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Defining a formal model for concurrency in programming languages that addresses conflicting requirements

from programmers, compilers, and architectures has been a long-standing research question. It is widely

believed that traditional axiomatic per-execution models that reason about individual executions do not suffice

to address these conflicting requirements. Consequently, several multi-execution models were proposed that

reason about multiple executions together. Although multi-execution models were major breakthroughs in

satisfying several desired properties, these models are complicated, challenging to adapt to existing language

specifications given in per-execution style, and they are typically not friendly to automated reasoning tools.

In response, we propose a re-execution-based memory model (XMM). Debunking the beliefs around per-

execution and multi-execution models, XMM is (almost) a per-execution model. XMM reasons about individual

executions, but unlike traditional per-execution models, it relates executions by a re-execution principle. As

such, the memory consistency axioms and the out-of-order re-execution mechanics are orthogonal in XMM,

allowing to use it as a semantic framework parameterized by a given axiomatic memory model.

We instantiated the XMM framework for the RC20 language model, and proved that the resulting model

XC20 provides DRF guarantees and allows standard hardware mappings and compiler optimizations. Note-

worthy, XC20 is the first model of its kind that also supports thread sequentialization optimization. Moreover,

XC20 is also amenable to automated reasoning. To demonstrate this, we developed a sound model checker

XMC and evaluated it on several concurrency benchmarks.

CCS Concepts: • Software and its engineering→ Concurrent programming languages; Semantics.
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1 Introduction
Shared relaxed memory concurrency is the de facto programming paradigm for modern multicore

architectures and programming languages. Under relaxed memory models, programs exhibit
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additional executions compared to the executions under interleaving semantics, formally known as

sequential consistency (SC) [Lamport 1979].

By now, relaxedmemory concurrency has emerged as a first-class primitive in several mainstream

programming languages, including C/C++ and Java [ISO/IEC 14882 2011; ISO/IEC 9899 2011;Manson

et al. 2005a]. However, defining a semantic model for relaxed memory concurrency in programming

languages has been a nontrivial challenge as it requires meeting the conflicting requirements of

programmability and performance. We explain this tension in the following example programs

where 𝑋 and 𝑌 are shared variables initialized to 0.

𝑋 = 𝑌 = 0

𝑎 = 𝑋 ;

if (𝑎 == 1)
𝑌 = 1;

𝑏 = 𝑌 ;

if (𝑏 == 1)
𝑋 = 1;

(LBD)

𝑋 = 𝑌 = 0

𝑎 = 𝑋 ;

𝑌 = 1;

𝑏 = 𝑌 ;

if (𝑏 == 1)
𝑋 = 1;

(LB)

𝑋 = 𝑌 = 0

𝑎 = 𝑋 ;

if (𝑎 == 1)
𝑌 = 1;

else
𝑌 = 1;

𝑏 = 𝑌 ;

if (𝑏 == 1)
𝑋 = 1;

(LBfd)

Consider the program LBD, LB, and LBfd. The execution with the outcome 𝑎 = 𝑏 = 1 should

be forbidden for the program LBD as no mainstream architecture exhibits this behavior, and no

program transformation can result in a program that exhibits this behavior. On the other hand, the

same outcome should be possible for the LB program. This outcome can arise if the accesses in the

first thread are reordered, and then the second thread is executed between the accesses in the first

thread. The outcome should also be possible for the LBfd program as a compiler may merge the

control flow branches in the first thread to generate the LB program.

However, under C/C++ concurrency semantics, known as C11 [Batty et al. 2011], all these

programs exhibit the outcome 𝑎 = 𝑏 = 1. In the case of the LBD, this outcome is an out-of-thin-air

(OOTA) outcome. Thus, the C11 model does not provide the data-race-freedom (DRF) guarantee —

the program LBD exhibits a relaxed (non-SC) outcome, even though the program is race-free.

The example above demonstrates the limitation of the C11 concurrency model as it fails to satisfy

the desiderata of conflicting requirements to a programming language relaxed memory model.

• For programmability, themodel must have strong enough constraints to achieve data-race-freedom

guarantees for well-synchronized programs and to forbid infamous OOTA executions.

• For performance, the semantic model must be weak enough to achieve optimal mapping schemes

to the underlying architectures and to allow the desired program transformations performed by

optimizing compilers.

• In addition, the semantics preferably should be executable and support the development of

automated reasoning tools.

As was demonstrated by Batty et al. [2013], ‘per-execution’ based semantic models such as

C11 cannot satisfy these requirements. This is because the executions are analyzed in an isolated

manner, and multiple programs may share the same execution. Consequently, the original C11

model proposed by Batty et al. [2011] was strengthened by [Lahav et al. 2017] under the name

RC11 to achieve data race freedom guarantees at the cost of suboptimal compilation.

In contrast to the per-execution models, the multi-execution models analyze multiple executions

together to differentiate the programs more precisely [Chakraborty and Vafeiadis 2019; Jagadeesan

et al. 2020; Jeffrey and Riely 2016; Jeffrey et al. 2022a; Kang et al. 2017; Paviotti et al. 2020; Pichon-

Pharabod and Sewell 2016]. For instance, the promising semantics (PS) model introduces special

features such as ‘promise’ and ‘certificates’ to analyze alternative executions while operationally

constructing an execution [Kang et al. 2017]. Event structure-based approaches [Chakraborty and

Vafeiadis 2019; Jeffrey and Riely 2016; Paviotti et al. 2020; Pichon-Pharabod and Sewell 2016] capture

multiple executions in a single event structure to differentiate between programs.
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However, being defined in a very different style using complex abstractions, the multi-execution

semantics are hard to integrate into the existing per-execution-based language specifications such

as C/C++ or Java. Moreover, the multi-execution frameworks are tightly integrated with the consis-

tency constraints of a memory model: defining another model with different constraints may require

overhauling the entire semantics from the ground up. Finally, existing multi-execution models

still struggle to support some program transformations; most notably, thread sequentialization has

proven to be quite challenging.

Thus, defining a formal semantic model for modern relaxed concurrency that meets all the

requirements have remained a long-standing problem. To address this problem, we propose XMM,

an (almost) per-execution-based semantic framework that satisfies the desiderata of properties

discussed above in a single model. We instantiate the framework on the C/C++ concurrency model,

in particular, its C20 revision (that is RC20 modulo porf acyclicity) [Margalit and Lahav 2021], to

obtain a memory model we call XC20.
To the best of our knowledge, XC20 is the first model that supports thread sequential-

ization transformation in combination with local reordering and elimination transformations,

and the data-race-freedom guarantee. Sequentialization merges two threads into one, that is,

𝑇1 | | 𝑇2 { 𝑇1;𝑇2. It is an important transformation for parallel programs, where each iteration

of a parallel loop results in concurrently running threads. For such programs, loop unrolling

transformation implies sequentializing multiple threads.

Main idea. XMM is an axiomatic-operational semantic framework that consists of two steps:

(in-order) execution and (out-of-order) re-execution. By in-order execution, XMM can construct a

consistent execution following the program-order and read-from relations (a.k.a. porf). Next, given a

consistent execution, XMM may commit a subset of its events and perform a re-execution following

a set of constraints and by preserving the set of committed events to generate another execution.

The re-execution steps enable XMM to create executions with one or more cycles consisting of

porf relations in an operational manner. Thus, XMM checks the consistency of each execution

individually, similar to the per-execution models, yet is able to relate different executions. We note

that the execution construction steps in XMM are general enough to parameterize XMM over

the consistency constraints and thread-local operational semantic steps for reconstructing the

committed events during re-execution.

XMM is verification-friendly as it is an executable semantic framework due to the operational

steps. To this end, we have developed a model checker XMC. The model checker explores the C20
executions of a given program including the ones with porf cycles. To ensure the correctness of
the model checker, we have proved its soundness. Our experimental evaluation shows that the

model checker can effectively reason about the existing benchmarks for weak memory concurrency.

It is a major step, as most of the state-of-the-art weak memory model checkers such as GenMC

[Kokologiannakis and Vafeiadis 2021] or Nidhugg [Abdulla et al. 2017] construct executions fol-

lowing porf order and hence cannot reason about executions with porf cycles. The existing model

checkers following the multi-execution models, to our knowledge, are either not proven sound

(e.g. [Moiseenko et al. 2022]) or do not handle all primitives (e.g. [Pulte et al. 2019]).

The rest of the paper is structured as follows.

• §2 overviews the key aspects of XMM with examples.

• §3 provides formal semantics of XMM.

• §4 describes the XMC model checking algorithm and its soundness proof.

• §5 discusses the experimental results of XMC.

Finally, the additional technical details and proofs can be found in the supplementary mate-

rial [Moiseenko et al. 2025b].
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2 Overview
This section provides a high-level explanation of the XMM semantics.

2.1 Per-Execution Axiomatic Models for Concurrency
In per-execution axiomatic models for concurrency, a program is represented by a set of consistent

finite execution graphs. An execution graph consists of events as nodes resulting from shared

memory accesses or fences, and various relations as edges among the events. The semantic models

define a set of axioms using the events and relations to check if an execution is consistent.

Depending on the access type, an event is a read (R), write (W), or fence (F). Following C20, a
read event can be non-atomic (na) or atomic with relaxed (rlx) or acquire (acq) memory order. A

write event can be non-atomic (na), or atomic with relaxed (rlx) or release (rel) memory order. A

fence event is atomic with acquire (acq), release (rel), or acquire-release (acq-rel) memory order.

Considering the strength of the memory orders na ⊑ rlx ⊑ {rel, acq} ⊑ acq-rel holds. Unless

mentioned, the events in the concurrently running threads have relaxed atomic memory order

(rlx), and all memory locations are initialized to 0.

An execution contains the following primitive relations between the events.

• Relation program-order (po) denotes the syntactic order between the events.

• Relation reads-from (rf) relates a pair of write and read events with the same written and read

values where the read event has read from the write event. Moreover, every read event reads

from exactly one write event.

• Relation porf denotes a transitive closure of the union of the program order and reads-from.

• Relation modification-order (mo) is a strict total order over same-location writes.

• A successful read-modify-write (RMW) operation results in an rmw relation between a pair of

read and write events on the same location which are also immediate-po related. A failed RMW

results in only a single read (R) event.

For example, Figure 1 shows the execution graphs of the LBD, LB, and LBfd programs which are

consistent under the C20 model.

Limitation. In the per-execution approach, multiple programs may share an execution graph,

and the execution can be allowed or forbidden based on the consistency constraints. For example,

the execution in Figure 1d is allowed by C20 but forbidden in RC20 [Margalit and Lahav 2021].

The RC20 model forbids this execution by requiring the acyclicity of the porf relation to achieve

DRF guarantees. Consequently, RC20 not only forbids read-write reordering in compiler opti-

mization but also results in suboptimal mapping of a read as it introduces a trailing fence for

architectures such as ARM, Power, and RISC-V to forbid out-of-order read-write execution. On the

other hand, C20 allows the execution, leading to an out-of-thin-air behavior in the LBD program.

Thus, the traditional per-execution-based models suffer from a tradeoff between optimization and

programmability guarantees.

Execution construction. The acyclicity of (po ∪ rf) relation in RC20 provides an in-order

execution construction mechanism for several analyses and verification approaches [Abdulla et al.

2015; Doko and Vafeiadis 2016; Kokologiannakis and Vafeiadis 2021; Luo and Demsky 2021; Norris

and Demsky 2013]. At each construction step, an existing execution graph is extended with a new

porf maximal event, and then the consistency of the updated execution is checked. For example,

the executions from Figures 1a to 1c can be constructed following the porf order, preserving the
RC20 consistency constraints at each step. Note that the in-order execution construction cannot

generate the execution graph shown on Figure 1d though LB and LBfd programs may exhibit this

execution under the C20 model.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 72. Publication date: January 2025.
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[𝑋 = 𝑌 = 0]

𝑒1:R (𝑋, 0) 𝑒2:R (𝑌, 0)
po po

rf

(a)

[𝑋 = 𝑌 = 0]

𝑒1:R (𝑋, 0)

𝑒2:W (𝑌, 1)

𝑒3:R (𝑌, 0)
rf

(b)

[𝑋 = 𝑌 = 0]

𝑒1:R (𝑋, 0)

𝑒2:W (𝑌, 1)

𝑒3:R (𝑌, 1)

𝑒4:W (𝑋, 1)

rf

(c)

[𝑋 = 𝑌 = 0]

𝑒1:R (𝑋, 1)

𝑒2:W (𝑌, 1)

𝑒3:R (𝑌, 1)

𝑒4:W (𝑋, 1)

po rf

(d)

Fig. 1. C20 execution graphs. Figure 1a execution is allowed in LBD program but forbidden in LB and LBfd.
The executions Figure 1b and Figure 1c are allowed for the LBfd and LB programs but are forbidden for the
LBD program. Figure 1d is allowed in the LBD, LBfd, and LB programs.

A [𝑋 = 𝑌 = 0]

𝑒1 :R (𝑋, 0)

𝑒2 :W (𝑌, 1)

𝑒3 :R (𝑌, 1)

𝑒4 :W (𝑋, 1)

B [𝑋 = 𝑌 = 0]

𝑒1 :R (𝑋, 0)

𝑒2 :W (𝑌, 1)

𝑒3 :R (𝑌, 1)

𝑒4 :W (𝑋, 1)

C [𝑋 = 𝑌 = 0]

𝑒′
3
:R (𝑌, 1)

D [𝑋 = 𝑌 = 0]

𝑒′
3
:R (𝑌, 1)

𝑒′
4
:W (𝑋, 1)

E [𝑋 = 𝑌 = 0]

𝑒′
1
:R (𝑋, 1) 𝑒′

3
:R (𝑌, 1)

𝑒′
4
:W (𝑋, 1)

F [𝑋 = 𝑌 = 0]

𝑒′
1
:R (𝑋, 1)

𝑒′
2
:W (𝑌, 1)

𝑒′
3
:R (𝑌, 1)

𝑒′
4
:W (𝑋, 1)

Fig. 2. XMM construction of the execution in Figure 1d with (po ∪ rf) cycle for the LB and LBfd programs.

As such, models like RC20 avoid thin-air values by conservatively forbidding all porf cycles,
ensuring that reads can only be added to an execution graph after their corresponding writes. On

the other hand, if one drops porf acyclicity, naive graph construction can lead to thin-air reads,

as shown by LBD example. To avoid thin-air reads and at the same time do not forbid porf cyclic
graphs altogether we need some middle ground. The XMM semantics provide such an approach.

2.2 XMM: A Re-Execution-Based Axiomatic-Operational Model
XMM constructs execution graphs using two operational rules. The in-order execution rule works

similarly as in porf acyclic models, by adding one porf maximal event at a time. The out-of-order

re-execution rule starts with a given execution graph, selects a subset of its commited events, and

re-builds the graph while preserving the committed subgraph. During the re-building process,

adding a read that reads from “nowhere” is allowed only if it was committed in the original graph,

ensuring that its value is grounded by the original execution. Ultimately, all such reads are restored

to read from committed writes.

Let us consider an example in Figure 2, where we construct the execution graph from Figure 1d

for the LB program (similar construction applies to the LBfd program).

• A First, we construct the RC20 consistent graph from Figure 1c following the porf order.
• B Given this execution, we commit events 𝑒2, 𝑒3, 𝑒4, and re-execute the program in C − F .

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 72. Publication date: January 2025.
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• C Next we append the event 𝑒′
3
that preserves the same label as the committed event 𝑒3 in B .

Note that the event 𝑒′
3
does not read from any write and hence has no incoming rf edge.

• D Further, we append a committed event 𝑒′
4
.

• E After this, we append the read event 𝑒′
1
which now reads from an existing write event 𝑒′

4
.

• F Finally, we append the event 𝑒′
2
that restores the committed event W(𝑌, 1) and creates the

read from edge ⟨𝑒′
2
, 𝑒′

3
⟩ ∈ rf. The resulting execution graph is checked to be C20 consistent.

XMM model checking. The re-execution step does not provide any constraint on committing

the subset of events in an execution. However, our model checker XMC judiciously commits the

required events to construct the desired execution with porf cycle. XMC identifies so-called load

buffering races [Moiseenko et al. 2022], that is read-write data races such that there exists a porf
path from the read to the write event. We discuss the approach in detail in §4.

2.3 Sequentialization
The sequentialization transformation together with other transformations can enable porf cycles.
Consider the following example from Kang et al. [2017] where a sequence of transformations

following the sequentialization transformation results in the outcome 𝑎 = 1 denoting an execution

with a porf cycle.

𝑋 = 𝑌 = 0

𝑎 = 𝑋 ;

if (𝑎 ≠ 1)
𝑋 = 1;

𝑌 = 𝑋 ; 𝑋 = 𝑌 ;

(SEQ)

{

𝑋 = 𝑌 = 0

𝑎 = 𝑋 ;

if (𝑎 ≠ 1)
𝑋 = 1;

𝑌 = 𝑋 ;

𝑋 = 𝑌 ;

(SEQ1)

{

𝑋 = 𝑌 = 0

𝑎 = 𝑋 ;

if (𝑎 ≠ 1)
𝑋 = 1;

𝑌 = 1;

𝑋 = 𝑌 ;

(SEQ2)

{

𝑋 = 𝑌 = 0

𝑌 = 1;

𝑎 = 𝑋 ;

if (𝑎 ≠ 1)
𝑋 = 1;

𝑋 = 𝑌 ;

(SEQ3)

Firstly, the second thread is merged with the first thread. In SEQ2, following the conditional

assignment of 𝑋 in the first thread, the read of 𝑋 always returns 1 in the last statement. Next, 𝑌 = 1

is reordered above in SEQ3 program. Finally, the SEQ3 program has an interleaving that executes

the second thread between 𝑌 = 1 and 𝑎 = 𝑋 in the first thread, leading to the outcome 𝑎 = 1.

Supporting the sequentialization transformation with other desired properties has been a long-

standing problem for the concurrency models. Sequentialization is sound in the RC20model [Lahav

et al. 2017], but this model forbids the outcome 𝑎 = 1 for the source program nonetheless, because

the corresponding execution graph contains a porf cycle. On the other hand, sequentialization is

A [𝑋 = 𝑌 = 0]

𝑒1:R (𝑋, 0)

𝑒2:W (𝑋, 1)

𝑒3:R (𝑋, 1)

𝑒4:W (𝑌, 1)

𝑒5:R (𝑌, 1)

𝑒6:W (𝑋, 1)

B [𝑋 = 𝑌 = 0]

𝑒′
5
:R (𝑌, 1)

C [𝑋 = 𝑌 = 0]

𝑒′
5
:R (𝑌, 1)

𝑒′
6
:W (𝑋, 1)

D[𝑋 = 𝑌 = 0]

𝑒′
1
:R (𝑋, 1) 𝑒′

5
:R (𝑌, 1)

𝑒′
6
:W (𝑋, 1)

E[𝑋 = 𝑌 = 0]

𝑒′
1
:R (𝑋, 1) 𝑒′

3
:R (𝑋, 1) 𝑒′

5
:R (𝑌, 1)

𝑒′
6
:W (𝑋, 1)

F[𝑋 = 𝑌 = 0]

𝑒′
1
:R (𝑋, 1) 𝑒′

3
:R (𝑋, 1)

𝑒′
4
:W (𝑌, 1)

𝑒′
5
:R (𝑌, 1)

𝑒′
6
:W (𝑋, 1)

Fig. 3. XMM construction of the execution with (po ∪ rf) cycle with 𝑎 = 1 outcome for SEQ program.
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unsound in the multi-execution concurrency models, including Promising semantics [Kang et al.

2017] and Weakestmo [Chakraborty and Vafeiadis 2019], as these models forbid the outcome 𝑎 = 1

in the source SEQ program but allow it in the final transformed SEQ3 program. Although the C20
model, extended from C11 [Batty et al. 2011], supports sequentialization, it lacks DRF guarantees.

In XMM the sequentialization transformation is sound. XMM may create an execution from

the SEQ program that denotes 𝑎 = 1 as shown in Figure 3. First, we commit the events 𝑒4, 𝑒5, 𝑒6
in the RC20 consistent execution in A . Next, we re-execute the program appending the events

𝑒′
5
, 𝑒′

6
, 𝑒′

1
, 𝑒′

3
, 𝑒′

4
in B to F steps where we preserve the labels of the committed events. Once 𝑒′

4
is

added, we also add the rf edge to 𝑒′
5
. The resulting execution graph in F is C20 consistent with the

desired outcome 𝑎 = 1.

3 Formal Model
In this section, we give a formal definition of the XMM, and provide the proof outlines for the

soundness of program transformations and the compilation mappings, as well as the DRF theorem.

Notation. Given a binary relation 𝐴, its reflexive, transitive, reflexive-transitive closures, and in-

verse relation are denoted by𝐴?
,𝐴+,𝐴∗,𝐴−1 respectively. Relation𝐴1;𝐴2 denotes the composition of

two relations. Relation 𝐴imm is the immediate relation: 𝐴imm (𝑎, 𝑏) ≜ 𝐴(𝑎, 𝑏) ∧ �𝑐. 𝐴(𝑎, 𝑐) ∧𝐴(𝑐, 𝑏).
Given two sets (or binary relations) 𝑋,𝑌 , and a function 𝑓 : 𝑋 → 𝑌 , we use the following notations

for function lifting: 𝑓 ↑ 𝑋 ≜ {𝑦 ∈ 𝑌 | ∃𝑥 ∈ 𝑋 . 𝑓 (𝑥) = 𝑦} and 𝑓 ↓ 𝑌 ≜ {𝑥 ∈ 𝑋 | 𝑓 (𝑥) ∈ 𝑌 }.

Definition 1. A set of labels LAB consists of tuples ⟨op, loc, ord, val⟩ of memory operation type op,
accessed memory location loc, memory order ord, and read or written value val. For fence events
loc = val =⊥.

Definition 2. An event ⟨id, tid⟩ is a tuple, where id is a unique identifier and tid is its thread

identifier. We reserve 𝑡init for the initialization thread, setting all memory locations to initial values.

Definition 3. An execution graph G ≜ ⟨E, lab, po, rf,mo, rmw⟩ is a tuple, where E is a set of events,

lab : E→ LAB is a labeling function, po ⊆ E × E is the strict partial program order, rf ⊆ W × R is

the reads-from relation, mo ⊆ W ×W is the strict partial modification order, and rmw ⊆ R ×W is

the read-modify-write relation. The graph is well-formed if the following conditions are met:

• program order is total on the subset of events of each non-initialization thread, that is,

∀𝑡 ∈ TID \ {𝑡init}. G.po|𝑡 is total order on G.E|𝑡
• program order puts initialization events before any other non-initialization events, otherwise,

it orders only the events from the same thread:

∀𝑒1, 𝑒2 . (tid(𝑒1) = 𝑡init ∧ tid(𝑒2) ≠ 𝑡init =⇒ ⟨𝑒1, 𝑒2⟩ ∈ po) ∧
(⟨𝑒1, 𝑒2⟩ ∈ po =⇒ tid(𝑒1) = 𝑡init ∧ tid(𝑒2) ≠ 𝑡init ∨ tid(𝑒1) = tid(𝑒2))

• reads-from respects memory locations and values of events, that is,

∀⟨𝑤, 𝑟 ⟩ ∈ rf. loc(𝑤) = loc(𝑟 ) ∧ val(𝑤) = val(𝑟 )
• each read event can read only from a single write event: ∀⟨𝑤1, 𝑟 ⟩, ⟨𝑤2, 𝑟 ⟩ ∈ rf.𝑤1 = 𝑤2

• reads-from the same thread has to be from a program order preceding write: rf ∩ =
tid
⊆ po.

• modification order is total on same-location write events: ∀𝑥 ∈ loc. G.mo|𝑥 is total

• modification order connects only the events writing to the same memory location, that is,

∀⟨𝑤1,𝑤2⟩ ∈ mo. loc(𝑤1) = loc(𝑤2).
• read-modify-write relation connects po adjacent events with the same memory location, that

is, rmw ⊆ [R]; poimm; [W] and ∀⟨𝑟,𝑤⟩ ∈ rmw. loc(𝑎) = loc(𝑏)

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 72. Publication date: January 2025.



72:8 E. Moiseenko, M. Meluzzi, I. Meleshchenko, I. Kabashnyi, A. Podkopaev, S. Chakraborty

In the context of this paper, we assume that all execution graphs are well-formed, unless explicitly

stated otherwise. We also consider only finite graphs, i.e., the set of events E is always finite. We

leave the case of infinite graphs, related to the problems of fairness and termination [Lahav et al.

2021], for future work.

Given a graph G and an event 𝑒 ∈ G.E, we write G.id(𝑒), G.tid(𝑒), G.lab(𝑒), G.op(𝑒), G.loc(𝑒),
G.ord(𝑒), andG.val(𝑒) to denote the respective components of the event. The notationG.E|𝑡 denotes
a set of events belonging to the thread 𝑡 , and the same notation applies to a set of threads. We write

G.R, G.W, and G.F to denote the set of read, write, and fence events of the graph respectively. The

behavior of an execution graph𝐺 , denoted as Behavior(𝐺), is a function mapping each location 𝑥

to its final value, that is, the value written by the mo-maximal write event.

Relation G.porf unfolds into (G.po ∪ G.rf)+. The happens-before relation hb is a memory model

specific relation derived from the basic relations. It is assumed to be a partial order and a subset of

program order and reads-from: hb ⊆ porf. Viewfront relation vf connects each write with all the

events that observed it: vf ≜ [W]; rf?; hb?.
In addition to the conventional relations defined above, we equip the execution graphs with two

memory model specific relations: relaxed program order rpo and stable reads-from srf.
Relaxed program order rpo includes only those program order edges, that must be preserved by

any reordering transformation, for instance, because of a memory fence placement. Thereby, this

relation is invariant under reordering transformations, a fact that significantly simplifies our proofs

of reordering transformations’ soundness (§3.6).

Stable reads-from srf relation, while not directly used in the definition of XMM framework (§3.1),

is actively employed in various proofs. It maps each read event to its stable write event — a write

event, such that reading from it does not lead to inconsistency or a creation of a new porf cycle.
With the help of these two relations, our proofs given in §3.4, §3.5, and §3.6, can be parameterized

with respect to any axiomatic memory consistency modelM providing theirwell-formed definitions.

Definition 4. Relaxed program order rpo and stable reads-from srf relations are well-formed, if:

• rpo is a partial order relation, and a subset of program order: rpo ⊆ po;
• srf satisfies the same well-formedness conditions as rf, i.e., it respects memory locations

and values of events, and it is functional;

• srf belongs to the view-front relation, and thus cannot create new porf cycles, that is:
srf ⊆ vf?; po ⊆ porf?; po.

3.1 Execution Graph Construction
We next describe the operational semantics of the XMM execution graph construction. The formal

rules of the semantics are presented on the Fig. 4.

Execute Rule. The first rule (Execute) corresponds to the in-order execution of an instruction.

It simply adds a new event 𝑒 with label ℓ to the graph and checks if the resulting graph is consistent,

and reads-from complete. The latter property prevents the addition of thin-air reads. Thus, the

(Execute) rule on itself cannot create new porf cycles.

Definition 5. Execution graph G is reads-from complete, denoted as RfComplete(G), if each read

event in the graph reads from some write event belonging to the same graph: G.R ⊆ codom(G.rf).

Add Event Rule. In turn, the (Add Event) rule is responsible for updating all the graph’s

components to accommodate for a new event. The new event 𝑒 becomes the last event of the

respective thread: Δpo (𝐺, 𝑒). For a new read event 𝑒 ∈ W, a write 𝑤 event to be read-from can

be chosen non-deterministically: ΔR
rf (𝐺,𝑤, 𝑒). Note that the (Add Event) rule allows omitting the
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G
⟨𝑒,ℓ⟩
====⇒ G′

RfComplete (G′ )
Consistent (M,G′ )

(Execute)

G
⟨𝑒,ℓ⟩
−−−→
exec

G′

G′ .E = G.E ⊎ {𝑒 }
G′ .lab = G.lab[𝑒 ↦→ ℓ ]

G′ .po = G.po ∪ Δpo (G, 𝑒 )

G′ .rf = G.rf ∪ ΔR
rf (G, 𝑤, 𝑒 ) ∪ ΔW

rf (G, 𝑅, 𝑒 )
G′ .mo = G.mo ∪ Δmo (G,𝑊1,𝑊2, 𝑒 )
G′ .rmw = G.rmw ∪ Δrmw (G, 𝑟 , 𝑒 )

(Add Event)

G
⟨𝑒,ℓ⟩
====⇒ G′

C ⊆ G′ .E D ⊆ f ↑ C G.E = D ∪ G.E |T
D is G.po maximal s.t. dom(G.po; [D]) ⊆ D

dom(G′ .rpo; [G′ .E \ D]) ⊆ D
WellFormed (G |D ,G′, C)
⟨G′, C⟩ ⊢ G |D =⇒∗ G′

Consistent (M,G′ )
CommitEmbedded (G,G′, C, f )

ThreadOrderedUEvents (G′, C, ⪯tid )
(Re-Execute)

G
C−−−−−→

re−exec
G′

G𝑖

⟨𝑒,ℓ⟩
====⇒ G𝑖+1 WellFormed (G𝑖+1,G′, C)

(Guided Step)

⟨G′, C⟩ ⊢ G𝑖

⟨𝑒,ℓ⟩
====⇒ G𝑖+1

Δpo (G, 𝑒 ) ≜ (G.Einit ∪ G.E𝑒.tid ) × {𝑒 }
ΔR
rf (G, 𝑤, 𝑟 ) ≜ {⟨𝑤, 𝑟 ⟩} if 𝑟 ∈ R ∧ ⊥ ≠ 𝑤 ∈ G.W otherwise ∅

ΔW
rf (G, 𝑅, 𝑤 ) ≜ {𝑤} × 𝑅 if 𝑤 ∈ W ∧ 𝑅 ⊆ G.R otherwise ∅

Δmo (G,𝑊1,𝑊2, 𝑤 ) ≜𝑊1 × {𝑤} ∪ {𝑤} ×𝑊2 if 𝑤 ∈ W ∧𝑊1,𝑊2 ⊆ G.Wloc(𝑤) otherwise ∅
Δrmw (G, 𝑟 , 𝑤 ) ≜ {⟨𝑟, 𝑤⟩} if 𝑤 ∈ W ∧ ⊥ ≠ 𝑟 ∈ G.R ∧ IsExclusiveWrite(𝑤 ) otherwise ∅

Fig. 4. Rules of the XMM execution graph construction

addition of a reads-from edge for the new read event by choosing 𝑤 = ⊥. Although such a

graph would be immediately discarded by the RfComplete(G′) constraint of the (Execute) rule,
this possibility will become handy later when we define the re-execution semantics. For a new

write event 𝑒 ∈ W, a set of reads 𝑅 is chosen non-deterministically to create outgoing reads-from

edges: ΔW
rf (𝐺, 𝑅, 𝑒). In this case, the modification order is also updated by inserting the new event

in-between two subsets𝑊1,𝑊2 of the write events to the same location: Δmo (𝐺,𝑊1,𝑊2, 𝑒). Finally,
if 𝑒 is additionally an exclusive write originated from a read-modify-write operation, it is connected

with the preceding read event to form a new read-modify-write edge: Δrmw (𝐺, 𝑟, 𝑒).

Re-Execute Rule. Next, the (Re-Execute) rule formalizes the re-execution semantics. It is

parametrized by a set of committed events C ⊆ G′ .E that should be preserved during re-execution.

A set of determined events D is a program order maximal prefix-closed subset of committed events.

To apply the rule, one has to choose a partial event mapping f : G′ .E ⇀ G.E, and some strict

partial order on thread identifiers ≺tid. Then the program is re-executed starting from the graph G
restricted to the subset of determined events.

Let T be the set of re-executed threads: T ≜ {𝑡 | ∃𝑒 ∈ (G′ .E \ D) .G′ .tid(𝑒) = 𝑡}. We require

the original graph to contain only determined events or events from the re-executed threads. Also
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note that it is prohibited for the events in G′ .E \ D to induce new rpo edges. Finally, the resulting

graph G′ is checked to be consistent. The meaning of another two predicates CommitEmbedded

and ThreadOrderedUEvents is explained later in this section.

Guided Step Rule. Consider that during a re-execution, the addition of new events is guided

by the desired events in the final graph G′. The (Guided Step) rule captures this. It is additionally

parameterized by the final graph G′ together with the subset of committed events C. Whenever a

new event is added to the graph G𝑖 using the (Add Event) rule, the resulting tuple ⟨G𝑖+1,G′, C⟩ is
checked to be well-formed in the following sense.

Definition 6. A configuration ⟨G,G′, C⟩ is well-formed if the following conditions are met:

• graph G is well-formed:WellFormed (G)
• two graphs coincide on the subset of committed events: G′ |G.E∩C = G|G.E∩C
• the graph G′ is reads-from complete on the subset of committed events: RfComplete(G′ |C)
• all reads from the graph G read from some write event in G, or otherwise committed:

G.R ⊆ codom(G.rf) ∪ C.

Most importantly, the last condition prevents the addition of thin-air reads by asserting that

a newly added read event can be set to temporarily read-from “nowhere”, but only as long as it

is committed. In combination with the requirement on the final graph to be reads-from complete

on the subset of committed events, this property guarantees that all the reads will eventually be

restored to read-from some well-defined write event belonging to the graph.

The well-formedness constraint provides sufficient conditions for the re-execution to be possible.

Intuitively, the relation G′ .po ∪ G′ .rf; [U] has to be acyclic, where U ≜ G′ .E \ C is a set of

uncommitted events. Thus, whenever an uncommitted read is added to the graph, its respective

reads-from write is already in the graph. The following lemma formalizes this intuition.

Lemma 1. Let G and G′ be two execution graphs, such that G is a program order prefix-closed

subgraph of G′: G′ |G.E = G and dom(G.po; [G.E]) ⊆ G.E. Let C ⊆ G′ .E be a subset of committed

events,U ≜ G′ .E \ C be a subset of uncommitted events, and Δ = G′ .E \ G.E be a difference of the

two graphs’ event sets. Moreover, assume WellFormed (G,G′, C) holds.
Let ℓ ≜ [𝑒1, . . . , 𝑒𝑛] be an enumeration of a set Δ, such that the following conditions are met:

• G′ .po ∪ G′ .rf; [U] respects the order induced by ℓ : ⟨𝑒𝑖 , 𝑒 𝑗 ⟩ ∈ G′ .po ∪ G′ .rf; [U] implies 𝑖 < 𝑗

• Δ is rf-complete: ∀𝑟 ∈ R ∩ Δ. ∃𝑤 ∈ G.W ∪ Δ. ⟨𝑤, 𝑟 ⟩ ∈ G′ .rf

Then, the graph G′ can be constructed from G as follows: ⟨G′, C⟩ ⊢ G ℓ
=⇒
∗
G′.

We provide the proof of this lemma, as well as other lemmas stated in this section, in Appendix A.

Subgraph embedding. The CommitEmbedded (G,G′, C, f) predicate ensures that the original
graph G and the resulting graph G′ share a common subgraph consisting of committed events.

In essence, we want to say that G|C = G′ |C . Yet technically, the two graphs may be formed by

two disjoint sets of events. Therefore, instead of simple event-wise equality, we use a partial event

mapping function f : G′ .E ⇀ G.E which re-enumerates events accordingly.

Definition 7. Given two graphs G,G′, a set of committed events C ⊆ G′ .E, and an injective

function f : G′ .E ⇀ G.E, we say that committed subgraph of G′ is embedded into graph G under f,
if f preserves labels, relaxed program order, reads-from, modification order, and read-modify-write

relation of committed events:

∀𝑐 ∈ C. f (𝑐) ≠ ⊥ ∧ G′ .lab(𝑐) = G.lab(f (𝑐)) | f ↑ G′ .𝑋 |C = G.𝑋 |f↑C for 𝑋 ∈ {rpo, rf,mo, rmw}
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Restricting uncommitted events. Finally, the predicate ThreadOrderedUEvents(G′, C, ≺tid)
imposes an additional restriction on the uncommitted events. As demonstrated later in §3.6, it is

essential for ensuring the soundness of transformations.

Definition 8. Given a graph G′ and a set of committed events C ⊆ G′ .E, we say that uncommitted

events respect the thread ordering relation ≺tid, if the view-front relation incoming into a thread with

uncommitted events respects the thread ordering:

G′ .vf;G′ .tid ↓ =
tid
; [U] ⊆ G′ .tid ↓ ⪯tid .

In particular, this implies that each uncommitted read either reads from a program order preceding

write, or from a write event in a ≺tid preceding thread: rf; [U] ⊆ G′ .po ∪ G′ .tid ↓ ≺tid .

Using this constraint, we show that the re-execution can always proceed thread-by-thread in

accordance with the chosen thread ordering ≺tid. The next lemma assures that the events can

be reordered in the re-execution sequence, so that they become grouped by threads, while also

respecting the ≺tid relation.

Lemma 2. Let G,G′, C,U,Δ, ℓ be defined similarly as in Lemma 1. In particular, we have that

WellFormed (G,G′, C). Moreover, suppose the predicate ThreadOrderedUEvents(G′, C, ≺tid) holds, re-
stricting the uncommitted events for a given ≺tid relation.
Suppose ℓ ′ is the list containing the same events, but reordered and grouped by threads according

to ≺tid relation (below ℓ𝑡𝑖𝑘
is a sublist of ℓ containing the events from thread 𝑡𝑖𝑘 ):

ℓ ′ ≜ ℓ𝑡𝑖
1

· ... · ℓ𝑡𝑖𝑛 | 𝑘 < 𝑚 =⇒ 𝑡𝑖𝑘 ≺tid 𝑡𝑖𝑚 or, in other words:

ℓ ′ is ordered by G′ .po ∪ G′ .tid ↓ ≺tid
Then, the resulting list ℓ ′ can still be used to re-execute the graph leading to the same result:

⟨G′, C⟩ ⊢ G ℓ
=⇒
∗
G′ if and only if ⟨G′, C⟩ ⊢ G ℓ ′

=⇒
∗
G′ .

Putting everything together. The XMM graph construction on each step either appends one

single event to the existing graph, or it non-deterministically selects a subset of committed events

and re-builds the graph from scratch, preserving the committed subgraph intact. In what follows,

we will use the notationG −→ G′ to indicate an XMM construction step, which is either an execution

or a re-execution step. Any graph that can be constructed from an initial graph using the XMM
construction procedure is called XMM consistent with respect to the memory consistency modelM.

The resulting memory model is denoted as XMM(M).

3.2 Reconciling Execution Graphs with Operational Semantics
Next, we describe how to reconnect the execution graphs with the operation semantics of individual

threads given in terms of a labeled transition system. We decouple the process of graph construction

from the threads’ operational semantics by putting a constraint that ties-in an execution graph and

traces generated by the abstract machine.

We impose only one requirement to the labeled transition system — in addition to the operation’s

label, the transition relation should be annotated with the instruction identifier.

Let InstrID be a set of abstract instruction identifiers. Then for a graph G we can consider a

function I : G.E→ InstrID which maps an event to an instruction which produced that event. In

the context of this paper, we assume that I is always an injective function, that is every instruction

corresponds to at most one event. In other words, we consider only loop-free programs (or programs

where all loops were unrolled to a certain bound). Because we only consider finite graphs and
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leave the questions of program’s termination out of scope, these assumptions do not entail any

new limitations of our approach.

Definition 9. We assume that for a program P the thread-local operational semantics is given as a

labeled transition system L of the form ≜ ⟨S, 𝜎init,−→⟩, where
• S — is a set of states,

• 𝜎init : TID→ S — is an initial states thread mapping,

• −→ ⊆ S × (InstrID × LAB𝜖 ) × S — is a transition relation, and

• LAB𝜖 ≜ LAB ⊎ {𝜖} — is a set of labels augmented with the empty label.

We write 𝜎
𝑖:ℓ−→ 𝜎 ′ to denote a transition of the operational semantics.

Definition 10. Given a labeled transition system and a graph G let G.T(𝑡) = [𝑒1, . . . , 𝑒𝑛] be
a program-order sorted sequence of thread’s 𝑡 events, that is a sequence, s.t. G.T(𝑡) = G.E|𝑡
and 𝑒1

po
−−→ 𝑒2

po
−−→ . . .

po
−−→ 𝑒𝑛 . We say that the thread 𝑡 of the graph G conforms to a trace of the

operational semantics, denoted as TraceConforming(L,G, 𝑡), if the sequence of labels corresponding
to the thread’s events forms a valid trace, that is:

𝜎init (𝑡)
𝜄1:𝜖−−→
∗ 𝜄1:lab(𝑒1 )−−−−−−−→ 𝜄1:𝜖−−→

∗
𝜎1

𝜄2:𝜖−−→
∗ 𝜄2:lab(𝑒2 )−−−−−−−→ 𝜄2:𝜖−−→

∗
. . .

𝜄𝑛 :𝜖−−−→
∗ 𝜄𝑛 :lab(𝑒𝑛 )−−−−−−−→ 𝜄𝑛 :𝜖−−−→

∗
𝜎𝑛 .

If TraceConforming(L,G, 𝑡) is true for every thread 𝑡 of the graph G, we say that the whole graph

conforms to the operational semantics, written as TraceConforming(L,G).
Finally, the step of the combined semantics simply performs a graph construction step assuring

that the resulting graph conforms to the operational semantics:

G −→ G′ TraceConforming(L,G′)
P, L ⊢ G −→ G′

3.3 XC20 Consistency
We instantiate the XMM(M) framework with the C/C++20 memory consistency to derive a model

we call XC20. We start with the definition of RC20 from Lahav et al. [2017], minus porf acyclicity.
We then extend it with two novel notions of relaxed program order and relaxed happens-before. As

was already mentioned, the main motivation behind the introduction of these relations is to simplify

the proofs of reordering transformations’ soundness — unlike their conventional counterparts, these

two relations are invariant under reordering transformations. We therefore reformulate C/C++20

consistency constraints in terms of relaxed program order and relaxed happens-before, and show

that the two definitions are equivalent.

We do not model sequentially consistent accesses and fences in XC20, following the definition
of RC20 and the observations from [Margalit and Lahav 2021]: very few practical algorithms

employ SC accesses and become incorrect when release/acquire accesses are used instead; as for

the SC fences, in RC20 they can be represented by acquire-release fences and a read-modify-write

operation to a distinguished memory location. This is not a fundamental limitation as the srf
relation can also be refined to account for SC accesses [Chakraborty and Vafeiadis 2019] in future

extensions of the model.

Figure 5 formally defines the following relations.

• Synchronizes-with relation sw connects synchronized events, such as a release write and an

acquire read that reads-from it.

• Happens-before order hb is a transitive closure of program order and synchronizes-with relations.

• From-reads relation fr, connects a read event to all the write events, that “overwrite” the write it

reads-from. Relation extended coherence order eco is transitive closure of rf, mo, and fr relations.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 72. Publication date: January 2025.



Relaxed Memory Concurrency Re-executed 72:13

sw ≜[Erel⊑]; ( [F]; po)?; [Wrlx⊑]; (rf; rmw)∗; rf; [Rrlx⊑]; (po; [F])?; [Eacq⊑]
hb ≜(po ∪ sw)+ fr ≜ rf−1;mo eco ≜ (rf ∪mo ∪ fr)+

rpo ≜( [Rrlx⊑]; po; [Facq⊑] ∪ [Eacq⊑]; po ∪ po; [Erel⊑] ∪ [Frel⊑]; po; [Wrlx⊑])+

rhb ≜(po|loc ∪ rpo ∪ sw)+

C20 ≜

{
hb; eco? is irreflexive.
rmw ∩ (fr;mo) is empty.

RC20 ≜ C20 and

(po ∪ rf) is acyclic (No-OOTA)

C20rhb ≜

{
rhb; eco? is irreflexive.
rmw ∩ (fr;mo) is empty.

XC20 ≜ XMM(C20rhb)

(Coherence)

(Atomicity)

Fig. 5. RC20 and XC20 consistency axioms. C20 model refers to RC20 minus the (No-OOTA) axiom.

• Relaxed program order rpo is a partial order relation, a subset of program order, derived from the

memory fences placement in a program.

• Relaxed happens-before rhb is a subset of happens-before relation, that is defined similarly as

happens-before order, but uses union of same-location and relaxed program orders in-place of

the program order.

Proposition 1. The following statements are true: (1) po; sw = rpo; sw and sw; po = sw; rpo,
(2) hb = po ∪ rhb, (3) hb|loc = rhb|loc, (4) hb|≠tid = rhb|≠tid .

Axioms of the C20 consistency model are also given on Figure 5. RC20 model is simply C20 plus
(po ∪ rf) acyclicity constraint. We define XC20 model as XMM(C20rhb), where C20rhb is a C20
variant that uses rpo and rhb definitions in-place of po and hb respectively.

Lemma 3. C20 and C20rhb consistency models are equivalent.

As can be seen, the (Atomicity) constraint does not involve the happens-before relation, and

thus it does not change in C20rhb Equivalence for the (Coherence) axiom follows from the fact

that extended coherence order connects only the same-location events. Therefore, in the original

coherence definition we can substitute hb with hb|loc, which is equal to rhb|loc due to Proposition 1.

𝑤1

𝑥 𝑤2

𝑥
𝑒𝑦

𝑟𝑥

pomo vf

srf

Finally, we define the stable reads-from relation for C20, using
an auxiliary viewfront relation.

Definition 11. The stable reads-from relation maps each

read to the latest in modification order observed write:

srf ≜ (vf; po; [R]) |=loc \ (mo; vf; po).
Consider the example executionwhere ⟨𝑤1

𝑥 ,𝑤
2

𝑥 ⟩ ∈ mo, ⟨𝑤2

𝑥 , 𝑒𝑦⟩ ∈ vfwhere𝑥 ≠ 𝑦, and ⟨𝑒𝑦, 𝑟 ⟩ ∈ po
hold. In this case, ⟨𝑤2

𝑥 , 𝑟𝑥 ⟩ ∈ srf holds and 𝑟𝑥 can read from𝑤2

𝑥 . Note that𝑤
1

𝑥 is not in srf relation

with 𝑟𝑥 as ⟨𝑤1

𝑥 , 𝑟𝑥 ⟩ ∈ mo; vf; po holds.

3.4 Data Race Freedom Guarantees
We next show that XMM adheres to the data race freedom (DRF) guarantees. Recall that a DRF
guarantee allows considering only the behavior of a program under a stronger memory model, for

example, sequential consistency model (SC), provided that the said program is race-free under this

stronger model.
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Definition 12. Two concurrent events are in race if they access the same location, and at least

one of them is a write event. Let G.Race be the set of all racy events of execution G and let

G.Race(𝑜) ⊆ G.Race be the set of races where at least one of the involved events has memory order

weaker or equal to 𝑜 .

Race ≜ (E × E ∩ =loc ∩ one(W)) \ (hb? ∪ hb−1) and Race(𝑜) ≜ Race ∩ one(E⊑𝑜 )
where ⟨𝑥,𝑦⟩ ∈ one(𝐴) ≜ (𝑥 ∈ 𝐴 ∨ 𝑦 ∈ 𝐴)

Definition 13. We say that a memory modelM provides the data-race freedom guarantee with

respect to a stronger memory modelM′ and memory order 𝑜 , if for every program P, such that

allM′-consistent execution graphs of P are 𝑜-race-free, the memory modelM also assigns only

M′-consistent graphs to P:

∀P. (∀G ∈ JPKM′ .G.Race(𝑜) = ∅) =⇒ JPKM = JPKM′ .

We denote this fact asM ∈ DRF𝑜 (M′), and we omit the memory access mode when its name

matches the name of the memory model itself (as in case of the sequential consistency DRF(SC)
and release-acquire consistency DRF(RA)).

The following lemma is the key component of the proof. It states that for a race-free program,

the XC20 operational semantics can only produce porf acyclic execution graphs.

Lemma 4. Let P be a program, such that all of its RC20-consistent execution graphs are relax (rlx)

race-free. Suppose additionally that G is a RC20 consistent graph of this program. Then every graph

G′, such that G −→ G′, is also porf acyclic.

We note that the (Execute) rule on itself cannot create a new porf cycle, and thus the only

interesting case is the (Re-Execute) rule: G −−−−−→
re−exec

G′. For this case, we consider a re-execution

frontier F that is a set of events from G′ immediately succeeding determined events D in program

order. We show that without loss of generality, one can assume all the events in the set F are

uncommitted relaxed reads, which read-from a different write event compared to the one they

read-from in G. Suppose 𝑟 is the first re-executed read 𝑟 from the frontier, a write𝑤1 from which

it reads in the original graph G, and a write 𝑤2 from which it reads in the re-executed graph

G′. Considering these three events, we demonstrate that we can always arrive at a contradiction

with the consistency of either graph G or G′, or we can construct a data-race in G, arriving at

contradiction as P is relax race-free.

A more detailed proof can be found in Appendix C.

Theorem 1. XC20 model provides DRFrlx (RC20), as well as DRF(RA) and DRF(SC) guarantees.

Proof. The fact that XC20 provides DRFrlx (RC20) guarantee is a simple corollary of the

Lemma 4. Indeed, XC20 is simply XMM(C20), C20 is write-read coherent, and RC20-consistency
is just C20-consistency augmented with the porf acyclicity.

Next, let’s prove that XC20 ∈ DRF(RA). Indeed, if a program P is acq-rel-race-free, it is also rlx-

race-free, and thus JPKXC20 = JPKRC20 by XC20 ∈ DRFrlx (RC20). Then, due to RC20 ∈ DRF(RA)
we have JPKRC20 = JPKRA, and thus finally JPKXC20 = JPKRA.

Similar reasoning applies to prove that XC20 ∈ DRF(SC). □

3.5 Soundness of Compilation Mappings
Further, we show that XC20 supports optimal compilation mappings to the hardware memory

models of x86-TSO, ARM, and Power. The optimal compilation mapping is the one that does not

introduce unnecessary memory fences — in particular, compiling relaxed accesses without fences.

Proc. ACM Program. Lang., Vol. 9, No. POPL, Article 72. Publication date: January 2025.



Relaxed Memory Concurrency Re-executed 72:15

To this end, we leverage the intermediate memory model IMM [Podkopaev et al. 2019], which

encapsulates the implementation details of particular hardware memory models, providing a conve-

nient abstraction for compilation correctness proofs. IMM already supports the same memory order

modes as C/C++, providing their optimal compilation mappings to hardware-specific instructions

and fences, and the soundness of these compilation mappings is well-established. Therefore, for

the XC20-to-IMM compilation, the mapping is essentially an identity mapping, leaving us to prove

that every IMM-consistent execution graph is also XC20-consistent.

Theorem 2. Let P be a program, and G be its IMM consistent execution graph. Then G is also an

XC20 consistent execution graph.

To prove this theorem, we show that using the XMM operational semantics, it is possible to

construct a series of execution graphs G0 −→∗ G1 . . . −→∗ G𝑛 −→∗ G𝑛+1, where G0 = Ginit and

G𝑛+1 = G, such that all the graphs in this sequence are C20 consistent. Note that IMM consistency

implies C20 consistency, so it is sufficient to show that all graphs are IMM consistent.

We use the fact that under the IMM model, there exists a global causality order on all the events

in a graph, given by the ar relation (see Appendix D for a formal definition). The ar relation includes,

among others, ordering constraints arising due to the placement of memory fences and syntactic

dependencies between instructions, such as data, control„ or address dependencies.

For the given IMM consistent graph G, we order all its read events G.R according to the ar
relation, deriving a list of read events [𝑟1, . . . , 𝑟𝑛]. We then define each graph G𝑖 in the sequence

to contain all the events of G, except those that have control or address dependency on 𝑟𝑖 , and,

moreover, we redirect 𝑟𝑖 to read from a stable write using srf relation. We then show that for

each pair of graphs G𝑖 and G𝑖+1, a re-execution step can be made: G𝑖

C−−−−−→
re−exec

G𝑖+1, with the set of

commit events C being defined as all events in G𝑖 , except those that follow 𝑟𝑖 in causal order ar:
C ≜ G𝑖 .E \ codom( [𝑟𝑖 ]; ar). By definition of ar, it follows that changing the reads-from source for

a read event 𝑟𝑖 can only affect events in its causal suffix, and thus, indeed, all the committed events

can be re-executed safely. Finally, it remains to notice that in the graph G1 all reads are reading

from a stable write. Because srf ⊆ porf?; po we have that G1 is porf acyclic graph, implying that it

can be constructed from the initial graph using only the in-order execution steps: Ginit −−−→
exec

∗ G1.

A more detailed proof can be found in Appendix D.

3.6 Soundness of Program Transformations
In this section, we outline the proofs of the program transformation’s soundness. A program

transformation tr is a code rewriting rule, mapping a source program Psrc into a target program

Ptgt: Psrc
tr Ptgt. A program transformation is sound if it does not introduce new behaviors.

We consider three types of transformations: redundant access elimination, reordering of indepen-

dent instructions, and thread sequentialization.

In the context of the XMM memory model, the soundness of program transformations boils

down to the following definition.

Definition 14. A program transformation Psrc
tr Ptgt is sound in the XMM(M) memory model,

if for every XMM(M)-consistent execution graph Gt of Ptgt there exists XMM(M)-consistent
execution graph Gs of Psrc with the same behavior.

For all the aforementioned program transformations, our proofs follow the same structure

based on the standard simulation technique. For each transformation we define a simulation re-

lation R(Gs,Gt,m) between the source graph, the target graph, and the event mapping function

m : Gt.E→ Gs.E. We next prove the following lemmas:
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𝑎 ↓ 𝑏 → R⊑acq Wna Wrlx W⊒rel Facq Frel Facq-rel
Rna ✓ ✓ ✓ × ✓ × ×
Rrlx ✓ ✓ ✓ × × × ×
R⊒acq × × × × ✓ × ×
W⊑rel ✓ ✓ ✓ × ✓ × ×
Facq × × × × = × ×
Frel ✓ ✓ × ✓ ✓ = ×
Facq-rel × × × × × × =

(a) Reordering of accesses 𝑎;𝑏 { 𝑏;𝑎 where 𝑎

and 𝑏 accesses different memory locations.

R𝑜 (𝑋, 𝑣);R𝑜 ′ (𝑋, 𝑣 ′) { R𝑜 (𝑋, 𝑣) (RAR)

W𝑜 (𝑋, 𝑣);R𝑜 ′ (𝑋, 𝑣 ′) { W𝑜 (𝑋, 𝑣) (RAW)

W𝑜 ′ (𝑋, 𝑣 ′);W𝑜 (𝑋, 𝑣) { W𝑜 (𝑋, 𝑣) (OW)

{F𝑜 ; F𝑜 ′ } or {F𝑜 ′ ; F𝑜 } { F𝑜 (FE)

(b) Eliminations where 𝑜′ ⊑ 𝑜 .

𝑇1 | | 𝑇2 { 𝑇1;𝑇2

(c) Sequentialization

Fig. 6. Safe transformations.

• initial source graph simulates initial target graph: R(Ginit
s ,Ginit

t ,minit);
• for any source and target graphs, s.t. R(Gs,Gt,m) holds, whenever target graph performs

an XMM(M) step Gt −→ G′t, source graph can also take zero or multiple XMM(M) steps
Gs −→∗ G′s, s.t. R(G′s,G′t,m′) holds again for some event mapping m′;
• for any source and target graphs, s.t. R(Gs,Gt,m) holds, if Gt is XMM(M)-terminal, then

Behavior(Gt) = Behavior(Gs).
Then given a derivation of the target graph in the XMM(M) operational semantics Ginit

t −→∗ Gt

we reconstruct the derivation of the source graph in the XMM(M) semantics Ginit
s −→∗ Gs using

the lemmas stated above.

Our proofs are parametrized by the memory consistency modelM used in XMM(M) oper-
ational semantics. For each transformation, we provide preconditions on the modelM for the

transformation to be sound. In total, we define five memory consistency model properties, required for

all the considered transformations to be sound: monotonicity, maximal read extensibility, maximal

write extensibility, same-read extensibility, overwrite extensibility. Intuitively, these properties have

the following meaning.

• Monotonicity tells that any subgraph of a consistent execution graph has to remain consistent.

• Maximal read extensibility implies that a consistent execution can be extended with a new

rpo-maximal read event, reading from a stable write (via srf relation), and remain consistent.

• Maximal write extensibility assures that a consistent execution graph can be extended with a

new rpo-maximal and mo-maximal write event, and remain consistent.

• Same-read extensibility means that a consistent execution graph can be extended with a new

read event, placed in program order po just after some existing read or write event, and as long

as it reads-from this previous event (in case of write), or same write this read reads-from (in case

of read), the execution remains consistent.

• Overwrite extensibility means that a consistent execution graph can be extended with a new

write event, placed in program order po and in modification order mo just before some existing

write event, and if no read reads from an added write event, the execution remains consistent.

Formal definitions of these properties are given in Appendix B.

In general, whenever the target graph performs a step Gt −→ G′t, to simulate it, the source graph

has to perform the same step Gs −→ G′s, with the following exceptions.

• Elimination. In case of load-load and store-load elimination, whenever the first event 𝑎t from the

eliminated pair is added to the target graph: Gt
𝑎t−−−→
exec

G′t, we add to the source graph both events
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from the pair: Gs
𝑎s−−−→
exec

𝑏s−−−→
exec

G′s. The additional event 𝑏s is a read event: in the case of load-load

reordering, it reads from the same write as the read 𝑎s, and in case of store-load reordering from

the write 𝑎s itself. In both cases, it can be shown that the added reads-from edge is stable Gs .srf
edge. Thus, the same-read extensibility property can be applied to derive the consistency of the

resulting source graph G′s. In the case of store-store reordering, when the second event 𝑏t is

added to the target graph: Gt
𝑏t−−−→
exec

G′t, we again add to the source graph both events from the pair:

Gs
𝑎s−−−→
exec

𝑏s−−−→
exec

G′s, this time using the overwrite-extensibility property to derive the consistency of

the resulting source graph G′s.
• Reordering. When a second event 𝑏t from the reordered pair is added to the target graph:

Gt
𝑏t−−−→
exec

G′t, along it we add an intermediate event 𝑎′s to the source: Gs
𝑎′s−−−→
exec

𝑏s−−−→
exec

G′s. When

𝑎′s is a read event, we set it to read-from a stable write via G′s .srf relation, and when it is a

write event, we put it at a maximal G′s.mo position. We then apply maximal read extensibility or

maximal write extensibility property respectively to show the consistency of G′s. Later on, when
the first event 𝑎t from the reordered pair is added to the target graph: Gt

𝑎t−−−→
exec

G′t, we perform a

re-execution in the source graph: Gs
C−−−−−→

re−exec
G′s, by committing all events except 𝑎′s and 𝑏s, and

replacing 𝑎′s with 𝑎s during re-execution.

• Sequentialization. In the case of thread sequentialization, no special actions are required, as

the source graph can mimic all types of steps taken by the target graph. During the construction,

the source graph always has a smaller set of program order po, and therefore happens-before hb
edges. Thus, the monotonicity property can be applied to prove the consistency of G′s.

When the target execution graph performs a re-execution step: Gt
Ct−−−−−→

re−exec
G′t, we need to prove

that the source graph can simulate this step Gs
Cs−−−−−→

re−exec
G′s. As was shown above, the source graph

almost always has the same set of events and the same relations as the target, except that in case of

elimination and reordering, the source graph may also contain one additional event. Also, in case

of reordering, the program order edge between a pair of recordable events is swapped. To show

that nonetheless, it is still possible to simulate the re-execution process in the source, we utilize the

Lemmas 1 and 2.

When the target graph performs re-execution Gt
Ct−−−−−→

re−exec
G′t with the given ⪯tidt thread or-

dering, we generally select the same relation for the source: ⪯tids ≜ ⪯tidt. The only exception

is sequentialization: in this case, we additionally order a pair of thread ids ⟨𝑡𝑖 , 𝑡 𝑗 ⟩ in the ⪯tids
relation to account for the sequentialized threads 𝑡𝑖 and 𝑡 𝑗 . It can be shown that as long as

ThreadOrderedUEvents(G′t, Ct, ⪯tidt) holds, the predicate ThreadOrderedUEvents(G′s, Cs, ⪯tids) also
holds. Indeed, G′s may contain only one additional uncommitted read event in case of elimination

or reordering, and this read event always reads-from a stable write event via G′s.srf relation. This

added read event cannot participate in any new po ∪ rf; [U] cycle. Therefore, Lemmas 1 and 2 can

be applied to reconstruct re-execution steps for the source graph.

A more detailed proof can be found in Appendix E.

4 XMMModel Checking
In this section, we discuss the model checker XMC we have developed for the XMM semantics. Our

model checker is based on theGenMCmodel checker [Kokologiannakis and Vafeiadis 2021]. Given a

program, GenMC explores all its RC20-consistent executions (that is, all C20-consistent executions
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without porf cycles). To construct these executions, GenMC relies on a procedure resembling the

(Execute) rule of the XMM semantics: at each step, it adds a single porf-maximal event and checks

that the new execution graph remains C20-consistent. Thus, to generate porf-cyclic executions, we
need to extend GenMC with a procedure following the (Re-Execute) rule.

However, in its general form, the (Re-Execute) rule exhibits significant non-determinism: it can

be applied at any step with arbitrarily chosen sets of determined and committed events. To tame

this non-determinism, we have developed a strategy that implements a restricted version of the

(Re-Execute) rule, making the model checking tractable in practice. As we demonstrate empirically

in §5, this restricted form of re-execution approximates the full XMM semantics surprisingly well,

and the difference typically can be observed only on synthetic tests.

We restrict the re-execution capabilities in the following aspects.

• Instead of launching re-execution arbitrarily at any point, we only do it when a load buffering

race is discovered, following the approach proposed by Moiseenko et al. [2022].

Definition 15. A pair of read and write accesses ⟨𝑟,𝑤⟩ is in LBRace if they are in a read-write

race, there is a (po ∪ rf)-path from 𝑟 to𝑤 , and 𝑟 does not read from𝑤 :

LBRace ≜ Race ∩ [R]; porf; [W] \ rf−1

• Instead of considering all possible combinations of the determined and committed event sets, we

fix their choice based on the detected load buffering race ⟨𝑟,𝑤⟩. We set the determined events D
to be all the events except those from the program-order suffix of 𝑟 . Also, we set the committed

events C to contain all write events from the same suffix that are read externally.

D ≜ G.E \ codom[𝑟 ];G.po? and C ≜ D ∪ codom( [𝑟 ];G.po?) ∩ dom(G.rf \ G.po)

As such, we always re-execute only a single thread — the one where the racy read 𝑟 occurred,

and therefore the choice of the thread ordering ⪯tid degenerates to a trivial one.

Model Checking Algorithm. The XMC model checker relies on the Visit(P,G) procedure
provided by GenMC [Kokologiannakis et al. 2022]. Given a program P and its partially constructed

graph G, this procedure generates all terminal execution graphs of P that can be constructed by

extending G with new events. Internally, this procedure at each step inserts a new porf maximal

event into a graph, calling Visit recursively to consider all possible further extensions of the graph.

The XMC re-execution algorithm is given in Algorithm 1. Overall, we follow monadic ‘do’

notation in the algorithms where 𝑎 ← 𝐴 denotes that 𝑎 is non-deterministically selected from a set

𝐴 and 𝑎 := 𝑏 denotes that 𝑏 is assigned to 𝑎.

Algorithm 1: XMC Model checking re-execute algorithm.

1 Procedure reeXecute(P, G)
2 if ¬isCons(G) ∨ ¬embeddedSubGraph(G) ∨ duplicate(G) then
3 return;
4 output (G);
5 ⟨𝑟,𝑤⟩ ← G.LBRace ;

6 if 𝑟 = ⊥ then
7 return ;

8 visitLBRaces (P,G, 𝑟 ) ; // Phase I

9 visitROutCycle (P,G, 𝑟 ) ; // Phase II

10 visitRORacyR (P,G, 𝑟 ) ; // Phase III
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A [𝑋 = 𝑌 = 0]

𝑒1 :R (𝑋, 0)

𝑒2 :W (𝑌, 1)

𝑒3 :R (𝑌, 1)

𝑒4 :W (𝑋, 1)

B [𝑋 = 𝑌 = 0]

𝑒3 :R(𝑌, 1)

𝑒4 :W (𝑋, 1)

C [𝑋 = 𝑌 = 0]

𝑒′
1
:R (𝑋, 1)

𝑒′
2
:W (𝑌, 1)

𝑒3 :R(𝑌, 1)

𝑒4 :W (𝑋, 1)

D [𝑋 = 𝑌 = 0]

𝑒′
1
:R (𝑋, 1)

𝑒′
2
:W (𝑌, 1)

𝑒3 :R(𝑌, 1)

𝑒4 :W (𝑋, 1)

Fig. 7. XMC steps for re-execution to create 𝑎 = 𝑏 = 1 outcome.

We have modified the GenMC Visit procedure so that for each generated terminal execution

graph G it calls a new routine reeXecute(P,G). This procedure performs some additional checks

before outputting the graph. Next, Line 5 non-deterministically picks a LBRacy read 𝑟 . If G has no

such LBRace then we do not attempt to construct any porf cycle anymore and hence we return in

Line 7. Otherwise, we perform re-executions to create new porf cyclic graphs. The re-execution is

performed in three phases:

(Phase I) Re-execute load buffering race (Line 8).

(Phase II) Revisit reads outside cycle (Line 9).
(Phase III) Revisit reads in the re-executed thread (Line 10).

(Phase I) Re-execute load buffering race. In this phase, we choose the sets of committed and

determined events based on a given read 𝑟 in LBRace. Let G𝑟 ⊆ G be a restricted graph without 𝑟

and its po-suffix events. We select the events in G𝑟 as determined events. Note that, G𝑟 contains a

set of reads R⊥ without any incoming G𝑟 .rf edges. The set of committed events consists of the G𝑟

events and the writes in G from which the reads events R⊥ read-from.

Example. Consider the RC20 execution of the LB program in A in Figure 7. We detect a LBRace
between events 𝑒1 and 𝑒4 that are highlighted in red. The execution graph G𝑟 is in B , and the

D ≜ {𝑒3, 𝑒4} and C ≜ {𝑒′2, 𝑒3, 𝑒4}. Note that R⊥ = {𝑒3}. Next, we re-execute the thread 1 that results
in 𝑒′

1
: R(𝑋, 1) reading from event 𝑒4, followed by 𝑒

′
2
: W(𝑌, 1) in C . We also create an rf edge from

𝑒′
2
to 𝑒3 in D . The resulting execution in 4 is XC20 consistent.

Algorithm. The algorithm for phase I is defined in Algorithm 2 in two procedures visitLBRaces

and matchRfEdges along with other helper functions.

• The visitLBRaces takes program P, an execution graph G, and a read 𝑟 that is in LBRace. In
Line 2 we use 𝑟 to compute the set of determined events D, which contains all the events of the

graph G except 𝑟 and its po-prefix. Next, the visit function returns a set of graphs constructed

from G from which we select one graph G⊥ in Line 3. The G⊥ graph may contain a set of reads

without incoming rf edges. We call matchRfEdges to create the new rf edges for these reads and
construct the rf-complete execution graph G′ in Line 4. Finally, we recursively call reeXecute

on G′ to explore further re-executions in Line 5.

• The matchRfEdges procedure identifies the writes for the R⊥ events. It takes as arguments

two graphs: the original graph G𝑜 and a derived graph G⊥ containing R⊥ events. In Line 7, we

non-deterministically pick a read 𝑟 that misses its reads-from edge from G⊥. We check if no such

𝑟 exists in Line 8 and return graph G⊥ in that case. Otherwise, in Line 10, we find the original

reads-from write𝑤 in the graph G𝑜 . In Line 11, we non-deterministically pick a write𝑤 ′ from
G⊥ such that the thread id, location, and value of 𝑤 ′ match those of 𝑤 . Next, in Line 12 we

use auxiliary function changeRF to create a new rf edge ⟨𝑤 ′, 𝑟 ⟩ in G⊥ and call matchRfEdges

recursively to search for the remaining reads-from writes.
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Algorithm 2: XMC Model checking cycle creation (Phase I).

1 Procedure visitLBRaces(P,G, 𝑟 )
2 D := G.E \ codom( [{𝑟 }];G.po?);
3 G⊥ ← visit(P,G|D );
4 G′ ← matchRfEdges(G⊥,G);
5 reeXecute (P,G′);

6 Procedure matchRfEdges(G⊥,G𝑜 )

7 𝑟⊥ ← G⊥ .R \ codom(G⊥ .rf);
8 if 𝑟⊥ = ⊥ then
9 return G⊥;

10 𝑤 ← dom(G𝑜 .rf; [𝑟⊥]);
11 𝑤 ′ ← G⊥ .Etid(𝑤 ) ∩ G⊥ .Wloc(𝑤 ) ∩ G⊥ .Wval(𝑤 ) ;
12 matchRfEdges(G⊥ .changeRF(𝑤 ′, 𝑟⊥),G𝑜 );

𝑋 = 𝑌 = 𝑍 = 0

𝑎 = 𝑋 ;

if (𝑎==1)
𝑌 = 1;

𝑏 = 𝑌 ;

if (𝑏==1)
𝑋 = 𝑏;

𝑐 = 𝑍 ;

if (𝑐 ==1)
𝑋 = 𝑐;

𝑍 = 1;

A [𝑋 = 𝑌 = 𝑍 = 0]

R (𝑋, 1)

W (𝑌, 1)

R (𝑌, 1)

W (𝑋, 1)

R (𝑍, 1)

W (𝑋, 1)

W (𝑍, 1)

B
[𝑋 = 𝑌 = 𝑍 = 0]

R (𝑋, 1)

W (𝑌, 1)

R (𝑌, 1)

W (𝑋, 1)

C
[𝑋 = 𝑌 = 𝑍 = 0]

R (𝑋, 1)

W (𝑌, 1)

R (𝑌, 1)

W (𝑋, 1)

R (𝑍, 0) W (𝑍, 1)

Fig. 8. Outcome 𝑟1 = 𝑟2 = 1, 𝑟3 = 0 is obtained in phase II.

(Phase II) Revisit reads outside cycle. After obtaining a porf cyclic execution, it is possible
that some reads that are not in the cycle or its porf-prefix can be revisited to read from some

happens-before hb preceding writes. We achieve this by restricting the graph, keeping all events

that are part of the given porf cycle and its porf-prefix, and removing everything else. To derive

new graphs, we re-execute starting from this restricted graph.

Example. Consider the Java causality test 10 [Litmus [n. d.]] in Figure 8. In this program, the

outcome 𝑟1 = 𝑟2 = 1, 𝑟3 = 0 can be obtained by sequentialization transformation [Chakraborty and

Vafeiadis 2019] and the behavior is allowed by XMM. To obtain the execution, we first create a

porf cycle in phase I where the execution has 𝑟1 = 𝑟2 = 𝑟3 = 1 as shown in A . At this step, we

execute phase II considering that R (𝑋, 1) is in LBRace. The determined events are in porf-prefix of
R (𝑋, 1) events and we remove the rest of the events from the graph which is shown in B . Next,

we re-execute the execution and obtain the completed graph in C where the read of 𝑍 reads the

initial value and results in 𝑟1 = 𝑟2 = 1, 𝑟3 = 0.

Algorithm. The algorithm for phase II is defined in the procedure visitROutCycle. In Line 2

we restrict the graph to the porf prefix of the read 𝑟 detected to be in LBRace. Note that this

restricted graph G|D is complete, that is, all reads have incoming rf edges. Then, we perform

re-execution by calling the visit in Line 3. It returns a set of complete graphs from which we select

G′. Next, we call reeXecute in Line 4, which outputs G′ and looks for new LB races in it.

(Phase III) Revisit reads in the re-executed thread. After a cycle is created in phase I, we

revisit read events in the thread of the lb-racy read 𝑟 to account for new potential rf edges.
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Algorithm 3: XMC (Phase II) for revisiting outside porf cycle and (phase III) for revisiting

threads with LBRace reads.

1 Procedure visitROutCycle(P,G, r)
2 D := dom(G.porf?; [{𝑟 }]);
3 G′ ← visit(P,G|D );
4 reeXecute (P,G′);

5 Procedure visitRORacyR(P,G, r)
6 𝑟 ′ ← dom(G.po; [{𝑟 }]) ∩ G.R;
7 D := G.E \ codom( [𝑟 ′];G.po?) ;
8 G′ ← visit(P,G|D );
9 G′′ ← matchRfEdges(G′,G);

10 reeXecute(P,G′′);

𝑋 = 𝑌 = 𝑍 = 0

𝑍 = 1;

𝑟 = 𝑍 ;

𝑠 = 𝑋 ;

if (𝑟 ==0 ∨ 𝑠 ==1)
𝑌 = 1;

𝑎 := 𝑌 ;

𝑋 := 𝑎;

A [𝑋 = 𝑌 = 𝑍 = 0]

W (𝑍, 1) R (𝑍, 0)

R (𝑋, 1)

W (𝑌, 1)

R (𝑌, 1)

W (𝑋, 1)

B

[𝑋 = 𝑌 = 𝑍 = 0]

W (𝑍, 1) R(𝑌, 1)

W (𝑋, 1)

C [𝑋 = 𝑌 = 𝑍 = 0]

W (𝑍, 1) R (𝑍, 1)

R (𝑋, 1)

W (𝑌, 1)

R(𝑌, 1)

W (𝑋, 1)

D [𝑋 = 𝑌 = 𝑍 = 0]

W (𝑍, 1) R (𝑍, 1)

R (𝑋, 1)

W (𝑌, 1)

R(𝑌, 1)

W (𝑋, 1)

Fig. 9. Revisit reads in phase III.

Example. Consider the example in Figure 9 from Moiseenko et al. [2022] where 𝑟 = 𝑠 = 𝑎 = 1

is a desired outcome. Suppose phase I constructs the execution shown in A where R (𝑋, 1) was
identified to be in LBRace. In that case, R (𝑍, 0) is selected to be revisited. As shown in B , we

remove R (𝑍, 0) event along with its po-suffix events R (𝑋, 1) andW (𝑌, 1), it results in R(𝑌, 1) event
without incoming rf edge. The re-execution constructs the events of the second thread in C where

R (𝑍, 1) is created. We also create the R (𝑋, 1) event that satisfy the if-condition and consequently

create theW (𝑌, 1) event. Finally, in D we create an rf edge fromW (𝑌, 1) to R (𝑌, 1) arriving at
the desired outcome.

Algorithm. The algorithm for phase III is defined in the procedure visitRORacyR in Algorithm 3.

In Line 6, given a read event 𝑟 which was in LBRace, we identify the set of reads from its po-prefix.
We select one of these reads non-deterministically, say 𝑟 ′. We restrict the graph to D by removing

𝑟 ′ along with its po-suffix in Line 7. Next, we re-execute in Line 3 by visit that generate a set

of graphs from which we non-deterministically select a graph, say G′. The execution graph G′

may have read events without incoming rf edges. In Line 9 we complete the graph by creating the

rf-edges. Finally, we call reeXecute in Line 10 that outputs G′′ and searches for new load-buffering

races to continue exploration.

Additional Checks. Before outputting the execution graph, the reeXecute procedure in

Algorithm 1 also performs the following checks in Line 2.
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• Consistency. It is imperative to check if the generated execution graph is consistent. Note that

normally, the Visit procedure in GenMC would also check the consistency of each intermediate

execution graph at each step after a new event is added. But, during the re-execution process,

XMC postpones the consistency checks and performs only the final check after all R⊥ reads are

matched, discarding the inconsistent graphs. Otherwise, the consistency checking routine of

GenMC may fail, as it assumes that the execution graph is RfComplete.

• Duplicate executions. The GenMC algorithm ensures that it never creates any duplicate

execution [Kokologiannakis et al. 2022], relying on the porf acyclicity of the RC20memory model.

However, as was shown in [Moiseenko et al. 2022], the same strategy cannot be repurposed for a

memory model permitting porf cycles. As such, we memorize the graphs to check for duplicates

once the graph is constructed and completed.

• Embedded subgraph. By definition, the Visit procedure of GenMC ensures all the conditions

of the committed subgraph embedding CommitEmbedded given in Definition 7 hold, except the

ones involving rpo and mo relations. Thus, we additionally check that rpo and mo ordering on

the committed events is preserved between the original and the constructed graphs.

• Thread-ordered reads. Note that because we always re-execute only a single thread, the

ThreadOrderedUEvents predicate given in Definition 8 is satisfied trivially.

Algorithm Analysis. The XMC algorithm judiciously chooses the determined and committed

events D and C instead of exploring all possible subsets, as allowed by XMM. As such, we show

that each re-execution step that XMC performs is a special case of the general (Re-Execute) rule of

XMM, and thus XMC generates only XMM consistent execution graphs.

Theorem 4.1 (Soundness Theorem). XMC is sound. The proof can be found in Appendix F.

Completeness and optimality. The XMC algorithm does not provide a completeness property

as it does not explore all possible subsets of the committed and determined events. The XMC
algorithm is also not optimal as it may create duplicate execution graphs and discard them.

5 Experimental Evaluation
We evaluated the XMC model checker on a set of well-known litmus tests and benchmarks taken

from the literature [Abdulla et al. 2017; Jagadeesan et al. 2020; Litmus [n. d.]; Moiseenko et al. 2022;

Norris and Demsky 2013]. The details of these benchmarks are given in Appendix G.

The benchmarks were run in a Docker container on a macOSmachine with a 2.9 GHz Intel Core i9

CPU and 32 GB of memory. The reported execution times were averaged over five runs.

We compare the performance of XMC to the following model checkers.

• GenMCX [Kokologiannakis and Vafeiadis 2021] is the base version of the GenMC model checker

on which XMC was developed. It supports the RC20 memory model and thus explores only porf
acyclic executions.

• HMC [Kokologiannakis and Vafeiadis 2020] is a variant of the GenMC model checker which

supports the IMM model [Podkopaev et al. 2019] that provides an abstraction over the hardware

concurrency models. It is capable of exploring some subset of porf cyclic executions which do

not have cycles consisting of syntactic dependencies and reads-from edges.

• WMC [Moiseenko et al. 2022] is an extension of the GenMC model checker which supports

a variant of Weakestmo memory model — a multi-execution event-structure based memory

model [Chakraborty and Vafeiadis 2019]. Similarly to XMC, this model checker explores the

executions with porf cycles based on detected load buffering races. However, compared to

XMC, it supports only a narrowed subset of porf cyclic executions, since it also relies on a
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stronger memory model property of certification locality. This property is incompatible with the

sequentialization transformation.

• GenMCW is an older version of the GenMCmodel checker on whichWMC was developed [Moi-

seenko et al. 2022]. Since GenMC is continually being developed, the two versions of the tool

are actually differing significantly. These differences may affect the execution time of the tools.

Thus, for a fairer comparison, we used both baseline versions of GenMC in our experiments.

Given the setup and benchmarks, we explore the following research questions (RQ).

• RQ1: How does XMC perform compared to the other model checkers in exploring all XMM
executions optimally for the litmus tests? (§5.1)

• RQ2: How effective is XMC in verifying real-world lock-free data structures compared to other

model checkers? (§5.2)

5.1 Evaluating XMC on Litmus Tests (RQ1)
We have experimented on 73 synthetic litmus tests with load buffering races. These tests comprise

both established tests from the literature and new tests that we have introduced. We compared

the XMC behavior on these tests with the other model checkers. We do not report the execution

times of the model checkers for these small tests as they are negligible, we are only interested in

the number of execution graphs they explore.

Table 1. XMC explores more executions for the litmus
tests compared to the other model checkers.

Litmus tests GenMC HMC WMC XMC
RMulMatch 15 18 20 21

LBWDep 2 2 2 3

LB+equals 9 9 9 10

java-test5 20 20 24 28

java-test9a 10 10 10 12

java-test10 5 5 5 8

java-test19 14 14 17 20

java-test20 14 14 17 20

LB+seq-src 14 14 17 20

LB-coh-RR-cf 24 24 24 36

LB+coh-cyc 5 5 5 6

LB+coh-cyc-Wd 10 10 10 12

Table 1 shows the numbers of executions for

12 tests where XMC explores more executions

than WMC— its closest competitor. Among

all the model checkers, GenMC (both its ver-

sions GenMCW and GenMCX) only explore

porf-acyclic executions. As expected, they re-

port the same number of executions, and thus

are shown in one column. HMC explores more

execution than GenMC only in RMulMatch.

WMC follows a weaker semantics than HMC
and consequently explores additional execu-

tions in 5 tests: RMulMatch, java-test19, java-

test20, java-test5, and LB+seq-src.

XMC explores more execution than all these

model checkers includingWMC in all 12 tests. In the case of LB+coh+RR+cf test, this is because

WMC enforces a global event-structure-level constraint on themo order, while XMC does not have

this constraint. XMC missed XMM consistent executions only in four cases: LB-DRF, LB-DRF-SLI,

LB-DRF-LL, LB+coh-cyc, and LB+porf-suffix.

5.2 Evaluating XMC on Data Structure Benchmarks (RQ2)
Table 2 reports the numbers of explored executions and verification times by the model checkers for

all concurrent data structure benchmarks. As shown, all these benchmarks contain load buffering

races. The numbers of explored executions remain the same in all benchmarks except fc-async,

linuxrwlk, dq, chase-lev. In fc-async, and linuxrwlk benchmarks the GenMCW and WMC times out

with a threshold of 60 seconds. In chase-lev the numbers of explored executions in GenMCX and

GenMCW differ. These variations are due to the bug fixes and improvements added to a newer

version GenMCX. These improvements are also reflected in HMC. In the dq benchmark XMC
explores 141 additional executions, whereas WMC explores no additional execution.
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Table 2. Number of executions explored and time (T) on data structure benchmarks. XMC explores more
executions than other tools in the chase-lev and dq tests. The threshold for timeout is 60 seconds.

Testcases

lbRace

(#)

HMC GenMCW WMC GenMCX XMC
exec

(#)

T

(s)

exec

(#)

T

(s)

exec

(#)

T

(s)

exec

(#)

T

(s)

exec

(#)

T

(s)

mutex 30 12 0.05 12 0.02 12 0.02 12 0.03 12 0.04

fc-async 32 24 0.36 � � � � 24 0.33 24 0.34

twalock 288 96 0.34 96 0.03 96 0.03 96 0.34 96 0.41

linuxrwlk 384 216 0.40 � � � � 216 0.23 216 0.81

stc 1515 183 0.15 183 0.05 183 0.07 183 0.14 183 0.30

dq 1616 1924 0.28 1802 0.14 1802 0.15 1924 0.18 2065 2.79

buf-ring 2172 1218 3.92 1218 1.54 1218 1.59 1218 1.72 1218 2.28

chase-lev 6530 3639 1.91 3809 0.58 3975 0.66 3639 0.74 3821 1.95

Tktlock 10800 720 2.01 720 3.40 720 3.65 720 0.34 720 48.43

mpmcQ 24240 15752 9.26 15752 4.00 15752 4.31 15752 4.81 15752 12.64

XMC incurs more time in exploring the additional executions compared to that of WMC, partic-
ularly with the increase of the load buffering races. We attribute this to a difference between two

basic versions of GenMC: GenMCX and GenMCW. They employ different strategies during graph

exploration. When encountering a so-called backward revisit, that is a revisit of a previously added

read event 𝑟 by a newly added write event 𝑤 , GenMCX makes a full copy of a graph for future

exploration, while GenMCW copies only a part of the graph. Since every detected load buffering

race leads to a backward revisit, a lot of graph copies are created for future explorations.

However, as can be seen from the table, most of these explorations are fruitless as they do not

lead to new execution graphs. As an optimization, we could try to employ some heuristics that

would help the algorithm to discard these infeasible explorations earlier, before a graph copy is

created. We leave this for future work.

6 Related Work
Defining relaxed memory concurrency semantics for programming languages that address the

associated challenges is widely explored [Batty et al. 2015]. Adve and Hill [1990] defined the

data-race-free-0 (DRF0) model that differentiates between the data and synchronization variables.

In the DRF0 model, races on synchronization variables are allowed and races on data variables

result in undefined behavior. The DRF0 model provided the foundation for the concurrency model

for the Java and C/C++ programming languages [Boehm and Adve 2008; Gosling et al. 1996].

Pugh [1999] identified that several compiler optimizations are unsound in the Java Memory Model

specification [Gosling et al. 1996]. The Java memory model was revised by Manson et al. [2005b] to

provide DRF-SC guarantee and support reordering transformations. In this model, a set of events is

committed at each step and alternative well-formed executions are identified. However, Aspinall

and Ševčík [2007] discovered flaws in this semantics, some of which were later fixed by Ševčík

and Aspinall [2008]. Our approach is inspired by the concepts of committed events and alternative

well-formed execution in Manson et al. [2005b], however, our commit-and-re-execute strategy

significantly differs to support the desired properties.

The initial concurrency model for C/C++ [ISO/IEC 14882 2011; ISO/IEC 9899 2011], well known

as C11, was proposed by Boehm and Adve [2008] and was formalized by [Batty et al. 2011]. The

model was later found to have several limitations [Batty et al. 2013; Vafeiadis et al. 2015]. Since

then, several models have been proposed to address different limitations of C/C++ concurrency –
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both in per-execution [Batty et al. 2016; Lahav et al. 2017; Margalit and Lahav 2021; Vafeiadis et al.

2015] and in multi-execution manner [Chakraborty and Vafeiadis 2019; Kang et al. 2017; Lee et al.

2020; Paviotti et al. 2020; Pichon-Pharabod and Sewell 2016].

Among the multi-execution models, promising semantics (PS) [Kang et al. 2017; Lee et al. 2020]

is defined operationally. In PS, each write operation creates a message with a timestamp extending

various views of the thread. A read operation reads from a message and extends the thread views

with the message views. In addition, promising semantics allow a thread to promise a write operation

(resulting in a message) which can be later fulfilled if the thread has a thread-local certificate. PS

satisfies DRF properties and supports certain desired compiler optimizations. However, PS lacks

support for sequentialization. Pichon-Pharabod and Sewell [2016] defines the semantic model based

on event structure, baking in various desired optimizations. However, the model does not provide

DRF guarantees. Jeffrey and Riely [2016] provides an event structure-based model, primarily for

a subset of Java accesses. The model satisfies DRF guarantees but does not support read-read

reordering and provides weaker coherence properties. Chakraborty and Vafeiadis [2019] proposed

an axiomatic-operational model for event structure construction followed by execution extraction.

This model also lacks support for sequentialization. The models in Jeffrey et al. [2022b]; Paviotti

et al. [2020] provide certain compositional properties but do not support all the optimizations.

Given the constructs of PS and event structure-based models, it is unclear if they can be extended

to support sequentialization along with other properties.

Besides compiler optimization, efficient mapping schemes from C/C++ concurrency primitives

to hardware instructions are extensively studied for architectures including x86-TSO, ARM, Power,
RISC-V [Batty et al. 2011; Chakraborty and Vafeiadis 2019; Kang et al. 2017; Lahav et al. 2017; Lee

et al. 2020; Podkopaev et al. 2019; Sarkar et al. 2012, 2011]. Podkopaev et al. [2019] proposed IMM

as an abstraction on these architectures to develop mechanized proofs of the mapping correctness

from various programming language semantic models to these architectures.

Semantic models provide the guiding principles to developing automated reasoning techniques

by model checking [Abdulla et al. 2017; Kokologiannakis and Vafeiadis 2021; Norris and Demsky

2013], dynamic analysis, and testing [Gao et al. 2023; Luo and Demsky 2021; Tunç et al. 2023].

These analyses follow the acyclicity of porf relations in the respective semantic models. On the

other hand, developing analysis tools that allow porf cycles are more challenging Pulte et al. [2019]

developed a model checker for a fragment of PS and Moiseenko et al. [2022] developed WMCmodel

checker following Weakestmo2 event structure based semantics [Moiseenko et al. 2020]. Compared

to WMC, the XMM model checker provides soundness guarantees.

7 Conclusion & Future Work
We propose a concurrency semantic framework based on re-execution strategy that satisfies the

desiderata of desired properties for concurrency semantics in programming languages. While we

focus on C/C++ concurrency primitives and consistency properties, our model is parameterized

and can be used to model different concurrency semantics. Our approach checks consistency

per-execution and avoids the complexities of multi-execution models that reason about multiple

executions together. Our model is executable. To demonstrate this, we have developed a sound

model checker to explore the executions with porf cycles of various benchmark programs.

In the future, we want to develop different re-execution strategies for encoding other concurrency

models. Another goal is to improve the model checker to obtain completeness and optimality.

Data-Availability Statement
The experimental results of this paper may be reproduced using the artifact on Zenodo [Moiseenko

et al. 2025a]. The source code of the XMC model checker is contained within the artifact.
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