more neurons) models have
more powerful ability to fit data than simple ones. Table 5.6, however, shows that complex
models also intend to over fit data, and then produce a poor generalization. For the three
segments, the USEGs with 4 and 6 hidden neurons outperform others. Based on those
considerations, we decide to choose the USEG with 4 hidden neurons in the following
analysis. This is due to (1) the USEGs of segment 1, 7 and 11 with 2 hidden neurons
result in 13.4%, 15.7% and 16.2% MARE respectively, which are worse than those with
more hidden neurons; (2) there is no significant difference between the USEG with hidden
neurons of 4 and 6; (3) the USEG with 4 hidden neurons outperforms those with 3, 8 and
10 hidden neurons.

Initial weights

Note that the above training process is based on one initial weight parameter setting.
As stated before, training neural networks with different initial weights might result in
different weight settings, though the outputs of the neural network are similar. In addition,
the use of different training algorithms could also produce different weight settings. In
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reality, it is time-consuming ,even impossible, to draw an entire distribution of weight
solutions in the multi-dimension weight space.

Here, we tentatively investigate the possible weight solution, initiating weights randomly
from a zero mean normal distribution with different variances. The variances in our study
are chosen as 0.1, 0.5, 1, 5, 10, 100. For each distribution, we randomly choose 10
scenarios of the weight parameter settings. In total, 60 initial weight parameter settings
were used to training the USEG of segment 1. We stopped training after a maximum of
200 epochs.

From Table 5.7, we observe that the initial weight settings derived from the small distri-
bution variances (e.g. 0.1 and 0.5) all produce error indicator (MARE) smaller than 9%.
Some initial weight settings generated from the large distribution variances (e.g. 10, 100)
also result in a good performance. This indicates that optimal weight solutions are scat-
tered in the multi-dimension weight space. We take a close look at the weight values. 48
weight settings, which generate MARE smaller than 9%, are selected from Table 5.7. Fig-
ure 5.7 shows the histogram of the individual weight values of all the initial 48 weights
settings. Although some weights are out the scope of [-50 50], most weights approxi-
mately concentrate within [-10 10]. In particular, the highest frequency of the weights is
around 0. We hypothesize this due to two reasons. First, the inputs and outputs have all
been scaled to [0.1 0.9]. The experimental data related to some nonlinear processes can
vary across a wide range. Hence, the smallest values approach zero, and the differences
between training points become smaller after being scaled. We admit that those 60 initial
weight parameter settings might not be sufficient to represent the entire distribution of
weight solutions. But, this investigation at least gives a clue for the real time application
(Chapter 6).

Table 5.7: training results (MARE) with different initial weight parameter settings.

variance ten scenarios of initial weights setting

1 2 3 4 5 6 7 8 9 10
0.1 68 73 79 74 73 75 74 73 73 15
0.5 82 76 74 72 73 75 74 73 76 73
1 87 113 74 92 73 76 106 127 86 7.4
5 79 102 73 75 73 83 75 72 89 85
10 7.5 103 11.8 73 84 84 72 83 92 6.1
100 103 102 174 84 73 75 74 104 82 85

5.2.3 Predictive Performance of UROU

After being trained, the USEG can be regarded as a model, which can describe the traffic
processes at segment level (assuming that the presented data represent the traffic processes
correctly). The following subsection will present the overall performance of the UROU
based on the well-trained USEGs. First, the performance of the UROU trained by batch
training algorithm will be given. After batch training, the parameters of the proposed
model are fixed. The results of different prediction time aheads will be presented. Then,
the performance of an incremental training algorithm will be given to compare with those
by the batch training algorithm.
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Figure 5.7: Histogram of weight values

Results of Batch Training

Table 5.8 shows that the proposed model performs better than the baseline model up to
30 minutes of prediction time ahead. The worse case is with MARE of 14.8%, MRE of
4.2% and SRE of 12.9, which are acceptable. In this simulation, we conclude that this
proposed model is able to predict accurate prediction of travel times up to 30 minutes of
prediction time ahead. The proposed model proves an accurate prediction of travel time
in urban networks. However, in real world it is hard to priori predict the boundary traffic
flows and turning fractions.

Table 5.8: Predictive performance of the proposed model with different prediction time ahead.
Prediction Time Ahead (minutes)
1 5 10 15 20 25 30
MARE(%) 69 63 7.6 79 123 134 1438
MRE(%) 27 19 32 3.6 37 38 42
SRE(%) 77 72 81 99 104 11.8 129

Results of Incremental Training

Table 5.9 shows the results of the proposed model with an incremental training algo-
rithm. Recall that the principal difference between the incremental training algorithm and
the batch training algorithm is to update weight parameters at each time step. Clearly,
the proposed model with the incremental training algorithm performs significantly worse
than the batch trained models. All performance indicators (MARE, MRE and SRE) are
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approximately double in comparison to those resulted from the batch training. In the
incremental training cases, the proposed model performs even worse than the baseline
model when the prediction time ahead is equal or larger than 20 minutes. This illus-
trates that the weight parameters obtained from the incremental training algorithm are not
appropriate for online travel time prediction. This is due to the fact that travel time ob-
servations are available only after vehicles finish their trips. Clearly, in the incremental
training algorithm the proposed model is able to follow the arrival travel time curve not
the departure travel time curve. Especially, it lags behind significantly during the con-
gestion build-up and dissolving conditions. Moreover, it seems that the proposed model
with the incremental training algorithm over fit the new observations and lead to a model
which generalize poorly.

Table 5.9: Predictive performance of the proposed model with incremental training.
Prediction Time Ahead (minutes)
1 5 10 15 20 25 30
MARE(%) 134 146 179 19.1 212 257 29.2
MRE(%) 45 48 6.1 6.7 82 8.1 10.3
SRE(%) 143 132 158 159 182 223 264

5.2.4 Robustness Analysis of UROU

In the previous sections we have tested the proposed model with 100% accurate simulated
data. However, the input data in a real world situation, collected by a real time traffic
monitoring system, will often have corrupted or missing values. Corrupted data refer to
those systematically inaccurate data because of equipment measurement errors (e.g. miss
count or over count). Recall that the definition of robustness of the proposed travel time
prediction model is the ability to deal with the cases of being fed with corrupted and
missing data (Chapter 1). More precisely, this dissertation specifies the robustness as the
performance based on corrupted and missing data. The objective is that the proposed
model is still able to produce reasonably accurate predictions fed with certain amount of
corrupted and missing data.

Obviously, those incorrect data affect the offline training and online operation of the pro-
posed model. In the training procedure, incorrect data steer weight parameters into a
’wrong’ region in the weight space, and thus produce a "'wrong’ model. Usually, the train-
ing procedure is conducted in an offline situation. In the offline case, we have enough
time to replace missing data and to correct corrupted data. However, the online operation
requires the calculation of travel times in a very short time. Thus, missing and corrupted
input data are likely fed into the proposed model in the case of the online operation. The
following sections are to investigate the online performance in case of missing and cor-
rupted data given a well-trained model.

Missing data

Based on previous 12 testing data sets, we generated 28 missing data sets and 7 corrupted
data sets. Considering all possible combinations of missing and corrupted data collected
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by all the loop detectors leads to a very large amount of test data. Here we only consider
the cases of detectors on segment 1, 4 and 9 (see Figure 5.1). We generated missing data
according to 4 severity levels (5%, 10%, 15% and 20%). For example, the first level of
5% means that the testing data sets contain 5% missing data. The procedure of generating
5% missing data, for example, is conducted as follows:

step] at each time step, produce a value from a uniform distribution on [0,1]
step2 if the value < 0.05, then the data of this time step is labeled as missing data

step3 replace the correct data with a default value (in this dissertation 0.2, 0.5 and 0.8 are
used for comparison)

In total, we have 84 synthetic missing data sets. Table 5.10 presents the MARE perfor-
mance of the UROU on all the synthetic missing data sets. The third to fifth rows show
that the performance of the UROU given that one detector provides missing data. No
matter replacing the missing data with any values (0.2, 0.5 or 0.8), the performance dete-
riorates steadily as the percentage of missing data in the test sets increases. Remarkably,
replacing the missing data with 0.5 yields the most encouraging performance. The results
show that this simple strategy is able to ensure that the UROU performs quite well up
to 10% missing data. We hypothesize this due to one reason. 0.5 represents an average
scaled inputs. Choosing 0.5 allows replacing data not deviating far from correct ones,
yielding a graceful deterioration.

The sixth to eighth rows show the results with two detectors providing missing data,
and the last row shows the performance on three detectors providing missing data. As
expected, more detectors encounter missing data, much worse performance was yielded.
In the extreme worst condition when all three detectors providing missing data, more than
40% of MARE were yielded in the case of the missing percentage of 5%.

In a tentative conclusion, the UROU is able to produce robust prediction under the condi-
tion that one detector providing up to 10% missing data. Other serious cases of missing
data should be considered carefully.

Table 5.10: MARE performance on missing data. The rows depict the location of detectors, pro-
viding missing data. The columns depict the combination of different severity levels and replaced
values.
seg- replaced with 0.2 replaced with 0.5 replaced with 0.8
ment 5% 10% 15% 20% 5% 10% 15% 20% 5% 10% 15% 20%
| 26 38 54 62 11 20 34 48 22 36 52 78
4 24 42 58 71 10 18 36 51 21 37 48 86
9 28 37 49 65 10 19 34 46 26 41 56 81
1,4 37 53 72 84 25 44 57 73 31 48 68 85
1,9 34 47 65 86 27 49 62 81 29 52 72 86
4,9 36 52 69 78 31 43 59 78 32 55 74 91
1,49 48 62 81 97 42 68 86 98 41 58 72 96
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Corrupted data

The procedure of generating corrupted data is similar to creating missing data except the
third step. After determining the labeled time steps, we ’"damage’ correct data by adding
corrupt ratios (-10%, -5%, 5%, and 10%). The negative and positive values are analogue
to the cases of miss count or over count, respectively. Tables 5.11, 5.12 and 5.13 show
the MARE indicator of the UROU for 10-minute time ahead travel time prediction on the
corrupted data sets which represent one, two and three detectors encounter corrupted data,
respectively. Only when the percentage of the corrupted data is equal or smaller than 10%
and the corrupt ratio is -5% or 5%, the MARE:s are less than 20%. As the percentage of
the corrupted data increases or the corrupt ratio increases, the performance of the UROU
deteriorates rapidly.

Table 5.11: Predictive performance of the proposed model on data sets containing corrupted data
of segment 1.

percentage of  corrupt ratio
corrupted data -10% -5% 5% 10%

5% 23 11 12 22
10% 28 19 18 32
15% 42 33 29 48
20% 68 46 56 74

Table 5.12: MARE performance of the proposed model on data sets containing corrupted data of
segment 1 and 4.

percentage of  corrupt ratio
corrupted data -10% -5% 5% 10%

5% 34 21 26 41
10% 58 380 45 63
15% 73 5261 79
20% 84 68 72 89

Table 5.13: MARE performance of the proposed model on data sets containing corrupted data of
segment 1,4 and 9.

percentage of  corrupt ratio
corrupted data -10% -5% 5% 10%

5% 49 36 34 46
10% 62 48 45 75
15% 78 64 66 82

20% 96 73 82 98
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5.3 Summary

This Chapter assessed the proposed model on 100% accurate simulated data. We choose
to use synthetic data before the proposed model is tested in a real world environment
because the simulation allows us to control the types of traffic situations and to test all
kinds of designed scenarios. It provides a comprehensive test site to assess the concept
design of the proposed model.

Three typical traffic conditions (slightly saturated, moderately saturated and seriously
oversaturated conditions) have been generated to test this proposed model. It is shown that
the proposed model is able to provide accurate travel time predictions, and outperforms
the baseline model.

In this Chapter, we have explored the sensitivity of the USEG to variations in the number
of hidden neurons and initial weights. Based on simulation results, there is no significant
difference between the USEG with 4 hidden neurons and those with hidden neurons of
larger than 4. The small distribution variances of initial weights produce better training
results. The two findings will be used in the real time application (Chapter 6).

Finally, we have tested the performance of the proposed model on synthetic missing and
corrupted data sets. The results show that the proposed model still performs quite well
under the condition of less than 10% missing and corrupted data. This proves that the
proposed model satisfies our aim of providing robust and accurate travel time predictions.
The next Chapter, we will apply the proposed model in a real world situation.
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Chapter 6

Real-time Application

6.1 Introduction

In Chapter 4 and 5 a proposed model, the UROU, has been presented and evaluated in
a simulated environment. The results supported the validation and applicability of this
proposed model with 100% accurate simulated data. In this Chapter, we will put this
model into practice and see whether it functions as well. Note that the major problem of
the real time application is getting the right data. Thus, the data acquisition is one of the
focuses of this Chapter.

First, two methods are presented to deal with the data pre-processing for loop detector
data and travel time measurements. Then, the ensuing sections will address the variability
of travel times with empirical data besides average travel time predictions.

The Regiolab Delft project provides an ideal test site for the real-time application. Re-
giolab Delft collects both travel times and volumes from various traffic data collection
systems installed on a wide range of different roads (both urban routes and freeways)
within the region of Delft (Zuylen & Muller 2002). The selection of appropriate routes
from the urban road of Delft (shown in Figure 6.1) was based on two criteria: camera
data and loop detector data were available for this route, and recurrent congestion oc-
curs. After extensive analysis, the route with start point (256) and end point (257) was
selected. This route was also used as a blueprint for the experiments based on synthetic
data described in Chapter 5.

6.2 Description of the Test Site

The route, named “Kruithuisweg”, is a provincial road with characteristics of an urban
arterial connecting two freeways, A4 and A13. Three license plate cameras with sequence
numbers 256 (one-lane) and 257(left lane and right lane) are installed at two locations of
the 2.05 km route. Those cameras are used to measure volumes and travel times (see
Figure 6.1). Through GPRS (General Packet Radio Service), the first 5 license plate
characters of all passing vehicles are sent to Regiolab Delft with a time stamp every
2 minutes. From the different time stamps of the same set of license plate characters

81
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Figure 6.1: The camera locations covered by the Regiolab Delft. The little circle on the figure
depict the camera location.

collected at the two locations, individual travel times from 256 to 257 are calculated.
This route produces travel times of approximate 180 up to 1100 seconds in free flow and
seriously congested conditions respectively.

Loop detectors provide one minute aggregated volumes. All controlled intersections
along this route have vehicle actuated control programs. Every intersection is controlled
separately without coordination. Traffic signal controllers provide signal timings (e.g.
green time).

For our purpose of evaluating this proposed model under different traffic conditions, es-
pecially in the congested condition, morning peaks (between 7:00 and 10:00) data were
used to train and evaluate this proposed model.

6.3 Model Description

According to the configuration of the single loop detectors installed along Kruithuisweg
(shown in Figure 6.1), six segments were used to model this urban route. Figure 6.3
shows a schematic configuration. Since segment 4, 5 and 7 only have downstream loop
detectors, the volumes collected by them are directly used as the boundary inputs into
the downstream segments which are connected to them. For instance, the left-turning
volumes from segment 4 and the right-turning volumes from segment 7 are fed as inputs
into segment 2, as well as the left-turning volumes from segment 5 are fed into segment
3. Therefore, only three USEGs which represent segment 1, 2 and 3 are created and
trained. For each segment, we choose the same topology of the USEG model. Based
on the sensitivity analysis of the USEG model with simulation data (see Chapter 5), the
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Figure 6.2: The layout of the loop detectors and license camera installed along the Kruithuisweg.

topology of the USEG model is defined with four hidden neurons. And, the sigmoid
transfer function is used. A batch training algorithm has been selected for training those
USEG models due to its better performance than the incremental training algorithm as
shown in Chapter 5.

6.4 Data Preparation

In reality, the measured data often consist of missing or corrupted values, which are not
like those in a simulation (100% accurate data). Thus, those raw data need to be checked
and processed before being used. As stated before, there are three types of data used in this
dissertation: volume, signal timing and travel time. We consider the signal timings (green
time and cycle time) as accurate measurements. The following sections will address the
processing of volume and travel time measurements.

6.4.1 Volumes Measured by Single Loop Detectors

In Regiolab Delft, volume measurements of each single loop detector are either with
null values (no measurements available might because of malfunctioning) or non-negative
integers. Data with null values are regarded as missing data. For this research, a data

validation procedure is designed based on (Weijermars & Berkum 2006, Muller et al.
2005, Turner 2004).

First step: Preliminary Data Selection
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Figure 6.3: A schematic configuration of USTR with concatenating USEG for modelling travel
time on Kruithuisweg.

e In the raw database, we found that malfunctioning occurred quite frequently not

only for short periods (e.g. 1 minutes) but also for long time periods (e.g. an entire
day in worse cases). If the consecutive time intervals of null values are larger than
20 minutes, these data were not selected. In addition, for preliminary selection,
only those days that all the single loop detectors work well were chosen. After the
preliminary data selection, only 82 days of 2004 are available.

Second step: Preliminary Data Completion

e In those 82-day data, we used the simple linear interpolation to fill in those time

intervals of null values. Those calculated values will be verified whether they are
reasonably correct with the following steps.

Third step: Individual Data Checking

e Traffic flows are bounded by the capacity of the measurement location and by the

capacity of the upstream locations. For reasons of simplicity, a fixed upper bound
was used that is the same under all circumstances (without considering other factors,
like weather). However, the location of detectors has to be taken into account. For
the single loop detectors installed upstream far from intersections, an appropriate
upper limit of 30 veh/lane/minute was used. For the single loop detectors equipped
close to intersections, the upper limit is determined by the saturation flow and green
time. In this study, we choose an approximate estimation of 24 veh/lane/minute.
Although the upper limits are chosen after an explorative analysis of the data and are
realistic from a traffic theory point of view, they are somewhat arbitrary. Therefore,
a sensitivity analysis is executed.

Except the highest value of volumes, we also need to pay attention to the value of
zero. Data of morning peak hour (7:00-10:00AM) are considered in this research,
the volume of zero for multiple consecutive time intervals during the peak hours are
suspicious and stamped with a flag for further verification.
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Fourth step: Cross Data Checking

e The principle of flow conservation is widely accepted for checking volume data
of one single loop detector with other detectors within the same intersection. For
two locations between which traffic cannot ’disappear’ and new traffic cannot be
generated, the principle applies. This principle can be used to find out missing and
over count of the traffic. The test site satisfies the requirement of a complete detector
configuration. For instance, I77 + I7g3 = Ig1 + Igo — I70 — I71 + 74 + Ies + 167
(Ix denotes the cumulative flow at detector £ ). In general, the principle however
is difficult to apply for the urban networks because of the lack of dense detectors
(discussed in Chapter 2).

Table 6.1: Flow conservation at the intersection at Buitenhofdreef and Kruithuisweg

Flow conservation for hourly flows

Flow conservation for daily flows Met Not Met Total

Met 177 cases 33 cases 210(85%)
Not Met 24 cases 12 cases 36(15%)
Total 201(81.7%) 45(18.3%) 246 cases

Table 6.2: Flow conservation at the intersection at Provincialeweg and Kruithuisweg

Flow conservation for hourly flows

Flow conservation for daily flows Met Not Met Total

Met 162 cases 14 cases 176(71.5%)
Not Met 36 cases 34 cases 70(28.5%)
Total 198(80.5%) 48(19.5%) 246 cases

Table 6.3: Flow conservation at the intersection at Voorhofdreef and Kruithuisweg

Flow conservation for hourly flows

Flow conservation for daily flows Met Not Met Total

Met 156 9 165(67.1%)
Not Met 48 33 81(32.9%)
Total 204(82.9%) 42(17.1%) 246 cases

From Tables 6.1, 6.2 and 6.3, it can be seen that the principle of flow conservation is
not met in almost 20% of the cases. Note that we have not distinguished the causes of
one missing vehicle or hundreds vehicles. Of course, a small amount of missing vehicles
might influence less than a large amount of missing vehicles. In the following sections,
all those cases which do not meet the principle of flow conservation will not be used.
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6.4.2 Travel Times Collected with License Plate Matching

Travel times can be measured with different technologies, such as distance measuring
instrument, license plate matching, automatic vehicle identification, global positioning
system, platoon matching, cellular phone tracking, etc (see in Appendix B). For a compre-
hensive overview of travel time data collection systems we refer to (Turner et al. 1998). In
the Regiolab Delft project, automatic license number plate recognition (ANPR) systems
were used. Three cameras record a picture of the license plate numbers of all passing
vehicles (one land or multi-lanes) and then use a specific software to identify the license
numbers. By matching the license numbers recorded at two locations, the travel times of
vehicles between those two locations were calculated.

There are many causes (not exhaustive) which result in ’erroneous’ travel times. Here,
’erroneous’ travel times refers to the records that cannot represent the real traffic condi-
tions. In the ensuing sections, we use the term of ’outlier’ referring to the ’erroneous’
travel time from statistical perspective.

Causes for Erroneous Travel Time Observations

e Misrecognition of License Plate Numbers

The misrecognition of license plate numbers refers to yielding wrong license num-
bers due to misrecognizing the characters. For example, a license plates with the
syntax of "46ATQS" might be recognized as "46ATOS" due to the letter "Q" is sim-
ilar to the letter "O". Since image recognition, which is widely used technology
for license plate matching, is sensitive to ambient conditions. For instance, adverse
weather will lead to a high possibility of misreading license numbers.

e Mismatch with Partial License Numbers

Under the consideration of privacy issues, only partial license plate numbers have
been recorded in Regiolab Delft. The last four letters of the license plate numbers
will be used for matching. This results in a possibility that two (unique) vehi-
cles have a same recognized partial license number. For example, "I 7THRMG" and
"24HRMG" could be regarded as one vehicle with the partial license number of
"HRMG".

e Alternative Routes

In urban networks, vehicles are able to change their directions at intersections,
yielding several alternative routes between one pair of origin A and destination B.
If only two cameras are installed at A and B, the travel times derived from license
plate matching are hard to be classified into one specific route.

e Particular Vehicles

Some particular vehicles are not restricted to normal traffic regulations so that their
travel times should be filtered out. For example, emergency vehicles are able to
travel at speeds higher than the speed-limit, sometime even travel in the *wrong’
direction, and travel through red-lights at intersections as well. Another example,
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buses may pass intersections without delays due to priority signal settings, and ex-
perience no delays in congestion situations because they drive on reserved lanes.
These particular vehicles realize ’erroneous’ travel times which cannot represent
the average traffic conditions.

e Non-driving Activities

When vehicles have more trip purposes other than solely traversing from A to B,
their travel times are considered as erroneous’ travel times. For example, a parent
passes by A, stops at school between A and B to pick up his/her children, then
reaches B. Other activities, like going to a shop, filling gasoline at a gas station,
also cause the travel times to include extra delays.

Outlier Detection of Travel Time Data

In real world, the consequence of ignoring outliers might be more serious than miscrecog-
nizing valid data. Obviously, ignoring outliers results in training the model with incorrect
data, which will deteriorate the performance of this model on new data. Misrecognizing
valid data will filter out valid data, reducing the total number of correct data. Detecting
outliers is the basis of producing a clean data set for training the model. The key objec-
tives of an outlier detection algorithm are twofold: (1) the rate of ignored outliers (records
identified as valid data while in fact they are outliers) is low, and (2) the misrecognized
valid data rate (records identified as outliers while they are valid data) is low as well. In
the literature, Percentile Test (PT) (Clark et al. 2002) and Deviation Test (DT) (Fowkes
1983, Clark et al. 2002) have been used for detecting the outliers of travel time observa-
tions (details see in Appendix E). To improve the accuracy of the detection of outliers, a
generic procedure of outlier detection is proposed (Appendix E).

Table 6.4: Performance of each method to identify outliers in the matched ANPR data, on a
provincial road Kruithuisweg, the Netherlands

Proposed Method PT(Clark) DT(Fowkes) DT(Clark)

2004-Nov-17

No. of Observations 893 893 893 893
No. of Misrecognized 10 80 6 8
No. of Ignored 4 57 32 31
2004-Nov-18

No. of Observations 939 939 939 939
No. of Misrecognized 7 86 11 10
No. of Ignored 6 55 33 32
2004-Nov-19

No. of Observations 964 964 964 964
No. of Misrecognized 5 87 9 7
No. of Ignored 12 58 34 34

PT(Clark): Percentile test method proposed by Clark
DT(Fowkes): Deviation test method proposed by Fowkes
DT(Clark): Deviation test metnod proposed by Clark
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Comparison of different outlier detection approaches

On average, the percentages of the outliers of each day vary from 8% to 15%. Most out-
liers occurred during the day time, while a few outliers were identified during the evening.
Three-day results are shown in Table 6.4. Obviously, the Percentile Test is not able to cor-
rectly identify real outliers because the percentage of the total errors (ignored outliers and
misrecognized valid data) to total observations are 15.34%, 15.02% and 15.04% for these
three days, respectively. The two Deviation Test approaches have better performance with
the percentages of approximately 4.5% of the total errors to total observations. There is
no significant difference between the DT(Fowkes) and DT(Clark). The new proposed
method outperforms other methods with a very low error of 1.57%, 1.36% and 1.78% for
these three days, respectively.

The Relation between ignored outliers and misrecognized valid data

Figure ?? shows the two kinds of errors, misrecognized valid data N; and ignored real
outliers Ny, with respect to different parameter settings. As described in Appendix E, the
three parameters, T;,, o4 and Ny, influence the performance of the outlier detection.
When the time window increases from 5 tol0 minutes, the number of misrecognized
valid data decreases slowly while the number of ignored outliers maintain constant. As
the time window continues increase, N, decreases very slowly and N; increases sharply.
This evidence supports the statement that a large time window probably increases the
possibility of ignored real outliers. This is due to the large time window hide’ the likely
significant changes in itself. Under this condition, the real travel time outliers will be
easily ignored. The number of misrecognized valid data changes very slowly. For this
case, the proper time window is 10 minutes.

We can also observe from Figure 6.4 (middle and bottom) that obviously N, increases
and N, decreases as both the critical standard deviation and critical count increase. Qual-
itatively, a larger critical standard deviation yields more ignored cases and less misrecog-
nized cases. Similarly, a larger critical count generates less misrecognized cases, while
N increases very slowly as critical count increases. The crossing points of the curve
Ng and Nj, the lowest value of the total errors, are the optimal values for the parameter
settings. For this case, o4, = 108 and N, = 3 are the proper parameter settings.

Influence of outlier detection on training USEG

As shown above, the simple outlier detection algorithms (PT and DT) are easy to be
implemented in practice but the accuracy is poor (depending on the selection of the per-
centile and the critical distance). The proposed method gives a good performance of
outlier detection.

In real world, the influence of the ignored outliers on training models might be more
serious than the miscrecognized valid data. Tentatively, the ignored outliers cause the
models are steered to "wrong’ parameter settings due to incorrect data. Misrecognized
valid data only reduces the number of valid data. We further assess those outlier detection
algorithms by answering the follow question:

Problem 4 What is the influence of outlier detection on the training of USEG?
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Figure 6.4: The performance of the new proposed algorithm with respect to different parameter
settings (time window, critical standard deviation and critical count). The number of misrecog-
nized valid data and ignored outliers are used as measures.

We used the four outlier detection algorithms separately again in order to filter out all the
outliers. That is, the number of ignored outliers is zero. To achieve this goal, we just
simply tuned the parameters. Table 6.5 shows the results of the number of misrecognized
valid data when all the outliers are filtered out. Obviously, the number of misrecognized
valid data increases with filtering out more outliers.

To fill in the empty gaps where the outliers are filtered out and probably the valid data are
also filtered out by mistake, we used a simple method as described in Appendix E. Those
four new data sets were used separately to train a USEG model. For the comparison
purpose, the raw data without filtering out the outliers was also used to train a USEG
model. We started to train each USEG with the same number of hidden neurons of 4, the
same initial weights and internal states. We stopped the training after a maximum of 200
epochs.

An interesting result is that the training runs with the data sets, which are generated from
the proposed method, DT(Fowkes) and DT(Clark), produce approximately the same sum
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squared error (SSE) (2.699482, 2.701544, 2.702486), and moreover, produce approxi-
mately the same weight parameters. The data set processed with PT(Clark) produced
much higher SSE (2.975624). As we expected, the training with raw data yields the high-
est SSE of 3.819282. Note that the training data are scaled into the interval 0.1, 0.9.
Obviously, the training produces the largest SSE when a lot of outliers exist in the train-
ing data. When all the outliers are filtered out, the USEG produces a lower SSE. A close
look at the SSE without outliers indicates that the influence of the misrecognized valid
data on training is not significant when a few valid data (the proposed method compared
to DT(Fowkes) and DT(Clark)) are filtered out. In other words, there is no apparent im-
provement of the SSE with the proposed method compared with the simple algorithm
DT(Fowkes) and DT(Clark). However, the SSE increases much more when the number
of misrecognized valid data increases (PT(Clark)). A close look at the training data shows
that more valid data are filtered out, and thus more empty gaps have to be filled in. The
PT(Clark) produces long gaps, which are more than three or even five time intervals. The
simple method we used to fill in the gap apparently cannot correctly deal with this case.

But, the simple method works quite well when only short gaps in the training data have
to be filled.

6.4.3 Subdivision of The Data Sets

After data checking and completion as shown above, we further divided these data into
three data sets, data set A , data set B, and data set C. Data set A contains 50 morning
peaks’ (from 7:00 to 10:00AM) single loop detector data, signal timing data and segment
travel times. Those data in data set A are raw data without data pre-processing. Data set B
was extracted from data set A with data pre-processing, which contains 36 morning peaks’
data. For each segment, each record reflects a departure travel time interval and contains
input/output traffic flows, green time and segment travel time. Data set C, containing 26
morning peaks’ data, is similar to data set B. The difference is that no segment travel times
but only measured route travel times are available (for the purpose of testing). Note that
only data set A contains missing/corrupted data. The use of data set A is to demonstrate
the influence of missing/corrupted data on the performance of the proposed model.

6.4.4 Training

An inherent problem of training neural networks is that they might be sensitive to initial
weights and may get stuck in a local minima of the error surface. One way to alleviate this
problem and to increase the likelihood of obtaining near-optimum local minima is to train
several neural networks, having a same structure, with a random set of initial weights,
and choose the one with the lowest error. However, in a practical application, we actually
don’t know which neural network performs best for future unseen data. There may be
many parameter sets within a model structure that are equally acceptable. Consequently,
instead of choosing one best single USEG model, we may make predictions based on an
ensemble of neural networks trained for the same purpose. In this dissertation, the idea
of ensemble prediction is adopted, and the simple average ensemble method is used. For
each USEG model, we trained it ten times so as to get 10 neural networks, and choose the
5 best ones according to their training performances. With the selected neural networks,
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we got 5 outputs for each segment travel time prediction. Then we took a simple average
of the 5 outputs to be the final output.

Table 6.5: Performance of each method to identify outliers in the matched ANPR data, on a
provincial road Kruithuisweg, the Netherlands

Proposed Method PT(Clark) DT(Fowkes) DT(Clark)

2004-Nov-17
No. of Misrecognized 24 168 47 52
2004-Nov-18
No. of Misrecognized 28 159 54 54
2004-Nov-19
No. of Misrecognized 25 166 48 52

PT(Clark): Percentile test method proposed by Clark
DT(Fowkes):Deviation test method proposed by Fowkes
DT(Clark): Deviation test method proposed by Clark

6.5 Results

To better show the performance of the proposed model, we first present the results with
the baseline model. In the following sections, we will present not only the average travel
time prediction, but also the travel time variability.

6.5.1 Performance of the baseline model

Table 6.6 shows the mean, mean absolute and standard deviation of the relative error for
the baseline model. As expected, the baseline model produces biased travel time predic-
tions (MRE of 4.5%) with a SRE of 25.8%, and a large MARE of 18.6%. The inherent
problem of the baseline model is already outlined in Chapter 2. In general, arrival travel
times are the results of shifting departure travel times with the absolute values of corre-
sponding travel times. Thus, simply using the measured arrival travel time as the predicted
departure travel time will: (1) underestimate travel times in congestion onset conditions
(prediction errors are negative), and (2) overestimate travel times in congestion dissolve
conditions (prediction errors are positive). Figure 6.5 illustrates that this simple model
produces negative errors when congestions start and positive errors when congestions
dissolve. In free flow conditions, the prediction errors fluctuate around zero within the
range of approximate [-100 100].

Table 6.6: Predictive performance of the baseline model on training data set B and test data set C
in 2004.

MARE(%) MRE(%) SRE(%)
baseline model 18.6 4.5 25.8
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Figure 6.5: Predictive performance of the baseline model on the morning peak of 27 Octorber,
2004.

6.5.2 Performance of the proposed model

For the real-time application, three strategies could influence the performance of the pro-
posed model: (1) the integration of traffic flow prediction, (2) the use of pre-processed
data, and (3) the use of different training algorithms.

As shown in Chapter 4, the proposed model is based on the prediction of traffic flows
on the boundary of the study area, which will propagate from an upstream segment to
a downstream segment, and then result in travel times. Since the profile of the traffic
flow is pre-determined in the simulation environment, the assessment of this strategy has
not been done in Chapter 5. In the following section, the influence of the traffic flow
prediction will be presented.

It is no doubt that the model trained with good data will give a good performance. Here,
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we will show how the influence of different training data sets on different prediction time
aheads. The prediction time aheads used in the following section are 1, 5, 10, 15, 20 and
25 minutes.

In Chapter 5, the simulation results show that the model trained with the batch training
algorithm outperforms the model trained with the incremental training algorithm. The
following section will show the results of the two training algorithms with empirical data.

The influence of traffic flow prediction

Tables 6.7 and 6.8 shows the performance of the model with and without traffic flow pre-
diction, respectively. In general, the MARE, MRE and SRE decrease as the length of
prediction time ahead increase no matter with or without traffic flow prediction. As ex-
pected, this proves that it is much harder for travel time prediction with a large prediction
time ahead than a small prediction time ahead. The MARE of the model with traffic flow
prediction are less than 18.6% (baseline model) up to the prediction time ahead of 10
minutes. Nonetheless, the MARE of the cases without traffic flow prediction are larger
than 18.6% after the prediction time ahead of 5 minutes. Similarly, the MRE of the model
with traffic flow prediction are less than 4.5% (baseline model) up to prediction time ahead
of 10 minutes, while the MRE of prediction without traffic flow prediction are larger than
4.5% in all cases. With respect to the SRE, the results of both with and without traffic
flow prediction are similar to the cases of MARE. Roughly speaking, the model with traf-
fic flow prediction outperforms the baseline model up to a prediction time ahead of 10
minutes, and the model without traffic flow prediction outperforms the baseline model up
to prediction time ahead of 5 minutes.

Table 6.7: Predictive performance of the proposed model with traffic flow prediction on training
data set B and test data set C in 2004.
Prediction Time Ahead (minutes)
1 5 10 15 20 25
MARE((%) 11.6 98 134 21.6 32.5 383
MRE (%) 34 28 38 83 10.6 14.8
SRE(%) 132 114 145 254 33.6 368

Table 6.8: Predictive performance of the proposed model without traffic flow prediction on train-
ing data set B and test data set C in 2004.
Prediction Time Ahead (minutes)
1 5 10 15 20 25
MARE(%) 16.5 18.4 29.5 348 46.6 49.7
MRE(%) 89 142 193 275 339 353
SRE(%) 19.7 235 28.6 31.6 37.2 394

Table 6.9 shows the results of traffic flow prediction (with the algorithm described in
Chapter 4). Obviously, the performance of traffic flow prediction decreases as the pre-
diction time ahead increases. The minimal MARE, MRE and SRE are 18.5%, 5.6% and
11.2% for the case of 1-minute prediction ahead.
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Table 6.9: Predictive performance of traffic flow prediction on test data set C in 2004.
Prediction Time Ahead (minutes)
1 5 10 15 20 25
MARE(%) 185 19.2 219 253 36.7 414
MRE(%) 56 74 79 19.1 233 379
SRE(%) 11.2 13.7 192 213 267 293

The influence of different training data sets

Tables 6.10 and 6.11 list the performance evaluation results of the 1 to 25 minutes ahead
predictions with the training data sets A and B respectively. From the two tables, we
can observe that the performance deteriorates with increasing the prediction time aheads.
Compared with Table 6.6, both Tables 6.10 and 6.11 show that the proposed model per-
forms better than the baseline model up to the 10-minute prediction time ahead. When
the prediction time ahead increases to 15, 20 and 25 minutes, the performances of the
proposed model are even worse than the baseline model. The model performs best for the
S-minute prediction time ahead. The appropriate prediction time ahead might be different
at different application locations. In our case, we conclude that this proposed model is
able to produce accurate predictions of travel times up to 10 minutes ahead. The main
reason is due to the inherent drawback of boundary traffic flow prediction and the simple
assumption of turning fraction. In urban networks, traffic flow probably vary in short time
period (e.g. 10 minutes), causing the input of the model to be unpredictable. It is clear that
when the boundary traffic flow and turning fraction change significantly within the pre-
diction time ahead, e.g. congestion onset and congestion dissolve, the simple assumption
can not be hold. Therefore, the performance of this proposed model is largely influenced
by the performance of the prediction of boundary traffic flows and turning fractions.

Table 6.10: Predictive performance of the proposed model on training data set A and test data set
C in 2004.

Prediction Time Ahead (minutes)

1 5 10 15 20 25
MARE%) 19.6 254 313 28.7 37.6 425
MRE(%) 64 72 167 192 22.1 28.6
SRE(%) 247 273 266 283 304 384

Table 6.11: Predictive performance of the proposed model on training data set B and test data set
C in 2004.

Prediction Time Ahead (minutes)

1 5 10 15 20 25
MARE(%) 11.6 98 134 21.6 325 383
MRE(%) 34 28 38 83 10.6 1438
SRE(%) 132 114 145 254 33.6 36.8
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The results of different training algorithms

Tables 6.12 and 6.13 show the performance of the proposed model trained by the batch
training algorithm and incremental training algorithm, respectively. The overall perfor-
mance is similar to the performance in the simulation environment (Chapter 5). Obvi-
ously, in the batch training algorithm the proposed model performs better than a model
trained with the incremental training algorithm. From the two tables, it can be seen that
no matter whether it is trained with the batch or incremental training algorithm, the per-
formance of the proposed model in real time application is worse than it in the simulation
environment. Even the pre-processed data sets are used, the minimal MARE, MRE and
SRE are 9.8%, 2.8% and 11.4%, which are larger than those (6.9%, 2.7% and 7.7%) in
the simulation environment. Different from the situation in the simulation environment
(where the proposed model performs better than the baseline model up to 25 minutes
of prediction time ahead), the proposed model trained with the batch training algorithm
outperforms than the baseline model up to 10 minutes of prediction time ahead.

Table 6.12: Predictive performance of the proposed model trained with batch training algorithm.
Prediction Time Ahead (minutes)
1 5 10 15 20 25
MARE(%) 11.6 98 134 21.6 325 383
MRE(%) 34 28 38 83 10.6 14.8
SRE(%) 132 114 145 254 33.6 368

Table 6.13: Predictive performance of the proposed model trained with incremental training.
Prediction Time Ahead (minutes)
1 5 10 15 20 25
MARE(%) 19.2 21.5 257 332 385 473
MRE(%) 69 85 127 17.5 20.8 294
SRE(%) 204 269 30.1 387 428 48.1

6.5.3 Travel Time Prediction with Variability Estimation

As described in Chapter 2, empirical travel times vary due to many influencing factors.
That is, the variability of travel times is the result of the combination of the stochastic
variation of those influencing factors (e.g. temporal effects, composition of vehicles,
population characteristics, weather, road works, traffic control and management) (Van
Lint 2004, Viti 2006). Thus, the travel times have a certain distribution, such that there
tends to be a minimum travel time, but it is possible to have a very large travel time.
From travelers’ perspective, a decrease in travel time variability reduces the uncertainty
in decision-making about departure time and route choice as well as the anxiety and stress
caused by such uncertainty (Sun et al. 2003).

Very little empirical research has been undertaken into this field. Although a lot of studies
have been conducted into travel time variability, the lack of sufficient data has prohib-
ited researchers from properly investigating the different temporal scales of travel time
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variability. Even today only roads fitted with ANPR cameras are likely to have sufficient
travel time records for a thorough study of 77V to be undertaken. As we will show
below, the travel time variability is obtained with the analysis of historical travel time
measurements.
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Figure 6.6: The variability of travel time in terms of different temporal scales.

In this dissertation, we restrict our definition of travel time variability in a statistical sense
by means of prediction intervals.

Definition 13 Prediction intervals are the minimal and maximal possible travel time
around the prediction, that is ,the most plausible range of travel time a vehicle is likely to
experience, given the prediction value.

The prediction intervals account for vehicles starting within a couple of minutes of one
another experiencing different travel times. The minimal and maximal possible travel
times, TTV, and T TV, are obtained as follows:

(1) Prepare departure travel time measurements in a time series, [departure time #;, travel
time 7¢;].
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(2) Determine the temporal scale 7'S.

(3) Start with i = 1, find out the 10th and 90th percentile travel time measurements
departing within t; — TS, t; + T'S. The upper and lower deviation of this travel time
measurement are Uy = 50th — 10th and L; = 90th — 50¢h.

(4) Continue step 3 with i = i 4+ 1 until the end of travel time series.

(5) Group travel time measurements in a stepwise pattern. Let stepwise step be ST = 20
sec. For example, start from the minimal travel time measurement 7" 7, find out all travel
time measurements in 7' 7y, T T, + ST. Thus, find out the 90th percentile of U; and L4
obtained from step 3.

(6) Finally, the 90th percentile values of U, and L, obtained from step 5 are the 77V,
and T T V4, respectively.

For example, the data set A was used. Six different temporal scale were used: 3 second,
10 seconds, 20 second, 1 minute, 5 minutes and 10 minutes.

Figure 6.6 illustrates the percentile values of the variability of travel times in terms of
different temporal scales. Note that the horizontal axis is travel time and the vertical axis
is the variability of travel time. The magnitudes of the 90th percentiles increase with
the increase of the length of the temporal scales. In addition, the 90th percentiles of
upper deviation fluctuate more strongly than the lower deviation. This implies that travel
times are instable in congested conditions (here high travel time value) than in free-flow
congestions. Moreover, the upper deviation curve is always above the lower deviation
curve. This demonstrates that the distribution of travel times is certainly not symmetric.
Instead, the distributions for different temporal scales are skewed to the right.

To have a close look of the upper and lower deviations separately, we plot them in Figure
6.6. It can be seen that the 90th percentile of the upper and lower deviations of travel
times remain very low and constant as the temporal scale is 3 seconds. For the cases of
the temporal scale larger than 10 seconds, the 90th percentile of the variability of travel
times increase significantly with the value of travel times. This shows that urban travel
times are very variable. For this 2 km urban route, vehicles departed even within time dif-
ference of 10 seconds, they still had a large possibility of experiencing a large variability
of travel times. The patterns of 90th percentiles of the upper and lower deviations for 1,
5 and 10 minutes are quite similar. Especially, the curves of travel times from 200 to 400
approximately overlap each other.

With the statistical upper and lower deviation, the prediction intervals can be placed
around the mean prediction. The Prediction Interval Coverage Percentage (PI_CP) de-
notes the number of observations Nj;, that fall in the interval:

Nin

tot

PI CP =

(6.1)

where N;,; denotes the total number of observations.

In practice, it is necessary to determine how the sample size affects the derivation of the
upper and lower deviations. First, the data set B was used to estimate the prediction inter-
vals. Six different sample sizes were used: 1, 5, 10, 15, 20, 25 days. For each sample size,
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we randomly select data ten times from data set B. Then, the obtained prediction intervals
were tested on data set C. Table 6.14 shows the performance of prediction intervals in
terms of different sample sizes. The average PI CP increases from 33.43% to 91.28% as
sample size increases from 1 to 25 days.

Table 6.14: Prediction Interval Coverage Percentage index in terms of different sample sizes.

Sample Test Runs

Size 1 2 3 4 5 6 7 8 9 10

1 day 274 193 21.5 432 28.6 56.7 352 259 427 338

5 days 56.7 385 493 29.6 485 393 552 363 41.6 229

10 days 67.4 72.5 583 492 56.1 782 52.1 587 729 774
15days 694 63.1 685 746 693 815 73.6 774 793 782
20days 89.3 81.5 794 864 935 956 92.1 853 87.6 923
25days 93.5 91.2 823 86.8 962 943 83.6 972 964 913

6.6 Comparison of Simulation and Real-time Results

The most prominent differences between the simulated travel time and real travel time
are: (1) serious congested travel times in the simulated environments are smaller than in
the real applications, although the free-flow travel times are similar; (2) both in simu-
lated and real time environments, the travel time variability increases as traffic conditions
change from free flow to congestion. For free flow conditions, the magnitude of the travel
time variability in simulated enviroments is smaller than in real time applications. For
congested conditions, the magnitude of the travel time variability in the real time environ-
ments is significantly larger than in the simulations.

Overall, the performance of the proposed model is, although still acceptable, significantly
worse on real data than on simulated data. Recall that in the simulation the performance
of the proposed model with the prediction ahead of 30 minutes is better than the baseline
model. However, in the real application, when the prediction ahead is larger than 10
minutes, the performance of the proposed model becomes worse than the baseline model.
It shows that applying the proposed model in a real-time environment is more complex
than in a simulated situation. This is due to the fact that the simulation is controlled by the
users while too many unknown influencing factors involved in the real-time application
are undetected and out of control. In addition, the detection equipments cannot provide
100% accurate measurements, as in simulation environments.

Moreover, the arrival pattern and the turning fractions in reality are less predictable than
in the simulation.

6.7 Summary

This Chapter presents an application of the proposed model in a real time environment.
The practical application, not like simulation (100% correct data), requires an extensive
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strategy to deal with the quality of actual observations. There are two different types of
actual observations in our case study: volumes and travel times. We defined four steps to
tackle the problem of missing and corrupted volume data.

Since license plate matching is widely implemented in urban areas, more details have
been discussed, especially about the causes that yield erroneous travel time observations.
The main problem of measured travel times is the outliers caused by mismatching and
misrecognizing license plate numbers. We compared the performance of two simple out-
lier detection algorithms and one new derived algorithm. One of the simple algorithms
is able to filter out outliers at the cost of simultaneously discarding valid data. The new
derived algorithm shows best performance.
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Figure 6.7: The upper and lower deviations with respect to different time scales.

For the real-time application, three strategies could influence the performance of the pro-
posed model: (1) the integration of traffic flow prediction, (2) the use of pre-processed
data, and (3) the application of different training algorithms. Those strategies were eval-
uated with respect to predictive performance. The results show that the predictive perfor-
mance outperforms the baseline model when the prediction time ahead increases up to 10
minutes. By considering travel time variability, we introduce the application of prediction
intervals into travel time prediction.
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Chapter 7

Conclusions and Recommendations for
Further Research

This closing Chapter summarizes the main conclusions of the work done in this disserta-
tion. Thereafter, some further research directions are highlighted.

7.1 Conclusions

In this dissertation we clarified the components of urban travel times and presented a
model for urban travel time prediction. Recall that the objective of this dissertation is to
develop a methodology that can provide robust and accurate travel time predictions for ur-
ban networks. Correspondingly, the conclusions of this dissertation are summarized into
the following sections: problem description, model development and model evaluation (a
simulated environment and a real-time application).

7.1.1 Problem Analysis

People driving on urban networks will be influenced by many factors, e.g. other drivers,
traffic signals, pedestrians, transit priority, parking, et. Due to the interaction among those
factors, urban travel time prediction is a highly complex non-linear spatiotemporal prob-
lem. From our literature review it appears there are very few models available for urban
travel time prediction. We argue that this is due to the shortage of data for calibrating
and validating models. Presently, more and more cities, like Beijing (China), Stockholm
(Sweden) and Delft (The Netherlands), however, have installed license plate cameras for
monitoring large-scale urban networks. In addition, GPS data collected by many tax-
ies are easily obtained. Those direct travel time measurements can be supplemented for
calibrating and validating urban travel time prediction models.

7.1.2 Model Development

The proposed model in this dissertation can be seen as a sophisticated travel time or
delay formula with adjustable parameters (which have no direct physical meaning). The

101
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approach is a hybrid of data driven and model-based approaches. The benefit is that it
is dynamic and (at least conceptually) simple. A generic segment-based model has been
presented, and it also can be used for urban routes.

1. A generic travel time prediction model based on the State Space Neural Network
(SSNN), so called USEG, has been developed for modeling traffic flows on a urban
segment. Fed with inflow volumes and traffic signal timings, the USEG produces
both outflow volumes and travel time predictions for the urban segment.

e The SSNN model enables the previous states to be temporally memorized in
itself. The feedback (memory) mechanism in the SSNN allows the inputs to
be fed at consecutive time instants sequentially. We argue that dynamic neural
networks are better suited for the travel time prediction task since they induce
the time dynamics directly from the data, in contrast to static neural networks
in which the time dynamics are constraint by a fixed input time window.

e Compared with augmenting all the spatially separated inputs in a single input
layer, modeling an urban signalized route with separate models for each urban
segment significantly reduces the number of weight parameters which need to
be calibrated.

e With the availability of real time measured travel times by license plate cam-
eras and GPS equipments, it is possible to use incremental training algorithm.
The model parameters are updated after the presentation of each measured
travel time.

2. The outgoing traffic flows leaving from the upstream urban segment, calculated with
the USEG, can be used as the inputs for the connecting downstream urban segment
USEG. By concatenating all the USEGs which are comprised of an urban route
of interest, the UROU is developed to propagate traffic flows through the route of
interest. The ability of propagating traffic flows enable the UROU to predict travel
times for any long route of interest. Three key issues of concatenating the USEG
are:

e Boundary segments require the prediction of incoming traffic flows. We ar-
gue that the real time incoming traffic flows are proportional to the historical
profile.

e Unlike the boundary segments, the internal segments obtain the incoming traf-
fic flows from the outgoing traffic flows of the upstream (connecting) seg-
ments. We argue that the dynamics of the turning fractions are assumed as
random-walk processes. Taking into account the turning movements, the total
incoming traffic flows of a internal segment are the sum of the left-turning,
throughput and right turning traffic flows.

7.1.3 Model Evaluation in Simulation Environments

In order to fully test the model formulated in Chapter 4 and techniques employed in this
work, we first choose to use synthetic data obtained from a microscopic traffic simulation
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tool, VISSIM (PTV AG 2003). With the investigation on a simulated environment, it gives
a clue for the real time application (Chapter 6). Three typical traffic conditions (slightly
saturated, moderately saturated and seriously oversaturated conditions) have been gener-
ated to test this proposed model.

1.

3.

There are several important factors that influence the architecture of the USEG, and
hence influence the performance of the UROU. These factors include the number of
the hidden neurons, transfer function, initial weights and initial internal states. The
former two determine the structure of the USEG and the later two initiate the start
point of the USEG training. In this dissertation, we have explored the sensitivity of
USEQG to variations in the number of hidden neurons and initial weights.

e By considering accuracy and generalization, we found that the USEG with 4
hidden neurons was appropriate.

e We tentatively investigate the possible weight solution, initiating weights ran-
domly from a zero mean normal distribution with different variances. The
results show that the highest frequency of weight is around 0.

The trained USEG was regarded as a generic model, which can describe the traffic
processes at segment level. Based on the well-trained USEG, the UROU was tested
in terms of the batch training and incremental training algorithms.

e With the batch training algorithm, the UROU is able to produce accurate travel
time predictions up to 30 minutes of the prediction time ahead. The perfor-
mance of the UROU is better than the baseline model.

e In the incremental training fashion the UROU is able to follow the arrival
travel time curve, but it lags behind the departure travel time curve, particu-
larly when the congestion builds up and dissolves. It illustrates that the incre-
mental training algorithm over fitts the new observations and leads to a model
which generalizes poorly. The UROU performs even worse than the baseline
model when the prediction time ahead is equal or larger than 20 minutes.

e In a conclusion, the availability of real time measured travel times is not a
recipe to improve the performance of urban travel time prediction.

This dissertation specifies the robustness as the performance of the UROU fed
with corrupted and missing data. We found that the UROU is still able to produce
reasonable predictions with a certain amount of corrupted and missing data.

e Replacing missing data with 0.5 yields more encouraging performance than
replacing with 0.2 and 0.8. This simple strategy is able to ensure the UROU
to perform quite well under the condition that one detector provides up to
10% missing data. In the extremely worst condition when all three detectors
provide missing data, more than 40% of MARE was yielded in the case that
even the missing percentage is equal to 5%.

e As the percentage of the corrupted data increases or the corruption ratio in-
creases, the performance of the UROU rapidly deteriorates. Only when the
percentage of corrupted data is equal or smaller than 10% and the corruption
ratio is -5% or 5%, the MAREs are less than 20%.
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7.1.4 Real-time Applications

After the UROU was evaluated in a simulated environment, we put this model into prac-
tice. The major difference between simulations and real-time applications is that the
former have 100% correct data. Therefore, the real-time application requires additional
efforts to deal with the quality of the actual measurements.

1. We have presented different methods of dealing with corrupted and missing data
collected by single loop detectors and license plate cameras, respectively.

e According to the principle of flow conservation almost 20% of the single loop
detector data are missing. In this dissertation, a data cleaning procedure for the
single loop detector data has been designed based on (Weijermars & Berkum
2006, Muller et al. 2005, Turner 2004).

e A procedure to detect outliers of travel time measurements has been proposed.
The new procedure outperforms than three existing methods (e.g. Percentile
Test (Clark et al. 2002) and Deviation Test (Fowkes 1983, Clark et al. 2002)).

2. For the real-time application, three strategies influence the performance of the
proposed model: (1) the integration of traffic flow prediction, (2) the use of pre-
processed data, and (3) the use of different training algorithms.

e The model with traffic flow prediction outperforms the baseline model up to
the prediction time ahead of 10 minutes, while the model without traffic flow
prediction outperforms the baseline model up to the prediction time ahead of
5 minutes.

e The performance of this proposed model is largely influenced by the perfor-
mance of the prediction of the boundary traffic flows and turning fractions. In
urban networks, the traffic flow varies in a short time period (e.g. 10 minutes),
causing the input of the model to be unpredictable.

e The proposed model with the batch training method outperforms it with the
incremental training method.

3. For this test bed of a 2km urban street, vehicles that depart even within time
difference of 10 seconds, they still have a large possibility of experiencing a large
variability of travel times.

4. Opverall, the performance of the proposed model is, although still acceptable, signifi-
cantly worse on real data than on simulated data. In the simulation the performance
of the proposed model with the prediction ahead of 30 minutes is better than the
baseline model. However, in real application, when the prediction ahead is larger
than 10 minutes, the performance of the proposed model becomes even worse than
the baseline model.
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7.2 Recommendations for further research

In this final section we present research directions that are triggered naturally by the re-
search done in this dissertation. Those research directions are grouped into urban travel
time prediction, the model improvements and others for further successful urban travel
time prediction.

7.2.1 Urban Travel Time Prediction

1.

3.

The current formulation of the proposed model predicts travel times based on
single loop detector data, travel time measurements calculated with license plate
matching, and traffic signal timings. However, new technologies such as mobile
phones and GPS, and vehicle re-identification (that use existing inductive loops)
are providing new avenues for collecting real-time traffic information. As a result
a possible direction for future research would be the incorporation of these data
sources into the proposed model.

In this dissertation, we only consider two influencing factors of urban travel times,
that is, traffic flow and traffic signal. Clearly, other factors (e.g. vehicle com-
position, pedestrians, weather, public transport, etc.) also influence urban travel
times. An interesting future research direction could be the extension of the pro-
posed model to account for the effect of those factors. As long as those variables
are measured, they can be easily integrated in the proposed model. The selection
of a suitable training method will be conducted in terms of different factors. For
instance, the incremental training method might be better for the factor of weather.

As stated above, many influencing factors affect the urban travel time variability. An
empirical research into the effects of those factors on the urban travel time variabil-
ity would be important. More research is required to understand and quantify the
effects. Moreover, the relative change in the urban travel time variability between
two factors also should be investigated.

7.2.2 Model Improvements

In this dissertation, the UROU has been integrated with the prediction of boundary
traffic flows and turning fractions. This means that the performance of the proposed
model depends on the prediction of the boundary traffic flows and turning fractions.
We only use simple methods to predict those two important factors. However, an
effort should be put on this subject for further research.

We have tested the proposed model in simulation and real-world environments.
To establish the generality of the conclusions of the UROU, more test beds with
different geometry designs should be selected. For instance, the availability of data
from Beijing city will provide another evaluation scenario for further research.
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7.2.3 Other Research Directions

1.  Travel time prediction is a core subject of ATIS. The predicted travel times will
be provided to drivers and traffic managers via on-board systems, variable message
signs, mobile phones, etc. Some theoretical and empirical knowledge and practical
guidelines should be undertaken by the further research directions, including

e what are the potential effects and traveler responses in terms of individual and
collective traffic operations?

e how to distribute unbalanced travel times for different travelers? For instance,
providing different travel times for travelers even having same origin and des-
tination in order to avoiding to attract all travelers to one route which results
in congestion.
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Appendix A

Performance Indicators

Let y; be the ith output calculated from the model, and d; be the ith observation. The
mean of model output and observations are expressed as

1 & B (i
y = N;y,- and d = N;d,- (A.1)

where N denotes the total number of observations.

Table A.1 lists the performance indicators used in this dissertation.

Table A.1: Performance indicators

Abbreviation Meaning Formula
N
MARE Mean Absolute Relative Error 1004 > ‘y’%d"
=1 1
N 1
MSE Mean Squared Error % S (i —di)?
i=1
N
RMSE Root Mean Squared Error % > (i — d;)?
i=1
N
¥ 2 (i—d)
RMSEP Root Mean Squared Error Proportional 100%
N
SSE Sum Squared Error S (i —di)?
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Appendix B

Various Travel Time Collection Systems

For a comprehensive overview of travel time data collection systems we refer to (Turner
et al. 1998).

Distance Measuring Instrument

The distance measuring instrument (DMI) calculates distance and speed using pulses from
a sensor attached to the vehicle’s transmission. The DMI coverts the pulses to units of
measure and calculates a speed from an internal clock.

License Plate Matching

In general, license plate matching (LPM) techniques consist of collecting vehicle license
plate numbers and arrival times at various points, matching the license plates between
consecutive points, and then deriving travel times from the difference in arrival times.
There are four basic methods of collecting and processing license plates: manual, portable
computer, video with manual transcription, and video with character recognition.

Vehicle Signature Matching

By using unique vehicle features, so called vehicle “signatures” (VS), instead of license
plates to identify the same vehicle passing by various points, existing point detection de-
vices (e.g. inductive loop detectors, laser sensors, weigh-in-motion sensors, and video
cameras) are able to be extensively utilized. For example, the vehicle signature from a
loop detector can be defined as frequency detuning curve. Different types and classes
of vehicles provide somewhat characteristic detuning curves. The travel time is the time
difference between the arrival times when a matched vehicle passes two consecutive lo-
cations.

Automatic Vehicle Identification

Similarly, automatic vehicle identification (AVI) uses radio frequency (RF) signals as ve-
hicle ’signatures’. The AVI technology was originally applied for electronic toll collection
(ETC). Tags, known as transponders, are electronically encoded with unique identifica-
tion numbers, and attached on vehicles. Roadside antennas emit radio frequency signals
and receive the reflected signals from the tags. If a same identification number is recorded
between two roadside antennas, the time difference passing these antennas are the travel
time.
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Global Positioning System

The Global Positioning System (GPS) was originally developed by the Department of
Defense for the tracking of military ships, aircraft, and ground vehicles. Signals sent
from several satellites orbiting the earth are utilized to monitor location, direction, and
speed of the vehicles of interest. The GPS records very detailed position information,
which can easily be used to calculate the travel time.

Emerging Technologies

Platoon matching (PM) is similar to vehicle signature matching in that it relies on iden-
tifying, extracting, and matching unique features between two consecutive roadway lo-
cations. The underlying concept of platoon matching is based on identifying unique re-
lationships between vehicles, whereas vehicle signature matching relies on the specific
characteristics of a single vehicle or a sequence of vehicles. Cellular phone tracking
(CPT) is similar to GPS in the sense of using satellites to track the position for the cus-
toms of interest. Aerial survey (AS) is conducted from fixed wing aircraft, helicopter,
observation balloons, or even satellites. The sequence of images record very detailed
information of vehicles within given section, which can be used to compute individual
travel time.



Appendix C

Measured Mean Speed with respect to
Detector Locations

For a stationary and homogeneous traffic flow, a equilibrium state, so called fundamen-
tal diagram, exists between density and flow (top Figure shown in Figure C.1). When
traffic state changes from one to another state, a boundary between these two states is
established. This boundary is referred to as shock wave. A concept of shock wave at sig-
nalized intersection is illustrated in the bottom Figure of Figure C.1. For example, when
traffic signal turns to red, traffic stop still (here ignore deceleration time), which is the
state 4 (critical density) in the fundamental diagram. With this shock wave concept the
time/space mean speed and travel time can be precisely calculated.

Let vehicular traffic flow ¢ denote the number of vehicles passing a location per unit time,
vehicular density p denote the number of vehicles present on a unit space at a specific time
instant, space mean speed v, denote the mean speed of vehicles present on a unit space at
a specific time instant, and time mean speed v; denote the mean speed of vehicles passing
a location in a unit time.

q
l)s = —
p
It is important to note that any one of these three variables can be deduced from the other
two. When traffic state changes from one to another state, a boundary between these two
states is established. This boundary is referred to as shock wave. A concept of shock
wave at signalized intersection is illustrated in Figure C.1. The speed of shock wave is
calculated by

where w;; represents the speed of shock wave between traffic state i and j. Symbols g;
and q;, p; and p ; represent flow rate, density of any traffic state i and j, respectively. Ac-
cording to Figure C.1, traffic states 1, 2, 3, and 4 refer to the approaching traffic, stopped
traffic, capacity traffic, and the zero flow traffic states, respectively. Given homogeneity
and stationarity, the queue builds up at #; (traffic light turns red), spills back up to location
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Figure C.1: Shock wave analysis at a signalized intersection. (a) fundamental diagram of flow

and density, (b) shock wave analysis

X1 at t5, and dissolves completely at g (the end of green time). The coordinate of point C

where the queue start to dissipate can be determined by

wiaw43(t — 0
x| = - ( ) (C.1
W14 — W43
w1411 — W43
ts = ————
W14 — W43

in which #, can be derived by extending #; with red time r,, that is #, = #; + ..

The vehicles departing during time period [7g, #4], for example see in Figure C.1, can
be classified into two groups: vehicles departing in [7, 3] traverse at approaching speed
(state 1) at the beginning, after passing the shock wave w14 at point (x,¢, 7,.) they wait
in the queue (state 4), and then drive at capacity speed (state 3) after crossing the shock
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wave w34 at point (xpc, tpc); while, vehicles departing in [#3, #4] run at approaching speed
(state 1) at the beginning, and transit to capacity speed (state 3) after moving over the
shock wave w34. The two time instants #3 and #4 are calculated based on known #5 and #

(C.2)

in which 7 can be derived by extending #; with cycle time ¢, thatis 75 = 71 + ¢),.

In a general term, the crossing points for a vehicle departing at time instant ¢ € [#9, 73] can
be calculated

lwialv1 (71 — 1) + [wi4] X0 + v1x2

Xaelt) = — AXyet + BXae (C.3)
|wi4] + 01
o1t + [w1al 1 + (X2 — Xo
tact) = w1l + ( ) _ ATyt + BTy,
|wi4] + 01
xbc(t) = xac(t)
X2 — Xge(t
the(t) = b+ ¥2 = Faell) _ ATpet + BTy, (C4
|wa3]
wi4]t1+ (2 —x0 _ —AXge _ x2—B X,
lwigl+o; ATpe = [wa3] 2 and BTpe =t + [waz] -

Similarly, we get the crossing point for a vehicle departing during ¢ € [#3, 4]

v1x2 — w3 xo — lwiz|v1 (6 — )

Xed(t) = = AXcqt + BXca (C.5)
v1 — |wi3]
x2 —xo — (Jwi3|t6 — 011
et = o= (sl =01 _ 7 /4 g1, (C.6)
v — |wi3]

Xp—xo—|wi3lte
v1—|w13]

C.1 Mean Travel Time

Thus, the travel times for a single vehicle departing at time instant 7 is obtained:

20 4 (tpe(t) = tac (1)) + 2579t € 1, t
TT@t) = [ o1 Xcdc_xo + Jfac—xcd ” t e {1(3) tﬂ

0] 03

(C.7)
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With obtained 77 (¢), the mean travel time for vehicles departing during time period
[#0, t4] can be expressed:

14
/ G TTt)dt

fo
TT = ——— C.8
q1(ta — 1) (€8)

Combining equation C.4, C.6 and C.7, C.8 can be rewritten as

42 =)+ B (15 — t0)] + [2(13 — D) + Bo(ta — 13)]}

TT =
(t4 — 1)

(C.9)

where a1 = 4 +(ATpe — AToe) =2, fy = B2 4 (BTpe— BT, )+ 5705 0y =

AXeg _ AXeq _ BX.g—xo x3—BX.q
-, and B, = YR Ea—

C.2 Space Mean Speed

By definition, space mean speed is the arithmetic mean of the speeds that are present on
a road segment at a given moment. As an example, consider a road segment [xg, x>] and
time period [, #4]. Then, the space mean speed at time instant ¢ can be expressed as:

Casel 1rp <t <t

Three different traffic states along the road segment of interest can be identified. The
states between start location (location xq) and line GE, between line GE and FE, and
between line FE and end location (location x;) are traffic state 1, 4, and 3, respectively.
Note that the speed of traffic 4 is zero. Thus, the space mean speed equals

Al + 42 + 43
be(t) = —tAst (C.10)
Bl + B2 + B3
r—1 t, —t
Al = ko (xl( 0) + xg (fe )) (C.11)
te — 1
r—1 o —1 1 — 1 o —1
2 = k(B0 M0 b m0)
te — 1o Te — I
1 — 1 t, —1t
A3 = k3v3(x2—xl( o) % (e )) (C.13)
te —
r—1 t, —1t
Bl = Kk (xl( 0) + g (te )) (C.14)
Ie — 1o
r—1 (e — 1 — 1 lo—1
By — k4(x1( 0) +xsle—1)  x1 (1 —10) +xg (e )) (C.15)
te — 1o fe — 1o
— 1 (t, — 1
B3 = k3(x2—’”( 0) +x7 (Ge )) (C.16)
te —
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Note that the speed of traffic 4 is zero. equation ?? can be rewritten as

Al + A3
o) = g B+ B3 (€17

Case2 1, <t <

Similarly, the space mean speed can be expressed as

kll)l (xl + w) +k31)3 (xZ - X — W)

1 —t, H—te

ki (x1 ¥ m) Yk (x2 Xy — (Xz—xl)(t—te))

1 —t, 14t 2

vs(f) = (C.18)

Case3 11 <t <n

t5—1

ki (x1 n (xz—)m)(fs—f)) ¥ ky (xz X — (X2—x1)(f5—f))

15—11 15—t

ko] (x1 n (xz—xl)(fs—f))

vy (f) = (C.19)

Cased rh <t <y

15—t ts—1h

ky (xl + (xz—xl)(ls—t)) + kg (ts=1) (x2—x1)(—t1) + k3 (Xz — X — (xz—xl)(ts—f)>

t5—1 (ts—1)(ts—11) ts5—1

(C20)

kv (xl + W) + k3v3 (x2 — x| — (X2—x1)(t5—t))

vs(1) =

C.3 Time Mean Speed

As we discussed before, time mean speed is a local variable, meaning that it can only be
observed at a specific location. Since the interruption of traffic signal to traffic stream
leads to a formation of queue, different detector locations would give different values of
time mean speed (Pueboobpaphan & Yamamoto 2005). As an example, consider a case
where the detector location is at a distance x. The time mean speed during time period
[70, 4] can be categorized into four cases: xg < X < x1,X] < X < Xg,Xg < X < X7, and
Xf < x <x2. (xg = x1+|wial| (te — 20) , x5 = x1+|wa3| (te — 1) , and te = t1—(t6—15))

Case 5 xog < x < xy (detector case 1 in Figure C.1)

Vehicles drives at approaching speed during the whole period [t, t4]

vi(x) =01

Case 6 x| < x < xgq (detector case 2)
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The times when shock wave GE, FE, EA, AC and BC cross detector location are defined
as tdge tdye, tdeq, tdyc, and tdyc, respectively.

tdye = f,— XTU)_MTI (C21)
(dac = 15— lew—MTl

The time mean speed during the whole period [ty, t4] can be expressed

tdée tdfe tdea tdac tdbc
/Uldt-l- /0dt+ /D3dt+ /Dldl-l- /Odl‘-l- /1)3dt
tdge tdy. tdeq tdye tdpe
vi(x) = fa— 1o
o (tdge + tdae — tdy — tdeq) + v3 (tdeq + t4 — tdge — tdc)
- 14—ty

Case 7 x, < x < xy (detector case 3)

01 (tdae — tdeq) + 03 (tdea + 14 — tdfe — tdpc)
4 — 1

v (x) =

where tdfe, tdeq, tdac, and tdp. can be calculated with the equation C.21.

Case 8 x;y < x < x; (detector case 4)

01 (tdye — tdea) + 03 (tdeq + 14 — 1o — tdbc)
14— 1

vr(x) =
where td,,, td,., and tdp. can be calculated with the equation C.21.

Based on the above set of equations, if detector location, arrival flow rate and signal
setting are given, one can estimate the mean travel time and the value of space/time mean
speed. Note that, to do this, fundamental diagram function of flow and density must be
known or given in advance.
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Levenberg-Marquardt and Bayesian
Regularization

Training neural network models refers to finding the appropriate parameters (weights and
bias) which minimize an objective cost function. In general, the neural network mod-
els can be trained in a supervised manner, given sufficient data pairs (inputs and outputs).
There are many possible choice of cost function which can be used, depending on the par-
ticular application. Levenberg-Marquardt algorithm is designed specifically for minimiz-
ing a sum of squares error. Bayesian regularization aims to achieve good generalization
of models so as to avoid over fitting.

D.1 Levenberg-Marquardt Algorithm

Consider a sum-of-squares error function:

M
= 1
E=23 (V) =T () =l (D.1)

p=1

| —

where W denotes the parameters in the SSNN model, ¥ (p) denotes the output calculated
from the SSNN, Y (p) denotes the desired output, € denotes the vector of errors, and M
denotes the total number of data pairs in the training data set.

Suppose we are currently at a point /9 in weight parameter space and we move to a
new point "¢ If the displacement #"¢® — 7°4 is small then we can expand the error
vector € to first order in a Taylor series

€ (Wnew) — ¢ (Wold) +J- (Wnew _ Wold) (D.2)

where J = N‘?,ﬁ denotes Jacobian matrix of error function with respect to the weights.

Then, the error function D.1 can be written as

E= % le (W) 4 g - (wrew — weld)|® (D.3)
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If we minimize this error with respect to the new weights "¢ we obtain

Wneu) — WOZd _ (JTJ)_l JTG (WOld) (D4)

In principle, the update formula D.4 could be applied iteratively in order to try to minimize
the error function. The problem with such an approach is that the step size which is given
by D.4 could turn out to be relatively large, in which case the linear approximation D.3
might not be valid (Bishop 2005). Levenberg (1944) and Marquardt (1963) addressed this
problem by minimizing the error function while at the same time trying to keep the step
size small so as to ensure that the linear approximation remains valid. A modified error
function is formulated as

E= % le (W) + J - (wrew — weld) ”2 + 2| (wrew — proid) HZ D.5)

where 1 governs the step size. For very small values of 4 error function D.5 recover
the Newton formula, while for large values of 4 it recover standard gradient descent.
Minimizing the modified error function D.5 with respect to W"¢" yields

wrew = wold — (0 + 21~ JT (Wye (W)

where H denotes the Hessian matrix of error function with respect to the weights. For
simplicity, the Hessian matrix can be approximated:

H~Jl'J

For implementation details see for example (Demuth & Beale 1998).

D.2 Bayesian Regularization

This section is largely based on the work of (MacKay 1992). The central idea of Bayesian
regularization is to decrease the tendency of a neural network model to over fit the training
data. Larger and more weights may perform better on the training data, but also may yield
poor generalization with respect to unseen data. Thus, the objective function minimizes
not only a sum-of-squares error function while at the same time trying to minimize the
sum of squares of weights

M - N1
F(W) = BEp+aEw =P 5 (¥ (p) - Y () + ay W (D.6)
p=1 i=1

where D denotes the data set, W denotes the vector of network parameters, M denotes the
total number of data pairs in the training data set, N denotes the total number of weights,
o and f are objective function parameters which dictate the emphasis of the training.
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In the Bayesian framework the weights W of the neural network are considered as random
variables. The density function of W can be expressed according to Bayes’ rule

P(D\W, B, G)- P (Wla,
PWID.a.p.G) = L P! PfDlo?ﬂ ((;) ., M) (D.7)

where G denotes the neural network model used; P (W|a, G) denotes the prior density
of weights, which represents our prior knowledge of the weights before any data is used
for training; P (D|W, f, G) is the likelihood function, which is the probability of the
data occurring given the particular neural network model G, weights W and objective
function parameter 5; P (D|a, £, G) is a normalization factor, which guarantees the total
probability is 1.

If we assume that the noise and the prior distribution for the weights are Gaussian distrib-
uted according to N (1, 1/4) and N (1, 1/a) respectively, the probability densities can be
written as

1

POEO =7, ®)

exp (=fEp) (D.8)

and

PWla, G) = exp (—aEw) (D.9)

Zy (a)

where Zp (8) = (z /f)M/? and Zy (a) = (z /a)"/?. Substitute equation D.9 and equa-
tion D.8 into equation D.7, we obtain the posterior probability of W

1 1
T 7o &Xp (—aEw — BED)
P(W|D,a,B,G) = 2 D(lz?(ma 56 (D.10)

1 1
P (D|a, B,G) (ZF (o, B)

exp (= F (W)))

In the Bayesian framework, the optimal weights should maximize the posterior probabil-
ity equation D.10, which is equivalent to minimizing the regularized objective function
given in equation D.7. With equation D.8, equation D.9 and equation D.10, P (D]a, f, G)
can be expressed as

P (Dla. p.G) = — 25 F) (D.11)

Zp (B) Zw (a)

Note that Zp (f) and Zy (a) are known in equation D.8 and D.9. What needs to be
estimated is Zr (a, f). Since the objective function has a quadratic shape in a small area
surrounding a minimum point with the parameter W"” we expand F (W) around the
minimum point of the posterior density with Taylor series expansion. This yields
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F W) = F Wap) 5 O = Wage) H (W = Wagp) (D.12)

where H is the Hessian matrix of the objective function. Then, Z¢ (a, f) is the Gaussian
integral:

Zp (o, B) = /dNWeXp(—F(W,a,,B)) (D.13)
~ Qr)N?exp(—F (W)) (det H)~'/?

To optimize the value of a and £, we apply Bayes’ rule

P (Dla, B, G) - P (a, BIG
P (. p1D.G) = = '“”;’(;m(“’ﬁ' ) (D.14)

Assuming a uniform prior density P (a, f|G) for the regularization parameter o and £,
then maximizing the posterior of o and f is achieved by maximizing the likelihood func-
tion P (Dla, S, G), whose logarithm can be written as

L. Zw()-Z 2detH
P(Dla,ﬁ,G):_QE%P_ﬁEgP_EIOg W )(an)Nw)

(D.15)

We can solve for the optimal value of o and £ at the minimum point by taking the deriv-
atives of equation D.15 with respect to a and £, and set them equal to zero. This yields

oMP _ 4
2Ew (WMP)

pup = M=
2Ep (WMP)

where y = N—2aMP .trace (H _1) is called the effective number of parameters. Foresee
& Hagan (1997) proposed using the Gauss-Newton approximation to Hessian matrix H
as follows

H=pBJ"J+al

where J denotes the Jacobian matrix of error function with respect to the SSNN weights,

J = 5%%1/), and / denotes the identity matrix.

D.3 Levenberg-Marquardt with Bayesian Regularization

In short, the training procedure can be summarized as
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Step 1. Initialize weights I and objective function parameters a and £.

Step 2. Use LM algorithm to calculate new weights with fixed @ and £ based on output
error e (W)

wrew = wold — (H Wy + A1)~ JT (Wye (W)

Step 3. Optimize a and £ given new weights.

Step 4. If stop criteria met (minimum performance goal, maximum number of epochs)
then stop, otherwise continue with step 2.
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Appendix E

Algorithms for Detecting Travel Time
Outliers

E.1 Percentile Test

The percentile test defines outliers to be all values in the time period (usually 5 or 15
minutes) which do not fall within a pre-defined percentile scope (upper percentile PT"
and lower percentile PT ! ). The travel time of vehicle i, T'T;, is determined as outlier,
when the following conditions are met.

TT, < PT' or PT* < TT;

To apply this test, a prior knowledge of the distribution of travel time is required. Clark
et al. (2002) proposed to use the 10th and 90th percentiles. For different applications, the
percentile scope might be different.

E.2 Deviation Test

The deviation test considers an individual travel time as a outlier, if the value of the
individual travel time is further than a critical distance C D from the median of the » travel
times in the time period. The travel times that fall out of the scope [T T, — CD, TT,, +
C D] will be treated as outliers. In literature, relatively little research on ANPR data outlier
detection has been undertaken. Fowkes (1983) maybe the first to propose an equation as
follow:

_ PC3— PC
o 1.35

CD X (0.025,n%) X Fi
where P(Cj refers to upper quartile of the sample, PC refers to lower quartile of the
sample, 79 025, ,+ refers to t-statistic (n* < n—1), F] is a correction term which is obtained

by
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Figure E.1: Difficulty of identifying outliers with percentile test approach
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In (Clark et al. 2002), the critical distance is calculated by

n

Z |TT1 - TTmedianl
CD =3, x =

n

where J, is a parameter. Clark et al. (2002) proposed to use J, = 3.

E.3 Critique of Existing Approaches

Clearly, percentile test will be extreme, in that the observations falling out of the percentile
scope will be classified as outliers no matter they are actually valid data. For example, for
the case of 10th and 90th percentile scope, 20% of all the observations will be classified
as outliers. In the example of Figure E.1, the travel time record, C and D which lie in time
interval 2 are successfully identified as outliers, while A and B which lie in time interval
1 are misclassified as outliers.

Furthermore, if real outliers lie close to the boundary (start and end) of a time interval,
three kinds of mistakes might be caused in condition that travel time increases during
the time window of interest: (a) the outlier with value close to the median value, like
travel time record E in time interval 3, cannot be identified; (b) the low values at the
start of increasing travel time trend which are less than the lower percentile might be
misidentified as outliers (travel time record F); (c) the high values at the end of increasing
travel time trend which are larger than upper percentile might be misidentified as outliers
(travel time record G).
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The deviation test screens out all the travel times, which are further than a critical distance
from the median/mean of the travel times in the time interval of interest. The same critical
distances used for the values larger and smaller than the median implies an assumption
of symmetric distribution of travel times. However, the distributions of travel time are
skewed to left (congestion onset and dissolve) and right (congestion) (Van Lint & Zuylen
2005). It is certainly inappropriate to remove observations, which are larger and smaller
than the median/mean value of travel times in the time interval of interest, with same
deviation distance.

E.4 A New Proposed Approach

Our aim is to propose a generic procedure which can overcome the drawbacks of existing
approaches. The basic concept of the proposed one is similar to the existing approaches:
divide time series of travel time records by a fixed length time window, find out the records
that falls out of desired confidence scope. The major features of the new approach are
twofold: (a) the desired confidence scope is derived from available data; (b) a moving
time window is used to deal with the problem of the above stated travel time record D and
E. The former strategy avoids to assume a known distribution for travel time, unlike the
existing approaches. This makes the new approach be easily transfer to any location due
to travel time distribution might reveal different profiles in terms of different application
locations. So far, no any literature shows any known distribution function can fit travel
time distribution well in different locations. Also, the distribution varies with different
traffic conditions. The second strategy is able to address the problem when travel time
increase or decrease significantly within a time window.

E.4.1 A generic procedure of outlier detection for travel time records

Step 1: Initiate time window T,

Determine confidence scope [le , T uk] in terms of travel time 77 = k. For each travel
time record 7 T;(¢), select all the travel time records € within the time window [t —T,,, +
T,,]. Since the data here is available “off-line” it is possible to use future observations to
establish this context. From the records in Q, calculate travel time upper and lower limits,
namely a statistical value

o= TThn—TT()
M= TTi(t)—TTy

where TT }% and TT If; refer to upper and lower percentile, respectively. Note that 77T [2[

and TT ]2 are not necessarily symmetric, like 7T ]2, =80thand TT ]2 = 20¢h, percentile
because the distributions of travel time usually are not symmetric in most cases.

For a certain value of travel time 7T = k, two sets of statistical value Y* (T'T = k) and
W/ (T'T = k) can be constructed by grouping same value of travel time during different
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time and days. Finally, le and T, f will be determined by choosing percentile value from
the P! and ¥, respectively as

TF = My |¥
¢ = M, |

where M, P! and M, or|'PY are the percentile values of sets ¥/ and W, respectively.

Step 2: Travel time records @ are presented as a time series. The time window moves
step by step on the time axis. Within each time window, first we look at the sample size
S.. If sample size is too small (i.e. one or two observations in one time window), mark
the observations for visual check. Otherwise, we judge whether there are outliers in this
time window or not by the rule:

no o < Oy
yes G > O

outliers exist in the time window

where o is the standard deviation of the observation within the time window of interest,
o hr 18 a threshold (critical) value to be determined.

Step 3: If ¢ > o,1,, check all the observations whether they are in the confidence scope
[T,k, T, Lf‘] Those observations that fall out of the scope are treated as outliers with boolean
value, to say 1, otherwise with 0. Then, move the time window to the next one, and
continue with step 3.

Step 4: When the whole records are processed, for each observation i we can count how
many times N; the boolean value of this observation equal 1. This is because each obser-
vation will fall in time window more than once. For example, we have travel time records
® = [m, my, m3...m,] and T, = 5. The sixth record m¢ will be evaluated in the 2¢/ to
6¢h time window, which the 274 and 62/ time window consists of [my, m3, mg, ms, mg]|
and [mg, m7, mg, mg, mig], respectively.

Step 5: Finally, the outliers are identified by the rule:

no  N; < Ny

observation 7' 7; is outlier
’ yves Ni > Ny

where N, is a threshold value to be determined.

E.4.2 Algorithm parameters

In the above described algorithm, it can be seen that there are different parameters in-
volved which should be estimated rather than determined based on intuition. These para-
meters are:

1. Time Window T},

It is obvious that a too large time window may cover different traffic conditions
within this time window (high value of travel time records during congestion are not
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Figure E.2: Scatterplot of travel time observations with outliers and without outliers on November
17 2004. The observations are aggregated in time interval of 1 minute (data source from Regiolab-
Delft).

outliers compared with those low value during free-flow conditions in the same time
window), while too small time window may fail to provide sufficient observations.
Thus, a balance between ability to react to rapid changes and to ensure sufficient
data will yield an appropriate 7y,.

2. Critical Standard Deviation o,

The critical standard deviation 4, 1s used to judge whether outliers exist in the
time window of interest or not. Tentatively, we consider that large value of o,
will ignore outliers, while small value might misrecognize valid data as outliers.

3. Critical Count Ny,

High value of N,;, means an observation is considered as a outlier by more count
times. This might cause ignoring real outliers. On the other side, low value of N,
might misrecognize valid data.

Performance on filtering outlier Figure E.2 shows two scatterplots of travel time ob-
servations with outliers and without outliers by the means of the new proposed algorithm
on November 17, 2004. In the raw data, some observations even exceed 20 minutes which
are not reasonable for traversing a 2km urban street in recurrent traffic conditions (no ac-
cident happened on that date). These outliers can be successfully identified in order to
yield cleaned data for model calibration and validation.



134 TRAIL Thesis series




Summary

With the advent of Advanced Traveler Information Systems (ATIS), short term travel time
prediction is becoming increasingly important. Over the last few decades researches in
this field have mostly concentrated on the applications to freeway facilities, while very few
studies have focused on urban networks. This preference of researches for freeways can
be identified from the literature overview. There are no reliable and applicable methods
for urban short term travel time prediction. The intention of this dissertation is to make
an attempt on this subject.

With the analysis of existing models, four clear impressions can be identified: (1) Among
the existing works on travel time prediction, most of them are designed for urban seg-
ments, not for urban routes/arterials. The performance of those models at a large scale
has not been evaluated. (2) None of those models presents how to predict future traffic
conditions. This implies that the underlying assumption is the stationarity of future traffic
conditions. This assumption is obviously hard to hold in real environments. (3) Most
of those models were validated in a simulation environment. No evidence shows their
performance on empirical data. (4) Due to the difficulties of collecting empirical data,
practical investigations of the travel time variability for urban routes are very limited.

Based on the above analysis, we conduct the research to address short term travel time
prediction for urban routes. The new proposed model has been evaluated with both sim-
ulation data and empirical data.

The main contribution of this dissertation is that a neural network based traffic flow model
for urban route travel time prediction (Chapter 4) has been developed. The approach is a
hybrid of data-driven and model-based approaches. The concept of a hybrid model for a
neural network is applied for the first time in this dissertation.

In the transportation community, there is always a debate on selecting either model based
or data driven approaches. Model based approaches can interpret their models with clear
physical meanings. However, model based approaches are restricted by the limited knowl-
edge of such complex urban traffic processes and the availability of measured data. Data
driven approaches learn the mechanism of the urban traffic processes directly from mea-
sured data, liberating us from building sophisticate physical models. Moreover, data
driven approaches are fast and easy to implement in practice.

Followed with the discussion above, in this dissertation, we choose a hybrid approach.
The development of a neural network based traffic flow model for urban route travel time
prediction was described in detail. An urban route can be divided into several segments,
which are treated as the basic elements of the urban route. Correspondingly, modeling
urban route traffic is decomposed into modeling urban segment traffic. Inspired with the
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concept of the decomposition, a single segment model based on the Recurrent Neural
Network is developed for modeling the traffic flows on a single urban signalized segment.
The segment model, USEG, provides a generic (mathematical) structure. Urban route
travel time prediction can be conducted by concatenating each individual segment model.
Consequently, the traffic flows on an urban route are modeled by propagating from an
upstream segment to a downstream segment.

In fact, the USEG is a kind of SSNN model, which enables the previous states to be
temporally memorized in itself. With this mechanism, the USEG is able to predict travel
times based on both current measurements and previous internal states. In this sense, the
USEG operates like a macroscopic traffic flow model. In addition, the feedback (memory)
mechanism in the SSNN allows the inputs to be fed at consecutive time instants sequen-
tially. Compared to the FNNSs, a clear advantage of the SSNN is that the selection of input
time lag is not required. In addition, compared with augmenting all the spatially separated
inputs in a single input layer, modeling an urban signalized route with separate models for
each urban segment significantly reduces the number of weight parameters which need to
be calibrated.

The outgoing traffic flows leaving from the upstream urban segment, calculated with the
USEQG, can be used as the inputs for the connecting downstream urban segment USEG.
By concatenating all the USEGs which are comprised of an urban route of interest, the
UROU is developed to propagate traffic flows through the route of interest. The ability of
propagating traffic flows enables the UROU to predict travel times for any long route of
interest.

Two main algorithms for training the USEG have been tested in this dissertation: batch
training, in which parameter optimization is carried out with respect to the entire training
data set simultaneously, and incremental training, where model parameters are updated
after the presentation of each training example. The Bayesian regulated back propagation
algorithm has been used for batch training, which provides a sound way to avoid over
fitting. Based on extended Kalman filter (EKF), a new online-learning method has been
selected for the incremental training. The new method is called the online-censored EKF
method.

In order to fully test the performance of the proposed model and techniques employed
in this research, we first choose to use synthetic data obtained from a microscopic traffic
simulation tool, VISSIM. Three typical traffic conditions (slightly saturated, moderately
saturated and seriously oversaturated conditions) have been generated to test this proposed
model. Based on the sensitivity analysis of training the USEG, we choose a state space
neural network with 4 hidden neurons in the following analysis.

The proposed model with the incremental training algorithm performs significantly worse
than the batch trained model. All performance indicators (MARE, MRE and SRE) of the
incremental trained model are approximately double in comparison to those of the batch
trained model. In incremental training cases, the proposed model performs even worse
than the baseline model when the prediction time ahead is equal or larger than 20 minutes.

In the simulation, the proposed model with the batch training algorithm is able to predict
accurate travel time predictions up to 30 minutes of the prediction time ahead. The case
of 30-minute prediction time ahead produces MARE of 14.8%, MRE of 4.2% and SRE
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of 12.9%. These performance indicators illustrate that the proposed model outperforms
the baseline model.

After being validated with simulation data (100% correct), the proposed model is applied
in a real world environment, an urban road in Delft, in the Netherlands. To implement
the model in practice, dealing with corrupted and missing data is an important task. Two
data cleaning procedures have been proposed in order to obtain good quality data. A
procedure of dealing with corrupted volume data collected by single loop detectors has
been proposed in Chapter 6. In addition, a method to detect the outliers of travel time
observations, and then fill in the empty gaps, has been developed in Appendix E.

After processing raw data, we took a close look into the variability of urban travel times.
For the cases of the time window larger than 10 seconds, the 90th percentile of the vari-
ability of travel times increase significantly with the value of travel times. This shows that
urban travel times are very variable. For this 2 km urban street, vehicles departed even
within time difference of 10 seconds still had a high possibility of experiencing large
variability of travel times.

For the real-time application, three strategies influence the performance of the proposed
model: (1) the integration of traffic flow prediction, (2) the use of pre-processed data,
and (3) the application of different training algorithms. Those strategies were evaluated
with respect to the predictive performance. The former two strategies impose positive
influences on the performance of the proposed model. The model with the batch training
algorithm outperforms than the one with the incremental training algorithm. Overall,
the results show that the predictive performance of the proposed model outperforms the
baseline model when the prediction time ahead increases up to 10 minutes.

In conclusion, in this dissertation we present an accurate and robust model for short term
urban travel time prediction. This research is the first attempt to combine a model based
approach and data driven approach. The model has a generic structure. In that sense, it
can be applied on any urban route equipped with traffic data collection systems (single
loop detectors, license plate cameras and traffic signal timings). It also can be extended
to easily include more influencing factors because of the nature of the flexible structure
of the SSNN.
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Samenvatting

Met de opkomst van geavanceerde systemen voor het informeren van reizigers (Advanced
Traveler Information Systems, afgekort ATIS) neemt ook het belang van korte termijn
reistijdvoorspelling toe. In de afgelopen decennia is er voornamelijk onderzoek hierna
gedaan naar reistijdvoorsepllers voor autosnelwegen terwijl korte termijn reistijdvoor-
spellingen op stedelijke netwerken onderbelicht zijn gebleven. De sterke voorkeur voor
autosnelweg applicaties blijkt uit het literatuuroverzicht. Daarin wordt duidelijk dat een
betrouwbare en toepasbare methode ontbreekt voor het voorspellen van de korte termijn
reistijd op stedelijke netwerken. Binnen deze dissertatie zal worden getracht hiervoor een
oplossing te vinden.

Bij het bestuderen van bestaande modellen komen vier zaken duidelijk naar voren: (1)
de meeste bestaande modellen zijn ontworpen voor het voorspellen van reistijd op het
niveau van stedelijk netwerk segmenten en niet op het niveau van routes en doorgaande
wegen. Hoe deze modellen presteren bij toepassing op deze grotere schaal is niet bekeken.
(2) Geen van deze modellen laat zien hoe toekomstige verkeerscondities kunnen worden
voorspeldt. Dit betekent dat er van stationaire verkeerscondities wordt uitgegaan. Deze
veronderstelling is duidelijk ongegrond in reéle situaties. (3) De meeste van deze mod-
ellen zijn alleen gevalideerd in een simulaticomgeving. Bewijs op basis van empirische
data ontbreekt. (4) Doordat het verzamelen van empirische data vaak moeilijk is, zijn het
aantal praktijk analyses op reistijdvariabiliteit op stedelijke routes zeer beperkt.

Gegeven de bovenstaande bevindingen, ontwikkelden wij in dit onderzoek korte termijn
reistijdvoorstelling op stedelijke netwerken. Het nieuw ontwikkeld model is getest met
zowel simulatie data als empirische data.

De voornaamste bijdrage van deze dissertatie is het ontwikkelen van een verkeersstroom-
model voor stedelijke route reistijdvoorspelling gebaseerd op een neuraal netwerk (hoofd-
stuk 4). De aanpak is hybride in de zin dat het een koppeling vormt tussen een aan-
pak gebaseerd op data en op een model. Het concept van een dergelijk hybride neuraal
netwerk model is voor het eerst toegepast in deze dissertatie.

Binnen de transportgemeenschap is er een voortdurend debat over het toepassen van
modelgebaseerde of datagebaseerde aanpakken. Modelgebaseerde aanpakken kunnen on-
derbouwd worden vanuit de fysiecke modelrelaties. Echter, modelgebaseerde aanpakken
zijn beperkt door de beperkte inzichten in complexe, stedelijke verkeersprocessen en de
beschikbaarheid van data. Datagebaseerde aanpakken verwerven de mechanismen in deze
stedelijke verkeersprocessen direct vanuit de aangeleverde data waardoor het ontwerpen
van geavanceerde, fysieke modellen niet meer nodig is. Daarbij zijn datagebaseerde aan-
pakken snel en eenvoudig toe te passen in de praktijk.
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In lijn met bovenstaande discussie wordt in deze dissertatie gekozen voor een hybride
aanpak. Het ontwikkelen van een neuraal netwerk gebaseerde verkeersstroommodel voor
stedelijke route reistijdvoorspelling wordt in detail beschreven. Een stedelijke route kan
worden opgedeeld in verschillende segmenten welke beschouwd worden als basisele-
menten van de stedelijke route. Op dezelfde wijze wordt het modelleren van stedelijk
routeverkeer opgedeeld in het modelleren van stedelijk verkeer op elk van de segmenten.
Geispireerd door de notie van opdeling wordt een enkel segmentmodel gebaseerd op een
Recurrent Neural Network specifiek ontwikkeld voor het modelleren van de verkeer-
stroom op een enkel stedelijke, geregeld segment. Het segmentmodel, USEG, zorgt
voor een generieke (mathematische) structuur. Daardoor worden verkeersstromen op
de stedelijke route gemodelleerd door het overbrengen van het verkeer van segmenten
stroomopwaarts naar segmenten stroomafwaarts.

In feite is USEG een specifiek geval van het State Space Neural Network (SSNN) model
waarin de voorgaande toestand tijdelijk wordt onthouden in de modelstructuur. Met dit
mechanisme kan USEG reistijden voorspellen gebaseerd op zowel de huidige metingen
als de voorgaande toestand. Wat dit betreft opereert USEG net als een macroscopisch
verkeersstroommodel. Daarbij laat het feedbackmechanisme (geheugen) in het SSNN toe
om invoer op opeenvolgende tijdstippen terug te voeren aan het model. In vergelijking
met Feedforward Neural Networks heeft het SSNN het voordeel dat niet vooraf ingeschat
hoeft te worden met welke historische invoerdats rekening gehouden moet worden. Daar-
bij vereist het modelleren van een stedelijke route met geregelde kruispunten met een af-
zonderlijk model voor elk stedelijk segment aanzienlijk minder gewichtsparameters welk
gekalibreerd moeten worden vergeleken met een neuraal netwerkmodel een enkele invoer
laag voor de hele route.

De uitstromende verkeersstroom van het stroomopwaartse, stedelijk segment, welk berek-
end wordt door een bepaalde USEG, geldt als invoer de USEG voor het aansluitend
stedelijk segment stroomafwaarts. Door alle USEG’s van een bepaalde stedelijke route
aaneen te schakelen, wordt de UROU gevormd welk de verkeerstroom doorgeeft over
de betreffende route. Doordat de UROU om kan gaan met verkeersvoortplanting kan de
reistijd voorspeld worden van elke route van iedere lengte.

In deze dissertatie zijn twee veel gebruikte algoritmen getest voor het trainen van de
USEG, namelijk batch training waarbij de parametersettings worden geoptimaliseerd op
basis van de gehele dataset ineens, en incremental training waarbij de parameterset-
tings achtereenvolgend worden geoptimaliseerd in verschillende opeenvolgende train-
ingen. Voor de batch training is het Bayesian regulated back propagation algoritme
toegepast waardoor overfitting voorkomen wordt. Voor de incremental training is een
nieuw ontwikkeld methode toegepast gebaseerd op extended Kalman filtering (EKF).
Deze nieuwe methode wordt de online-censored EKF methode genoemd.

Om de prestaties van dit model en de technieken toegepast in dit onderzoek te testen,
maken we in eerste instantie gebruik van modeldata van het microscopisch verkeersimu-
latiemodel VISSIM. Drie typische verkeerscondities (enigszins verzadigde, middelmatig
verzadigde en aanzienlijk verzadigde condities) zijn gegenereerd om het ontwikkelde
model te testen. Op basis van de uitgevoerde gevoeligheidsanalyse op het trainen van
de USEQG is de kezue gemaakt verder te werken met een State Space Neural Network met
vier verborgen neuronen.
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Het ontwikkeld model presteert aanzienlijk slechter wanneer getraind met het incremen-
tal training algoritme dan wanneer getraind met het batch training algoritme. De waarden
van alle prestatie indicatoren (MARE, MRE en SRE) zijn ongeveer twee maal zo hoog
voor incremental training als voor batch training. Het model getraind met het incremental
training algoritme presteert zelfs slechter dan het basis referentie model met voorspellin-
gen van (meer dan) 20 minuten vooruit.

In een simulatieomgeving in het gepresenteerde model met het batch training algoritme
in staat om tot 30 minuten vooruit nauwkeurige reistijdvoorspellingen te doen. De voor-
spellingstijd van 30 minuten levert een MARE van 14.8%, MRE van 4.2% en SRE van
12.9%. Aan deze prestatie indicatoren is te zien dat het gepresenteerde model duidelijk
beter presteert van het basis referentie model.

Nadat het model gevalideerd is op basis van simulatiedata (100% correct) is het gep-
resenteerde model toegepast in de praktijk op een stedelijke weg in Delft, Nederland.
Bij het in de praktijk implementeren van het model spelt het omgaan met ongeldige en
ontbrekende data een grote rol. Om goede kwaliteit data te verkrijgen, worden twee pro-
cedures voorgesteld voor het opschonen van de data. In hoofdstuk 6 wordt een procedure
gepresenteerd voor omgaan met ongeldige intensiteitdata verzameld door enkelvoudige
detectielussen. In appendix E wordt een methode gepresenteerd voor het detecteren en
vervangen van extreme waarnemingen in reistijdmetingen.

Na het verwerken van de ruwe data hebben we gekeken naar de variabiliteit van stedelijke
reistijden. Voor de gevallen waar het tijdsinterval groter is dan 10 seconden neemt de
90e percentiel in de reistijdvariabiliteit significant toe met de reistijd. Dit toont aan dat
stedelijke reistijden zeer variéren. In het geval van deze 2 km lange stedelijke weg hadden
zelfs voertuigen die binnen een tijdsinterval van 10 seconden vertrokken een aanzienlijke
kans op een grote reistijdvariabiliteit.

Drie strategieén beinvloeden het succes van het gepresenteerde model in online toepassin-
gen: (1) het integreren van verkeersstroomvoorspellingen, (2) het gebruik van vooraf be-
werkte data en (3) het toepassen van verschillende trainingsalgoritmen. Deze strategieén
zijn getest ten aanzien van de kwaliteit van de voorspelling van de reistijd. De eerste twee
strategieén hebben daarbij een positief effect. Waarbij het model met het batch training
algoritme beter presteert dan het model met het incremental training algoritme. Alles in
acht nemend, tonen de resultaten aan dat het gepresenteerde model beter reistijden kan
voorspellen dan het basis referentie model wanneer reistijden tot 10 minuten vooruit wor-
den voorspeld.

De conclusies die we kunnen trekken, zijn dat in deze dissertatie een nauwkeurig en
robuust model is gepresenteerd voor korte termijn, stedelijke reistijdvoorspelling. Dit
onderzoek is de eerste aanzet tot het combineren van een modelgebaseerde aanpak met
een datagebaseerde aanpak. Het model heeft een generiek structuur. In die zin kan het
toegepast worden op elk stedelijke route waar verkeersdata verzameling plaats vindt (bi-
jvoorbeeld door enkelvoudige detectielussen, camera’s met nummerplaat herkenning en
verkeerslicht cyclustijden). Daarnaast kan het model eenvoudig uitgebreid worden om
meer beinvloedingsfactoren mee te nemen dankzij de flexibele structuur van het SSNN.

(Dutch tanslation by Adam Pel)
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