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Abstract

This research is concerned with the topic of low-thrust trajectory design to Temporarily Captured Or-
biters (TCOs). TCOs are meter-sized objects temporarily captured in the Earth-Moon system before
continuing their heliocentric path. They originate from fragments of Near-Earth Asteroids on Earth-like
trajectories that present the precise entry conditions to be captured. Their small size and high speed
make them difficult to identify from ground measurements. Only two have been confirmed at the time
of writing: 2006 RH120 and, more recently, 2020 CD3. However, studies suggest a constant presence
of at least one TCO at any point in time. The construction of more advanced asteroid survey systems
can potentially increase the rate at which these objects are identified. Hence, TCOs are becoming
desirable targets for future exploration missions.

A handful of studies have been published that compute transfer trajectories targeting TCOs, but
the topic is far from mature. The studies mainly focus on high-impulse transfer designs departing from
hibernating orbits near the Earth-Moon Lagrangian points. The only targets studied are the capture
phase of 2006 RH120, which occurred between July 2006 and June 2007, and a database of virtual
TCOs generated for lack of physical data.

The present study aims at conducting a preliminary analysis of the transfer possibilities to ren-
dezvous with TCOs for a spacecraft powered by a low-thrust electric propulsion engine departing from
a periodic orbit near the Sun-Earth L1 point. This region is a good departure candidate since L1 is
considered a gateway for TCOs into the Earth’s system. At the same time, mission concepts have
been proposed to place a telescope that surveys TCOs at this location. The subject of this study is
TCO 2006 RH120, but the conclusions and tools developed are general and are meant to be used to
analyze other TCOs as they are identified. The reference spacecraft used for the study has a mass of
500 kg and an ion propulsion engine with a specific impulse of 3000 s and a maximum thrust of 0.1 N.

To conduct this analysis, a fast and robust optimization algorithm is developed. The Hill three-
body problem models the dynamics, and the continuous thrust is modeled as a discrete set of delta-v
impulses applied at different trajectory points. The algorithm solves a delta-v minimal optimization
problem with a direct method transcribed as a single-shooting problem, which is solved using fmincon,
a gradient-based interior-point solver from MATLAB. The most innovative aspect of the tool that makes
it ideal for the present study is the analytical computation of the gradient of the cost and non-linear
constraint functions, which very significantly increases the speed of the trajectory optimization process.

The developed tool has proven successful in analyzing 200 departure orbits drawn from families
of Halo and Lyapunov periodic orbits. For each orbit, the algorithm optimizes the departure location,
the rendezvous location in the TCO’s orbit, the magnitude and direction of delta-v impulses, and the
transfer time. Several low delta-v transfers have been found for different departure orbits, with values
in the 200 m/s range. The resulting transfer trajectories are analyzed in this report, and conclusions
are drawn with implications that can be extended to other TCOs.
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Nomenclature

Abbreviations

AU Astronomical Unit
CR3BP Circular Restricted Three-Body Problem
DC Differential Correction
ESA European Space Agency
ECLIPJ2000 Earth Mean Orbit of J2000
EME2000 Earth Mean Equator and Equinox of J2000
EMO2000 Earth Mean Orbit of J2000
GA Genetic Algorithm
GCRF Geocentric Celestial Reference Frame
GNC Guidance, Navigation, and Control
IAU International Astronomical Union
IC Initial Condition
ICRF International Celestial Reference Frame
IVP Initial Value Problem
JD Julian Date
JPL Jet Propulsion Laboratory
LSST Large Synoptic Survey Telescope
NLP Nonlinear Programming
ODE Ordinary Differential Equation
RAAN Right Ascension of the Ascending Node
SQP Sequential Quadratic Programming
SRP Solar Radiation Pressure
SSB Solar-System Barycenter
STM State Transition Matrix
TCF Temporarily Captured Fly-by
TCO Temporarily Captured Orbiter
TPVBP Two-Point Boundary Value Problem
Tudat TU Delft Astrodynamics Toolbox
NEO Near-Earth Object
UTC Universal Time Coordinated
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Latin Symbols

𝐴 Jacobian of linearized system
𝑎 Semi-major axis [km]
a Acceleration vector [kms−2]
𝐶 Jacobi Constant [-]
𝑐eff Effective exhaust velocity of propellant [m/s]
𝑒 Eccentricity [-]
𝐹 Engine’s Thrust [N]
𝐺 Universal gravitational constant [m3 kg−1 s−2]
𝑔0 Gravitational acceleration at Earth’s surface [ms−2]
geq Equality constraint vector
gineq Inequality constraint vector
𝐼 Identity matrix
𝐼sp Specific impulse [s]
𝑖 Inclination [rad]
𝐽 Cost function [km/s]
𝑚 Mass of the spacecraft [kg]
𝑚0 Initial wet mass of spacecraft [kg]
𝑚f Final dry mass of the spacecraft [kg]
�̇� Engine’s mass flow [kg/s]
𝑁 Angular velocity magnitude of synodic frame [rad/s]
𝑛 Number of delta-v impulses [-]
𝑃 Period of an orbit [days]
𝑃source Power supplied by spacecraft’s power source [J/s]
r Position vector [km]
𝑟 Magnitude of position vector [km]
𝑟a Radius of apoapsis [m]
𝑟p Radius of periapsis [m]
s Position-velocity state vector
𝑇 Transfer time [days]
𝑇0 Initialization transfer time [days]
𝑈 Potential function of CR3BP [-]
𝑉 Spacecraft’s velocity in the rotating frame [-]
v Velocity vector [km/s]
𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧 Cartesian components of velocity vector [km/s]
𝑊 Potential function of Hill model [-]
X Decision variable vector
𝑥, 𝑦, 𝑧 Cartesian components of position vector [km]

Greek Symbols

𝛽 Rotation angle between the rotating and inertial frame [rad]
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Γ Jacobi-like constant in the Hill model [-]
𝜖 Power source conversion efficiency [-]
𝜀 Departure epoch [days]
𝜀0 Initialization departure epoch [days]
𝜃 True anomaly [rad]
𝜆𝐴,𝐵 Scale factor between frames A and B
𝜇 Mass normalization parameter in CR3BP [-]
𝜇𝑚 Gravitational parameter [m3 s−2]
𝜏 Target epoch [days]
𝜏0 Initialization target epoch [days]
Φ(𝑡, 𝑡0) State Transition Matrix between epoch 𝑡0 and 𝑡
Ω Right ascension of the ascending node [rad]
𝜔 Argument of periapsis [rad]
𝜔𝜔𝜔𝑆,𝑂 Angular velocity vector between synodic and inertial frame

Notation

𝑓′ First derivative of function 𝑓
𝑓″ Second derivative of function 𝑓
𝑚𝑖 Mass of 𝑖-th body
𝑅𝐴,𝐵 Rotation matrix from frame A to B
r𝑖 Position vector of 𝑖-th body
r𝑖𝑗 Position vector of body 𝑗 relative to body 𝑖
Δ𝑡𝑗 Duration of the 𝑗-th trajectory arc [days]
Δ𝑉 Total transfer velocity change [km/s]
Δ𝑣 Trajectory segment velocity change [km/s]
Δ𝑣𝑖 𝑖-th velocity impulse [km/s]
Δ𝑣0 Departure delta-v [km/s]
Δ𝑣f Arrival delta-v [km/s]
𝑋⊤ Transpose of matrix 𝑋
𝑋−1 Inverse of matrix 𝑋
X𝐴,𝐵 Origin of frame A relative to frame B [km]
𝑋𝑎×𝑏 Matrix 𝑋 of size 𝑎 × 𝑏
x(𝐴) Vector x expressed in frame A
𝑥∗ Relative to an estimated quantity
�̇� Time derivative of 𝑥
�̈� Second time derivative of 𝑥
𝛿𝑥 Small deviation of 𝑥
x0,𝑗 Vector x at departure of the 𝑗-th trajectory arc
xarr Vector x at the end of a propagation
xdep Vector x at departure
xf,𝑗 Vector x at the end of the 𝑗-th trajectory arc
xtgt Vector x at target epoch
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x− Vector x before delta-v impulse
x+ Vector x after delta-v impulse
x̃ Skew-symmetric matrix of vector x
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1
Introduction

The exploration of celestial bodies has become increasingly important in recent years. As human
presence in space gains relevance and space becomes more accessible, an inevitable spotlight is
placed on those foreign objects that are still unexplored. Access to them is becoming attractive from
different fronts: as a means of planetary defense against potential impact threats, from the standpoint
of gaining scientific knowledge, or from their practical purpose of obtaining material resources that are
scarce on Earth. For either of these reasons, accessing asteroids is becoming attractive to both space
agencies and commercial companies. They are addressed in the third pillar of the European Space
Agency’s (ESA) Agenda for 2025, which sets the development of space for safety and security as a
European priority (Aschbacher, 2021).

Among the list of many celestial objects that could be explored, this thesis focuses on a specific cate-
gory called Temporarily Captured Orbiters (TCOs), also known colloquially as mini-moons. TCOs are a
relatively minor type of Near Earth Objects (NEOs) (order of a few meters) that become loosely trapped
in Earth’s gravity field, performing at least one complete revolution until they eventually leave the system
and continue their heliocentric course. These objects are attractive to the scientific community as their
size, proximity, and accessibility make them affordable candidates for exploration missions. These
missions present the opportunity to test current planetary defense technologies, test close-proximity
procedures, and assess the feasibility of commercial mining missions (Jedicke et al., 2018). However,
due to their small size and their limited time in Earth’s environment, they are not easily identified by
current ground-based observations – modern surveys have an annual probability of 10−7 of detecting
a meter-size object within one lunar distance (Granvik et al., 2013). To this date, only two TCOs have
been identified. The first was 2006 RH120 (Kwiatkowski et al., 2009), which stayed bound to Earth for
a year, completing four revolutions. The second TCO is 2020 CD3, identified before leaving the system
(Bolin et al., 2020) and had an excursion duration of 2.7 years (Fedorets et al., 2020a). Recently, a third
similar object has been identified called 2022 NX1. However, as it did not complete a full revolution,
it falls under the category of Temporarily Captured Fly-bys (TCFs). It is expected that 2020 NX1 will
become a TCO in 2051 (de la Fuente Marcos & de la Fuente Marcos, 2022).
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2 1. Introduction

Despite the limited observations of TCOs, a study by Granvik et al., 2012 concluded that there is a
constant presence of at least one meter-sized TCO at any given time. They tend to enter through Sun-
Earth L1-L2 points and remain energetically bound within three Hill sphere radius. They are captured
on average for 286 days and make almost three revolutions around the Earth. A study conducted
by Fedorets et al., 2020b predicts that more TCOs will be discovered at least once per year using
the upcoming Large Synoptic Survey Telescope (LSST). Furthermore, commercial companies such
as KARMAN+ have proposed creating dedicated space telescopes to observe potentially accessible
NEOs, including TCOs.

Few studies have been conducted that place the focus on transfer trajectories targeting TCOs.
Chyba et al., 2014 studied low-thrust transfers targeting six virtual TCOs from the Granvik et al., 2012
database. They optimized trajectories to reduce the total transfer time, departing from Earth’s Geosta-
tionary orbit and targeting TCO passages near the Earth-Moon L1 point. They obtained a handful of
successful trajectories whose transfer time ranges from 55 to 88 days using a maximum thrust of 0.2 N.
A later study by Brelsford et al., 2016 specifically searched for transfer trajectories targeting TCO 2006
RH120 from a hibernating halo orbit around the Earth-Moon L2 point. The propulsion selected was
chemical, with a maximum of three impulses for the transfer. The best rendezvous transfer detected
had a duration of 255 days and a Δ𝑉 of 797 m/s (see Figure 1.1). Another study by Chyba and Patter-
son, 2019 searched for high-thrust fuel-minimum transfers targeting a large population of 3000 virtual
TCOs departing from a halo orbit around the Earth-Moon L2 point. They obtained feasible transfer
trajectories to every TCO, with a mean Δ𝑉 of 724.5 m/s.

Figure 1.1: Three-impulse rendezvous transfer to 2006 RH120 from Halo orbit around Earth-Moon L2 from Brelsford et al.,
2016.

Other studies have focused on othermission-related aspects of explorationmissions to 2006RH120,
such as Chyba et al., 2016, which studied the cost of the overall round trip from an Earth-Moon L2 halo
orbit. Others like Takahashi et al., 2022 focused on developing close-proximity strategies to rendezvous
given their particular irregular gravity. The study by Urrutxua et al., 2015 quantified the cost of acting on
2006 RH120 to extend the capture duration, concluding that a small Δ𝑉 of 32 m/s would have sufficed
to extend the capture for five years.
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This thesis focuses on the study of low-thrust transfer trajectories to rendezvous with TCOs min-
imizing total transfer Δ𝑉 and departing from orbits around Sun-Earth L1. The study uses as a test
bench the TCO 2006 RH120 to assess the feasibility of such transfers and serve as a reference for
future identified TCOs. As explained, previous research has studied the problem of transferring to
TCOs. However, they were mainly concerned with high-thrust solutions departing from Earth-Moon
libration point orbits, or the low-thrust studies are focused on minimizing the time of flight instead of
the Δ𝑉. The departure location is another fundamental element that differentiates the present study
from the literature. Previous studies departed from either Geostationary orbit or Earth-Moon L2 Halo
orbits. To the writer’s knowledge, no analysis has been done departing from Sun-Earth libration point
orbits, which may provide promising rendezvous opportunities for being the gateway of these objects
into Earth capture.

1.1. Research Questions
Based on the considerations mentioned above, the objective of this thesis research is to analyze the
transfer options for an electrically propelled spacecraft to rendezvous with TCOs from different depar-
ture locations in the vicinity of Sun-Earth’s L1 point, which is the gateway of TCOs into the Earth’s
environment. One of the few confirmed TCOs – 2006 RH120 – is used as a target. By achieving this
research objective, the following research question will be answered:

Research question: How can transfers originating near the Sun-Earth L1 be leveraged to target
Temporarily Captured Orbiters such as 2006 RH120 in a spacecraft configuration that uses electric
propulsion?

More specific sub-questions that will be answered are:

• How can the optimization problem be formulated to conduct a preliminary analysis on transfers
departing from orbits around L1?

• How do design parameters such as departure orbit or rendezvous location affect the delta-v cost
of the transfers?

1.2. Report Outline
This section presents the thesis work structure to meet the research objectives and answer the re-
search questions presented in the previous section. The first part of the thesis in Chapter 2 is focused
on building the thesis methodology from the literature heritage regarding asteroid missions, electric
propulsion, and low-thrust trajectory optimization methods. The thesis continues in Chapter 3 with a
description of the fundamental elements of flight dynamics used in this research. Chapter 4 discusses
the different numerical tools that allow propagating and optimizing the trajectories. Chapter 5 starts
implementing the trajectory optimization algorithm by considering two-impulse transfers and building
up the complexity of the tool. Then, in Chapter 6, the low-thrust optimization algorithm is designed and
tested at its total capacity. Along with verification and validation, the code structure is presented in
Chapter 7. Once the algorithm is verified and validated, it is used to generate the results in Chapter 8,
where different transfers are run from different departure orbit around the Sun-Earth L1 point, and their
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results are presented and analyzed. Finally, Chapter 9 gathers the main conclusions from this work
and provides recommendations for future work.



2
Heritage

This chapter aims to gather the relevant heritage to tackle the problem introduced in the previous
chapter (see Section 1.1). The chapter begins by introducing the different types of celestial objects,
focusing on TCOs and relevant missions to NEOs. Then, the topic of electric propulsion for spacecraft is
introduced, giving some relevant figures for common engines. Subsequently, the trajectory optimization
problem is presented, and the different methods to formulate and solve it are reviewed. Finally, the
heritage presented is used to describe the mission scenario of the present research, including the
environment and the vehicle selected, and then the methodology to accomplish the research objectives
is presented.

2.1. Background on celestial bodies and TCOs
Aside from the eight planets in the Solar System, other smaller bodies orbiting the Sun have been
objects of study. Among these, the ones that present a coma or tail are known as comets, whereas
those that do not possess these features are called minor planets. Minor planets and comets can be
found in different regions: the asteroid belt, in between Mars and Jupiter’s orbit; the Kuiper Belt and
Oort Cloud beyond the orbit of Neptune; and near the Lagrangian points of Jupiter, known as Trojans
(Lissauer & de Pater, 2019).

The term asteroid refers to minor rocky planets found at distances up to slightly past Jupiter’s orbit,
mainly coming from the asteroid belt. The largest asteroid is Ceres, which has a size of 470 km in
radius. The objects that come close to the Earth are called Near Earth Objects (NEOs). The primary
source of NEOs is the gaps found in the asteroid belt that are known as Kirkwood gaps. They are
located in regions of resonance with Jupiter. These resonances affect the eccentricities of their orbits
so that they can reach the orbits of Mars and the Earth (Lissauer & de Pater, 2019).

The population of NEOs can be subdivided into four categories according to their orbits, the most
predominant being the Apollo asteroids, whose perihelia is smaller than 1.017 Astronomical Units (AU)

5
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and semi-major axis larger than 1 AU. The dynamical lifetime of NEOs is of 107 years, as they end up
being ejected to interstellar space, destructed by the Sun, or colliding with other planets and Moons.
Further information on minor planets and comets can be found in Lissauer and de Pater, 2019.

A small fraction of the NEOs with low inclination orbits approach Earth and are removed from their
resonance with their giant planet into orbits resembling Earth’s orbit. Among these, a tiny fraction of
their orbits pass through Earth’s Hill sphere at the precise speed, direction, and distance such that
they become loosely captured in the Earth-Moon system, becoming TCOs. The small probability of
meeting these conditions suggests that TCOs have small sizes of one to two meters in diameter, as
their population reduces exponentially with increasing size (Granvik et al., 2012). Figure 2.1 shows
the estimated number of objects given their diameter for different types of minor planets. It can be
observed how the central belt feeds the NEO population, which in turn feeds the population of objects
with Earth-like orbits (called ARM in the figure for being targets of NASA’s Asteroid Retrieval Mission).
Finally, they feed the population of minimoons as they reduce in size and number.

Figure 2.1: Frequency distribution of small objects in the inner Solar System (Jedicke et al., 2016).

Another potential origin for TCOs is that they are the product of the collision of asteroids with the
Moon. However, the percentage of TCOs that fall into either category (asteroid belt or lunar ejecta) is
unknown (Jedicke et al., 2016).

Although no missions have been flown targeting TCOs, which is the object of the present study,
several missions have been sent to rendezvous with NEOs. The main characteristics of these missions
relevant to this thesis are gathered in Table 2.1.



2.2. Electric Propulsion 7

Table 2.1: List of missions to NEOs and their characteristics.

Mission Country Launch Target Type Propulsion Launch Mass [kg]

NEAR USA 1996 433 EROS Amor Chemical 805
Hayabusa Japan 2003 Itokawa Apollo Ion 510
Hayabusa 2 Japan 2014 Ryugu Apollo Ion 609
OSIRIS-REx USA 2016 Bennu Apollo Chemical 2,110

DART USA 2021 Didymos Apollo Chemical/Ion 610

2.2. Electric Propulsion
The most extended means of propelling a spacecraft are chemical engines, whose high thrust allows
to change the spacecraft’s velocity in a short time. For trajectory design purposes, these impulses can
be modeled as instantaneous events. Although these engines are well developed and reliable, they do
require a large amount of propellant to generate the required thrust.

An alternative means of propelling a spacecraft is through continuous thrusting, which involves
more mass-efficient systems that allow allotting a higher portion of the spacecraft’s total mass to the
payload. They achieve so at the expense of providing significantly reduced amounts of thrust compared
to impulsive systems, hence commonly known as low-thrust propulsion systems. Although several
types of propulsive systems generate low thrust, such as solar sails, we will use the term low-thrust
propulsion to refer to electric propulsion systems.

As opposed to chemical propulsion systems, where both the energy source and the exhaust medium
come from the propellant, in electric propulsion systems, the energy needed to accelerate the propellant
comes from an external source, such as batteries, solar panels, or a nuclear reactor. These systems
allow for much higher exhaust velocities than conventional propulsion systems while keeping the pro-
pellant consumption at a minimum (Wakker, 2015).

The efficiency of these engines is commonly measured by a metric called specific impulse (𝐼sp),
which is related to the exhaust velocity of the particles. High 𝐼sp engines require less propellant to
achieve the same amount of delta-v. However, as the 𝐼sp increases, so is the power requirement from
the spacecraft, which adds to the total mass of the spacecraft.

The thrust requirement on low-thrust engines for interplanetary travel, Solar System exploration,
and orbit-rising is of the order of 0.01–10 N. Based on current technology, operational electric ion
engines meet those thrust constraints with a specific impulse of roughly 3,000 s. These engines have
an operational lifetime of more than 30,000 hours and can provide thrust ranging from 0.015 to 0.235
N (Sutton & Biblarz, 2017).

Although the choice of electric propulsion engines can significantly reduce the mass of a spacecraft
devoted to the propulsion system, they complicate the trajectory design process, as the thrust impulses
cannot be modeled as instantaneous events. In turn, they should be modeled as a continuous event,
where the amount of thrust and direction are designed in most cases by solving an optimal control
problem.
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2.3. Trajectory Optimization
In this section, the topic of trajectory optimization is introduced with application to designing transfers
using electric propulsion systems with continuous low thrust.

Spacecraft trajectory optimization can be simplified to solve the following problem: to determine the
trajectory of a spacecraft connecting a departure with a target while minimizing a certain quantity of
importance (Conway, 2010). The problem becomes particularly complex when dealing with non-linear
dynamics, discontinuities in the state variables (caused by delta-v’s), and initial and final conditions
being unknown (can be optimization variables). To understand and tackle this problem, Shirazi et al.,
2018 have divided the problem into four steps. These are subsequently explained with application to
low-thrust trajectory design.

Models – The first step in solving an optimal control problem is to select the variables that represent
the system’s state and introduce the differential equations that shape the evolution of the states.

Objectives – The objective of the optimization problem is defined based on the mission require-
ments. Common objectives in trajectory design are minimization of time of flight or propellant mass.

Approaches – The next step is to develop an approach for finding the optimal trajectory, which can
be either analytical or numerical. Analytical approaches are only available for specific simplified cases
and are not the subject of this thesis. Numerical approaches are generally divided into two methods:
indirect and direct.

• Indirect methods solve the optimal control problem by deriving necessary analytical conditions
from the calculus of variations, which requires expanding the state with parameters known as co-
states. Although thesemethods are generally very reliable, the difficulty of providing good-enough
initial estimates for these states makes these methods complex to use as a starting point.

• Direct methods: They transcribe the optimal control problem into a nonlinear programming (NLP)
problem where the states are approximated by a piecewise constant parameterization. Direct
methods are generally easier to implement, at the expense of being more challenging to ensure
the optimality of the solution obtained (Shirazi et al., 2018).

Both direct and indirect methods use standard numerical techniques to impose the dynamics and
constraints in the solution. The most common are differential inclusion, single shooting, multiple shoot-
ing, and collocation techniques. Research has shown that studies targeting low-thrust trajectories in
multi-body systems are fairly split between direct and indirect methods (Morante et al., 2021).

Solutions – The last step is to solve the optimization problem after selecting the approach. Several
computational techniques and algorithms are available. For both direct and indirect formulations, the
solution methods can be generally classified into gradient-based and heuristic techniques.

• Gradient-based (deterministic) techniques use the information on the gradient of the objectives
and constraints to drive the algorithm to a solution, which benefits from fast convergence and
accurate results. Gradient-based methods are popular in trajectory optimization problems. A
large number of solvers is readily available.
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• Heuristic methods are alternative means of solving optimization problems. Instead of using gra-
dient information, they rely on stochastic processes to search. Genetic Algorithms (GA) and
Particle Swarm Optimization are among the most common techniques. Especially GAs are pop-
ular given their large availability and ease of use. However, heuristic techniques are used more
for impulsive thrust trajectories and are less common for continuous thrusting (Morante et al.,
2021).

Several algorithms implement gradient-based methods to solve the NLP problem. They can be
generally classified into Sequential Quadratic Programming (SQP), such as SNOPT and NPSOL, and
interior point methods, like IPOPT and KNITRO (Morante et al., 2021).

2.4. Mission Scenario
After a careful review of previous literature regarding asteroid exploration, transfers to TCOs, and low-
thrust trajectory optimization, the following mission scenario has been selected in this thesis.

The thesis is focused on the preliminary study of the potential trajectories for a mission to ren-
dezvous with TCO 2006 RH120. The spacecraft left the Earth-Moon influence in July 2007. Still, given
the scarce source of confirmed TCOs and the limitations to identifying them, it is used as a feasibility
test to gain insight into the problem and apply it to other potential TCOs identified shortly.

The study focuses on a mission segment where the spacecraft departs from a periodic orbit around
Sun-Earth L1, which is the entry region of TCO 2006 RH120 into the Earth’s system. This study aims
to analyze the different departure options and their impact on the trajectory transfer time and delta-v.
Transfers that target early epochs of the TCO excursion into Earth’s influence are preferred since they
give more margin for contingencies before the TCO leaves the system. However, the overall trajectory
of the TCO within the Hill sphere of Earth is studied as a potential target region.

A relatively lightweight spacecraft of 500 kg of wet mass is selected for the mission. Lighter space-
craft could be considered, but this is a maximum-case scenario for a lightweight mission considering
the higher mass of other spacecraft targeting NEOs presented in Table 2.1. The amount of propellant
is sought to be minimized so that the spacecraft can allot more mass for the payload. The spacecraft’s
propulsion system is an electric propulsion engine with a specific impulse selected of 3,000 s. Higher
𝐼sp engines are being tested for missions, such as the NEXT-C Xenon engine with up to 4,000 s, but, on
average, 3,000 s has been identified as a reasonable engine impulse. The maximum thrust provided
by the engine is set to 0.1 N. Again, engines have been found with higher thrusts of 0.2 N, but 0.1 N is
considered a reasonable force for the preliminary study where the spacecraft systems have not been
designed. For these engine specifications, the maximum power needed is not considered an issue
for the mission. It is assumed that a reasonably-sized solar panel unit is assumed to feed the electric
propulsion system.

2.5. Methodology
The methodology proposed to meet the objectives of the thesis is now presented.
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The model selected for the optimization problem is the Hill Three-Body Problem or simply the Hill
model, and its selection is motivated in Section 3.4. Overall, it has been selected as a good trade-off
between including themost important features that describe the dynamics environment while presenting
some valuable features that simplify the study, such as the constant of motion, the origin of the reference
frame at Earth, and the simplicity to codify.

The optimization is posed as a single-objective problem focused on minimizing the total transfer
delta-v. The time of flight is an essential parameter in the design given that time is limited to ren-
dezvous with them before they leave the Earth-Moon system and their difficulty to be identified before
capture. However, given the uncertainty regarding the performance of future asteroid survey systems,
the transfer time will be monitored and discussed. Still, it is not considered a mission enabler such as
the delta-v. Therefore, the term mission cost will refer to the delta-v cost of the total transfer in this
document.

The direct optimization method is proposed for solving the optimization problem. The problem is
discretized into a series of parameters called decision variables that are then solved as parameter
optimization problems by a numerical solver. A single shooting technique is selected to transcribe the
problem. The motivation for why this was selected and its description is introduced in Section 6.2.
Overall, it resulted in a more intuitive and straightforward implementation than collocation techniques,
and it simplified the computation of analytical gradients compared to the multiple-shooting technique.

Regarding the solution methods, we have opted for a gradient-based technique with an interior-
point method, as it has been identified to provide good results for low-thrust trajectory optimization in
the many-body problem (Morante et al., 2021). At the same time, it has been found to have good
accessibility from the software selected, which is subsequently explained.

Finally, the software selected for the implementation of the optimization problem is MATLAB. It
has been traded against other scripting languages like Python or Julia. However, MATLAB provided
several advantages: the software was the most familiar of the three, having previous experience coding
dynamical equations for propagation and differential correction algorithms. At the same time, MATLAB
offers intuitive optimization capabilities through fmincon function, which has been used in similar studies
for low-thrust trajectory optimization (Ozimek and Howell, 2010, Trofimov et al., 2018).



3
Flight Dynamics

This chapter introduces the flight dynamics elements that are relevant to the research. First, the time
systems are introduced. Then, the different reference frames used in the thesis and their transforma-
tions are presented. Next, the state model and the dynamical models are presented and discussed.
They are fundamental to describing the motion of the propagated bodies of this research.

3.1. Time Systems
It is essential for this thesis to define methods to express time and time intervals, which will be used
both to identify epochs from celestial bodies and to quantify time in the simulations. Two systems are
used and are subsequently described: Julian Date and Seconds Since J2000.

3.1.1. Julian Date

Julian Date (JD) is a system commonly used to determine time intervals in catalogs of celestial bodies.
It represents a more straightforward way of measuring the time between two epochs than traditional
calendar dates, which present length variations depending on the months involved and leap year. The
Julian Date system is based on the concept of Julian Day, which corresponds to 24 hours of 3,600 s
each. A Julian Year is composed of 365.25 Julian Days, eliminating the need for a leap year. An epoch
is selected as a reference of the Date Zero, January 1st of the year 4,713 BC at Noon in Alexandria
(Wakker, 2015). A more common implementation to avoid large numbers is the Modified Julian Date,
which is obtained by subtracting 2,400,000.5 days from the Julian Date. However, this thesis uses
Julian Dates due to conventions from reference material.

This thesis uses Julian Dates to retrieve epochs from the Earth, Sun, Moon, and TCOs from Jet
Propulsion Laboratory’s (JPL) SPICE Toolkit and JPL’s Small-Body Database. Conversions to calendar
dates are used in this report for interpretation and readability but are not used in numerical simulations.
The conversions are performed using the TUDelft Astrodynamics Toolbox (Tudat), which uses Python’s

11
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Datetime library.

3.1.2. Seconds Since J2000

Another reference time system is used in simulations to identify the epochs, which is Seconds Since
J2000. Seconds Since J2000 has the second as the fundamental unit of time and uses as a reference
origin January 1st of 2000 at UTC0. Seconds Since 2000 are also used as the reference time system for
every propagation performed in the Tudat software and is therefore convenient to compare simulations.

Computing the transformation between the two time systems used in the thesis is useful. The
transformation is computed by identifying the Julian Date corresponding to 2000 January 1st, which
is JD 2, 451, 545.0. Therefore, the conversion between the two systems is done using the following
formula (Tudat Space Documentation, 2022).

Seconds since J2000 = ( Julian Date − 2, 451, 545.0 ) × 86, 400.0 (3.1)

It is noted that for practical reasons, the simulation is started at time zero. However, by providing
the simulation’s initial epoch, every subsequent epoch in the propagation can be identified.

3.2. Reference Frames and Transformations
A reference frame serves to locate and orientate the coordinate system used to define the motion of
bodies in space. Inertial reference frames are fixed in space both in position and orientation and do not
undergo any acceleration. Thismeans that a physical object described in such a frame keeps a constant
velocity if no forces are acting on it, and the dynamics can be defined using Newton’s second law. On
the contrary, the motion of the bodies described in non-inertial reference frames should account for the
accelerations the frame undergoes. In engineering, a frame is considered inertial when the acceleration
of the frame can be neglected in the motion of the dynamical system. For more information, see Curtis,
2020.

Given that this thesis deals with the motion of TCOs that are loosely trapped in the Earth-Moon
system, it is convenient to place the origin of the reference frames in the Earth center for simplicity. In
this section, we explore a selection of reference frames relevant to this work.

3.2.1. Geocentric Celestial Reference Frame

It is common for astrodynamics applications to use the International Celestial Reference Frame (ICRF)
or its geocentric equivalent, the Geocentric Celestial Reference Frame (GCRF), adopted by the Inter-
national Astronomical Union (IAU). Both frames share the orientation of the axes, which is considered
inertial for being fixed with respect to distant objects (i.e. quasars and galactic nuclei) and has no date
associated with its location. The center of the ICRF is located at the Solar-System Barycenter (SSB),
which is considered inertial for describing the motion inside the Solar System. The center of the GCRF
is placed at the center of the Earth, which can only be considered inertial for specific applications near
the Earth. For more information on ICRF and GCRF frames, see Petit and Luzum, 2010 and Kaplan,
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2005.

To describe the motion of celestial objects in ephemeris models, other reference systems are se-
lected, which are defined using the ecliptic and equatorial planes. These are the J2000 and ECLIP2000,
which are subsequently described.

3.2.2. Geocentric Earth Mean Equator and Equinox at J2000

The Earth’s Mean Equator and Equinox of J2000 (EME2000 or simply ”J2000”) is a commonly used
reference frame with an inertial orientation aligned with the Earth’s equator (Parker & Anderson, 2014).
The direction of the axes is aligned as follows (see Figure 3.1):

Origin: Earth’s center.
z-axis: Pole vector of the Earth’s equator at J2000.
x-axis: Vernal equinox at J2000. i.e. the cross product of equatorial and ecliptic pole vectors.
y-axis: Completes the right-hand system.

Figure 3.1: Graphical representation of J2000 reference frame.

The equatorial plane pole and vernal equinox directions are selected at a reference epoch: the
beginning of the year 2000. This selection makes the axes of the frame practically considered identical
to those of the GCRF frame, presenting only a slight frame bias (Kaplan, 2005). The frame’s origin
can be either the SSB or the Earth’s center. Throughout this thesis, the latter is used for interpretation
purposes. Note that although the orientation of the frame is inertial, the acceleration of the Earth’s
center has an influence on the motion of the bodies described in this frame.

The EME2000 or J2000 frame is commonly found in Emphemeris models and, in this thesis, will
be used to retrieve the motion of celestial objects from SPICE and when propagating trajectories using
the Tudat software.
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3.2.3. Geocentric Earth Mean Orbit of J2000

Another reference frame similar to EME2000 is the Earth Mean Orbit of J2000 (EMO2000 or simply
”ECLIPJ2000”), which is aligned with the ecliptic instead of with the equator (Parker & Anderson, 2014).
The direction of the axes is the following (see Figure 3.2):

Origin: Earth’s center.
z-axis: Ecliptic pole at J2000.
x-axis: Vernal equinox at J2000.
y-axis: Completes the right-hand system.

Figure 3.2: Graphical representation of ECLIPJ2000 reference frame.

Similarly to the EME2000 frame, the axes’ directions are selected at the J2000 epoch, and the origin
is selected at the Earth’s center for this thesis. This frame is also used in ephemeris models and Tudat.
This frame is more practical than EME2000 for this thesis since it already aligns the Earth and Sun into
the same plane, which is convenient for transformations to the Sun-Earth synodic frame subsequently
presented. It is also the reference frame used in other studies targeting 2006 RH120, such as Urrutxua
et al., 2015.

3.2.4. Synodic Frame

A useful frame when working with three-body dynamics models is the co-rotating or synodic reference
frame (Wakker, 2015). This frame allows expressing the equations of motion in a simplified and insight-
ful way, as will be explained in Section 3.4. Synodic frames rotate at the same rate as the primaries,
which makes their orientation non-inertial. If the orbits of the primaries are assumed to be circular, the
frame rotates at a constant rate, while it oscillates periodically along the x-axis if they are eccentric.
The orientation of the axes in the frame is as follows (see Figure 3.3):

Origin: Earth’s center.
z-axis: Angular momentum vector direction of the system.
x-axis: Connects the center of the two bodies, directed opposite to the most massive body.
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y-axis: Completes the right-hand system.
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Figure 3.3: Graphical representation of synodic reference frame.

The frame origin is commonly placed at the barycenter of the system for being an inertial point.
However, for the sake of this thesis, the center will be placed at the location of the Earth, which is the
less massive body, while the other massive body included in the model is the Sun.

3.2.5. Frame Transformations

It is important for this thesis to be able to compute transformations between reference frames. These
transformations are needed when data is obtained from sources that use different reference frames or
to change the frame to another that provides better visualization of results. The frame transformation
that is used in this thesis is between EMOJ2000 data from ephemeris models and the synodic frame
used for designing transfer trajectories. This transformation is subsequently derived.

The formula to express the coordinates of a point in a reference frame X(𝐴) in another reference
frame X(𝐵) is:

X(𝐵) = X(𝐵)𝐴,𝐵 + 𝜆𝐴,𝐵 𝑅𝐴,𝐵 X(𝐴) (3.2)

where X𝐴,𝐵 is the relative position of the origin of frame A with respect to the origin of frame B, 𝜆𝐴,𝐵 is
the scale factor, and 𝑅𝐴,𝐵 is the rotation matrix from frame A to frame B (ECSS-E-ST-10-09C, 2008).

When the transformation is between position-velocity states (i.e. x = [r;v]), and assuming no scale
factor, the formula adopts the following shape (Dirkx, 2022)

x(𝐵) = x(𝐵)𝐴,𝐵 + [
𝑅𝐴,𝐵 03×3
�̇�𝐴,𝐵 𝑅𝐴,𝐵

] x(𝐴) (3.3)

where �̇�𝐴,𝐵 is the time derivative of the rotation matrix 𝑅𝐴,𝐵.

The EMOJ2000 and the synodic frames share the same origin at the Earth’s center. Regarding
their orientation, EMOJ2000 has an inertial orientation, whereas the synodic frame is a non-inertial
rotating frame. Since the angular momentum vector of the synodic frame points in the direction of
the Ecliptic, both frames are aligned on the z-axis. Therefore, the transformation between them only
involves a rotation with respect to this axis. Elements expressed in the synodic frame are marked with
the superscript 𝑆, while the elements expressed in EMOJ2000 are marked with the superscript 𝑂. The
equation that transforms these two frames from Equation (3.2) adopts the following form:

x(𝑂) = [𝑅𝑆,𝑂 03×3
�̇�𝑆,𝑂 𝑅𝑆,𝑂

]x(𝑆) (3.4)
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where the rotation matrix 𝑅𝑆,𝑂 is the following direction cosine matrix

𝑅𝑆,𝑂(𝛽) = [
cos𝛽 − sin𝛽 0
sin𝛽 cos𝛽 0
0 0 1

] (3.5)

being 𝛽 the rotation angle between the rotating and inertial frame (see Figure 3.3). The time derivative
of the rotation matrix is computed from kinematic relations such as (Zhao, 2016):

�̇�𝑆,𝑂 = 𝑅𝑆,𝑂 �̃�𝜔𝜔(𝑆)𝑆,𝑂 (3.6)

where �̃�𝜔𝜔(𝑆)𝑆,𝑂 is the skew-symmetric matrix of the vector 𝜔𝜔𝜔(𝑆)𝑆,𝑂, which is angular velocity vector between
the synodic and the inertial frame expressed in the synodic frame. This vector is

𝜔𝜔𝜔(𝑆)𝑆,𝑂 = [
0
0
𝑁
] (3.7)

where 𝑁 is the angular velocity of the synodic system. And the corresponding skew-symmetric matrix
is

�̃�𝜔𝜔(𝑆)𝑆,𝑂 = [
0 −𝑁 0
𝑁 0 0
0 0 0

] (3.8)

To compute the inverse transformation, i.e. from the inertial to the synodic frame, the rotation matrix
and its derivative are the following

𝑅𝑂,𝑆 = 𝑅⊤𝑆,𝑂 (3.9)

�̇�𝑂,𝑆 = −�̃�𝜔𝜔(𝑆)𝑆,𝑂 𝑅𝑂,𝑆 (3.10)

The rotation angle 𝛽 can be found from insight into the transformation. The x-axis of the synodic
frame points away from the Sun, so angle 𝛽 results from computing the arctangent of the -x and -y
coordinates of the Sun’s location in the EMO2000 frame. MATLAB’s function atan2 is used to resolve
the quadrant.

3.3. State Model
The previous section has dealt with the choice of a reference where to describe the motion of an object
in space. In this section, the different options for describing the motion within a frame are explored.

In astrodynamics, the means to describe the motion of a body in a reference frame is through a state
model. This state model describes the motion of an object within the equations of motion of the system.
The two most simple and extended forms of state models are the Cartesian position-velocity state and
the Keplerian state. The appropriate selection of a state model has a great impact on the results of
numerical propagation and can have a strong effect on the accuracy of the computed solution. Although
there are complex representations tailored to specific cases, the two most appropriate state models for
this thesis are the Keplerian (for describing the heliocentric position of TCOs before entering Earth’s
Hill sphere) and Cartesian (for all simulations run in this thesis). Both are subsequently introduced.
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3.3.1. Keplerian state

A Keplerian state representation comprises a set of six parameters that completely define the orbit of
an object under a two-body trajectory with respect to a central body in a non-rotating reference frame
centered at the primary body (Curtis, 2020).

The six parameters used are known as orbit elements and are :

𝑎: Semi-major axis
𝑒: Eccentricity
𝑖: Inclination
Ω: Right Ascension of the Ascending Node (RAAN)
𝜔: Argument of periapsis
𝜃: True anomaly

The semi-major axis 𝑎 is defined as half the distance from the periapsis 𝑟p (point of closest approach)
to the apoapsis 𝑟a (furthest orbital point). The eccentricity is defined as 𝑒 = (𝑟a − 𝑟p)/(𝑟a + 𝑟p).
The inclination 𝑖 is the angle between the central body’s reference plane and the orbit’s plane. The
intersection between both planes defines the line of nodes, with the main direction labeled as the
vernal point or the vernal direction. The RAAN Ω is the angle measured along the reference plane of
the vernal point and the ascending node. The argument of periapsis is the angle measured along the
orbital plane between the ascending node and the periapsis. Finally, the true anomaly 𝜃 is the angle
measured along the orbital plane between the periapsis and the body’s position. An illustration of the
orbital elements is presented in Figure 3.4.
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Figure 3.4: Graphical representation of a number of orbital elements used for the Keplerian state representation.

As previously mentioned, this representation comes into play in this thesis work when retrieving
information about TCOs in their heliocentric trajectories. However, this representation is not used in
the propagation of the equations of motion since it is only suitable for applications when only the central
gravity from one massive object is considered.
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3.3.2. Cartesian state

The most common state representation, and the one that is used in every numerical propagation in this
thesis, is the position-velocity Cartesian state representation.

In this representation, the state of the system that is propagated is a column six-dimensional vector
s, which contains the Cartesian position and velocity of the propagated body at a given epoch in time.
That is

s = [r, v]
𝑇
= [𝑥, 𝑦, 𝑧, 𝑣𝑥 , 𝑣𝑦 , 𝑣𝑧]

𝑇
(3.11)

An illustration of the Cartesian position-vector state is presented in Figure 3.5.
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Figure 3.5: Graphical representation of the position-velocity Cartesian state vector.

3.4. Dynamics Models
Dynamics models are used to describe the motion of a spacecraft in space, and they are selected such
that they resemble as much as desired the force environment to which it is exposed. It is the object
of this section to survey candidate dynamics models and select those that describe the physics of the
problem up to the desired accuracy while simplifying the simulation process as much as possible.

3.4.1. Gravity Models

The first dynamics models that are discussed are those that model the gravity that the bodies undergo
since they are the cause of the primary acceleration that defines the trajectory of objects in space. The
most simple model used in astrodynamics is the two-body problem, where the motion of a spacecraft
is defined by the gravitational acceleration of a primary body. This model is convenient for mission
design, as the equations of motion can be analytically solved for a set of initial conditions. However,
the assumption of only a central-body acceleration term can only be considered in very specific cases
where other accelerations are neglected. This can be the case for orbits in close proximity to the Earth.

The motion of 2006 RH120 within Earth’s Hill sphere follows a seemingly chaotic motion influenced
by the gravity of many bodies, such as the Sun, the Earth, and theMoon. Once a third body is introduced
in the dynamics model, the differential equation of the system does not have an analytical solution
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anymore, and the trajectory needs to be propagated using numerical methods.

This subsection explores a set of gravity model formulations that have the potential to be useful for
the present research. These models are subsequently introduced.

Many-body problem

The many-body problem is a gravity field model that allows including the gravitational accelerations of
as many bodies as desired in the equations of motion.

The equation that describes the motion of a massless body subject to the attraction of 𝑛 bodies is
the following.

r̈𝑖 =
𝑛

∑
𝑗≠𝑖
𝐺
𝑚𝑗
𝑟3𝑖𝑗

r𝑖𝑗 (3.12)

This vectorial differential equation describes the motion of body 𝑖 in a reference frame with inertial
origin and orientation. Here, r𝑖 is the position of body 𝑖 and r𝑖𝑗 is the position of body 𝑗 relative to body
𝑖.

When the motion of body 𝑖 wants to be computed relative to another body 𝑘 (such as the Earth),
the expression adopts the following shape (Wakker, 2015).

r̈𝑘𝑖 = −𝐺
𝑚𝑖 +𝑚𝑘
𝑟3𝑘𝑖

r𝑘𝑖 + 𝐺
𝑛

∑
𝑗≠𝑖,𝑘

𝑚𝑗 (
r𝑖𝑗
𝑟3𝑖𝑗
−

r𝑘𝑗
𝑟3𝑘𝑗
) (3.13)

This model is mainly used in this thesis when propagating orbits in a high-fidelity model using the
Tudat software, TU Delft’s in-house astrodynamics toolbox for orbit propagation. The locations of each
one of the bodies included are obtained from precise ephemeris libraries retrieved from JPL’s SPICE
toolbox.

CR3BP

The Circular Restricted Three-Body Problem (CR3BP) is a dynamics model used to describe themotion
of a massless particle in the presence of two massive bodies, such as that of a spacecraft or TCO
in the Sun-Earth system. In this model, both primaries move according to their mutual gravitational
interaction, revolving about the barycenter of the system following co-planar circular orbits (Wakker,
2015).

The equations of motion of the spacecraft are described in the synodic frame of the primaries. It is
convenient to express the equations in non-dimensional form by normalizing the units of the system.
For such, the constant 𝜇 is introduced as

𝜇 = 𝑚2
𝑚1 +𝑚2

(3.14)

where 𝑚1 and 𝑚2 represent the masses of the larger and smaller primary, respectively. The units are
normalized by the following measures

Unit of mass: Sum of the mass of the primaries 𝑚1 +𝑚2
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Figure 3.6: Graphical representation of the Circular-Restricted Three-Body Problem in dimensionless form.

Unit of length: The distance between the primaries 𝑟12
Unit of time: Inverse of the rotation rate of the system 1/𝑁

Using this dimensionless representation, the angular velocity 𝜔 is equal to one. A graphical represen-
tation of the system with the relevant distances in dimensionless form is presented in Figure 3.6.

The equations of motions of the CR3BP in dimensionless units and synodic reference frames are
given by (Wakker, 2015)

�̈� = 2�̇� + 𝑥 − (1 − 𝜇)𝑥 + 𝜇𝑟31
− 𝜇𝑥 − 1 + 𝜇𝑟32

(3.15a)

�̈� = −2�̇� + 𝑦 − (1 − 𝜇) 𝑦𝑟31
− 𝜇 𝑦𝑟32

(3.15b)

�̈� = −(1 − 𝜇) 𝑧𝑟31
− 𝜇 𝑧𝑟32

(3.15c)

where the distance of the third body to the primaries is defined by

𝑟21 = (𝑥 + 𝜇)2 + 𝑦2 + 𝑧2 (3.16a)

𝑟22 = (𝑥 − 1 + 𝜇)2 + 𝑦2 + 𝑧2 (3.16b)

At this point, the potential function 𝑈 is introduced as

𝑈 = 1
2 (𝑥

2 + 𝑦2) + 1 − 𝜇𝑟1
+ 𝜇
𝑟2

(3.17)

which allows to rewrite the equations of motion in a more compact form as

�̈� − 2�̇� = 𝜕𝑈
𝜕𝑥 (3.18a)

�̈� + 2�̇� = 𝜕𝑈
𝜕𝑦 (3.18b)

�̈� = 𝜕𝑈
𝜕𝑧 (3.18c)

It should be noted that 𝑈 is a potential function that includes gravitational and centrifugal terms, re-
sulting in a field that is non-central, i.e. it does not point towards the center of the planetary bodies.
Furthermore, the force field is conservative, as it does not explicitly depend on time due to the fixed
positions of the primaries in the rotating frame.
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Furthermore, the equations of motion of the spacecraft described above only depend on the constant
𝜇, which is also called the three-body constant. A complete derivation of the equations of motion can
be found in Wakker, 2015.

One useful property of the CR3BP is that, although the motion of a body within the model does not
have an analytical solution, it allows for an integral of motion, known as Jacobi’s integral 𝐶 and defined
as

𝐶 = 2𝑈 − 𝑉2 (3.19)

where 𝑉 represents the velocity of the spacecraft in the rotating frame and 𝐶 is Jacobi’s constant. This
expression gives an analytical relation between the velocity and position of a spacecraft in the CR3BP,
which is useful for trajectory design purposes. A spacecraft with a particular Jacobi constant is bounded
to move within a specific region, limited by the zero-velocity curves found by setting the velocity of the
spacecraft equal to zero in Equation 3.19.

Hill Model

The Hill model is an approximation of the CR3BP where the center of coordinates is shifted to the
lighter body(𝑚2), and the ratio between the masses of lighter and heavier bodies is equal to zero. The
resulting equations of motion are the following (Villac & Scheeres, 2003)

�̈� = 2𝑁�̇� + 3𝑁2𝑥 − (𝜇𝑚/𝑟3)𝑥 (3.20a)

�̈� = −2𝑁�̇� − (𝜇𝑚/𝑟3)𝑦 (3.20b)

�̈� = −𝑁2𝑧 − (𝜇𝑚/𝑟3)𝑧 (3.20c)

where 𝑁 is the angular motion, 𝑟 is √𝑥2 + 𝑦2 + 𝑧2, and 𝜇𝑚 is the gravitational parameter of 𝑚2, i.e.
𝜇𝑚 = 𝐺𝑚2.

The corresponding libration points L1 and L2 are located at

𝑥L1/2 = ±(
𝜇𝑚
3𝑁2 )

1/3
(3.21)

and 𝑦 = 𝑧 = �̇� = �̇� = �̇� = 0.

The system can be normalized by taking the unit length as 𝑙 = (𝜇𝑚/𝑁2)1/3 and the unit time as
𝜏 = 1/𝑁. This results in the following non-dimensional equations

�̈� = 2�̇� + 3𝑥 − 𝑥/𝑟3 (3.22a)

�̈� = −2�̇� − 𝑦/𝑟3 (3.22b)

�̈� = −𝑧 − 𝑧/𝑟3 (3.22c)

which formally is the result of taking 𝑁 = 1 and 𝜇𝑚 = 1.

These equations of motion can also be expressed in terms of a gradient of a potential function 𝑊
(Szebehely, 1967) defined as

𝑊 = 1
2 (3𝑥

2 − 𝑧2) + 1/𝑟 (3.23)
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resulting in

�̈� − 2�̇� = 𝜕𝑊
𝜕𝑥 (3.24a)

�̈� + 2�̇� = 𝜕𝑊
𝜕𝑦 (3.24b)

�̈� = 𝜕𝑊
𝜕𝑧 (3.24c)

The first coordinate of the first and second libration points results in

�̂�L1/2 = ±(
1
3)

1/3
(3.25)

Similarly to the CR3BP, the Hill model has an integral or Jacobi-like constant Γ, which is computed
as

Γ = 2𝑊 − 𝑉2 (3.26)

where 𝑉 = √�̇�2 + �̇�2 + �̇�2.

The Hill model is the dynamics model used in this thesis to propagate the trajectories of the space-
craft and the TCOs within Earth’s Hill Sphere. Urrutxua et al., 2015 states that the trajectory of the
TCO within the Hill sphere is extremely sensitive to entry conditions from the Heliocentric phase. How-
ever, Figure 3.7 shows that, once inside the Hill sphere, the Hill model reproduces the trajectory of the
TCO with enough reliability for this preliminary analysis. The model has a certain deviation from the
ephemeris data, but the propagation qualitatively represents the trajectory of the TCO.

Figure 3.7: Comparison between ephemeris of TCO 2006 RH120 and propagation using Hill model projected into the x-y axis.
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3.4.2. Perturbations

Objects that travel in space can experience accelerations other than the central gravity of the nearby
bodies. These accelerations are regarded as perturbations to the orbits and can further complicate
the equations of motion of propagated objects. Several perturbations can be found in the environment
comprised inside Earth’s Hill sphere. The most common are subsequently analyzed.

• Irregular gravity: The shape and internal mass distribution of the objects exerting gravity is not
perfectly spherical and homogeneous. Therefore, for some applications, the point-mass gravity
model can be inaccurate. The irregularities in a body’s gravity field can be modeled through
spherical harmonics. They allow expressing the gravitational potential of the body as a sum of
spherical terms that, depending on the number of coefficients selected and their values, result
in a better approximation of the gravity field generated by the irregular shape of the planet. The
irregular shape of gravitational objects becomes important in close-proximity applications; for
example, in two-body trajectories around the Earth where the oblateness of the Earth makes
Keplerian orbits drift or orbits around small asteroids where the motion is mainly described by
their irregular gravity. In this thesis, however, the trajectories are distant enough from gravitational
bodies (the Earth and Sun) that these effects can be neglected.

• Solar radiation pressure: The Solar Radiation Pressure (SRP) is the force that results from the
exchange of momentum between electromagnetic waves coming from the Sun and the different
faces of a spacecraft or object. The force is therefore directed in the opposite direction to the Sun.
Modeling this force accurately is complex, as it depends on the shape of the object and its reflectiv-
ity, but a first-order approximation can be found in Wakker, 2015. Apart from the aforementioned
shape characteristics of the object undergoing the SRP, the magnitude of the acceleration also
depends on the energy flux at the position with respect to the Sun (the further from the Sun, the
lower) and the mass of the object. Previous studies that focus on designing transfer trajectories
to TCOs have ignored the effect of SRP. Urrutxua et al., 2015 mentions that the effect of SRP is
strong enough to perceptibly perturb the motion of 2006 RH120, while the effect is still left out of
the analysis. Takahashi et al., 2022 includes the effect of SRP in their model to rendezvous with
2006 RH120 autonomously. Wakker, 2015 indicates that the SRP acceleration in the Earth-Moon
environment can reach an order of magnitude of 0.1mms−2 for large light satellites. This value
has a similar order of magnitude as the thrust generated by the electric propulsion engine and
may have an impact on both the transfer shape and the cost. However, SRP is neglected in the
present study on preliminary transfers to 2006 RH120 for simplicity. However, this limitation in
the model is noted and left as a recommendation to assess its impact in future work where more
accurate models are used.

• Atmospheric Drag: The third common perturbing acceleration found in the objects that move
in the Earth-Moon vicinity is the drag originating from interaction with the Earth’s atmosphere.
According to Wakker, 2015, the effect of atmospheric drag decreases rapidly with altitude, and
it can be neglected in most applications for altitudes above 1000 km. Therefore, given that the
transfers studied do not originate or pass by low Earth orbit, the effect of atmospheric drag is
neglected in the present study.
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3.4.3. Thrust Model

Another force that is commonly modeled in astrodynamics is that of the thrust of the engine. For
conventional chemical engines, the thrust can be modeled as independent discrete thrusting events
that do not influence the coasting motion of the spacecraft in space. However, low-thrust engines exert
continuous thrust over large arcs of the spacecraft’s trajectory and must be modeled.

To model the continuous thrust of a low-thrust engine, the approach presented by Sims and Flana-
gan, 1999 for the preliminary design of low-thrust interplanetary missions will be used. The continuous
thrust is modeled as a series of delta-v impulses. The trajectory is discretized into several segments,
with an impulsive delta-v applied at the midpoint of the segment. The propagation between impulses
follows the dynamics model selected. The model becomes a good representation of the continuous-
thrust nature when a sufficient number of arcs is considered, as will be discussed in Section 6.1.

The delta-v impulses can be related to propellant consumption using Tsiolkovsky’s rocket equation

Δ𝑉 = 𝑐eff log
𝑚0
𝑚f

(3.27)

where 𝑚0 is the initial wet mass of the spacecraft and 𝑚f is the final mass after the propellant has
been consumed. 𝑔0 is the gravitational acceleration at Earth’s surface, and 𝑐eff is the effective exhaust
velocity of the propellant. 𝑐eff is computed as the ratio between the engine’s thrust (𝐹) and the mass
flow (�̇�)

𝑐eff =
𝐹
�̇� = 𝐼sp 𝑔0 (3.28)

The parameter 𝐼sp represents the engine’s specific impulse, and it is commonly used to measure
the efficiency of a propulsion system.

The exhaust velocity in an electric propulsion system is limited by the available power supplied by
the power source 𝑃source, and they are related via the following relationship (Wakker, 2015):

𝜖 𝑃source =
1
2�̇� 𝑐

2
eff =

1
2 𝐹 𝐼sp 𝑔0 (3.29)

where 𝜖 is the power conversion efficiency.

𝐼sp tends to be a specification of the engine and will be assumed constant for the simulations con-
ducted in this thesis. The thrust will, however, be assumed variable, and the means of practically acting
on the thrust level is varying the mass flow.



4
Numerical Tools

This chapter presents the numerical tools that are used in the present research. First, root-finding
and numerical differentiation techniques are introduced. Then, a large part of the chapter is devoted
to the selection of the numerical integration tool used to propagate the trajectories, placing the focus
on meeting the accuracy requirement also introduced. Similarly, a numerical interpolator is selected
to obtain states at intermediate epochs of propagated trajectories. Then, the state transition matrix
is introduced, which plays an important role in the present research. Next, the differential-corrector
algorithm is presented, which allows for obtaining the first estimates of transfers that meet boundary
conditions. Finally, the numerical optimization tool used for the thesis is presented and explained.

4.1. Root Finding
Numerical root-finding methods are essential in the intermediate steps of this thesis to find the minimum
of a function by equating to zero the partial derivative of a function with respect to the variable under
study.

The root-finding method used in this thesis is the Newton-Raphson method, which finds the root of
a function 𝑓(𝑥) iteratively. The algorithm is started with an initial guess for the root 𝑥0, and this guess
is updated according to the following expression (Sanchez Ruiz & Lengua Fernandez, 2008):

𝑥𝑛 = 𝑥𝑛−1 −
𝑓(𝑥𝑛−1)
𝑓′(𝑥𝑛−1)

(4.1)

In this thesis, this method is generally used to find the minimum of a cost function 𝐽 with respect to
the decision variables. The accuracy of the method can be tuned by selecting a tolerance. Once the
updated solution is smaller than a certain tolerance, the iteration process is stopped.

25
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4.2. Numerical Differentiation
Numerical methods for differentiation are used throughout this thesis to compute the derivatives of
functions that are otherwise too intricate to compute analytically.

Themethod used to compute these derivatives numerically is the so-called finite-differencesmethod.
Specifically, the centered-difference method will be employed. In this method, the derivative of a func-
tion 𝑓(𝑥) with respect to 𝑥 is computed numerically as (Lewis et al., 2022):

𝑓′(𝑥) = 𝑓(𝑥 + Δ𝑥) − 𝑓(𝑥 − Δ𝑥)
2Δ𝑥 (4.2)

Similarly, the method can be used to obtain the second derivative of the function, such as

𝑓″(𝑥) = 𝑓(𝑥 + Δ𝑥) − 2𝑓(𝑥) + 𝑓(𝑥 − Δ𝑥)
Δ𝑥2 (4.3)

These are called second-order methods as they have an error proportional to Δ𝑥2 or 𝑂(Δ𝑥2).

In this thesis, numerical differentiation through finite differences is extensively used. First, its usage
is fundamental in the early stages of the optimization algorithm development to compute the gradient
of the cost function and constraints. The numerical differentiation quickly proved to be very demanding
in terms of computing power. Still, its usage is fundamental to running preliminary tests to ensure the
problem was properly formulated before attempting to find the analytical solution. At the same time,
they were used to verify that the gradients obtained were correct. Finite differences are also used in
the verification process of the state transition matrix.

4.3. Numerical Integration
Numerical integration is a fundamental part of the trajectory-propagation process. It is required for
solving the differential equations that govern the motion of the bodies that are propagated. Since these
equations of motion are modeled by the Hill model, they do not have an analytical solution available
and have to be numerically integrated.

There are many numerical integration algorithms to choose from that can be used for solving the
equations needed for this thesis. Among the list of algorithms that are available in MATLAB, a selection
is tested to check their computing performance and numerical accuracy for the problem at hand.

The first step in the process of selecting an integrator is to define the numerical accuracy that
is considered acceptable for the problem. It is assumed that, for this preliminary analysis, we are
interested in the qualitative results of the study. Therefore, the requirements for the accuracy of the
solution are not stringent. A numerical accuracy of the order of 10 m is considered reasonable for
the present study. It is the order of magnitude of the size of the TCOs, and it is assumed that for
more accurate rendezvous, the spacecraft would be equipped with Guidance, Navigation, and Control
(GNC) equipment. Regarding the minimum accuracy in velocity, it is set to 1 mm/s since it is six orders
of magnitude smaller than the delta-v cost of a very efficient transfer of 100 m/s (Brelsford et al., 2016).

Another important aspect of the integrator selection is that it should generate trajectories in a rea-
sonable computation time. There is no hard value for the computation time required for the integrator,



4.3. Numerical Integration 27

but runtime will be checked during the problem simulations in later steps to check if it is reasonable to
perform the necessary analysis to complete the research objective.

Once the desired performance of the integrator has been set, different available algorithms and
settings are studied to match these requirements. MATLAB has several built-in functions to solve
Ordinary Differential Equations (ODEs) based on different numerical-integration algorithms. Among
them, those with medium to high accuracy have been selected. Their characteristics are summarized
in Table 4.1.

Table 4.1: List of MATLAB ODE solvers and their characteristics (The MathWorks Inc., 2023a).

Function Accuracy Algorithm Remarks

ode45 Medium Variable step size explicit
Runge-Kutta (4,5) Dormand
Prince Pair.

MATLAB documentation
recommends it as the first
solver to try.

ode113 Low to High Variable step variable order
integrator of the
Adams-Bashford-Moulton family
with order ranging from one to 13.

May be more efficient than
ode45 at problems with
stringent tolerances and costly
function evaluations.

ode78 High Variable step-size explicit
Runge-Kutta 8(7) pair advanced
with the 8th-order result with
continuous 7th order Verner’s
extension.

More efficient than ode45 at
problems with high accuracy
requirements.

ode98 High Variable step-size explicit
Runge-Kutta 9(8) pair advanced
with the 9th-order result with
continuous 8th order Verner’s
extension.

More efficient than ode78
integrating long time intervals
with stringent tolerances.

To compare the different integrators, a reference trajectory is selected as representative of the future
simulations of this thesis. For such, the trajectory of the reference TCO RH120 has been chosen. The
initial epoch used is 2006, October 1, 0:00:00 Universal Time Coordinated (UTC), and its state was
obtained in the Hill model from Takahashi et al., 2022 and summarized Table 4.2. The propagation
time is set to 300 days. This reference trajectory has been selected since the environment of TCOs
trajectory resembles that of the transfer trajectory that will be explored later on, and 300 days are long
enough to cover the range of transfer times that are analyzed in further sections.

To measure the numerical error of the algorithm, a benchmark solution is generated with an inte-
grator of high order and stringent tolerance. For this benchmark, the function ode89 with a tolerance
of 10−14 is used. The performance of the remaining algorithms from Table 4.1 are measured against
this benchmark solution for different tolerance values. The results of this analysis for the position error



28 4. Numerical Tools

Table 4.2: Initial conditions for reference trajectory in Hill frame from Takahashi et al., 2022.

Epoch 2006 October 1 | JD 2,454,009.5

𝑥 738504.1118393708 km
𝑦 213454.0880487227 km
𝑧 -955911.2794879418 km
𝑣𝑥 -0.1342568737871429 km/s
𝑣𝑦 0.21860028536472628 km/s
𝑣𝑧 -0.46910677002491197 km/s

are shown in Figure 4.1.
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Figure 4.1: Position error of different integrator configurations.

Figure 4.1 shows that any integrator with a tolerance of 10−9 or better achieves a numerical accuracy
for the position below the minimum established of 10 meters. The most accurate algorithm is ode78
for every tolerance selected. However, based on these results, any of the three integrators are suitable
for this thesis work. It can be seen from the graph that for tolerances below 10−11, the error of the
benchmark may have been reached at a value of 0.2 meters, which is settled for reduced tolerances
not shown in the graph. It should be noted that the velocity error also meets the required accuracy of
1 mm/s with every integrator for tolerances below 10−9, reaching a minimum of 10−5 m/s for the most
stringent tolerances.

To assess the computational cost of the different algorithms, the number of function evaluations has
been recorded and plotted in Figure 4.2. It is observed that the ode113 function computes the solution
with the least number of function evaluations. The slowest integrator is ode45, with a steep exponential
increase in runtime as the tolerance is reduced compared to the other integrators.
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Figure 4.2: Function evaluations of different integrator configurations.

The integrator with the best overall performance for the reference trajectory is the ode78, which has
a promising trade-off between accuracy and speed. It will be used for the main results of this thesis,
and in case the speed is a problem, ode113 will be tested. For some preliminary simulations where
speed is not a concern, ode45 is used, as it meets the accuracy requirements (see Figure 4.1) and
was used before performing this analysis. Finally, the tolerances are initially set to 10−12 to ensure
accuracy is below requirements. In case speed becomes a problem, it can be reduced up to 10−9
while still complying with the requirements.

4.4. Interpolation
To be able to compare trajectories that overlap in time in the same discrete time epochs, a numerical
interpolation method is used. This thesis uses the MATLAB built-in function interp1. This function takes
as input a vector of samples and their corresponding values and another vector of samples of which
the corresponding interpolated values are returned. Within MATLAB’s interp1 function, several different
interpolation methods are available. Three have been tested to check their accuracy for the problem
at hand. These are summarised in Table 4.3.

The benchmark solution from the previous section has been used to compare and evaluate the
performance of the interpolation methods. This benchmark solution has 100, 000 intermediate time
epochs in the propagation. The same trajectory has been integrated using ode78, resulting in a trajec-
tory with 3, 000 epochs. The last trajectory has been interpolated and evaluated at the sample times
of the benchmark solution. The results are compared and reflected in Figure 4.3.

It is observed from Figure 4.3 that the only interpolation method that meets the accuracy require-
ments of 10 meters is the splinemethod. It is therefore selected for the interpolations carried out in this
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Table 4.3: List of MATLAB interpolation methods tested (The MathWorks Inc., 2023b).

Method Description

linear Linearly interpolates the values at the neighboring points. At least two points
are required.

makima Based on Modified Akima cubic Hermite interpolation. Interpolation is
performed through the piece-wise function of polynomials with a degree of at
most three. At least two points are required.

spline Based on Spline interpolation using not-a-knot end conditions. Based on a
cubic interpolation neighboring points. At least four points are required.

thesis.

4.5. State Transition Matrix
The State Transition Matrix (STM) is an insightful tool that maps variations in the initial state of a system
to state variations at a later time. The STM provides information that is fundamental for the present
thesis. Its usage is two-fold: first, it is used within a differential-correction algorithm explained in Sec-
tion 4.6 to find the departure state that allows achieving a target state in trajectory propagation. The
second useful application of the STM for this thesis is in calculating the gradient of the cost function and
constraints used to find the optimum trajectories. It will be explained in Section 6.3 how the components
of the STM are related to the analytical gradient of these functions.

A general definition for the state transition matrix is the following (Heiligers, 2020):

Φ(𝑡, 𝑡0) =
𝜕s(𝑡)
𝜕s(𝑡0)

(4.4)

For a six-element position-velocity Cartesian state, the STM has a 6 × 6 dimension and results in
the following expression

Φ(𝑡, 𝑡0) = [
Φrr0 Φrv0
Φvr0 Φvv0

] = [
𝜕r
𝜕r0

𝜕r
𝜕v0𝜕v

𝜕r0
𝜕v
𝜕v0

] (4.5)

where the partial derivatives are evaluated at time 𝑡 for a given set of initial conditions.

The STM of a non-linear system is computed numerically by propagating the following expression
alongside the system’s equations of motion.

Φ̇(𝑡, 𝑡0) = 𝐴(𝑡)Φ(𝑡, 𝑡0) (4.6)

where the initial conditions for the STM Φ(𝑡0, 𝑡0), equal the identity matrix. The matrix 𝐴(𝑡) is the
Jacobian of the linearized system and is computed from

𝛿ṡ(𝑡) = 𝐴(𝑡) s(𝑡) (4.7)
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Figure 4.3: Interpolator methods comparison.

For the Hill three-body problem, this Jacobian is found by taking the analytical partials of the equations
of motion of the model (Equation 3.22), resulting in

𝐴 = 𝜕ṡ
𝜕s =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
𝜕�̈�
𝜕𝑥

𝜕�̈�
𝜕𝑦

𝜕�̈�
𝜕𝑧 0 2 0

𝜕�̈�
𝜕𝑥

𝜕�̈�
𝜕𝑦

𝜕�̈�
𝜕𝑧 −2 0 0

𝜕�̈�
𝜕𝑥

𝜕�̈�
𝜕𝑦

𝜕�̈�
𝜕𝑧 0 0 0

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(4.8)
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where the partials are evaluated alongside the trajectory and are

𝜕�̈�
𝜕𝑥 = 3 −

1
𝑟3 +

3𝑥2
𝑟5 (4.9a)

𝜕�̈�
𝜕𝑦 =

3𝑥 𝑦
𝑟5 (4.9b)

𝜕�̈�
𝜕𝑧 =

3𝑥 𝑧
𝑟5 (4.9c)

𝜕�̈�
𝜕𝑥 =

3𝑥 𝑦
𝑟5 (4.9d)

𝜕�̈�
𝜕𝑦 = −

1
𝑟3 +

3𝑦2
𝑟5 (4.9e)

𝜕�̈�
𝜕𝑧 =

3𝑦 𝑧
𝑟5 (4.9f)

𝜕�̈�
𝜕𝑥 =

3𝑥 𝑧
𝑟5 (4.9g)

𝜕�̈�
𝜕𝑦 =

3𝑦 𝑧
𝑟5 (4.9h)

𝜕�̈�
𝜕𝑧 = −1 −

1
𝑟3 +

3𝑧2
𝑟5 (4.9i)

4.6. Differential Correction
Differential Correction (DC) is a numerical algorithm used in this thesis to generate a desired trajectory
that meets certain boundary constraints, e.g. finding the departure conditions that allow a spacecraft
to reach a specific target.

At the core of the DC algorithm is the correction of the departure velocity of a given propagation.
The DC algorithm is initialized with given initial conditions (departure location and estimated departure
velocity) and propagated for a specified transfer time 𝑇. The final position after the propagation is stored
and compared with the desired target position. The STM is then used to compute the required change
in departure velocity such that the target is reached.

The formula for the initial velocity correction that is the backbone of the DC algorithm is the following
(Heiligers, 2020):

𝛿v = [Φr,v0(𝑇, 𝑡0)]−1(rtgt − r∗arr) (4.10)

whereΦr,v0(𝑇, 𝑡0) is a portion of the system’s STM (see Equation 4.5). rtgt is the desired target position,
and r∗arr is the final arrival position of the spacecraft after propagation time 𝑇, from a departure point
rdep and estimated initial velocity v∗dep. More information on the derivation of the algorithm is presented
in Appendix A.

Since the DC algorithm relies on an approximation by Taylor series expansion, the correction pro-
cess must be iterated until the target position error falls below a specified tolerance, set to 10 meters
according to the specifications presented in Section 4.3. In some cases, specifically when a particular
iteration makes the propagation pass very close to the Earth, the algorithm does not converge to the
target.

In the present work, the DC algorithm is used to generate two-impulse transfers connecting a de-
parture location with a target position. These trajectories are used in Chapter 8 first to analyze potential
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rendezvous locations in the trajectory of 2006 RH120, and later on, it is used to generate initialization
trajectories for the low-thrust optimization algorithm consistently.

4.7. Numerical Optimization
As explained in Section 2.3, there are many numerical optimization methods used to solve a trajec-
tory optimization problem. This thesis follows a direct approach, which is solved with a gradient-based
method. The tool that implements this optimization algorithm is MATLAB’s built-in function fmincon,
which allows solving single-objective non-linear constrained optimization with an interior-point algo-
rithm.

As part of the direct optimization approach, the problem is transcribed so that a finite set of decision
variables fully defines a low-thrust transfer. The transcription of the problem is explained in Section 6.2.
The cost function defined for the problem is a function of these decision variables. At the same time, the
constraints are also a function of the decision variables, and the trajectory optimization problem consists
of finding the set of decision variables that minimize the cost function while meeting the constraints.

The function fmincon takes two main inputs: the two MATLAB functions that output the cost value
and the non-linear constraints value for a set of decision variables input. The non-linear constraints are
formulated as equality and inequality constraints, such as

geq = 0 (4.11)

gineq ≤ 0 (4.12)

More information on the contents of the cost and constraint functions is provided in Section 7.1.2.

The function fmincon uses, by default, the finite-differences method to compute the gradient of the
cost function as constraints. However, the cost and constraint functions can be extended such that,
on top of evaluating the functions, they also return their gradient with respect to the decision variables.
Computation of these analytical derivatives is one of the main advantages introduced in this thesis that
allows for fast computation of low-thrust transfers and is explained in Section 6.3.

As optional inputs, fmincon also is fed with specific options for the algorithm, such as the pair value
’PlotFcn’, @optimplotfval, which automatically generates a plot of the optimization history, or
’DerivativeCheck’, ’on’, which allows checking that the analytical gradient computed is correct.
Other settings can be tuned, such as the maximum number of function evaluations or iterations.





5
Two-impulse Transfer Design

To start the development of a low-thrust optimization algorithm, we begin the process by constructing
simpler two-impulse optimal trajectories. The algorithm’s complexity is built until the low-thrust approx-
imation is introduced in Chapter 6. These first trajectories will allow us to gain insight into the types of
transfers that are available connecting L1 with the target TCO and will provide the order of magnitude
of the transfer delta-v. Developing this simpler two-impulse algorithm will allow us to gain experience
with the software tools and test the performance of different problem formulations before getting into
more complex simulations.

The chapter starts with connecting a departure and a target point with the DC method explained in
Section 4.6. Then, a cost function is introduced into the problem, and the number of decision variables
progressively increases. Finally, some conclusions and learnings regarding the trajectory optimization
process are discussed, which will feed the development of the algorithm in the next chapter.

A common transfer configuration is selected to test the algorithms developed in this section and
for illustration purposes. The transfer configuration consists of a departure from L1 and targets the
TCO on 2007 February 11, 220 days after entry into Earth’s Hill sphere. The simulation settings are
summarized in Table 5.1.

Table 5.1: Transfer configuration for the two-impulse simulations.

Departure Sun-Earth L1
Target epoch JD 2,454,143.2 | 2007 February 11
Transfer Time 50 days

35
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5.1. Differential Corrector
The DC algorithm introduced in Section 4.6 is used here to generate the first transfers that connect L1
with the TCO 2006 RH120. The algorithm treats the trajectory generation problem as a single-shooting
scheme, which is illustrated alongside the used notation in Figure 5.1.

Departure orbit

Figure 5.1: Illustration of single-shooting scheme for two-impulse trajectory generation with relevant variables.

The DC algorithm has been run for the transfer configuration presented in Table 5.1. As an initial
velocity estimate, a vector pointing from departure to target is selected. The magnitude of the initializa-
tion velocity is computed as the quotient between the departure-target distance and the transfer time.
The resulting generated trajectory is shown in Figure 5.2.
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Figure 5.2: Two-impulse trajectory generated with the differential corrector.

It is observed in Figure 5.2 that the correction algorithm modifies the transfer trajectory to reach the
target. The resulting total delta-v transfer cost is 1.0058 km/s. It is observed from Figure 5.2 that the
final burn to rendezvous with the TCO results in an abrupt change in velocity direction. However, a
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smoother transition will likely reduce the total delta-v. These smoother solutions will be explored as the
optimization algorithm is introduced in the following sections.
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Figure 5.3: DC algorithm target position convergence.

The algorithm’s convergence is shown in Figure 5.3. It is observed that the algorithm converges
into the final solution in eight iterations until the position error falls below the tolerance of 10−2 km. It
should be noted that, up to this point, the DC algorithm only converges into a trajectory that meets the
constraints without introducing any cost function to minimize.

5.2. Introducing Cost Function
The algorithm in Section 5.1 can link a departure point to a target destination, but the trajectory gener-
ated is not optimized. The first approach to optimizing the trajectory for minimum delta-v is introducing
a cost function to the two-impulse trajectory. MATLAB’s fmincon function is used for such a task.

The problem is formulated using the single-shooting approach illustrated in Figure 5.1. As a first
optimization simulation, the only decision variables are the three components of the initial velocity
vector. Other design variables, such as the transfer time and target epoch, are fixed at this point. The
cost function is the sum of the initial and final delta-v’s, and the only constraint of the problem is the
terminal constraint, i.e., to arrive at the selected target point. This constraint is satisfied internally by
fmincon, and the DC algorithm only initializes the optimization. For this light simulation, the gradient
of the cost function and constraints with respect to the decision variables is computed using finite
differences. The optimization details are summarized in Table 5.2.

To test the optimization algorithm and illustrate the transfer, a test simulation is run, with the depar-
ture, target, and transfer time used as a reference during this chapter in Table 5.1.

As already mentioned, the simulation is initialized using the DC algorithm developed in the previous
section. To avoid the optimizer getting stuck at the initialization, a deviation of 10−3 non-dimensional
units (4.3 × 10−3 km/s) is introduced in every component of Δv0. The results of the optimization simu-
lation are plotted in Figure 5.4.
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Table 5.2: Optimization problem formulation for two-impulse simulation with departure velocity as a decision variable.
*Practically, the constraint is set to be smaller than a specified tolerance.

Decision Variables Δv0
Cost function Δ𝑉
Constraints |rarr − rtgt| = 0∗
Partials Finite differences
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Figure 5.4: Trajectory optimization simulation results optimizing departure velocity.

It can be observed from Figure 5.4 that the resulting trajectory matches that of the one computed by
the DC algorithm in the previous section (see Figure 5.2). The total Δ𝑉 for this transfer is 1.0058 km/s,
which matches the result of the DC algorithm. At the same time, the distribution between the initial and
final Δ𝑣’s also matches.

Figure 5.5 shows the optimization history of the algorithm. It can be observed that the algorithm
starts searching for transfers with a very low cost function value. However, as the algorithm iterates to
match the constraints, the solution searches for higher delta-v values until the algorithm converges.

This first simulation shows that the optimization works to find a connecting trajectory that meets the
constraints. However, the limited number of decision variables prevents the algorithm from finding an
optimal transfer trajectory other than the one already found by the DC algorithm. In the next section,
the decision variable vector is augmented to give more room for the algorithm to search for optimal
transfers.

This section has served to gain familiarity with the fmincon optimizer and test the problem transcrip-
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Figure 5.5: Optimization history for simulation optimizing departure velocity.

tion. It should be noted that a few other problem formulations were tested, such as an unconstrained
optimization where the terminal constraint was enforced inside the cost function evaluation through the
DC algorithm. The results from these other formulations were not efficient or promising.

5.3. Augmenting Decision Variables
As shown in the previous section, the decision variable vector can be expanded to allow the search
algorithm to find optimal solutions that not only meet the constraints. This task is tackled by introducing
the transfer time as a decision variable. Other design variables, such as the target epoch, remain fixed
at this point. As such, the optimization problem from Table 5.2 is re-defined in Table 5.3.

Table 5.3: Optimization problem formulation for two-impulse transfer optimizing departure velocity and transfer time.
*Practically, the constraint is set to be smaller than a specified tolerance.

Decision Variables Δv0, T
Cost function Δ𝑣total
Constraints |rarr − rtgt| = 0∗
Partials Finite differences

With these settings, the simulation is run for the same target location as in Table 5.1 and initializing
the decision variables from the results of the DC deviated 10−3 non-dimensional units (4.3×10−4 km/s).
The resulting trajectory is plotted in Figure 5.6.

It is observed that, with this new problem formulation, the algorithm has found a solution at a lower
cost than the previous simulations. The total Δ𝑉 has decreased from 1.0058 km/s to 0.9375 km/s. The
algorithm has decreased the transfer time from 50 days to 41.0481 days. It is noted that the initial
delta-v has slightly increased to reduce the target injection Δ𝑣.

Figure 5.7 shows the optimization history for this simulation. It can be observed that the algorithm
converges in 60 iterations, which is higher than the 40 iterations for the previous simulation. However,
the settlement value is lower than optimizing just the Δ𝑣0.
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Figure 5.6: Trajectory optimization simulation results optimizing departure velocity and transfer time.
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Figure 5.7: Optimization history for simulation optimizing departure velocity and transfer time.

Another variable that limits the algorithm’s search space is the target point in the TCO trajectory,
which has been fixed until now. Therefore, the next step is to include it in the list of decision variables.
This position is parameterized by a variable 𝜏 that measures the epoch in seconds since 2006 RH120
enters the Hill sphere of the Earth.

The formulation of the new optimization problem, including the arrival epoch 𝜏 as a decision variable,
is gathered in Table 5.4.

Figure 5.8 shows the optimization results for this simulation.
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Table 5.4: Optimization problem formulation two-impulse simulation optimizing departure velocity, transfer time, and arrival
epoch.

Decision Variables Δv0, T, 𝜏
Cost function Δ𝑣total
Constraints |rarr − rtgt|
Partials Finite differences
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Figure 5.8: Trajectory optimization simulation results optimizing departure velocity, transfer time, and arrival epoch.

It can be observed from the figure that the arrival epoch has been pushed to an area where the
arrival is more aligned with the trajectory of the TCO. The optimized rendezvous location is 235 days
since Hill entry, as opposed to the previously fixed 220 days. The algorithm converges to a transfer
time of 55 days, slightly longer than the previous optimum found at 41 days. A lower transfer cost has
been found for this trajectory, sitting at a total delta-v of 0.8913 km/s.

Finally, the optimization history is shown in Figure 5.9. It can be observed that the optimizer takes
around 90 iterations to converge, as compared to 70 in the previous simulation. This is still a reason-
able number, and the optimizer starts converging toward the final value early in the optimization history.
It should be noted that each iteration’s runtime has increased compared to previous simulations. This
simulation took 140 seconds to converge, while the previous one, which did not optimize the arrival
epoch, converged in only 11 seconds. The runtime is not an issue with this two-impulse transfer formu-
lation since the simulation was completed in under three minutes. However, this behavior indicates that
it may be necessary to reduce the runtime once the simulations get more complex in the next section,
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Figure 5.9: Optimization history for simulation optimizing departure velocity, transfer time, and arrival epoch.

such as passing the analytical gradient of the cost function and constraints to the optimizer.

5.4. Two-Impulse Optimization Remarks
This chapter has explored the methods for optimizing two-impulse transfers targeting TCOs. To illus-
trate the methods, a reference scenario has been selected with details gathered in Table 5.1. The
variables that played a role in these types of trajectories were the departing Δ𝑣, the transfer time, and
the arrival epoch in the trajectory of the TCO. The optimization has progressively increased complexity,
and the results are summarized in Table 5.5.

Table 5.5: Two-impulse algorithm optimization simulation results. ∗ Fixed values.

Δ𝑣0 Δ𝑣f Δ𝑉 T 𝜏 Runtime
[km/s] [km/s] [km/s] [days] [days] [s]

Differential Corrector 0.7019 0.3039 1.0058 50∗ 220∗ 0.1
Optimizing Δ𝑣0 0.7019 0.3039 1.0058 50∗ 220∗ 7
Optimizing Δ𝑣0, T 0.7308 0.2067 0.9375 41.04 220∗ 11
Optimizing Δ𝑣0, T, 𝜏 0.7421 0.1492 0.8913 54.85 235.2 140

Several remarks on the optimization process are subsequently discussed.

5.4.1. Partial Derivatives

For this two-impulse problem, the partial derivatives of the cost function and constraints have been
computed in the back-end of fmincon function through finite differences. The finite differences evaluate
the cost function multiple times and can significantly increase the computation time of the simulation.
For this light-weight two-impulse simulation, the computation time has not been an issue, and therefore
finite differences lead to good results. However, attempts have been made to compute the partial
derivatives analytically to gain familiarity with heavier simulations.
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5.4.2. Decision Variables

Several trials have been made to make the final selection of the decision variables for this two-impulse
problem.

Regarding the Δ𝑣, it should be noted that only the departure Δ𝑣 has been selected. The arrival
impulse is computed as the difference between the arrival velocity and the target. Since this second
impulse is included in the cost function formulation, it is indirectly optimized. However, it has been
observed that not including it as an independent variable complicates the formulations when deriving
the analytical partial derivatives. Therefore, for future heavier simulations, the rendezvous delta-v
impulse will be included in the decision variable formulation to simplify the analytical derivations.

Regarding the arrival epoch 𝜏, it was initially introduced in the transcription of the problem by prop-
agating the trajectory of the TCO until the target epoch and storing the final state. The computational
cost of this method has been reduced by following an alternative approach: the discrete trajectory of
the TCO is loaded into the cost function, and the trajectory is only propagated from the closest epoch
found in the trajectory discretization to the target epoch 𝜏.

Finally, it is observed that most of the Δ𝑣 from the two-impulse simulation comes from the initial
impulse. This is because the departing condition has been chosen as the Lagrangian point L1 for
simplicity. However, the spacecraft’s velocity at this location is zero, which requires a large amount of
energy to intercept the TCO coming from the engines. The selection of a convenient departure orbit
will be studied in future stages of this thesis.

5.4.3. Variable Scaling

It has been observed that the scaling of the variables greatly impacts the performance of the optimiza-
tion algorithm. The non-dimensionalization of the problem has helped scale all the variables to a range
better managed by the algorithm. For future simulations, the range of values that the decision variables
can take should also be monitored to ensure they remain similar.

5.4.4. Optimality of Solution

Ensuring the optimizer finds the absolute optimal solution for a problem is complex. In this case, the
simulations run in this section had the purpose of illustrating the optimization procedure and gaining
familiarity with the algorithm. However, it has been observed that the outcome solution of the simula-
tions depends on the initial target selected and simulation settings. To avoid this, it is recommended to
augment the constraints of the problem to limit the range that the decision variables can take, allowing
the division of the simulation into different ranges where local optima can be found and compared to
each other.





6
Low-Thrust Transfer Design

To complete the objective of this thesis of computing optimum low-thrust trajectories to TCOs, it is
required to transition from two-impulse trajectories to a model that resembles the continuous nature of
a low-thrust trajectory. This chapter presents this algorithm upgrade. First, the low-thrust formulation is
presented, followed by the selected problem transcription. Then, the gradient of the cost and constraint
functions with respect to the decision variables is presented, which is one of the significant innovations
introduced in this research. Then, the initialization process is explained, and a simulation to test the
algorithm’s performance and illustrate its behavior is presented. Next, the algorithm is further upgraded
to optimize the departure location from a pre-selected periodic orbit, and a test simulation is again
presented. The chapter concludes with a selection of remarks that apply to the low-thrust optimization
process introduced.

6.1. Low-Thrust Formulation
As explained in Section 3.4.3, the means of discretizing this continuous trajectory for preliminary anal-
ysis is by dividing the transfer to a series of trajectory segments with delta-v impulses applied at the
mid-points (Sims & Flanagan, 1999). At the same time, this simplifies the engine’s acceleration over a
trajectory arc to a constant, resulting in a total delta-v at the end of the segment.

This simplification can be assumed while the trajectory arcs are kept short enough such that the
change in velocity comes from the acceleration of the low-thrust engine, which exerts a continuous
acceleration over the center of mass of the spacecraft. Therefore, the following relation holds for the
𝑖-th arc

𝐹 = 𝑚 Δ𝑣𝑖
Δ𝑡𝑖

(6.1)

The mass 𝑚 of the spacecraft is a design parameter considered fixed throughout the trajectory
for simplicity. Although in a real-case scenario, the mass would decrease as the propellant is being
consumed, an electric propulsion spacecraft is assumed to have only a small fraction of the total mass

45
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of the spacecraft devoted to the propellant. A preliminary calculation using the rocket equation in
Equation 3.27 considering a conservative transfer delta-v of 1 km/s results in a propellant requirement
of 16 kg for the selected spacecraft (wet mass of 500 kg and 𝐼sp of 3,000 s). This translates into a 3.3%
of the spacecraft mass devoted to the propellant. Therefore, the assumption of constant mass is taken
for the preliminary design.

The thrust 𝐹 is allowed to vary throughout the trajectory while being kept constant for the duration
of a trajectory arc. However, this thrust is limited by a maximum available value, chosen as 0.1 N in
Section 2.4.

For Equation 6.1 to hold, the acceleration exerted on the center of mass of the spacecraft is capped
by two aspects: the maximum thrust available by the engine and an arc length small enough that
replicates the continuous thrust behavior over the whole trajectory.

The problem is formulated by considering both the Δ𝑣𝑖 ’s and the Δ𝑡𝑖 ’s as decision variables for the
solver to optimize. The solution’s desired behavior is tuned by constraints imposed on these variables.
The strategy to adjust these variables is to select a reasonable maximum Δ𝑉 for the overall trajectory
and divide it by the number of impulses selected. This sets a maximum value for the Δ𝑣 exerted at
each arc.

Δ𝑣max =
Δ𝑉max
𝑛 (6.2)

Then, to comply with Equation 6.1, the minimum Δ𝑡 for each trajectory arc is computed using the
maximum thrust available. This prevents the optimizer from providing arc lengths not balanced through-
out the trajectory while allowing for some margin.

Δ𝑡min = 𝑚
Δ𝑣max
𝐹max

(6.3)

Once a solution is generated, the arc lengths are checked so that they are not excessively large.
It has been found in literature that a reasonable arc length is comprised between half a day and eight
days (Herman, 2012) for a comparable three-body trajectory in the Sun-Earth system with a similar
total transfer time duration.

6.2. Optimization Problem Transcription
The type of transcription consists of a similar method as the one used in the two-impulse trajectory
formulation but with the addition of the intermediate Δ𝑣’s. This means that the scheme is still that of
a single shooting, in which the position constraint is met at the target point. A visual representation of
the used transcription is shown in Figure 6.1.

It can be observed from the illustration that 𝑛 Δ𝑣 impulses are introduced, resulting in 𝑛−1 trajectory
arcs. Each trajectory arc has a transfer time Δ𝑡𝑖, which is allowed to vary to control the total transfer
time of the simulation.

The cost function of the problem is the sum of all the Δ𝑣’s performed

𝐽 =
𝑛

∑
𝑖=1
|Δv𝑖| (6.4)
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Figure 6.1: Illustration of low-thrust transfer problem transcription with relevant variables.

The decision variables are the same as in the two-impulse problem, which includes the Δ𝑣’s, arc
transfer times Δ𝑡𝑖 ’s, and TCO arrival epoch 𝜏. That is

X = [Δv1, ⋯ , Δv𝑛 , Δ𝑡1, ⋯ , Δ𝑡𝑛−1, 𝜏] (6.5)

Two equality constraints have been selected for this problem transcription. The first constraint is the
arrival at the target position by the end of the trajectory arcs, similar to the two-impulse formulation. In
addition, the final Δ𝑣 of the last leg has been included in the list of decision variables. Then a constraint
is added such that the final velocity after the last Δ𝑣 matches the velocity of the TCO at the target point.
These constraints are defined as the following six-element column vector using the notation introduced.
They are formulated such that all terms have to be zero (smaller than a specified numerical tolerance).

geq = [
rtgt − rarr
vtgt − varr

] (6.6)

It should be noted that this equality constraint vector in Equation 6.6 is passed into fmincon as a
row vector, so it has to be transposed.

In addition to the equality constraints, certain inequality constraints are added to limit the values the
decision variables can take. These constraints are the following

• Maximum value for Δ𝑣’s – it is set not to exceed the thrust available by the engine and to avoid
the simulation converging to a two-impulse type where the largest Δ𝑣’s are applied close to the
departure and arrival points.

• Maximum value for total transfer time 𝑇 – it allows having control over the length of the entire
trajectory to prevent excessively large simulations that are unfeasible in terms of mission design.

• Maximum and minimum values for Δ𝑡’s – they prevent the simulation from creating very short
arcs where practically an engine would not be able to switch the acceleration profile in time or
very long arcs that dominate the total transfer time.

These inequality constraints are defined as follows

gineq = [Δ𝑣𝑖 − Δ𝑣max, 𝑇 − 𝑇max, −Δ𝑡𝑗 + Δ𝑡min, 𝜏 − 𝜏max, −𝜏 + 𝜏min] (6.7)
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for all 𝑖 in [1, n] and all 𝑗 in [1, n-1]. They are formulated such that all terms have to be negative as
required by fmincon.

6.3. Partial Derivatives
To generate a multi-impulse trajectory with an increased number of impulses, the decision variable
vector (Equation 6.5) becomes large enough such that optimizing using finite differences consumes
excessive computing resources. As previously explained, finite differences have been used up until
now to compute the partial derivatives of the cost and constraint functions with respect to the decision
variables vector. To solve this issue, the combination of problem transcription and the dynamics model
selected has been specifically designed to allow computing the partial derivatives analytically. These
analytical partial derivatives are one of the most innovative aspects of this thesis and are explained in
this section.

6.3.1. Gradient of Cost Function

The gradient of the cost function (Equation 6.4) with respect to the decision variables (Equation 6.5)
results in the following matrix.

𝜕𝐽
𝜕X = [

𝜕𝐽
𝜕Δv𝑖

, 𝜕𝐽
𝜕Δ𝑡𝑗

, 𝜕𝐽
𝜕𝜏 ]1×4𝑛

∀ 𝑖 ∈ [1, 𝑛] and 𝑗 ∈ [1, 𝑛 − 1] (6.8)

The gradient of the cost function with respect to the 𝑖-th impulse is computed as

𝜕𝐽
𝜕Δv𝑖

=
Δv⊤𝑖
|Δv𝑖|

, ∀ 𝑖 ∈ [1, 𝑛] (6.9)

Since the cost function is formed by adding all the impulses, which are independent variables, the
partials with respect to the remaining independent variables are zero.

6.3.2. Gradient of Equality Constraints

The position-velocity state at a given epoch is expressed by the six-element column vector s, which
therefore allows rewriting the constraints defined in Equation 6.6 as

geq = stgt − sarr (6.10)

The gradient of the equality constraints with respect to the problem decision variables (Equation 6.5)
is the following matrix, which is then transposed to pass it as an argument to fmincon.

𝜕geq
𝜕X = [

𝜕geq
𝜕Δv𝑖

,
𝜕geq
𝜕Δ𝑡𝑗

,
𝜕geq
𝜕𝜏 ]

6×4𝑛
∀ 𝑖 ∈ [1, 𝑛], and 𝑗 ∈ [1, 𝑛 − 1] (6.11)

Several analytical expressions have been derived and introduced to populate this matrix.

The first element of the expression, which represents the partials of the constraint with respect to
the velocity impulses, is computed as
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𝜕geq
𝜕Δv𝑖

=

⎧
⎪⎪

⎨
⎪⎪
⎩

−
𝑖

∏
𝑙=𝑛−1

Φ𝑙 [
03×3
I3×3

] 𝑖 < 𝑛

− [
03×3
I3×3

] 𝑖 = 𝑛
, ∀ 𝑖 ∈ [1, 𝑛] (6.12)

The derivation of this expression is explained subsequently.

Derivation of Equation 6.12:

By recalling the notation used in Figure 6.1, the equality constraints vector in Equation 6.10
can be rewritten as

geq = stgt − s+f,𝑛−1 (6.13)

where s+f,𝑛−1 represents the position-velocity state at the end of the propagation of the final arc of
the transfer after the last Δ𝑣𝑛 has been applied. Or equivalently,

s+f,𝑛−1 = s−f,𝑛−1 + [
03×1
Δv𝑛

] (6.14)

which allows to rewrite Equation 6.13 as

geq = stgt − s−f,𝑛−1 − [
03×1
Δv𝑛

] (6.15)

When taking the partial derivative of the equality constraint in Equation 6.15 with respect to the
𝑖-th Δ𝑣, the partials of stgt and Δv𝑛 are zero for every 𝑖-th impulse except for the last one (𝑖 = 𝑛),
resulting in

𝜕geq
𝜕Δv𝑖

= −
𝜕s−f,𝑛−1
𝜕Δv𝑖

(6.16)

The right-hand side of Equation 6.16 can be rewritten in terms of known quantities as follows

𝜕s−f,𝑛−1
𝜕Δv𝑖

=
𝜕s−f,𝑛−1
𝜕s+0,𝑛−1

𝜕s+0,𝑛−1
𝜕Δv𝑖

= Φ𝑛−1
𝜕s+0,𝑛−1
𝜕Δv𝑖

(6.17)

The vector s+0,𝑛−1 is obtained after propagating the previous leg of the transfer and can be
equivalently written as

s+0,𝑛−1 = s−f,𝑛−2 + [
03×1
Δv𝑛−1

] (6.18)

And therefore, by referring to the 𝑙-th trajectory arc, while 𝑙 > 𝑖, the following expression holds

𝜕s+0,𝑙
𝜕Δv𝑖

=
𝜕s−f,𝑙−1
𝜕Δv𝑖

(6.19)

which allows to rewrite Equation 6.17 as

𝜕s−f,𝑛−1
𝜕Δv𝑖

= Φ𝑛−1
𝜕s−f,𝑛−2
𝜕Δv𝑖

(6.20)
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This equation represents that the partial of the final state of a given leg equals the product of the
STM of such leg and the partial of the final state of the previous leg. This result can be extrapo-
lated to previous legs following the same reasoning as to derive Equation 6.20 until the leg count
matches that of the 𝑖-th impulse, resulting in

𝜕s−f,𝑛−1
𝜕Δv𝑖

=
𝑖

∏
𝑙=𝑛−1

Φ𝑙
𝜕s+0,𝑖
𝜕Δv𝑖

(6.21)

The element
𝜕s+0,𝑖
𝜕Δv𝑖

can be rewritten by using the same transformation as in Equation 6.18 into

𝜕s+0,𝑖
𝜕Δv𝑖

=
𝜕s−0,𝑖
𝜕Δv𝑖

+ [
03×3
𝜕Δv𝑖
𝜕Δv𝑖

] = [03×3
I3×3

] (6.22)

Finally, Equations 6.21 and 6.22 are substituted into Equation 6.16 to give

𝜕geq
𝜕Δv𝑖

= −
𝑖

∏
𝑙=𝑛−1

Φ𝑙 [
03×1
I3×3

] (6.23)

This result is valid for every 𝑖-th arc except the last one. For the partial of the equality constraint
with respect to the last arc, 𝑖 = 𝑛, it is observed from Equation 6.13 that the only non-zero element
comes from Equation 6.22, which results in the expression for the gradient that was sought that
equals Equation 6.12

𝜕geq
𝜕Δv𝑖

=

⎧
⎪⎪

⎨
⎪⎪
⎩

−
𝑖

∏
𝑙=𝑛−1

Φ𝑙 [
03×3
I3×3

] 𝑖 < 𝑛

− [
03×3
I3×3

] 𝑖 = 𝑛
, ∀ 𝑖 ∈ [1, 𝑛] (6.24)

This result implies that to obtain the analytical expression for the gradient of the equality con-
straints with respect to the arc impulses, the only information needed is the STM that maps the
arrival with the departure condition of each arc, which is a known matrix.

The second element of Equation 6.11, which represents the partials of the gradient with respect to
the transfer time of each segment, is computed as

𝜕geq
𝜕Δ𝑡𝑗

=

⎧
⎪⎪

⎨
⎪⎪
⎩

−[
v−𝑓,𝑗
a𝑓,𝑗

] 𝑗 = 𝑛 − 1

−
𝑗+1

∏
𝑙=𝑛−1

Φ𝑙 [
v−𝑓,𝑗
a𝑓,𝑗

] 𝑗 < 𝑛 − 1
, ∀ 𝑗 ∈ [1, 𝑛 − 1] (6.25)

The derivation of this expression is explained subsequently.
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Derivation of Equation 6.25:

By recalling Equation 6.15, the gradient of the equality constraints with respect to the 𝑗-th arc
length is given by

𝜕geq
𝜕Δ𝑡𝑗

= −
𝜕s−f,𝑛−1
𝜕Δ𝑡𝑗

(6.26)

which, similarly to Equations 6.17 and 6.18, can be rewritten in terms of known quantities as

𝜕s−f,𝑛−1
𝜕Δ𝑡𝑗

=
𝜕s−f,𝑛−1
𝜕s+0,𝑛−1

𝜕s+0,𝑛−1
𝜕Δ𝑡𝑗

= Φ𝑛−1
𝜕s−0,𝑛−1
𝜕Δ𝑡𝑗

(6.27)

and therefore, referring to the 𝑙-th trajectory arc, the following expression holds

𝜕s+0,𝑙
𝜕Δ𝑡𝑗

=
𝜕s−f,𝑙−1
𝜕Δ𝑡𝑗

(6.28)

which allows to rewrite Equation 6.27 as

𝜕s−f,𝑛−1
𝜕Δ𝑡𝑗

= Φ𝑛−1
𝜕s−f,𝑛−2
𝜕Δ𝑡𝑗

(6.29)

This equation represents that the partial of the final state of a given leg equals the product of the
STM of such leg and the partial of the final state of the previous leg. This result can be extrapolated
to previous legs until the leg count matches that of the 𝑗 + 1-th impulse, resulting in

𝜕s−f,𝑛−1
𝜕Δ𝑡𝑗

=
𝑗+1

∏
𝑙=𝑛−1

Φ𝑙
𝜕s−f,𝑗
𝜕Δ𝑡𝑗

(6.30)

It is identified that the element
𝜕s−f,𝑗
𝜕Δ𝑡𝑗

represents the velocity and acceleration at the end of the

𝑗-th arc, i.e.
𝜕s−f,𝑗
𝜕Δ𝑡𝑗

= [
v−𝑓,𝑗
a𝑓,𝑗

] (6.31)

Finally, Equations 6.30 and 6.31 are substituted into Equation 6.26 to give

𝜕geq
𝜕Δ𝑡𝑗

= −
𝑗+1

∏
𝑙=𝑛−1

Φ𝑙 [
v−𝑓,𝑗
a𝑓,𝑗

] (6.32)

It is observed that when 𝑗 = 𝑛 − 1, the only transformation to occur is that of Equation 6.31,
which results in the expression for the gradient that was sought that equals Equation 6.12

𝜕geq
𝜕Δ𝑡𝑗

=

⎧
⎪⎪

⎨
⎪⎪
⎩

−[
v−𝑓,𝑗
a𝑓,𝑗

] 𝑗 = 𝑛 − 1

−
𝑗+1

∏
𝑙=𝑛−1

Φ𝑙 [
v−𝑓,𝑗
a𝑓,𝑗

] 𝑗 < 𝑛 − 1
, ∀ 𝑗 ∈ [1, 𝑛 − 1] (6.33)
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This solution implies that the gradient of the equality constraints with respect to the trajectory
arc’s lengths is only a function of known quantities, i.e. the STM of each arc, and the velocity and
acceleration vectors at the end of each arc.

Finally, the partials of the equality constraints with respect to the target epoch 𝜏 are simply composed
by the velocity and acceleration of the target point at epoch 𝜏

𝜕geq
𝜕𝜏 = [vtgt

atgt
] (6.34)

This result completes the expression for the partials of the equality constraints with respect to the
decision variables in Equation 6.11.

6.3.3. Gradient of Inequality Constraints

The gradient of the inequality constraints (Equation 6.7) with respect to the problem decision variables
(Equation 6.5) is the following matrix:

𝜕g
𝜕X =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜕(Δ𝑣𝑖 − Δ𝑣max)
𝜕Δv𝑘

𝜕(Δ𝑣𝑖 − Δ𝑣max)
𝜕Δ𝑡𝑙

𝜕(Δ𝑣𝑖 − Δ𝑣max)
𝜕𝜏

𝜕(𝑇 − 𝑇max)
𝜕Δv𝑘

𝜕(𝑇 − 𝑇max)
𝜕Δ𝑡𝑙

𝜕(𝑇 − 𝑇max)
𝜕𝜏

𝜕(−Δ𝑡𝑗 + Δ𝑡min)
𝜕Δv𝑘

𝜕(−Δ𝑡𝑗 + Δ𝑡min)
𝜕Δ𝑡𝑙

𝜕(−Δ𝑡𝑗 + Δ𝑡min)
𝜕𝜏

𝜕(𝜏 − 𝜏max)
𝜕Δv𝑘

𝜕(𝜏 − 𝜏max)
𝜕Δ𝑡𝑙

𝜕(𝜏 − 𝜏max)
𝜕𝜏

𝜕(−𝜏 + 𝜏min)
𝜕Δv𝑘

𝜕(−𝜏 + 𝜏min)
𝜕Δ𝑡𝑙

𝜕(−𝜏 + 𝜏min)
𝜕𝜏

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦2(𝑛+1)×4𝑛

(6.35)

for all 𝑖 and 𝑘 in [1, n], and 𝑗 and 𝑙 in [1,n-1].

After identifying the independent variables, the matrix is rewritten as

𝜕g
𝜕X =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜕(Δ𝑣𝑖 − Δ𝑣max)
𝜕Δv𝑘

0𝑛×𝑛−1 0𝑛×1

01×3𝑛 11×𝑛−1 0

0𝑛−1×3𝑛 I𝑛−1×𝑛−1 0𝑛−1×1

01×3𝑛 01×𝑛−1 1

01×3𝑛 01×𝑛−1 −1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦4𝑛×2(𝑛+1)

(6.36)

for all 𝑖 and 𝑘 in [1, n]. The first matrix equals

𝜕(Δ𝑣𝑖 − Δ𝑣max)
𝜕Δv𝑘

= {
01×3 𝑖 ≠ 𝑗
Δv⊤𝑖
|Δv𝑖|

𝑖 = 𝑘
, ∀ 𝑖 and 𝑘 ∈ [1, 𝑛] (6.37)
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6.4. Algorithm Initialization
In order to run the optimization algorithm, the decision variable vector in Equation 6.5 must be initialized.
For such a task, an initial target epoch of the TCO trajectory and an initial transfer time is selected. Then,
a two-impulse trajectory is generated using the DC algorithm. Next, the transfer time is divided into
the desired number of equally spaced segments, and the delta-v vectors for such epochs are retrieved
from the TCO states. Then, a small deviation of 10−4 non-dimensional units is added to every element
of the velocity vectors. This small value is added to avoid the algorithm getting stuck at the initialization.

6.5. Optimization Simulation
Similarly to the two-impulse case, to illustrate the works of the algorithm, we have prepared a simu-
lation. The simulation settings are gathered in Table 6.1. They represent the input parameters to the
simulation, which can be modified to tune the solution. Since the purpose of this simulation is illustra-
tive, the parameters selected are deemed reasonable, but they have not been properly tuned yet. This
will be done in Section 8.1.

Table 6.1: Low-thrust simulation settings for departure from L1.

Parameter Value Units Description

Algorithm
𝑛 50 [-] Number of impulses

Initialization
𝑇0 50 [days] Initial transfer time
𝜏0 220 [days] Initial target epoch

Boundaries
𝑇max 75 [days] Maximum transfer time
Δ𝑉max 1.2 [km/s] Maximum total Δ𝑉
𝜏range [200, 240] [days] Range of target epoch

The simulation is run, and the resulting optimal trajectory is plotted in Figure 6.2. It can be observed
from the figure that the impulses align at the beginning and end of the transfer to create a smooth
transition from departure to rendezvous. This transfer strategy differs from the solutions in Chapter 5,
where the transitions were abruptly performed by two high-impulse maneuvers (see Figure 5.8).
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Figure 6.2: Optimized low-thrust transfer trajectory departing from L1.

To understand the evolution of the impulses, the resulting thrust profile has been plotted in Fig-
ure 6.3. The figure shows the thrust magnitude as a percentage of the maximum available thrust by
the engine over the transfer time. It is observed that the highest thrust is applied during the first half of
the transfer, where the engines are kept at roughly 95% of their maximum thrust. Then, the thrust is
brought down to almost zero for trajectory arcs where no impulse is required. This means that the op-
timizer converged to introduce some coasting into the transfer trajectory. Finally, the thrust is brought
up again to about 90% for rendezvous.

0 10 20 30 40 50 60 70

Propagation Time [days]

0

20

40

60

80

100

%
 o

f 
M

a
x
im

u
m

 T
h
ru

s
t

Thrust Profile

Figure 6.3: Thrust profile for low-thrust optimum transfer departing from L1.

To give more insight into the simulation results, some parameters have been gathered in Table 6.2.
A few things can be observed from these results.
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Table 6.2: Low-thrust simulation results for departure from L1.

Parameter Value Description

Δ𝑉 0.9979 km/s Total transfer delta-v
T 74.93 days Total transfer time
𝜏 230.58 days Arrival epoch in days since entering Hill

runtime 72 s Simulation runtime

First, it is noted that the total Δ𝑉 of the transfer has slightly increased with respect to the two-
impulse results obtained in Section 5.4, Table 5.5, from 0.8913 to 0.9979 km/s. This is expected since
concentrating the impulses at fewer points tends to be more efficient than spreading the impulses over
the transfer due to theOberth effect (seeWakker, 2015). However, the gain obtained from usingmultiple
impulses comes from the significant reduction in the propellant mass when using high-𝐼sp engines as
compared to low-𝐼sp chemical propulsion systems.

Second, it is noted that the total transfer time optimized has increased from 50 days to almost 75,
which is very close to the constraint that has been set for the simulation. This means that other, more
optimal solutions may be found if the algorithm is allowed to run for longer transfer times.

Third, it is observed that the arrival epoch has increased from 220 days to 230 days since entering
the Hill sphere. This value is, however, kept well within the constraint boundaries. It is noted that the
combination of arrival epoch and transfer time sets the required departure epoch for the spacecraft at
155 days since the TCO enters the Hill sphere.
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Figure 6.4: Optimization history of low-thrust trajectory simulation departing from L1.

To illustrate the search process of the algorithm, the optimization history is plotted in Figure 6.4.
It can be observed that the search algorithm does not directly converge to the solution as happened
in previous simulations. Several optima are explored in this case until the algorithm converges to the
solution. Given that the number of variables has significantly increased, it is reasonable that the algo-
rithm takes more iterations to converge, requiring 300 compared to less than 100 for the two-impulse
simulations (see Figure 5.9). However, it should be noted that although the number of iterations has
increased, passing the analytical partials has significantly increased the algorithm’s speed compared to
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finite differences used for two-impulse simulations, hence reducing the optimization time. In this case,
the total runtime, as observed in Table 6.2, is slightly longer than one minute, around half of the runtime
of the latest two-impulse simulation in Table 5.5.

Finally, the simulation has been rerun using finite differences instead of the analytical solution, both
for verification purposes and to compare the computational cost. The results using finite differences
converged to the same optimum (with minor deviation) of Δ𝑉 = 0.9983 km/s, 𝑇 = 74.93 days, and
𝜏 = 230.54 days, but the runtime was indeed significantly larger at 105 minutes, compared to 72 s for
the analytical derivatives. Therefore, the reduction in runtime achieved by using the analytical method is
99.86%. This confirms the great advantage of passing the analytical gradients of the cost and constraint
functions. However, this advantage should be traded against the time spent developing, if possible, the
analytical expressions. For our problem, which deals with a preliminary design, the formulation could
be simplified enough to find the analytical expressions. But this may not be the case for higher-fidelity
formulations.

6.6. Adding Departure Conditions
It has been shown in previous sections that an algorithm has been derived that computes an optimal
low-thrust transfer trajectory from L1 to a point on the trajectory of a target TCO. At this point, it is
convenient to introduce a departure condition different from the Lagrangian point. This is the case as
the Lagrangian point L1 has zero velocity in the Hill formulation, and therefore all the energy to match
the orbit of the TCO has to come from the spacecraft. It is the purpose of this section to introduce into
the algorithm a departure condition from a periodic orbit around L1. This departure alternative has the
potential to benefit from an initial velocity vector that reduces the dependency on onboard energy.

The method to include the departure conditions in the algorithm is to parameterize the departure
point in the orbit similarly as done with the target within the TCO trajectory. A time variable 𝜀 is in-
troduced, which quantifies the epoch of the departure point within the period 𝑃 of the orbit, 𝜀 = 0
being at the Initial Conditions (ICs) of the periodic orbit. Therefore, the decision variable vector from
Equation 6.5 is extended to

X = [Δv1, ⋯ , Δv𝑛 , Δ𝑡1, ⋯ , Δ𝑡𝑛−1, 𝜏, 𝜀] (6.38)

Note that the variable 𝜀 is non-dimensionalized by the time parameter to scale the variable, similar
to 𝜏.

To keep control over the values that this decision variable may take, two inequality constraints are
added, which allow the user to control the range of values the variable can take. Usually, it takes
values between zero and one period. However, these can be modified to target a specific region within
the departure orbit. Therefore, the inequality constraint vector from Equation 6.7 is augmented to the
following expression.

g = [Δ𝑣𝑖 − Δ𝑣max, 𝑇 − 𝑇max, −Δ𝑡𝑗 + Δ𝑡min, 𝜏 − 𝜏max, −𝜏 + 𝜏min, 𝜀 − 𝜀max, −𝜀 + 𝜀min] (6.39)

After adding this decision variable, the partial derivatives of the cost function and constraints have
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to be augmented to accommodate this new dependency.

The partial derivative of the cost function in Equation 6.8 is augmented by an extra column element
taking the value

𝜕𝐽
𝜕𝜀 = 0 (6.40)

since the cost function is formed by adding the Δ𝑣’s, which are independent variables.

The partial of the equality constraints as presented in Equation 6.11 is augmented with a column on
the right with

𝜕geq
𝜕𝜀 = −

𝑖

∏
𝑙=𝑛−1

Φ𝑙 [
vdep

adep
] (6.41)

whose derivation is similar to that of Equation 6.25 and is omitted to keep this section concise.

Finally, the matrix containing the partials of the inequality constraints with respect to the decision
variables (Equation 6.35) is augmented by two bottom rows and one right-most column with the follow-
ing elements, respectively

⎡
⎢
⎢
⎢
⎣

𝜕(𝜀 − 𝜀max)
𝜕X

𝜕(−𝜀 + 𝜀min)
𝜕X

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

𝜕(𝜀 − 𝜀max)
𝜕Δv𝑘

𝜕(𝜀 − 𝜀max)
𝜕Δ𝑡𝑙

𝜕(𝜀 − 𝜀max)
𝜕𝜏

𝜕(−𝜀 + 𝜀min)
𝜕Δv𝑘

𝜕(−𝜀 + 𝜀min)
𝜕Δ𝑡𝑙

𝜕(−𝜀 + 𝜀min)
𝜕𝜏

⎤
⎥
⎥
⎥
⎦

=
⎡
⎢
⎢
⎢
⎣

01×3𝑛 01×𝑛−1 0

01×3𝑛 01×𝑛−1 0

⎤
⎥
⎥
⎥
⎦

(6.42)

𝜕g
𝜕𝜀 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝜕(Δ𝑣𝑖 − Δ𝑣max)
𝜕𝜀

𝜕(𝑇 − 𝑇max)
𝜕𝜀

𝜕(−Δ𝑡𝑗 + Δ𝑡min)
𝜕𝜀

𝜕(𝜏 − 𝜏max)
𝜕𝜀

𝜕(−𝜏 + 𝜏min)
𝜕𝜀

𝜕(𝜀 − 𝜀max)
𝜕𝜀

𝜕(−𝜀 + 𝜀min)
𝜕𝜀

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0𝑛×1

0

0𝑛−1×1

0

0

1

−1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(6.43)

Once the new decision variable has been accommodated into the algorithm, a simulation is run to
test its performance and illustrate the method. A periodic departure orbit around the L1 point has been
selected for such a simulation. Based on intuition, a northern halo orbit with the same Jacobi constant
as the TCO has been selected for this test. The parameter settings used for the simulation are gathered
in Table 6.3. The maximum transfer time has been increased to 250 days since previous results were
close to the upper boundary. The remaining parameters have again been selected as reasonable for
illustration purposes but will be tuned appropriately in Section 8.1.

The simulation has been run, and the resulting trajectory is plotted in Figure 6.5. It can be observed
that the optimizer has selected a departure location from the Halo orbit that points the velocity in a
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Table 6.3: Low-thrust Simulation settings for departure from northern halo orbit.

Parameter Value Units Description

Algorithm
𝑛 50 [-] Number of impulses

Initialization
𝑇0 50 [days] Initial transfer time
𝜏0 220 [days] Initial target epoch
𝜀0 0 [days] Initial departure epoch

Boundaries
𝑇max 250 [days] Maximum transfer time
𝜏range [200, 240] [days] Range of target epoch
𝜀range [0, 1] 𝑃 [days] Range of departure epoch

favorable direction to reach the target. It will be analyzed in Section 8.1 whether this is the absolute
optimum or other locations within the departure orbit could lead to more favorable ICs. It is also ob-
served from the figure that the resulting trajectory has again the Δ𝑣’s aligned in a way that creates a
smooth transition between departure and target.
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Figure 6.5: Simulated Low-Thrust optimum trajectory from Northern Halo Orbit,

The thrust profile is plotted in Figure 6.6, where it can be observed that the engine reaches a
maximum thrust of 85% of the maximum thrust available in two segments. The remaining trajectory is
a stepped but relatively smooth progression that includes a coasting phase close to departure.
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Figure 6.6: Thrust profile low-thrust trajectory from Northern Halo orbit.

The numerical results of the simulation are gathered in Table 6.4. Something that stands out is the
total transfer time, which has been given a larger upper boundary of 250 days and has converged to
93 days, which is now well within the limits. The arrival epoch sits at 234 days for a maximum limit
of 240 days. It is also observed that the transfer’s total Δ𝑉 has decreased from 997.9 m/s in previous
simulations (see Table 6.2) to 874.5 m/s, which is a reduction of 12%. However, it is still believed that
this value can be further reduced by conducting a departure orbit analysis (Chapter 8). It is also notable
that the runtime of the simulation has only marginally increased with respect to the optimization that
did not include the departure epoch.

Table 6.4: Simulation results of low-thrust transfer departing from northern halo orbit.

Parameter Optimum Units Description

Δ𝑉 874.5 [m/s] Total transfer Δ𝑉
T 94.02 [days] Total transfer time
𝜏 234.11 [days] Arrival epoch
𝜀 0.0058 [-] Departure epoch
t 80 [s] Simulation runtime

Figure 6.7 shows the optimization history for the simulation. It can be observed that the algorithm
reaches the convergence area with only a few more iterations than in the previous simulation (see
Figure 6.4). This may indicate that it has converged to a local minimum, and the search could improve
by dividing the search space further. A suggestion is to split the departure orbit into four regions and
run four independent simulations. Finally, the number of iterations behaves as expected, reaching a
slightly higher number than in the previous simulation but still kept within the same order of magnitude.

6.7. Low-thrust Optimization Remarks
In this chapter, we have finalized the design of the low-thrust trajectory optimization algorithm that will
be used to find optimum transfer trajectories to 20006 RH120. The problem has been formulated using
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Figure 6.7: Optimization history for low-thrust trajectory from Northern Halo Orbit.

a single-shooting approach, in which the trajectory is divided into segments where impulses are applied.
For the formulation to work within a reasonable computation time, the analytical partials for the cost and
constraint functions have been derived and presented in this chapter. Initially, the transfers departed
from a fixed L1 point, and later, the algorithm was augmented to optimize the departure location within
a given periodic orbit. The algorithm has been tested, first departing from L1 and then selecting a
departure orbit that matches the Jacobi constant of 2006 RH120. The algorithm has proven to work
correctly and converge in a very low runtime of the order of oneminute. The impulsive delta-v’s obtained
follow a smooth transition that resembles the low-thrust engine’s continuous nature.

Several essential aspects of the trajectory optimization problem have been learned in this section.
The first one is that progressively increasing the simulations’ complexity has been very advantageous.
Initially, arriving at a problem formulation with good convergence was challenging. Different options
could be tested by starting from more accessible simulations, and the most promising were followed.
At the same time, this approach has allowed checking that the analytical partials work correctly before
increasing the complexity of the derivations. At first, getting the analytical gradient of cost and constraint
functions was difficult. Many trials and errors were required. As familiarity with the problemwas gaining,
the complexity was increased, and by the time the most complex version of the algorithm was reached,
increasing the number of variables to accommodate the departure orbit resulted in a relatively easy
task.

Although the test simulations in this section resulted in feasible trajectories, some work is still left to
verify and validate the algorithm and, most importantly, tune it, which will be performed in later chapters
(Section 8.1).

Finally, it should be noted that much effort and time was devoted to other transcription methods.
Specifically, at first, many resources were devoted to developing a multiple-shooting scheme, where
constraints were satisfied at every intermediate point. The simulations run with this formulation had
low convergence rates, and the resulting impulses were not smooth. The simulations became ex-
tremely difficult to test as the number of intermediate points was more than three, which resulted in an
inadequate representation of the continuous nature of the low-thrust engine.

The current optimization approach that was developed has been presented, with all ups and downs,
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tested, and discussed in this chapter.





7
Code, Verification and Validation

In this chapter, the code of the low-thrust optimization algorithm is explained and verified, and the
problem is validated. The code structure is first presented, which is divided into three modules labeled
as propagation module, optimization module, and Tudat module. Then, the code presented is verified
using a list of unit tests. Finally, the optimization problem is validated.

7.1. Code Structure
The code implemented throughout this thesis is explained in this section. In particular, the overall
architecture is presented, and the main functions and data flow are explained. Attention is paid to
the final version of the algorithm, which includes the complete version of the problem formulations
presented in Chapter 6. It is noted that earlier development versions of the code also fit within the
same structure but with reduced capabilities.

As said already, the code can be structured in three main modules: a propagation module, an
optimization module, and an external Tudat module. The former involves all the functions that allow
propagating a body in the dynamics model selected for a specified time starting from a set of ICs.
The second one is the thesis’s most innovative and complex module, which deals with all the code
related to optimizing a low-thrust trajectory from a given departure orbit and targeting a specific TCO.
The external Tudat module retrieves ephemeris data of celestial objects and propagates trajectories
for benchmarking.

7.1.1. Propagation Module

The propagation module is a fundamental block of the algorithm developed for this thesis. It is part of
the code responsible for propagating a trajectory numerically for given departure conditions and transfer
time. The block generates a discrete history of epochs, their corresponding states (position-velocity),
and the STM.

63
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Figure 7.1: Flow-chart of software propagation module.

Figure 7.1 provides a flow chart of the module, where the inputs, outputs, and internal flow are
depicted. The block framed under the dashed line is responsible for the propagation and is represented
in the code by a MATLAB function called propagateDynamics.m. As can be observed from the chart,
the propagation module makes use of a MATLAB built-in ODE solver to propagate the trajectory. This
solver is fed with the integration time and initial conditions and with the differential equation to be solved,
which is represented by the Dynamics Model block in the chart.

The dynamics model is a function that takes as input a state vector at a given epoch and returns
the derivative of such state. The function implements the analytical expression for the derivative of
the dynamics equations. The dynamics model used for the simulations is the Hill Three-body problem
as given by Equation 3.22 in non-dimensional units. At the same time, the position-velocity state is
augmented by the elements of the STM, which are integrated according to Equation 4.6. The function
that implements these dynamics is called Hill3BP.m and has an input-output structure that suits the
ODE solver.

The ODE solver used is either ode45 or ode78, as already discussed and selected in Section 4.3.
Together with the initial state and transfer time, the solver takes as input the integration settings, such
as the relative and absolute tolerances, which are gathered in the script parameters.m.

The trajectory can be plotted, although this step is not always performed. For such, a MATLAB script
called plotTrajectory.m has been written, which takes as input the variables from parameters.m

and the output of the propagation module and generates a 3-D figure useful for visualization.

The script parameters.m is fundamental to most of the code and includes relevant variables stored
under a MATLAB structure array data type, which can then be passed into any function as a single
argument. The main elements that this array includes are:

• Information of periodic orbits, including ICs and periods for several orbit families and the selected
departure orbit for the simulation.

• Integrator and optimizer settings, including tolerances and the maximum number of iterations.

• Useful orbit dynamics constants, such as gravitation parameters and distances.

• Spacecraft parameters, such as the mass or maximum thrust.
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• Variables relevant to the Hill model, which include the non-dimensionalization factors, among
others.

• Relevant points of interest, such as position and velocity of L1 and position vectors of Earth and
Sun.

• All 2006 RH120 relevant data, such as epochs of interest, ephemeris model, and propagated
trajectory in the Hill model.

• Ephemeneris of other celestial bodies during at the epoch ranges of the TCO, such as the Sun
and the Moon.

• Settings for graphs and plots, such as font size and line thickness.

7.1.2. Optimization Module

The optimization module is the second fundamental block in the code for this thesis. It encompasses
the functions and scripts that generate an optimal low-thrust trajectory. To illustrate this module, a
flow-chart is presented in Figure 7.2.

Non-linear

 Constraints

Optimization Module

Initialization

Cost Function

FMINCON

Parameters

Plot Trajectory

Figure 7.2: Flow chart of optimization module.

The block framed under the dashed line is where the optimization occurs, and it is activated by
running the MATLAB script optimize.m. At the beginning of the script, the simulation settings are
selected, such as the number of trajectory segments 𝑛, the initialization departure and target epochs, 𝜏0
and 𝜀0 respectively, and the initialization transfer time 𝑇0. At the same time, the script parameters.m is
run, which generates a structure array with relevant constants and variables to be used in the simulation.

Subsequently, the input is processed to generate the decision variables vector for initializing the al-
gorithm, X0. These decision variables are input to the optimization solver, the MATLAB built-in function
fmincon. The other inputs that fmincon takes are two functions that evaluate the cost function and
constraint functions and their gradients at the decision variables introduced.

The function fmincon iterates the decision variables until it converges to an optimum that minimizes
the cost function while meeting the constraints. The iteration process is internal and obscure to the user,
but it is a gradient-based search that uses the gradient introduced to update the decision variables.
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Next, the initialization function, the cost function, and the non-linear constraint functions are ex-
plained.

It is noted that the propagation module is accessed on several occasions within the optimization
module every time a trajectory needs to be propagated. This occurs within the initialization block and
within the non-linear constraints block, as it will be subsequently explained.

Initialization

The initialization is performed by a function called initialize.m, which takes as input the initializa-
tion departure and arrival epochs, 𝜀0 and 𝜏0 respectively, the transfer time 𝑇0, the number of delta-v
impulses 𝑛, and the structure array from parameters.m. The function populates the initialization de-
cision variable vector X0 (Equation 6.38) with the missing values for Δ𝑣0’s and Δ𝑡0’s. The steps to
generate X0 from the input parameters are the following:

1. Find departure state by using propagateDynamics to propagate the departure orbit initial con-
ditions until initialization epoch 𝜀0.

2. Find target state by using propagateDynamics to propagate the TCO orbit initial conditions
until initialization target epoch 𝜏0.

3. Generate two-impulse trajectory from departure to target in transfer time 𝑇0
(a) Find departure velocity using differentialCorrector function.

(b) Propagate trajectory using propagateDynamics.

4. Find the intermediate initialization epochs by diving the two-impulse trajectory into 𝑛−1 segments.
5. Find the initialization departure velocity vectors

(a) Save the direction of the velocity vector at the intermediate points.

(b) Set the magnitude of the velocity vectors to a small value.

Cost function

The cost function is called costFcn.m, and takes as input a decision variable vector and computes
the total Δ𝑉. At the same time, it computes the gradient of the cost function with respect to the decision
variable vector. The cost function and gradient have been defined in Equations 6.4 and 6.9, respec-
tively. Since a sum of independent variables forms the cost function, the cost function and the gradient
are simple calculations. To drive the cost to lower values, it suffices to select small values for the Δ𝑣’s.
However, the complexity of the problem arises when these Δ𝑣 vectors have to result in a trajectory that
meets the problem constraints defined in the following function.

Non-linear Constraints

The non-linear constraints passed to the fmincon function are gathered under a function named
nlConst.m. The function works similarly as costFcn.m. It takes as input the vector of decision vari-
ables X (Equation 6.38) and evaluates the equality and inequality constraints and their corresponding
gradients. These expressions were provided in Section 6.2:

• Equality constraints: Equation 6.6.
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• Equality constraints gradient: Equations 6.11, 6.12, 6.25, 6.34, and 6.41.
• Inequality constraints: Equation 6.39.
• Inequality constraints gradient: Equations 6.35 to 6.37, 6.42 and 6.43.

The function nlConst.m starts by computing all the necessary elements to populate the equations
above. These elements come from the problem transcription, represented in Figure 6.1. The list of
steps that the function takes to compute these parameters subsequently is the following:

1. Find departure state by using propagateDynamics to propagate the departure orbit initial con-
ditions until epoch 𝜀.

2. Find target state by using propagateDynamics to propagate the TCO orbit initial conditions
until epoch 𝜏.

3. Propagate the trajectory arcs from the departure.

(a) Compute departure velocity from initial orbit conditions at 𝜀 and the first Δ𝑣 from the decision
variable vector.

(b) Use propagateDynamics to propagate the trajectory arc and STM for a propagation time
set by the first Δ𝑡 from the decision variable vector.

(c) Use the state vector of the last epoch as the initial conditions for the next trajectory arc.

(d) Loop through all the remaining arcs with the Δ𝑣’s and Δ𝑡’s from the decision variables vector.

4. With all the transfer information stored conveniently in variables, evaluate the constraints and
gradients.

(a) Evaluate the terminal constraint by comparing the transfer’s last and target states.

(b) Evaluate the gradient of the terminal constraint for the optimization algorithm to drive the
decision variables toward meeting the terminal constraint.

(c) Evaluate the inequality constraints by checking that the Δ𝑣’s, Δ𝑡’s, total transfer time, depar-
ture, and arrival epoch are within the established boundaries.

(d) Evaluate the gradient of the boundary constraints for the optimization algorithm to drive the
decision variables toward meeting the boundary constraints.

7.1.3. Tudat Module

The third module is that of the external software Tudat, which is internally developed by the Faculty
of Aerospace Engineering of Delft University of Technology. The software provides an Astrodynamics
toolbox which includes propagation and optimization modules that can be accessed via Python.

Two are the main capabilities of Tudat that are used in this thesis are hereby explained:

• The SPICEmodule allows access to JPL’s SPICE database of celestial body ephemeris while also
allowing to import data of TCOs retrieved from NASA’s Small-Body Database through the func-
tion load_kernel. At the same time, the functions get_body_cartesian_state_at_epoch
allow obtaining the state of a celestial body in the reference frame specified – normally the
EMOJ2000 – and relative to the Earth. This is useful for retrieving states of the TCO 2006 RH120
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while also the Sun’s position relative to the Earth to compute the transformation between inertial
and synodic frames.

• the numerical_simulator function, which allows propagating bodies with specific settings,
such as reference frameEMOJ2000 and relative to the Earth. This simulation is used to propagate
the initial conditions of the TCO 2006 RH120 with a simplified dynamical model including Earth,
Sun, and Moon’s point-mass gravity fields and assess the magnitude of perturbing accelerations
such as SRP or spherical harmonics.

All the generated data can be transferred to MATLAB by means of Python’s package scipy.io

with the function savemat.

7.2. Code Verification
The algorithm verification process is important to ensure that the code written works as intended. For
such a task, all the functions are tested independently through unit tests. A list of all the functions and
scripts with their dependencies is gathered in Table 7.1.

Unit tests are performed to check that every code unit performs as expected. For such, funda-
mental calculations are tested. Each function has a verification method tailored to them. The unit test
verification is subsequently explained and discussed for each function.

Dynamics Model

The function Hill3BP has two main units that must be verified. These are the model equations and
the STM calculation.

To verify the dynamics model, the ideal test would consist of replicating a benchmark solution and
measuring the tolerance. However, due to a lack of benchmark data in the Hill three-body problem, the
following alternative tests have been run to verify the model:

1. The trajectory of the TCO has been propagated in the dynamical model from initial conditions at a
given epoch, and the Jacobi Constant has been computed for every propagated epoch. The test
shows that the Jacobi constant remains indeed constant for every propagated point, resulting in
a successful verification test as shown in Table B.1 in Appendix B.

2. The trajectory of the TCO has been propagated in the Hill model with the same initial conditions
as Takahashi et al., 2022. Although numerical data is not provided, the resulting trajectory can
be plotted and compared with the plots in Takahashi et al., 2022. Upon visual inspection of the
figures, both trajectories look the same, which is considered a successful pass of the test. The
figures are shown in Figure 7.3.

The verification tests for the dynamics model are more qualitative than numerical and do not provide
values for the numerical tolerance of the model. However, they give enough reason to believe that the
model has been coded appropriately, and therefore it is assumed that the model is verified.

To test the STM, a nominal trajectory is run from a certain initial state, and the STM is computed.
Then, three tests are performed to ensure that the result obtained is correct:
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(a) 2006 RH120 trajectory in the Hill model from Takahashi et al., 2022.
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(b) 2006 RH120 trajectory in the Hill model computed for verification.

Figure 7.3: Verification of dynamical model by comparing the propagated trajectory of 2006 RH120 to Takahashi et al., 2022.
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Table 7.1: List of MATLAB functions and scripts.

Function Description Dependencies

Main Functions

Hill3BP Implements dynamics Hill model equations of
motion and STM to propagate using ODE solver

propagateDynamics Propagates initial position-velocity state in the Hill
model for a specified transfer time

Hill3BP, ode45,
ode78

differentialCorrector Computes departure velocity to arrive at a given
target

propagateDynamics

costFcn Evaluates the cost function and its gradient from
decision variable vector

nlConst Evaluates trajectory constraints and their gradient
from decision variable vector

propagateDynamics,
Hill3BP

initialize Generates initialization trajectory decision
variables from simulation settings

propagateDynamics,
differentialCorrector

optimize.m Optimizes the decision variables that define a
trajectory given a list of simulation settings

findOrbit, fingICs,
propagateDynamics,
fmincon,
plotTransfer

Auximiary Functions

emo2synodic Transforms vectors in EMOJ2000 to Synodic
rotating frame

ssJ2JD Transforms time in Seconds since J2000 to Julian
Date

jacobiConstant Computes the Jacobi constant given a
position-velocity state

Plots

plotRelevantPoints Plots TCO trajectory, Earth and L1

plotTrajectory Plots a trajectory as given by state history

plotPeriodicOrbit Plots periodic orbit specified by orbital period

plotVelocities Plots the Δ𝑉 impulse vectors of a transfer
trajectory

1. The determinant of the STM has to be equal to unity.
2. A second propagation with a small deviation in the initial state is run. It is checked that the

deviation in the final state equals the product of the STM and the deviation in the departure state,
i.e. 𝛿s𝑓 = Φ𝛿s0. Results of this test are gathered in Table B.2

3. The STM is computed using numerical integration using finite differences, and the result is com-
pared. Results of this test are gathered in Table B.3.

By performing tests 2 and 3, a typo was found in the computation of the STM in Hill3BP. The typo
was corrected, and afterward, the unit tests passed, resulting in a numerical accuracy of the STM of
O(10−6) m for position and O(10−12) m/s for velocity, which are well below the numerical requirements



7.2. Code Verification 71

established.

Differential Corrector

The differentialCorrector function can be verified by inspecting its outcome. Once the STM
and dynamics model is verified, the outcome of the DC function is a departure velocity that has the
spacecraft arrive at a specified target point with given tolerances. Therefore, the function is verified by
simply inspecting that these characteristics are met.

During the many simulation runs, it was noted that the algorithm does not always converge and is
dependent on the initial conditions but is also sensitive to the arrival point. Once the target is behind the
Earth, the resulting trajectory is greatly perturbed by its gravitation, making it very difficult to converge.
In such cases, increasing the maximum number of iterations for the algorithm helps converge to the
right solution, but it is not guaranteed. A flag is triggered when the algorithm does not converge in such
cases.

It should also be noted that the STM is an essential aspect of the algorithm. Before verifying this
matrix, an error was made, and the DC had difficulty converging. However, even with errors in the
STM, the algorithm managed to converge in most of the cases.

Auxiliary Functions

The three auxiliary functions from Table 7.1 are verified as follows:

• emo2synodic – The transformation from an EMOJ2000 frame to a synodic frame is verified
using a test with benchmark data. The test replicates a position-velocity state of RH120 at a
specific epoch in the Hill model from its state in the EMOJ2000 frame. The epoch initializing
the RH120 orbit is used for such a test. The state in the frame EMOJ2000 at such epoch is
obtained from SPICE and accessed through Tudat’s interface. After running the test, the results
are gathered in Table B.4, showing that the computed synodic state matches the benchmark to 40
km accuracy, while the velocity matches 5 mm/s. Both position and velocity accuracy are above
the numerical tolerance requirements selected for the thesis, which are set to 10 m and 1 mm/s,
respectively. However, the precise accuracy of the benchmark solution is not known, as it may be
possible that our transformation is more accurate since it uses ephemeris data for the position of
the Sun. Nonetheless, this potential error must be assumed for all the calculations involving this
transformation. The numbers are, however, close enough to consider the transformation verified.

• ssJ2JD – This function that transforms Seconds since J2000 to Julian Date is verified by the
external software Tudat, which already has verified built-in functions for computing such transfor-
mation. The same input has been given to both software, and the same output has been obtained,
so the function has passed the verification test, and the results are gathered in Table B.6.

• jacobiConstant – A test to verify the function has been implemented, consisting of running the
function selecting as input a position-velocity state vector of which the Jacobi Constant is already
known. The benchmark data for this test are obtained from Kalantonis, 2020. The function has
passed the verification test, and the results are gathered in Table B.5.
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Cost Function and Constraints

Different tests are run to verify their proper working under this category, encompassing the functions
costFcn and nlConst from Table 7.1. First, evaluating the cost function and constraints for a given
set of decision variables is tested. For a known set of Δ𝑣’s, the total cost function can be checked by
adding all the values and comparing them with the function’s output. At the same time, for a list of deci-
sion variables, the expected outcome of the constraint function is known beforehand since constraints
represent the physical limitations of the problem that has been chosen. The part of these two functions
that do not have an evident physical interpretation is the gradient of the functions. For such, fmincon
provides a handy tool that checks whether the input functions’ gradients are correct. It evaluates them
internally by performing numerically deriving them using finite differences. It should be noted that the
gradient checks initially helped identify several mistakes in the analytical derivatives until they were
adjusted and passed the tests, verifying the method.

Optimization

Under this category, two functions are verified: the script optimize.m and the function initialize.

Verification of the latter is conducted similarly to the cost function and constraints in that the results
have a physical interpretation that can be observed. In this case, it should be observed that the initial-
ization trajectory converges to the target, that the Δ𝑡s are equal and add up to the total transfer time,
and that the Δ𝑣’s point into the velocity direction, i.e. are tangent to the trajectory. The function has
been tested for different inputs and has been verified.

Given the lack of benchmark data, the verification of the optimize.m script is also performed by
inspecting the results. Two things are checked: first, the trajectory generated meets all the constraints.
Second, the search history has a profile that converges to a solution that reduces the Δ𝑣. On top of
this, measures have to be taken to ensure that the algorithm does not converge to a local minimum.
This is done case-by-case and consists of modifying the inputs and searching restricted regions for
different solutions.

7.3. Model Validation
Validation of the code is fundamental to ensure that the correct problem is being solved and that the
simulations properly represent the behavior in physical reality. In astrodynamics, comparing results
with reality tends to be difficult since innovative aspects take decades to be incorporated into missions.
Therefore, it is common to validate results by comparing them with the outcome of other studies avail-
able in literature to ensure that reasonable assumptions have been made and that the results obtained
are comparable.

In this particular study, it is not possible to replicate other studies’ results with the developed algo-
rithm since it uses a combination of a dynamics model and an optimization method that has not been
found in the literature. However, it is still possible to roughly compare the cost of transfers with other
studies targeting TCOs in a similar dynamical environment to ensure that the results are reasonable
and that the transfers have a similar shape.

The assumptions taken regarding mass, maximum thrust, and trajectory constraints have already
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been validated when selecting them in Section 2.4. In Chapter 8, it will be observed that the fam-
ily of reproduced periodic orbits around Lagrangian points matches the structure of families found in
the literature. At the same time, all the continuous low-thrust trajectories are validated in two ways:
first, the shape of the converged transfers seems to leave the periodic orbits following the shape of
manifold trajectories with small thrust input, and the overall structure of the transfer seems to navi-
gate such manifolds while still drifting off due to the application of the continuous thrust. Secondly,
the converged trajectories present a smooth thrust profile, with the vectors’ orientation also presenting
smooth transitions that adapt to the transfer’s velocity vectors. These converged transfers are similar
to the continuous low-thrust transfers generated in other studies, such as Chikine, 2021. And third,
the overall Δ𝑉 for the transfer trajectory is of the same order of magnitude as other studies targeting
TCOs, Brelsford et al., 2016 (797 m/s) or Chyba and Patterson, 2019, 725 m/s. At the same time,
the approach and assumptions are fundamentally different. The solutions obtained in this thesis range
from 200 m/s to 900 m/s.

These arguments support the premise that the results obtained in this thesis appropriately replicate
actual behavior and are therefore considered validated.





8
Results

This chapter gathers the results of applying the low-thrust optimization algorithm designed to find opti-
mal transfers between L1 periodic orbits and TCO 2006 RH120. The chapter begins with a fundamental
step: tuning the algorithm to solve the specific problem at hand. Then, the results of the departure or-
bit analysis are presented. Three families of periodic orbits are scouted to characterize the optimum
transfers departing from them.

8.1. Algorithm Tuning
The tuning of the algorithm is crucial to obtain an optimal solution. This section looks at three aspects
that affect a simulation’s outcome: the number of impulses selected, the initialization parameters, and
the search space boundaries. This analysis helps us understand how robust the algorithm is to different
inputs and will allow searching for optimal transfers in an efficient way.

This analysis starts by pre-selecting the simulation settings to generate a baseline solution. The
baseline solution will be used to compare the algorithm’s performance when tuning the settings. The
settings from this baseline simulation are gathered in Table 8.1 and have been selected based on insight
gained while developing and testing the algorithm. The baseline simulation will have 30 impulses, a
maximum transfer time of 100 days (short transfer), and a target epoch range between 200 and 240
since the TCO enters the Hill sphere. The epoch range was selected after identifying a potential low-
cost region when conducting a preliminary search with the DC algorithm.

The baseline transfer with these settings is plotted in Figure 8.1, and its main results are summarized
in Table 8.2. The main characteristics of the baseline transfer obtained are the following: a delta-v cost
of 789 m/s, a transfer time of 99.4 days, close to the upper limit from Table 8.1, and a target epoch of
227 days since the TCO enters the Hill sphere.

75
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Table 8.1: Simulation settings for baseline trajectory used for algorithm tuning.

Parameter Value Units Description

Algorithm
𝑛 30 [-] Number of impulses

Initialization
𝑇0 50 [days] Initial transfer time
𝜏0 220 [days] Initial target epoch
𝜀0 0 [days] Initial departure epoch

Boundaries
𝑇max 100 [days] Maximum transfer time
𝜏range [200, 240] [days] Range of target epoch
𝜀range [−0.5, 0.5] 𝑃 [days] Range of departure epoch
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Figure 8.1: Baseline transfer trajectory used for algorithm tuning.

Table 8.2: Optimization results for baseline transfer used for algorithm tuning.

Parameter Optimum Units Description

Δ𝑉 789.2400 [m/s] Total transfer Δ𝑉
T 99.4016 [days] Total transfer time
𝜏 227.4611 [days] Arrival epoch
𝜀 -0.2024𝑃 [days] Departure epoch

Δ𝑡mean 3.4276 [days] Mean arc length
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Next, the tuning analysis is presented, covering the three different settings categories from Ta-
ble 8.1: the number of trajectory impulses, the algorithm initialization parameters, and the search space
boundaries.

8.1.1. Number of Impulses

The number of delta-v impulses 𝑛 measures the discretization selected to describe the continuous
thrust trajectory. It is equivalently described by the number of trajectory arcs since it equals 𝑛−1. This
number is chosen to make the discretization as realistic as possible while computationally viable. On
one side of the spectrum, this number is high enough such that a smooth line represents the thrust
profile. On the other side of the spectrum, we find a trajectory composed of a few impulses, which is
an inadequate representation of the behavior of a continuous thruster.

By increasing the number of delta-v impulses, the decision variable vector and constraints matrices
increase in size, complicating the convergence, slowing the optimization process, and increasing the
memory used for a single simulation. Therefore, it is essential to find an appropriate number of impulses
that provides a good trade-off between the validity of the model and the computational requirements.

Several trajectories have been run with different numbers of impulses, and the results are gathered
in Table 8.3.

Table 8.3: Algorithm performance parameters for a different number of delta-v impulses (𝑛).

𝑛 function iterations Δ𝑉 runtime Δ𝑡min Δ𝑡max Δ𝑡avg 𝑇opt
evaluations [m/s] [s] [days] [days] [days] [days]

5 208 77 774.10 7 20.00 29.58 24.36 97.30
10 694 205 781.28 24 8.73 14.56 10.91 98.55
25 622 168 787.58 24 3.49 5.01 4.13 99.29
35 788 198 789.27 33 2.92 4.14 3.42 99.40
50 1674 388 784.38 90 1.61 2.68 2.03 99.77
75 2448 555 789.21 185 1.11 1.68 1.34 99.80
100 2907 697 788.57 316 0.84 1.25 1.00 99.85

Several conclusions can be extracted from these results. First, a low number of impulses corre-
sponds to a low Δ𝑉 transfer cost. This was expected since a low number of impulses corresponds to
more efficient high-impulse transfers (see Section 6.5) that do not accurately represent the continuous
nature of the electric propulsion system. However, it is observed that from 25 points onwards, the Δ𝑉
stagnates. We can also observe that for 25 and more impulses, the average arc length is well within
the established limits of half and eight days (see section 6.1). However, this number highly depends
on the total transfer time of the obtained solution.

In light of these results, a rule of thumb for selecting the number of impulses is to start with a number
equal to half the initialization transfer time (i.e. 25 impulses for a 50 days initialization transfer) and then
adjust it if the resulting optimum arc lengths exceed the boundary set in Section 6.1 (eight days). This
allows considering the results to be a good representation of the actual behavior of the continuous
thrust and, therefore, the resulting Δ𝑉 to be reliable.
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8.1.2. Initialization

To measure how robust the algorithm is to changes in the initialization conditions, the initialization
parameters are varied from those of the baseline trajectory, and the results are inspected. The initial-
ization parameters varied are the departure epoch 𝜀0, the transfer time 𝑇0, and the target epoch 𝜏0.
The results of the simulations are gathered in Table 8.4. Note that the orbit period 𝑃 has been dropped
from the definition of 𝜀 for simplicity.

Table 8.4: Tuning results for initialization parameters. * indicates transfer not converged.

Parameter varied Δ𝑉 𝑇 𝜏 𝜀 Δ𝑡mean
[m/s] [days] [days] [-] [days]

𝜀0 = −0.1 789.2648 99.4019 227.4557 -0.2023 3.4277
𝜀0 = −0.5 789.2731 99.4028 227.4470 -0.2024 3.4277
𝜀0 = 0.1 789.2705 99.4028 227.4474 -0.2024 3.4277
𝜀0 = 0.5 789.2717 99.4028 227.4474 -0.2024 3.4277

𝜏0 = 200 789.2715 99.4027 227.4475 -0.2024 3.4277
𝜏0 = 210 789.2705 99.4027 227.4476 -0.2024 3.4277
𝜏0 = 230 789.2703 99.4027 227.4474 -0.2024 3.4277
𝜏0 = 240 789.2707 99.4027 227.4476 -0.2024 3.4277

𝑇0 = 30 789.2705 99.4027 227.4476 -0.2024 3.4277
𝑇0 = 40 789.2705 99.4027 227.4476 -0.2024 3.4277
𝑇0 = 60 789.2701 99.4027 227.4478 -0.2024 3.4277
𝑇0 = 70* 1126.0 100.000 239.6815 -0.4882 3.4483

Overall, results in Table 8.4 show that the simulation is not sensitive to initialization parameters. The
initialization departure epoch 𝜀0 has been varied from zero to ±𝑃/2, and the algorithm has managed
to output the same optimum at 𝜀0 = −0.2023𝑃. Similarly, the algorithm has been proven to reach the
same optimum independent of the target epoch selected. It should be noted that the target epoch was
varied within the search range, and it is left to check whether this is still the case when the range is
further extended to other regions of the TCO with different characteristics. Regarding the transfer time,
except for 𝑇 = 70, which is a non-converged solution, the algorithm converges to the same solution
irrespective of the initialization transfer time selected.

8.1.3. Boundaries

It is important to understand the algorithm’s behavior when certain search space boundaries are mod-
ified. For such, the parameters bounding the algorithm’s search space have been modified, and the
results are gathered in Table 8.5. The parameters varied are the maximum transfer time, the maximum
target epoch, and the range of departure epochs.

The maximum transfer time is a crucial parameter with important effects on the solution obtained by
the algorithm. It was observed from the previous studies that the solution converged to a transfer time
of 99.4 days, very close to the limit set at 100 days. This hinted that increasing the maximum allowed
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Table 8.5: Tuning results for search space boundaries. * Indicated trajectory not converged.

Parameter varied Δ𝑉 𝑇 𝜏 𝜀 Δ𝑡mean
[m/s] [days] [days] [-] [days]

𝑇max = 30 846.4310 35.1190 200.9090 -0.0128 1.2110
𝑇max = 70 899.2362 69.9442 215.5416 -0.1147 2.4119
𝑇max = 80 829.0552 79.8248 220.2520 -0.1451 2.7526
𝑇max = 150 740.3624 149.2478 229.2004 -0.3361 5.1465
𝑇max = 200 676.3838 194.4887 235.8390 -0.4852 6.7065
𝑇max = 250 672.1220 199.2304 237.1613 -0.4883 6.8700

𝜀range = [0, 0.25] 869.5966 90.8997 231.0389 8.1460e-04 3.1345
𝜀range = [0.25, 0.5] 885.2174 69.7962 239.8787 0.2507 2.4068
𝜀range = [0.5, 0.75] 798.6623 99.7043 224.0324 0.7479 3.4381
𝜀range = [0.75, 1] 789.4131 99.3893 227.5184 0.7991 3.427

𝜏range = [0, 250] 789.2662 99.4030 227.4581 -0.2024 3.4277
𝜏range = [0, 100] 242.1163 98.8957 76.3128 -0.4817 3.4102
𝜏range = [100, 200]* 1216.4 100.0087 140.1878 0.1202 3.4486
𝜏range = [200, 300] 789.1691 99.4088 227.6648 -0.2020 3.4279

transfer time would result in more optimal solutions. This is indeed the case, as can be observed in
Table 8.5 for 𝑇max > 150 days, where the overall Δ𝑉 is reduced. However, the transfer time boundary
is a design parameter that may depend on mission constraints. In this case, we are less interested in
long transfer time solutions since TCOs are hard to identify before entering the Hill sphere and stay
captured for a short period. Therefore, shorter transfer times are preferred. At the same time, when
looking at the trajectory generated by longer transfer time, it is observed that they fall into a category
of different orbits which revolve around the Earth before arriving at the target (see Figure 8.2). These
solutions are not preferred for this algorithm since the single-shooting nature is not the most reliable
when revolutions are performed. When running preliminary simulations, these solutions were found
very difficult to converge and were very sensitive to initial conditions.

Regarding the tests that vary the range for departure epochs, an orbit has been divided into four
segments to check whether the algorithm is missing any optimum when the whole orbit is selected as
the range. It is observed that no other optimal departure locations are found when searching specifically
in other segments of the orbit. This is not the case when varying the range of target epochs.

Several tests have been run varying the range of target epochs. First, the minimum target epoch
is set to zero, and the algorithm searches for a solution within a large segment of the TCO orbit for
up to 250 days. It is observed that, for the initialization time of 220 days, the solver still manages to
converge to the baseline solution. To check that the solution is not converging to a local minimum,
the target epoch range has been subdivided into smaller segments of 100 days, similar to what was
done in the tests with the departure range. It is observed that the solver was indeed missing a very
significant minimum found in the range of zero to 100 days with an initialization epoch of 50 days. The
transfer cost found is 242 m/s, which translates into a delta-v reduction of almost 70% with respect to
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Figure 8.2: Simulation for 𝑇max = 250 days with one revolution around the Earth.

the baseline solution. For the range of 100 to 200 days, the solver did not converge, and for the range
of 200 to 300 days, the solver converged to the baseline solution. It is then concluded that subdividing
the target range into segments of 100 days is fundamental to finding optimal trajectories.

It should be noted that for some simulations, the algorithm does not converge. Two reasons have
been identified for this behavior: the solver has reached the maximum number of iterations and needs
more to converge, or the settings are too strict for the constraints to be met.

Inspecting the solution obtained in the target epoch range of 0 to 100 days, it is noted that the
transfer structure differs significantly from the baseline result. The trajectory is plotted in Figure 8.3. It
is observed that the transfer targets an entirely different region of the TCO, and the departure epoch
sets the spacecraft in a different direction as compared with the baseline transfer in Figure 8.1. This
type of transfer will be further discussed in Section 8.2.

8.1.4. Tunning Conclusions

The tuning test has resulted in beneficial recommendations for the algorithm to find optimal transfers to
2006 RH120. First, regarding the discretization in trajectory arcs, it is concluded that any number above
25 leads to a reasonable approximation of the continuous-thrust behavior for the transfers studied with
a transfer time of roughly 100 days. The initialization conditions have shown that the algorithm is
reasonably robust to initialization when kept within the boundaries selected for the problem. Finally,
regarding the search space boundaries, it is concluded that themaximum transfer time 𝑇max significantly
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Figure 8.3: Optimum transfer trajectory targeting epoch range of 0 to 100 days.

impacts the optimal trajectory found and should be tuned according to mission design specifications.
The study of the departure epoch range 𝜀range has concluded that the algorithm does a good job of
finding the optimal departure epoch without the need to split the departure into smaller search regions.
On the contrary, the study of the arrival epoch range 𝜏range has shown that it is convenient to limit the
search space to avoid missing potential optimal solutions. It is recommended to split the search space
into several independent simulations covering a range smaller than 100 days.

8.2. Departure Orbit Analysis
In light of the results obtained in the tuning section, simulations are prepared to characterize the set of
potential transfer trajectories from orbits around L1 to rendezvous with 2006 RH120. This study aims
to develop recommendations on the most optimal departure orbits while providing information on the
cost in terms of Δ𝑉 and transfer time when departing from a range of available orbits. This study shows
the potential of the algorithm developed to perform a preliminary study of the transfer opportunities to
a TCO that can be easily extended to other future observed TCOs as they are found.

Three families of trajectories are analyzed to study the attractive departure orbits that may be used
in a mission: the northern and southern halo orbits and the vertical Lyapunov family. An analysis of
these three families and several different orbits within each family covers a broad range of departure
possibilities. The orbits are received as a list of position-velocity initial states and the corresponding
orbit periods, which are propagated in the Hill dynamical model using the developed software. The
results are subsequently analyzed.
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8.2.1. Northern Halo Orbits

Since the families of orbits obtained include a high number of orbits obtained through continuation,
a subset of orbits has been selected to represent the different types within the family. For such, ten
are selected from the 60 northern halo orbits, with an even spreading over the family. The same is
done with the southern halo orbits. The selected sub-set of orbits is plotted in Figure 8.4, and their
characteristics are gathered in Appendix C, Table C.1.

-0.6

0.5

-0.4

-0.2

0.5

0

  Earth

z
 [
-]

0.2

0

Northern Halo Orbits

y [-]

0.4

x [-]

0

0.6

  L1

0.8

-0.5 -0.5

RH120

NH-1

NH-7

NH-13

NH-19

NH-25

NH-31

NH-37

NH-43

NH-49

NH-55

Figure 8.4: Set of northern halo orbits selected for simulations.

The low-thrust trajectory optimization algorithm has been run for a sub-set of orbits from each family
targeting any point in the TCO trajectory up until 𝜏 = 300 days. As concluded in Section 8.1, the most
reliable means of scouting the whole target trajectory is to subdivide it into three different target ranges:
from zero to 100, from 100 to 200, and from 200 to 300 days since Hill entry. From the three ranges,
the trajectories that lead to the lowest Δ𝑉 from each departure orbit have been gathered in Table 8.6.

From the results, the first thing noticed is that some simulations led to surprisingly low Δ𝑉 costs
for the transfer, ranging from 200 m/s in the best case to 700 m/s in the worst. It is observed that the
transfers that have the lowest Δ𝑉 depart from orbits comprised between NH-19 and NH-31, which have
Jacobi constants ranging between 2.9 and 1.5. The lowest Δ𝑉 found departs from NH-25, which has
the Jacobi constant closest to that of the TCO 2006 RH120 (2.22 versus 2.15). Another aspect noticed
is that, when looking at the target epoch, the algorithm converged to a solution close to entry in the
Hill sphere, ranging from 40 to 85 days. The solutions found when specifically searching in ranges
from 100 to 300 days led to transfer trajectories with higher Δ𝑉. At the same time, it is observed that
for these trajectories, the converged transfer time is always close to the upper limit of 100 days. This
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Table 8.6: Simulation results for transfers departing from northern halo orbits with short transfer times.

Orbit Γ Δ𝑉 𝑇 𝜏 𝜀 Δ𝑡mean Figure
[-] [m/s] [days] [days] [-] [days]

NH-1 4.0053 700.0292 98.4526 43.8175 -0.9027 4.1022 Figure 8.5a
NH-7 3.9057 580.8656 99.2471 60.7606 -0.9017 4.1353 Figure 8.5b
NH-13 3.5081 407.2876 98.8278 75.1418 -0.8766 4.1178
NH-19 2.9172 268.6776 98.5853 72.5024 -0.8771 4.1077
NH-25 2.2193 214.1788 98.6243 76.2834 -0.8588 4.1093 Figure 8.5c
NH-31 1.5570 298.6782 99.0607 77.8442 -0.7773 4.1275
NH-37 1.1556 366.6617 98.9729 81.6914 -0.6926 4.1239
NH-43 1.0718 455.5223 98.7140 85.3124 -0.6215 4.1131 Figure 8.5d
NH-49 1.1800 554.8885 98.6809 85.7602 -0.5424 4.1117
NH-55 1.3819 623.2124 98.7516 84.1166 -0.4701 4.1147

issue was already identified when tuning the algorithm in Section 8.1 and will be addressed further in
this section.

The simulation results have converged to different types of transfers depending on the departure
halo orbit. A selection has been plotted in Figure 8.5 to understand the results better.

Figure 8.5a displays the transfer to the earliest rendezvous epoch in the TCO trajectory, at 43 days
since entry in the Hill sphere of the Earth, departing from the smallest northern halo orbit. The transfer
cost in terms of Δ𝑉 is 700 m/s, which is considered feasible for the spacecraft, although far from the
best that can be found. The transfer time is close to 100 days, meaning the TCO must be identified
before entering the Hill sphere for the transfer to be feasible for a real-time mission. Figure 8.5b shows
the transfer from a slightly larger orbit with a similar period, which results in a similar result as obtained
in Figure 8.5a. The rendezvous location is found at a later epoch of 60 days, which is still considered
relatively early in the path of the TCO within the Hill sphere. The transfer cost found is 17% smaller
than departing from NH-1. As the departure orbit increases, the transfer with the lowest cost is found
for departing from NH-25. It can be observed in Figure 8.5c how the departure conditions already set
the spacecraft in a trajectory that almost matches that of the target TCO, requiring a small input from
the low-thrust engine to rendezvous. Figure 8.5d shows the converged transfer departing from a larger
halo orbit far enough from L1 that almost resembles a vertical orbit around the Earth. The transfer cost
is double that of NH-25 while still being significantly low, at 455 m/s.

Shifting the analysis to the transfer time, it was already discussed in Section 8.1 the issue of having
trajectories converge to the upper limit of 100 days. However, the topic is further analyzed since the
issue is common to every generated trajectory for this family of orbits. For such, the simulations de-
parting from northern halo orbits have been repeated, allowing longer transfer times of up to 250 days
to check whether significantly lower cost transfers are found. The results are gathered in Table 8.7. A
comparison between the delta-v cost of extending the transfer time and the short transfers are depicted
in Figure 8.6. Relevant trajectories are plotted in Figure 8.7.

The results show how, indeed, lower-cost transfers are obtained in general. However, the savings
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(a) Δ𝑉 = 700 m/s, 𝑇 = 99 days, 𝜏 = 43 days.
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(b) Δ𝑉 = 580 m/s, 𝑇 = 99 days, 𝜏 = 60 days.
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(c) Δ𝑉 = 214 m/s, 𝑇 = 98 days, 𝜏 = 76 days.
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Figure 8.5: Optimal transfers from northern halo orbits with short transfer times.

are not significant. This behavior is illustrated in Figure 8.6, where the lines almost overlap for the
first up to NH-25, and the long transfers perform better as the orbit count increases. In the case of
departing from NH-25, which corresponds to the lowest cost transfer found from short transfer times,
the cost when allowing for longer transfer time is the same, while resulting in a less convenient transfer
for being longer and arriving significantly later in the trajectory of the TCO within the Earth’s Hill sphere.
The difference in the trajectory is shown in Figure 8.7a, where it can be seen that the transfer is very
similar, only different in the late rendezvous location. Other orbits only present savings of tenths of
meters per second, while the greatest saving is found for NH-55 at 161 m/s. Figure 8.7b shows the
transfer from NH-35. It can be observed how, similarly to NH-25, the converged solution for longer
transfer time loops around the Earth. This result is not convenient for the algorithm developed since



8.2. Departure Orbit Analysis 85

Table 8.7: Simulation results for transfers departing from northern halo orbits with long transfer times.

Orbit Γ Δ𝑉 𝑇 𝜏 𝜀 Δ𝑡mean Figure
[-] [m/s] [days] [days] [-] [days]

NH-1 4.0053 588.9951 202.4398 146.2637 -0.7839 8.4350
NH-7 3.9057 565.2599 172.4481 142.7116 -0.8827 7.1853
NH-13 3.5081 426.9549 174.0119 144.1472 -0.8780 7.2505
NH-19 2.9172 293.6346 175.1371 144.9039 -0.8721 7.2974
NH-25 2.2193 216.2384 176.7622 145.0118 -0.8550 7.3651 Figure 8.7a
NH-31 1.5570 253.3309 184.1661 145.4349 -0.8109 7.6736
NH-37 1.1556 348.4713 189.9137 146.2956 -0.7327 7.9131 Figure 8.7b
NH-43 1.0718 381.8877 186.9039 147.4151 -0.6487 7.7877
NH-49 1.1800 424.6109 186.1202 147.3465 -0.5613 7.7550
NH-55 1.3819 462.5440 186.2715 147.6074 -0.4604 7.7613
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Figure 8.6: Comparison between delta-v cost of short and long transfer times departing from northern halo orbits.

such loops are inadequate for the single-shooting strategy, and the solutions are very sensitive to initial
conditions and algorithm settings.

8.2.2. Southern Halo Orbits

The Hill three-body problem’s symmetry allows the mirroring of the northern periodic orbits in the x-y
plane to generate the southern family of halo orbits; to a long extent, the orbits have the same charac-
teristics as the northern ones. The direction of the velocity vectors and the departure location change,
allowing the opportunity to find different transfer orbits. The same search strategy for the northern halo
orbits is repeated here for the southern family. The orbits under study are represented in Figure 8.8,
and their characteristics are gathered in Appendix C, Table C.2.

Several simulations are rerun, splitting the target epoch range into three parts of 100 days for each
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Figure 8.7: Optimal transfers from northern halo orbits with long transfer times.
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Figure 8.8: Set of southern halo orbits selected for simulations.

orbit, and the transfer with the lowest cost is stored in Table 8.8. Results show that the lowest-cost
transfers are not found departing from orbits with the same energy as the TCO, as was the case for
the northern halos, but the lowest cost is found for the more giant halos located closer to the Earth.
In particular: SH-43 and SH-55. The cost of these transfers is 350 m/s, which is 100 m/s larger than
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the lowest-cost transfer found for the northern orbits. Like in the northern halo case, all solutions
have converged to a transfer time of close to 100 days, while the range of optimal target epochs has
increased, finding solutions at up to 200 days. A number of these transfers are plotted in Figure 8.9.

Table 8.8: Simulation results for transfers departing from southern halo orbits with short transfer times.

Orbit Γ Δ𝑉 𝑇 𝜏 𝜀 Δ𝑡mean Figure
[-] [m/s] [days] [days] [-] [days]

SH-1 4.0053 727.9499 98.1818 38.3155 -0.8932 4.0909
SH-7 3.9057 758.7998 99.3856 34.1537 -0.9045 4.1411
SH-13 3.5081 816.8276 99.4308 24.8341 0.2717 4.1429 Figure 8.9a
SH-19 2.9172 860.4729 99.5441 37.5366 -0.1385 4.1477
SH-25 2.2193 609.2422 99.3829 93.6257 -0.2643 4.1410
SH-31 1.5570 594.2568 99.0714 99.0540 -0.1463 4.1280 Figure 8.9b
SH-37 1.1556 478.4649 99.3865 200.9902 0.6999 4.1411
SH-43 1.0718 341.0866 99.6393 200.4384 0.5586 4.1516 Figure 8.9c
SH-49 1.1800 544.1910 98.9372 168.8252 -0.3080 4.1224
SH-55 1.3819 354.4766 99.2760 201.7034 -0.4982 4.1365 Figure 8.9d

Figure 8.9a shows the transfer that targets the earliest TCO epoch at 24 days after entry into Earth’s
Hill sphere. The transfer is costly, at 816 m/s, but still feasible for a mission to intercept the asteroid
at this epoch. Figure 8.9b shows a transfer from SH-31, which has an energy similar to that of the
TCO. The simulation has converged to a target epoch of 99 days at 594 m/s, significantly higher than
the cost of transferring from the mirroring northern halo. It is observed that the transfer gets relatively
close to Earth, which bends the trajectory significantly before reaching the target. The following two
transfers, depicted in Figures 8.9c and 8.9d, correspond to the lowest transfer cost of the family of
southern halo orbits and have converged to a similar target epoch at 200 and 201 days respectively.
Upon inspection of the transfers, it is observed that they perform a complete revolution around the
Earth before reaching the target. Similarly to the lengthy transfer time case studied with the northern
halo orbits, these trajectories are not very well suited for the algorithm since they are sensitive to initial
conditions and algorithm settings. The transfers, however, show alternatives for more complex transfer
options, which can be investigated in future studies.

Similarly to the northern halo case, longer transfer times are studied next since the previous solu-
tions converged close to the upper boundary of the transfer time. Although the resulting transfers in
the northern halo case did not necessarily result in lower transfer costs, the study is repeated in case
different results are found with the southern family. For such, the maximum transfer time has been
increased to 300 days, and the simulations have been run. The results are gathered in Table 8.9, and
a comparison between the delta-v cost of short and long transfers is depicted in Figure 8.10.

Results show how the overall transfer cost is lower for longer transfers, ranging from 209 to 580
m/s. It is observed in Figure 8.10 that the cost reduction is more significant than for the northern halos
(see Figure 8.6). The largest differences are found in orbits up to SH-37. For orbits closer to the Earth,
SH-43 to SH-55, the trend is broken, and the cost of longer transfers is comparable to that of short
transfers.
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Figure 8.9: Optimal transfers from southern halo orbits with short transfer times.

Solutions for SH-19 and SH-25 are close to the lowest possible transfer cost found up until now.
The transfer time that leads to optimum transfers is close to 200 days, reaching up to 245 days for SH-
37. The optimal target epoch varies significantly for different transfers. However, it results in almost
the same point for the first half of the orbits, from SH-1 until SH-31, at 146 days since the TCO enters
the Hill sphere. The simulations that depart from orbits closer to Earth, SH-43 and SH-55, target late
segments of the TCO at 289 and 235 days, respectively. Although this target region is not attractive
at first for mission design purposes, these solutions can be helpful in case a contingency makes the
spacecraft miss the initial departure window and forces a late arrival.
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Table 8.9: Simulation results for transfers departing from southern halo orbits with long transfer times.

Orbit Γ Δ𝑉 𝑇 𝜏 𝜀 Δ𝑡mean Figure
[-] [m/s] [days] [days] [-] [days]

SH-1 4.0053 580.6190 203.5740 146.3018 -0.7915 8.4822
SH-7 3.9057 466.9797 204.5499 146.4314 -0.8138 8.5229
SH-13 3.5081 325.3641 206.6239 146.3916 -0.8441 8.6093
SH-19 2.9172 209.0804 203.0068 146.8196 -0.8438 8.4586 Figure 8.11a
SH-25 2.2193 242.9883 202.2871 147.0927 -0.8026 8.4286
SH-31 1.5570 363.8070 198.1095 148.4969 -0.7578 8.2546
SH-37 1.1556 419.3551 245.9536 110.9705 -0.7356 10.2481
SH-43 1.0718 345.0870 205.5074 289.9600 -0.6457 8.5628 Figure 8.11b
SH-49 1.1800 524.5705 242.5134 96.9555 -0.4761 10.1047
SH-55 1.3819 388.6657 240.0086 235.7637 -0.4873 10.0004
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Figure 8.10: Comparison between delta-v cost of short and long transfer times departing from southern halo orbits.

Regarding the mean arc transfer length, it is observed that it is significantly higher than for shorter
transfers. This was expected and suggested that the number of arcs should be increased to represent
the continuous thrust better. However, the algorithm is sensitive to the number of impulses selected
for such long transfer times and converges into different trajectories with significantly different transfer
strategies. This was expected, as the algorithm is not optimized for such long transfer times.

Two transfers have been plotted to visualize the shape of the trajectories in Figure 8.11. It can be
observed that the trajectories perform a few loops around the Earth before reaching the target. Mainly,
Figure 8.11a performs a trajectory that seems to spiral through Earth, crossing it horizontally from the L1
side of Earth until the target is on the other side. The trajectory in Figure 8.11b follows a similar transfer
strategy to that of Figure 8.9d, although targeting a later epoch. However, the cost of the maneuver
is only ten m/s less costly, which is considered insignificant. This indicates that, for the same transfer
strategy, increasing the transfer time does not necessarily decrease the total cost of the transfer.
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Figure 8.11: Optimal transfers from southern halo orbits with long transfer times.

8.2.3. Vertical Lyapunov Orbits

The third and last type of orbits considered for the study are the vertical Lyapunov orbits. These orbits
are selected since, although not very common operationally, the direction of the velocity vector along
the trajectory indicates that there may be good transfers to the TCO.

From the vertical Lyapunov orbit family, a sub-set is selected, comprising ten orbits representing
different types of orbits evenly distributed within the family. These are plotted Figure 8.12, and their
characteristics are given in Appendix C, Table C.3. It should be noted that the smallest and largest
orbits from the family are not studied since the simulations run with them did not converge to feasible
solutions.

Similarly to the study with the Halo orbits, a set of simulations is run for different orbits targeting
TCO epochs from zero to 300 days since entering the Hill sphere, subdivided into intervals of 100 days
for low transfer times below 100 days. The results of the simulations are gathered in Table 8.10. It is
observed that transfers from vertical Lyapunov orbits result in a similar cost range to the halo families,
ranging from 261 to 954 m/s for the orbits studied, converging at close to 100 days of transfer time.
Except for a few cases, it is noticed that most transfers target late epochs above 250 days since Hill
entry. It is also noted that the correlation between the lowest transfer cost and the Jacobi constant of
the TCO is insignificant, finding the minimum cost for a constant of 1.24, compared to 2.15 for 2006
RH120.

Figure 8.13 displays two transfers from Table 8.10 with different characteristics. Figure 8.13a shows
a transfer that targets an early TCO trajectory epoch at 33 days since Hill entry for a transfer cost of
568 m/s. This result represents the lowest cost transfer for such an early target epoch which may be
relevant for mission design. A similar transfer solution was obtained for the southern halo orbit with
a transfer cost of 200 m/s more costly. At the same time, the transfer is fairly direct from departure,
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Figure 8.12: Vertical Lyapunov Orbits used for simulations.

Table 8.10: Simulation results for transfers departing from vertical Lyapunov orbits for short transfer times.

Orbit Γ Δ𝑉 𝑇 𝜏 𝜀 Δ𝑡mean Figure
[-] [m/s] [days] [days] [-] [days]

VL-10 183.0537 702.2921 99.8571 25.1599 0.0298 4.1607
VL-16 185.2360 568.9044 99.5597 33.3141 0.0478 4.1483 Figure 8.13a
VL-22 189.7033 510.0306 98.9121 278.6646 -0.0361 4.1213
VL-28 197.3863 733.3887 99.6611 273.1383 -0.0399 4.1525
VL-34 209.5737 315.2357 98.7145 254.0525 -0.0840 4.1131
VL-40 227.1009 261.3732 98.6899 253.7137 -0.0812 4.1121 Figure 8.13b
VL-46 249.0960 279.7345 98.7060 254.1160 -0.0765 4.1127
VL-52 272.8099 343.6091 98.6393 257.3757 -0.0612 4.1100
VL-58 294.6740 423.5047 98.6472 258.1600 -0.0552 4.1103
VL-64 312.1727 954.1650 99.7676 78.7814 -0.2686 4.1570
VL-70 325.0260 622.9095 98.8145 256.5320 -0.0656 4.1173

which is more reliable than looping transfers since the model error is smaller. Figure 8.13b shows a
different trajectory type that targets an epoch of 250 days. It is more representative of the remaining
transfers from the family. The transfer cost is significantly low, close to the lowest found, for a fairly
direct transfer. The departure direction sets the spacecraft in a path that aligns with the TCO, allowing
such an efficient transfer.
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Figure 8.13: Optimal transfers departing from vertical Lyapunov orbits with short transfer times.

The study is repeated for longer transfer times, up to 300 days, to check for lower-cost alternative
transfers. The results are gathered in Table 8.11 and compared in Figure 8.14. It is observed in Fig-
ure 8.14 that increasing the transfer time significantly reduces the transfer cost for some orbits (VL-16,
VL-28, and VL-64), while others have a comparable cost (VL-46, VL-52, VL-58, and VL-70). Table 8.11
shows that an all-time lowest-cost transfer has been found departing from VL-34, costing 190 m/s. Re-
garding the transfer times, they are, in most cases, above 200 days, and the target epochs are divided
into two regions: one at roughly 130 days and another in the region of 260 to 290 days.

Table 8.11: Simulation results for transfers departing from vertical Lyapunov orbits for long transfer times.

Orbit Γ Δ𝑉 𝑇 𝜏 𝜀 Δ𝑡mean Figure
[-] [m/s] [days] [days] [-] [days]

VL-10 183.0537 517.1368 241.9603 131.2710 -0.2123 10.0817
VL-16 185.2360 346.0850 239.3231 135.1089 -0.1909 9.9718 Figure 8.15a
VL-22 189.7033 641.8813 124.7532 148.0555 -0.2901 5.1980
VL-28 197.3863 280.8604 211.0734 294.2948 -0.2893 8.7947
VL-34 209.5737 190.7907 216.7015 292.4988 -0.3039 9.0292 Figure 8.15b
VL-40 227.1009 197.8307 200.9493 261.3999 -0.3380 8.3729
VL-46 249.0960 273.5348 232.2596 278.3464 -0.3618 9.6775
VL-52 272.8099 323.7843 225.9700 262.9392 -0.4046 9.4154
VL-58 294.6740 450.3673 240.1608 264.6954 -0.4178 10.0067
VL-64 312.1727 525.1014 240.6634 263.2169 -0.3836 10.0276
VL-70 325.0260 627.2119 243.6004 263.1727 -0.3635 10.1500

A representative trajectory of each region is plotted in Figure 8.15. Figure 8.15a shows a transfer
that targets an epoch of 135 days. Inspecting the transfer, it is observed that the strategy is similar to
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Figure 8.14: Comparison between delta-v cost of short and long transfer times departing from vertical Lyapunov orbits.

that of Figure 8.13a, only allowing the spacecraft to loop further around the Earth to lower the transfer
cost by 200 m/s. Figure 8.15b represents the lowest-cost transfer, costing 190 m/s. Upon inspection,
the strategy is similar to that of Figure 8.13b, although again, letting the spacecraft loop further around
the Earth. The departure orbit sets the spacecraft on a trajectory aligning with the target for a large
range until rendezvous 216 days from departure. Although the transfer is less costly, it only reduces
the cost with respect to the shorter transfer in Figure 8.13b by 70 m/s. The reduction in propellant mass
should be traded against transfer time and rendezvous location in the mission design process.
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Figure 8.15: Optimal transfers departing from vertical Lyapunov orbits with long transfer times.
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8.2.4. General Remarks on Departure Orbit

Several remarks can be extracted from the departure orbit analysis of the three families of Lagrangian-
point orbits studied.

First, regarding the transfer time analysis, it has been observed that most short-transfer trajectories
converge to the established upper limit of 100 days for the three orbit families. Letting the algorithm run
for longer transfer times than 100 days generally reduces the cost of the transfers. However, this cost
reduction is not significant for many of the orbits studied. Generally, longer transfers also converge
to late target epochs in the TCO orbit. Late target epochs are less attractive from a mission design
perspective since they are close to when the TCO leaves the Earth-Moon system. Another downside
of long-transfer trajectories is that they tend to perform more than one revolution around the Earth,
which is not the best use case for the developed algorithm. The trajectories obtained with the tool
developed for this research are sensitive to initial conditions and algorithm settings. This means that
the optimality of long-transfer solutions is less reliable than short-time transfers. However, the results
obtained are important in understanding the potential delta-v savings that long transfers offer.

For the analysis of the target epoch and Δ𝑉, Figure 8.16 has been plotted, combining the simulation
results of the different orbit families and transfer durations. This chart shows the Δ𝑉 cost as a function
of the target epoch for the three orbit families studied. The simulations are divided between short
transfers, which roughly take 100 days, and long transfers, which take between 180 and 250 days.
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Figure 8.16: Δ𝑉 as a function of target epoch for different families of orbits and different transfer times. NH = Norther Halo, SH
= Shourthern Halo, and VL = Vertial Lyapunov.

Figure 8.16 it is observed that several optimum transfers have been found spanning over an exten-
sive range of target epochs. Among these, very low-cost transfers of 200 m/s can be obtained targeting
three regions of the TCO: 75 days (early target), 150 days (mid-range target), and 250-300 days (late
target). Northern halo orbits offer low-cost short-time transfers for the early targets while also offering
low-cost longer-time transfers in the target mid-range. For the late targets, the best results are provided
by vertical Lyapunov orbits. They also provide low-cost 200 m/s transfers with long transfer times while
also allowing for shorter transfers of 250-300 m/s. The best performance of the southern orbits is found
in long transfers in the target mid-range. However, it only matches that of the northern halo orbits while
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performing significantly worse at the short transfers.

Regarding the energy of the departure orbit, measured through the Jacobi constant Γ, it is a general
trend that those closer to the energy of the TCO result in less costly transfers. This can be observed in
Figure 8.17, where the lowest cost transfers depart from orbits with the Jacobi constant closer to that
of the TCO, and the cost increases as they get further apart. It should be noted, though, that another
significant factor influencing the transfer cost is the direction of the velocity vector at departure. Lower-
cost transfers were generally found from favorable departure directions that align with the target epoch
velocity.
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Figure 8.17: Transfer cost as a function of Jacobi constant Γ.





9
Conclusions and Future Work

This final chapter gathers the conclusions of the present research and provides recommendations about
potential improvements and extensions of the work.

9.1. Conclusions
This report has dealt with the preliminary design of low-thrust transfer trajectories from periodic orbits
around the Sun-Earth L1 point to answer the main research question:

How can transfers originating near the Sun-Earth L1 be leveraged to target Temporarily Captured
Orbiters such as 2006 RH120 in a spacecraft configuration that uses electric propulsion?

The research question is answered by dividing it into more specific sub-questions

• Sub-question 1: How can the optimization problem be formulated to conduct a preliminary anal-
ysis on transfers departing from orbits around L1?

The optimization problem has been formulated in such a way that the partial derivatives of the cost
and constraint functions were derived analytically. This allowed for the algorithm to converge into low-
thrust optimization transfers for a fraction of the computation cost of standard optimization methods,
where the partial derivatives are computed numerically. These analytical solutions have been possible
thanks to reducing the dynamics model to the Hill three-body problem and the continuous thrust model
to a discrete set of delta-v impulses.

The algorithm has been designed by progressively increasing the complexity and capabilities of
the method. It has resulted in a robust and fast tool that consistently optimizes transfers from different
departure orbits near the Sun-Earth L1 point. Some of the optimization variables included in the problem
are the departure location within a pre-selected orbit, the rendezvous location within the TCO trajectory
inside Earth’s Hill sphere, the magnitude of the impulses, and the duration of the transfer.
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• Sub-question 2: How do design parameters such as departure orbit or rendezvous location affect
the delta-v cost of the transfers?

The developed tool has been used to analyze three families of periodic orbits and develop recom-
mendations for mission designers on the performance of different orbits, transfer times, and rendezvous
locations. Most orbits analyzed resulted in feasible optimal transfers to 2006 RH120, with total transfer
delta-v’s ranging from 190 to 900 m/s. Northern Halo orbits have resulted in the most promising de-
parture family of orbits, with a preference for orbits with the same Jacobi constant as the target TCO.
These orbits allow targeting early epochs of the TCO trajectory within the Earth’s Hill sphere, in a short
transfer time of 100 days, with a low delta-v cost of 200 m/s. In general, southern halo orbits resulted in
worse departure conditions, while vertical Lyapunov orbits were an excellent candidate for short-time
transfers to later epochs in the TCO trajectory.

The most reliable optimum solutions were obtained for short-time transfers (100 days) that perform
less than a revolution around the Earth. However, some solutions have been found with low delta-v
costs that perform more than one revolution around the Earth. The developed algorithm has not been
designed to be robust to these types of transfers, and a tool specifically designed to study fly-bys may
be needed to survey these types of transfers.

The vicinity of the Sun-Earth L1 point has been proven to be a favorable environment for a lightweight
spacecraft to hibernate until a TCO is detected. Its proximity to the entry point of TCOs into the Earth-
Moon system allows targeting segments of the TCO orbit at the beginning of the excursion, which can
be favorable for maximizing the observation time of the TCO before leaving the system. At the same
time, optimal transfers have been found for intermediate and late epochs in the trajectory of the TCO,
offering a wide departure window versatile for mission-design purposes.

9.2. Recommendations for Future Work
The present research has many potential implementations that did not fit in the time allotted for the mas-
ter thesis and are recommended for future work. Subsequently, there is a list of some implementations
that could serve as the subject of study of future thesis works or research projects.

• The first recommendation for future work is to extend the study to other TCOs, such as the recently
discovered 2020 CD3 or the virtual TCOs generated by Granvik et al., 2012. This extension of
the work was originally intended to be included in the present research, but the project’s time
constraints did not allow it.

• Another potential extension of the present work is to modify the algorithm to accommodate fly-bys
around the Earth. The single-shooting strategy used in this thesis has resulted in a robust and
reliable tool for relatively short direct transfers of up to 100 days. The algorithm has also found a
set of longer transfers that perform revolutions around the Earth with low delta-v costs. However,
these solutions were very sensitive to initialization settings and could benefit from a dedicated
tool. An excellent first candidate for this implementation that could still leverage analytical gra-
dients is the Sims-Flanagan transcription (Sims & Flanagan, 1999). It consists of propagating
the spacecraft forward from departure and backward from the target and forcing state continu-
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ity at the midpoint. Other schemes that may be suitable for longer revolving trajectories are the
multiple-shooting methods. They extend the single-shooting scheme to include multiple interme-
diate continuity points that can force the solution to perform a specified number of revolutions
around the Earth.

• Another reasonable extension of the work is to include a more complex representation of the
dynamics model that represents the TCO environment more accurately. To keep the complexity
of the model at a level that permits the computation of the gradients analytically, the circular-
restricted four-body model could be explored. This model would allow including the effect of the
Moon in the simulations, which has been identified as crucial to replicate the capture conditions
of the TCO by Urrutxua et al., 2015. As such, the solar radiation pressure could also be included
in the model, which introduces an acceleration in the direction opposite to the Sun (fixed in the
synodic frame), which may have implications on the shape and cost of the computed transfers.

• A third extension to the present work is to use a more accurate thrust model. The controls of
the thrust engine could be added and introduce the effect of the thruster as an acceleration in
the dynamical model instead of delta-v impulses. This will allow expression of the optimization
objective as minimization of the propellant consumed and integration of the spacecraft’s mass
over the transfer trajectory.

• A final recommendation on a potential extension of this work is to include mission-related consid-
erations regarding the departure orbit selected. For example, the cost of reaching each specific
hibernation orbit could be addressed, as well as performing a sensitivity analysis on the effect of
contingencies, such as reduced thrust or the cost of late departure when a nominal transfer has
been selected.





A
Differential Correction

The method solves a Two-Point Boundary Value Problem (TPBVP) by reducing it to an Initial Value
Problem (IVP). The TPBVP to be solved is the following:

Problem A.0.1 Find a solution to the differential equation:

r̈ = f(𝑡, r, ṙ,u) (A.1)

such that the following boundary conditions are met:

r(𝑡 = 𝑡0) = rdep (A.2)

r(𝑡 = 𝑡𝑓) = rarr (A.3)

The differential equation in Equation A.1 describes the motion of the spacecraft in the dynamical
environment and therefore has a different shape for different problems. The problem is reduced to the
following IVP:

Problem A.0.2 Find a solution of the differential Equation A.1 which has the following initial conditions

r(𝑡 = 𝑡0) = rdep (A.4)

ṙ(𝑡 = 𝑡0) = vdep (A.5)

By fixing the departure location, the initial velocity vector vdep can be modified such that the solution
of the differential equation at 𝑡 = 𝑡𝑓 meets the boundary condition in Equation A.3.

To adjust the departure velocity, the differential correctionmethod is introduced. Themethod applied
to the case of trajectory generation is subsequently explained (Heiligers, 2020).

The position of a spacecraft at time 𝑡 is a function of an initial position r0 and velocity v0 at 𝑡 = 𝑡0
such as

r = r(𝑡, r0,v0) (A.6)
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The final arrival position of the spacecraft after propagation time 𝑇, from a departure point rdep and
estimated initial velocity v∗dep is

r∗arr = r(𝑇, rdep,v∗dep) (A.7)

Note that the superscript [ ]∗ is introduced to denote that the value is estimated. Such initial velocity
estimate will most likely not reach the desired target position rtgt, so

r∗arr ≠ rtgt (A.8)

At this point, we introduce a small correction 𝛿v in the initial velocity vector such that

𝛿v = v0 − v∗dep (A.9)

and linearize the rendezvous position of the spacecraft with respect to the initial velocity estimate v∗dep
expanding in a Taylor series such as

r(𝑇, rdep,v0) = rarr = r(𝑇, rdep,v∗dep) +
𝜕r(𝑇, rdep,v0)

𝜕v0
|
v∗dep

(v0 − v∗dep) (A.10)

Imposing that rarr = rtgt, and using definitions from equations A.7 to A.9, the previous equation can
be rewritten as

rtgt = r∗arr +
𝜕r(𝑇, rdep,v0)

𝜕v0
|
v∗dep

𝛿v (A.11)

Recalling the concept of the state transition matrix in Equation 4.5, Equation A.11 can be rewritten
as

rtgt = r∗arr +Φr,v0𝛿v (A.12)

so the initial velocity correction becomes

𝛿v = [Φr,v0(𝑇, 𝑡0)]−1(rtgt − r∗arr) (A.13)



B
Verification Tables

Table B.1: Verification results for dynamics model checking the Jacobi constant in different epochs of a propagated trajectory.

Epoch [days] Jacobi Constant Γ [-]

0 2.15201897650130
42.59 2.15201897650127
172.23 2.15201897650137
264.38 2.15201897650104

Table B.2: Verification results for STM in non-dimensional units. Deviation of 10−11 and transfer time of 24 days.

IC’s Φ𝛿s0 𝛿s𝑓 Error

𝑥 -0.693361274350635 2.34271475098954e-11 2.34267050203130e-11 4.42489582452000e-16
𝑦 0 4.34629721583274e-12 4.34607905219764e-12 2.18163635097306e-16
𝑧 0 1.36628577853453e-11 1.36622380075835e-11 6.19777761778273e-16
�̇� 0.441547893556523 4.85249280438305e-11 4.85238516034769e-11 1.07644035353541e-15
�̇� 0.984290857994792 -4.88303798637160e-11 -4.88303147916369e-11 6.50720791085340e-17
�̇� -1.33927778874451 1.86531950307369e-11 1.86510806798879e-11 2.11435084901443e-15
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Table B.3: Verification results for STM using finite differences in non-dimensional units. Same initial conditions as in Table B.2
for a propagation duration of 24 hours.

Φ

1.0013 -1.6161e-05 1.5064e-05 0.0172 2.9586e-04 1.3011e-07
-2.6387e-05 0.9996 -3.1412e-07 -2.9605e-04 0.0172 -2.8078e-09
1.5072e-05 -1.8510e-07 0.9994 1.3016e-07 -5.6918e-10 0.0172
0.1564 -0.0028 0.0026 1.0008 0.0344 3.0436e-05
-0.0046 -0.0524 -7.3442e-05 -0.0344 0.9990 -8.2037e-07
0.0026 -4.3325e-05 -0.0696 3.0451e-05 -1.6655e-07 0.9994

ΦFD

1.0013 -1.1102e-05 2.2204e-05 0.0172 2.9976e-04 0
-2.6021e-05 0.9996 -3.4694e-07 -2.9594e-04 0.0172 0
1.5613e-05 0 0.9994 1.0408e-06 0 0.0172
0.1564 -0.0028 0.0026 1.0008 0.0344 2.7756e-05
-0.0046 -0.0524 -7.7716e-05 -0.0344 0.9990 0
0.0027 0 -0.0695 8.8818e-05 0 0.9994

Error

-2.3996e-06 -5.0584e-06 -7.1409e-06 -1.2289e-06 -3.9003e-06 1.3011e-07
-3.6590e-07 -2.5116e-07 3.2827e-08 -1.0608e-07 -8.1484e-08 -2.8078e-09
-5.4094e-07 -1.8510e-07 -7.6483e-07 -9.1068e-07 -5.6918e-10 -6.5688e-07
8.5416e-06 -5.4987e-06 -3.3895e-06 3.0583e-06 -2.0400e-06 2.6801e-06
1.4939e-06 -5.2662e-06 4.2740e-06 -3.4735e-06 -1.2595e-05 -8.2037e-07
-3.9899e-05 -4.3325e-05 -5.3892e-05 -5.8366e-05 -1.6655e-07 -2.3411e-05

Table B.4: Verification results for emo2synodic. Benchmark data from Takahashi et al., 2022.

EMO State Benchmark Synodic Computed Synodic Error

𝑥 [km] 703844.715 738504.112 738515.011 10.8991828
𝑦 [km] 309110.719 213454.088 213406.649 47.4382781
𝑧 [km] -955888.743 -955911.279 -955888.743 22.5364624
�̇� [m/s] -223.510136 -134.256874 -134.262197 5.32306984e-3
�̇� [m/s] 339.059284 218.600285 218.573691 2.65940027e-2
�̇� [m/s] -469.134097 -469.106770 -469.134097 2.73271540e-2

Table B.5: Verification results for jacobiConstant in non-dimensional units. Benchmark data from Kalantonis, 2020.

Orbit 1 Orbit 2 Orbit 3

𝑥 0.58126467 0.09738337 1.28678525
𝑦 0 0 0
𝑧 0 0 -0.19596176
�̇� 0 0 0
�̇� 0.67012429 4.35161692 -2.59789645
�̇� 0 1.3

Γbenchmark 4.00531265 -0.06073137 -0.28347259
Γcomputed 4.00531266 -0.06073182 -0.28347258
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Table B.6: Verification results for ssJ2JD. Benchmark obtained from Tudat software.

seconds since J2000 205477435.0
Julian Date Benchamrk 2453923.2110532406
Julian Date Computed 2453923.211053241





C
Periodic Orbits

Table C.1: Northern Halo orbits characteristics used for transfer simulations.

Orbit Period Γ 𝑥0 𝑧0 𝑣0
[days] [-] [-] [-] [-]

NH-1 179.1233 4.0053 -0.7747 0.0031 0.6138
NH-7 178.9488 3.9057 -0.7722 0.1285 0.6492
NH-13 178.1097 3.5081 -0.7582 0.2951 0.7666
NH-19 176.2505 2.9172 -0.7281 0.4529 0.8946
NH-25 172.2162 2.2193 -0.6798 0.6052 0.9991
NH-31 163.4529 1.5570 -0.6123 0.7381 1.0529
NH-37 148.2177 1.1556 -0.5281 0.8204 1.0285
NH-43 130.2385 1.0718 -0.4360 0.8507 0.9311
NH-49 113.2587 1.1800 -0.3402 0.8544 0.7821
NH-55 98.7975 1.3819 -0.2397 0.8473 0.5864
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Table C.2: Southern Halo orbits characteristics used for transfer simulations.

Orbit Period Γ 𝑥0 𝑧0 𝑣0
[days] [-] [-] [-] [-]

SH-1 179.1233 4.0053 -0.7747 -0.0031 0.6138
SH-7 178.9488 3.9057 -0.7722 -0.1285 0.6492
SH-13 178.1097 3.5081 -0.7582 -0.2951 0.7666
SH-19 176.2505 2.9172 -0.7281 -0.4529 0.8946
SH-25 172.2162 2.2193 -0.6798 -0.6052 0.9991
SH-31 163.4529 1.5570 -0.6123 -0.7381 1.0529
SH-37 148.2177 1.1556 -0.5281 -0.8204 1.0285
SH-43 130.2385 1.0718 -0.4360 -0.8507 0.9311
SH-49 113.2587 1.1800 -0.3402 -0.8544 0.7821
SH-55 98.7975 1.3819 -0.2397 -0.8473 0.5864

Table C.3: Vertical Lyapunov orbit characteristics used for transfer simulations.

Orbit Period Γ 𝑥0 𝑣0 𝑤0
[days] [-] [-] [-] [-]

VL-10 183.0537 4.2685 -0.6905 0.0058 -0.2415
VL-16 185.2360 3.9930 -0.6768 0.0346 -0.5788
VL-22 189.7033 3.5058 -0.6528 0.0904 -0.9101
VL-28 197.3863 2.8405 -0.6209 0.1786 -1.2269
VL-34 209.5737 2.0588 -0.5866 0.3022 -1.5139
VL-40 227.1009 1.2400 -0.5575 0.4519 -1.7537
VL-46 249.0960 0.4301 -0.5387 0.6000 -1.9476
VL-52 272.8099 -0.3962 -0.5283 0.7153 -2.1231
VL-58 294.6740 -1.3004 -0.5205 0.7821 -2.3117
VL-64 312.1727 -2.3254 -0.5110 0.8062 -2.5244
VL-70 325.0260 -3.4840 -0.4995 0.8038 -2.7551
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