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ABSTRACT: A method is proposed for calculating the shear viscosity of a
liquid from finite-size effects of self-diffusion coefficients in Molecular
Dynamics simulations. This method uses the difference in the self-diffusivities,
computed from at least two system sizes, and an analytic equation to calculate
the shear viscosity. To enable the efficient use of this method, a set of
guidelines is developed. The most efficient number of system sizes is two and
the large system is at least four times the small system. The number of
independent simulations for each system size should be assigned in such a way that 50%−70% of the total available
computational resources are allocated to the large system. We verified the method for 250 binary and 26 ternary Lennard-Jones
systems, pure water, and an ionic liquid ([Bmim][Tf2N]). The computed shear viscosities are in good agreement with
viscosities obtained from equilibrium Molecular Dynamics simulations for all liquid systems far from the critical point. Our
results indicate that the proposed method is suitable for multicomponent mixtures and highly viscous liquids. This may enable
the systematic screening of the viscosities of ionic liquids and deep eutectic solvents.

1. INTRODUCTION
The shear viscosity plays an important role in quantifying the
required energy for mechanical and chemical processes, and it
is essential for solving the Navier−Stokes equations. Various
empirical/semiempirical models for predicting the shear
viscosity have been developed, including equations of state
combined with scaling relations,1−11 free-volume theory,12

friction theory,13 as well as fitting to functional forms.14,15

Alternatively, the shear viscosity can be computed via
equilibrium or nonequilibrium molecular dynamics (MD)
simulations.7,8,16−24 In nonequilibrium MD (NEMD), the
viscosity is calculated from the response of the system to an
external shear field.18,25−29 Although NEMD is computation-
ally efficient at large external fields,17,30 the computed viscosity
can depend on the applied shear rate.20,21 In equilibrium MD
(EMD), the shear viscosity can be computed from the Einstein
relation:31−34
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where Pαβ represents the off-diagonal components of the stress
tensor (i.e., Pxy, Pxz, and Pyz), kB is the Boltzmann constant, t is
the correlation time, and V and T are the volume and
temperature of the system, respectively. The angle brackets
denote an ensemble average. Since the stress tensor is defined
for the entire simulation box, the shear viscosity is a property
of the system as a whole. This means that an increase in the

system size does not improve the statistical uncertainty of the
computed shear viscosity.35 Due to the slow relaxation of
highly viscous fluids such as ionic liquids14,36 and deep eutectic
solvents,37 and due to the large fluctuations in the components
of the stress tensor17 (see Figure S1 in the Supporting
Information), very long MD simulations are required to
sufficiently sample the stress tensor components.
Unlike the shear viscosity, the self-diffusivity is a single-

molecule property and can be calculated from the mean-
squared displacement (MSD) of all individual molecules of the
same species:34,38−40
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where rj,i(t) is the position of the jth molecule of species i at
time t, and Ni is the number of molecules of species i in the
system. The statistical uncertainties of self-diffusivities decrease
as the number of molecules in the system increases.35,41,42 The
simulation length needed to obtain a linear relation between
the MSD and time is much smaller than the length of an MD
simulation required for computing the shear viscosity.
Therefore, accurate self-diffusivities can be computed from
short MD simulations with a large number of molecules. In the

Received: June 20, 2018
Published: October 8, 2018

Article

pubs.acs.org/JCTCCite This: J. Chem. Theory Comput. 2018, 14, 5959−5968

© 2018 American Chemical Society 5959 DOI: 10.1021/acs.jctc.8b00625
J. Chem. Theory Comput. 2018, 14, 5959−5968

This is an open access article published under a Creative Commons Non-Commercial No
Derivative Works (CC-BY-NC-ND) Attribution License, which permits copying and
redistribution of the article, and creation of adaptations, all for non-commercial purposes.

D
ow

nl
oa

de
d 

vi
a 

T
U

 D
E

L
FT

 o
n 

N
ov

em
be

r 
19

, 2
01

8 
at

 0
7:

58
:1

8 
(U

T
C

).
 

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.
 

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.8b00625/suppl_file/ct8b00625_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.8b00625/suppl_file/ct8b00625_si_001.pdf
pubs.acs.org/JCTC
http://pubs.acs.org/action/showCitFormats?doi=10.1021/acs.jctc.8b00625
http://dx.doi.org/10.1021/acs.jctc.8b00625
http://pubs.acs.org/page/policy/authorchoice/index.html
http://pubs.acs.org/page/policy/authorchoice_ccbyncnd_termsofuse.html


same short simulation, such a high accuracy cannot be
achieved for the shear viscosity due to the smaller number of
samples for the stress tensor components.35

Typical MD simulations for computing transport properties
use hundreds to thousands of molecules, which is orders of
magnitude smaller than the thermodynamic limit. To over-
come this issue, simulation boxes with periodic boundary
conditions are used.38 While this approach mimics the
presence of an infinite bulk system surrounding the simulated
system, computed properties may depend on the size of the
simulation box. Large finite-size effects for thermodynamic
properties such as activity coefficients,43 chemical potentials,44

and Kirkwood−Buff coefficients45,46 have been reported in
literature. In the case of transport properties, self-diffusion
coefficients computed from MD simulations depend strongly
on the system size while the shear viscosity does not show any
system-size dependency.47−49 Dünweg and Kremer50 showed a
linear increase of the self-diffusivity of polymers in a good
solvent with the inverse of the simulation box length. Yeh and
Hummer47 investigated the system-size dependency of
computed self-diffusivities of pure liquids, consisting of
spherical molecules, and derived a relation between the infinite
(Dself

∞ ) and finite-size (Dself
MD) self-diffusivity:47

ξ
πη

= + = +∞D D D D
k T

L6self self
MD YH

self
MD B

(3)

where DYH is the finite-size correction, here referred to as the
Yeh−Hummer (YH) correction, L is the length of the
simulation box, which is proportional to N1/3, where N is the
number of molecules, η is the shear viscosity of the liquid, and
ξ is a dimensionless constant equal to 2.837297 for a cubic
simulation box with periodic boundary conditions.47,51−53 For
the derivation of this analytic correction, Yeh and Hummer47

used a hydrodynamic model of a spherical particle diffusing in
a medium of viscosity η in a box with periodic boundary
conditions imposed in every direction. In this model, the
hydrodynamic interactions of the particle with the surrounding
molecules and the periodic images affect the self-diffusion
coefficient. The finite-size effect of the self-diffusivity is caused
from the latter, i.e., the self-interaction of the particle through
the periodic boundaries. Based on this hydrodynamic model,
Yeh and Hummer47 derived eq 3 for spherical particles and
verified this correction for a single-component Lennard-Jones
(LJ) fluid and pure water. Moultos et al.48 showed that the YH
correction is also applicable to molecules of varying size and
shape, such as n-alkanes and glymes, provided that the system
size exceeds 250 molecules.
In the studies by Spångberg et al.,54 Kühne et al.,55 and

others,56−58 the shear viscosities and self-diffusivities of water
in the thermodynamic limit were calculated from eq 3. In these
studies, several systems sizes were used to compute finite-size
self-diffusivities, which were then fitted with a linear regression.
To the best of our knowledge, the computation of shear
viscosities from finite-size self-diffusivities has not been
considered previously for multicomponent mixtures or highly
viscous liquids. In this study, we use weighted least-squares
linear regression analysis to develop a well-structured method-
ology for computing shear viscosities from finite-size effects of
self-diffusivities. To allocate the available computational
resources efficiently, a set of guidelines for choosing simulation
parameters, such as the optimum number of system sizes and
their size differences is provided. The application of the

proposed method is verified for pure water, a large number of
binary and ternary LJ systems, and the ionic liquid [Bmim]-
[Tf2N].
This paper is organized in five sections. The proposed

method is described in Section 2. In Section 3, details of MD
simulations are briefly explained. The results of the MD
simulations for pure water, binary and ternary LJ systems, and
[Bmim][Tf2N] are discussed in Section 4, along with a set of
guidelines for the efficient use of the proposed method. The
conclusions are provided in Section 5.

2. METHOD
To develop a systematic method to compute shear viscosities
from the finite-size effects of self-diffusivities, we write eq 3 in a
linear form, y = ax + b:

η
ξ

π
= − + ∞D

k T
L

D
1

6self
MD B

self
i
k
jjjj

y
{
zzzz
i
k
jjjj

y
{
zzzz

(4)

where −ξkBT/6πL and Dself
MD are the independent and

dependent variables, respectively. The intercept of this line
with the vertical axis (L → ∞) is the self-diffusivity in the
thermodynamic limit, Dself

∞ . The inverse of the slope is the shear
viscosity of the fluid, η.
To compute the shear viscosity, this method uses self-

diffusivities of at least two system sizes. For each system size,
the average self-diffusivity and its variance can be estimated
from the mean (D̅) and sample variance (S2) of the self-
diffusivities computed from several independent simulations:
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=

D
N

D
1

j k

N

k
sim, 1

jsim,

(5)

∑=
−

− ̅
=

S
N

D D
1

1
( )

j k

N

k
2

sim, 1

2
jsim,

(6)

where Nsim,j is the number of independent simulations for the
jth system size and Dk indicates the self-diffusivity computed
from the kth independent simulation for system size j. The
parameters of interest (1/η and Dself

MD) are then fitted to eq 4
with weighted least-squares linear regression.59 The weighted
least-squares linear regression is briefly explained in the
Supporting Information. The linear regression analysis requires
the standard errors (SEs) of the average self-diffusivities for all
system sizes. The inverse of squared SEs are used as the
weighting factors for each data point. Since no prior knowledge
of these SEs is available, the SE of the self-diffusivity of each
system size can be estimated from the sample variance:

= S NSE / j
2

sim, (7)

According to the work of Pranami and Lamm,41 multiple
independent simulations are required to correctly compute the
sample variance of the mean self-diffusivity. For a single MD
simulation, the computed MSD depends on the initial
configuration regardless of the simulation length. Weighted
least-squares linear regression analysis yields both the averages
and the variances of the parameters in eq 4. The self-diffusivity
in the thermodynamic limit is a direct outcome of this analysis.
The average shear viscosity is equal to the inverse of the
average slope of the fitted line, a.̅ If this slope has a statistical
uncertainty of δa, the statistical uncertainty of the shear
viscosity, δη, can be calculated from error propagation:
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δη δ=
̅

a
a 2 (8)

In a recent study, we showed that finite-size corrections to
self-diffusivities of different species in a mixture are identical
and equal to the YH correction (eq 3).49 This conclusion is
based on a detailed study of 250 binary LJ systems with a wide
range of LJ energy (ε), size (σ), and mass (m) ratios. The
results show that the viscosity of a mixture can be predicted
from the finite-size effects of the self-diffusivity of each species
regardless of the mass or size ratios. To maximize the statistical
information on a single simulation, we introduce a new
quantity, the average self-diffusivity (Davg), which is the
arithmetic mean of the self-diffusion coefficients of all species,
weighted by their corresponding mole fractions. By using the
definition of the MSD in multicomponent mixtures (eq
2),60−62 it can be shown that Davg is constructed from the
self-diffusion of all molecules in the mixture:
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where n and N are the total number of species and molecules
in the mixture, respectively, and xi is the mole fraction of
species i. Since the self-diffusivities of all species experience an
identical finite-size effect,49 the same YH correction (eq 3) can
be applied to Davg:
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By combining eqs 4 and 10, the shear viscosity of a mixture can
be obtained from Davg, similar to the approach used for pure
liquids. Hereafter, the proposed method will be called the D-
based method, and ηD‑based denotes the corresponding
computed shear viscosity.
The D-based method can be used to compute shear

viscosities of highly viscous systems such as ionic liquids and
deep eutectic solvents. The shear viscosity of these systems can
be as large as several hundred cP at room temperature.37,63−65

The length of MD simulations for computing self-diffusivities
depends directly on how fast the constituent ions diffuse in the
bulk liquid. In MD simulations, Fickian diffusion is observed at
time scales in which a linear relation between the MSD and
time (i.e., a slope of 1 on a log−log plot) is established.66

However, this criterion does not ensure Gaussian diffusion,

which corresponds to a Gaussian distribution for the
displacement probability of ions.67 Ionic liquids and deep
eutectic solvents consist of highly associated pairs of ions and
temporarily form cages.68 While cage effects can also be
present in simple fluids,69 it plays an important role in
determining the minimum length of an MD simulation for
ionic systems.68,70 As discussed in detail in the work of
Casalegno et al.,68 for short time scales, each ion fluctuates
around a certain position in the cage. Due to dynamical
heterogeneity,67,68,71 a non-Gaussian distribution is observed
for the diffusion probability of ions trapped in the cage. For
longer time scales, ions jump from a cage to another. The
displacement probability forms a Gaussian distribution
corresponding to Gaussian diffusion.68 According to Casalegno
et al.,68 for room-temperature ionic liquids, a rough estimate of
the time scale corresponding to Gaussian diffusion can be
made based on a minimum average displacement of 1.5 nm for
all constituent ions. This criterion ensures that the simulation
time is sufficiently long for all ions to break the local ion cages
and diffuse in the bulk liquid.70,72 This criterion can be used
for room-temperature ionic liquids for performing long enough
MD simulations to compute finite-size self-diffusivities with the
D-based method.

3. SIMULATION DETAILS
To validate the D-based method, three different systems are
considered: binary and ternary LJ systems, pure water, and the
ionic liquid [Bmim][Tf2N]. All MD simulations are carried out
with LAMMPS (version 16, Feb 2016).73 The order-n
algorithm is used for an efficient sampling of time correlations
for the calculation of self-diffusivities and shear viscosities.66

MD simulations of 26 ternary LJ systems were carried out.
The results for 250 binary LJ systems are obtained from the
Supporting Information of our previous work, ref 49. For the
interaction between dissimilar LJ particles (i and j), we use the
Lorentz−Berthelot mixing rules with a modification factor (kij)
to include nonideality in the systems:34

ε ε ε

σ
σ σ

= −

=
+

k(1 )

2

ij ij ii jj

ij
ii jj

(11)

where ε and σ are the parameters of the LJ potential. The
simulation parameters of all binary and ternary systems are
provided in Tables 1 and 2, respectively. All parameters are
reported in reduced units, where σ1 = σ = 1, ε1 = ε = 1, and m1
= m = 1 (mass) are the basis units.34 All LJ interactions are
truncated and shifted at a cutoff radius of 4σ. Simulations for
two system sizes (500 and 4000 LJ particles) were performed

Table 1. Specifications of 250 Binary LJ Systems at a
Temperature of 0.65 and a Pressure of 0.0549a

specification values

x1 0.1, 0.3, 0.5, 0.7, 0.9
ε2/ε1 1.0, 0.8, 0.6, 0.5
σ2/σ1 1.0, 1.2, 1.4, 1.6
m2/m1 (σ2/σ1)

3

kij 0.05, 0.0, −0.3, −0.6

aLJ species 1 has σ1 = σ = 1.0, ε1 = ε = 1.0, and mass = m1 = 1.0 in
reduced units.34 kij is an adjustable parameter in the Lorentz−
Berthelot mixing rules (eq 11).
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at a reduced temperature of 0.65 and a reduced pressure of
0.05. The number densities of the binary49 and ternary systems
are in the range of 0.14−0.89 and 0.78−0.88, respectively. An
integral time step of 0.001 is used, and the simulation lengths
of the binary and ternary systems are 200 million and 100
million time steps, respectively.
For the molecular systems, the initial configurations were

made in Packmol,74 and the LAMMPS input files were created
with VMD.75 The three-site SPC/E model is used for water.76

The force field parameters of [Bmim][Tf2N] are obtained
from the work of Zhang et al.77 The LJ interactions for water
and the ionic liquid are truncated at 9 and 12 Å, respectively,
with analytic tail corrections considered for energy and
pressure. The particle−particle particle−mesh (PPPM)
method with a relative precision of 10−6 is used for the long-
range electrostatic interactions. The Verlet algorithm is used to
integrate Newton’s equations of motion with a time step of 1
fs. MD simulations for water performed at 298 K and 1 atm.
MD simulations of [Bmim][Tf2N] were performed at three
temperatures of 300, 400, and 500 K and a pressure of 1 atm.
The simulation times used for computing shear viscosities of
water and [Bmim][Tf2N] are 50 and 200 ns, respectively. Self-
diffusivities of water and [Bmim][Tf2N] are computed from
independent simulations of 0.5 and 20 ns, respectively. Due to
the slow relaxation of [Bmim][Tf2N] at 300 K, MD
simulations of 50 and 450 ns are needed to obtain the self-
diffusivities and shear viscosity at this low temperature,
respectively. The choice of these simulation lengths is made
so that a minimum average displacement of 1.5 nm is obtained
for all systems (discussed thoroughly in Section 2).

4. RESULTS AND DISCUSSIONS
Pure Water. A set of simulations consisting of seven system

sizes250, 500, 1000, 2000, 4000, 8000, and 16 000 water
moleculeswas carried out. The average self-diffusivities were
obtained from 100 independent simulations of 0.5 ns for each
system size. In Figure 1, the average self-diffusivities of water
are shown as a function of the system size. These finite-size
self-diffusivities lie on the line fitted to eq 4:

[ ] = − +− − −D N/ 10 m s 2.818 2.870water,self
9 2 1 1/3

(12)

where N equals the number of water molecules in the
simulation box. From the intercept with the vertical axis, the
self-diffusivity of the SPC/E water model in the thermody-
namic limit at 298 K and 1 atm is estimated to be (2.870 ±
0.004) × 10−9 m2 s−1 and the shear viscosity 0.708 ± 0.014 cP.
The shear viscosity of water computed from the Einstein
relation (eq 1) is 0.694 ± 0.010 cP. These two values are in
excellent agreement, considering the wide range of shear
viscosities reported in the literature for the SPC/E water

model at the same conditions: 0.68,56 0.71,54 0.729,78,79 and
0.82 cP.80 This agreement confirms the applicability of the D-
based method for pure water.
The extensive data set of finite-size water self-diffusivities

provides a suitable estimation of the variances (S2) and the
standard deviations (S) of self-diffusivities as a function of the
system size. These standard deviations will be used in the next
section for optimizing the D-based method. Figure 2 shows the
estimated standard deviations as a function of the number of
molecules (N−1/3). Since no prior knowledge of the functional
form is available, an initial guess for the functional form would
be a power-law function (aNb) with two fitting parameters:

[ ] =− − −S N/ 10 m s 2.53water
10 2 1 0.31

(13)

The exponent −0.31 and the linear arrangement of the data
points in Figure 2 suggest that the standard deviation can also
be a linear function in N−1/3, which decreases the number of
fitting parameters to one (aN−1/3):

[ ] =− − −S N/ 10 m s 2.95water
10 2 1 1/3

(14)

In the next section, eq 14 combined with eq 12 will be used
as a model for the normal distribution of finite-size self-
diffusivities of water as a function of system size.

Optimization. In this section, a set of optimum simulation
parameters for which the computed shear viscosities have a
minimum statistical uncertainty is proposed. The following
parameters are considered: the number of system sizes, the size
difference between systems, and the allocation of computa-
tional resources to each system size. The size difference
between system i and system j is normalized by the size of the
smallest system (system 1): (Nj − Ni)/N1. According to the
work of Moultos et al.,48 the smallest system should contain at
least 250 molecules. This criterion ensures that the YH
correction (eq 3) provides an accurate prediction for the finite-
size effects of self-diffusivities. As a constraint on the
optimization problem, the total computational resources are
fixed. The computational resources scale linearly with the
number of independent simulations (Nsim,i) and polynomially
with the number of molecules (Ni) in the simulation box,
depending on computer hardware, the employed computa-

Table 2. Specifications of 26 Ternary LJ Systems at a
Temperature of 0.65 and a Pressure of 0.05a

specification values

k12 0.05, −0.3, −0.6
k13 0.05, −0.3, −0.6
k23 0.05, 0.0, −0.3, −0.6

aThe LJ interaction parameters of species 1, 2, and 3 are ε1 = ε = 1.0,
ε2 = 0.8, and ε3 = 0.6, respectively. All species have the same size (σ1 =
σ2 = σ3 = σ = 1.0) and mass (m1 = m2 = m3 = 1.0). All values are
reported in reduced units.34 xi indicates the mole fraction of species i,
where x1 = 0.4, x2 = 0.3, and x3 = 0.3.

Figure 1. Computed self-diffusion coefficients of the SPC/E water
model at 298 K and 1 atm for seven system sizes: N = 250, 500, 1000,
2000, 4000, 8000, and 16 000 water molecules. A total of 100
independent simulations of 0.5 ns were performed for each system
size. The dashed line is fitted with the weighted least-squares linear
regression (eq 12) to the YH equation (eq 4). Error bars are smaller
than the symbol sizes. The self-diffusivities are tabulated in Table S1
of the Supporting Information.
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tional methods, and the scalability of MD simulations.34 Thus,
the ratio, α, between the computational resources allocated to
system i and system j is

α = =
γ

j
i

N

N

N

N
computational resources of system
computational resources of system

j

i

j

i

sim,

sim,

i
k
jjjjj

y
{
zzzzz
(15)

where γ indicates the scalability of MD simulations. Two
values of γ are considered here for the scalability of MD
simulations: γ = 1 and 2. For γ = 1, computational
requirements grow linearly with the system size. For γ = 2,
the growth in computational requirements is quadratic and
thus faster than the linear growth. Current state-of-the-art MD
packages73,81,82 have a good computational scalability, γ, close
to 1.
The simulation results presented for the SPC/E water model

can be used as a basis for finding the optimum combination of
the simulation parameters for the D-based method. eqs 4 and
14 are used to model the average and standard deviation of
finite-size self-diffusivity of water as a function of system size.
This model enables us to predict the self-diffusivity of water for
a hypothetical MD simulation with a specified number of
molecules. This can be achieved by generating a random
number from a normal distribution with a mean self-diffusivity
and a standard deviation determined by eqs 12 and 14. For a
set of simulations with a number of system sizes and
independent simulations per system size, a set of finite-size
self-diffusivities is constructed and the corresponding shear
viscosity is calculated from the D-based method. Since this
shear viscosity depends on the set of finite-size self-diffusivities,
the procedure should be repeated for many times and all shear
viscosities are recorded in a histogram. For a specific set of
simulation parameters, the data stored in the histogram yield
an estimate for the variance (S2) and standard deviation (S) of
the shear viscosity. The aim of this optimization procedure is
to find the simulation parameters that minimize the standard
deviation (S) of the shear viscosity.
The first scenario considered here is the optimization for

two system sizes. The simulation parameters studied are (i) the
normalized size difference ((N2 − N1)/N1), and (ii) the ratio
between the computational resources allocated to system 1 and

2 (α). The objective function is the estimated standard
deviation of shear viscosities normalized by Smin, the global
minimum estimated standard deviation of the shear viscosity
for a specified value of γ and all values of α and (N2 − N1)/N1.
In Figure 3, the normalized estimated standard deviations

(S/Smin) are shown for several values of α, ranging from 0.2 to
5.0, and the two values of γ. As can be seen in Figure 3, a range
of α between 1 and 2 yields the smallest value of S/Smin. This
means that the number of independent simulations for each
system size should be distributed in such a way that 50%−70%
of the computational resources is allocated to the large system.
Furthermore, it can be observed that the large system should
be at least 4 times the size of the small system. Depending on
the scalability of MD simulations, the optimum normalized size
difference ((N2 − N1)/N1) ranges from 3 (γ = 2) to 40 (γ = 1).
A similar investigation can be carried out for three system

sizes. Here, α is set to 1, indicating that the computational
resources are equally distributed between the three system
sizes. In Figure 4, normalized estimated standard deviations
(S/Smin) are shown as a function of the normalized size
difference between the small and medium systems ((N2 −
N1)/N1), and the medium and large systems ((N3 − N2)/N1).
Figure 4a (γ = 1) shows that a minimum cost function (S/Smin)
is achieved for (N2 − N1)/N1 > 10. This suggests that, while

Figure 2. Estimated standard deviations of the self-diffusion
coefficients of the SPC/E water model at 298 K and 1 atm, computed
for seven system sizes: N = 250, 500, 1000, 2000, 4000, 8000, and
16 000 water molecules. A total of 100 independent simulations of 0.5
ns were performed for each system size. The red and blue dashed lines
are fits to a power-law (eq 13) and a linear function (eq 14),
respectively.

Figure 3. Normalized estimated standard deviation (S/Smin) of the
shear viscosity as a function of the normalized size difference between
two systems ((N2 − N1)/N1). The total amount of computational
resources is fixed. Different colors indicate various ratios α of the
computational resources allocated to large and small system sizes (eq
15): 0.2 (black), 0.5 (magenta), 1.0 (green), 2.0 (red), and 5.0 (blue).
Two types of scalability for MD simulations are considered: (a) high
scalability (γ = 1) and (b) low scalability (γ = 2).
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the choice of the size difference between the small and medium
systems is important, the size difference between the medium
and large systems does not play a significant role. For very
small values of the normalized size difference between the
medium and large systems ((N3 − N2)/N1 → 0), it can be
deduced that the optimization problem reduces to a problem
of two system sizes, which has already been discussed. In
Figure 4b, this is also observed for γ = 2. The optimum
condition is achieved at (N2 − N1)/N1 = 3, which is in
agreement with what is shown in Figure 3b for two system
sizes. This suggests that the optimum condition observed for
three system sizes can also be achieved with two systems.
Based on the optimization results, the use of either two or

three system sizes yields optimum shear viscosities. In the case
of a limited amount of computational resources, adding more
system sizes leads to a smaller number of independent
simulations per system size. As a consequence, the limited
number of independent simulations leads to poor sampling
that may not yield an accurate average and standard deviation
for self-diffusivities. This adversely affects the accuracy of
average finite-size self-diffusivities and consequently the

computed shear viscosity. Hence, the use of more than two
system sizes is not justified. The choice of the optimum
conditions may vary depending on the MD software73,81,82 as
well as the algorithms used in the software (e.g., handling of
long-range electrostatic interactions, details of the neighbor
lists34). These specifications determine the optimum size of the
system and number of independent simulations according to
the results shown in Figure 3, and consequently affect the
computational requirements of the D-based method.

Lennard-Jones Systems. To examine the accuracy of the
D-based method for multicomponent fluid mixtures, the shear
viscosities of 250 binary49 and 26 ternary LJ systems were
computed. The comparison between the D-based shear
viscosities and those computed from the Einstein relation
(ηEMD, eq 1) are shown in Figure 5. By varying the
characteristics of the studied LJ systems as mentioned in
Tables 1 and 2, a wide range of shear viscosities is covered.
While all data points show a good agreement between the two
methods, the smallest deviation from the diagonal dashed lines
is observed for the quantity Davg, for both binary and ternary
systems. This is expected since Davg is constructed from the
self-diffusivities of all species present in the mixture. Therefore,
for multicomponent mixtures, Davg should be used for
calculating the shear viscosity rather than the self-diffusivity
of only a single species.
In Figure 5, the maximum deviation from the diagonal line,

which represent perfect agreement between the D-based
method and the Einstein relation, are observed for binary LJ
systems with very low densities (inset of Figure 5a). As
discussed in our previous study,49 these outliers have very
dissimilar size (σ2/σ1 = 1.4 or 1.6) and interaction (ε2/ε1 = 0.5
or 0.6) parameters. According to the work of Heyes et al.83 for
a hard-sphere fluid, the exponent −1/3 in N−1/3 (i.e., L−1) in
eq 3 is valid only for a range of packing fractions. Since the
validity of the YH correction have been shown for many real
molecular liquids,47−50 it is expected that the range of packing
fractions for which the YH correction holds correspond to a
liquid phase. From Figure 6, a similar observation to the work
of Heyes et al.83 can be made for LJ systems. In this figure, the
normalized difference between the shear viscosities computed
from the D-based method (using Davg) and the Einstein
relation is shown as a function of (a) the shear viscosity and
(b) the density for all binary and ternary LJ systems. For LJ
systems at high densities, a good agreement between the two
methods is observed. For the systems with low densities/
viscosities, shown also in the inset of Figure 5, substantial
deviations (up to 30%) between the D-based method and the
Einstein relation are observed. Figure 6 shows that as the
density of a system decreases and thus hydrodynamic
interactions become weaker, the scaling proposed by Yeh
and Hummer does not hold anymore. At low densities, the
finite-size effects of self-diffusivities do not scale as N−1/3, and
the exponent varies according to the packing fraction of the
fluid (e.g., see the work of Heyes et al.83). As discussed briefly
in the Supporting Information, the outliers shown in Figures 5
and 6 correspond to conditions close to the critical point. This
suggests that neither the YH correction nor the D-based
method is applicable at conditions close to the critical point.
Nevertheless, our findings show that the D-based method is
able to predict accurate shear viscosities for all real molecular
systems in a liquid phase far from the critical point.

[Bmim][Tf2N]. As a representative test case, shear
viscosities of the ionic liquid [Bmim][Tf2N] are calculated

Figure 4. Normalized estimated standard deviations (S/Smin) of the
shear viscosities as a function of the normalized size difference
between small and medium systems ((N2 − N1)/N1), and between
medium and large system sizes ((N3 − N2)/N1). A fixed amount of
computational resources is equally distributed between the three
system sizes. Two types of scalability for the MD simulations are
considered: (a) high scalability (γ = 1) and (b) low scalability (γ = 2).
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from the D-based method and the Einstein relation (eq 1) at a
pressure of 1 atm and three temperatures: 300, 400, and 500 K.
MD simulations of 20 ns were performed for computing self-
diffusivities of [Bmim][Tf2N] at 400 and 500 K. To fulfill the
minimum average displacement criterion of 1.5 nm (explained
in Section 2), the MD simulations at 300 K were carried out
for 50 ns. According to the set of guidelines proposed for the
D-based method, 40 and 8 independent MD simulations were
performed for two systems of 150 and 1200 pairs of ions,
respectively.
In Figure 7, the computed self-diffusivities for both [Bmim]

and [Tf2N] ions as well as Davg are shown. It can be seen that
the finite-size self-diffusivities of [Bmim] and [Tf2N] greatly
differ from each other, but the finite-size effects remain equal
for both ions and Davg. Therefore, shear viscosities computed

from the slopes of the lines connecting finite-size self-
diffusivities are equal within the error bars. The computed
shear viscosities from the D-based method and the Einstein
relation, and their 95% confidence intervals are reported in
Table S11 in the Supporting Information. Figure 7 shows that
the use of Davg for the D-based method is not limited to
molecular mixtures and that this quantity can be used for ionic
systems as well.
Figure 8 shows the computed shear viscosities of the ionic

liquid as a function of temperature. The lines are the fits to the
Vogel equation:84

η [ ] = +
+

A
B

T C
ln( / cP )

(16)

where A, B, and C are the coefficients of this equation. For all
temperatures, a good agreement is observed between the D-
based method, the Einstein relation (eq 1), and the estimates
of shear viscosities from the work of Zhang et al.77 This
agreement confirms the applicability of the D-based method to
complex and highly viscous mixtures of nonspherical
molecules/ions. To compute the shear viscosity of any ionic
liquid or deep eutectic solvent, the set of guidelines for the D-
based method along with the criterion on the minimum
average displacement can be used to specify an optimum set of
MD simulations.

Figure 5. Comparison between the shear viscosities of (a) 250 binary
and (b) 26 ternary LJ systems computed from the Einstein relation
(ηEMD, eq 1) and the D-based method (ηD‑based, eq 4) at a reduced
temperature of 0.65 and a reduced pressure of 0.05. The D-based
shear viscosities are computed from the self-diffusion coefficients of
species 1 (blue circles), species 2 (green squares), and species 3 (cyan
diamonds; only for ternary systems) as well as the average self-
diffusivity (eq 9, red crosses). Error bars are omitted for clarity. All
computed shear viscosities and their statistical uncertainties are listed
in the Supporting Information, Tables S4 and S7.

Figure 6. Normalized absolute difference between shear viscosities
computed from the Einstein relation and the D-based method as a
function of (a) the shear viscosity and (b) the density. Data are shown
for binary (blue diamonds) and ternary (green squares) LJ systems at
a temperature of 0.65 and a pressure of 0.05. The D-based method
shear viscosities are computed from average self-diffusivities (Davg).
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5. CONCLUSION
A systematic methodology, called the D-based method, is
proposed for accurately computing the shear viscosity of a
liquid from the finite-size effects of self-diffusivities. The
computational requirements of this method and the statistical

uncertainty of the computed viscosity are comparable to the
conventional methods, e.g., the Einstein relation. By perform-
ing weighted least-squares linear regression analysis, the shear
viscosity can be computed from the slope of a line fitted to
computed finite-size self-diffusivities. To obtain accurate shear
viscosities at a minimum computational requirement, a set of
guidelines for this method was proposed. The optimum
number of system sizes is two, and depending on the available
computational resources and the scalability of the MD
simulations, the large system size should be 4−40 times the
small system size. The number of independent simulations per
system size should be assigned in such a way that 50%−70% of
the computational resources is allocated to the MD simulations
of the large system. For multicomponent mixtures, the D-based
method performs best when the average self-diffusivity of all
species (Davg) is used instead of using the self-diffusivity of a
single species. The D-based method was verified for pure
water, a large number of binary and ternary Lennard-Jones
systems, and an ionic liquid ([Bmim][Tf2N]). The results of
the D-based method were in good agreement with those
obtained from the Green−Kubo and Einstein relations for all
molecular systems. These results suggest that the D-based
method can be a potential method for computing shear
viscosities of highly viscous liquids and multicomponent
mixtures.
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Figure 7. Computed self-diffusion coefficients of [Bmim][Tf2N] at
300, 400, and 500 K and 1 atm. In all, 40 and 8 independent
simulations were performed for two system sizes of 150 and 1200 ion
pairs, respectively. Self-diffusivities are shown for [Bmim] (blue
circles), [Tf2N] (green diamonds), and Davg (red squares). The slope
of the line connecting each two points yields the shear viscosity. The
simulation length at 400 and 500 K is 20 ns. Simulations at 300 K
were performed for 50 ns. All self-diffusivities are listed in Tables S8−
S10 of the Supporting Information. Error bars are smaller than the
symbol sizes.

Figure 8. Shear viscosity of [Bmim][Tf2N] as a function of
temperature at 1 atm, computed from the D-based method (blue
circles, eq 4) and the Einstein relation (red squares, eq 1). The lines
are fits to the Vogel equation84 (eq 16) for the D-based method (blue
dashed, eq 4), Einstein relation (red dashed), and Green−Kubo
relation (green solid; data extracted from the work of Zhang et al.77).
The shear viscosities and coefficients of the Vogel equation are
provided in Tables S11 and S12 of the Supporting Information.
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(13) Quiñones-Cisneros, S. E.; Zeb́erg-Mikkelsen, C. K.; Fernańdez,
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(52) Vögele, M.; Hummer, G. Divergent Diffusion Coefficients in
Simulations of Fluids and Lipid Membranes. J. Phys. Chem. B 2016,
120, 8722−8732.
(53) Yang, X.; Zhang, H.; Li, L.; Ji, X. Corrections of the Periodic
Boundary Conditions with Rectangular Simulation Boxes on the
Diffusion Coefficient, General Aspects. Mol. Simul. 2017, 43, 1423−
1429.
(54) Spångberg, D.; Hermansson, K. Effective Three-Body
Potentials for Li+(aq) and Mg2+(aq). J. Chem. Phys. 2003, 119,
7263−7281.
(55) Kühne, T. D.; Krack, M.; Parrinello, M. Static and Dynamical
Properties of Liquid Water from First Principles by a Novel Car-
Parrinello-like Approach. J. Chem. Theory Comput. 2009, 5, 235−241.
(56) Tazi, S.; Botan, A.; Salanne, M.; Marry, V.; Turq, P.; Rotenberg,
B. Diffusion Coefficient and Shear Viscosity of Rigid Water Models. J.
Phys.: Condens. Matter 2012, 24, 284117.
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