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Abstract 

The main motivation behind this work is to 
create a purely analytical engineering 
model for wind turbine wake upward 
deflection due to shear flow, by developing 
a closed form solution of the velocity field 
due to an oblique vortex ring.  

The effectiveness of the model is 
evaluated by comparing the results with 
those of a free-wake model. The solution 
of the velocity field due to an oblique 
vortex ring is obtained by using the result 
of an upright ring along with an equivalent 
point method. The wake model is derived 
using oblique ring elements with a number 
of suitable assumptions. Results of wake 
vertical deflection are compared with a 
free-wake solution. A linear trend between 
wake deflection and shear flow exponent 
is found with both models. The oblique 
ring model shows some discrepancies 
from the free-wake result in terms of the 
dependence of the deflection on the 
reference tip speed ratio. The oblique ring 
model needs further refinements and 
validation with experimental work and is 
only currently suited for the determination 
of general wake kinematics. It however 
provides immediate results for a given 
input and can be useful in generating 
databases with wake geometry 
information. 

Keywords: Horizontal axis wind turbines, 
Atmospheric shear flow, Vortex rings. 

 

1 Introduction 

The horizontal axis wind turbine operates 
in a shear flow due to the earth’s boundary 
layer, which is detrimental to the overall 
performance of the machine. A thorough 
understanding of the aerodynamics of the 
flow in shear flow is therefore essential. In 
this work, the wake behaviour of the 
horizontal axis wind turbine in shear flow is 
studied. 

From two important studies on the near 
wake physics due to the atmospheric 
boundary layer [1, 2], the wake was 
observed to show a slight upward 
movement. This means that contrary to 
the case in axial flow conditions, where the 
wake centerline remains aligned with the 
wind direction, in the shear flow case, the 
wake centerline deflects by a small angle. 

In the work of Sezer-Uzol et al. [1], a free-
wake potential flow panel model was 
utilized for the situations of ‘normal’ and 
‘extreme’ wind shear power law profiles, 
where the National Renewable Energy 
Laboratory (NREL) Phase VI rotor was 
simulated. A vertical wake deflection was 
obtained in the upward direction. In [2], 
Sørensen et al. performed a similar study 
but using a numerical simulation of the 
Reynold’s Averaged Navier Stokes 
Equations (RANS).  A difference in tip 
vortex downstream convection between 
the top-most and down-most positions of 
the blade was also observed but the 
vertical lift of the wake was not all too 
apparent. 



In this work we seek to understand the 
physical source of the phenomenon, and 
to derive a closed form model of the wake. 
This is done by means of vortex rings.  

A free-wake, potential lifting line model is 
first used to simulate the wake in shear 
flow conditions. To focus mainly on the 
wake geometry, a 2m diameter flat bladed 
rotor is modeled. 

The results are then used to validate the 
wake model involving vortex rings. 

2 Velocity field due to an 
upright vortex ring 

The details for the analytical solution of an 
upright, infinitely thin, vortex ring can be 
found in [3, 4] in the works by Yoon et al. 
and Nitsche et al. respectively. The 
analysis of the vortex ring which is 
presented in this work is based on the 
Biot-Savart law formulation. The 
definitions of the variables used here are 
kept consistent with those found in [3] and 
are shown in Figure 1. 

 

x

y,r

z

a

b

ir
ur

r
r

ir r−
r uv

a = base point

b = field point zi

ri

z

r
iθ

2

π
θ =

vortex ring

 
Figure 1: Definition of variables used for 
the rest of analysis. Source: [3]. 
 
From the Biot-Savart law, the velocity 
vector at any point due to an upright vortex 
ring is given by equation (1). 
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Where Γ  is the ring circulation, ˆ
ze  and ˆ

re  

are the unit vectors in the axial and radial 

directions to the ring respectively. 
Equation (1) reduces to equations (2) and 
(3) for the velocity component in the axial 
and radial direction to the ring: 
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Where 
2 2 2( )i iA z z r r= − + +  and 

2 iB rr= − . 1I  and 2I  are given by 

equations (4) and (5): 
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Where ( )K m  and ( )E m  are the 

complete elliptic integrals of the first and 

second kind while 
24 /im rr a= and 

( ) ( )2 22

i ia r r z z= + + − .  

3 Velocity field due to an 
oblique vortex ring 

3.1 Velocity at the center of the 
vortex ring 

At the center of an oblique vortex ring 
there should be no radial component of 
velocity in the coordinate system oriented 
along the ring. A side view of the ring is 
shown in Figure 2 which shows the 

velocity zu  decomposed into v  and w  in 

the original coordinate system. The 

oblique angle of the ring is denoted by β . 
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Figure 2: Oblique ring and decomposition 
of velocity at the center. 



 
The variables from Figure 1 can be 

defined for this case as 0iz z r= = = , 

ir R= . Using equation (1), the radial 

component reduces to 0 as expected while 
the axial component (z-direction) 
becomes: 
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Decomposing into horizontal and vertical 
components: 
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3.2 Using the equivalent point 
method to derive the velocity 
field 

In this work, the model proposed by [3] is 
extended to include the general situation 
of an oblique thin vortex ring. The velocity 
field at any general point other than the 
centre of the ring cannot be found by 
simply rotating the velocity components by 
the oblique angle of the ring. This is 
because the distance from the point to the 
perimeter of the thin ring will now change. 
What is proposed here is to transform the 
coordinates of a point in the actual domain 
into an upright vortex ring domain as 
shown in Figure 3. 
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Figure 3: The position of X for an oblique 
ring (left) corresponds to the position of X’ 
in the upright vortex ring domain (right). 
 
Suppose we need to find the velocity at a 
point X due to an oblique vortex ring. 
There must be an equivalent point X' for 
the upright ring case provided the 
distances from the perimeter of the ring 
remain the same as for the oblique ring. 
The origin is kept the same in both 
domains which is at a distance p from the 
centre of the vortex ring. In the oblique 
vortex ring domain, the position of X is 
(0,q). In the upright vortex ring domain the 
position of X' becomes (z'0,y'0).  The 
conditions which must therefore be fulfilled 
are: 
 

'' AXXA =  (8) 

'' BXXB =  (9) 

 
To solve this problem, the distance from X' 
to A' is fixed and is made equal to XA. This 
condition is satisfied if X' makes a locus 
about A' which has a fixed distance from 
A'. This creates a circle, and the objective 
at this stage is to find a position on the 
circle such that X'B'=XB. This is shown in 
Figure 4. 
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Figure 4: Equivalent point domain with 
locus of possible positions of X’. 
 
Considering the real point domain we have 
the following expressions: 
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Shifting now to the equivalent point 
domain the equation for the locus of points 
at a fixed distance from A' is given by the 
equation of a circle as follows: 
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The condition now is that the distance 
from B' to the equivalent point which must 

be found on the circle is equal to l . 

 

( ) ( ) 22'

0

2'

0 l=++− Ryzp  (13) 

 
Where the left hand side represents the 
distance between two points. From 

equations (12) and (13) 
'

0y  can be found 

and from equations (10) and (11) 
simplified to equation (14): 
 

ββ sincos'
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At the point ( )'

0

'

0 , yz  equation (12) is given 

by: 
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Using (14) in (15): 
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The positive value of the square root term 
of equation (16) is taken. 

3.3 Applying the equivalent 
point method to find the 
velocity field of an oblique 
vortex ring 

Using the equivalent vortex point method, 
the velocity at a point due to an oblique 
vortex ring can be found by using the 
solution from the upright vortex ring. The 
situation is depicted in Figure 5. 
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Figure 5: Equivalent point, position vector 
along with position vector for the base 
point of the ith ring. 
 
The position vector for this ith ring is given 
by: 
 

kpjRr iii
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From equations (15) and (16) the position 
vector is: 
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(18) 

 
Equations (2) and (3), for an upright vortex 
ring, may now be applied on the 
equivalent point to yield the velocity at the 
required point in the oblique ring domain. 
The parameters in these equations are 
hence given by: 
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The velocities at the general point due to 
this ith ring are given by: 
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These velocities are equal to the velocities 
found in the oblique ring plane along the 
axial and radial directions with respect to 
the oblique ring. Note that if the oblique 
angle is zero, the solution reduces to the 
upright vortex ring case and the radial 
velocity component becomes zero. To 
obtain the velocities in the horizontal and 
vertical directions the velocities are simply 

rotated through an angle iβ : 
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This analytical result is also compared with 
a numerical solution which uses the Biot-
Savart law applied to straight line 
segments forming discretised rings. 10 
vortex rings are used for each case. With 
the numerical simulation, 100 straight line 
elements are used for each ring. The 
inclination angle of the rings is taken as 30 
degrees for all rings with a pitch and 
radius of 1m. The velocity at the center of 
the first ring is calculated and the 
numerical result agrees with the 
analytically derived results to 4 decimal 
places. 

4 Wake Model 

The infinitely thin vortex ring is a useful 
tool to simulate wind turbine wakes in a 
very efficient way. The exact analytical 
solution to the potential vortex ring 
problem also allows for a very efficient 
computation of the induced velocity 
compared to a spiral wake which requires 

straight line discretisation. The major 
drawback is the accuracy of the solution. 
Emphasis must therefore be made on how 
these vortex rings are to be configured 
(their spacing, inclination, strength etc.) in 
order to obtain a general representation of 
the flow physics involved. Rather than 
having a continuous vortex filament, the 
ring model discretises the continuous 
spiral into rings which can be considered 
to be spirals having zero pitch as 
described by Gupta et al. in [5]. 
 
The first important assumption in the 
oblique ring model (ORM) is that a vortex 
ring is emanated from the turbine rotor 
after one complete revolution (see also 
[5]). The use of thin vortex rings of 
constant circulation to model the wake 
was done in the past by Coleman in [6] for 
the analysis of rotors in forward flight in 
order to study the azimuthal variation of 
the induced velocity at the rotor plane. 
However, the model used by the Coleman 
employs upright rings, therefore assuming 
that the wake remains aligned with the 
flow direction. Indeed, not accounting for 
lateral induced velocities (as a result of 
using upright rings) can be considered a 
flaw in the analysis. Other similar models 
have been developed by Castles et al. and 
Young [7, 8]. The developed ORM allows 
for velocities at the wake centerline to 
develop such that the wake deflects 
laterally. 

For a two bladed wind turbine, two spirals, 
180 degrees out of phase, would therefore 
be equivalent to one vortex ring (one 
vortex ring per revolution). The vortex ring 
has the characteristics of having the radial 
velocity equal to zero for an upright ring. In 
axial flow, the wake remains aligned to the 
flow direction and does not exhibit any 
deflection. This makes the upright vortex 
ring particularly suited for such case since 
in this manner there will be no component 
of velocity trying to deflect the wake in a 
particular direction. Since in shear flow the 
wake was found by Sezer-Uzol et al. to 
deflect in the vertical direction [1], oblique 
ring elements may be considered to be 
best suited.  

On the wind turbine site the atmospheric 
boundary layer will cause sheared inflow 
and a differential velocity between the 
topmost and downmost position of the 
blades will result. This can be used to 
model the inclination angle of the rings.  
Figure 6 shows the velocities on the ring 



and the definition of the angle of inclination 
of the ring. In this diagram the maximum 
and minimum velocities are represented 

by maxu  and minu respectively. The wind 

turbine has radius R and it makes one 

complete revolution in a time t∆ . The 

angle of inclination of the ring is β . 
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Figure 6: Velocity diagram (left) and 
corresponding deflection of the ring (right). 
 
The time to make one complete revolution 
is given by: 
 

60
t∆ =

Ω
 (28) 

 

Where Ω  is the rotor rotational speed in 
RPM. For the ith ring the inclination angle 
is therefore given by: 
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Writing this in terms of tip speed ratios: 
 

min max

tan i

iπδ
β

λ λ
=  (30) 

 

Where max minδ λ λ= − , maxλ is the tip 

speed ratio when a blade is in its 

downmost position and minλ  is the tip 

speed ratio when a blade is in its topmost 
position. The wake model is shown in 
Figure 7. Due to the oblique rings, a 
vertical velocity component results, 
causing the wake to deflect by an 

angleζ and a vertical displacement s∆  at 

the origin O.  
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Figure 7: Wake modelled as a ring train. 
 

If the strength of the rings is Γ  and the 
pitch is p  then the velocities due to all the 

N rings, before the deflection takes place, 

are given by: 
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Of interest for the wake deflection is v . 

The kinematics of the origin can be 
described by the integral: 
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If the velocities are assumed to increase in 
a stepwise manner as they are generated 
at each revolution (as shown in Figure 8) 
then the deflection is given by: 
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Figure 8: Stepwise increase of velocity at 
the origin of the wake. 
 
From equation (34) the wake deflection 
may be found: 
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The pitch of the rings is assumed to be the 
distance moved by a ring due to a velocity 

( )0 11U a−  in one rotor revolution, where 

0U  is the free stream velocity at hub 

height and 1a  is an assumed averaged 

induction factor. The expression for the 
pitch is then: 
 

( )0 1

60
1p U a= −

Ω
 (36) 

 
Note that this is the distance between 
each ring center. Due to the variation of 
the inflow between the top and bottom part 
of the rotor, the pitches at the top and 
bottom of the ring will be different. This 
can be accounted for by changing the 
inclination angle of the rings β. However 
the rotor speed in this case is chosen as 
720RPM and hence the ring inclinations 
will be quite small and hence for the 
revolutions in the very near wake the 
difference between ring inclinations will 
also be very small. 
 
The major unknown in this formulation is 
the circulation of the rings. As an 
assumption for this initial work, their 
circulation is assumed to be azimuthally 
constant and equal to the maximum 
averaged bound circulation on a blade in 
one complete revolution. With the current 
model formulation therefore, no azimuthal 
variation of circulation is allowed. 
Nonetheless, each ring itself is the result 
of an azimuthally averaged condition and 
in this sense the formulation is consistent. 
To get an indication of the error which 
might result with this assumption the 
variation of the maximum bound 
circulation with azimuth obtained from the 
free-wake model is shown in Figure 9. The 
maximum variation is around 20%. In 
addition to this, swirl effects are neglected. 
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Figure 9: Variation of the maximum bound 
circulation with azimuth from the free-wake 
model, with shear exponent set to 0.3. 
 
For the purpose of this study, the 
maximum bound circulation used for the 
rings is obtained from the results of a free-
wake simulation. 

5 Results 

5.1 Free-wake results 

A lifting line free-wake simulation is 
performed of a model wind turbine in a 
sheared inflow. The power law velocity 
profile is as follows: 
 

0
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( )
h

U z U
h

α
 

=  
 

 (37) 

 

Where 0h is the hub height and α is the 

shear exponent. Table 1 gives the main 
features of the turbine under investigation. 
 
Table 1 – Model turbine characteristics 

Hub height, 0h  2.16 m 

Hub radius 0.147 m 

Tip radius 1 m 

Airfoil Flat plate 

 
In order to focus on the wake geometry, 
flat plate blades are used with twist and 
chord variation as shown in Figure 10. The 
turbine hub and tower are both ignored 
and no ground effects are modelled. A 
total of twelve simulations are performed 
for combinations of the sets 

α = {0,0.1,0.2,0.3} and λ = {4,7,10} where 

λ  is the tip speed ratio at hub height. The 

rotor rotational speed is set to 720RPM. 
The convergence of the results is checked 
by running additional simulations with 
different number of span-wise and 
azimuthal elements and number of rotor 



revolutions. For convergence below 4 
percent, the number of span-wise 
elements is taken as 30, azimuthal 
elements are taken as 40 and 5 rotor 

revolutions for { }4, 7λ = . For the 10λ =  

case 6 rotor revolutions are used. 
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Figure 10: Twist and chord distributions 
(Rh=hub radius, L=blade length). 
 

The main aim of this work is to obtain 
information on the deflection of the wake. 
From the results, the wake deflection 
observed by Sezer-Uzol et al. [1] is 
confirmed (Figure 11). This deflection is 
quantified by assuming that the tip vortex 
cores are located at the outer edge of the 
stream tube. A line joining the vortex cores 
is constructed and the mid-point of each 
line marked and used as a point on a line 
whose gradient represents the wake 
deflection. 
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Figure 11: Wake deflection estimation for 
α=0.2 and λ=4. 

5.2 Comparisons with the 
Oblique Ring Model 

 
The rings are assumed to have radii equal 
to the rotor radius and hence no wake 
expansion is modelled. The pitch of 
successive rings is found from equation 
(36) with an assumed induction factor of 
0.3. The maximum averaged bound 
circulation is obtained from the free-wake 
solutions and used in equation (35) for 

each reference tip speed ratio and shear 
exponent.  

The ORM is a closed form model and 
allows immediate results to be obtained for 
various inputs. A large number of results 
are hence obtained for a large number of 
shear exponents from 0 to 0.3. The wake 
deflections from the ORM are compared 
with those from the free-wake (Figure 12).  
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Figure 12: Free-wake and ORM wake 
deflection results against shear exponent 
for various tip speed ratios. 
 
Both the free-wake and the ORM results 
agree in the general linear trend between 
the wake deflection and the shear 
exponent. The free-wake results show 
some very slight deflection when the inflow 
is non-sheared (uniform, axial flow). Also 
these show a slight dependence on the tip 
speed ratio. On the other hand, the ORM 
gives a higher dependence on the tip 
speed ratio and the gradient of the lines 
are quite different from those obtained 
from the free-wake simulations. With the 
ORM it is clear that the gradient of the 
lines increases with decreasing tip speed 
ratio. Such a trend is not clear with the 
free-wake results. Experimental results are 
not yet available for shear flow conditions 
and hence this dependency on the tip 
speed ratio is still unclear and needs to be 
addressed in future work. 
 

6 Potential Uses 

 
Such ring models have been used for 
hovering and forward flight helicopter 
rotors as reviewed by Leishman [9]. In the 
past, Coleman [6] found that the 
longitudinal coefficient can be expressed 
as kx=tan(χ/2) for the inflow model for 

rotors in forward flight with wake skew 
angle χ. 



More recently the Coleman model was 
used by Chaney et al. [10] for wind turbine 
applications in order to calculate the 
centre of thrust for rotors in yawed flow for 
the purpose of controlling yawing 
moments on the rotor. Chaney showed 
that the model results in inflow variation 
which for yawed flow applications can give 
2P variations which resemble more the 
empirical model of Schepers [11] which 
was shown to give better results within a 
BEM approach rather than the simpler 
Glauert corrections. 
These examples are mentioned here to 
show how such models can provide useful 
insight of a complicated flow problem. 
Since the ORM is a purely analytical 
model, results are obtained 
instantaneously and wake geometric data 
may be used for instance in prescribed 
wake models which may then give more 
detailed insight of the flow. This potential 
of the model needs to be carefully 
assessed. 
 
 

7 Conclusions 

 
The closed form solution for the velocity 
field due to an oblique vortex ring is 
derived from the result of an upright vortex 
ring. The oblique ring element is used to 
model the wake of a turbine in shear flow 
and to obtain a closed form solution to the 
deflection of the wake due to this sheared 
inflow. 

At this stage, the model requires a suitable 
input for the ring circulations which in this 
work is obtained from free-wake 
simulations of a model turbine rotor. The 
free-wake results confirm the upward 
wake deflection observed in [1] and [2] by 
Sezer-Uzol et al. and Sørensen et al. This 
is further quantified using the tip vortex 
positions. Averaged values of circulations 
are used in the ORM and the deflections 
compared. The positive aspects of the 
ORM are: 
 

• The linear trend between wake 
deflection and shear power law 
exponent agrees with the free-
wake simulations. 

• Gives a simple explanation of the 
physics of the shear flow problem 
in terms of wake kinematics. 

• Can be easily extended to model 
wake skeweness due to yawed 
flow. 

 
On the other hand, this analytical solution 
has various disadvantages: 
 

• Due to the assumptions taken for 
this model, the detailed flow 
physics are lacking and only 
general wake features may be 
extracted. 

• At this stage of the work, the 
model still relies on various inputs 
such as ring circulation which are 
best obtained from experiment or 
more reliable wake models. 

• The dependence on tip speed 
ratio is different from the free-
wake predicted results. This must 
however still be checked with 
experimental work. 

• The model is not suited to analyse 
detailed flow physics or to 
characterize rotor loads. 

 
Future work will address the following 
issues: 
 

• Experimental work for a turbine in 
shear flow. 

• Extension of the purely analytical 
model to include more flow 
physics with the incorporation of 
rings representing the root vortex. 

• Application of model to yawed flow 
conditions. 
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Nomenclature 

z  [m] = z coordinate of the field point at 
which the induced velocities are to be 
calculated. 

r  [m] = r coordinate of the field point at 
which the induced velocities are to be 
calculated. 

iz  [m] = z coordinate of the base point on 

the vortex ring. 

ir  [m] = r coordinate of the base point on 

the vortex ring. 

zirii ezerr ˆˆ +=  [m] = position vector of 

the field point where the induced velocity 
is to be calculated. 

zr ezerr ˆˆ +=  [m] = position vector of the 

base point on the vortex ring. 

2πθ = [rad] = angle from the horizontal 

moving anti-clockwise to the field point. 
The reference angle is taken as 90 
degrees. 

iθ  = angle from horizontal to the base 

point. 

Γ  [m
2
/s] = circulation of an infinitely thin 

vortex ring. 

u  [m/s] = velocity vector at a point due to 

vortex ring. 

()K  [-] = complete elliptic integral of the 

first kind. 

()E  [-] = complete elliptic integral of the 

second kind. 

zu [m/s] = velocity component 

perpendicular to the vortex ring plane at 
the centre of the ring.

 

ru  [m/s] = velocity component in the radial 

direction of the ring.
 

v  [m/s] = vertical component of zu . 

w  [m/s] = horizontal component of zu . 

β  [deg.] = angle of inclination of the ring. 

R  [m] = radius of the ring. 
'

0z  [m] = z coordinate of the equivalent 

point.  
'

0y  [m] = y coordinate of the equivalent 

point. 

p  [m] = pitch of rings. 

q  [m] = vertical distance from the origin. 

0r  [m] = distance from a point X to edge A 

of the ring (see Figure 5). 

l  [m] = distance from a point X to edge B 

of the ring (see Figure 5). 

ĵ  [-] = unit vector in the y direction. 

k̂  [-] = unit vector in the z direction. 



maxu  [m/s] = wind velocity when the blade 

is at the top-most position. 

minu  [m/s] = wind velocity when the blade 

is at the down-most position. 

t∆  [s] = time taken for one rotor 

revolution. 

Ω  [RPM] = rotor rotational speed. 

minλ  [-] = minimum tip speed ratio (top 

position of blade) 

maxλ  [-] = maximum tip speed ratio 

(bottom position of blade) 

δ  [-] = difference between the maximum 

and minimum tip speed ratio. 

ζ  [deg.] = deflection angle of wake 

centerline. 

N  [-] = number of rings. 

s∆  [m] = deflection distance of centre of 

wake at the origin of the wake coordinate 
system. 

t  [s] = time. 

0U  [m/s] = free stream velocity at hub 

height. 

1a  [-] = average axial induction factor. 

0h  [m] = hub height. 

h  [m] = height from ground. 

α  [-] = shear exponent. 

λ  [-] = tip speed ratio. 

θ  [deg.] = blade twist distribution. 

c  [m] = blade chord distribution. 

hR  [m] = hub radius. 

L  [m] = blade length. 

i  (subscript) = ring number. 

 
 
 
 
 
 
 
 
 
 


