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A B S T R A C T

Exploiting the information provided by electron energy-loss spectroscopy (EELS) requires reliable access
to the low-loss region where the zero-loss peak (ZLP) often overwhelms the contributions associated to
inelastic scatterings off the specimen. Here we deploy machine learning techniques developed in particle
physics to realise a model-independent, multidimensional determination of the ZLP with a faithful uncertainty
estimate. This novel method is then applied to subtract the ZLP for EEL spectra acquired in flower-like
WS2 nanostructures characterised by a 2H/3R mixed polytypism. From the resulting subtracted spectra we
determine the nature and value of the bandgap of polytypic WS2, finding 𝐸BG = 1.6+0.3−0.2 eV with a clear
preference for an indirect bandgap. Further, we demonstrate how this method enables us to robustly identify
excitonic transitions down to very small energy losses. Our approach has been implemented and made available
in an open source Python package dubbed EELSfitter.
1. Introduction

Electron energy-loss spectroscopy (EELS) within the transmission
electron microscope (TEM) provides a wide range of valuable informa-
tion on the structural, chemical, and electronic properties of nanoscale
materials. Thanks to recent instrumentation breakthroughs such as elec-
tron monochromators [1,2] and aberration correctors [3], modern EELS
analyses can study these properties with highly competitive spatial and
spectral resolution. A particularly important region of EEL spectra is
the low-loss region, defined by electrons that have lost a few tens of
eV, 𝛥𝐸 ≲ 50 eV, following their inelastic interactions with the sample.
The analysis of this low-loss region makes possible charting the local
electronic properties of nanomaterials [4], from the characterisation
of bulk and surface plasmons [5], excitons [6], inter- and intra-band
transitions [7], and phonons to the determination of their bandgap [8].

Provided the specimen is electron-transparent, as required for TEM
inspection, the bulk of the incident electron beam will traverse it either
without interacting or restricted to elastic scatterings with the atoms
of the sample’s crystalline lattice. In EEL spectra, these electrons are
recorded as a narrow, high intensity peak centred at energy losses of
𝛥𝐸 ≃ 0, known as the zero-loss peak (ZLP). The energy resolution
of EELS analyses is often expressed in terms of the full width at
half maximum (FWHM) of the ZLP [9]. In the low-loss region, the
contribution from the ZLP often overwhelms that from the inelastic
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scatterings arising from the interactions of the beam electrons with
the sample. Therefore, relevant signals of low-loss phenomena such as
excitons, phonons, and intraband transitions risk becoming drowned
in the ZLP tail [10]. An accurate removal of the ZLP contribution is
thus crucial in order to accurately chart and identify the features of
the low-loss region in EEL spectra.

In monochromated EELS, the properties of the ZLP depend on the
electron energy dispersion, the monochromator alignment, and the
sample thickness [8,11]. The first two factors arise already in the
absence of a specimen (vacuum operation), while the third is associated
to interactions with the sample such as atomic scatterings, phonon
excitation, and exciton losses. This implies that EEL measurements in
vacuum can be used for calibration purposes but not to subtract the
ZLP from spectra taken on specimens, since their shapes will in general
differ.

Several approaches to ZLP subtraction [8,12,13] have been put
forward in the literature. These are often based on specific model
assumptions about the ZLP properties, in particular concerning its
parametric functional dependence on the electron energy loss 𝛥𝐸,
from Lorentzian [14] and power laws [6] to more general multiple-
parameter functions [15]. Another approach is based on mirroring the
𝛥𝐸 < 0 region of the spectra, assuming that the 𝛥𝐸 > 0 region is
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fully symmetric [16]. More recent studies use integrated software ap-
plications for background subtraction [17–20]. These various methods
are however affected by three main limitations. Firstly, their reliance
on model assumptions such as the choice of fit function introduces a
methodological bias whose size is difficult to quantify. Secondly, they
lack an estimate of the associated uncertainties, which in turn affects
the reliability of any physical interpretations of the low loss region.
Thirdly, ad hoc choices such as those of the fitting ranges introduce a
significant degree of arbitrariness in the procedure.

In this study we bypass these limitations by developing a model-
independent strategy to realise a multidimensional determination of
the ZLP with a faithful uncertainty estimate. Our approach is based on
machine learning (ML) techniques originally developed in high-energy
physics to study the quark and gluon substructure of protons in particle
collisions [21–24]. It is based on the Monte Carlo replica method to
construct a probability distribution in the space of experimental data
and artificial neural networks as unbiased interpolators to parametrise
the ZLP. The end result is a faithful sampling of the probability distri-
bution in the ZLP space which can be used to subtract its contribution
to EEL spectra while propagating the associated uncertainties. One
can also extrapolate the predictions from this ZLP parametrisation to
other TEM operating conditions beyond those included in the training
dataset.

This work is divided into two main parts. In the first one, we
construct a ML model of ZLP spectra acquired in vacuum, which is able
to accommodate an arbitrary number of input variables corresponding
to different operation settings of the TEM. We demonstrate how this
model successfully describes the input spectra and we assess its extrapo-
lation capabilities for other operation conditions. In the second part, we
construct a one-dimensional model of the ZLP as a function of 𝛥𝐸 from
pectra acquired on two different specimens of tungsten disulphide
WS2) nanoflowers characterised by a 2H/3R mixed polytypism [25].
he resulting subtracted spectra are used to determine the value and
ature of the WS2 bandgap in these nanostructures as well as to map
he properties of the associated exciton peaks appearing in the ultra-low
oss region.

This paper is organised as follows. First of all, in Section 2 we
eview the main features of EELS and present the WS2 nanostructures
hat will be used as proof of concept of our approach. In Section 3 we
escribe the machine learning methodology adopted to model the ZLP
eatures. Sections 4 and 5 contain the results of the ZLP parametrisation
f spectra acquired in vacuum and in specimens respectively, which
n the latter case allows us to probe the local electronic properties of
he WS2 nanoflowers. Finally in Section 6 we summarise and outline
ossible future developments. Our results have been obtained with
n open-source Python code, dubbed EELSfitter, whose installation
nd usage instructions are described in Appendix A. Furthermore, we
iscuss the possible role played by correlated uncertainties in the
raining dataset in Appendix B.

. EELS analyses and TMD nanostructures

In this work, we will apply our machine learning method to the
tudy of the low-loss EELS region of a specific type of WS2 nanos-
ructures presented in [25], characterised by a flower-like morphology
nd a 2H/3R mixed polytypism. WS2 is a member of the transition
etal dichalcogenide (TMD) family, which in turn belongs to a class

f materials known as two-dimensional, van der Waals, or simply
ayered materials. These materials are characterised by the remarkable
roperty of being fully functional down to a single atomic layer. In
rder to render the present work self-contained and accessible to a
ider audience, here we review the basic concepts underlying the EELS

echnique, and then present the main features of the WS2 nanoflowers
2

hat will be studied in the subsequent sections.
2.1. EELS and its ZLP in a nutshell

Electron energy loss spectroscopy is a TEM-based method whereby
an electron-transparent sample is illuminated by a beam of energetic
electrons. Subsequent to the crossing of the specimen, the scattered
electron beam is dispersed by a magnetic prism towards a spectrometer
where the distribution of electron energy losses 𝛥𝐸 can be recorded.
The schematic illustration of a typical EELS setup is shown in the left
panel of Fig. 2.1. EEL spectra can be recorded either in the Scanning
Transmission Electron Microscopy (STEM) mode or in the conventional
TEM (c-TEM) setup. Thanks to recent progress in TEM instrumenta-
tion and data acquisition, state-of-the-art EELS analyses benefit from
a highly competitive energy (spectral) resolution combined with an
unparallelled spatial resolution.

EELS spectra can be approximately divided into three main regions.
The first is the zero-loss region, centred around 𝛥𝐸 = 0 and containing
the contributions from both elastic scatterings as well as those from
electrons that have not interacted with the sample. This region is
characterised by the strong and narrow ZLP which dominates over the
contribution from inelastic scatterings. The second region is the low-
loss region, defined for energy losses 𝛥𝐸 ≲ 50 eV, which contains
information about several important features such as plasmons, exci-
tons, phonons, and intra-band transitions. Of particular relevance in
this context is the ultra-low loss region, characterised by 𝛥𝐸 ≃ few eV.
There, the contributions of the ZLP and those from inelastic interactions
become comparable. The regime for which 𝛥𝐸 ≳ 50 eV is then known
s the core-loss region and provides compositional information on the
aterials that constitute the specimen.

The right panel of Fig. 2.1 displays a representative EELS spectrum
n the region 𝛥𝐸 ≤ 35 eV, recorded in one of the WS2 nanoflowers
f [25]. The inset displays the ZLP, illustrating how nearby 𝛥𝐸 ≃ 0

its size is larger than the contribution from the inelastic scatterings
off the sample by several orders of magnitude. Carefully disentangling
these two contributions is essential for the physical interpretation of
EEL spectra in the ultra-low-loss region.

The magnitude and shape of the ZLP intensity is known to depend
not only on the specific values of the electron energy loss 𝛥𝐸, but also
on other operation parameters of the TEM such as the electron beam
energy 𝐸𝑏, the exposure time 𝑡exp, the aperture width, and the use of a
monochromator. Since it is not possible to compute the dependence of
the ZLP on 𝛥𝐸 and the other operation parameters from first principles,
reliance on specific models seems to be unavoidable. This implies
that one cannot measure the ZLP for a given operating condition, for
instance a high beam voltage of 200 kV, and expect to reproduce the
ZLP intensity distribution associated to different conditions, such as a
lower beam voltage of 60 kV, without introducing model assumptions.

Several attempts to describe the ZLP distribution have reported
some success at predicting the main intensity of the peak, but in the
tails discrepancies are as large as several tens of percent [26]. The
standard method for background subtraction is to fit a power law to the
tails, however this approach is not suitable in many circumstances [27–
30]. Further, even for nominally identical operating conditions, the
intensity of the ZLP will in general vary due to e.g. external pertur-
bations such as electric or magnetic fields [12], the stability of the
microscope and spectrometer electronics [31], the local environment
(possibly exposed to mechanical, pressure and temperature fluctua-
tions) and spectral aberrations [13]. Any robust statistical model for
the ZLP should thus account for this irreducible source of uncertainties.

2.2. TMD materials and WS2 nanoflowers

In this work we will apply our ZLP parametrisation strategy to
a novel class of recently presented WS2 nanostructures known as
nanoflowers [25]. WS2 belongs to the TMD class of layered materials
together with e.g. MoS2 and WSe2. TMD materials are of the form MX2,

where M is a transition metal atom (such as Mo or W) and X a chalcogen
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Fig. 2.1. Left: schematic representation of the STEM-EELS setup. A magnetic prism is used to deflect the electron beam after it has crossed the sample, allowing the distribution of
energy losses 𝛥𝐸 to be recorded with a spectrometer. Right: a representative low-loss EEL spectrum acquired on a WS2 nanoflower [25] with the inset displaying the corresponding
ZLP.
atom (such as S, Se, or Te). The characteristic crystalline structure of
TMDs is such that one layer of M atoms is sandwiched between two
layers of X atoms.

The local electronic structure of TMDs strongly depends on the
coordination between the transition metal atoms, giving rise to an
array of remarkable electronic and magnetic properties [32]. Further-
more, the properties of this class of materials vary significantly with
their thickness, for instance MoS2 exhibits an indirect bandgap in the
bulk form which becomes direct at the monolayer level [33]. The
tunability of their electronic properties and the associated potential
applications in nano-electronics make TMD materials highly attractive
for fundamental research.

As for other TMD materials, WS2 adopts a layered structure by stack-
ing atomic layers of S-W-S in a sandwich-like configuration. Although
the interaction between adjacent layers is a weak Van der Waals force,
the dependence of the interlayer interactions on the stacking order of
WS2 can be significant. Therefore, modulating the stacking arrange-
ment of WS2 layers (as well as their relative orientation) represents a
promising handle to tailor the resulting local electronic properties. WS2
also exhibits a marked thickness dependence of its properties, with an
indirect-to-direct bandgap transition when going from bulk to bilayer
or monolayer form. The effects of this transition are manifested for
example as enhanced photoluminescence in monolayer WS2, whereas
greatly suppressed emission is observed in the corresponding bulk
form [34]. Further applications of this material include storage of
hydrogen and lithium for batteries [35].

A low-magnification TEM image of the WS2 nanoflowers is dis-
played in the left panel of Fig. 2.2. These nanostructures are grown
directly on top of a holey TEM substrate. The right panel shows the
magnification of a representative petal of a nanoflower, where the
difference in contrast indicates terraces of varying thickness. Note that
the black region corresponds to the vacuum, that is, without substrate
underneath. These WS2 nanoflowers exhibit a wide variety of thick-
nesses, orientations and crystalline structures, therefore representing
an ideal laboratory to correlate structural morphology in WS2 with
electronic properties at the nanoscale. Importantly, these nanoflowers
are characterised by a mixed crystalline structure, in particular 2H/3R
polytypism. This implies that different stacking types tend to coexist,
affecting the interlayer interactions within WS2 and thus modifying the
resulting physical properties [36]. One specific consequence of such
variations in the stacking patterns is the appearance of spontaneous
electrical polarisation, leading to modifications of the electronic band
structure and thus of the bandgap [37,38].

As mentioned above, one of the most interesting properties of WS2
is that when the material is thinned down to a single monolayer its
3

indirect bandgap of 𝐸BG ≃ 1.4 eV switches to a direct bandgap of
approximately 𝐸BG ≃ 2.1 eV. It has been found that the type and
magnitude of the WS2 bandgap depends quite sensitively on the crys-
talline structure and the number of layers that constitute the material.
In Table 2.1 we collect representative results for the determination of
the bandgap energy 𝐸BG and its type in WS2, obtained by means of
different experimental and theoretical techniques. For each reference
we indicate separately the bulk results and those obtained at the
monolayer level. We note that for the latter case there is a fair spread
of results in the value of 𝐸BG, reflecting the challenges of its accurate
determination.

3. A neural network determination of the ZLP

In this section we present our strategy to parametrise and sub-
tract in a model-independent manner the zero-loss peak that arises
in the low-loss region of EEL spectra by means of machine learn-
ing. As already mentioned, our strategy follows the NNPDF (Neural
Network Parton Distribution Functions) approach [44] originally de-
veloped in the context of high-energy physics for studies of the quark
and gluon substructure of the proton [45]. The NNPDF approach has
been successfully applied, among others, to the determination of the un-
polarised [21–24,46] and polarised [47] parton distribution functions
of protons, nuclear parton distributions [48,49], and the fragmentation
functions of partons into neutral and charged hadrons [50,51].

We note that recently several applications of machine learning
to transmission electron microscopy analyses in the context of ma-
terial science have been presented, see e.g. [52–58]. Representative
examples include the automated identification of atomic-level struc-
tural information [56], the extraction of chemical information and
defect classification [57], and spatial resolution enhancement by means
of generative adversarial networks [58]. To the best of our knowl-
edge, this is the first time that neural networks are used as unbiased
background-removal interpolators and combined with Monte Carlo
sampling to construct a faithful estimate of the model uncertainties.

In this section first of all we discuss the parametrisation of the ZLP
in terms of neural networks. We then review the Monte Carlo replica
method used to estimate and propagate the uncertainties from the input
data to physical predictions. Subsequently, we present our training
strategy both in case of vacuum and of sample spectra, and discuss how
one can select the optimal values of the hyper-parameters that appear

in the model.



Ultramicroscopy 222 (2021) 113202L.I. Roest et al.
Fig. 2.2. Left: low-magnification TEM image of the WS2 nanoflowers grown on top of a holey Si/SiN substrate. Right: the magnification of a representative petal of a nanoflower,
where the black region corresponds to the vacuum (no substrate) and the difference in contrast indicates terraces of varying thickness.
Table 2.1
Representative results for the determination of the bandgap energy 𝐸BG and its type in WS2, obtained by
means of different experimental and theoretical techniques. For each reference we indicate separately the
bulk results and those obtained at the monolayer level.
Reference Thickness 𝐸BG (eV) bandgap type Technique

[39] bulk 1.4 ± 0.07 indirect Gate-voltage dependence

[40] monolayer 2.14 direct Gate-voltage dependencebulk 1.40 indirect

[41] monolayer 2.03 ± 0.03 direct Density Functional Theorybulk 1.32 ± 0.03 indirect

[42] monolayer 1.76 ± 0.03 direct Absorption edge coefficient fittingbulk 1.35 indirect

[43] monolayer 2.21 ± 0.3 direct Bethe–Salpeter equation (BSE)
3.1. ZLP parametrisation

To begin with we note that, without any loss of generality, the inten-
sity profile associated to a generic EEL spectrum may be decomposed
as

𝐼EEL(𝛥𝐸) = 𝐼ZLP(𝛥𝐸) + 𝐼inel(𝛥𝐸) , (3.1)

where 𝛥𝐸 is the measured electron energy loss; 𝐼ZLP is the zero-loss
peak distribution arising both from instrumental origin and from elastic
scatterings; and 𝐼inel(𝛥𝐸) contains the contributions from the inelastic
scatterings off the electrons and atoms in the specimen. As illustrated
by the representative example of Fig. 2.1, there are two limits for which
one can cleanly disentangle the two contributions. First of all, for large
enough values of 𝛥𝐸 then 𝐼ZLP vanishes and thus 𝐼EEL → 𝐼inel. Secondly,
in the 𝛥𝐸 ≃ 0 limit all emission can be associated to the ZLP such that
𝐼EEL → 𝐼ZLP. In this work we are interested in the ultra-low-loss region,
where 𝐼ZLP and 𝐼inel become of the comparable magnitude.

Our goal is to construct a parametrisation of 𝐼ZLP based on artificial
neural networks, which we denote by 𝐼 (mod)

ZLP , by means of which one can
extract the inelastic contributions by subtracting the ZLP background
model to the measured intensity spectra,

𝐼inel(𝛥𝐸) ≃ 𝐼EEL(𝛥𝐸) − 𝐼 (mod)
ZLP (𝛥𝐸) , (3.2)

which enables us to exploit the physical information contained in 𝐼inel
in the low-loss region. Crucially, we aim to faithfully estimate and
propagate all the relevant sources of uncertainty associated both to the
input data and to methodological choices.

As discussed in Section 2.1, the ZLP depends both on the value of
the electron energy loss 𝛥𝐸 as well as on the operation parameters of
the microscope, such as the electron beam energy 𝐸𝑏 and the exposure
time 𝑡 . Therefore, we want to construct a multidimensional model
4

exp
which takes all relevant variables as input. This means that in general
Eq. (3.2) must be written as

𝐼inel(𝛥𝐸) ≃ 𝐼EEL(𝛥𝐸,𝐸𝑏, 𝑡exp,…) − 𝐼 (mod)
ZLP (𝛥𝐸,𝐸𝑏, 𝑡exp,…) , (3.3)

where we note that the subtracted spectra should depend only on
𝛥𝐸 but not on the microscope operation parameters. Ideally, the ZLP
model should be able to accommodate as many input variables as
possible. Here we parametrise 𝐼 (mod)

ZLP by means of multi-layer feed-
forward artificial neural networks [59], that is, we express our ZLP
model as

𝐼 (mod)
ZLP (𝛥𝐸,𝐸𝑏, 𝑡exp,…) = 𝜉(𝑛𝑙 )1 (𝛥𝐸,𝐸𝑏, 𝑡exp,…) , (3.4)

where 𝜉(𝑛𝑙)1 denotes the activation state of the single neuron in the last
of the 𝑛𝑙 layers of the network when the 𝑛𝐼 inputs {𝛥𝐸,𝐸𝑏, 𝑡exp,…}
are used. The weights and thresholds {𝜔(𝑙)

𝑖𝑗 , 𝜃
(𝑙)
𝑖 } of this neural network

model are then determined from the maximisation of the model likeli-
hood by means of supervised learning and non-linear regression from a
suitable training dataset. This type of neural networks benefit from the
ability to parametrise multidimensional input data with arbitrarily non-
linear dependencies: even with a single hidden layer, a neural network
can reproduce arbitrary functional dependencies provided it has a large
enough number of neurons.

A schematic representation of our model is displayed in Fig. 3.1. The
input is an 𝑛𝐼 array containing 𝛥𝐸 and the rest of operation variables
of the microscope, and the output is the value of the intensity of the
ZLP distribution associated to those input variables. We adopt an 𝑛𝐼 -
10-15-5-1 architecture with three hidden layers, for a total number
of 289 (271) free parameters for 𝑛𝐼 = 3 (𝑛𝐼 = 1) to be adjusted
by the optimisation procedure. We use a sigmoid activation function
for the three hidden layers and a ReLU for the final one. The choice
of ReLU for the final layer guarantees that our model for the ZLP
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Fig. 3.1. Schematic representation of our neural network model for the ZLP, Eq. (3.4). The input is an 𝑛𝐼 -dimensional array containing 𝛥𝐸 and other operation variables of the
microscope such as 𝐸𝑏 and 𝑡exp. The output is the predicted value of the intensity of the zero-loss peak distribution associated to those specific input variables. The architecture is
chosen to be 𝑛𝐼 -10-15-5-1, with sigmoid activation functions in all layers except for a ReLU in the output neuron.
is positive-definite, as required by general physical considerations.
We have adopted a redundant architecture to ensure that the ZLP
parametrisation is sufficiently flexible, and we avoid over-fitting by
means of a suitable regularisation strategy described in Section 3.3.

3.2. Uncertainty propagation

We discussed in Section 2.1 how even for EEL spectra taken at nom-
inally identical operation conditions of the microscope, in general the
resulting ZLP intensities will differ. Further, there exist a large number
of different NN configurations, each representing a different functional
form for 𝐼 (mod)

ZLP which provide an equally valid description of the input
data. To estimate these uncertainties and propagate them to physical
predictions, we use here the Monte Carlo replica method. The basic idea
is to exploit the available information on experimental measurements
(central values, uncertainties, and correlations) to construct a sampling
of the probability density in the space of the data, which by means of
the NN training is then propagated to a probability density in the space
of 𝐼ZLP models.

Let us assume that we have 𝑛dat independent measurements of the
ZLP intensity, for different or the same values of the input parameters
collectively denoted as {𝑧𝑖}:

𝐼 (exp)ZLP,𝑖
(

{𝑧𝑖}
)

= 𝐼 (exp)ZLP,𝑖
(

𝛥𝐸𝑖, 𝐸𝑏,𝑖, 𝑡exp,𝑖,…
)

, 𝑖 = 1,… , 𝑛dat . (3.5)

From these measurements, we can generate a large sample of artificial
data points that will be used as training inputs for the neural nets
by means of the Monte Carlo replica method. In such approach, one
generates 𝑁rep Monte Carlo replicas of the original data points by
means of a multi-Gaussian distribution, with the central values and
covariance matrices taken from the input measurements,

𝐼 (art)(𝑘)ZLP,𝑖 = 𝐼 (exp)ZLP,𝑖 + 𝑟(stat,𝑘)𝑖 𝜎(stat)𝑖 +
𝑛sys
∑

𝑗=1
𝑟(sys,𝑘)𝑖,𝑗 𝜎(sys)𝑖,𝑗 , ∀𝑖 , 𝑘 = 1,… , 𝑁rep ,
5

(3.6)
where 𝜎(stat)𝑖 and 𝜎(sys)𝑖,𝑗 represent the statistical and systematic uncertain-
ties (the latter divided into 𝑛sys fully point-to-point correlated sources)
and {𝑟(𝑘)𝑖 } are Gaussianly distributed random numbers. The values of
{𝑟(𝑘)𝑖 } are generated with a suitable correlation pattern to ensure that
averages over the set of Monte Carlo replicas reproduce the original
experimental covariance matrix, namely
⟨(

𝐼 (art)(𝑘)ZLP,𝑖 −
⟨

𝐼 (art)ZLP,𝑖

⟩

rep

)(

𝐼 (art)(𝑘)ZLP,𝑗 −
⟨

𝐼 (art)ZLP,𝑗

⟩

rep

)⟩

rep

= cov(exp)
(

𝐼ZLP,𝑖, 𝐼ZLP,𝑗
)

, (3.7)

where averages are evaluated over the 𝑁rep replicas that compose the
sample. We thus note that each 𝑘th replica contains as many data points
as the original set.

In our case, the information on experimental correlations is not
accessible and thus we assume that there is a single source of point-
by-point uncorrelated systematic uncertainty, denoted as 𝜎(exp)𝑖 , which
is estimated as follows. The input measurements will be composed
in general on subsets of EEL spectra taken with identical operation
conditions. Assume that for a specific set of operation conditions we
have 𝑁sp of such spectra. Since the values of 𝛥𝐸 will be different in
each case, first of all we uniformise a common binning in 𝛥𝐸 with 𝑛dat
entries. Then we evaluate the total experimental uncertainty in one of
these bins as

𝜎(exp)𝑖 =
⎛

⎜

⎜

⎝

1
𝑁sp − 1

𝑁sp
∑

𝑙=1

(

𝐼 (exp),𝑙ZLP,𝑖 −
⟨

𝐼 (exp)ZLP,𝑖

⟩

𝑁sp

)

⎞

⎟

⎟

⎠

1∕2

, 𝑖 = 1,… , 𝑛dat , (3.8)

that is, as the standard deviation over the 𝑁sp spectra. This uncertainty
is separately evaluated for each set of microscope operation conditions
for which data available. In the absence of correlations, Eqs. (3.6) and
(3.7) simplify to

𝐼 (art)(𝑘) = 𝐼 (exp) + 𝑟(tot,𝑘)𝜎(exp) , ∀𝑖 , 𝑘 = 1,… , 𝑁 . (3.9)
ZLP,𝑖 ZLP,𝑖 𝑖 𝑖 rep



Ultramicroscopy 222 (2021) 113202L.I. Roest et al.
Fig. 3.2. Comparison between the original experimental central values 𝐼 (exp)
ZLP,i (left) and the corresponding uncertainties 𝜎(exp)

𝑖 (right panel) with the results of averaging over a
sample of 𝑁rep Monte Carlo replicas generated by means of Eq. (3.6), for different values of 𝑁rep.
and
⟨(

𝐼 (art)(𝑘)ZLP,𝑖 −
⟨

𝐼 (art)ZLP,𝑖

⟩

rep

)(

𝐼 (art)(𝑘)ZLP,𝑗 −
⟨

𝐼 (art)ZLP,𝑗

⟩

rep

)⟩

rep
= 𝜎(exp)𝑖 𝜎(exp)𝑗 𝛿𝑖𝑗 ,

(3.10)

since the experimental covariance matrix is now diagonal. Should in
the future correlations became available, it would be straightforward
to extend our model to that case. In Appendix B, we evaluate the
correlation coefficients associated to representative training datasets
and elaborate on the possible role played by systematic correlated
uncertainties.

The value of the number of generated MC replicas, 𝑁rep, should be
chosen such that the set of replicas accurately reproduces the probabil-
ity distribution of the original training data. To verify that this is the
case, Fig. 3.2 displays a comparison between the original experimental
central values 𝐼 (exp)ZLP,𝑖 and the corresponding total uncertainties 𝜎(exp)𝑖
with the results of averaging over a sample of 𝑁rep Monte Carlo replicas
generated by means of Eq. (3.6) for different number of replicas. We
find that 𝑁rep = 500 is a value that ensures that both the central values
and uncertainties are reasonably well reproduced, and we adopt it in
what follows.

3.3. Training strategy

The training of the neural network model for the ZLP peak differs
between the cases of EEL spectra taken on vacuum, where by con-
struction 𝐼EEL(𝛥𝐸) = 𝐼 (mod)

ZLP (𝛥𝐸), and for spectra taken on specimens1.
In the latter case, as indicated by Eq. (3.2), in order to avoid biasing
the results it is important to ensure that the model is trained only on
the region of the spectra where the ZLP dominates over the inelastic
scatterings. We now describe the training strategy that is adopted for
these two cases.

Training on vacuum spectra. For each of the 𝑁rep generated Monte
Carlo replicas, we train an independent neural network as described in
Section 3.1. The parameters of the neural network {𝜃(𝑘)} (its weights
and thresholds) are determined from the minimisation of a figure of
merit (the cost function of the model) defined as

𝐸(𝑘) ({𝜃(𝑘)}
)

= 1
𝑛dat

𝑛dat
∑

𝑖=1

⎛

⎜

⎜

⎝

𝐼 (art)(𝑘)ZLP,𝑖 − 𝐼 (mod)
ZLP,𝑖

(

{𝜃(𝑘)}
)

𝜎(exp)𝑖

⎞

⎟

⎟

⎠

2

, (3.11)

1 Actually, EEL spectra taken in the vacuum but close enough to the
sample might still receive inelastic contributions from the specimen. In this
work, when we use vacuum spectra, we consider exclusively those acquired
reasonably far from the surfaces of the analysed nanostructures.
6

which is the 𝜒2 per data point obtained by comparing the 𝑘th replica
for the ZLP intensity with the corresponding model prediction for the
values {𝜃(𝑘)} of its weights and thresholds. In order to speed up the
neural network training process, prior to the optimisation all inputs
and outputs are scaled to lie between [0.1, 0.9] before being fed to the
network. This preprocessing facilitates that the neuron activation states
will typically lie close to the linear region of the sigmoid activation
function.

The contribution to the figure of merit from the input experimental
data, Eq. (3.11), needs in general to be complemented with that of
theoretical constraints on the model. For instance, when determining
nuclear parton distributions [49], one needs to extend Eq. (3.11) with
Lagrange multipliers to ensure that both the 𝐴 = 1 proton boundary
condition and the cross-section positivity are satisfied. In the case
at hand, our model for the ZLP should implement the property that
𝐼ZLP(𝛥𝐸) → 0 when |𝛥𝐸| → ∞, since far from 𝛥𝐸 ≃ 0 the contribution
from elastic scatterings and instrumental broadening is completely
negligible. In order to implement this constraint, we add 𝑛pd pseudo-
data points to the training dataset and modify the figure of merit
Eq. (3.11) as follows

𝐸(𝑘) ({𝜃(𝑘)}
)

→ 𝐸(𝑘) ({𝜃(𝑘)}
)

+ 𝜆
𝑛pd
∑

𝑖′=1

(

𝐼 (mod)
ZLP,𝑖′

(

{𝜃(𝑘)}
)

)2
, (3.12)

where 𝜆 is a Lagrange multiplier whose value is tuned to ensure that
the 𝐼ZLP(𝛥𝐸) → 0 condition is satisfied without affecting the description
of the training dataset. The pseudo-data is chosen to lie in the region
[𝛥𝐸(min)

pd , 𝛥𝐸(max)
pd ] (and symmetrically for energy gains).

The value of 𝛥𝐸(min)
pd can be determined automatically by evaluating

the ratio sig between the central experimental intensity and the total
uncertainty in each data point,

sig(𝛥𝐸𝑖) ≡
𝐼 (exp)ZLP (𝛥𝐸𝑖)

𝜎(exp)(𝛥𝐸𝑖)
, (3.13)

which corresponds to the statistical significance for the 𝑖th bin of 𝛥𝐸
to differ from the null hypothesis (zero intensity) taking into account
the experimental uncertainties. For sufficiently large energy losses one
finds that sig(𝛥𝐸) ≲ 1, indicating that one would be essentially
fitting statistical noise. In order to avoid such a situation and only fit
data that is different from zero within errors, we determine 𝛥𝐸(min)

pd
from the condition sig ≃ 1. We then maintain the training data in
the region 𝛥𝐸 ≤ 𝛥𝐸(min)

pd and the pseudo-data points are added for
[𝛥𝐸(min)

pd , 𝛥𝐸(max)
pd ]. The value of 𝛥𝐸(max)

pd can be chosen arbitrarily and
can be as large as necessary to ensure that 𝐼ZLP(𝛥𝐸) → 0 as |𝛥𝐸| → ∞.

We note that another important physical condition on the ZLP
model, namely its positivity (since in EEL spectra the intensity is just
a measure of the number of counts in the detector for a given value of
the energy loss), is automatically satisfied given that we adopt a ReLU
activation function for the last layer.
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In this work we adopt the TensorFlow library [60] to assemble
the architecture illustrated in Fig. 3.1. Before training, all weights
and biases are initialised in a non-deterministic order by the built-
in global variable initialiser. The optimisation of the figure of merit
Eq. (3.12) is carried out by means of stochastic gradient descent (SGD)
combined with backpropagation, specifically by means of the Adam
minimiser. The hyper-parameters of the optimisation algorithm such
as the learning rate have been adjusted to ensure proper learning is
reached in the shortest amount of time possible.

Given that we have a extremely flexible parametrisation, one should
be careful to avoid overlearning the input data. Here over-fitting is
avoided by means of the following cross-validation stopping criterion.
We separate the input data into training and validation subsets, with
a 80%/20% splitting which varies randomly for each Monte Carlo
replica. We then run the optimiser for a very large number of iterations
and store both the state of the network and the value of the figure of
merit Eq. (3.11) restricted to the validation dataset, 𝐸(𝑘)

val (which is not
used for the training). The optimal stopping point is then determined
a posteriori for each replica as the specific network configuration that
leads to the deepest minimum of 𝐸(𝑘)

val . The number of epochs should
be chosen high enough to reach the optimal stopping point for each
replica. In this work we find that 40𝑘 epochs are sufficient to be
able to identify these optimal stopping points. This corresponds to a
serial running time of 𝑡 ≃ 60 seconds per replica when running the
optimisation on a single CPU for 500 datapoints.

Once the training of the 𝑁rep neural network models for the ZLP
has been carried out, we gauge the overall fit quality of the model by
computing the 𝜒2 defined as

𝜒2 = 1
𝑛dat

𝑛dat
∑

𝑖=1

⎛

⎜

⎜

⎜

⎝

𝐼 (exp)ZLP,𝑖 −
⟨

𝐼 (mod)
ZLP,𝑖

⟩

rep

𝜎(exp)𝑖

⎞

⎟

⎟

⎟

⎠

2

, (3.14)

which is the analog of Eq. (3.14) now comparing the average model
prediction to the original experimental data values. A value 𝜒2 ≃
1 indicates that a satisfactory description of the experimental data,
within the corresponding uncertainties, has been achieved. Note that in
realistic scenarios 𝜒2 can deviate from unity, for instance when some
source of correlation between the experimental uncertainties has been
neglected, or on the contrary when the total experimental error is being
underestimated.

Training on sample spectra. The training strategy for the case of EEL
spectra acquired on specimens (rather than on vacuum) must be ad-
justed to account for the fact that the input dataset, Eq. (3.1), receives
contributions both from the ZLP and from inelastic scatterings. To
avoid biasing the ZLP model, only the former contributions should be
included in the training dataset.

We can illustrate the situation at hand with the help of a simple toy
model for the low-loss region of the EEL spectra, represented in Fig. 3.3.
Let us assume for illustration purposes that the ZLP is described by a
Gaussian distribution,

𝐼ZLP(𝛥𝐸) ∝ exp

(

− 𝛥𝐸2

𝜎2ZLP

)

, (3.15)

with a standard deviation of 𝜎ZLP = 0.3 eV, and that the contri-
ution from the inelastic scatterings arising from the sample can be
pproximated in the low-loss region by

inel(𝛥𝐸) ∝
(

𝛥𝐸 − 𝐸BG
)𝑏 , (3.16)

with 𝐸BG = 1.5 eV and 𝑏 = 1∕2. The motivation for the latter choice
ill be spelled out in Section 5. We display the separate contributions

rom 𝐼ZLP and 𝐼inel, as well as their sum, with the inset showing the
alues of the corresponding derivatives, 𝑑𝐼∕𝑑𝛥𝐸.

While simple, the toy model of Fig. 3.3 is actually general enough
so that one can draw a number of useful considerations concerning the
relation between 𝐼 and 𝐼 that will apply also in realistic spectra:
7

ZLP inel t
• The ZLP intensity, 𝐼ZLP(𝛥𝐸), is a monotonically decreasing func-
tion and thus its derivative is always negative.

• The first local minimum of the total intensity, 𝑑𝐼EEL∕𝑑𝛥𝐸|𝛥𝐸min
=

0, corresponds to a value of 𝛥𝐸 for which the contribution from
the inelastic emissions is already sizable.

• The value of 𝛥𝐸 for which 𝐼inel starts to contribute to the total
spectrum corresponds to the position where the derivatives of the
in-sample and in-vacuum intensities start to differ.
We note that a direct comparison between the overall magnitude
of the sample and vacuum ZLP spectra is in general not possible,
as explained in Section 2.1.

These considerations suggest that when training the ML model on
EEL spectra recorded on samples, the following categorisation should
de adopted:

1. For energy losses 𝛥𝐸 ≤ 𝛥𝐸I (region I), the model training
proceeds in exactly the same way as for the vacuum case via
the minimisation of Eq. (3.11).

2. For 𝛥𝐸 ≥ 𝛥𝐸II (region III), we use instead Eq. (3.12) without the
contribution from the input data, since for such values of 𝛥𝐸 one
has that 𝐼inel ≫ 𝐼ZLP. In other words, the only information that
the region III provides on the model is the one arising from the
implementation of the constraint that 𝐼ZLP(𝛥𝐸 → ∞) → 0.

3. The EELS measurements in region II, defined by 𝛥𝐸I ≤ 𝛥𝐸 ≤
𝛥𝐸II, are excluded from the training dataset, given that in this
region the contribution to 𝐼EEL coming from 𝐼inel is significant.
There the model predictions are obtained from an interpolation
of the associated predictions obtained in the regions I and III.

The categorisation introduced in Fig. 3.3 relies on two hyper-
parameters of the model, 𝛥𝐸I and 𝛥𝐸II, which need to be specified
before the training takes place. They should satisfy 𝛥𝐸I ≤ 𝛥𝐸min and
𝛥𝐸II ≥ 𝛥𝐸min, with 𝛥𝐸min being the position of the first local minimum
of 𝐼EEL. As indicated by the toy spectra of Fig. 3.3, a suitable value for
𝛥𝐸I would be somewhat above the onset of the inelastic contributions,
to maximise the amount of training data while ensuring that 𝐼EEL is
still dominated by 𝐼ZLP.

The optimal value of 𝛥𝐸I can be determined as follows. We evaluate
the ratio between the derivative of the intensity distribution acquired
on the specimen over the same quantity recorded in vacuum,

(𝑗)
der (𝛥𝐸) ≡

⟨

𝑑𝐼 (exp)(𝑗)EEL (𝛥𝐸)∕𝑑𝛥𝐸

𝑑𝐼 (exp)(𝑗
′)

EEL (𝛥𝐸)∕𝑑𝛥𝐸

⟩

𝑁 ′
sp

, (3.17)

here 𝑗′ labels one of the 𝑁 ′
sp vacuum spectra and the average is taken

over all available values of 𝑗′. This ratio allows one to identify a suitable
value of 𝛥𝐸I by establishing for which energy losses the shape (rather
than the absolute value) of the intensity distributions recorded on the
specimen starts to differ significantly from their vacuum counterparts.
A sensible choice of 𝛥𝐸I could for instance be given by der (𝛥𝐸I) ≃
.8, for which derivatives differ at the 20% level. Note also that the
eftmost value of the energy loss satisfying der (𝛥𝐸) = 0 in Eq. (3.17)
orresponds to the position of the first local minimum.

Concerning the choice of the second hyper-parameter 𝛥𝐸II, follow-
ng the discussion above one can identify 𝛥𝐸II = 𝛥𝐸(min)

pd , which is
etermined by requiring that Eq. (3.13) satisfies sig(𝛥𝐸𝑖) ≲ 1 and thus
orrespond to the value of 𝛥𝐸 where statistical uncertainties drown the
ignal intensity.

. ZLP parametrisation from vacuum spectra

We now move to discuss the application of the strategy presented
n the previous section to the parametrisation of ZLP spectra acquired
n vacuum. Applying our model to this case has a two-fold motivation.
irst of all, we aim to demonstrate that the model is sufficiently flexible

o effectively reproduce the input EELS measurements for a range of
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Fig. 3.3. A toy model for the EEL spectrum and its derivative (in the inset). We display the separate contributions from 𝐼ZLP and 𝐼inel as well as their sum (total). We indicate
he two regions used for the model training (I and III), while as discussed in the text the neural network predictions are extrapolated to region II, defined by 𝛥𝐸I ≤ 𝛥𝐸 ≤ 𝛥𝐸II.
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ariations of the operation parameters of the microscope. Second, it
llows one to provide a calibrated prediction useful for the case of
he in-sample measurements. Such calibration is necessary since, as
xplained in Section 3.3, some of the model hyper-parameters are de-
ermined by comparing intensity shape profiles between spectra taken
n vacuum and in sample.

In this section, first of all we present the input dataset and motivate
he choice of training settings and model hyperparameters. Then we
alidate the model training by assessing the fit quality. Lastly, we study
he dependence of the model output in its various input variables,
xtrapolate its predictions to new operation conditions, and study the
ependence of the model uncertainties upon restricting the training
ataset.

.1. Training settings

In Table 4.1 we collect the main properties of the EELS spectra
cquired in vacuum to train the neural network model. For each set
f spectra, we indicate the exposure time 𝑡exp, the beam energy 𝐸𝑏,
he number of spectra 𝑁sp recorded for these operation conditions, the
umber 𝑛dat of bins in each spectrum, the range in electron energy loss
𝐸, and the average full width at half maximum (FWHM) evaluated
ver the 𝑁sp spectra with the corresponding standard deviation. The
pectra listed on Table 4.1 were acquired with a ARM200F Mono-
EOL microscope equipped with a GIF continuum spectrometer, see
lso Methods. We point out that since here we are interested in the
ow-loss region, 𝛥𝐸max does not need to be too large, and anyway
he asymptotic 𝛥𝐸 behaviour of the model is fixed by the constraint
mplemented by Eq. (3.12).

The energy resolution of these spectra, quantified by the average
alue of their FWHM, ranges from 26 meV to 50 meV depending on
he specific operation conditions of the microscope, with an standard
eviation between 2 and 7 meV. The value of the FWHM varies only
ildly with the value of the beam energy 𝐸𝑏 but grows rapidly for

pectra collected with larger exposure times 𝑡exp. A total of almost 7×104
ndependent measurements will be used for the ZLP model training on
he vacuum spectra. As will be highlighted in Sections 4.3 and 4.4,
ne of the advantages of our ZLP model is that it can extrapolate its
redictions to other operation conditions beyond the specific ones used
or the training and listed in Table 4.1.

Following the strategy presented in Section 3, first of all we combine
8

he 𝑁sp spectra corresponding to each of the four sets of operation
able 4.1
ummary of the main properties of the EELS spectra acquired in vacuum to train the
eural network model. For each set of spectra, we indicate the exposure time 𝑡exp, the
eam energy 𝐸𝑏, the number of spectra 𝑁sp recorded for these operation conditions,
he number 𝑛dat of bins in each spectrum, the range in electron energy loss 𝛥𝐸, and
he average FWHM evaluated over the 𝑁sp spectra with the corresponding standard
eviation.
Set 𝑡exp (ms) 𝐸b (keV) 𝑁sp 𝑛dat 𝛥𝐸min (eV) 𝛥𝐸max (eV) FWHM (meV)

1 100 200 15 2048 −0.96 8.51 47 ± 7
2 100 60 7 2048 −0.54 5.59 50 ± 4
3 10 200 6 2048 −0.75 5.18 26 ± 3
4 10 60 6 2048 −0.40 4.78 34 ± 2

conditions and determine the statistical uncertainty associated to each
energy loss bin by means of Eq. (3.8). For each of the training sets, we
need to determine the value of 𝛥𝐸(min)

pd (= 𝛥𝐸II) that defines the range
for which we add the pseudo-data that imposes the correct 𝛥𝐸 → ∞
limit of the model. This value is fixed by the condition that ratio
between the central experimental value of the EELS intensity and its
corresponding uncertainty, Eq. (3.13), satisfies sig ≃ 1.

Fig. 4.1 displays this ratio for the four combinations of 𝑡exp and 𝐸𝑏
listed in Table 4.1. The vertical dashed lines indicate the values of 𝛥𝐸
for which sig becomes smaller than unity. For larger 𝛥𝐸, the EELS
spectra become consistent with zero within uncertainties and can thus
be discarded and replaced by the pseudo-data constraints. The total
uncertainty of the pseudo-data points is then chosen to be

𝜎(pd)𝑗 = 1
10

𝐼 (exp)EEL

(

𝛥𝐸 = 𝛥𝐸(min)
pd

)

, 𝑗 = 1,… , 𝑁pd . (4.1)

he factor of 1/10 is found to be suitable to ensure that the constraint is
nforced without distorting the training to the experimental data. We
bserve from Fig. 4.1 that 𝛥𝐸(min)

pd depends the operation conditions,
ith 𝛥𝐸(min)

pd ≃ 200 meV for 𝑡exp = 10 ms and ≃ 900 meV for 100 ms,
oughly independent on the value of the beam energy 𝐸𝑏.

The input experimental measurements listed in Table 4.1 are used
o generate a sample of 𝑁rep = 500 Monte Carlo replicas and to train

an individual neural network to each of these replicas. The end result
of the procedure is a set of model replicas,

𝐼 (mod)(k)
ZLP (𝛥𝐸,𝐸𝑏, 𝑡exp) , 𝑘 = 1,… , 𝑁rep , (4.2)

which can be used to provide a prediction for the intensity of the

ZLP for arbitrary values of 𝛥𝐸, 𝐸𝑏, and 𝑡exp. Eq (4.2) provides the
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Fig. 4.1. The ratio sig(𝛥𝐸) between the central experimental value of the EELS intensity distribution and its corresponding uncertainty, Eq. (3.13). Results are shown for the
four combinations of 𝑡exp and 𝐸𝑏 listed in Table 4.1. The vertical dashed lines mark the values of 𝛥𝐸 for which sig ≃ 1, which indicates when the data is dominated by statistical
noise.
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sought-for representation of the probability density in the space of ZLP
models. By means of this sample of replicas, one can evaluate statistical
estimators such as averages, variances, and correlations (as well as
higher moments) as follows:

⟨

𝐼 (mod)
ZLP ({𝑧1})

⟩

= 1
𝑁rep

𝑁rep
∑

𝑘=1
𝐼 (mod)(k)
ZLP ({𝑧1}) , (4.3)

𝜎(mod)
𝐼ZLP

({𝑧1}) =
⎛

⎜

⎜

⎝

1
𝑁rep − 1

𝑁rep
∑

𝑘=1

(

𝐼 (mod)(k)
ZLP −

⟨

𝐼 (mod)
ZLP

⟩)
⎞

⎟

⎟

⎠

1∕2

, (4.4)

𝜌
(

{𝑧1}, {𝑧2}
)

=

⟨

𝐼 (mod)
ZLP ({𝑧1})𝐼

(mod)
ZLP ({𝑧2})

⟩

−
⟨

𝐼 (mod)
ZLP ({𝑧1})

⟩⟨

𝐼 (mod)
ZLP ({𝑧2})

⟩

𝜎(mod)
𝐼ZLP

({𝑧1})𝜎
(mod)
𝐼ZLP

({𝑧2})
, (4.5)

where as in the previous section {𝑧𝑙} denotes a possible set of input
variables for the model, here {𝑧𝑙} =

(

𝛥𝐸𝑙 , 𝐸𝑏,𝑙 , 𝑡exp,𝑙
)

.

.2. Fit quality

We would like now to evaluate the overall fit quality of the neural
etwork model and demonstrate that it is flexible enough to describe
he available input datasets. In Table 4.2 we indicate the values of the
inal 𝜒2 per data point, Eq. (3.14), as well as the average values of
he cost function Eq. (3.11) evaluated over the training and validation
ubsets, for each of the four sets of spectra listed in Table 4.1 as
ell as for the total dataset. We recall that for a satisfactory training
ne expects 𝜒2 ≃ 1 and ⟨𝐸tr⟩ ≃ ⟨𝐸val⟩ ≃ 2 [59]. From the results
f this table we find that, while our values are consistent with a
easonably good training, somewhat lower values than expected are
btained, for instance 𝜒2

tot ≃ 0.8 for the total dataset. This suggests that
orrelations between the input data points might be partially missing,
ince neglecting them often results into a moderate overestimate of the
xperimental uncertainties.

Then Fig. 4.2 displays separately the 𝜒2 distributions evaluated
or the training and validation sets of the 𝑁rep = 500 replicas of
he sample trained on the spectra listed in Table 4.1. Note that the
raining/validation partition differs at random for each replica. The
2 2
9

tr distribution peaks at 𝜒tr ≃ 0.7, indicating that a satisfactory model
Table 4.2
The values of the 𝜒2 per data point, Eq. (3.14), as well as the average values of the
cost function Eq. (3.11) over the training ⟨𝐸tr ⟩ and validation ⟨𝐸val⟩ subsets, for each
of the four sets of spectra listed in Table 4.1 as well as for the total dataset used in
the present analysis.

Set 𝜒2
⟨𝐸tr ⟩ ⟨𝐸val⟩

1 1.00 1.70 1.97
2 0.73 1.41 1.77
3 0.70 1.39 1.80
4 0.60 1.20 1.76

Total 0.77 1.47 1.85

training has been achieved, but also that the errors on the input data
points might have been slightly overestimated. We emphasise that
the stopping criterion for the neural net training adopted here never
considers the absolute values of the error function and determines
proper learning entirely from the global minima of 𝐸(𝑘)

val . From Fig. 4.2
we also observe that the validation distribution peaks at a slighter
higher value, 𝜒2

val ≃ 1, and is broader that its corresponding train-
ing counterpart. These results confirm both that a satisfactory model
training that prevents overlearning has been achieved as well as an
appropriate estimate of the statistical uncertainties associated to the
original EEL spectra.

4.3. Dependence on the electron energy loss

Having demonstrated that our neural network model provides a
satisfactory description of the input EEL spectra, we now present its
predictions for specific choices of the input parameters. First of all, we
investigate the dependence of the results as a function of the electron
energy loss. Fig. 4.3 displays the central value and 68% confidence
level uncertainty band for the ZLP model as a function of electron
energy loss 𝛥𝐸 evaluated using Eqs. (4.3) and (4.4). We display results
corresponding to three different values of 𝐸𝑏 and for both 𝑡exp = 10 ms
and 100 ms. We emphasise that no measurements with 𝐸𝑏 = 120 keV
ave been used in the training and thus our prediction in that case
rises purely from the model interpolation. It is interesting to note
ow both the overall normalisation and the shape of the predicted ZLP
epend on the specific operating conditions.

In the bottom panels of Fig. 4.3 we show the corresponding relative
ncertainties as a function of 𝛥𝐸 for each of the three values of 𝐸 .
𝑏
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Fig. 4.2. The distribution of the 𝜒2 per data point evaluated separately for the training and validation sets over the 𝑁rep = 500 replicas trained on the spectra listed in Table 4.1.
Fig. 4.3. Top: the central value and 68% confidence level uncertainty band for the ZLP model as a function of electron energy loss 𝛥𝐸 evaluated using Eqs. (4.3) and (4.4). We
isplay results corresponding to three different values of 𝐸𝑏 and for both 𝑡exp = 10 ms (left) and 𝑡exp = 100 ms (right panel). Note that no training data with 𝐸𝑏 = 120 keV has been
sed and thus our prediction in that case arises purely from the model interpolation. Bottom: the corresponding relative uncertainty as a function of 𝛥𝐸 for each of the three
alues of 𝐸𝑏.
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ecall that in this work we allow for non-Gaussian distributions and
hus the central value is the median of the distribution and the error
and in general will be asymmetric. In the case of the 𝑡exp = 10 ms
esults, we see how the model prediction at 𝐸𝑏 = 120 keV typically
xhibits larger uncertainties than the predictions for the two values of
𝑏 for which we have training data. In the case of 𝑡exp = 100 ms instead,

the model predictions display very similar uncertainties for the three
values of 𝐸𝑏, which furthermore depend only mildly on 𝛥𝐸. One finds
there that the uncertainties associated to the ZLP model are ≃ 20% for
|𝛥𝐸| ≲ 100 meV.

For the purpose of the second part of this work, it is important
to assess how the model results are modified once a subset of the
data points are excluded from the fit. As illustrated in Fig. 3.3, when
training the model on sample spectra, the region defined by with 𝛥𝐸I ≤
𝛥𝐸 ≤ 𝛥𝐸II will be removed from the training dataset to avoid the
contamination from the inelastic contributions. To emulate the effects
10
of such cut, Fig. 4.4 displays the relative uncertainty in the model
predictions for 𝐼ZLP(𝛥𝐸) as a function of the energy loss for 𝐸𝑏 = 200
eV and 𝑡exp = 10 ms and 100 ms. We show results for three different
ases: first of all, one without any cut in the training dataset, and then
or two cases where data points with 𝛥𝐸 ≥ 𝛥𝐸cut are removed from the
raining dataset. We consider two values of 𝛥𝐸cut , namely 50 meV and
00 meV, indicated with vertical dash-dotted lines. In both cases, data
oints are removed up until 𝛥𝐸 = 800 meV. The pseudo-data points
hat enforce the 𝐼EEL(𝛥𝐸) → 0 condition are present in all three cases
n the region 800 meV ≤ 𝛥𝐸 ≤ 1 eV.

From this comparison one can observe how the model predictions
become markedly more uncertain once a subset of the training data is
cut away, as expected due to the effect of the information loss. While
for the cut 𝛥𝐸cut = 100 meV the increase in model uncertainty is only
moderate as compared with the baseline fit where no cut is performed
(since for this value of 𝛥𝐸 uncertainties are small to begin with), rather
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Fig. 4.4. The relative uncertainty in the model predictions for 𝐼EEL(𝛥𝐸) as a function of the energy loss for 𝐸𝑏 = 200 keV and 𝑡exp = 10 ms (left) and 100 ms (right panel). We
show results for three different cases: without any cut in the training dataset, and where the data points with 𝛥𝐸 ≥ 𝛥𝐸cut are removed from the training dataset for two different
values of 𝛥𝐸cut . The same pseudo-data points that enforce 𝐼EEL(𝛥𝐸) → 0 are present in all three cases.
more dramatic effects are observed for a value of the cut 𝛥𝐸cut = 50
meV. This comparison highlights how ideally we would like to keep
as many data points in the training set for the ZLP model, provided
of course one can verify that the possible contributions to the spectra
related to inelastic scatterings from the sample can be neglected.

4.4. Dependence on beam energy and exposure time

As indicated in Table 4.1, the training dataset contains spectra taken
at two values of the electron beam energy, 𝐸𝑏 = 60 keV and 200 keV.
The left panel of Fig. 4.5 displays the predictions for the FWHM of
the zero-loss peak (and its corresponding uncertainty) as a function of
the beam energy 𝐸𝑏 for two values of the exposure time, 𝑡exp = 10 ms
and 100 ms. The vertical dashed lines indicate the two values of 𝐸𝑏
for which spectra are part of the training dataset. This comparison
illustrates how the model uncertainty differs between the data region
(near 𝐸𝑏 = 60 keV and 200 keV), the interpolation region (for 𝐸𝑏
between 60 and 200 keV), and the extrapolation regions (for 𝐸𝑏 below
60 keV and above 200 keV). In the case of 𝑡exp = 100 ms for example,
we observe that the model interpolates reasonably well between the
measured values of 𝐸𝑏 and that uncertainties increase markedly in the
extrapolation region above 𝐸𝑏 = 200 keV.

From this comparison one can also observe how as expected the
uncertainty in the prediction for the FWHM of the ZLP is the smallest
close to the values of 𝐸𝑏 for which one has training data. The uncer-
tainties increase but only in a moderate way in the interpolation region,
indicating that the model can be applied to reliably predict the features
of the ZLP for other values of the electron energy beam (assuming
that all other operation conditions of the microscope are unchanged).
The errors then increase rapidly in the extrapolation region, which is a
characteristic (and desirable) feature of neural network models. Indeed,
as soon as the model departs from the data region there exists a very
large number of different functional form models for 𝐼ZLP(𝛥𝐸) that can
describe equally well the training dataset, and hence a blow up of the
extrapolation uncertainties is generically expected.

In the same way as for the case of the electron beam energy 𝐸𝑏,
while our ZLP model was trained on data with only exposure times of
𝑡exp = 10 and 100 ms, it can be used to reliably inter- and extrapolate
to other values of 𝑡exp. The right panel of Fig. 4.5 displays the same
comparison as in the left one now as a function of 𝑡exp for 𝐸𝑏 = 60 keV
and 𝐸𝑏 = 200 keV. We observe that the FWHM increases approximately
in a linear manner with the exposure time, indicating that lower
values of 𝑡exp allow for an improved spectral resolution, and that the
model predictions are approximately independent of 𝐸𝑏. Similarly to
the predictions for varying beam energies, also for the exposure time
the uncertainties grow bigger as the value of this parameter deviates
more from the training inputs, specially for large values of 𝑡exp.

All in all, we conclude that the predictions of the ML model trained
on vacuum spectra behave as they ought to: the smallest uncertainties
correspond to the parameter values that are included in the training
11
dataset, while the largest uncertainties arise in the extrapolation re-
gions when probing regions of the parameter space far from those
present in the training set.

5. Mapping low-loss EELS in polytypic WS𝟐

Following the discussion of the vacuum ZLP analysis, we now
present the application of our machine learning strategy to parametrise
the ZLP arising in spectra recorded on specimens, specifically for EELS
measurements acquired in different regions of the WS2 nanoflowers
presented in Section 2.2. The resulting ZLP parametrisation will be
applied to isolate the inelastic contribution in each spectrum. We will
use these subtracted spectra first to determine the bandgap type and
energy value from the behaviour of the onset region and second to
identify excitonic transitions at very low energy losses.

In this section we begin by presenting the training dataset, com-
posed by two groups of EEL spectra recorded in thick and thin regions
of the WS2 nanoflowers respectively. Then we discuss the subtraction
procedure, the choice of hyper-parameters, and the error propagation
to the physical predictions. The resulting subtracted spectra provide
the information required to extract the value and type of the bandgap
and to characterise excitonic transitions for different regions of these
polytypic WS2 nanostructures.

5.1. Training dataset

Low-magnification TEM images and the corresponding spectral im-
ages of two representative regions of the WS2 nanoflowers, denoted as
sample A and B respectively, are displayed in Fig. 5.1. These spectral
images have been recorded in the regions marked by a green square in
the associated TEM images, and contain an individual EEL spectrum
in each pixel. We indicate the specific locations where EEL spectra
have been recorded, including the in-vacuum measurements acquired
for calibration purposes. Note that in sample B the differences in
contrast are related to the material thickness, with higher contrast
corresponding to thinner regions.

These two samples are characterised by rather different structural
morphologies. While sample A is composed by a relatively thick region
of WS2, sample B corresponds to a region where thin petals overlap
between them. In other words, sample A is composed by bulk WS2
while in sample B some specific regions could be rather thinner, down
to the few monolayers level. This thickness information has been be
determined by means of the Digital Micrograph software.

One of the main goals of this study is demonstrating that our
ZLP-subtraction method exhibits a satisfactory performance for spectra
taken with different microscopes and operation conditions. With this
motivation, the EELS measurements acquired on specimens A and B
have been obtained varying both the microscopes and their settings.
Specifically, the TEM and EELS measurements acquired in specimen
A are based on a JEOL 2100F microscope with a cold field-emission
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Fig. 4.5. The model predictions for the FWHM of the zero-loss peak with its corresponding uncertainty as a function of the beam energy 𝐸𝑏 for two values of the exposure time
(left panel) and as a function of 𝑡exp for two values of 𝐸𝑏 (right panel). The vertical dashed lines indicate the values of the corresponding microscope operation parameter for
which we have training data.
Fig. 5.1. Low-magnification TEM images (left) and the corresponding spectral images (right panels) of two different regions of the WS2 nanoflowers, denoted as sample A (upper)
and sample B (lower panels) respectively. The spectral images have been recorded in the regions marked by a green square in the associated TEM images, and contain an individual
EEL spectrum in each pixel. We indicate the locations where representative EEL spectra have been selected. In the left panel of sample B, the difference in contrast is correlated
to the material thickness, with higher contrast indicating thinner regions of the nanostructure. The morphological differences between the two samples are discussed in the text.
gun and equipped with an aberration corrector, operated at 60 kV
and where a Gatan GIF Quantum was used for the EELS analysis.
The corresponding measurements on specimen B were recorded instead
using a JEM ARM200F monochromated microscope operated at 60 kV
and equipped with a GIF quantum ERS. See Methods for more details.

In Table 5.1 we collect the most relevant properties of the spectra
collected in the locations indicated in Fig. 5.1 using the same format as
in Table 4.1. As we just mentioned, the spectra from samples A and B
have been acquired with different microscopes and thus features of the
ZLP such as the FWHM are expected to be different. From this table one
12
can observe how the ZLP for the spectra acquired on sample A exhibit
a FWHM about five times larger as compared to those of sample B. This
difference in energy resolution can be understood from the fact that the
EELS spectra from sample B, unlike those from sample A, were recorded
with a TEM equipped with monochromator.

In the following we will present results for representative spectra
corresponding to specific choices of the locations indicated in Fig. 5.1.
The full set of recorded spectra is available within EELSfitter, the
code used to produce the results of this analysis, and whose installation
and usage instructions are summarised in Appendix A.
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Table 5.1
Same as Table 4.1 for the EEL spectra taken on specimens A and B. The location on
the WS2 nanoflowers where each spectra has been recorded is indicated in Fig. 5.1.

Set 𝑡exp (ms) 𝐸b (keV) 𝑁sp 𝑁dat 𝛥𝐸min (eV) 𝛥𝐸max (eV) FWHM (meV)

A 1 60 6 1918 −4.1 45.5 470 ± 10
B 190 60 10 2000 −0.9 9.1 87 ± 5

Table 5.2
The mean value and uncertainty of the first local minima, 𝛥𝐸|min, averaged over
he spectra corresponding to samples A and B from Fig. 5.1. We also indicate the
orresponding values of the hyper-parameters 𝛥𝐸I and 𝛥𝐸II defined in Fig. 3.3 used

for the training of the neural network model.
Set 𝛥𝐸|min (eV) 𝛥𝐸I (eV) 𝛥𝐸II (eV)

A 2.70 ± 0.06 1.8 12
B 1.80 ± 0.04 1.4 6

5.2. Subtraction procedure

In Table 5.2 we collect the mean value and uncertainty of the first
local minimum, 𝛥𝐸|min. averaged over the spectra corresponding to
samples A and B from Fig. 5.1. The location of the first minimum
is relatively stable among all the spectra belonging to a given set.
This indicates that the onset of the inelastic contributions 𝐼inel does
ot change significantly as we move between different regions of the
ample. We also indicate there the corresponding values of the hyper-
arameters 𝛥𝐸I and 𝛥𝐸II defined in Fig. 3.3. Recall that only the data
oints with 𝛥𝐸 ≤ 𝛥𝐸I are used for the training of the neural network
odel. The model training is performed for a range of 𝛥𝐸I values,

ubject to the condition that 𝛥𝐸I ≤ 𝛥𝐸min, to validate the stability of
he results. The optimal value of 𝛥𝐸I is determined by the condition
hat Eq. (3.17) satisfies (𝑗)

der (𝛥𝐸) ≃ 0.9, indicating that the shape of the
ntensity profile for the sample spectra differs by more than 10% as
ompared to their vacuum counterparts.

In the region 𝛥𝐸 ≥ 𝛥𝐸II, the training set includes only the pseudo-
ata that implements the 𝐼ZLP(𝛥𝐸) → 0 constraint. The values for
𝐸II were determined from the spectra recorded in vacuum following
he same procedure as explained in Section 4, based on requiring
sig(𝛥𝐸II) ≲ 1. We note that the values of 𝛥𝐸II found now are signifi-

antly higher than the ones obtained in Fig. 4.1 for the vacuum case.
his difference could be ascribed to the fact that the vacuum spectra
rom samples A and B were recorded in proximity to the sample so that
he influence of the specimen is still partially felt.

The end result of the neural network training described in Sec-
ion 3.3 is a set of 𝑁rep = 500 replicas parametrising the zero-loss peak,

(mod)(𝑘)
ZLP (𝛥𝐸) , 𝑘 = 1,… , 𝑁rep . (5.1)

aking into account that we have 𝑁sp individual spectra in each sample,
he ZLP subtraction is performed individually for each Monte Carlo
eplica,

(exp)(𝑗,𝑘)
inel (𝛥𝐸) ≡ 𝐼 (exp)(𝑗)EEL (𝛥𝐸) − 𝐼 (mod)(𝑘)

ZLP (𝛥𝐸) , ∀ 𝑁rep , 𝑗 = 1,… , 𝑁sp ,

(5.2)

from which statistical estimators can be evaluated. For instance, the
mean value for our model prediction for the 𝑗th spectrum can be
evaluated by averaging over the replicas,

⟨

𝐼 (exp)(𝑗)inel

⟩

(𝛥𝐸) = 1
𝑁rep

𝑁rep
∑

𝑘=1
𝐼 (exp)(𝑗,𝑘)inel (𝛥𝐸) , 𝑗 = 1,… , 𝑁sp , (5.3)

and likewise for the corresponding uncertainties and correlation coef-
ficients. For large values of 𝛥𝐸, the model prediction reduces to the
original spectra, since in that region the ZLP contribution vanishes,
(exp)(𝑗,𝑘) (exp)(𝑗)
13

𝐼inel (𝛥𝐸 ≫ 𝛥𝐸I) → 𝐼EEL (𝛥𝐸) , ∀ 𝑗, 𝑘 . (5.4)
For very small values of the energy loss, the contribution to the total
spectra from inelastic scatterings is negligible and thus the subtracted
model prediction Eq. (5.2) should vanish. However, this will not be the
case in general since the neural network model is trained on the 𝑁sp
ensemble of spectra, rather that just on individual ones, and thus the
expected 𝛥𝐸 → 0 behaviour will only be achieved within uncertainties
rather than at the level of central values. To achieve the desired 𝛥𝐸 → 0
limit, we apply a matching procedure as follows. We introduce another
hyper-parameter, 𝛥𝐸0 < 𝛥𝐸I, such that one has for the 𝑘th ZLP replica
associated to the 𝑗th spectrum the following behaviour:

𝐼 (mod)(𝑗,𝑘)
ZLP (𝛥𝐸) = 𝐼 (exp)(𝑗)EEL (𝛥𝐸) , 𝛥𝐸 < 𝛥𝐸0 ,

𝐼 (mod)(𝑗,𝑘)
ZLP (𝛥𝐸) = 𝐼 (exp)(𝑗)EEL +

(

𝜉(𝑛𝑙)(𝑘)1 (𝛥𝐸) − 𝐼 (exp)(𝑗)EEL (𝛥𝐸)
)

×  ,

𝛥𝐸0 < 𝛥𝐸 ≤ 𝛥𝐸I ,

 (𝛥𝐸) = exp

(

−

(

𝛥𝐸 − 𝛥𝐸I
)2

(

𝛥𝐸0 − 𝛥𝐸I
)2 𝛿2

)

, (5.5)

𝐼 (mod)(𝑗,𝑘)
ZLP (𝛥𝐸) = 𝜉(𝑛𝑙 )(𝑘)1 (𝛥𝐸) , 𝛥𝐸 > 𝛥𝐸I ,

where 𝜉(𝑛𝑙 )(𝑘)1 indicates the output of the 𝑘th neural network that
parametrises the ZLP and 𝛿 is a dimensionless tunable parameter. In
Eq. (5.5),  (𝛥𝐸) represents a matching factor that ensures that the
ZLP model prediction smoothly interpolates between 𝛥𝐸 = 𝛥𝐸0 (where
 ≪ 1 and the original spectrum should be reproduced) and 𝛥𝐸 =
𝛥𝐸I (where  = 1 leaving the neural network output unaffected).
Here we adopt 𝛥𝐸0 = 𝛥𝐸I − 0.5 eV, having verified that results are
fairly independent of this choice. Taking into account the matching
procedure, we can slightly modify Eq. (5.2) to

𝐼 (mod)(𝑗,𝑘)
inel (𝛥𝐸) ≡ 𝐼 (exp)(𝑗)EELS (𝛥𝐸) − 𝐼 (mod)(𝑗,𝑘)

ZLP (𝛥𝐸) , ∀ 𝑁rep , 𝑗 = 1,… , 𝑁sp .

(5.6)

The ensemble of ZLP-subtracted spectra obtained this way, {𝐼 (mod)(𝑗,𝑘)
inel },

can then be used to reliably extract physical information from the
low-loss region of the spectrum.

5.3. Bandgap analysis of polytypic 2H/3R WS2

One particularly important application of the ZLP-subtracted spectra
is to estimate the specimen bandgap in the region where they were
acquired. Different approaches have been put forward to evaluate 𝐸BG
from subtracted EEL spectra, e.g. by means of the inflection point of the
rising intensity or a linear fit to the maximum positive slope [61]. Here
we will adopt the approach of [12] where the behaviour of 𝐼inel(𝛥𝐸) in
the onset region is modelled as

𝐼inel(𝛥𝐸) ≃ 𝐴
(

𝛥𝐸 − 𝐸BG
)𝑏 , 𝛥𝐸 ≥ 𝐸BG , (5.7)

and vanishes for 𝛥𝐸 < 𝐸BG, where both the bandgap value 𝐸BG as well
as the parameters 𝐴 and 𝑏 are extracted from the fit. The exponent
𝑏 is expected to be 𝑏 ≃ 1∕2 (≃ 3∕2) for a semiconductor material
characterised by a direct (indirect) bandgap. For each of the 𝑁sp spectra
and the 𝑁rep replicas we fit to Eq. (5.6) the model Eq. (5.7) within a
range taken to be

[

𝛥𝐸I − 0.5 eV, 𝛥𝐸I + 0.7 eV
]

. One ends up with 𝑁rep
values for the bandgap energy and fit exponent for each spectra,
{

𝐸(𝑗,𝑘)
BG , 𝑏(𝑗,𝑘)

}

, 𝑘 = 1,… , 𝑁rep , 𝑗 = 1,… , 𝑁sp , (5.8)

from which again one can readily evaluate their statistical estimators.
In the following, we will display the median and the 68% confidence
level intervals for these parameters to account for the fact that their
distribution will be in general non-Gaussian.

Here we present the results for the bandgap analysis of sample A,
taking location sp4 in Fig. 5.1 as representative spectrum; compatible
results are obtained for the rest of locations in this sample. As men-
tioned above, this region is characterised by a sizable thickness where

WS2 is expected to behave as a bulk material. The left panel of Fig. 5.2
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Fig. 5.2. Left: the original and subtracted EEL spectra corresponding to location sp4 of sample A in Fig. 5.1, together with the predictions of the ZLP model, where the bands
indicate the 68% confidence level uncertainties. The inset displays the result of fitting Eq. (5.7) to the onset region of the subtracted spectrum. Right: the average ratio of the
derivative of the intensity distribution in sp4 over its vacuum counterparts, Eq. (3.17).
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displays the original and subtracted EEL spectrum together with the
predictions of the ZLP model, where the bands indicate the 68%
confidence level uncertainties and the central value is the median of
the distribution. The inset shows the result of the polynomial fits using
Eq. (5.7) to the subtracted spectrum together with the corresponding
uncertainty bands.

One can observe how the ZLP model uncertainties are small at low
𝛥𝐸 (due to the matching condition) and large 𝛥𝐸 (where the ZLP
vanishes), but become significant in the intermediate region where
the contributions from 𝐼ZLP and 𝐼inel become comparable. It is worth
mphasising that these (unavoidable) uncertainties are neglected in
ost ZLP subtraction methods. The validity of our choice for the hy-
erparameter 𝛥𝐸I (Table 5.2) can be verified a posteriori by evaluating

the ratio

(𝑗)
abs

(

𝛥𝐸I
)

≡
⟨

𝐼 (mod)(𝑗)
ZLP

⟩

rep

/

𝐼 (exp)(𝑗)EEL
|

|

|𝛥𝐸=𝛥𝐸I
, (5.9)

hich in this case turns out to be abs = 0.98. It is indeed important
o verify that abs

(

𝛥𝐸I
)

is not too far from unity, indicating that the
raining dataset has not been contaminated by the contributions arising
rom inelastic scatterings off the specimen.

The average ratio of the derivative of the intensity distribution in
p4 over its vacuum counterpart, Eq. (3.17), is shown in the right panel
f Fig. 5.2. By requiring that der (𝛥𝐸I) ≃ 0.9 we obtain the value
𝐸I = 1.8 eV used as baseline in the analysis. It should be noted that
his choice is not unique, for example requiring der (𝛥𝐸I) ≃ 0.8 instead
ould have led to 𝛥𝐸I = 2.0 eV. It is therefore important to assess the

tability of our results as the hyper-parameter 𝛥𝐸I is varied around its
ptimal value. With this motivation, in Fig. 5.3 we display the values
f the exponent 𝑏 and the bandgap energy 𝐸BG obtained from the same
ubtracted spectrum as that shown in Fig. 5.2 for variations of 𝛥𝐸I
round its optimal value (vertical dot-dashed line) by an amount of
0.2 eV. We observe that the model predictions for both 𝑏 and 𝐸BG are
table with respect to variations of 𝛥𝐸I, with shifts in central values
ontained within the uncertainty bands. We can thus conclude that our
pproach is robust with respect to the choice of hyper-parameters.

The final values for 𝐸BG and 𝑏 obtained in the analysis of this
pecific spectrum are

BG = 1.6+0.3−0.2 eV , 𝑏 = 1.3+0.3−0.7 . (5.10)

e thus find that for this specific region of the WS2 nanoflowers the
odel fit to the subtracted EEL spectrum exhibits a clear preference for

n indirect bandgap (where 𝑏 ≃ 1.5 is expected). This result is consistent
ith previous studies of the local electronic properties of bulk WS2,

uch as those reported in Table 2.1. Consistent results are obtained for
pectra acquired at other locations of Fig. 5.1; for example for sp5 one
as

+0.3
14

BG = 1.7 ± 0.2 eV , 𝑏 = 1.3−0.4 . (5.11) i
hese results represent the first EELS-based bandgap determination
f WS2 nanostructures whose crystalline structure is based on mixed
H/3R polytypes.

.4. Mapping excitonic transitions in the low-loss region

For the application of our ZLP subtraction strategy to the EEL
pectra recorded in specimen B of the WS2 nanoflowers (bottom panels
n Fig. 5.1), the same criterion based on the derivative ratio Eq. (3.17)
o select the hyper-parameter 𝛥𝐸I was used. In this case, one finds a
alue of 𝛥𝐸I ≃ 1.4 eV, somewhat lower than the corresponding value
btained for sample A. The left panel of Fig. 5.4 displays the original
nd subtracted spectra corresponding to the representative location
p4 of sample B together with the predictions of the ZLP model. As
efore, the bands indicate the 68% confidence level uncertainties and
he central value is the median.

The main difference with respect to the spectra recorded in sample
is the appearance of well-defined features (peaks) in the subtracted

pectrum already for very small values of 𝛥𝐸. In particular, we observe
wo marked peaks at 𝛥𝐸 ≃ 1.5 and 2.0 eV and a softer one near
𝐸 ≃ 1.7 eV. Further additional features arise also for higher values of
he energy loss. There are two main sources for the observed differences
etween the spectra recorded in each sample. The first one is that, while
ample A is much thicker (bulk material), sample B corresponds to thin,
verlapping petals whose thicknesses can be as small as a few monolay-
rs. The second is that the EELS measurements taken in sample A used
TEM without monochromator, while those in sample B benefited from
monochromator thus achieving a superior spectral resolution (with an
verage FWHM of 87 meV to be compared with the 470 meV of sample
, see Table 5.1). This combination of structural and morphological
ariations in the specimen together with the operation conditions of
he TEM therefore should account for the most of differences between
he two sets of spectra.

It is worth noting here that our ZLP parametrisation and subtraction
trategy exhibits a satisfactory performance for all the spectra under
onsideration, irrespective of the spectral resolution of the TEM used
or their acquisition. By comparing Figs. 5.2 and 5.4, one observes
hat model uncertainties are larger in the latter case than in the
ormer, as expected from the superior spectral resolution of the EELS
easurements taken on sample B. Nevertheless, the same approach has

een used in both cases without the need of any fine-tuning or ad hoc
djustments: of course, if the input spectra have been recorded with
etter spectral resolution, the resulting ZLP model uncertainties will
mprove accordingly without changing the procedure itself.

Given that the well-defined spectral features present in Fig. 5.4
ppear close to the onset of the inelastic emissions, 𝐼inel(𝛥𝐸), these
pectra are not suitable for bandgap determination analyses. The reason

s that the method of [12] used in sample A is only applicable under
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Fig. 5.3. The values of the exponent 𝑏 (left) and the bandgap energy 𝐸BG (right panel) from the model Eq. (5.7) obtained from the subtracted spectrum sp14 as 𝛥𝐸I is varied by
±0.2 eV around its optimal value, indicated by the horizontal dot-dashed line.
Fig. 5.4. Left: the original and subtracted EEL spectra corresponding to location sp4 of sample B in Fig. 5.1, together with the predictions of the ZLP model. The bands indicate
the 68% confidence level uncertainties. Right: comparison of the ZLP-subtracted spectra from locations sp4, sp5, and sp6 in sample B together with the corresponding model
uncertainties. Note how several features of the subtracted spectra, in particular the peaks at 𝛥𝐸 ≃ 1.5, 1.7 and 2.0 are eV, are common across the three locations.
the assumption that there is a sufficiently wide region in 𝛥𝐸 after
the onset of 𝐼inel to perform the polynomial fit of Eq. (5.7). This is
clearly not possible for the spectra recorded in sample B, and indeed
model fits restricted to 𝛥𝐸 ≤ 1.4 eV display a marked numerical
instability. Instead of studying the bandgap properties, it is interesting
to exploit the ZLP-subtracted results of sample B to characterise the
local excitonic transitions of polytypic 2H/3R WS2 that are known to
arise in the ultra-low-loss region of the spectra.

Before being able to do this, however, one has to deal with the
possible objection that the peaks present in Fig. 5.4 are not genuine
features, but rather fluctuations due to insufficient statistics that should
be smoothed out before this region can be interpreted. To tackle this
concern, the right panel of Fig. 5.4 displays a comparison of the ZLP-
subtracted spectra recorded in the (spatially separated) locations sp4,
sp5 and sp6 in sample B together with their model uncertainties. Both
the position and the widths of the peaks at 𝛥𝐸 ≃ 1.5, 1.7 and 2.0
eV remain stable, confirming that these are genuine physical features
rather than fluctuations.

These peaks in the ultra-low-loss region of the ZLP-subtracted EELS
spectra recorded on thin, polytypic WS2 nanostructures can be traced
back to excitonic transitions. Their origin can be attributed to the
formation of an electron–hole pair mitigated by the dielectric screening
from the surrounding lattice [62]. In nanostructures with reduced
dimensionality as well as in single layers of TMD materials, exciton
peaks arise with binding energies up to ten times larger than for bulk
structures. In the optical spectra of TMDs, two strongly pronounced
resonances denoted by A and B excitons are often observed, appearing
at binding energies of 300 and 500 meV below the true bandgap of the
material [63]. Interestingly, this prediction is in agreement with the
observed peaks at 𝛥𝐸 ≃ 1.5 and 1.7 eV if one takes into account the
expected value of 𝐸BG for very thin WS2 nanostructures, see Table 2.1.
Concerning the peak located at 𝛥𝐸 ≃ 2 eV, its appearance is consistent
15
with previous studies of monolayer or few-layer WS2 using photolumi-
nescence spectroscopy [64,65], and can be associated to the excitonic
absorptions of the direct gap located at 𝐾-valley of the Brillouin zone.

We conclude that ZLP-subtracted spectra in sample B allow one for
a clean mapping of the exciton peaks present in the WS2 nanoflowers
down to 𝛥𝐸 ≃ 1.5 eV together with the associated uncertainty estimate.
Further insights concerning the relationship between the exciton peaks
in the ultra-low-loss region and the underlying crystalline structure and
specimen morphology could be obtained by combining our findings
with ab initio calculations such as those based on density functional
theory.

6. Summary and outlook

In this work we have presented a novel, model-independent strategy
to parametrise and subtract the ubiquitous zero-loss peak that dom-
inates the low-loss region of EEL spectra. Our strategy is based on
machine learning techniques and provides a faithful estimate of the
uncertainties associated to both the input data and the procedure itself,
which can then be propagated to physical predictions without any
approximations. We have demonstrated how, in the case of vacuum
spectra, our approach is sufficiently flexible to accommodate several
input variables corresponding to different operation conditions of the
microscope. Further, we are able to reliably extrapolate our predictions,
e.g. for the expected FWHM of the ZLP, to other operation conditions.
When applied to spectra recorded on specimens, our approach makes
possible to robustly disentangle the ZLP contribution from those arising
from inelastic scatterings. Thanks to this subtraction, one can fully
exploit the valuable physical information contained in the ultra low-loss
region of the spectra.
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Here we have applied this ZLP subtraction strategy to EEL spectra
recorded in WS2 nanoflowers characterised by a 2H/3R polytypic crys-
alline structure. First of all, measurements taken in a relatively thick
egion of the specimen were used to determine the local value of the
andgap energy 𝐸BG and to assess whether this bandgap is direct or
ndirect. A model fit to the onset of the inelastic intensity distribution
btains 𝐸BG ≃ 1.6+0.3−0.2 eV and exhibits a marked preference for an

indirect bandgap. Our findings are consistent with previous studies,
both of theoretical and of experimental nature, concerning the bandgap
structure of bulk WS2.

Subsequently, we have applied our method to a thinner region of the
WS2 nanoflowers, specifically a region composed by overlapping petals
with varying thicknesses that can be as small as a few monolayers.
We have demonstrated how for such specimens one can exploit the
ZLP-subtracted results to characterise the local excitonic transitions
that arise in the ultra-low-loss region. By charting the exciton peaks of
2H/3R polytypic WS2 there, we identify two strong peaks at 𝛥𝐸 ≃ 1.5
and 2 eV (and a softer one at 1.7 eV) and show how these features are
consistent when comparing spatially-separated locations in sample B.
Further, since our method provides an associated uncertainty estimate,
one can robustly establish the statistical significance of each of these
ultra-low-loss region features.

The approach presented in this work could be extended in several
directions. First of all, it would be interesting to test its robustness
when additional operation conditions of the microscope are included as
input variables, and to verify to which extent the ZLP parametrisations
obtained for an specific microscope can be generalised to an altogether
different TEM. Further, a non-trivial cross-check of our method would
be provided by validating our predictions for other operation conditions
of the microscope, such as the FWHM as a function of the beam
energy 𝐸𝑏 of the exposure time 𝑡exp reported in Fig. 4.5, with actual
measurements.

Concerning the physical interpretation of the low-loss region of EEL
spectra, our method could be applied to study the bandgap properties
for different types of nanostructures built upon TMD materials, such
as MoS2 nanowalls [66] and vertically-oriented nano-sheets [67] or
WS2/MoS2 arrays, heterostructures, and ternary alloys. In addition to
bandgap characterisation, this ZLP-subtraction strategy should allow
the detailed study of other phenomena relevant for the interpretation
of the low-loss region such as plasmons, excitons, phonon interactions,
and intra-band transitions. One could also exploit the subtracted EEL
spectra to further characterise local electronic properties by means
of the evaluation of the complex dielectric function and its associ-
ated uncertainties in terms of the Kramers–Kronig relations. Finally,
these phenomenological studies of local electronic properties should
be compared with ab initio calculations based on the same underlying
crystalline structure as the studied specimens.

Another possible application of the strategy presented in this work
would be the automation of the study of spectral TEM images, such
as those displayed in the right panels of Fig. 5.1, where each pixel
contains an individual EEL spectrum. Here machine learning methods
would provide a useful handle in order to identify relevant features
of the spectra (peaks, edges, shoulders) with minimal human inter-
vention (no need to process each spectrum individually) and then
determine how these features vary as we move along different regions
of the nanostructure. Such an approach would combine two important
families of machine learning algorithms, those used for regression, in
order to quantify the properties of spectral features such as width
and significance, and those for classification, to identify categories of
distinct features across the spectral image.

Methods

The EEL spectra used for the training of the vacuum ZLP model
presented in Section 4 were collected in a ARM200F Mono-JEOL micro-
scope equipped with a GIF continuum spectrometer and operated at 60
16
kV and 200 kV. For these measurements, a slit in the monochromator
of 2.8 μm was used. The TEM and EELS measurements acquired in
Specimen A for the results presented in Section 5 were recorded in
a JEOL 2100F microscope with a cold field-emission gun equipped
with aberration corrector operated at 60 kV. A Gatan GIF Quantum
was used for the EELS analyses. The convergence and collection semi-
angles were 30.0 mrad and 66.7 mrad respectively. The TEM and EELS
measurements acquired for Specimen B in Section 5 were recorded
using a JEM ARM200F monochromated microscope operated at 60 kV
and equipped with a GIF quantum ERS. The convergence and collection
semi-angles were 24.6 mrad and 58.4 mrad respectively in this case,
and the aperture of the spectrometer was set to 5 mm.
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