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A B S T R A C T

The paper develops a simulation model and evaluates fixed versus on-demand operational
designs of a station-based automated feeder service. The evaluation considers the operational
cost and average passenger level-of-service trade-offs as well as distributional differences in
waiting times. Two case studies are used to evaluate such trade-offs under different fleet
compositions; (1) a simple circular network feeder service; (2) a case based on a real-world
coordinated branched service in Stockholm, combining fixed-line services on the trunk portion
with a flexible feeder service on the branches. Results for the circular network indicate that there
are benefits in utilizing an on-demand operational policy for the lowest and highest demand
levels tested. When fixed service capacity is exceeded, it is found that there are potential
benefits in on-demand operations with respect to average level-of-service, as well as delivering
a more even distribution of passenger waiting times. Results for the real-world case show that
combining DRT on branches with fixed services on the trunk improves the overall median
waiting times for all DRT scenarios and provides substantial improvements for passengers on
the trunk, at the cost of more variable, and less equitable waiting times on the branches. For
larger fleet sizes, generalized travel costs are reduced with and without rebalancing and level-of-
service provided to branch-to-branch passengers is improved considerably by rebalancing idling
vehicles to branch end-stops. The case studies demonstrate the usefulness of the simulation
framework in evaluating trade-offs between fixed and on-demand service design variables and
their effects on disaggregate level-of-service provided for stop-based feeder services.

1. Introduction

Demand-responsive transit (DRT) is a form of user-oriented public transport characterized by flexible routing and scheduling
depending on passenger needs. The definition is broad and, depending on the source, can encompass services ranging from door-
to-door shared taxi-like services (Fagnant and Kockelman, 2018), paratransit (Häll et al., 2015), or bus lines that allow for dynamic
fleet management in response to evolving demand variations (Errico et al., 2013). One of the most typical applications of DRT is to
provide connectivity from suburban areas with lower or dispersed population density to urban mass transit (see Potts et al. (2010)
for a review of many practical examples in North America). Due to the operational costs of extending fixed-service transport at
higher frequencies in such areas, DRT can improve accessibility to public transport with a more personalized service (Nelson et al.,
2010).
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Many DRT systems fail, however, due to poor implementation, planning and marketing (Enoch et al., 2006). There is also a
idely held view that DRT systems are expensive solutions that come at a much higher cost to operators, and must be heavily

ubsidized if provided as a public service (Ferreira et al., 2007; Davison et al., 2014). This is often a result of an inability to
pread the cost of a given trip over a greater number of passengers. Emerging technologies are often assumed to be key to efficient
mplementation of DRT solutions. Innovations in DRT provision over recent decades have gone hand-in-hand with the advancements
f Intelligent Transport Systems (ITS) that make use of networks of sensors and connected vehicles to improve public transit situation
wareness and real-time fleet coordination (Mageean and Nelson, 2003). More recently, the developments of automated vehicles
AVs) combined with increasingly convenient on-line alternatives to match shared vehicles and their customers, have inspired
esearch in automated shared mobility solutions that are accessed on-demand. There are claims that AVs will enable more cost-
fficient and user-friendly provision of DRT. With reductions of on-board crew costs (which is often estimated to constitute roughly
0% of the operational cost of bus transit in developed countries (Australian Transport Council, 2006; Davison et al., 2012)), an
utomated DRT service could potentially be offered at a lower per-vehicle operational cost (Bösch et al., 2018).

As data-collecting vehicles that can share information regarding both current and predicted traffic and demand conditions, AV
leets also offer promising opportunities for efficient real-time coordination. These prospects have motivated numerous pilot studies
f automated feeder services worldwide, often utilizing lower passenger-capacity automated shuttles (Ainsalu et al., 2018). DRT
ystems are difficult to trial, however, due to their cost of implementation, as well as the time-frame required for demand to build
p and for stable use patterns to emerge. Furthermore, while AVs with high levels of automation are rapidly developing, they have
urrently not reached levels of reliability and safety that allow for the broader application needed for offering on-demand services.
imulation is thus an important tool to evaluate the feasibility of an automated DRT system before implementation. Previous studies
f fixed and demand-responsive feeder/last-mile solutions have extracted valuable relationships between service design variables
nd resulting level-of-service (LoS) and operational costs. However, investigations of LoS impacts on passengers tend to be based
n average system performance and do not include equity and reliability considerations.

The performance of a public transit system may be assessed in terms of equity in the distribution across passengers of costs and
enefits provided. In this context we particularly consider the spatial equality of travel conditions across different origin–destination
OD) pairs. A transit service is spatially unequal if travel conditions vary significantly depending on the OD of the traveler. In-vehicle
rowding, expected waiting times and the risk of denied boarding may vary substantially along fixed transit lines (e.g., Leffler et al.,
017; Jenelius, 2018). However, studies of demand-responsive and fixed services have so far not compared their ability to achieve
patial equity in the provided LoS. Litman (2019) discusses two categories of equity in transportation: horizontal equity and vertical
quity. Horizontal equity is defined as the distribution of costs or benefits between individuals or groups considered equal in abilities
nd needs, and vertical equity between individuals or groups that are considered to differ in terms of abilities and needs. Equality
f travel conditions among OD pairs may be interpreted as an aspect of horizontal equity.

From the perspective of the passenger, route detours and flexible schedules can amplify uncertainty in waiting and in-vehicle
imes relative to traditional fixed route and schedule operations. Variations in the perceived reliability of the service can heavily
nfluence mode and route choices of passengers when presented with multiple alternatives (Bhat and Sardesai, 2006; Carrel et al.,
013), which in turn contributes to the uncertainty of real-time demand predictions in the assignment of a DRT fleet to passenger
rip requests.

At the core of any DRT operation is thus the problem of effectively assigning the on-demand fleet to passenger requests pre-
ooked, forecasted and/or received in real-time, while balancing LoS and operational cost objectives. In essence, this problem can be
ormulated as a dynamic variant of the well known vehicle routing problem (VRP). To maintain tractability in dynamic VRPs (which
ave been shown to be NP-hard), solution approaches tend to be based on metaheuristic and heuristic approaches (see for example
he reviews of Pillac et al. (2013), Psaraftis et al. (2015)) and apply improvement heuristics that may converge to an optimal solution
e.g., Alonso-Mora et al. (2017)). Solution approaches may furthermore be characterized as reactive to currently known unassigned
equests, or proactive by combining these with forecasted requests. What formulation or solution methodology is chosen, and its
erformance for a given DRT solution, depends on the inherent uncertainty in estimating current and future states of the DRT system
s well as the objectives and real-time data available to the modeler. Reactive methods are often based on nearest neighbor heuristics,
here the nearest available vehicles are iteratively assigned to known requests. Proactive strategies exploit statistical information
vailable from historical data and assign empty-vehicle trips in anticipation of future supply and demand conditions (Babicheva
t al., 2018). Strategies may be further enriched with other problem specific objectives or constraints (e.g., maximum allowable
aiting time in Sheridan et al. (2013)).

Related work can be found in studies of station-based, one-way car-sharing services. At the operational level, emphasis has
een put on devising proactive rebalancing strategies to redistribute vehicles as well as guarantee available parking spots where
eeded. Supported by many similar technological and societal trends as emerging station-based DRT systems, one-way car-sharing
as experienced considerable growth around the world in recent decades, together with increased requirements on flexibility (e.g., in
erms of reservation policy, pickup-up and drop-off points) and competition/integration with other modes of transportation (Illgen
nd Höck, 2019). Traditionally, the focus of rebalancing solutions has been on static optimization methods (e.g., for a longer time
orizon and for deterministic demand) whereas more recent work, as well as car-sharing services in practice, have moved towards
ynamic relocation that is closer to real-time (Repoux et al., 2019; Lu et al., 2020).

The objective of this study is to evaluate the LoS achieved by fixed and on-demand operational policies for AVs, including the
quity of service across passengers. The potential benefits of utilizing demand-responsive AVs within a stop-based feeder service is
xamined as an alternative to fixed-service operations. The core purpose of the service is thus to provide transport from a fixed set
2

f stops at various network demand centers to a local center that enables transfer to an urban mass transit network. This fixed set
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of stops and the set of service segments connecting them can be referred to as the service area of the feeder solution. To gain access
to the on-demand feeder service, travelers will submit a request to a centralized coordinator of the on-demand fleet, referred to
for the remainder of this paper as the fleet manager. Attributes associated with the travel request are at minimum a timestamp of
when the request was submitted, a desired time of departure and a stop for pickup-up and drop-off. Travelers will submit a request
upon arrival to a stop within the service area of the fleet manager. Requests are thus made known to the fleet manager in real-time
without requirement of prior notification and travelers are assumed to desire departure at the earliest possible time when arriving
to a stop.

The research contributions of this paper are: (1) the development of a modeling framework for station-based DRT and integrating
his with an existing framework for fixed public transit, and (2) enabled by the microscopic modeling approach, an evaluation of
rade-offs between overall LoS and equity among passengers dependent on the choice of fixed or on-demand operational policy.

The structure of the paper is as follows. Section 2 reviews the literature on the modeling and evaluation of DRT feeder services.
ection 3 presents the simulation framework and modeling assumptions for comparison of fixed versus on-demand operational
olicies, as well as the theoretical framework for the reliability and equity analysis. Experimental design, parameter inputs and
efinitions of simulated scenario variations for a small theoretical feeder case as well as a larger real-world case are presented in
ection 4. Computational results and analysis of fixed versus on-demand operational policies, as well as on-demand in cooperation
ith fixed line operations, are presented in Section 5. The paper concludes with an analysis of scenario outcomes followed by a
iscussion regarding study limitations and potential improvements in Section 6.

. Literature review of modeling and evaluation of DRT feeder services

.1. Fixed versus DRT feeder operations

A vital question in the operational planning of feeder services is under what conditions with respect to LoS provided and
perational cost, to operate the feeder system as a fixed system or as a demand-responsive service. In contrast with previous
tudies of DRT without AV technology, the focus of recent research on shared automated vehicle (SAV) feeders leans more towards
ong-term resource planning (e.g. fleet-sizing) and developing dispatching algorithms to support centralized on-demand operations,
ather than assessments of variable-type fixed versus demand-responsive operational policies in SAV feeder service design. Often
sing an analytical approach, earlier studies of feeder solutions have centered on the determination of cutoff points with respect
o LoS and operational cost for switching between fixed versus flexible operational policies. Studies often evaluate feeder services
haracterized by a single transfer point, rectangular residential service area and pre-booked DRT services rather than real-time
n-demand (Daganzo, 1984).

Diana et al. (2009) study the relative distance traveled of fixed versus on-demand DRT for grid and ring-radial mass transit
etwork structures while maintaining comparable distributions of LoS provided to passengers. Kim and Schonfeld (2013) further
xplore the benefits of using mixed passenger capacity bus fleets and trade-offs between route-spacing under fixed operations and
ervice area under DRT. Quadrifoglio and Li (2009) develop a continuous approximation model to determine when on-demand
perations are preferable to fixed dependent on demand density for one and two vehicle fleets. This work is further applied and
alidated in Li and Quadrifoglio (2010) and utilized in Li and Quadrifoglio (2011) to evaluate optimal zone design. In the same
tream of research Edwards and Watkins (2013) utilize the analytical model of Quadrifoglio and Li (2009) to evaluate systems
hat include stochastic passenger arrival rates and irregular transit schedules for a grid fixed transit network and varying feeder
etwork layouts of Atlanta, Georgia. Trade-offs between increasing stop-spacing for fixed service operations and implementing a
ingle-vehicle DRT feeder for each stop are compared. Badia and Jenelius (2020) study how the introduction of AV technology may
hift the competitiveness of door-to-door services to higher demand densities.

.2. Simulation based evaluation of DRT

Agent-based simulations, with real-time adaptive behavioral representation of passengers and dynamic transit operations, lend
hemselves well to studies of DRT (Ronald et al., 2015). Several agent-based frameworks combining solution methods of dynamic
ehicle-routing problems (VRPs) underlying DRT operations with simulation of traffic and passenger interactions for the evaluation
f DRT have been proposed over the last decade (see for example Maciejewski et al. (2017) and Narayan et al. (2020)). The focus
nd level of detail in suggested frameworks depend on application, ranging from case studies of simplified networks to large-scale
imulations of several millions of vehicles.

Many on-demand services leveraging SAVs have been proposed and evaluated in the literature in recent years. Performance
valuations of these services go hand-in-hand with the development of modeling frameworks and solution procedures to dynamic
RPs (for extensive reviews of modeling components and impacts of different on-demand service designs see Narayanan et al. (2020),
arkov et al. (2021), and Pillac et al. (2013), Psaraftis et al. (2015) for reviews of solution methods to dynamic VRPs). The most

ommon strategy to evaluate DRT systems involving AVs is to modify existing agent-based simulation frameworks while relaxing
ssumptions regarding driver scheduling constraints and assuming full compliance to centralized planning and operational control.
mpacts and sensitivities to estimated changes to labor cost structure, user adoption and projected AV fleet characteristics (e.g. fleet
ize, vehicle capacities, fuel efficiency) are evaluated through adjusted parameter settings or iterative optimization procedures.

In a recent study by Hörl et al. (2021), the introduction of single-passenger SAVs in the city of Zurich was simulated, also
3

aking into account the feedback loop between demand for alternative modes (private car, public transit and active modes) and
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LoS provided. Results indicate that, despite benefits to users, under a wide range of scenarios system impact is largely negative.
To achieve a sustainable transport system that promotes sharing and active transport, the authors emphasize the importance of
restricting pick-up and drop-off locations, regulating SAV pricing, promoting ride-sharing, and prioritizing the integration of SAV
services with existing public transport. Markov et al. (2021) also demonstrate the process of simulating and evaluating a wider
DRT service design space (e.g. door-to-door versus station-based services, instant booking versus pre-booking, ride-sharing versus
no ride-sharing) for three distinct service areas in the city of Chicago. Trade-offs between passenger LoS and fleet efficiency KPIs,
fleet size and levels of pre-booking are formalized in what the authors refer to as a fundamental ride-sharing diagram. Among the
presented results, station-based service design is found to lead to substantial improvements to fleet utilization and improve ride-
sharing potential at the expense of walking. The authors also underscore how shared DRT services can drastically reduce the number
of vehicles required to satisfy urban mobility demand.

In relation to public transit, studies within this body of research can be categorized into: (i) those that evaluate SAV services
independent of line-based public transit (as a replacement for individual-use taxis or privately owned cars) (Fagnant and Kockelman,
2014; Bischoff and Maciejewski, 2016; Liu et al., 2017; Martinez and Viegas, 2017; Markov et al., 2021), (ii) studies focusing on
utilizing on-demand SAVs as a replacement to fixed public transit (Winter et al., 2018; Jäger et al., 2018; Narayan et al., 2019;
Berrada and Poulhès, 2021) or a co-existing alternative (Liu et al., 2019; Winter et al., 2020; Hörl et al., 2021) at a city-wide scale,
and (iii) studies of SAVs utilized as complement (e.g., feeder/last-mile) services to fixed public transit (Winter et al., 2016; Scheltes
and de Almeida Correia, 2017; Moorthy et al., 2017; Salazar et al., 2018; Shen et al., 2018; Wen et al., 2018).

2.3. Emerging mobility services as complements to fixed public transit

A rapidly growing body of literature has been dedicated to the evaluation of emerging mobility services (ride-hailing, ride-
sharing, and SAV services) as connectors to mass transit networks. Scheltes and de Almeida Correia (2017) and Salazar et al.
(2018) evaluate personal use SAVs utilized in feeder couplings to fixed transit. Scheltes and de Almeida Correia (2017) study the
performance of single-person capacity AVs within a station-based, on-demand feeder/last-mile system as an alternative to active
modes. Based on survey data of user acceptance and OD patterns, system performance is simulated under varying scenarios of
network structure, booking scheme and on-demand operational strategies. Salazar et al. (2018) propose a multi-commodity network
flow model to formulate optimal passenger paths and vehicle routes for an on-demand AV ride-hailing system integrated with fixed
public transit services at city-scale. Compared to on-demand AV ride-hailing and public transit existing as separate systems, the
socially optimal performance of the integrated system was found to significantly improve travel times, require fewer vehicles, and
results in lower emissions.

Winter et al. (2016) perform a simulation study examining the potential of replacing a fixed feeder service between two stations
with an automated on-demand service. Using the demand data and network configuration of an ongoing pilot study, fleet size
requirements and system performance are estimated. Higher demand levels, and utilizing vehicles with capacities larger than 10
passengers/vehicle are among the most effective ways found to reduce system cost per passenger. Moorthy et al. (2017) utilize
a Life Cycle Assessment model to evaluate an SAV service providing feeder transit between an airport and fixed transit network.
Results indicate that the integrated SAV system could greatly enhance sustainability of transit with a mode shift from private to
public modes while maintaining a competitive average LoS provided.

At a larger scale, Shen et al. (2018) evaluate the introduction of on-demand SAV taxis as a replacement for low-demand bus
feeder to metro routes in Singapore in an agent-based simulation study. Comparisons between personal use SAVs, and shared-trip
SAVs, as well as an analysis of trade-offs between fleet size and profit margin per kilometer is provided. Wen et al. (2018) extend
an agent-based simulation framework with a multi-modal discrete choice model to evaluate the feedback loop between service
performance and demand for an integrated SAV + fixed transit service and alternative conventional modes. Results indicate that
allowing for pre-booked requests, combining fare with transit and encouraging ride-sharing through the integrated SAV + fixed
transit system can encourage more sustainable travel choices. Stiglic et al. (2018) develop an operational model for integrating
(non-automated) ride-sharing services with mass transit as a feeder/last-mile solution using park-and-ride facilities. Sensitivities to
driver matching flexibility (maximum acceptable detour), demand density, and mass transit service parameters are assessed through
a simulated case study of a stylized transit network. The authors find that the integration of ride-sharing can reduce total system-wide
vehicle-kilometers traveled (VKT).

3. Methodology

This section presents the simulation framework in Section 3.1, and details of the implemented on-demand vehicle-to-passenger
assignment procedure in Section 3.2, as well as the theoretical framework for the LoS and equity analysis in Section 3.3. A summary
of notation used is provided in Table 1.

3.1. Simulation model

To enable experimentation, a model for simulation of DRT services is developed. The module is embedded within the agent-
based, dynamic public transit simulation framework BusMezzo (Toledo et al., 2010) to allow for consistent comparison between
fixed and on-demand services. BusMezzo replicates transit operation phenomena including the propagation of headway variability
4

and bunching. Demand can be provided in terms of OD pairs, and passengers are simulated as agents that can choose optimal
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Table 1
Summary of notation.
Description Notation

Level-of-service:

In-vehicle time 𝑡𝑖𝑣𝑡

Waiting time 𝑡𝑤𝑎𝑖𝑡

Waiting time if denied boarding 𝑡𝑑𝑒𝑛𝑖𝑒𝑑

Number of transfers 𝑛𝑡𝑟𝑎𝑛𝑠

Total waiting time 𝑡𝑡𝑤𝑎𝑖𝑡

Total travel time 𝑡𝑡𝑡

Value of in-vehicle time 𝛽𝑖𝑣𝑡

Value of waiting time 𝛽𝑤𝑎𝑖𝑡

Value of waiting time if denied boarding 𝛽𝑑𝑒𝑛𝑖𝑒𝑑

Fixed cost penalty per transfer 𝛽𝑡𝑟𝑎𝑛𝑠

Weight passenger travel cost 𝑐𝑝𝑐𝑜𝑠𝑡

Gini coefficient of total waiting time 𝐺𝑡𝑤𝑎𝑖𝑡

Total waiting time coefficient of variation 𝐶𝑉 𝑡𝑤𝑎𝑖𝑡

Operational costs:

Vehicle size 𝑠
Fleet size 𝑓𝑠
Operating cost per vehicle-hour 𝑔𝑜𝑝𝑒𝑟𝑠

Capital cost per vehicle-hour 𝑔𝑐𝑝𝑡𝑙𝑠
Unit fixed operating cost per vehicle-hour 𝑐𝑜𝑝𝑒𝑟

Unit size-dependent operating cost per vehicle-hour 𝑏𝑜𝑝𝑒𝑟

Unit fixed capital cost per vehicle-hour 𝑐𝑐𝑝𝑡𝑙

Unit size-dependent capital cost per vehicle-hour 𝑏𝑐𝑝𝑡𝑙

Percentage decrease in unit operational costs with vehicle automation 𝜂
Percentage increase in unit capital cost with vehicle automation 𝜁
Total vehicle-kilometers traveled 𝑑𝑣𝑘𝑡

Operational cost per vehicle-kilometer 𝑔𝑘𝑚𝑠

paths according to their maximal individual utility, considering real-time information and learning day-by-day (Cats et al., 2016).
In addition to network-wide LoS measurements, it is possible to study the travel time, path and choices of each passenger separately
within the network, as well as generalized costs of each passenger group. The framework is event-based and embedded within
the mesoscopic traffic simulation model Mezzo (Burghout, 2004). The transit simulator has been used previously to compare and
assess the performance of holding strategies, both schedule-based and regularity-based (Cats et al., 2011, 2012), multi-line holding
control (Laskaris et al., 2018), as well as short-turning strategies (Leffler et al., 2017).

For the representation of on-demand services within this framework, a ‘‘fleet manager’’ functionality is developed and incor-
orated into BusMezzo, as displayed in Fig. 1. The purpose of the fleet manager is to act as an interface between travelers and
he demand-responsive fleet and collect real-time information (travel requests, vehicles states and estimated travel times) necessary
o dynamically assign centrally coordinated vehicles to trip plans. In this paper a ‘‘trip plan’’ is defined as a planned sequence
f stop visits in order to serve a bundled group of passenger requests assigned to it. In this sense a trip plan also represents a

‘shareable’’ set of requests that satisfies potential LoS or vehicle-capacity constraints, as determined by the operator of the service
nd availability of supply. In defining the on-demand service, the fleet manager is provided as input a service area (i.e., a subset of
tops within the transit network), fleet characteristics (i.e., vehicle types, starting positions and starting times) as well as a strategy
sed to coordinate the assignment of transit vehicles to traveler requests. The framework is implemented using an object-oriented
rogramming approach to enable further enhancements and developments. Each entity in the simulation model (e.g. passenger,
ehicle, fleet manager) is thus represented as an object with its related variables and functions.

Fig. 2 displays relationships between classes of the simulation framework associated with matching demand-responsive transit
ehicles with travel requests. In short, the FleetManager keeps track of TransitVehicle and Passenger objects within a predefined
ervice area, where the problem of matching travel requests with cooperating transit vehicles is partitioned and solved sequentially
y supporting modules. A FleetManager is initialized with a set of one or several TransitVehicle and Stop objects, defining the
orresponding fleet and service area of an on-demand service. Five supporting classes are defined as members of the FleetManager.
he core responsibilities of these classes are:

• RequestHandler — receiving, bundling and sorting requests,
• TripPlanner — generating feasible trip plans for vehicles to serve currently known and/or forecasted requests,
• Matcher — performing a cost evaluation of candidate trip plans in order to create a matching with available vehicles,
• Scheduler — adjusting dispatch, pick-up, and drop-off schedules of matched vehicles,
• Navigator — provide shortest path estimations used by the other supporting classes.

our of the supporting classes (all but the Navigator) may have one or several strategies (e.g., a RequestHandler may have access
o one or several BundlingStrategy implementations) inheriting from an abstract class (colored orange in Fig. 2) containing shared
5

ethods and an interface for each vehicle-to-passenger assignment subproblem. To clarify, in this context the bundling of requests
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Fig. 1. High-level overview of the public transit simulation framework.

Fig. 2. Class diagram of FleetManager (blue) and member supporting classes (purple), with one or several strategies (orange). Arrows display relationships
relevant for connecting Passenger and TransitVehicle agents (red). (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

refers to grouping and filtering the set of all currently known and/or forecasted requests such that a subset of these is to be considered
by the TripPlanner. A RequestHandler may thus also have no BundlingStrategy, meaning that all known requests are considered
separately. The aim of this structure is to provide a more generic interface to experiment with alternative operational policies.
The structure is considered flexible in the sense that it allows the FleetManager to switch between individual strategy components
dynamically depending on, for example, resulting fleet utilization and LoS quality.

The FleetManager monitors associated TransitVehicle state changes (e.g., ’unassigned’, ‘assigned’, or ‘driving’) throughout the
simulation. A Passenger intending to use an on-demand service in real-time is connected to a FleetManager when a decision has been
made to wait at a Stop within the on-demand service area. Once connected, the FleetManager will await a Request submission from
this Passenger containing desired specifications for the trip.
6
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3.2. On-demand vehicle-to-passenger assignment

To model on-demand operations for the service settings and experiments considered in this paper, a greedy nearest-neighbor
euristic is implemented, similar to those described in Babicheva et al. (2018), Sheridan et al. (2013). The assignment of vehicles
o trip plans is a version of the general assignment problem:

min
𝑚
∑

𝑣=1

𝑚
∑

𝑡𝑝=1
𝑐𝑣,𝑡𝑝𝑥𝑣,𝑡𝑝 (1)

subject to
𝑚
∑

𝑣=1
𝑥𝑣,𝑡𝑝 = 1,∀𝑡𝑝 ∈ {1...𝑚} (2)

𝑚
∑

𝑡𝑝=1
𝑥𝑣,𝑡𝑝 = 1,∀𝑣 ∈ {1...𝑚} (3)

𝑥𝑣,𝑡𝑝 ∈ {0, 1},∀𝑣 ∈ {1...𝑚},∀𝑡𝑝 ∈ {1...𝑚}, (4)

here the decision variables 𝑥𝑣,𝑡𝑝 = 1 if and only if vehicle 𝑣 is assigned to trip plan 𝑡𝑝 and 𝑐𝑣,𝑡𝑝 is the cost associated with assigning
ehicle 𝑣 to trip plan 𝑡𝑝. Constraints (2) ensure that each vehicle is assigned to only one trip plan, and (3) that each trip plan is
ssigned to only one vehicle. Constraints (4) ensure that only whole assignments are performed. Typical cost functions are based
n vehicle distance or travel times to the pickup point of the trip plan, but any separable cost function may be used.

In this paper we employ a heuristic that seeks to either maximize the number of treated requests, or minimize the cumulative
aiting times for trip plans. The sequence of steps to assign trips and to re-position empty (on-call) vehicles, is described in Algorithm
. The input to the algorithm is a set of trip plans. Starting from the set of trip plans generated by the FleetManager the algorithm
irst sorts them according to the selected ranking function. The two alternative objective functions considered in this article are:

𝑅𝑎𝑛𝑘𝐵𝑦𝑅𝑒𝑞𝑢𝑒𝑠𝑡𝑠(𝑡𝑝) = |

|

|

𝑅𝑡𝑝
|

|

|

(5)

𝑅𝑎𝑛𝑘𝐵𝑦𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝑊 𝑎𝑖𝑡𝑖𝑛𝑔𝑇 𝑖𝑚𝑒(𝑡𝑝) =
∑

𝑟∈𝑅𝑡𝑝

𝑡𝑤𝑎𝑖𝑡
𝑟 (6)

here 𝑡𝑝 is the trip plan, 𝑅𝑡𝑝 is the set of requests assigned to 𝑡𝑝, and 𝑡𝑤𝑎𝑖𝑡
𝑟 is the time that has elapsed since the desired departure

ime for request 𝑟. The first objective function ranks the trip plans by the number of passenger requests assigned to them. The
econd objective function ranks the trip plans by the cumulative waiting time for all requests assigned to that plan. The purpose is
o balance the number of requests with the waiting times, expanding on the method in Sheridan et al. (2013) where a maximum
aiting time is imposed.

After sorting the trip plans, the algorithm takes the highest ranking trip plan 𝑡𝑝 and attempts to assign it to an on-call vehicle at
he starting point, if any are available. If not, the nearest on-call vehicle 𝑣 is found, an empty trip is generated to the start point of
𝑝 and 𝑡𝑝 is chained immediately after this empty trip.

Algorithm 1 Trip assignment
1: procedure AssignTrips
2: 𝑆𝑜𝑟𝑡𝑒𝑑𝑇 𝑟𝑖𝑝𝑃 𝑙𝑎𝑛𝑠 ← 𝑆𝑜𝑟𝑡𝑇 𝑟𝑖𝑝𝑃 𝑙𝑎𝑛𝑠𝐵𝑦𝑅𝑎𝑛𝑘𝑖𝑛𝑔𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛
3: repeat
4: 𝑡𝑝 ← 𝑡𝑜𝑝(𝑆𝑜𝑟𝑡𝑒𝑑𝑇 𝑟𝑖𝑝𝑃 𝑙𝑎𝑛𝑠)
5: if OnCallVehicle 𝑣 at start of 𝑡𝑝 then
6: assign 𝑣 to 𝑡𝑝
7: remove 𝑡𝑝 from 𝑆𝑜𝑟𝑡𝑒𝑑𝑇 𝑟𝑖𝑝𝑃 𝑙𝑎𝑛𝑠
8: else
9: find nearest OnCallVehicle 𝑣 to start of 𝑡𝑝

10: create EmptyTrip 𝑒𝑡𝑝
11: assign 𝑣 to 𝑒𝑡𝑝
12: chain 𝑡𝑝 to 𝑒𝑡𝑝
13: remove 𝑡𝑝 from 𝑆𝑜𝑟𝑡𝑒𝑑𝑇 𝑟𝑖𝑝𝑃 𝑙𝑎𝑛𝑠
14: end if
15: until 𝑆𝑜𝑟𝑡𝑒𝑑𝑇 𝑟𝑖𝑝𝑃 𝑙𝑎𝑛𝑠 is empty
16: end procedure

Two events are set up to initiate the process of matching groups of travel requests to transit vehicles: (1) when a passenger
akes a decision to stay at a stop and submits a request, and (2) when a transit vehicle finishes a trip with no future assignments

it becomes on-call). In addition, an event to redistribute on-call vehicles to stops within the service area of the FleetManager may
be included at scheduled time intervals. The assignment procedure is reactive in the sense that it considers only known requests
7
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Fig. 3. An activity diagram for greedy vehicle-to-passenger assignment. Column headers and coloring correspond to classes displayed in Fig. 2. Activities are
displayed as rounded rectangles, diamonds as conditional branches, and straight rectangles as data structures passed between classes. Orange activities are
associated with strategies of the containing class. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

and no forecast requests are considered. The presented framework can be readily extended to incorporate predictive algorithms
such as the index-based redistribution in Babicheva et al. (2018), network-wide matching algorithms (Kucharski and Cats, 2020)
and other supply-deficit type algorithms such as (Salazar et al., 2018; Psaraftis et al., 2015), as well as re-optimizing strategies such
as (Alonso-Mora et al., 2017).

To describe how the greedy heuristic is sequenced within the described framework, an activity diagram is presented in Fig. 3.
he passenger activated initial state is displayed to the top left of Fig. 3. When a decision has been made to use an on-demand
ervice within the service area of the FleetManager, the Passenger submits a Request to the RequestHandler, which verifies that the

destination of this request is contained within the on-demand service area and adds it to a RequestSet containing all currently known
unassigned requests.

The RequestHandler groups requests by calling a BundlingStrategy that sorts the RequestSet by requests with shared ODs that
are currently unassigned to a trip plan. The TripPlanner has a set of TripPlans that have not yet been matched by the Matcher.
The TripPlanner first attempts to insert unassigned requests into existing trip plans. For requests for which no suitable trip plan
s available, a PassengerTripStrategy is called. The PassengerTripStrategy will generate new trip plans, assigns these to associated

requests, and adds them to the set of TripPlans. When all requests in the RequestSet have been assigned, the TripPlans set is passed
to the Matcher to be assigned to suitable vehicles.

The transit vehicle activated initial state is displayed on the top right of Fig. 3. When a TransitVehicle finishes a trip, its state is
updated, which triggers a fleet state update in the associated FleetManager of the vehicle. If the vehicle has a chained trip scheduled
it will proceed to serve this trip, otherwise it changes its state to on-call and passes itself to the Matcher. The Matcher applies
a MatchingStrategy, such as the one described in Algorithm 1, to match the most suitable vehicle to each trip in TripPlans, and
generate EmptyTrips chained by the selected TripPlans if needed. After each successful matching the matched trip plan is added to
the set of MatchedTrips. The Scheduler then schedules the planned dispatch for each trip in MatchedTrips, and notifies the Passenger.

A rebalancing call may also trigger the generation of a new trip plan at regular time intervals, as displayed at the top of
he TripPlanner column. In this case, the trip plan is not generated to serve unassigned requests, rather to redistribute supply in
nticipation of future requests. The RebalancingStrategy of the TripPlanner will attempt to balance available supply between stops

within the service area of the FleetManager. If a rebalancing trip is found, this is added to a separate set of RebalancingTripPlans
which is passed forward to the Matcher and Scheduler.

3.3. Level-of-service and equity evaluation

From the passengers’ perspective, the performance of a public transport system can be evaluated in terms of the generalized travel
cost of the passengers. The travel costs are dynamic and stochastic as they depend on systematic and stochastic temporal variations
in travel demand and supply. In this paper generalized cost is evaluated based on a combination of three factors: in-vehicle time,
waiting time and number of transfers. A distinction is made between waiting time for the first vehicle that a passenger wishes to
board and additional waiting time if a passenger is denied boarding until their next opportunity to board. The total travel time 𝑡𝑡𝑡𝑖

𝑖𝑣𝑡 𝑤𝑎𝑖𝑡 𝑑𝑒𝑛𝑖𝑒𝑑
8

f each passenger 𝑖 is thus defined as the sum of in-vehicle time 𝑡𝑖 , waiting time 𝑡𝑖 and denied waiting boarding time 𝑡𝑖 . The
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Fig. 4. (Left) Feeder network with origin stops A, B, C, and D traveling to transfer stop E placed in the shape of a regular pentagon. The length of links connecting
pairs of stops along the perimeter of the network is controlled by the parameter 𝑙. The fixed circular feeder route is A→B→C→D→E→A. The demand-responsive
service area is comprised of all direct connections between stops A, B, C, D and E. (Right) Demand rates with destination E and in-vehicle time reductions for
direct routes relative to the fixed circular feeder are noted next to nodes and links, respectively.

number of transfers required by a passenger to reach their final destination is denoted 𝑛𝑡𝑟𝑎𝑛𝑠𝑖 . The travel cost (𝑐𝑝𝑐𝑜𝑠𝑡𝑖 ) is calculated by
selecting corresponding weighting parameters (𝛽𝑤𝑎𝑖𝑡, 𝛽𝑑𝑒𝑛𝑖𝑒𝑑 , 𝛽𝑖𝑣𝑡, 𝛽𝑡𝑟𝑎𝑛𝑠) and summing over each weighted trip component,

𝑐𝑝𝑐𝑜𝑠𝑡𝑖 = 𝛽𝑤𝑎𝑖𝑡𝑡𝑤𝑎𝑖𝑡
𝑖 + 𝛽𝑑𝑒𝑛𝑖𝑒𝑑 𝑡𝑑𝑒𝑛𝑖𝑒𝑑𝑖 + 𝛽𝑖𝑣𝑡𝑡𝑖𝑣𝑡𝑖 + 𝛽𝑡𝑟𝑎𝑛𝑠𝑛𝑡𝑟𝑎𝑛𝑠𝑖 . (7)

A key difference between fixed and on-demand operations is in the perceived reliability of waiting times for the service. The
otal waiting time (i.e., 𝑡𝑡𝑤𝑎𝑖𝑡 = 𝑡𝑤𝑎𝑖𝑡+ 𝑡𝑑𝑒𝑛𝑖𝑒𝑑) coefficient of variation (𝐶𝑉 𝑡𝑤𝑎𝑖𝑡) is used as a metric to compare differences in reliability
etween operational policies. While there are many ways of assessing LoS reliability, the CV is a well-defined and commonly used
etric that can also serve as a good proxy for several other reliability measures (Pu, 2011).

The CV can also be used as an inequality measure (e.g., Allison, 1978; Jenelius, 2010). The CV is closely related to the Gini
oefficient (Gini, 1912), which is sometimes used to quantify equity in public transit (e.g., Delbosc and Currie (2011), Jang et al.
2016), Rubensson et al. (2020)). As a complement to the CV the Gini coefficient of total waiting times (𝐺𝑡𝑤𝑎𝑖𝑡) is used to compare
he distribution of total waiting times under fixed and on-demand operational policies.

𝐺𝑡𝑤𝑎𝑖𝑡 = 1
2𝑛2𝑡𝑡𝑤𝑎𝑖𝑡

𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
|𝑡𝑡𝑤𝑎𝑖𝑡
𝑖 − 𝑡𝑡𝑤𝑎𝑖𝑡

𝑗 |,

where 𝑛 is the total number of passengers in the evaluated time period, 𝑡𝑡𝑤𝑎𝑖𝑡
𝑖 is the total waiting time experienced by passenger 𝑖,

and 𝑡𝑡𝑤𝑎𝑖𝑡 is the average total waiting time over all passengers 1,… , 𝑛. 𝐺𝑡𝑤𝑎𝑖𝑡 can interpreted as an inequality metric, ranging from
0% (perfect equality of total waiting times for all passengers) to 100% (perfect inequality of total waiting times).

4. Case study set-up and implementation

This section describes the implementation and assumptions used to analyze and compare the performance of fixed and on-demand
feeder operations in two case studies. The first case focuses on a circular feeder network and is described in Section 4.1. The second
case study extends this to a real-world network in Stockholm, Sweden, focusing on the use of DRT to feed a common trunk line in
Section 4.2.

4.1. Case 1: Circular feeder network

To isolate the effects of fixed versus on-demand feeder policies, a case study aimed at capturing key features of a real-world
circular feeder network structure is devised. The simulation framework is applied to the network, operations and demand pattern
displayed in Fig. 4.

As shown in Fig. 4 (left), the feeder network takes the shape of a regular pentagon with stops at vertices. All stops are connected
by bidirectional links. The size of the network is controlled by 𝑙, the length of each link on the perimeter of the network. Two
operational policies (displayed on the left-hand side of Fig. 4) for feeder services are simulated. Based on estimations of operational
cost reductions with vehicle automation, comparable fleet compositions consisting of AVs or non-AVs are evaluated under both
9

operational policies. Simplifying assumptions used for analysis are characterized below.
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4.1.1. System definition and assumptions
Demand is inelastic with respect to the LoS provided. Demand is asymmetric with all passengers destined to transfer stop E.

he number of transfers are thus considered the same for both fixed and on-demand feeder services. The temporal distribution of
assengers arrivals is Poisson with average rate 𝜆. Passengers are thus assumed to arrive at stops independent of expected vehicle
rrivals. The spatial distribution of passenger arrivals is uniform among stops A-D as displayed in Fig. 4 (right). Passenger access
nd egress time at stops are assumed to be the same for both services.

Passenger boarding follows a first-in-first-out regime. Passengers that may be left behind if denied boarding, or that experience
onger waiting times, remain at the stop and wait for the next available vehicle. Passengers have no intrinsic preference for a specific
ehicle type or operational policy.

Operational speeds are constant for all links, and vehicle types. Layover times between trips are considered negligible. Both
ervices utilize the same fixed boarding/alighting points. The number of stops and the spacing between them is considered constant.
well times and boarding/alighting time per passenger are assumed the same for both operational policies and vehicle types. Fare is
ssumed equal between both services. Differences in external effects between operational policies and vehicle types are considered
egligible.

Fixed service vehicles visit stops sequentially along perimeter links of the service region in a cycle (stops A→B→C→D→E→A in
Fig. 4). Vehicles operate on schedules according to a fixed headway policy.

On-demand service vehicles serve requests as direct trips to the transfer stop with no detouring. On-demand vehicles are
coordinated using the greedy assignment procedure described in Section 3.2 with the ranking function described in Eq. (5) that
prioritizes the largest group of unassigned requests. No strategy for rebalancing on-call vehicles without a trip currently assigned
to them is applied. In-vehicle time reductions for direct routes relative to the fixed circular feeder are displayed in Fig. 4 (right).
Passengers transmit a request with their OD and time of arrival upon arrival to a stop and not at any intermediate points between
them. Passengers do not cancel requests once sent, and requests are always accepted by the fleet manager of the on-demand service
independent of system state.

A potential reduction in operational cost per hour for a fixed transit service with vehicle automation is estimated to motivate
an increase in fleet size. The operational cost estimates are based off the model developed by Zhang et al. (2019). Using similar
notation, the operating cost per vehicle-hour (𝑔𝑜𝑝𝑒𝑟𝑠 ) and capital cost per vehicle hour (𝑔𝑐𝑝𝑡𝑙𝑠 ) for an AV of size 𝑠 (seating and standing
capacity) is given by

𝑔𝑜𝑝𝑒𝑟𝑠 = (1 − 𝜂)𝑐𝑜𝑝𝑒𝑟 + 𝑏𝑜𝑝𝑒𝑟𝑠 (8)

and

𝑔𝑐𝑝𝑡𝑙𝑠 = (1 + 𝜁 )𝑐𝑐𝑝𝑡𝑙 + 𝑏𝑐𝑝𝑡𝑙𝑠 (9)

respectively. The parameters 𝑐𝑜𝑝𝑒𝑟 and 𝑐𝑐𝑝𝑡𝑙 correspond to unit fixed operating, and capital costs per vehicle-hour respectively.
Parameters 𝑏𝑜𝑝𝑒𝑟 and 𝑏𝑐𝑝𝑡𝑙 correspond to unit size-dependent operating, and capital costs per vehicle hour respectively. The parameter
𝜂 is defined as a percentage decrease in unit operational costs due to the reduction in labor costs when replacing a non-AV with
an AV with a high level of automation. The parameter 𝜁 corresponds to a percentage increase in unit capital cost due to changes
in acquisition costs of AVs. Using these cost estimates, vehicle-size dependent fleet-sizes, denoted 𝑓𝑠, with comparable operational
cost per hour are estimated.

4.1.2. Parameter set-up
To explore relative performance sensitivities to demand intensity, total passenger arrival rates 𝜆 is set to 25–300 passengers/hour

over one simulated hour. Fixed and on-demand fleets have the same operational speeds of 30 km/h on all links in the network.
Perimeter links (e.g., A→B or A→E in Fig. 4) have a length of 1.5 km. Diagonal distances (e.g., A→D or C→E in Fig. 4) are
thus approximately 2.4 km. Given this network and demand configuration, two buses with capacities of 50 passengers/vehicle
are required to provide a 12-minute headway policy for the fixed circular feeder route with a maximum service capacity of 250
passengers/hour. Using this as a base case, we estimate the planned operational cost per hour for this service and evaluate the
potential of expanding the existing fleet size with a larger fleet of AVs.

In the study of Zhang et al. (2019), the operating cost parameters 𝑐𝑜𝑝𝑒𝑟 and 𝑏𝑜𝑝𝑒𝑟 are estimated based on a sum of time-related
operating costs and distance-related operating costs. The distance-based operating cost per vehicle-kilometer (𝑔𝑘𝑚𝑠 ) for the on-demand
service is estimated by assuming that distance-based costs are the same between AV and non-AV vehicle types. Assuming time-based
operating and capital costs are the same between fixed and on-demand operations, this estimate is then used to evaluate differences
in operational cost between fixed and on-demand services as a result of total VKT required to serve all passengers (𝑑𝑣𝑘𝑡).

The estimated reduction in operational and capital costs used in the study by Zhang et al. (2019) depend on expected operational
speeds of 15 km/h for urban transit. Given the same data (Australian Transport Council, 2006) but with an expected operational
speed of 30 km/h, the estimated intercepts and slopes of the relationships in Eqs. (8) and (9) are 𝑐𝑜𝑝𝑒𝑟 = 39.24 e/vehicle/hour,
𝑏𝑜𝑝𝑒𝑟 = 0.145 e/vehicle/hour, 𝑐𝑐𝑝𝑡𝑙 = 1.4 e/vehicle/hour, and 𝑏𝑐𝑝𝑡𝑙 = 0.099 e/vehicle/hour, using a conversion rate of 1AUD =
0.63e.

With the reasoning that crew costs could be eliminated by utilizing fully AVs, 𝜂 is estimated to be 53%. This is given by the ratio
between per-hour labor costs (20.79 e/vehicle/hour independent of vehicle capacity) and the estimated fixed operating cost per
vehicle hour 𝑐𝑜𝑝𝑒𝑟. Note that there may be additional changes in operational costs besides driving crew costs that are not included
10

(e.g., vehicle insurance, fleet operator costs, or vehicle maintenance). The parameter for 𝜁 is set to 50%, assuming an increase in
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Table 2
Experiment design parameters.
Description Notation Value Unit

Network and Demand input:

Length of network perimeter link l 1.5 km
Length of network diagonal link 2.4 km
Service area size 3.9 km2

Demand intensities 𝜆 25,50,100,200,300 pass/h

Service input:

Vehicle speeds 30 km/h
Vehicle sizes s 25,50 (veh,pass/veh)
Fleet sizes dependent on vehicle-size (𝑠=25,50) 𝑓𝑠 4,2 veh
Fixed service headway dependent on fleet-size (𝑓𝑠=4,2) 6,12 min/veh

Operator costs:

Percentage decrease in unit operational costs with vehicle automation 𝜂 53 %
Percentage increase in unit capital cost with vehicle automation 𝜁 50 %
Unit fixed operating cost per vehicle-hour 𝑐𝑜𝑝𝑒𝑟 39.24 e/veh/h
Unit size-dependent operating cost per vehicle-hour 𝑏𝑜𝑝𝑒𝑟 0.145 e/veh/h
Unit fixed capital cost per vehicle-hour 𝑐𝑐𝑝𝑡𝑙 1.4 e/veh/h
Unit size-dependent capital cost per vehicle-hour 𝑏𝑐𝑝𝑡𝑙 0.099 e/veh/h
Distance-based operating costs dependent on vehicle size (𝑠=25,50) 𝑔𝑘𝑚𝑠 0.54, 0.66 e/km

Passenger costs:

Value of in-vehicle time 𝛽𝑖𝑣𝑡 5.9 e/h
Value of waiting time 𝛽𝑤𝑎𝑖𝑡 2⋅𝛽𝑖𝑣𝑡 e/h
Value of waiting time if denied boarding 𝛽𝑑𝑒𝑛𝑖𝑒𝑑 7⋅𝛽𝑖𝑣𝑡 e/h

acquisition cost due to the additional equipment required to enable automated driving, but also speculating that current costs of AVs
will decrease if mass production is achieved. Plugging the estimated values into Eqs. (8) and (9) gives us the vehicle-size dependent
operational cost per vehicle-hour for both non-AVs (i.e., 𝜂 and 𝜁 are 0%) and for AVs when operated as a fixed service.

With this it is estimated that two non-automated buses of capacity 50 passengers/vehicle can be replaced by approximately four
Vs of capacity 25 passengers/vehicle, for the same operational cost per hour and while keeping planned service capacity the same
hen operated as a fixed service. With a fixed operational policy the scheduled headway with a doubled fleet size is thus reduced

o 6 min. Operational cost per kilometer are estimated at 𝑔𝑘𝑚25 = 0.54 e/km for vehicles of size 25 and 𝑔𝑘𝑚50 = 0.66 e/km for vehicles
of size 50 using the same data from Australian Transport Council (2006).

For consistency, the value of in-vehicle time 𝛽𝑖𝑣𝑡 = 5.9 e/h for peak hour bus transport recommended in Australian Transport
Council (2006) is used. The weight of perceived waiting time is set to double that of in-vehicle time, 𝛽𝑤𝑎𝑖𝑡 = 2 ⋅ 𝛽𝑖𝑣𝑡, based on the
study of Wardman (2004). The value of waiting time due to denied boarding 𝛽𝑑𝑒𝑛𝑖𝑒𝑑 = 7 ⋅𝛽𝑖𝑣𝑡 is used based on the study of Cats et al.
(2016). Travel costs associated with transfers for this case study are the same for both of the simulated service designs, and are
hence omitted in the comparison. A summary of the parameters used in numerical experiments for Case 1 is presented in Table 2.

In summary a total of 20 scenarios are simulated: two vehicle sizes (𝑠 ∈ {25, 50} passengers/vehicle with corresponding fleet size
𝑓𝑠) and five demand levels (combined rates of 𝜆 ∈ {25, 50, 100, 200, 300} passengers/h) for fixed and on-demand operational policies.
In Section 5 each scenario is denoted by FC(𝑓𝑠, 𝑠, 𝜆) for fixed operations and DRT(𝑓𝑠, 𝑠, 𝜆) for on-demand operations. Passengers
are generated over one simulated hour. Output statistics are calculated for both on-demand and fixed scenarios for the time period
starting with the first passenger arrival and until all passengers have reached their destination. Prior to the first passenger arrival a
warm-up time is included to distribute fixed service vehicles with an even headway along the circular route. Given the stochastic
nature of the simulation (the random passenger arrivals), each scenario is simulated with 400 replications. This results in a smaller
than 1% relative standard error for all mean estimates.

4.2. Case 2: Stockholm case study

In the second case study we apply the DRT feeder operations to the Stockholm area, specifically to lines 176 and 177 which form
a trunk-and-branches network connecting rural parts of the Drottningholm and Ekerö islands to the more central parts of Stockholm,
running between Solbacka and Skärvik on the west side and Mörby in the northeast. In Fig. 5 the two branches and trunk are shown.
The timetables of the two lines are planned such that they run as a trunk line on the shared part of the line, but irregularities and
bunching regularly occur. In Laskaris et al. (2018) this network was used to study multi-line holding control for the trunk part in
order to improve coordination and regularity. In this paper we investigate instead the possibility of restricting the fixed service to
the trunk portion of the network, while operating a flexible service on the branches. In theory this could improve the regularity of
the service on the trunk line and provide a more robust and adaptive service on the branches, also allowing rebalancing of service
across the branches in case of asymmetric demand. As in Laskaris et al. (2018) we focus on the eastbound direction of the service.

In Fig. 6 the demand profile for both lines is shown. The distribution of total demand on the branches and on the shared corridor is
11

displayed in Table 3. Empirical data for the demand and travel times of the lines were obtained from the Stockholm public transport
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Fig. 5. Lines 176 and 177 in Stockholm. The purple portion is common for both lines (trunk portion). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
Source: Laskaris et al. (2018)

Table 3
Demand distribution breakdown for line 176 and line 177.
Source: (Laskaris et al., 2018).

Line 176 Line 177

Passengers per
vehicle trip

Share of total
demand

Passengers per
vehicle trip

Share of total
demand

Total demand 147 100% 144 100%
Demand on branch 14 9.5% 7 4.9%
Demand on shared transit corridor 133 90.5% 137 95.1%
Corridor demand generated at branch stops 40 27.2% 44 30.6%
Corridor demand generated at corridor stops 93 63.3% 93 64.5%

authority (SLL) and specified as input to the simulation model. As can be observed in Fig. 6 and Table 3, the two lines have similar
demand profiles where passengers board along both the branch and the trunk but alight mostly along the trunk.

4.2.1. System definition and assumptions
In this study, lines 176 and 177 are merged into a single corridor (or trunk) line starting from the first common stop (stop 20

for line 176 and stop 13 for line 177) and ending at Mörby station. The branches, consisting of stops 1–19 (line 176) and 1–12 (line
177) are now operated by a flexible service. To characterize the variability of vehicle running times, travel times between stops are
sampled from log-normal distributions. These distributions are parameterized by the scheduled travel time as the mean and a 10%
standard deviation of the mean, calculated from AVL data. As in Laskaris et al. (2018), only unidirectional demand is considered to
focus evaluation on the first-mile use case. The propagation of trip delays across sequential fixed service trips by the same vehicle
is not considered. Fixed service vehicles are in other words modeled with perfect even headways at dispatch points according to
schedule, while on-trip delays (e.g., bunching due to passenger congestion effects and variability of travel times between stops) can
still occur. For flexible service vehicles, with routes and schedules assigned in real time, delays will propagate to future trips by the
same vehicle.

Passengers using the flexible service to a destination on the trunk will transfer at the start of the trunk line and continue their
trips to their final destinations. Similar to the operation of the on-demand service in Section 4.1, passengers will request on-demand
trips to the transfer stop if their final destination lies on the corridor or to their final destination if it lies on a branch. In contrast
12
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Fig. 6. Demand and load profiles for lines 176 and 177 in Stockholm. (For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
Source: Laskaris et al. (2018)

to Case 1, however, flexible vehicles may also be assigned additional requests while already en-route, taking advantage of the more
linear organization of the stops on branches. The insertion of an additional request into an existing trip plan is considered feasible if
both pickup and drop-off do not require an assigned vehicle to backtrack from already planned stop visits downstream towards the
transfer stop, and if the forecasted load of the vehicle based on already assigned requests does not exceed its maximum passenger
capacity.

To focus the evaluation of the flexible service as a true replacement of a public transit service in this study, LoS constraints are
not included to instead evaluate what kind of LoS can be achieved for existing public transit demand. All requests are accepted, and
requests are not canceled, but passengers may opportunistically board another vehicle than the one that was assigned to their trip,
if that vehicle arrives earlier and serves the passenger destination (transfer) stop. This will then be notified to the fleet manager.

4.2.2. Parameter set-up
The baseline service against which we compare the DRT services, is the fixed-line service as is currently in operation (and from

which the demand and performance data were retrieved), without the improved holding control proposed in Laskaris et al. (2018).
Buses in the baseline scenario are dispatched from end stops Solbacka and Skärvik according to a 10-minute even-headway policy.
Dispatch times and stop visits are planned such that a joint 5-minute headway is coordinated (in the absence of bunching) from the
first common stop on the trunk.

When shortening the service to the trunk line, while keeping the same frequency, the fixed bus fleet can be reduced by a total
of 10 buses, each with capacity for 100 passengers. We redistribute these 1000 seats in two DRT fleet scenarios, one consisting of
50 vehicles with a capacity of 20 and one of 100 smaller vehicles with capacity 10. With the same operational cost assumptions as
described for Case 1 in Section 4.1.2, a smaller fleet is also considered. Using the operational cost parameters in Table 2 and cost
relationships with and without vehicle automation in Eqs. (8) and (9), it is estimated that 10 non-automated buses of capacity 100
passengers/vehicle can be replaced by approximately 26 AVs of capacity 20 passengers/vehicle for the same operational cost per
hour.

We compare the two different ranking functions for the nearest neighbor algorithm: based on serving the maximum number of
served requests (Eq. (5)) and based on serving the OD trip plans with maximum cumulative waiting time for the assigned requests
13
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Table 4
Scenario definitions for case study 2.

Scenario Fixed
fleet

DRT
fleet

DRT
capacity

Algorithm

Fixed 38 0 – –
26x20 maxR 28 26 20 #Requests
50x20 maxR 28 50 20 #Requests
100x10 maxR 28 100 10 #Requests
26x20 cumWT 28 26 20 CumulativeWait
50x20 cumWT 28 50 20 CumulativeWait
100x10 cumWT 28 100 10 CumulativeWait
26x20 maxR-rb 28 50 20 #Requests+Rebalancing
50x20 maxR-rb 28 50 20 #Requests+Rebalancing
100x10 maxR-rb 28 100 10 #Requests+Rebalancing
26x20 cumWT-rb 28 26 20 CumulativeWait+Rebalancing
50x20 cumWT-rb 28 50 20 CumulativeWait+Rebalancing
100x10 cumWT-rb 28 100 10 CumulativeWait+Rebalancing

(Eq. (6)). Intuitively, the latter should provide a more equitable reassignment of empty vehicles, since it is sensitive to both the
number of requests and the waiting times.

Results are also provided with and without the application of a simple rebalancing strategy for on-call vehicles not currently
ssigned to any trip. For scenarios where rebalancing is applied, checks are performed at 1-minute intervals throughout the
imulation. If available, on-call vehicles are redistributed to end stops Solbacka and Skärvik such that an equal supply (the
otal number of on-call vehicles at the stop plus the number of vehicles en-route to this stop) at these stops is maintained. The
onfiguration of the 13 scenarios is presented in Table 4.

For each scenario we report the results for the following passenger groups: branch-to-branch passengers (B2B), branch-to-corridor
B2C), corridor-to-corridor (C2C), as well as overall (Total). Passengers in the B2C group will experience an additional transfer cost
hen replacing fixed service branches with an on-demand feeder service. The additional transfer cost used in calculating generalized

ravel costs of travelers in the B2C category is equal to 5 min of in-vehicle time (Balcombe et al., 2004). Using the same value of
n-vehicle time as in Case 1 (see Table 2), the fixed cost penalty per transfer 𝛽𝑡𝑟𝑎𝑛𝑠 = 0.49e is applied in calculating generalized

travel costs for all on-demand scenarios.
We focus on the same KPIs as previously defined as the main LoS criteria: average and standard deviations for passenger costs,

waiting times, and in-vehicle times. In addition we consider the Gini coefficient, the CV and percentiles of waiting times, in order
to investigate the equity effects of the scenarios for the various passenger groups.

All results are averaged over 50 simulation replications per scenario, for which the relative standard error of the mean was
smaller than 1% for all reported KPIs. Passengers are generated over 2.5 simulated hours. Output statistics are calculated for both
on-demand and fixed scenarios for all trips that started and completed within the passenger generation period. Prior to the first
passenger arrival a warm-up time is included to distribute fixed service vehicles with an even headway along fixed lines in all
scenarios. On-demand vehicles are initialized as on-call uniformly distributed at all branch stops.

5. Results and analysis

In this section we analyze the results for both the simplified and the real-world case studies. The results for Case 1 (circular
feeder network) are presented in Section 5.1 and the results for Case 2 (Stockholm case study) are analyzed in Section 5.2.

5.1. Case 1: Circular feeder network

The simulated scenarios are evaluated based on metrics of passenger cost, individual passenger travel time components and total
VKT. Table 5 displays the computed averages (𝑡) and standard deviation (𝜎) of all 𝑡𝑖𝑣𝑡, 𝑡𝑤𝑎𝑖𝑡 and 𝑡𝑑𝑒𝑛𝑖𝑒𝑑 over all simulation replications.
urthermore, average and standard deviation of passenger total travel time (𝑡𝑡𝑡, 𝜎𝑡𝑡), weighted travel cost per passenger (𝑐𝑝𝑐𝑜𝑠𝑡, 𝜎𝑝𝑐𝑜𝑠𝑡)
nd total VKT (𝑑𝑣𝑘𝑡, 𝜎𝑣𝑘𝑡) are displayed.

For convenience, using the equivalent fixed service scenario as a reference, the relative change with on-demand operations is
hown in Table 6.

As displayed in Table 6, with more direct routes in-vehicle times are on average 47% shorter in all DRT scenarios, resulting
n shorter average total travel times for all levels of demand and for both fleet compositions. Average VKT also decreases with
n-demand operations for all scenarios with a larger fleet size. However, total waiting times as well as weighted passenger travel
osts are in general higher for all DRT scenarios, with the exception of the highest level of demand.
14
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Table 5
Summary of simulation results for all scenarios.

Scenario Performance metrics

(𝑓𝑠, 𝑠, 𝜆) 𝑡𝑖𝑣𝑡; 𝜎𝑖𝑣𝑡 𝑡𝑤𝑎𝑖𝑡; 𝜎𝑤𝑎𝑖𝑡 𝑡𝑑𝑒𝑛𝑖𝑒𝑑 ; 𝜎𝑑𝑒𝑛𝑖𝑒𝑑 𝑡𝑡𝑡; 𝜎𝑡𝑡 𝑐𝑝𝑐𝑜𝑠𝑡; 𝜎𝑝𝑐𝑜𝑠𝑡 𝑑𝑣𝑘𝑡; 𝜎𝑣𝑘𝑡

[s] [s] [s] [s] [e] [km]

FC(4,25,25) 454; 203 180; 105 – 634; 229 1.22; 0.44 112.77; 0.04
FC(4,25,50) 458; 205 181; 105 – 639; 231 1.23; 0.44 111.13; 0.03
FC(4,25,100) 459; 205 180; 105 – 639; 230 1.23; 0.44 112.60; 0.02
FC(4,25,200) 466; 207 180; 105 7; 51 653; 228 1.32; 0.65 111.02; 0.02
FC(4,25,300) 469; 208 181; 104 324; 682 974; 587 4.81; 7.16 133.92; 0.02

DRT(4,25,25) 238; 55 302; 304 – 540; 313 1.28; 0.95 59.12; 9.26
DRT(4,25,50) 240; 56 351; 304 – 591; 312 1.43; 0.95 77.42; 8.18
DRT(4,25,100) 243; 56 378; 295 – 620; 303 1.52; 0.92 88.91; 7.20
DRT(4,25,200) 248; 56 398; 291 – 646; 299 1.59; 0.90 96.35; 6.53
DRT(4,25,300) 253; 56 413; 296 3; 52 669; 306 1.67; 1.05 99.09; 5.61

FC(2,50,25) 458; 204 358; 208 – 817; 291 1.77; 0.71 59.38; 0.02
FC(2,50,50) 460; 206 362; 207 – 822; 291 1.79; 0.70 59.33; 0.02
FC(2,50,100) 465; 208 362; 208 – 827; 293 1.79; 0.71 59.31; 0.01
FC(2,50,200) 477; 212 360; 209 3; 48 840; 294 1.85; 0.84 59.30; 0.01
FC(2,50,300) 484; 213 363; 209 276; 632 1123; 567 4.87; 6.63 74.56; 0.01

DRT(2,50,25) 238; 55 421; 371 – 659; 377 1.64; 1.15 53.03; 5.85
DRT(2,50,50) 241; 55 505; 395 – 746; 400 1.91; 1.22 61.88; 3.89
DRT(2,50,100) 244; 56 546; 392 – 789; 398 2.04; 1.21 65.54; 2.78
DRT(2,50,200) 252; 56 587; 404 – 838; 408 2.18; 1.25 66.94; 2.20
DRT(2,50,300) 259; 56 617; 418 – 876; 422 2.28; 1.29 66.62; 2.19

Table 6
Relative differences under on-demand operations using the equivalent fixed scenario as a reference. 𝛥𝑖𝑣𝑡 denotes the difference in
average in-vehicle time, 𝛥𝑡𝑤𝑎𝑖𝑡 difference in average total waiting time, 𝛥𝑡𝑡 difference in average total travel time, 𝛥𝑐𝑜𝑠𝑡 difference
in average passenger cost and 𝛥𝑣𝑘𝑡 difference in average VKT.
Scenario
FC→DRT

Relative differences

𝛥𝑖𝑣𝑡 𝛥𝑡𝑤𝑎𝑖𝑡 𝛥𝑡𝑡 𝛥𝑝𝑐𝑜𝑠𝑡 𝛥𝑣𝑘𝑡

[s] [s] [s] [e] [km]

(4,25,25) −48% 68% −15% 5% −48%
(4,25,50) −48% 94% −8% 16% −30%
(4,25,100) −47% 110% −3% 24% −21%
(4,25,200) −47% 113% −1% 20% −13%
(4,25,300) −46% −18% −31% −65% −26%

(2,50,25) −48% 18% −19% −7% −11%
(2,50,50) −48% 40% −9% 7% 4%
(2,50,100) −48% 51% −5% 14% 11%
(2,50,200) −47% 62% 0% 18% 13%
(2,50,300) −46% −3% −22% −53% −11%

5.1.1. Weighted travel costs
For comparison of absolute and relative differences in average travel cost components for passengers, Fig. 7 displays average

eighted travel costs per passenger trip for the larger fleet (top row) and smaller fleet (bottom row) respectively. Unsurprisingly,
eighted travel costs are lower when a larger fleet is deployed for both operational policies and for all levels of demand. Average

n-vehicle times across levels of demand stay relatively stable for all the simulated scenarios. Average waiting time is also stable
etween demand levels for the fixed service when there is slack in service capacity (i.e., for scenarios with demand intensity 𝜆 < 250

passengers/hour). The core source of differences in average passenger costs between fixed and on-demand operational policies thus
stems from differences in waiting times.

While the on-demand service results in total travel times that are on average shorter (see Table 6), average waiting times are
generally longer and grow with demand level relative to the fixed service. When evaluated at double the weighted travel cost relative
to in-vehicle time, the discount in total travel time does not compensate for increases in required waiting times. However, for the
highest level of demand, when the planned service capacity of the fixed fleet is exceeded, a substantial number of passengers are
denied boarding, which has a large impact on weighted travel costs for these scenarios.

5.1.2. System cost
Table 7 displays a summary of average system cost components for each of the simulated scenarios. The average system cost

(𝑧𝑠𝑦𝑠) for each scenario is defined as the sum of the corresponding average time-based and distance-based operational costs (𝑧𝑜𝑝𝑒𝑟)
15
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Fig. 7. Average weighted travel cost per passenger for all scenarios. The top row corresponds to results from the scenario with 4 vehicles of size 25
passengers/vehicle, and the bottom row corresponds to scenarios with 2 vehicles of size 50 passengers/vehicle. The left column corresponds to results with
on-demand operations and the right column fixed operations. (For interpretation of the references to color in this figure legend, the reader is referred to the
web version of this article.)

and average total passenger cost (𝑧𝑡𝑝𝑐𝑜𝑠𝑡). Average total passenger costs are given by the average weighted travel cost per passenger
trip (𝑐𝑝𝑐𝑜𝑠𝑡) multiplied by the demand level of a given scenario. Since both time and distance required to serve all passengers are
dependent on operational policy and demand level, the average operating hours required to serve all passengers (𝑡𝑜𝑝𝑒𝑟) and the
ifference in average distance based costs for each on-demand scenario relative to fixed (𝛿𝑑𝑐𝑜𝑠𝑡) are also presented.

Fig. 8 displays the relative change in system cost with on-demand operations using the equivalent fixed scenario as a reference.
or both fleet compositions, the on-demand policy results in a lower average system cost only for the lowest demand level under
he maximum fixed service capacity. On-demand operations outperforms fixed service operations with respect to both average
perational cost and total passenger costs only for the lowest demand level and the smaller fleet of larger vehicles. When planned
ixed service capacity is exceeded, on-demand operations substantially reduces average system cost.

.1.3. Waiting time distributions
To investigate differences in service reliability with respect to waiting times for each operational policy, total waiting time CVs

re displayed in Fig. 9 for each level of demand. The relative variance of waiting times for the fixed service is always lower than for
he on-demand service with the exception of when passengers are denied boarding. With higher rates of passenger arrivals, greedy
nd reactive routing and scheduling results in a relative variance of waiting times that decreases with higher levels of demand for
oth fleet compositions.

To evaluate the distribution of waiting time costs, Table 8 displays the Gini coefficients of total waiting time distribution for
ll scenarios. Across all demand levels under maximum service capacity the fixed policy results in a more equitable distribution of
aiting time among passengers relative to on-demand operations. Inequality of passenger total waiting times increases drastically

or the fixed service for the highest demand level, indicating that a decrease in the availability of the service affects passengers
ery unevenly. For the on-demand case the induced increase in total waiting times with higher demand is instead distributed more
venly among all passengers.

In Fig. 10, distributions of total waiting time are displayed for the lowest and highest demand scenarios, which represent the
16
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Table 7
System cost components for all scenarios.
Scenario System cost components

(𝑓𝑠, 𝑠, 𝜆) 𝛿𝑑𝑐𝑜𝑠𝑡 𝑡𝑜𝑝𝑒𝑟 𝑐𝑝𝑐𝑜𝑠𝑡 𝑧𝑜𝑝𝑒𝑟 𝑧𝑡𝑝𝑐𝑜𝑠𝑡 𝑧𝑠𝑦𝑠

[e] [h] [e/pass] [e] [e] [e]

FC(4,25,25) – 1.16 1.22 124 31 154
FC(4,25,50) – 1.19 1.23 127 62 188
FC(4,25,100) – 1.20 1.23 128 123 251
FC(4,25,200) – 1.21 1.32 129 264 393
FC(4,25,300) – 1.37 4.81 146 1443 1589

DRT(4,25,25) −29 1.20 1.28 99 32 131
DRT(4,25,50) −18 1.28 1.43 118 72 189
DRT(4,25,100) −13 1.35 1.52 131 152 283
DRT(4,25,200) −8 1.39 1.59 140 318 458
DRT(4,25,300) −19 1.41 1.67 131 501 632

FC(2,50,25) – 1.22 1.77 129 44 173
FC(2,50,50) – 1.27 1.79 134 90 223
FC(2,50,100) – 1.30 1.79 137 179 316
FC(2,50,200) – 1.31 1.85 138 370 508
FC(2,50,300) – 1.40 4.87 148 1461 1609

DRT(2,50,25) −4 1.24 1.64 127 41 168
DRT(2,50,50) 2 1.37 1.91 146 96 241
DRT(2,50,100) 4 1.42 2.04 154 204 358
DRT(2,50,200) 5 1.46 2.18 160 436 596
DRT(2,50,300) −5 1.48 2.28 151 684 835

Fig. 8. Relative differences in system cost with on-demand operations using the equivalent fixed scenario as a reference for the (4,25) fleet (left) and the (2,50)
fleet (right). 𝛥𝑜𝑝𝑒𝑟 denotes the difference in average operational cost required to serve all passengers, 𝛥𝑡𝑝𝑐𝑜𝑠𝑡 the difference in average total passenger cost and
𝛥𝑠𝑦𝑠 the difference in average system cost. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Table 8
Gini coefficients of total waiting times.
Scenarios Demand level

25 50 100 200 300

FC(4,25) 34% 33% 34% 34% 60%
DRT(4,25) 47% 44% 42% 40% 39%
FC(2,50) 33% 33% 33% 34% 49%
DRT(2,50) 43% 41% 39% 39% 38%

in three peaks in waiting time frequencies for this service, most clearly seen for the lowest level of demand (left). Each peak
corresponds to the current closest location of a DRT vehicle when a new request has been received. The peak at zero total waiting
time corresponds to when a vehicle is already at the origin of the passenger, 180 s when the closest vehicle is at a neighboring stop
to the origin of the passenger, and 235 s when the closest vehicle is at diagonal stop to that of the passenger’s origin. From the
distributions in Fig. 10 (right) it is apparent that the reduction in available service capacity most heavily influences only a portion
of the passengers for the fixed service. With a fixed circular feeder that serves stops sequentially, passengers furthest downstream
towards the transfer stop are most heavily effected by a decrease in service availability and are continuously denied boarding until
17
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Fig. 9. Total waiting time coefficient of variation per demand level for fixed (blue) and on-demand (red) operational policies for the (4,25) fleet (left) and
(2,50) fleet (right). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. Passenger total waiting time distributions for FC(4,25) (blue) and DRT(4,25) for the lowest (left) and highest (right) demand levels. Bars above each
histogram display the mean and ±1 standard deviation of each distribution. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

emand subsides. With an operational policy where all stops are interchangeable in terms of supply provision, the shape of the
aiting time distribution remains the same for all stops for the on-demand service. As seen in Fig. 10, both average and standard
eviation of total waiting time is lower for the fixed service relative on-demand operations. For the highest demand level this is
eversed, with a lower average and standard deviation of total waiting times for the on-demand service.

.2. Case 2: Stockholm case study

In this section the results of the second case study are discussed. All results are the average over 50 simulation replications for
ach scenario. The computations were performed on an Intel I7 processor with 16GB of ram. Each replication required on average
5 s and all 650 replications for all 13 scenarios took 29250 s to complete. Table 9 reports the main passenger LoS results.

Starting with the overall results (Total), the number of transported passengers decreases from 2205 to 2190 with the smallest
leet of 26 vehicles with 20 seats (26x20) and the maxR sorting criterion. The cumWT marginally increases this value to 2195.
he addition of rebalancing slightly increases this to 2196 (maxR-rb) and 2207 (cumWT-rb). When increasing the fleet size to 50
ehicles, the number of passengers transported increases to 2251 for the first three variants and 2257 for the cumWT-rb. The largest
leet size of 100 vehicles only yields more passengers transported (2263) for the two rebalancing variants (maxR-rb and cumWT-rb).

Regarding the overall waiting times, the median waiting time for the fixed service is 256 s. All DRT scenarios improve on this,
anging from 203 s for the 26x20 cumWT-rb variant, to 168 s for the two rebalancing variants of the largest fleet. The average
aiting times, however, are higher for the smallest fleet size, ranging from 283 to 295 s versus 268 s for the fixed service. The
18

wo larger DRT fleet sizes clearly improve on the fixed service with average waiting times ranging from 229 s to 183 (again for the
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Table 9
Summary of simulation results per passenger category and scenario.

Performance metrics

Scenario �̄�𝑝𝑎𝑠𝑠 𝑡𝑤𝑎𝑖𝑡; 𝜎𝑤𝑎𝑖𝑡 𝑚𝑒𝑑(𝑡𝑤𝑎𝑖𝑡) 𝐶𝑉 𝑤𝑎𝑖𝑡 𝐺𝑤𝑎𝑖𝑡 𝑚𝑎𝑥(𝑡𝑤𝑎𝑖𝑡) 𝑡𝑖𝑣𝑡 𝑐𝑝𝑐𝑜𝑠𝑡

[pass] [sec] [sec] [sec] [sec] [e]

Fixed 2205 268; 176 256 0.66 38% 725 1427 3.12
26x20 maxR 2190 283; 359 199 1.27 51% 4414 1395 3.4
26x20 cumWT 2195 283; 356 199 1.26 51% 4219 1394 3.39
26x20 maxR-rb 2196 296; 385 202 1.3 52% 4370 1389 3.45
26x20 cumWT-rb 2207 295; 379 203 1.29 52% 4158 1397 3.44
50x20 maxR 2251 228; 211 186 0.92 44% 1671 1387 3.09

Total 50x20 cumWT 2251 229; 213 187 0.93 44% 1758 1392 3.1
50x20 maxR-rb 2251 225; 216 185 0.96 44% 2315 1386 3.07
50x20 cumWT-rb 2257 225; 213 185 0.95 44% 2245 1396 3.09
100x10 maxR 2251 218; 196 183 0.9 43% 1636 1384 3.14
100x10 cumWT 2251 218; 196 183 0.9 43% 1636 1384 3.14
100x10 maxR-rb 2263 183; 136 168 0.74 40% 1218 1384 2.94
100x10 cumWT-rb 2263 183; 136 168 0.74 40% 1218 1384 2.94

Fixed 1476 253; 174 237 0.69 39% 720 1152 2.65
26x20 maxR 1490 167; 111 154 0.67 38% 598 1147 2.35
26x20 cumWT 1497 166; 112 153 0.67 38% 575 1145 2.34
26x20 maxR-rb 1491 167; 112 154 0.67 38% 585 1141 2.34
26x20 cumWT-rb 1500 167; 112 154 0.67 38% 585 1148 2.35
50x20 maxR 1492 165; 108 153 0.66 37% 570 1135 2.32

C2C 50x20 cumWT 1490 165; 109 153 0.66 37% 583 1141 2.32
50x20 maxR-rb 1491 166; 109 154 0.66 37% 559 1139 2.32
50x20 cumWT-rb 1498 166; 110 154 0.66 37% 571 1149 2.34
100x10 maxR 1496 165; 108 154 0.66 37% 562 1143 2.33
100x10 cumWT 1496 165; 108 154 0.66 37% 562 1143 2.33
100x10 maxR-rb 1497 164; 108 153 0.66 37% 570 1140 2.32
100x10 cumWT-rb 1497 164; 108 153 0.66 37% 570 1140 2.32

Fixed 581 298; 177 294 0.59 34% 676 2191 4.4
26x20 maxR 558 504; 507 360 1.01 43% 3755 2132 5.92
26x20 cumWT 560 513; 509 365 0.99 43% 3681 2128 5.94
26x20 maxR-rb 556 561; 533 407 0.95 42% 3788 2133 6.21
26x20 cumWT-rb 564 556; 545 398 0.98 43% 3647 2135 6.13
50x20 maxR 594 342; 253 281 0.74 37% 1653 2116 5.06

B2C 50x20 cumWT 596 346; 260 283 0.75 37% 1749 2117 5.06
50x20 maxR-rb 587 364; 280 299 0.77 37% 2101 2122 5.12
50x20 cumWT-rb 590 362; 273 298 0.75 36% 2012 2125 5.14
100x10 maxR 587 322; 241 267 0.75 37% 1622 2101 5.2
100x10 cumWT 587 322; 241 267 0.75 37% 1622 2101 5.2
100x10 maxR-rb 593 271; 162 254 0.6 31% 1218 2107 4.85
100x10 cumWT-rb 593 271; 162 254 0.6 31% 1218 2107 4.85

Fixed 148 296; 172 295 0.58 34% 615 1167 2.79
26x20 maxR 141 734; 787 505 1.07 52% 3790 1097 4.53
26x20 cumWT 137 718; 763 499 1.06 51% 3438 1110 4.48
26x20 maxR-rb 148 690; 781 438 1.13 54% 3623 1087 4.24
26x20 cumWT-rb 143 672; 727 434 1.08 53% 3564 1088 4.22
50x20 maxR 165 394; 398 251 1.01 53% 1527 1036 2.97

B2B 50x20 cumWT 164 387; 393 249 1.02 53% 1527 1041 2.96
50x20 maxR-rb 173 267; 380 104 1.42 65% 2021 1021 2.5
50x20 cumWT-rb 169 270; 378 108 1.4 65% 1953 1035 2.53
100x10 maxR 169 353; 378 216 1.07 56% 1502 1030 3.13
100x10 cumWT 169 353; 378 216 1.07 56% 1502 1030 3.13
100x10 maxR-rb 174 47; 61 14 1.29 61% 316 1014 1.74
100x10 cumWT-rb 174 47; 61 14 1.29 61% 316 1014 1.74

largest fleet size, with rebalancing). Maximum waiting times are worse for all DRT scenarios, but improve with larger fleet sizes
and for the 100x10 vehicle case through the use of rebalancing.

It is important to note here that especially with the larger fleet sizes, the differences between the cumWT and maxR sorting
riteria are minimal, due to the fact that vehicles are being rebalanced, the reactiveness of the algorithm (triggered by each request
nd each vehicle becoming available), and the assignment of requests to trip plans for en-route vehicles. There is rarely more than
ne trip plan that needs to be assigned at any time, thus the sorting criterion has little impact. With the smaller fleet size there is
small but noticeable difference between the two criteria.
19
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Table 10
Waiting time percentiles over all passengers for fixed and maxR scenarios.

Scenario 1 5 25 50 75 95 99

Fixed 3.6 18.4 110.9 256 410.4 561.1 626.9
26x20 maxR 3.5 19.9 100.3 199.2 320.8 916.7 1777.1
26x20 maxR-rb 3.6 19.8 100.4 202.2 332.4 989.4 1917.4
50x20 maxR 3.2 18.8 95.1 186.4 289.4 614.7 1132.7
50x20 maxR-rb 2.3 14.2 90.3 184.9 289.7 575.3 1116.5
100x10 maxR 2.6 17.3 91.7 182.8 283.4 570.4 1063
100x10 maxR-rb 1.8 10.3 77.5 167.7 262.7 407.4 595.5

The average in-vehicle time for the fixed service is 1427 s and between 1384 and 1395 s for the DRT scenarios. The superior
erformance of the DRT service is due to the fact that it does not need to stop at intermediate stops on the branches, unless there
re passengers to pick up en-route.

In terms of generalized costs per passenger, the smaller fleet size variants perform worse than the fixed service (3.39–3.45e vs.
3.12e), but the medium and largest fleet sizes perform similar, or better (2.94e for the 100x10 scenarios with rebalancing).

.2.1. Waiting time distributions per passenger category
Regarding the distributional effects, the CV for the waiting time is lowest for the fixed service (possibly due to the optimistic

egular departures) at 0.66, and is almost double that for the smallest fleet scenarios. The larger fleet sizes improve on this but even
he largest fleet size, with rebalancing, has a higher CV (0.74) than the fixed service. The Gini coefficients show a similar pattern,
here the fixed service may be optimistic at 38%, whereas the 26x20 scenarios have the highest values at 51%–52% and increasing

he fleet size reduces this to 44% for the 50x20 scenarios and 40% for the 100x10 scenarios with rebalancing.
Looking at the various passenger groups, starting with passengers boarding and alighting on the corridor (C2C), the average and

edian waiting times are drastically lower for all scenarios compared to the fixed service, with average waiting times ranging from
53 s for the fixed service to 164 s for the 100x10 scenarios with rebalancing. The maximum waiting time, CV and Gini coefficients
how that the DRT scenarios have a small positive effect on the waiting times for C2C passengers.

For the passengers boarding on a branch and alighting on the corridor (B2C), the waiting times are higher and more variable
hen compared to the fixed service with the exception of the 100x10 scenarios with rebalancing. The number of passengers served

ncreases from 558 to 593 with increasing fleet size. Gini coefficients improve for the 100x10 case with rebalancing, with CV on-par
ith fixed. For the B2C travelers, maximum waiting times as well as generalized travel costs (including the additional transfer
enalty) increase for all on-demand scenarios. Despite improvements on the trunk or the branches independently, B2C passengers
xperience an increase in generalized travel costs for all scenarios tested when compared to fixed.

For the passengers boarding and alighting on the branches (B2B), the DRT scenarios without rebalancing reduce the LoS with
igher and more variable waiting times. The cumWT algorithm improves on this for the 26x20 and 50x20 fleets, but practically
o difference is observed for the 100x10 vehicle case. With rebalancing, waiting time results improve considerably for the B2B
assenger group. For the 50x20 and 100x20 vehicle cases, average waiting time is improved to the degree that it is now better than
ixed. The 100x10 fleet scenarios stand out as being heavily improved by rebalancing. The number of passengers served increases
ith an average waiting time of 47 s and a median waiting time of 14 s. The maximum waiting time for this scenario also improves
rastically when compared to fixed from 615 s to 316 s. CV and Gini coefficients for these scenarios worsen, however, and are in
eneral inferior to fixed for all DRT scenarios.

In Fig. 11 the waiting time distributions for the fixed and maxR algorithm with and without rebalancing scenarios and passenger
roups (Total, C2C, B2C, and B2B) are plotted. In general the overall effects observed in Table 9 can be seen here as well. The
ain improvements in service regularity are found on the corridor portion (C2C) where the fixed service shows a larger dispersion

han the DRT scenarios. For B2C and B2B travelers, waiting time distributions tend to be heavily right-skewed with a tail of longer
aiting times, most clearly observed for the 26x20 fleet.

For the 26 vehicle fleet, waiting times in relation to fixed operations worsen for B2C and B2B travelers, with higher average- and
ore variable waiting times. With the addition of a rebalancing strategy for this fleet composition, marginal improvements to waiting

imes are achieved for B2B travelers at the expense of the B2C travelers. For the 50x20 and 100x10 fleets without rebalancing, a
ower average and median waiting time is achieved on an aggregate (Total) level, nevertheless still with long tail-ends for B2C
nd B2B travelers. The addition of rebalancing for the 50x20 fleet improves waiting times for the B2B travelers to the degree that
verages for this group now surpass the fixed scenario. However, this still comes at the expense of B2C travelers. The clearest
hange with rebalancing is observed for the 100x10 scenario, where waiting time averages and spread improve for B2C travelers
nd even more drastically for B2B travelers. This indicates that the previous assignment without rebalancing was inefficient, with
any vehicles grouping at the transfer stop. Proactively rebalancing these vehicles to branch start stops result in LoS provision with

onsiderably lower average waiting times and smaller spread within and across all passenger groups.
Table 10 displays waiting time percentiles for fixed and maxR scenarios (with and without rebalancing). As mentioned before,

ll median (50th percentile) waiting times for DRT are lower than for the fixed service. At the 75th percentile, waiting times are
lso better for all DRT scenarios. At the 95th the 50x20 and 100x10 scenarios are either on-par with or, for the 100x10 case with
ebalancing, better than fixed. At the 99th percentile, only the 100x10 fleet with rebalancing outperforms fixed operations.
20
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Fig. 11. Passenger total waiting time distributions with and without rebalancing for passenger groups (Total, Corridor-to-Corridor, Branch-to-Corridor, and
ranch-to-Branch), for all tested scenarios. Bars above each histogram display the mean and ±1 standard deviation of each distribution. (For interpretation of

the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 11
Total, occupied, and empty VKT results of DRT vehicles for each scenario.
Scenario 𝑑𝑣𝑘𝑡; 𝜎𝑣𝑘𝑡 Occupied Empty

26x20 maxR 2363; 34 35% 65%
26x20 maxR-rb 2362; 36 33% 67%
50x20 maxR 4018; 97 31% 69%
50x20 maxR-rb 4086; 96 32% 68%
100x10 maxR 4582; 184 33% 67%
100x10 maxR-rb 5394; 202 37% 63%

The results from Table 10 indicate that while the variability of waiting times is in many scenarios larger on the branches, there
s still a high probability of experiencing on-par or better waiting times in comparison with strictly fixed operations. Nevertheless,
he CVs and Gini coefficients of waiting times in Table 9 suggest that fixed service operation is difficult to compete with in terms
f reliable and equitable service over all passengers, and for passengers with origins on branches. However, it is worth noting that
hese metrics may be interpreted in the context of LoS achieved. An example of this is for the B2B travelers in the 100x10 scenario
ith rebalancing. The average, median, standard deviation and maximum of waiting times for B2B travelers, as well waiting times
verall at the 99th percentile for the 100x10 scenario with rebalancing, are far better than fixed, with a greater number of travelers
erved. While this might be interpreted as a superior LoS provided, the relative average and variance of waiting times is still far
igher for B2B travelers resulting in a less equitable service overall.

.2.2. Fleet utilization
In Table 11 the VKT results for DRT vehicles are presented. As mentioned in Section 4.2, the results presented are for demand

n the eastbound direction, hence trips in the westbound direction will always be empty. As expected, VKT increase with fleet size
s well as through the use of rebalancing for the larger fleets. Similar fill ratios are observed across the fleet sizes, vehicle types and
ssignment algorithms tested. Empty trips increase for the smallest fleet size with the use of rebalancing to end stops. In contrast,
he ratio of empty trips decreases with rebalancing from 69% to 68% in the 50x20 case, and from 67% to 63% in the 100x10 case.
hese results indicate that the fill ratio of the vehicles may be improved by more efficient ride-sharing algorithms. In addition, the

inear alignment of the stations and the lack of short-cuts between the branches limits the opportunity of DRT operations to provide
aster service than the fixed lines, which are expected to be prevalent under most other circumstances.

. Conclusions and discussion

This paper presents a simulation framework encompassing essential components for modeling demand-responsive transit services
esigned for prototyping a wide variety of demand-responsive operational policies. This framework is embedded within an existing
21
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public transit simulation model that has previously been utilized in evaluating fixed transit services and that includes a detailed
representation of adaptive passenger behavior. The combined framework allows for quantifying LoS and operational cost impacts of
demand-responsive services under alternative operational settings and enables consistent comparison of such services with fixed
transit alternatives. A nearest-neighbor on-demand operational strategy with two candidate objective functions is implemented
within this framework together with a strategy for rebalancing idling vehicles.

The framework is evaluated using two case studies. The first case study consists of a simplified circular feeder network where two
leet compositions are simulated under varying conditions of demand intensity. With estimated reductions in labor cost with vehicle
utomation, the two fleet compositions are considered comparable with respect to both operational cost per hour as well as expected
ervice capacity at fixed service frequencies. The second case study is based on passenger and operations data of lines 176 and 177
n the Stockholm area, and replaces the branch portions with on-demand flexible services while maintaining the fixed operations
or the trunk portion. Passengers on the branch portion with a destination on the trunk would book a flexible trip to a transfer point
nd then transfer to the fixed-line service. In total, 13 scenarios are evaluated, contrasting comparable fleet compositions based on
xpected operational costs or service capacity, as well as alternative redistribution strategies.

Results for the circular network case indicate that the increase in fleet size with smaller AVs can improve passenger LoS regardless
f the operational policy. This naturally comes with an increase in total VKT per passenger, in particular for fixed service operations
here vehicles drive continuously regardless of the demand level. In comparing operational policies, fixed operations provide on
verage a higher LoS to passengers for most levels of demand where there is slack in service capacity. On-demand operations are in
uch circumstances more competitive with respect to passenger costs with decreasing demand level. For the lowest demand level and
smaller fleet, the on-demand service provides an on average higher LoS to passengers for lower VKT per passenger. Average system

osts also improve under on-demand operations for the lowest demand levels. This result is consistent with previous comparisons
f fixed versus on-demand feeder operations under alternative network geometries.

A key difference in fixed versus on-demand services is service reliability. The greedy on-demand strategy results in a relative
ariance of waiting times that decreases with increasing demand levels but that is still higher than for fixed operations for all demand
evels below maximum service capacity. Total waiting time Gini coefficients also indicate that a fixed service is more equitable
or lower demand levels. Limitations in available capacity for the highest demand level, however, most heavily affect passengers
ownstream when stops are served sequentially. Average weighted travel costs are in this case dominated by costs associated with
aiting time due to denied boarding. In contrast, the distribution of total waiting times under limited service capacity is spread
qually among passenger groups when utilizing the on-demand operational policy. While this result is specific to the assumptions
ade in this case study, the analysis highlights differences in the dispersion of negative effects that may be worth considering in

n evaluation of fixed versus on-demand operations for comparable transit network structure and demand patterns.
Results from the real-world case study show that service performance on the corridor section is greatly improved with the DRT

ombined with fixed services, in terms of average and median travel times as well as generalized travel costs. Without the application
f rebalancing, service on the branches suffers from longer waiting times, in particular for the smaller fleet size of 26 vehicles. All
RT services improve on median as well as 75th percentile waiting times, and the larger 50 and 100 vehicle fleet sizes result in

mproved average generalized travel costs with or without rebalancing.
Notwithstanding, the maximum waiting times as well as CV and equity (Gini coefficient) are better for fixed services, even when

ompared against the best performing DRT scenario with the 100 vehicle fleet and rebalancing. However, at the 95th and 99th
ercentile, waiting times over all passengers for this best performing DRT scenario outperform fixed services, as well as the average
nd standard deviation of waiting times for each of the separate passenger categories. This highlights the importance of evaluating
quity also as a potential trade-off to overall improvements to LoS.

The presented real-world case study offers insights into the performance of reactive DRT services within a similar context,
etwork topology and demand pattern. Results indicate that there are benefits to LoS overall when fixed branches are replaced
ith DRT, at the expense of transferring passengers and a less equitable and reliable distribution of waiting times. More extensive

imulations varying key design variables (i.e., stop locations, fleet size and characteristics, assignment strategies) as well as
emand distributions are required however to derive more direct analytical results and assess system performance under various
ircumstances. Together with alternative objectives in the DRT assignment, the equity dimension of this study could also be explored
ore in depth by also explicitly optimizing for this in an iterative simulation-based design process.

It is important to note that the fixed service was modeled only in a single direction (eastbound). Consequently, the interaction
ffects of round-trip services, which often lead to late departures at the start of trips, are not taken into consideration. Thus, the
ervice regularity of the fixed service is optimistic. Moreover, the performance of an on-demand transit system is highly dependent
n the strategy used to assign service vehicles to travel requests. The nearest-neighbor greedy algorithm used in this article is
urely reactive and steers towards either maximum number of requests served, or balancing between minimizing maximum waiting
imes and maximizing the number of requests served, by ranking trip plans by cumulative waiting time for the assigned requests.
ur modeling framework can in the future be extended to include predictive type of algorithms as well as algorithms that more
ffectively pursue ride-pooling and (en-route) re-optimization of schedules. Additionally, future work should consider time windows
f traveler requests, as well as model DRT operations in the opposite direction (distribution).

This paper also makes use of a simple, rule-based rebalancing strategy adapted to the topology of the studied network. The DRT
esults for both case studies would presumably improve with more sophisticated redistribution strategies, which would mean that the
eported results provide a conservative, lower bound on their potential performance. Advanced rebalancing strategies that make use
f predictions of future station supply/demand ratios, for example those developed in studies of station-based, one-way car-sharing
22

ervices (e.g. Repoux et al. (2019)), have shown potential to improve LoS provided to users. Although the studied problems are not
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the same, similar methods inspired by these principles may be applied to station-based DRT problems. Therefore, another interesting
line of future work could be to further experiment with alternative proactive rebalancing strategies within the presented simulation
framework. Babicheva et al. (2018) show that, especially for high demand cases, simpler nearest-neighbor strategies are more robust,
with minimal calibration. Investigating such trade-offs for both synthetic and real-world cases is another interesting future research
direction.

DRT operations were simulated without request rejections or cancellations to target service evaluation for existing fixed public
ransit demand. In studies of DRT services, LoS constraints on accepted requests (for example based on maximum allowable waiting
ime, crowding, or in-vehicle detour constraints) can still be important, however. These could be used both as a representation of a
raveler’s willingness to share/request a ride, or to enable the DRT service operator to increase operational efficiency by rejecting
ore costly requests in favor of those that are more easily bundled into a shared trip. To further evaluate DRT feeder services with

espect to the trade-offs between operational efficiency and service availability, as well as in the presence of other alternative modes,
valuating DRT assignment with LoS constraints is an interesting line of future work.

The current study also assumes identical stop placement for the compared services focusing solely on differences in route and
imetable operations. In addition to these dimensions, optimal stop placement dependent on demand pattern, operational policy and
leet composition, can aid in evaluating ‘best case’ scenario comparisons of fixed versus demand-responsive operational policies. Both
he generation and characterization of comparable feeder network structures and demand patterns, as well as optimal stop placement
ependent on this, are thus interesting avenues of future work.

Finally, it is worth emphasizing that both operational and capital cost changes induced by the automation of public transit is
till highly uncertain. Furthermore, the uncertainty of changes in traffic dynamics, operational speeds, and passenger behavior with
Vs and their influence on estimated performance are not negligible. While this limits the external validity of inferences one can
ake from the presented results, the simulation framework and study of this paper contribute in isolating important performance

ndicators and allowing the analysis of different specifications and design alternatives of fixed and on-demand transit systems.
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