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Summary

This thesis, called ‘on Cohomology and Ext-groups’, would fit best under the mathematical
research area called algebraic topology. As the name suggests, this thesis will contain some
algebra, and some topology. Accordingly this thesis will contain two chapters, treating the
different subjects separately. However, in chapter 2 we will use the proven algebraic tools from
chapter 1 to obtain useful theorems and constructions.

In chapter 1 we will treat homological algebra. In subsection 1.1 we will start by defining the
notion of an exact sequence of abelian groups. Then we will define the less restrictive concept
of a complex of abelian groups. Using these complexes we will define their (co)homology
groups in subsection 1.2. Thereafter, in subsection 1.3 we will define injective and projective
groups and give useful equivalent definitions. In particular, we will prove that an abelian
group A is injective if and only if A is a divisible group. Next up a special type of exact
sequence, called an injective resolution, will be defined. Using these injective resolutions we
will define Ext-groups in subsection 1.4 which play a central role in this thesis. We will derive
various properties of these groups and characterize Ext(A,B) for any finitely generated abelian
groups A and B. In subsection 1.5 we will prove that Ext(Q,Z) ∼= A/Q where A is the Adèle
group consisting of all sequences (x2, x3, x5, . . . ) such that all xp ∈ Qp, the p-adic rationals
and xp ∈ Zp, the p-adic integers for all but finitely many primes p. Here Q ⊂ A denotes the
subgroup of constant sequences (q, q, q, . . . ) with q ∈ Q. Finally, in subsection 1.6 we will
state and prove the universal coefficient theorem which relates the homology and cohomology
groups of a complex of free abelian groups. This allows one to calculate the cohomology groups
of a complex of free abelian groups using the homology groups and sufficient knowledge of
Ext-groups and Hom-groups.

In chapter 2 we will treat the topology. In subsection 2.1 we will introduce a specific kind of
complex of abelian groups called a chain complex. This is a way to assign a complex of abelian
groups to a topological space X. We will construct the boundary group homomorphisms and
prove two properties. Firstly that the composition ∂ ◦ ∂ = 0. Secondly, for a continuous
function f : X → Y between topological spaces, that the induced map f# : Cp(X) → Cp(Y )
commutes with the boundary group homomorphisms. That is, ∂ ◦ f# = f# ◦ ∂. In subsection
2.2 we define singular homology as the homology groups of these chain complexes. We prove
that homeomorphic topological spaces, and even better homotopy equivalent spaces, have
isomorphic singular homology groups. We finish off this subsection by calculating the singular
homology groups of a contractible space. In subsection 2.3 we will describe H0(X) and H1(X)
explicitly for any topological space X. We prove that H0(X) ∼= ⊕a∈AZ where A denotes
the set of (disjoint) path-connected components. And we will state that for a path-connected
topological space X, H1(X) ∼= π1(X,x)ab which is called Hurewicz’ theorem. In subsection 2.4
we will use the tools developed in chapter 1 to prove the long exact sequence of Mayer-Vietoris.
For a topological spaceX and an open covering U = {U, V } ofX the Mayer-Vietoris long exact
sequence allows one to calculate the singular homology groups of X in terms of the singular
cohomology groups of U , V and U∩V . This theorem will be used extensively in subsection 2.5
to calculate the singular homology groups of the sphere Sn and real projective n-space Pn(R).
Finally, in subsection 2.6 we will combine the results of subsections 1.6 and 2.5 to calculate
the singular cohomology groups of the spheres Sn and real projective n-space Pn(R). We will
also give an explicit description of the 0-th singular cohomology group of a topological space
X with coefficients in an abelian group A. We have proven that H0(X,A) ∼= Aπ0(X) where
π0(X) is the set of path-connected components of X.
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1 Homological algebra

In this first section the notion of exact sequences and chain complexes of abelian groups will be
presented. Thereafter injective and projective objects will be defined, and a useful equivalent
definition will be given. Using these groups we will define injective resolutions and using these
also Ext-groups. Finally the universal coefficient theorem will be stated and proven which
relates homology and cohomology of a complex of free abelian groups. Various Ext-groups
will be calculated, and in particular the group Ext(Q,Z) will be thoroughly treated resulting
in a very interesting isomorphism.

1.1 Sequences of abelian groups

Definition 1.1. Let A,B and C be abelian groups. Let f : A→ B and g : B → C be group
homomorphisms. We call

0 // A
f // B

g // C // 0

a short exact sequence of abelian groups when f is injective, g is surjective and Im(f) = Ker(g).
More generally a sequence

// Ai−1 di−1 // Ai di // Ai+1 //

of abelian groups is called exact if for each i ∈ Z we have Im(di−1) = Ker(di).

Example 1.2. Consider the short exact sequence

0 // Z ·n // Z π // Z/nZ // 0

where π is the usual projection. Furthermore, note that for any abelian groups A and B and
injective f : A→ B we have a short exact sequence

0 // A
f // B

π // B/f(A) // 0

Example 1.3. Another interesting example, which is not of the previous form is given by

0 // Z i // R e2πi−
// S1 // 0

where i is the inclusion of Z into R. Clearly the inclusion is injective and the exponential
map is surjective onto the circle S1, embedded in the complex plane C. Then one shows that
e2πix = 1 if and only if x ∈ Z proving the exactness of the given sequence.

Definition 1.4. A short exact sequence of abelian groups

0 // A
f // B

g // C // 0

is called split exact, if it is isomorphic as a short exact sequence, to the trivial extension of
C over A. That is, there exists some group homomorphism ϕ : B → A ⊕ C such that the
diagram

0 // A
f //

id
��

B
g //

ϕ
��

C //

id
��

0

0 // A
i1 // A⊕ C

π2 // C // 0

commutes.
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We remark that the homomorphism ϕ : B → A⊕C is in fact an isomorphism, this can be
shown by simple diagram chasing.

Lemma 1.5 (Splitting lemma). Given an exact sequence

0 // A
f // B

g // C // 0

the following are equivalent:
(i) The exact sequence is split exact;
(ii) There exists a section s : C → B, a group homomorphism such that g ◦ s = idC ;
(iii) There exists a retract r : B → A, a group homomorphism such that r ◦ f = idA.

See for example [1, p. 147] for a proof.

Example 1.6. The trivial example of a split exact sequence is given by

0 // A
i1 // A⊕ C

π2 // C // 0

where i1 is the inclusion in the first coordinate, and π2 projection on the second.

Example 1.7. On the other hand not all exact sequences split, for example in 1.2:

0 // Z ·n // Z π // Z/nZ // 0

it is clear that Z is not isomorphic to Z⊕ Z/nZ thus the given short exact sequence does not
split.

Lemma 1.8 (Snake lemma). Given a commutative diagram of abelian groups

A //

f
��

B //

g

��

C //

h
��

0

0 // Q // R // S

where the rows are exact, there exists an extended commutative diagram

Ker(f) //

ι

��

Ker(g) //

ι

��

Ker(h)

ι

��
δ

A //

f

��

B //

g

��

C //

h
��

0

0 // Q

π

��

//

//

R

π

��

// S

π

��
Coker(f) // Coker(g) // Coker(h)

such that the sequence

Ker(f) // Ker(g) // Ker(h)
δ // Coker(f) // Coker(g) // Coker(h)

is exact. We call δ the connecting homomorphism.
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We will give the construction of δ. The reader can either check well-definedness and
exactness themselves or refer to e.g. [3, Lemma 1.3.2]. Let c ∈ Ker(h), then due to exactness
c can be lifted to some b ∈ B. Because h(c) = 0 in S the image of g(b) in S is also zero and
can thus be lifted to an element q ∈ Q. We then define δ(c) = π(q) ∈ Coker(f). This map is
well-defined and does not depend on the chosen lifts of c.

The snake lemma plays a central role in the construction of connecting homomorphisms
in long exact sequences. It is used in the proof of theorem 1.12, which is a very helpful tool.
For example, the long exact sequences of Mayer-Vietoris will be proven using this theorem.
Another interesting application is the associated long exact sequence for right derived objects,
which can sometimes be used to calculate the right derived objects themselves.

1.2 (Co)homology of a complex

One can introduce a slightly weaker variant of an exact sequence.

Definition 1.9. Consider a sequence of abelian groups and group homomorphisms with in-
creasing index

A• : // Ai−1 di−1 // Ai di // Ai+1 //

we call A• a complex if Im(di−1) ⊂ Ker(di). An equivalent condition is that the composition
of any two arrows results in the trivial group homomorphism.

The required inclusions allow us to consider the quotients Ker(di)/ Im(di−1), this leads to
the most important definition of this chapter.

Definition 1.10. For a given complex of abelian groups A•, we define the cohomology groups
of A• to be H i(A•) = Ker(di)/ Im(di−1) for i ∈ Z.

If the indexing of a complex A• goes down one can define the homology groups of A• as
Hi(A•) = Ker(di)/ Im(di+1). In the second chapter we will discuss singular (co)homology of
a topological space X and in section 1.6 prove the universal coefficient theorem which relates
them. The term singular specifies the way in which we transform X into a complex, in this
case called a chain complex C•.

Definition 1.11. Let A•, B• and C• be increasing complexes of abelian groups. We will
denote the groups of these complexes by Ai, Bi and Ci respectively. We call a collection of
short exact sequences of abelian groups

0 // Ai // Bi // Ci // 0

for i ∈ Z, such that

Ai //

��

Bi

��

// Ci

��
Ai+1 // Bi+1 // Ci+1

commutes for all i ∈ Z an exact sequence of complexes denoted by

0 // A• // B• // C• // 0

The next theorem will be given without proof, for a proof one can read e.g. [3, Theorem
1.3.1].
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Theorem 1.12 (Long exact sequence of cohomology). Any short exact sequence of complexes

0 // A• // B• // C• // 0

gives rise to a long exact sequence of cohomology groups with natural group homomorphisms

// H i(A•) // H i(B•) // H i(C•)
δi // H i+1(A•) //

We will give a description of the connecting homomorphism δi. This will become par-
ticularly important when proving the Mayer-Vietoris long exact sequence of homology and
deriving the long exact sequence of right derived functors. Take an element x ∈ H i(C•). This
can be represented by an element x′ ∈ Ker(Ci → Ci+1) and this can be lifted to an y ∈ Bi.
Then the image of y in Bi+1 denoted by y′ has y′ ∈ Ker(Bi+1 → Ci+1) = Im(Ai+1 → Bi+1).
Because of this and the fact that the group homomorphism Ai+1 → Bi+1 is injective we can
identify y′ with an element z ∈ Ai+1. Because y′ ∈ Ker(Bi+1 → Bi+2) and the injectivity
of the group homomorphism Ai+2 → Bi+2 it must be that z ∈ Ker(Ai+1 → Ai+2). So let
δi(x) = [z] the class of z in H i+1(A•).

Note that after some reordering there exists also an associated long exact sequence of
homology groups if the initial complexes had a downward indexing.

1.3 Injective and projective groups

Definition 1.13. We call an abelian group I injective if for any abelian groups A and B and
any f : A → I and an injective g : A → B there exists a group homomorphism h : B → I
such that

I

A �
� g //

f
??

B

h

__

commutes.

Definition 1.14. In similar fashion we call a group P projective if for any abelian groups A
and B and any f : P → B and a surjective g : A → B there exists a group homomorphism
h : P → A such that

P
f

  

h

��
A

g // // B

commutes.

Corollary 1.15. A short exact sequence 0 → A→ B → C → 0 splits if A is injective or C is
projective.

Proof. In the case where A is injective the injective homomorphism A → B and the identity
idA : A→ A can fit in the commutative diagram

A

A �
� //

idA

??

B

h

__
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The injectivity of A guarantees the existence of such an h, which is a retract, as in 1.5 (ii).
When C is projective the surjective homomorphism B → C and the identity idC : C → C fit
in the commutative diagram

C
idC

��

g

~~
B // // C

The projectivity of C guarantees the existence of such a g, which is a section, as in 1.5 (iii).
Hence in both cases the exact sequence splits.

Definition 1.16. Let A be an abelian group, we call A divisible if for all x ∈ A and n ∈ Z≥1

there exists an y ∈ A such that x = ny.

Proposition 1.17. An abelian group A is injective if and only if A is divisible.

Before we will prove this proposition we will formulate and prove a useful lemma.

Lemma 1.18. An abelian group A is divisible if and only if for all subgroups J ⊂ Z and
homomorphisms f : J → A, there exists a homomorphism g : Z → A such that g|J = f . We
call this the integer extension property.

Proof. Suppose A is divisible, let J ⊂ Z a subgroup and f : J → A a group homomorphism.
If J = 0 we can choose an arbitrary group homomorphism g : Z → A. If J ̸= 0, then J = nZ
for some n ∈ Z≥1. We write f(n) = x, and hence f(kn) = kx. Because A is divisible there
exists a y ∈ A such that x = yn. Now define g : Z → A by g(1) = y. Then g(n) = ny = x
and g(kn) = kny = kx so g|J = f . This shows the first implication. Conversely, let x ∈ A
and n ∈ Z≥1 arbitrary. Define f : nZ → A by f(n) = x, then there exists a g : Z → A such
that g|nZ = f . Thus g(n) = ng(1) = x, and as g(1) ∈ A we have shown that x = ny for some
y ∈ A.

Using the equivalent characterization of divisibility given in lemma 1.18 we will prove
proposition 1.17.

Proof. Suppose A is injective, let J ⊂ Z be a subgroup and let i : J → Z denote the inclusion.
Let f : J → A be any homomorphism, this fits in the commutative diagram:

A

J
i //

f
??

Z

g
__

because i is injective such a g exists by the injectivity of A. Hence A has the integer extension
property. Conversely let A have the integer extension property. Let f :M → N be an injective
group homomorphism. Let k : M → A be a group homomorphism. We want to show that k
extends to a group homomorphism k′ : N → A such that the diagram

A

M
f //

k

>>

N

k′
``

8



commutes. Now consider the set {(H,h)|M ⊆ H ⊆ N,h : H → A} such that the following
diagram

A

M
i //

k

>>

H

h

``

commutes. This set is nonempty as (M,k) is one such element. The set is also partially
ordered, we say (H1, h1) ≤ (H2, h2) if and only if H1 ⊆ H2 and h2|H1 = h1. Lastly, every
chain of ordered elements has an upper bound. Namely, suppose

· · · ≤ (Hi, hi) ≤ (Hi+1, hi+1) ≤ . . .

is such a chain. Then let (H,h) = (
⋃∞

i=1Hi, h) where h : H → A is defined as h(x) = hi(x)
for some i such that x ∈ Hi. We leave it to the reader to check that an uncountable chain or
ordered elements also has an upper bound. Thus we may apply Zorn’s lemma, stating that
there exists a maximal element which we call (B, h), we now want to show that B = N . For the
sake of a contradiction, suppose N \B ̸= ∅ and let x ∈ N \B. Now B∩x ·Z = nZ for some n ∈
Z. Now we have a group homomorphism h : B → A so in particular a group homomorphism
h : nZ → A. Due to the integer extension property this homomorphism extends to a group
homomorphism l : Z → A. Now we have a group homomorphism B ⊕ x · Z → A given by
(b, z) 7→ h(b) + l(z), and we have a natural group homomorphism i : B ⊕ x · Z → B + x · Z
given by (b, z) 7→ b + z. Now consider the group homomorphism k′ : B + x · Z → A sending
an element y, that can be decomposed as y = b + z for b ∈ B and z ∈ x · Z to h(b) + l(z).
This group homomorphism is well defined because h = l on B ∩ x · Z and thus an extension
of (B, h) which is a contradiction. Thus indeed, any maximal element is of the form (N, k′)
so A is injective.

Example 1.19. The group Q is injective, because it is divisible. Furthermore, any quotient of
an injective group, e.g. Q/Z is also injective.

The following proposition will be given without proof, for a proof one can refer to [2,
Theorem 11.6].

Proposition 1.20. An abelian group A is projective if and only if A is free.

1.4 Ext-groups

For abelian groups A and B we will define Ext(A,B), another abelian group. These groups
are in particular useful when calculating the singular cohomology groups of some topological
space X. In the next section this relation will be made precise as stated in the universal
coefficient theorem. There are two main ways to define Ext(A,B), which use either injective
or projective objects. In this section we will use the injective resolutions, and start with giving
their definition.

Definition 1.21. Let A be an abelian group, let I0, I1, . . . be injective groups. We call any
exact sequence

0 // A // I0 // I1 // · · ·

an injective resolution of A.
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One may note that there can exist many injective resolutions for a given group A. However,
the injectivity of the Ik allows us to construct a chain map between different resolutions. It
turns out that any two extensions are homotopic.

Lemma 1.22. Let A be an abelian group, then any two injective resolutions 0 → A→ I• and
0 → A→ J• are homotopy equivalent. That is, the injective resolution of an abelian group is
unique up to homotopy equivalence.

Note that taking homology groups of an exact sequence is a rather trivial operation. Every
(co)homology group will just be the zero group. However, given an exact sequence I•

0 // I0
f0 // I1

f1 // · · ·

apply the Hom(A,−) functor. That is, change every group Ik to Hom(A, Ik) and any fk : Ik →
Ik+1 to the map φk : Hom(A, Ik) → Hom(A, Ik+1) by sending an element ϕk ∈ Hom(A, Ik)
to fk ◦ ϕk. Then one obtains a complex denoted by Hom(A, I•)

0 // Hom(A, I0)
φ0 // Hom(A, I1)

φ1 // · · ·

which is not necessarily exact again. This gives rise to possibly interesting homology groups
and leads us to the following definition.

Definition 1.23. Let B be an abelian group and 0 → B → I• an injective resolution. Then
we define Exti(A,B) to be the i-th cohomology group of the complex Hom(A, I•).

Remark 1.24. One of the many fascinating properties of Ext-groups is that there is an equiv-
alent definition given as follows. Let A be an abelian group and let

· · · // P 1 // P 0 // A // 0

be a projective resolution of A, that is the sequence is exact and all P i are projective. Then
apply the contra variant functor Hom(−, B) to the reduced complex, note the difference with
Hom(A,−) used earlier. Giving a new complex with induced arrows

0 // Hom(P 0, B) // Hom(P 1, B) // · · ·

Then also Exti(A,B) = hi(Hom(P •, B)). This gives two explicit methods of calculating dif-
ferent Ext-groups which can be very helpful. A proof that these two definitions are equivalent
can be found in e.g. [3, Section 2.5].

Proposition 1.25. For any abelian groups A and B we have Ext0(A,B) ∼= Hom(A,B).

Proof. Let 0 → B → I• be an injective resolution. Then in particular

0 // B
i // I0

f // I1

is exact. I claim that the induced complex

0 // Hom(A,B)
i∗ // Hom(A, I0)

f∗ // Hom(A, I1)

is also exact. First we show that i∗ is injective. Suppose that ϕ : A → B has i∗(ϕ) = 0,
that is i ◦ ϕ = 0. Because i is injective it must be that ϕ = 0. Next up, because Hom(A, I•)
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is a complex, it is clear that Im(i∗) ⊂ Ker(f∗). We will now also show the other inclusion.
Suppose ϕ : A → I0 has f∗(ϕ) = f ◦ ϕ = 0. Let a ∈ A be arbitrary, as f(ϕ(a)) = 0 we can
write ϕ(a) = i(b) for some b ∈ B. As a was arbitrary we can thus write this ϕ as i◦ϕ∗ = i∗(ϕ

∗)
for some ϕ∗. Hence the derived complex is in fact exact. Now Hom(A, I•) is given by

0 // Hom(A, I0)
f∗ // Hom(A, I1) // · · ·

Thus Ext0(A,B) = h0(Hom(A, I•)) ∼= Ker(f∗) = Im(i∗) ∼= Hom(A,B) because of the shown
exactness.

Proposition 1.26. For any abelian groups A,B we have Exti(A,B) = 0 for i ≥ 2.

Proof. Let F be the free abelian group generated by the elements of B, thus F =
⊕

b∈B bZ.
Then clearly F ⊂

⊕
b∈B bQ. Let π : F → B be the associated map from the free abelian

group F . Because π is surjective by the third isomorphism theorem B ∼= F/Ker(π). So we
have the inclusion

0 // B //
(⊕

b∈B bQ
)
/Ker(π)

Then we can project each bQ → bQ/Z sending x→ x̄. Thus we have the sequence

0 // B //
(⊕

b∈B bQ
)
/Ker(π) //

(⊕
b∈B bQ/Z

)
/Ker(π) // 0

which is in fact exact and thus an injective resolution of B, write as 0 → B → I•. Then
Hom(A, I•) looks like

0 // Hom
(
A,
(⊕

b∈B bQ
)
/Ker(π)

)
// Hom

(
A,
(⊕

b∈B bQ/Z
)
/Ker(π)

)
// 0

and hence Exti(A,B) = hi(Hom(A, I•)) = 0 for i ≥ 2.

For abelian groups A and B we have seen that Ext0(A,B) ∼= Hom(A,B) and that
Exti(A,B) = 0 for i ≥ 2. Hence the only interesting Ext-group is the first one. From
now on we will refer to Ext1(A,B) as Ext(A,B).

Proposition 1.27. Let B be an injective group, then for any abelian group A we have
Exti(A,B) = 0 for i ≥ 1.

Proof. We have the injective resolution 0 → B → B → 0, so then Hom(A, I•) is 0 →
Hom(A,B) → 0. Hence the cohomology groups hi(Hom(A, I•)) = 0 for i ≥ 1.

Proposition 1.28. Let A be a projective group, then for any abelian group B we have
Exti(A,B) = 0 for i ≥ 1.

For a proof one can read e.g. [3, Calculation 3.3.2].

Proposition 1.29. We have the following isomorphisms of groups:

Ext(Z,Z) = 0

Ext(Z/nZ,Z) ∼= Z/nZ
Ext(Z,Z/mZ) = 0

Ext(Z/nZ,Z/mZ) ∼= Z/dZ

where d = gcd(m,n).
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Proof. We will start by proving the first claim. For this we will use the injective resolution

0 // Z // Q // Q/Z // 0

After applying Hom(Z,−) the reduced complex is given by

0 // Hom(Z,Q) // Hom(Z,Q/Z) // 0

Which is canonically isomorphic, as a complex, to

0 // Q // Q/Z // 0

So Ext(Z,Z) = h1(Hom(Z, I•)) = Q/Z
Q/Z = 0. For the second claim we can use the same injective

resolution, but instead we apply Hom(Z/nZ,−) resulting in

0 // Hom(Z/nZ,Q) // Hom(Z/nZ,Q/Z) // 0

Now note that Hom(Z/nZ,Q) = 0 and Hom(Z/nZ,Q/Z) ∼= Z/nZ. The latter can be easily
observed when viewing Q/Z as

⋃∞
n=1(

1
nZ)/Z revealing that the only options for 1 viewed as

an element of Z/nZ are the elements of the form i
n for 0 ≤ i ≤ n − 1. Thus the reduced

complex is isomorphic to
0 // 0 // Z/nZ // 0

and hence Ext(Z/nZ,Z) ∼= Z/nZ. For the third and fourth case we will use the injective
resolution of Z/mZ given by

0 // Z/mZ // Q/mZ ·m // Q/mZ // 0

which we will denote by the following, equivalent, injective resolution

0 // Z/mZ //
⋃∞

n=1(
1

mnZ)/Z
·m //

⋃∞
n=1(

1
mnZ)/Z // 0

where i 7→ i
m in the first map. Now applying Hom(Z,−) and considering the reduced complex

we get

0 // Hom
(
Z,
⋃∞

n=1(
1

mnZ)/Z
) (·m)∗ // Hom

(
Z,
⋃∞

n=1(
1

mnZ)/Z
)

// 0

which is again canonically isomorphic to

0 //
⋃∞

n=1(
1

mnZ)/Z
·m //

⋃∞
n=1(

1
mnZ)/Z // 0

Hence Ext(Z,Z/mZ) = h1(Hom(Z, I•)) = Q/mZ
Q/mZ = 0. Lastly, we will apply Hom(Z/nZ) to

the injective resolution of Z/mZ and considering the reduced complex we get

0 // Hom
(
Z/nZ,

⋃∞
k=1(

1
mkZ)/Z

) (·m)∗ // Hom
(
Z/nZ,

⋃∞
k=1(

1
mkZ)/Z

)
// 0

A group homomorphism from Z/nZ is completely determined by the image of the generator 1.
Because 1 has order n in the group Z/nZ it must be mapped to an element whose order divides
n, which is exactly the n-torsion subgroup. Now for Z/mZ we have Z/mZ[n] = m

d Z/mZ where

12



d = gcd(m,n), because m
d is the smallest integer dividing m such that n · m

d is a multiple of
m. Then we have isomorphisms

m
d Z/mZ ∼ // 1

dZ/Z
∼ // Z/dZ

So Hom(Z/nZ, 1
mZ/Z) ∼= Hom(Z/nZ,Z/mZ) ∼= Z/dZ where d = gcd(m,n). For k ≥ 1 we

have Hom(Z/nZ, 1
kmZ/Z) ∼= Hom(Z/nZ,Z/mkZ) ∼= Z/dkZ, where dk = gcd(n, km). Now

taking k = n yields dn = gcd(n, nm) = n so Hom(Z/nZ,
⋃∞

k=1(
1
mkZ)/Z) ∼= Z/nZ. Thus the

reduced complex simplifies to

0 // Z/nZ ·m // Z/nZ // 0

where. Hence

Ext(Z/mZ,Z/nZ) = h1(Hom(Z/mZ, I•)) =
Z/nZ

m(Z/nZ)
∼= Z/ gcd(n,m)Z.

Proposition 1.30. Let A be an abelian group, then Ext(Z/nZ, A) ∼= A/nA.

For a proof of proposition 1.30 one can refer to e.g. [3, Calculation 3.3.2]. This makes use
of a projective resolution of Z/nZ.

Proposition 1.31. Let Ai, Bi be abelian groups for all i ∈ N, then

Exti

⊕
j

Aj , B1

 ∼=
∏
j

Exti(Aj , B1)

Exti

A1,
∏
j

Bj

 ∼=
∏
j

Exti(A1, Bj)

The key observation for the proof of proposition 1.31 is the fact that if

. . . // P 1
i

// P 0
i

// Ai
// 0

are projective resolutions of Ai for all i, then

. . . //
⊕∞

i=1 P
1
i

//
⊕∞

i=1 P
0
i

//
⊕∞

i=1Ai
// 0

is a projective resolution of
⊕

iAi. Similarly, if

0 // Bi
// I0i

// I1i
// · · ·

are injective resolutions of Bi for all i, then

0 //
∏∞

i=1Bi
//
∏∞

i=1 I
0
i

//
∏∞

i=1 I
1
i

// · · ·

is an injective resolution of
∏∞

i=1Bi. Furthermore Hom(A1,
∏∞

i=1Bi) ∼=
∏∞

i=1Hom(A1, Bi)
and Hom(

⊕∞
i=1Ai, B1) ∼=

∏∞
i=1Hom(Ai, B1). A complete proof can be found in e.g. [3,

Proposition 3.3.4].
So combining prop. 1.29 and prop. 1.31 we can calculate the Ext-group for any two finitely

generated abelian groups, because they can be decomposed as a direct sum of finitely many
infinite and finite cyclic groups.
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Remark 1.32. For abelian groups A,B,C,G and a short exact sequence

0 // A // B // C // 0

there exists an associated long exact sequence

0 // A∗ // B∗ // C∗ // Ext(G,A) // Ext(G,B) // Ext(G,C) // 0

where A∗, B∗ and C∗ denote Hom(A,G),Hom(B,G) and Hom(C,G) respectively. This can
be very useful in computing an Ext group, which will be illustrated in the proof of theorem
1.33. This is a special case of the long exact sequence of right derived functors, constructed
as in [3, Section 2.5].

1.5 Ext(Q,Z)

In this section we will compute a more exotic Ext-group, namely Ext(Q,Z). First we will
state the main result.

Theorem 1.33. Ext(Q,Z) ∼= A/Q where A is the Adèle group consisting of all sequences
(x2, x3, x5, . . . ) such that all xp ∈ Qp, the p-adic rationals and xp ∈ Zp, the p-adic integers
for all but finitely many primes p, here Q ⊂ A denotes the subgroup of constant sequences
(q, q, q, . . . ) with q ∈ Q.

In order to prove this theorem we will prove some useful lemmas first. Before stating and
proving those lemmas we will properly introduce the relevant abelian groups which will be
used throughout this section. Let Z/p∞ := Z[p−1]/Z, where Z[p−1] = { z

pk
: z ∈ Z, k ≥ 0}.

Furthermore, let us define the p-adic integers Zp for some prime p as follows:

Zp =

{
(a1, a2, a3, . . . ) ∈

∞∏
n=1

Z/pnZ
∣∣∣∣ for n ≥ 1 : an−1 = an

(
mod pn−1

)}
Here we will refer to the extra condition as the congruence conditions. Now we can define
Qp := Zp[p

−1]. Lastly, for any abelian group A, we will denote the n-torsion subgroup of A by
A[n], which is exactly the subgroup of A consisting of the elements x ∈ A such that nx = 0.

Lemma 1.34. There is an isomorphism of abelian groups End(Z/p∞) ∼= Zp.

Proof. Note that we can write Z[p−1] =
⋃∞

k=1 Z
1
pk
, and thus Z/p∞ =

⋃∞
k=1 Z

1
pk
/Z. Now an

endomorphism φ ∈ End(Z/p∞) must map the subgroup Z 1
pk
/Z into itself, because Z 1

pk
/Z =

Z/p∞[pk] the pk-torsion subgroup. Furthermore, the group Z/p∞ is generated by 1
p ,

1
p2
, . . .

hence the endomorphism φ is determined completely by the image of the generators under φ.
Now, due to the earlier observation, φ( 1

pk
) ∈ Z 1

pk
/Z. So we can write φ( 1

pk
) = xk

pk
for some

xk ∈ Z/pkZ. Now consider the group homomorphism from End(Z/p∞) to Zp given by

φ 7→

(
φ

(
1

p

)
p, φ

(
1

p2

)
p2, . . .

)
∈

∞∏
n=1

Z/pnZ

We will show that the obtained sequence satisfies the congruence conditions. Because φ
(

p
pn

)
=

φ
(

1
pn−1

)
we have that φ

(
1
pn

)
pn = φ

(
1

pn−1

)
pn−1( mod (pn−1)). So this is indeed a group ho-

momorphism from End(Z/p∞) → Zp. It is clearly injective. For surjectivity let (x1, x2, x3, · · · )
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be a p-adic integer, define φ : Z/p∞ → Z/p∞ by φ
(

1
pn

)
= xn

pn . It is left to the reader to check

that this is a well-defined endomorphism of Z/p∞ and conclude that the constructed map is
an isomorphism.

Lemma 1.35. There are isomorphisms of abelian groups

Hom(Q,Z/p∞) ∼= Hom(Z[p−1],Z/p∞) ∼= Qp

Where, under the composed isomorphism Hom(Q,Z/p∞)
∼−→Qp an element φ : Q → Z/p∞

corresponds to a p-adic integer if and only if φ(1) = 0.

Proof. For the first isomorphism we will construct an inverse, denoted by ∼, to the restriction
map. Given a group homomorphism φ : Z[p−1] → Z/p∞ we will extend this to φ̃ : Q → Z/p∞
such that φ̃|Z[p−1] = φ. Write x ∈ Z uniquely as x = pkm for some k ≥ 0 and m coprime to
p. Then let

φ̃

(
1

x

)
= φ

(
1

pk

)
· 1

m

We leave it to the reader to check that Z/p∞ has unique divisibility by integers coprime to p,
that φ̃ is a group homomorphism and that ∼ is indeed the inverse to the restriction map.

For the second isomorphism, consider a group homomorphism φ : Z[p−1] → Z/p∞. Then
the image of Z in Z/p∞ is 1

pk
Z/Z for some k ≥ 0. Let pk : Z[p−1] → Z[p−1] be given by

multiplication with pk. Then φ ◦ pk : Z[p−1] → Z/p∞ factorises through Z/p∞ because the
image of Z is 0 in Z/p∞.

Z[p−1]

modZ
��

φ◦pk // Z/p∞

Z/p∞
φ◦pk

55

This yields a well-defined map, which is not yet a group homomorphism, from Hom(Z[p−1],Z/p∞) →
End(Z/p∞). Using the isomorphism of Lemma 1.34 we can identify the obtained endomor-
phism with a p-adic integer. Finally we divide by pk in Zp resulting in a p-adic rational.

Hom(Z[p−1],Z/p∞) //

++

End(Z/p∞)
∼ // Zp

· 1

pk

��
Qp

The obtained arrow is in fact a group homomorphism Hom(Z[p−1],Z/p∞) → Qp where the
maps with φ(1) = 0 correspond exactly to the p-adic integers. It is left to the reader to show
that this group homomorphism is an isomorphism.

Now we can prove theorem 1.33.

proof of theorem 1.33. Consider the short exact sequence of abelian groups

0 // Z // Q // Q/Z // 0

Then the long exact sequence of Ext(Q,−) groups associated to this short exact sequence is

0 // Hom(Q,Z) // Hom(Q,Q) // Hom(Q,Q/Z) // Ext(Q,Z) // Ext(Q,Q)

15



Note that Hom(Q,Z) = 0 and Ext(Q,Q) = 0, the latter because Q is injective. Hence from
the relevant part of the long exact sequence

0 // Hom(Q,Q) // Hom(Q,Q/Z) // Ext(Q,Z) // 0

we can conclude that Ext(Q,Z) ∼= Hom(Q,Q/Z)/ Im(Hom(Q,Q) → Hom(Q,Q/Z)). Now,
note Q/Z =

⊕
p Z/p∞ ⊂

∏
p Z/p∞. This inclusion induces an injective group homomorphism

Hom(Q,Q/Z) →
∏
p

Hom(Q,Z/p∞) ∼=
∏
p

Qp

The image of this injection is exactly the group{
(φ2, φ3, φ5, . . . ) ∈

∏
p

Hom(Q,Z/p∞)

∣∣∣∣φp = 0 for all but finitely many p

}

which, under the second isomorphism, corresponds exactly with the defined adèles group A.
Then the image of Hom(Q,Q) ∼= Q in

∏
pQp are exactly the constant sequences of rational

numbers (q, q, q, . . . ).

1.6 Universal coefficient theorem

In this section we will state and prove the universal coefficient theorem, which is a very powerful
abstract tool relating the homology and cohomology of complexes. For a chain complex of
free abelian groups C•:

· · · // Cn+1
∂n+1 // Cn

∂n // // Cn−1
// · · ·

We denote Hom(Cn, A) by C∗
n, so after applying the left exact functor Hom(−, A) to C• we

achieve the dual complex

· · · C∗
n+1

oo C∗
n

δnoo C∗
n−1

δn−1oo · · ·oo

We will construct a surjective group homomorphism h : Hn(C•, A) → Hom(Hn(C•), A). For
clarity define cycles Zn := Ker(∂n) ⊂ Cn and boundaries Bn := Im(∂n+1) ⊂ Cn as subgroups
of the groups Cn. Similarly, define cocycles Z∗

n := Ker(δn) ⊂ C∗
n and coboundaries B∗

n :=
Im(δn−1) ⊂ C∗

n. An element [φ] ∈ Hn(C•, A) is represented by a group homomorphism
φ : Cn → A such that δn ◦ φ = 0. Thus φ ◦ ∂n+1 = 0 so φ|Bn = 0, that is φ vanishes on
boundaries. Because of which the restriction φ0 = φ|Zn factorises via Bn yielding a group
homomorphism φ0 : Zn/Bn → A, note that φ0 ∈ Hom(Hn(C•), A).

Theorem 1.36. Let C• be a chain complex of free abelian groups, in the downward sense.
Then the homology groups Hn(C•) and the cohomology groups Hn(C•, A) of Hom(C•, A) relate
via the split exact sequences

0 // Ext(Hn−1(C•), A) // Hn(C•, A)
h // Hom(Hn(C•), A) // 0

Proof. We will show that h is well defined. Suppose an element [φ] ∈ Hn(C•, A) is a cobound-
ary. Then φ = δn−1 ◦ ψ = ψ ◦ ∂n for some ψ : Cn−1 → A. Now φ|Zn = ψ ◦ ∂n|Zn = 0 as
∂n ◦ ∂n+1 = 0 thus h([φ]) = 0. This shows that h is well defined.
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For surjectivity consider the short exact sequence of abelian groups

0 // Zn
// Cn

∂n // Bn−1
// 0

which splits because Bn−1 is free as it is a subgroup of the free group Cn−1. This means
there exists a retraction p : Cn → Zn such that p restricts to the identity on Zn. This gives
a way to extend a group homomorphism φ0 : Zn → A to φ = φ0 ◦ p : Cn → A. Note that
if φ0 vanishes on Bn, that also φ vanishes on Bn. Composing with p is a group homomor-
phism Hom(Hn(C•), A) → Z∗

n. By taking the quotient to B∗
n we get a group homomorphism,

denoted by θ : Hom(Hn(C•), A) → Hn(C•, A). We will show that h ◦ θ is the identity on
Hom(Hn(C•), A), and hence conclude that h is surjective. Now for φ : Hn(C•) → A note that
θ(φ) = [φ ◦ p] ∈ Hn(C•, A). But then h(θ(φ)) = h([φ ◦ p]) = φ ◦ p ◦ ι = φ where ι : Zn → Cn

is the inclusion.
Because θ : Hom(Hn(C•), A) → Hn(C•, A) is a section this shows that we have a split

exact sequence of abelian groups

0 // Ker(h) // Hn(C•, A)
h // Hom(Hn(C•), A) // 0

We will now analyse Ker(h). Note that the boundary map ∂n : Cn → Cn−1 restricts to the
zero map on Zn because ∂n ◦ ∂n+1 = 0. Hence we have the following commutative diagram

0 // Zn+1

0
��

// Cn+1

∂n+1

��

∂n+1 // Bn
//

0
��

0

0 // Zn
// Cn

∂n // Bn−1
// 0

Applying the left exact functor Hom(−, A) yields the commutative diagram

0 Z∗
n+1

oo C∗
n+1

oo B∗
n

oo 0oo

0 Z∗
n

oo

0

OO

C∗
n

δn

OO

oo B∗
n−1

0

OO

oo 0oo

where the rows are still exact because the functor Hom(−, A) takes split short exact sequences
to split short exact sequences. So in fact this gives rise to a short exact sequence of complexes,
hence we can consider the associated long exact sequence of cohomology. We will denote the
cohomology groups of the complexes by Hn(Z∗), Hn(C∗) and Hn(B∗) respectively.

· · · Hn(B∗)oo Hn(Z∗)oo Hn(C∗)oo Hn−1(B∗)oo · · ·oo

because of the zero maps, and the definition of Hn(C∗) this is really

· · · B∗
n

oo Z∗
n

oo Hn(C•, A)oo B∗
n−1

oo · · ·oo

I will now show that the connecting homomorphisms Z∗
n → B∗

n are in fact the induced dual
maps of the inclusions in : Bn → Zn. The connecting homomorphisms are defined as follows,
take an element φ0 ∈ Z∗

n and pull back to an element φ ∈ C∗
n. Then apply δn to φ and

finally pull back to B∗
n. This takes a group homomorphism φ0 : Zn → A and extends it to

φ : Cn → A. Then δn(φ) = φ ◦ ∂n+1 : Cn+1 → A. Then pulling back to B∗
n undoes this
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composition and restricts to Bn yielding φ|Bn = φ0|Bn . Which is indeed the induced dual
map of the inclusions ι : Bn → Zn. The long exact sequence can be broken up into small exact
sequences of abelian groups

0 // Coker(ι∗n−1)
// Hn(C•, A) // Ker(ι∗n) // 0

Here Ker(ι∗n) consists of exactly the group homomorphisms φ : Zn → A that vanish on
Bn so they can be identified with elements of Hom(Hn(C•, A)) using the constructed group
homomorphism h. Hence the short exact sequence simplifies to

0 // Coker(ι∗n−1)
// Hn(C•, A)

h // Hom(Hn(C•), A) // 0

Lastly we will examine Coker(ι∗n−1). Note that the short exact sequence

0 // Bn−1
ιn−1 // Zn

// Hn−1(C•) // 0

is in fact a free resolution of Hn−1(C•), denoted by F•. Applying the contravariant functor
Hom(−, A) yields

0 // Hom(Hn−1(C•), A) // Z∗
n

ι∗n−1 // B∗
n−1

// 0

so the reduced complex Hom(F•, A) is

0 // Z∗
n

ι∗n−1 // B∗
n−1

// 0

Now Coker(ι∗n−1) = h1(Hom(F•, A)) = Ext(Hn−1(C•), A) proving the desired result.
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2 Singular homology

In this chapter I will define a special kind of homology, alongside tools with which the homology
groups can be calculated. In particular I will prove the Mayer-Vietoris long exact sequence and
use it to calculate the singular homology groups of the spheres and real projective n-space. The
chapter will also include an explicit interpretation for the zero’th and first singular homology
group. There Hurewicz’ theorem will give a relation between the fundamental group of a
topological space, and its first homology group. The adjective singular refers to the complex
of abelian groups of which we will be taking the homology groups.

2.1 Chain complex

The central structure in the construction of singular homology is called a singular p-simplex.

Definition 2.1. For p ∈ Z≥0 we define a standard p-simplex ∆p to be the convex hull in Rp

of the unit vectors e1, . . . , ep and the origin which we denote by e0. More concretely

∆p =

{
(x1, . . . , xp) ∈ Rp : xi ≥ 0 and

p∑
i=1

xi ≤ 1.

}

Definition 2.2. Let X be a topological space. For p ∈ Z≥0 we define a singular p-simplex in
X to be a continuous map σ : ∆p → X. Furthermore, we define the group of singular p-chains
Cp(X) to be the free abelian group generated by all singular p-simplices in X, i.e.

Cp(X) =
⊕

σ:∆p→X

Z · σ

Note that ∆0 is just a point, more precisely the point ∗ ∈ R0. That means that a singular
0-simplex in X for a given topological space X is just a constant map σx : ∆0 → X mapping
the unique point ∗ to x for some x ∈ X. This means that C0(X) is canonically isomorphic
to the free abelian group generated by points x ∈ X. Under this correspondence singular
0-chains can be identified with Z-linear combinations of points x ∈ X.

Next up the boundary maps ∂p : Cp(X) → Cp−1(X) will be constructed. There are some
properties these boundary maps should have. First of all we must have ∂p−1 ◦ ∂p = 0 for
all p ≥ 1, as this actually makes sure the constructed sequence of abelian groups and maps
is a complex. Secondly, we want the boundary maps to be natural in the following sense:
suppose f : X → Y is a continuous map. Then f induces a map f# : Cp(X) → Cp(Y ) where
n1σ1 + · · ·+ nsσs 7→ n1(f ◦ σ1) + · · ·+ ns(f ◦ σs). We want ∂p ◦ f# = f# ◦ ∂p for all p ∈ Z≥0,
i.e. the following diagram

Cp(X)
f# //

∂p
��

Cp(Y )

∂p
��

Cp−1(X)
f# // Cp−1(Y )

commutes. I will present a construction of the boundary map ∂. Thereafter I will show that
the constructed group homomorphism satisfies both desired properties.
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Definition 2.3. For p ≥ 1 let Fi,p : ∆p−1 → ∆p for 0 ≤ i ≤ p be the embedding of ∆p−1 in
∆p on the face opposite of ei ∈ ∆p. This embedding is given by

(x1, . . . , xp−1) 7→ (1− x1 − · · · − xp−1)e0 + x1e1 + · · ·+ xi−1ei−1 + xiei+1 · · ·+ xp−1ep

Then for a singular p-simplex on X define

∂pσ =

p∑
i=0

(−1)i(σ ◦ Fi,p) ∈ Cp−1(X)

and define ∂0 : C0(X) → 0 the trivial map.

This now gives rise to a sequence of abelian groups (which is in fact a complex which will
be shown in this chapter) and maps called the chain complex of a topological space X.

Definition 2.4. Let X be a topological space. For p ∈ Z≥0 let Cp(X) denote the groups of
singular p-chains and let ∂p : Cp(X) → Cp−1(X) be the boundary maps given as in def 2.3.
Then we call

// Cp+1(X)
∂p+1 // Cp(X)

∂p // Cp−1(X) //

with Ci(X) = 0 for i < 0 and ∂j = 0 for j ≤ 0 the chain complex of X.

Next up, the two desired properties of a chain complex will be proven.

Proposition 2.5. Let p ∈ Z≥1, the composition ∂p−1∂p : Cp(X) → Cp−2(X) is the zero map.

Proof. We will prove that ∂p−1∂p(σ) = 0 for any singular p-simplex σ : ∆p → X. Because
these generate the group Cp(X), it follows that ∂p−1∂p = 0. Now

∂p−1∂p(σ) =

p∑
i=0

(−1)i∂p−1(σ ◦ Fi,p)

=

p∑
i=0

(−1)i

∑
j<i

(−1)j(σ ◦ Fi,p ◦ Fj,p−1) +
∑
j>i

(−1)j−1(σ ◦ Fi,p ◦ Fj,p−1)


Note that in the second inner sum we raise to the (−1)j−1 power instead of (−1)j to account
for the missing vertex ei. Now for fixed 0 ≤ k < l ≤ p we can count how many times
(σ ◦ Fk,p ◦ Fl,p−1) = (σ ◦ Fl,p ◦ Fk,p−1) occurs.

(−1)k
(
(−1)l−1(σ ◦ Fk,p ◦ Fl,p−1)

)
+ (−1)l

(
(−1)k(σ ◦ Fl,p ◦ Fk,p−1)

)
= 0

As k, l were arbitrary the total sum will vanish.

Note that this proposition indeed verifies the fact that the chain complex of any topological
space X is indeed a complex of abelian groups.

Proposition 2.6. Let f : X → Y be a continuous map, for p ∈ Z≥1 let f# be the induced
map on the groups of singular chains. Then the following diagram

Cp(X)
f# //

∂p
��

Cp(Y )

∂p
��

Cp−1(X)
f# // Cp−1(Y )

commutes.
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Proof. Again, we will prove the claim for some singular p-simplex σ : ∆p → X as these
generate the groups of singular p-chains. Now

∂pf#(σ) = ∂p(f ◦ σ)

=

p∑
i=0

(−1)i(f ◦ σ ◦ Fi,p)

=

p∑
i=0

(−1)if#(σ ◦ Fi,p)

= f#

(
p∑

i=0

(−1)i(σ ◦ Fi,p)

)
= f#∂p(σ).

This shows that ∂p ◦ f# = f# ◦ ∂p.

2.2 Singular homology

In this section we will define singular homology and prove that the homology groups of a
topological space X are well-defined. That is, if two spaces X and Y are homeomorphic, or
even homotopy equivalent, the derived homology groups Hp(X) and Hp(Y ) will be isomorphic
for all p ∈ Z≥0.

Definition 2.7. Let X be a topological space. Let

// Cp+1(X)
∂p+1 // Cp(X)

∂p // Cp−1(X) //

be the chain complex of X. For p ∈ Z≥0 we define the p-th singular homology group Hp(X) =
Ker(∂p)/ Im(∂p−1). For convenience purposes we call an element c ∈ Ker(∂p) a p-cycle and
denote the group of p-cycles by Zp(X). We call an element c ∈ Im(∂p+1) a p-boundary and
denote the group of p-boundaries by Bp(X). Hence for p ∈ Z≥0

Hp(X) = Zp(X)/Bp(X).

Example 2.8. The newly defined concepts of p-cycles and p-boundaries gives rise to a short
exact sequence

0 // Bp(X)
i // Zp(X)

π // Hp(X) // 0

and also

0 // Zp+1(X)
i // Cp+1(X)

∂p+1 // Bp(X) // 0

Let f : X → Y be a continuous map. We have shown that f induces a map f# : Cp(X) →
Cp(Y ) for all p ∈ Z≥0. If f#|Zp(X) : Zp(X) → Zp(Y ) and f#|Bp(X) : Bp(X) → Bp(Y ) then
f also induces a map f∗ : Hp(X) → Hp(Y ). This is indeed the case and we will check both
conditions. First of all, suppose c ∈ Zp(X), that is ∂p(c) = 0. Then ∂pf#(c) = f#∂p(c) = 0
hence f#(c) ∈ Zp(Y ). Secondly, suppose c ∈ Bp(X), that is c = ∂p+1(c

′) for some c′ ∈
Cp+1(X). Then f#(c) = f#(∂p+1(c

′)) = ∂p+1(f#(c
′)) hence f#(c) ∈ Bp(Y ). The reader

can verify that this assignment is functorial, i.e. if f : X → Y and g : Y → Z we have
(g ◦ f)∗ = g∗ ◦ f∗ and (idX)∗ = idHp(X).

Theorem 2.9. Suppose f : X → Y is a homeomorphism, then for p ∈ Z≥0 the induced map
f∗ : Hp(X) → Hp(Y ) is an isomorphism of groups.
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Proof. Let p ∈ Z≥0. Because of the functoriality of (−)∗ we have (id)Hp(X) = (idX)∗ =
(f−1 ◦ f)∗ = f−1

∗ ◦ f∗ and similarly (id)Hp(Y ) = f∗ ◦ f−1
∗ . That is, (f∗)

−1 = (f−1)∗ and hence
f∗ is an isomorphism of groups.

This result is very important. For if it were not true the assignment X 7→ Hp(X) would not
be well-defined. A topologist cannot distinguish homeomorphic spaces and hence wouldn’t find
any use for an algebraic assignment which does not respect this equivalence relation. Luckily
enough, this theorem can be made even stronger. Next up I will present a theorem without
proof because the verification is tedious and does not introduce a construction which is of
importance in this report. A proof can be found in e.g. [1, p. 111-113].

Theorem 2.10. Let f, g : X → Y be two homotopic continuous maps, i.e. f ≃ g. Then the
induced maps f∗, g∗ : Hp(X) → Hp(Y ) are equal for all p ∈ Z≥0.

Corollary 2.11. Let X and Y be homotopy equivalent, then for all p ∈ Z≥0 the homology
groups Hp(X) and Hp(Y ) are isomorphic.

Proof. Let f : X → Y be any homotopy equivalence. That means that there is some g : Y →
X such that g ◦ f ≃ idX and f ◦ g ≃ idY . Then using lemma 2.10 and the functoriality of
(−)∗ we have

idHp(X) = (idX)∗ = (g ◦ f)∗ = g∗ ◦ f∗
and similarly idHp(Y ) = f∗ ◦g∗ hence (f∗)

−1 = g∗ and thus f∗ is an isomorphism of groups.

Example 2.12. We will calculate all homology groups of a contractible space X. Because of
corollary 2.11 we can assume X to be the one point space {∗}. Then for all p ∈ Z≥0 the
singular p-simplices consist of only the constant maps. Thus Cp(X) ∼= Z generated by σp
respectively for all p. We can calculate the boundary of these constant simplices

∂pσp =

p∑
i=0

(−1)i(σp ◦ Fi,p) =

p∑
i=0

(−1)iσp−1.

Note that σp ◦Fi,p = σp−1 for all i only because all of those singular simplices are the constant
map. This now gives us the special case where the various σp−1 cancel each other in the second
sum. That is, ∂pσp = 0 if p is odd, and ∂pσp = σp−1 if p is even. Now let p ≥ 1 odd, then
∂p+1 : Cp+1(X) → Cp(X) is an isomorphism and ∂p : Cp(X) → Cp−1(X) is the trivial map.
Hence Bp(X) = Zp(X) = Cp(X) ∼= Z. Similarly for p ≥ 1 even we have Bp(X) = Zp(X) = 0,
in both cases Hp(X) = Zp(X)/Bp(X) = 0. Furthermore, the map ∂1 : C1(X) → C0(X) and
∂0 : C0(X) → 0 are both the trivial maps. Hence Z0(X) = C0(X) ∼= Z and B0(X) = 0 so we
finally get a non-trivial result that H0(X) = Z0(X)/B0(X) ∼= Z.

Hp(X) ∼=

{
Z, p = 0

0, p ≥ 1

2.3 Explicit descriptions of H0(X) and H1(X)

First we will describe the zero’th singular homology group. For this, we will present and prove
two useful results.

Proposition 2.13. Let X be a path-connected topological space. The map f : C0(X) → Z
given by n1x1 + · · ·+ nsxs 7→ n1 + · · ·+ ns induces an isomorphism f∗ : H0(X)

∼−→Z.
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Proof. First we will prove surjectivity. Let n ∈ Z arbitrary, for any x ∈ X we have f(nx) = n.
Note that ∂0 : C0 → 0 is the trivial map thus x is in fact a 0-cycle, and hence [x] ∈ H0(X).
Secondly we will prove that Ker(f) = B0(X). From the discussion earlier it is clear that
B0(X) ⊂ Ker(f) as f∗ is a well-defined map. Let c ∈ Ker(f). We can write c = n1x1+· · ·+nsxs
with n1+· · ·+ns = 0. Choose y ∈ X and let σxi : ∆1 → X denote a path with σxi(1) = xi and
σxi(0) = y. This can be done because X is path-connected. Now let c′ = n1σx1 + · · ·+ nsσxs .
Then

∂1c
′ = ∂1

(
s∑

i=1

n1σxi

)
=

s∑
i=1

ni(xi − y) =
s∑

i=1

nixi − y
s∑

i=1

ni = c

Hence c ∈ B0(X) proving that Ker(f) = B0(X). Hence indeed the induced map f∗ : H0(X) →
Z is an isomorphism.

Observe that the image of any singular simplex must be contained in some path-connected
component of X. The next proposition allows us to decompose some space X into its path-
connected components and determine the singular homology groups completely in terms of
the path-connected components.

Proposition 2.14. Let X a topological space. Let {Xα}α∈A be the decomposition of X into
path-connected (disjoint) components. The inclusions iα : Xα → X induce an isomorphism⊕

α∈A
Hp(Xα)

∼−→Hp(X)

for all p ∈ Z≥0.

Proof. First we will prove that σp : ∆p → X must be contained in some unique Xα. Now
suppose there exists x1, x2 ∈ ∆p such that σp(x1) ∈ Xα and σp(x2) ∈ Xβ where α ̸= β. Then
consider the path γ : [0, 1] → X given by γ(t) = σp(tx2 + (1 − t)x1). Because ∆p is convex
we have tx2 + (1 − t)x1 ∈ ∆p for all t ∈ [0, 1]. The path γ is continuous with γ(1) = x2
and γ(0) = x1 hence a path from Xα → Xβ which is a contradiction. Now we can prove
surjectivity. Let p ∈ Z≥0, let [c] ∈ Hp(X) where c = n1σ1 + · · · + nsσs where each σi is a
singular p-simplex in X. Then we have σi[∆p] ⊂ Xαi for all i. Hence σi ∈ Hp(Xαi) thus
[n1σ1 + · · ·+ nsσs] ∈

⊕
α∈AHp(Xα). The injectivity is clear hence the induced map is indeed

an isomorphism.

Thus from propositions 2.13 and 2.14 we derive the following conclusion.

Corollary 2.15. Let X a topological space. Let {Xα}α∈A be the decomposition of X into
path-connected (disjoint) components. Then there exists an isomorphism

H0(X)
∼−→
⊕
α∈A

Z.

Next up we will give Hurewicz’s theorem without proof. For a proof the reader can refer
to [1, p. 369-373]. For this note that a path γ : [0, 1] → X can be interpreted as a 1-cycle if
γ(1)− γ(0) = 0. In particular if γ ∈ P (x;X), i.e. a continuous map γ : [0, 1] → X with start-
(and end) point x there is a natural map h : P (x;X) → H1(X).
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Theorem 2.16 (Hurewicz). The natural map h : P (x;X) → H1(X) induces a map

h∗ : π1(X,x) → H1(X)

with kernel the commutator subgroup [π1(X,x), π1(X,x)]. If X is path-connected the map h∗
is surjective so in particular there is an isomorphism

h̄∗ : π1(X,x)ab
∼−→H1(X).

Both of these identifications will help us in the calculation of higher singular homology
groups. The long exact sequence of Mayer-Vietoris will, in particular, relate different singular
homology groups. Because of that it helps to already have a grasp on the first two homology
groups.

2.4 Mayer-Vietoris long exact sequence

In this section we will prove a computational tool called the long exact sequence of Mayer-
Vietoris. For this we will state, without proof, a result regarding the homology groups of some
topological space X, and the homology groups of X where each singular simplex in X must be
contained in some open U ∈ U . Denote the chain groups by CU

p (X), as ∂p : C
U
p (X) → CU

p−1(X)

is well defined these form a complex. Denote their homology groups by HU
p (X). A proof of

the following theorem can be found in e.g. [1, p. 119-124].

Theorem 2.17. The inclusion i : CU
p (X) → Cp(X) is a chain homotopy equivalence. In

particular, i induces isomorphisms i∗ : H
U
p (X)

∼−→Hp(X) for all p.

This is a very general and powerful result, we will only need the following corollary.

Corollary 2.18. Let X be a topological space, let U = {U, V } be an open cover of X. Let
CU
p (X) denote the subgroup of Cp(X) consisting of sums of elements in Cp(U) and Cp(V ).

Then the inclusion CU
p (X) → Cp(X) induces an isomorphism HU

p (X)
∼−→Hp(X).

Theorem 2.19 (Mayer-Vietoris). Let X be a topological space. Let U = {U, V } be an open
cover of X. The following long sequence is exact.

// Hp+1(X)
∂ // Hp(U ∩ V )

α∗
// Hp(U)⊕Hp(V )

β∗
// Hp(X) //

where α∗ is the induced map of the inclusion α given by c 7→ (c, c). And β∗ is the induced
map of β given by (c, d) 7→ c − d. The connecting group homomorphism is given as follows:
take an element [z] ∈ HU

p (X) and represent it by z = c1− c2 with c1 ∈ Cp(U) and c2 ∈ Cp(V ).
Then ∂c1 = ∂c2 and let ∂(z) = [∂c1] ∈ Hp−1(U ∩ V ).

Proof. Consider the exact sequence of chain complexes

0 // C(U ∩ V )•
α // C(U)• ⊕ C(V )•

β // CU (X)• // 0

with α and β defined as above. Then the associated long exact sequence, by theorem 1.12 is
then given by

// HU
p+1(X)

∂ // Hp(U ∩ V )
α // Hp(U)⊕Hp(V )

β // HU
p (X) //

After applying corollary 2.18 we obtain the desired result.
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2.5 The spheres Sn and projective space Pn(R)

In this last section we will use our constructed tools to calculate the singular homology groups
of two important topological spaces, the spheres and real projective space.

Proposition 2.20. The singular homology groups of the spheres are given by

Hp(S
n) ∼=


Z⊕ Z, n = 0, p = 0

Z, n ≥ 1, p ∈ {0, n}
0, otherwise

Proof. First we will treat the case where n = 0. Observe that S0 ∼= {−1, 1} ⊂ R, equipped
with the discrete topology. So S0 consists of two path-connected components {−1} and {1}
so by proposition 2.14 Hp(S

0) ∼= Hp({1})⊕Hp({−1}). Now note that {1} and {−1} are both
1 point spaces, and thus contractible, so using example 2.12 we see that H0(S

0) ∼= Z⊕ Z and
Hp(S

0) = 0 for all p ≥ 1.

Now let n ≥ 1 and let us consider the sphere Sn. Let N denote the north pole of the
sphere and S denote the south pole. We construct an open cover in the following way; let
U = Sn \ {N} and V = Sn \ {S}. Then both U and V are contractible, because they are
homeomorphic to Rn and U ∩ V is homotopy equivalent to Sn−1. We will prove the claim
with induction.

Base case where n = 1. By our characterization of the zero’th and first singular homology
group we know that H0(S

1) ∼= Z and H1(S
1) ∼= Z because π1(S

1, 1) ∼= Z. Now for p ≥ 2 the
relevant part of the MV sequence is

Hp(U)⊕Hp(V ) // Hp(S
1) // Hp−1(U ∩ V )

Note that because U and V are contractible Hp(U)⊕Hp(V ) = 0. Furthermore, U ∩V ≃ ∗⊔∗
hence Hp(U ∩ V ) ∼= Hp(∗)⊕Hp(∗) = 0. Thus Hp(S

1) = 0 for p ≥ 2.

Now assume that the calculation has been done for all n ≤ k. First we will calculate
H1(S

k+1), for this the relevant part of the MV sequence is

H1(U)⊕H1(V ) // H1(S
k+1) // H0(S

k)
α // H0(U)⊕H0(V )

Because U and V are contractible and Sn, U and V are path-connected this simplifies to

0 // H1(S
n+1) // Z α // Z⊕ Z

the map α : c 7→ (c, c) is injective and hence Ker(α) = Im(H1(S
n+1) → Z) = 0. However, the

map H1(S
n+1) → Z is also injective showing that H1(S

n+1) = 0. For p ≥ 2 the relevant part
of the MV sequence is

Hp(U)⊕Hp(V ) // Hp(S
k+1) // Hp−1(S

k) // Hp−1(U)⊕Hp−1(V )

due to the contractibility of U and V this simplifies to

0 // Hp(S
k+1) // Hp−1(S

k) // 0
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Thus Hp(S
k+1) ∼= Hp−1(S

k) proving that indeed Hp(S
k+1) ∼= Z if p = 0 or p = k + 1.

Next up we will calculate the singular homology groups of real projective space. This will
take a similar approach where we first, explicitly, calculate the homology groups of P2(R) and
P3(R) and then conclude with an inductive argument.

Lemma 2.21. The singular homology groups of P2(R) are

Hp(P2(R)) ∼=


Z, p = 0

Z/2Z, p = 1

0, p ≥ 2

Proof. Think of P2(R) as a disk D2 where antipodal points on the boundary S1 are identified.
We will construct an open cover of P2(R). Let U = D2 \ S1 a contractible subspace. Let V
the complement of some small closed disk around the center. Then V deformation retracts
onto the boundary S1 where antipodal points are identified. Lastly, U ∩ V ∼= S1 × I and
thus deformation retracts onto S1. An important observation is that a loop γ generating this
circle must loop twice around the boundary S1. This is because antipodal points are the same
in our original space, so at some point during the loop γ the projection of this loop onto
the boundary S1 has reached the opposite point of where the loop started. Hence these two
points must be considered equal. This means that our S1 wraps twice around the boundary S1.

Because P2(R) is path-connected we know that H0(P2(R)) ∼= Z. Let us now calculate
H1(P2(R)), consider the relevant part of the MV sequence

H1(U ∩ V )
α1 // H1(U)⊕H1(V )

β1 // H1(P2(R)) ∂ // H0(U ∩ V )
α0 // H0(U)⊕H0(V )

which simplifies to

Z α1 // 0⊕ Z β1 // H1(P2(R)) ∂ // Z α0 // Z⊕ Z

The induced map α0 is given byc 7→ (c, c) so in particular α0 is injective. Thus ∂ is the zero
homomorphism and hence β1 surjects onto H1(P2(R)). Because β1 is a homomorphism from
Z the image will be Z/nZ for some n ∈ Z. That is H1(P2(R)) ∼= Z/Ker(β1) = Z/ Im(α1). By
our previous discussion a generating loop of U∩V wraps twice around V , thus α1 : c 7→ (0, 2c).
Thus Z/ Im(α1) ∼= Z/2Z ∼= H1(P2(R)).

Next up we will calculate H2(P2(R)). The relevant part of the MV sequence

H2(U)⊕H2(V )
β2 // H2(P2(R)) ∂ // H1(U ∩ V )

α1 // H1(U)⊕H1(V )

simplifies to

0
β2 // H2(P2(R)) ∂ // Z α1 // 0⊕ Z

where again α1 : c 7→ (0, 2c). So in particular, α1 is injective so ∂ is the zero homomorphism.
So β2 surjects onto H2(P2(R)) showing that H2(P2(R)) = 0. For p ≥ 3 each of Hp(U), Hp(V )
and Hp−1(U ∩ V ) are all 0, so Hp(P2(R)) = 0 proving the claim.
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Lemma 2.22. The singular homology groups of P3(R) are

Hp(P3(R)) ∼=



Z, p = 0

Z/2Z, p = 1

0, p = 2

Z, p = 3

0, p ≥ 4

Proof. Think of P3(R) as the identification space obtained from D3 where antipodal points
on the boundary S2 are identified. Let U be an open neighborhood of the center. Let V be
the complement of a smaller closed neighborhood of the center. Then U ∪ V = P3(R), U is
contractible and V deformation retracts onto S2/±1 ≃ P2(R). Furthermore, U ∩ V ∼= S2 × I
and hence deformation retracts onto S2.

Again, H0(P3(R)) = Z because P3(R) is path-connected. For H1(P3(R)) consider

H1(U ∩ V )
α1 // H1(U)⊕H1(V )

β1 // H1(P3(R)) ∂ // H0(U ∩ V )
α0 // H0(U)⊕H0(V )

which simplifies to

0 // 0⊕ Z/2Z β1 // H1(P3(R)) ∂ // Z α0 // Z⊕ Z

Now the induced map α0 given byc 7→ (c, c) is injective, thus ∂ is the trivial map and hence β1
surjects onto H1(P3(R)). Because of the start of this exact sequence β1 is injective and hence
an isomorphism. Thus H1(P3(R)) ∼= Z/2Z. For H2(P3(R)) note that each of H2(U), H2(V )
and H1(U ∩V ) are zero. The fact that H2(V ) = 0 follows from lemma 2.21. The exactness of

H2(U)⊕H2(V ) // H2(P3(R)) // H1(U ∩ V )

implies that H2(P3(R)) = 0. For H3(P3(R)) consider the part of the MV sequence

H3(U)⊕H3(V )
β3 // H3(P3(R)) ∂ // H2(U ∩ V )

α2 // H2(U)⊕H2(V )

which is

0⊕ 0
β3 // H3(P3(R)) ∂ // Z α2 // 0⊕ 0

So H3(P3(R)) ∼= Z. Lastly for p ≥ 4 note that Hp(U) = Hp(V ) = Hp−1(U ∩ V ) = 0 so
Hp(P3(R)) = 0.

Now we are finally ready for the last proposition of this chapter.

Proposition 2.23. The singular homology groups of Pn(R) are

Hp(Pn(R)) ∼=


Z, p = 0

Z, p = n odd

Z/2Z, 0 < p < n odd

0, else
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Proof. We will use the method of induction. We have shown the claim holds for n = 2 and
n = 3 in lemma 2.21 and lemma 2.22. Now assume that n > 3 and the claim holds for n− 1,
we will prove that it also holds for n.

Think of Pn(R) as the identification space obtained from Dn where antipodal points on the
boundary Sn−1 are identified. Let U be an open neighborhood of the center. Let V be the com-
plement of a smaller closed neighborhood of the center. Then U∪V = Pn(R), U is contractible
and V deformation retracts onto Sn−1/±1 ≃ Pn−1(R). Furthermore, U ∩ V ∼= Sn−1 × I and
hence deformation retracts onto Sn−1.

Because Pn(R) is path-connected H0(Pn(R)) ∼= Z. For the first singular homology group
consider the part of the Mayer-Vietoris sequence

H1(U ∩ V ) // H1(U)⊕H1(V ) // H1(Pn(R)) ∂ // H0(U ∩ V )

Here ∂ is again the zero group homomorphism because of the same reason used in the previous
proof. Also, as n > 3 we have H1(U ∩ V ) ∼= H1(S

n−1) = 0, H1(U) ∼= H1({∗}) = 0 and
H1(V ) ∼= H1(Pn−1(R)) ∼= Z/2Z by our induction hypothesis. Thus the exact sequence

H1(U ∩ V ) // H1(U)⊕H1(V ) // H1(Pn(R)) ∂ // H0(U ∩ V )

simplifies to

0 // 0⊕ Z/2Z // H1(Pn(R)) ∂ // 0

Hence H1(Pn(R)) ∼= Z/2Z. For 1 < p < n− 1 we have

Hp(U ∩ V ) // Hp(U)⊕Hp(V ) // Hp(Pn(R)) ∂ // Hp−1(U ∩ V )

which simplifies to

0 // 0⊕Hp(Pn−1(R)) // Hp(Pn(R)) ∂ // 0

Meaning thatHp(Pn(R)) ∼= Hp(Pn−1(R)) henceHp(Pn(R)) ∼= Z/2Z if p is odd andHp(Pn(R)) =
0 if p is even. Lastly, we will determine Hn(Pn(R)) and Hn−1(Pn(R)). For this consider the
relevant part of the Mayer-Vietoris sequence

0 // Hn(Pn(R)) ∂ // Hn−1(U ∩ V ) // Hn−1(U)⊕Hn−1(V ) // Hn−1(Pn(R)) // 0

If n is odd, then n− 1 is even and thus this simplifies to

0 // Hn(Pn(R)) ∂ // Z // 0 // Hn−1(Pn(R)) // 0

so Hn(Pn(R)) ∼= Z and Hn−1(Pn(R)) = 0. Conversely, suppose n is even meaning n−1 is odd.
Then Hn−1(Pn−1(R)) ∼= Z so we get

0 // Hn(Pn(R)) ∂ // Z α // 0⊕ Z β // Hn−1(Pn(R)) // 0

Note that under the isomorphisms Hn−1(S
n−1) ∼= Z and Hn−1(Pn−1(R)) ∼= Z a generator

of Sn−1 wraps twice around the Pn−1(R) resulting in the induced group homomorphism on
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the level of homology groups given by α : x 7→ (0, 2x). Which is injective meaning that ∂
is the zero group homomorphism. Thus Hn(Pn(R)) = 0 and Hn−1(Pn(R)) ∼= Z/Ker(β) ∼=
Z/ Im(α) ∼= Z/2Z. For p > n we have an exact sequence

Hp({∗})⊕Hp(Pn−1(R)) // Hp(Pn(R)) ∂ // Hp−1(S
n−1)

which simplifies to

0 // Hp(Pn(R)) ∂ // 0

showing that Hp(Pn(R)) = 0 for p > n, this proves the claim by induction.

2.6 Singular Cohomology

In this final subsection I will define singular cohomology and give an explicit identification
for the 0-th singular cohomology group given any topological space X and abelian group
A. Lastly, we will combine the universal coefficient theorem 1.36 and the singular homology
groups of Pn(R) as given in proposition 2.23 to compute the singular cohomology groups for
any abelian group A of projective n-space.

Definition 2.24. Let X be a topological space and let A be an abelian group. Let C• denote
the chain complex

· · · // Cp+1(X)
∂p+1 // Cp(X)

∂p // Cp−1(X) // · · ·

Then apply the functor Hom(−, A) to this complex to achieve the cochain complex

· · · Hom(Cp+1(X), A)oo Hom(Cp(X), A)
δpoo Hom(Cp−1(X), A)

δp−1oo · · ·oo

with induced arrows δp. For simplicity we will denote Hom(Cp(X), A) by Cp(X,A). We now
define the p-th singular cohomology group Hp(X,A) to be the p-th cohomology group of the
complex Hom(C•, A).

We will now formulate and prove two useful lemmas which will be used to explicitly identify
the 0-th singular cohomology group for a given topological space X and abelian group A.

Lemma 2.25. Let X be a topological space. Recall C0(X) ∼=
⊕

x∈X x ·Z. Let A be an abelian
group, then C0(X,A) ∼= Map(X,A).

Proof. We have the following natural isomorphisms

C0(X,A) ∼= Hom(C0(X), A) ∼= Hom(
⊕
x∈X

x · Z, A) ∼=
∏
x∈X

Hom(x · Z, A) ∼=
∏
x∈X

A ∼= Map(X,A)

Explicitly, a group homomorphism f : C0(X) → A gets mapped to the set theoretic map
f : X → A given by x 7→ f(1x) where 1x = (0, 0, . . . , 0, 1, 0, . . . ) with the 1 exactly on the
index corresponding to x · Z. This is an isomorphism of abelian groups.

Lemma 2.26. Let δ0 : C0(X,A) → C1(X,A) be the induced boundary map in the cochain
complex. Then f ∈ Map(X,A) has δ0(f) = 0 if and only if f is constant on each path
connected component of X.
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Proof. Suppose f is constant on each path connected component. Consider an arbitrary
element z ∈ C1(X), we can write z = n1γ1 + · · ·+ nsγs for some n1, . . . , ns ∈ Z and γ1, . . . , γs
continuous maps γi : [0, 1] → X. Now δ0(f) = f ◦ ∂1 so we will show that the latter is the
zero homomorphism.

f ◦ ∂1(z) = ∂1(n1(γ1(1)− γ1(0)) + · · ·+ ns(γs(1)− γs(0)))

= n1(f(γ1(1))− f(γ1(0))) + · · ·+ n2(f(γ2(1))− f(γ2(0))) = 0

as for all 1 ≤ i ≤ s we have that γi(1) and γi(0) are contained in the same path-connected
component. Hence for all z ∈ C1(X) we have ∂1 ◦ f(z) = 0 thus f ◦ ∂1 = δ0 ◦ f = 0.
Conversely, suppose that δ0(f) = 0. Choose two elements x and y in a path-connected
component of X. Then there exists a continuous map γ : [0, 1] → X with γ(0) = x and
γ(1) = y. Now δ0(f) = f ◦∂1 = 0 so f ◦∂1(γ) = f(γ(1)−γ(0)) = f(x−y) = 0 so f(x) = f(y).
This shows that any two points, that lie in the same path-connected component have the same
image under f . Hence this proves that f is constant on path-connected components.

Proposition 2.27. Let X be a topological space. Let A be an abelian group, and let π0(X)
denote the set of path-connected components of X. Then H0(X,A) ∼= Aπ0(X).

Proof. Consider the cochain complex of X

0 // C0(X,A)
δ0 // C1(X,A) // · · ·

Now H0(X,A) ∼= Ker(δ0), which we can identify with set theoretic maps f : X → A that
are constant on path-connected components using lemma 2.26. This means that such maps
f are determined by their image in each path-connected component. That is, for each path-
connected component f can send their elements to a unique element in A. Hence H0(X,A) ∼=
Ker(δ0) ∼= Aπ0(X).

We will now calculate the singular cohomology groups of the spheres Sn and real projective
n-space Pn(R).

Proposition 2.28. Let A be an abelian group. The singular cohomology groups of the spheres
Sn with coefficients in A are given as follows:

Hp(Sn, A) ∼=


A⊕A, n = 0, p = 0

A, n ≥ 1, p ∈ {0, n}
0, otherwise

Proof. We will treat S0 first. By proposition 2.20 we know that H0(S
0) ∼= Z⊕Z and Hp(S

0) =
0 for all p ≥ 1. Now by proposition 2.27 we know that H0(S0, A) ∼= A⊕A because S0 consists
of two path-connected components. Using the universal coefficient theorem 1.36 we obtain a
split exact sequence

0 // Ext(H0(S
0), A) // H1(S0, A) // Hom(H1(S

0), A) // 0

which simplifies to

0 // Ext(Z⊕ Z, A) // H1(S0, A) // Hom(0, A) // 0
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We use proposition 1.31 and 1.28 to see that Ext(Z⊕Z, A) ∼= Ext(Z, A)×Ext(Z, A) = 0. Obvi-
ously Hom(0, A) = 0 so H1(S0, A) = 0. For p ≥ 2 we have Ext(Hp−1(S

0), A) = Ext(0, A) = 0
and Hom(Hp(S

0), A) = Hom(0, A) = 0 so Hp(S0, A) = 0 for all p ≥ 1.

Now let n ≥ 1. Then Hp(S
n) ∼= Z for p = 0 and p = n. Because Sn is path-connected we

know by proposition 2.27 that H0(Sn, A) ∼= A. By the universal coefficient theorem we have
a split exact sequence

0 // Ext(Hn(S
n), A) // Hn+1(Sn, A) // Hom(Hn+1(S

n), A) // 0

which simplifies to

0 // Ext(Z, A) // Hn+1(Sn, A) // Hom(0, A) // 0

So again by proposition 1.28 we have Ext(Z, A) = Hom(0, A) = 0 so Hn+1(X,A) = 0.

0 // Ext(Hn−1(S
n), A) // Hn(X,A) // Hom(Hn(S

n), A) // 0

simplifies to
0 // Ext(0, A) // Hn(Sn, A) // Hom(Z, A) // 0

SoHn(X,A) ∼= Hom(Z, A) ∼= A. For all p /∈ {0, 1, n, n+1} we have thatHp(S
n) = Hp−1(S

n) =
0 so Hp(X,A) = 0. This proves the claim.

Theorem 2.29. Let A be an abelian group. The singular cohomology groups of real projective
n-space Pn(R) with coefficients in A are given as follows:

Hp(Pn(R), A) ∼=


A, p = 0, p = n if n is odd

A/2A, p even 0 < p ≤ n

A[2], p odd 0 < p < n

0, otherwise

Proof. First of all note that H0(Pn(R), A) ∼= A because Pn(R) is path-connected. Now let
0 < p < n odd, then by the universal coefficient theorem we have a split short exact sequence

0 // Ext(Hp−1(Pn(R)), A) // Hp(Pn(R)), A) // Hom(Hp(Pn(R)), A) // 0

we know that p− 1 is even so Hp−1(Pn(R)) = 0 and Hp(Pn(R)) ∼= Z/2Z by proposition 2.23.
Hence the short exact sequence is

0 // Ext(0, A) // Hp(Pn(R)), A) // Hom(Z/2Z, A) // 0

thus Hp(Pn(R)) ∼= Hom(Z/2Z, A) ∼= A[2]. For 0 < p < n even we have that Hp(Pn(R))) ∼=
Z/2Z and Hp−1(Pn(R))) = 0 so the split exact sequence is

0 // Ext(Z/2Z, A) // Hp(Pn(R)), A) // Hom(0, A) // 0

And thus Hp(Pn(R)), A) ∼= Ext(Z/2Z, A) ∼= A/2A by proposition 1.30. Lastly, suppose n is
even, then

0 // Ext(Hn−1(Pn(R)), A) // Hn(Pn(R)), A) // Hom(Hn(Pn(R)), A) // 0
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simplifies to

0 // Ext(Z/2Z, , A) // Hn(Pn(R)), A) // Hom(0, A) // 0

Thus Hn(Pn(R)), A) ∼= A/2A. If n is odd, then it simplifies to

0 // Ext(0, , A) // Hn(Pn(R)), A) // Hom(Z, A) // 0

showing thatHn(Pn(R)), A) ∼= Hom(Z, A) ∼= A. For p ≥ n+1 we have Ext(Hp−1(Pn(R)), A) =
Hom(Hp(Pn(R)), A)) = 0 so Hp(Pn(R), A) = 0.

Remark 2.30. Note that in both proposition 2.29 and theorem 2.28 we could calculate the
singular cohomology groups from the singular homology groups. This is true in general. With
sufficient knowledge about Ext-groups and Hom-groups one can always calculate the singular
cohomology groups of a topological space X using the singular homology groups.
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