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tion. This coordination between trucks is traditionally achieved by
adjusting the schedule, velocity and routines to increase the platoon-
ing chances, and thus improve the overall fuel efficiency. However,
the data model built for the coordination problem is typically integer-
constrained, making it generally hard to solve. On the other hand, the
interaction among self-interested fleets which are operated by different
companies is not well-studied. This thesis aims to build a distributed
framework for multi-fleet truck platooning coordination to enable the
coordination without a third-party service provider. The interaction
among fleets is considered a non-cooperative finite game, for which
we propose the best response search method, which essentially re-
quires to solve a cooperative truck platooning optimization problem
iteratively. We refer to the optimization problem as a best-response
problem, which is formulated as a mixed-integer linear problem with
relaxation skills. To achieve a feasible time complexity for the best-
response subproblem, we propose a decentralized algorithm, distribut-
ing the computational load to connected automated vehicles within
the fleet. The proposed method is examined under a real-world fea-
tured demand set to compare the performance in optimality and time
complexity with previous studies. The result suggests that the de-
centralized algorithm delivers the optimal objective value in this case,
while the best-response search does not deliver extra benefits as the
dominating time costs in the cost functions eliminate the potential for
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Abstract

Truck platooning refers to coordinating a group of heavy-duty vehicles at a close inter-
vehicle distance to reduce overall fuel consumption. This coordination between trucks
is traditionally achieved by adjusting the schedule, velocity and routines to increase
the platooning chances, and thus improve the overall fuel efficiency. However, the data
model built for the coordination problem is typically integer-constrained, making it
generally hard to solve. On the other hand, the interaction among self-interested fleets
which are operated by different companies is not well-studied. This thesis aims to
build a distributed framework for multi-fleet truck platooning coordination to enable
the coordination without a third-party service provider. The interaction among fleets is
considered a non-cooperative finite game, for which we propose the best response search
method, which essentially requires to solve a cooperative truck platooning optimization
problem iteratively. We refer to the optimization problem as a best-response problem,
which is formulated as a mixed-integer linear problem with relaxation skills. To achieve
a feasible time complexity for the best-response subproblem, we propose a decentralized
algorithm, distributing the computational load to connected automated vehicles within
the fleet. The proposed method is examined under a real-world featured demand set
to compare the performance in optimality and time complexity with previous studies.
The result suggests that the decentralized algorithm delivers the optimal objective
value in this case, while the best-response search does not deliver extra benefits as the
dominating time costs in the cost functions eliminate the potential for improvement.
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Introduction 1
1.1 Background

Heavy-duty vehicles (HDVs) emit around 5% of the total carbon emissions in the world,
and therefore there is an ever increasing demand for fuel efficiency of HDVs. [5]. In
addition to ecological effects, one-third of the overall operation cost of a HDV is fuel
consumption, which is expensive [6]. Therefore, it is beneficial both environmentally
and economically to develop mechanisms to increase the fuel efficiency in HDVs oper-
ations.

Truck platooning refers to controlling a group of heavy-duty vehicles at a close
inter-vehicle distance [7]. The overall air drag of the platoon is decreased, improving
the average fuel efficiency of the platoon. Multiple studies reveal the potential in fuel-
saving in different scenarios. Road tests reveal that a 13% of energy saving at a 10
m gap between trucks and a 18% saving at a 4.7 m gap [8]. A more recent research
suggests that the fuel saving may reach 14.2% at maximum [9]. An extensive overview
of the state of the art in saving potential due to platooning is reported by Zhang et al
[10].

Benefits of truck platooning is only viable when platoons are formed. There are
several approaches for forming platoons. If there is a sufficient number of trucks oper-
ating, it may be possible to form a platoon with encountering peer trucks, known as
the opportunistic platooning [11]. However, given the low percentage of truck traffic in
overall traffic composition and the gradual introduction of truck automation, the prob-
ability of forming a platoon in an ad hoc way is very low. Therefore, it is necessary
to coordinate different trucks to form more platoons by synchronizing their departure
times, routes, and velocities, which are parameters of trucks’ traveling plans. The goal
of truck platooning coordination problem is to maximize the platooning benefits by
adjusting trucks’ traveling plans. This thesis aims to maximizing the benefits of freight
transportation stake holders.

1.2 Literature Review: Truck Platooning Coordination

In this section, we introduce a series of studies aiming at the coordination problem. An
overview table of the literature review is given in Table 1.1. We refer readers for more
details on the state-of-the-art of truck platooning coordination to [11]. Truck platooning
coordination can be classified under various categories. The major classification is
introduced as followed.

Cooperative v.s. Non-cooperative: Cooperative truck platooning coordination
is the scenario in which all trucks are seeking to minimize a global cost function. For
example, it is common in logistics companies that cooperative trucks share a set of
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Figure 1.1: A truck platooning illustration [1]

delivery assignments. The trucks are cooperative as they belong to the same owner,
and are thus only interested in optimizing the overall cost of the fleet. It is therefore
acceptable for individual trucks to travel in a plan with a higher individual cost as long
as the global fleet cost is optimized.

In contrast, non-cooperative truck platooning participants concern only on individ-
ual cost functions. An individual truck owner is unwilling to obey the plan if it increases
his or her plan, even with more overall cost reduction.

Centralized v.s. Distributed: The existence of a centralized node, which gathers
demands from each truck and solves the planning problem, is the feature of a centralized
truck platooning coordination. In a logistics company, trucks’ travel plans are assigned
by the dispatch center, which is a typical centralized set-up.

On the contrary, in a distributed set-up, trucks exchange information with connected
peers only. It is worth mentioning that the decisions are made by the truck itself. If the
trucks belong to different companies, there will not be an authority coordinating them.
However, with wireless technologies, the trucks in a distributed set-up may exchange
information to coordinate themselves.

Scheduled v.s. Real-time: The operation of the freight transportation is defined
as the period at which the first truck starts its trip until the last truck finishes its
trip. In a scheduled planning case, all the truck plans are announced and fixed prior to
the trip. Scheduled methods are typical in the coordination within the same company,
where assignments are set before the operation.

Real-time applications allow trucks to announce or even change plans during the
operation. Unforeseen changes during the operation may change the cost of the current
plan, as a result, a real-time application may make adjustments based on the latest
status.

At this stage, the most common way is the scheduled platooning method with a
centralized service provider with all agents operating cooperatively. In comparison,
there is less research on other classes of coordination. Now we present a more detailed
review on some major categories of truck platooning coordination.
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1.2.1 Scheduled Cooperative Centralized Coordination

Scheduled cooperative centralized platooning planning was first proposed by [12], in
which a fast heuristic is built to solve the problem for large fleets. In this study, the
simulation suggests that the fuel savings potential increases as the number of trucks
increases in the road network. The results from this study suggest that detouring may
save more energy depending on the nature of the graph. Particularly, the existence of
paths with similar length benefits to the likelihood of greater savings.

A further study on the computational complexity in coordination heuristics in truck
platooning problem is carried out [14]. It is also proven that the platooning coordination
problem is NP-hard, even if all trucks share the same starting point and departure time.
Both the same starting-point problem and general different starting-point problem
are formulated as integer programs in the above studies. The geographical map is
represented by a graph, in which each link is associated with a binary decision variable,
indicating the presence of the corresponding link in the planning of a truck. The study
proposed three heuristic solvers after showing the infeasibility in time complexity for
an exact solution solver, which involves a best pair heuristic, a hub heuristic and a local
search method. These methods does not guarantee the optimal solution but offering
an acceptable sub-optimal solution to achieve a feasible solving elapsed time.

An alternative approach for approximating the optimum is proposed to solve the
problem with a fuel-consumption-based objective function with a genetic algorithm
[15]. The simulation is set up on a simplified German intercity network with 10-50
trucks. The work is improved with the features that the latest arrival time restriction
and speed options are introduced in the model [18]. The model is solved by particle
swarm optimization due to the high computational complexity.

Recently, researchers formulated the platooning coordination problem as a mixed-
integer non-linear program (MINLP) problem [22]. The planning of trucks are presented
by binary decision variables while auxiliary continuous variables are introduced for
relaxation methods. The research characterized the cost function as an energy-based
piece-wise concave function. After an analysis of the exact solution algorithm, a fast
dynamic-programming heuristic is applied to real-world size test cases with significant
computational time complexity improvement comparing to previous studies.

With practical approximation heuristics, researchers perform a comparison study
between scheduled planning and real-time opportunistic platooning to explore the po-
tential in cooperative platooning planning [17]. An unweighted Hanna grid in the
POLARIS platform is the benchmark for comparison with a relatively large scale test
set.

Meanwhile, a study about identical path truck platooning was done in [19]. The
goal is to show if truck platooning is indeed practical as there is an inefficient process
for trucks to emerge a platoon. The conclusion suggests that truck platooning is appre-
ciated if taking other costs into account, such as drivers’ wages because it only delivers
insignificant savings in fuel.

All studies mention this earlier in this category are under the assumptions that
all trucks are identical and share a common global cost function. A centralized service
provider is also necessary, which must handle a complex and computationally expensive
optimization problem.
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1.2.2 Other Classes of Truck Platooning Coordination

Scheduled Non-cooperative Centralized Coordination: Taking the competitive
nature of transportation into account, a non-cooperative case where all trucks start at
the same point with different preferred departure time, coordinated by a centralized
service provider has been studied in [20]. It is proven when trucks are identical and
non-cooperative, the coordination problem is a congestion game. Congestion games
are a classic problem which a pure strategic Nash equilibrium can be searched by best
response dynamics. The numerical simulation suggests that in a non-cooperative set-up,
the overall benefits are less compared to a cooperative case, showing the self-interested
property will eliminate the potential in truck platooning, though still improving the
fuel efficiency comparing to non-platooning scenarios.

Self-interest trucks would be interested in knowing their exact position in a platoon
since no air-drag reduction is available for the leading truck. To address the issues and
extend the work in [20], a comparative study on the interaction mechanisms between
leading and tailing trucks are carried out in [21]. So far, the studies mentioned in
this subsection are the works addressing the self-interested nature in the real world
focusing on the truck platooning coordination [20, 21]. However, the model in these
studies assume all trucks start at the same node and the only adjustable decision is the
departure time. The numerical results may not be representative for potential studies.
On the other hand, trucks belonging to the same company may compete with each
other, resulting a suboptimal result for the company. Last but not the least, since
trucks are non-cooperative, a centralized node is required for coordination. A trusted
service provider must exist to enable non-cooperative centralized coordination, which
may require extra fees to purchase such service with risks of losing privacy.

Distributed Coordination: The coordination problem based on distributed set-
up is not widely carried out. A distributed framework for coordination with the features
that multiple coordination controllers reside in different positions of the road network,
processing the information from approaching HDVs [13]. In general, the problem is
converted into coordinate a subset of trucks to form platoons. The horizon for each
local centers is also restricted into a subgraph.

In a distributed set-up, fleets may have to reveal information of interest to each
other, which may be a major barrier for real implementation. A secure and private
communication framework for two fleet owners is studied in [23], which may be gen-
eralized for a distributed coordination mechanism as claimed. The fleet owner may
submit encrypted queries to ask for information from peers. Appropriate answers are
accessible without knowing the queries. The numerical simulation is based on a dis-
tributed set-up. However, the details about optimization process of each fleet owner is
not discussed in the work.

1.2.3 Summary

Previous work mainly focused on the scheduled cooperative centralized platoon-
ing coordination. Nearly all studies assume there is a trusted service provider
[12, 14, 15, 17, 19, 22]. However, destinations, departure times and other informa-
tion of interest must be announced to the service provider before the operation. Since

5



logistic companies are competitors, it is unlikely that they share a common cost func-
tion. Another category of studies model the trucks as non-cooperative peers with simple
equilibrium searching solution [20, 21]. The disadvantages with the method are that
all trucks must be identical and the cost reduction is less than cooperative scenarios.
Distributed planning is also relatively neglected, in which a trusted third party is not
required. A communication platform with encryption among fleet owners is designed
[23], while further work is not present yet.

On the other hand, all studies mentioned are based on integer programming models,
which make the problem generally hard to solve. A review on the algorithm performance
is given in Table 1.2. The table compares the solution methods, simulation networks
and the fleet size. It is revealed the the exact solution methods in different studies fail
to handle a large scale problem, when the complexity of graph or the number of trucks
increases. Different approximations are proposed to solve the problem, but limited to
centralized method. The existing literature has limitations in three major areas.

Authors(Year) Solution Network
Max fleet size
Exact Alternative

Larson et al.(2013) [12] Exact and Local
search heuristic

German auto-
bahn network

8000

Larrson et al.(2015) [14] Exact and Local
search heuristic

German auto-
bahn network

10 200

Nourmohammadzadeh
and Hartmann(2016) [15]

Exact and genetic
algorithm

Simplified
German inter-
city map

20 50

Sokolov et al.(2017) [17] Exact 10×10 grid 50
Zhang et al.(2017) [16] Exact Identical path 2
Nourmohammadzadeh
and Hartmann(2018) [18]

Exact and parti-
cle swarm opti-
mization

Chicago road
network

1000

Abdolmaleki et al.(2019)
[22]

Exact and dy-
namic program-
ming heuristic

Germany high-
way network

150 1000

Table 1.2: Platooning Planning Review Table - Algorithm

• Unrepresentative cost functions and limited adjustable decisions: Most
studies focus only on fuel-savings, which is not sufficiently representative. Fur-
thermore, trucks are assumed to be identical for a favorable structure of the for-
mulation in some of studies, which may not be practical for a large fleet. Few
works introduce the speed options as an adjustable parameter.

• Infeasible exact solution method and deterministic performance guar-
antees: With integer variables, models proposed so far are generally computa-
tionally expensive to solve. Researchers attempt to reduce the time complexity
in a variety of approximating methods and stochastic methods. However, most
of them are unable to offer a deterministic performance guarantees in the sub-
optimal level.
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• Limited truck interaction modeling: While non-cooperative fleets only con-
cern their own cost, trucks within the same fleet cooperate to minimize the owner’s
cost. For a truck, there are both cooperative and non-cooperative peers. The hy-
brid relationship is not yet adequately modeled.

1.3 Goals

The goal of this thesis is to develop a best-representative model for truck platooning
coordination problem, aiming at the limitations mentioned in Section 1.2.3. The main
goals are,

• A framework for solving truck platooning coordination as a non-cooperative co-
ordination problem for self-interested fleets.

• A mathematical model for cooperative truck platooning, in which cost functions
consist of different cost other than simply fuel cost and while routes, speed, types
of trucks and schedule for trucks are decision variables to optimize.

• A decentralized algorithm for solving the multi-fleet truck platooning coordination
problem.

• A simulation with real-world featured demand input to test the performance of
the decentralized algorithm.

Chapter 2: Converting the multi-fleet truck platooning coordination problem into a mathematical model
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Figure 1.2: A brief schematic figure for thesis outline
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1.4 Outline

The rest of the paper is organized in the structure shown in Figure 1.2. Chapter 2
presents our approach for modeling the relationship among trucks before the formula-
tion of the cost function. The geographical map and the demand of all trucks are con-
verted into a mathematical presentation for formulating the cost function for each fleet
in a non-cooperative game. Based on the proposed game, the best-response search’s
critical challenge is to solve the optimization problem as in the block efficiently. In
Chapter 3, we reformulate the problem to preserve a linear structure of the problem
along with test numerical examples with a centralized exact solution solver. The for-
mulation process includes regularizing constraints and applying relaxation methods for
a favorable formation. Chapter 4 introduces the details on the decentralized algorithm
and numerical examples, examining the performance of the proposed algorithm. Chap-
ter 5 introduces the real-world input set for the large scale test and concludes the
thesis.
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Problem Formulation 2
In this chapter, we formulate the truck platooning coordination problem. A discrete
spatio-temporal road network is constructed, enabling the representation of truck trav-
eling plans with binary decision vectors. Consequently, the plan of a fleet consists of
all trucks’ plans. In this discrete presentation, the interaction among all fleets is shown
to be a non-cooperative finite game. We introduce an algorithm for a steady outcome
of the game and the details of each player’s cost function.

2.1 Preliminaries

The general symbols and operators in this thesis are explained as followed.

a,A : upper or lower case in plain text denotes scalars

a(·) : functions

A : bold symbol upper case denotes matrices

a : bold symbol lower case denotes column vectors

A : calligraphic letters denote a graph or a set

A : bold-symbol calligraphic letters denote an optimization problem

R : blackboard style denotes the set of real number

Rm×n : real-valued matrix with m rows and n columns

Rn : n-dimensional real-valued one-column vectors

Zn : n-dimensional integer-valued one-column vectors

[0, 1]n : set for n-dimensional one-column vectors with elements being 0 or 1

1n,0n : All one or zero one-column vectors of length n

In×n : Identity matrices of size n× n
(·)T : transpose

× : Cartesian product for non-scalars

≤,≥: components-wise inequalities for non-scalars

∈: belong to

2.2 Spatio-temporal Road Network

We adopt the notation in [22] with minor modifications. The physical road network is
given with S as the set of all physical nodes S = {1, 2, · · · , S}, where si ∈ S is the
ith ordered physical node. A physical node may be a parking lot, a city, or a point on
the road. The time dimension is discretized into unitary intervals of length δ. Let T
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denotes a set of the time dimension, where T = {1, 2, · · · , T} and let ti ∈ T be the ith
ordered time interval. The spatio-temporal road network G is constructed with nodes
defined as (ti, si), which represents a truck that may be at si at time interval ti. The
set of all nodes in G is defined as N (G). Following this definition, the set of all links
in G is denoted by E(G). An example of G is shown in Figure 2.1. A link l ∈ E(G)

(𝑡𝑖 , 𝑠𝑗)

(𝑡𝑖+1, 𝑠𝑗)

𝑡𝑖

𝑡𝑖+1

𝑡𝑖+n

…
…

𝐺
(𝑡𝑖+1, 𝑠𝑗+1)

𝑆

𝑙1
𝑙2

Figure 2.1: In the example G, l1 represents a vehicle waits at sj from time ti to ti+1. l2
represents leaving sj at ti and arriving at sj+1 at ti+1

between two nodes, so that l = (ti, si, tj, sj) means a truck leaves si at time ti to arrive
sj at time tj if there is a physical link between si and sj or si = sj. Due to the physical
limitation that a truck can not travel back in time, ti is always smaller than tj. Let L
be the amount of links in E(G). All information about G is assumed to be known by
all trucks.

2.3 Individual Truck Path and Fleet Plan

We assume there are K ∈ K trucks planning to operate on G. Let C = {1, · · · , C} be
the set of all related fleets. A binary decision variable is given by xk,l, which indicates
whether k transverses on route l as

xk,l =

{
1 Truck k traverses through link l
0 Otherwise

(2.1)
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Stacking up all decision variables of truck k in a link order, a vector x̄k ∈ RL is used
to represent the path of truck k,

x̄k = [xk,1, xk,2, · · · , xk,L]T ∀l ∈ E(G) (2.2)

Clearly, with physical limitations, a considerable amount of links in G is infeasible for
truck k to transverse with operating time limitation and limited speed options. For the
sake of efficiency, a refining process is applied to G as proposed in [24]. For all trucks
k ∈ K, each truck has a local trip schedule specifying the origin ok ∈ S, the destination
dk ∈ S, the earliest departure time, tEDk ∈ T the preferred arrival time tPAk ∈ T and
the latest arrival time tLAk ∈ T . Let Gk be the sub-graph of G after the refining process,
in which two kinds of nodes and their connected links are removed as shown in the
simple example is given in Figure 2.2. Nodes in red area is infeasible because a truck
is impossible to arrive the destination in time once it travels to one of these nodes.
Besides, nodes in the green area represents those that are too far from the origin to
reach because of the speed limitation. The red Let Lk be the number of links in Gk.
The decision vector is refined as

xk = [xk,1, xk,2, · · · , xk,L]T ∀l ∈ E(Gk). (2.3)

A fleet is a subset of trucks. For the cth fleet, Kc is a set of Kc trucks and belongs to

Figure 2.2: The example graph is a spatio-temporal extension of a one-dimension geographical
map from s1 to s3, which is on the horizontal axis. The vertical axis represents the time
dimensions at each interval. Two kinds of infeasible nodes in G are removed. The upper left
red triangle area refers to the nodes that are not connected to the spatio-temporal destination
(red). The green areas are removed likewise. The remaining Gk is in the blue rectangle.

fleet c, where Kc ⊆ K. Consequently, let ac ∈ ZLc denote the path of all trucks in fleet
c

ac = [xT1 ,x
T
2 , · · · ,xTKc

]T ∀k ∈ Kc (2.4)
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2.4 A Non-cooperative Game Model among Fleets

To address the competitive behavior among fleets, we consider the interaction among
all fleets c ∈ C a non-cooperative game Γ. As shown in Figure 1.2, based on the spatio-
temporal model, the cost of a fleet may be formulated, which is to be introduced in
Section 2.4.2. It is obvious that the cost of a fleet is not only determined by its plan,
but also the plan of other fleets if they agree to merge to save costs. Although the fleets
are competitive and have self-interest, they may merge to form platoons for multilateral
benefits, which is also known as multi-fleet truck platooning [20]. The interaction in the
multi-fleet truck platooning possess the typical structure of a non-cooperative game,
in which a set of players aiming to maximize its benefits by changing strategies while
the costs are affected by the strategy selection of all other players [25]. The structure
is commonly seen in the area of game theory so that it is of interest to apply game
theoretic approaches in the problem of truck platooning coordination as in the previous
work [20, 21].

To rigorously define and denote such game of multi-fleet truck platooning coordi-
nation, we consider each fleet c has an action set Ac which contains all the feasible
ac. A = A1 × · · · × AC is defined as the action profile of the game, where × is the
Cartesian product. The other piece in the game is known as the pay-off function or the
utility function, which represents the value the corresponding player aims to maximize.
Consequently, the pay-off function in the multi-fleet truck platooning problem is simply
the negative cost function. Let the cost function of the cth fleet be Fc : A → R. The
details of the cost function are introduced in Section 2.4.2. The ideal outcome of the
game is that the game reaches a steady state, which is known as Nash equilibrium. Let
a∗c be the selection of plan for fleet c at the equilibrium and

a−c = a1 × · · · × ac−1 × ac+1 × · · · × aC , (2.5)

which is the plan selection of all fleets other than c. Likewise, let a∗−c be the selection
of all other fleets at the equilibrium. The equilibrium is a selection from A that

−Fc(a∗c , a∗−c) ≥ −Fc(ac, a∗−c) ∀c ∈ C (2.6)

where a∗c and a∗−c denote the equilibrium action taken by fleet c and other fleets. With
such a selection of plans, no fleet may benefit more by alternating its plan. It is thus
guaranteed that all cost-oriented fleets will keep the selection.

However, there are some critical properties of the game worth mentioning. In the
assumption of this thesis, the fleet always seeks to maximize its benefits, implying that
once current a−c is known to c, the ac is determined. The certainty in the strategy
makes the game a pure strategic game and the equilibrium is named as pure strategic
Nash equilibrium (PSNE). The existence of PSNE is not guaranteed and generally
difficult to search in a multi-player game. On the other hand, since the selection of ac
is integer-constrained, it is unlikely to prove the existence with the fixed-point theorem
with high non-convexity.

Last but not least, the proposed solution should be decentralized or distributed
as there is assumed to be no service provider. The majority of the current searching
algorithm requires that the complete pay-off matrix is available to all players, making
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them undesirable in this application [26]. In the next subsection, we would offer more
details in our proposed method in searching for the PSNE, which is the best-response
searching algorithm.

2.4.1 Best-response Searching Algorithm

In a best-response search, every player makes the most favorable decision given other
players’ strategies, which is to minimize the cost.

Bc(a−c) = arg min
ac

Fc(ac, a−c) (2.7)

Bc(·) is also known as the best-response function of fleet c. Fleets sequentially update
the strategies with the best-response function assuming other peers’ strategies are fixed.
The process is shown in Figure 2.3. At the starting point of the algorithm, all fleets
perform an optimization without considering other fleets and the results are assumed
to be known to all fleets. For the first fleet, under the assumption that the plan of other
fleets a−c is fixed, the new plan ac is given by the best-response function as shown in
the blocks in Figure 2.3. If there is no PSNE in the game, or the iteration gets stuck

Figure 2.3: Proposed Best-response Search Algorithm. At iteration M , in which no fleet is
able to improve the strategy, the desired outcome is assumed to be reached.

in a loop, the proposed approach will not reach a steady state. We proposed to set an
upper bound on the rounds of iterations. If all fleets fail to agree on PSNE, all fleets
shall return to the solo optimum. As a result, every fleet neglects the risk of the deficit.

The critical subproblem now is the cost function, we will then introduce the detailed
formulation in the next subsection.

2.4.2 Cost function of the Fleet

The cost of a fleet is consequently sum of costs of each truck. The cost of a truck’s trip
is composed of fuel cost, travel time cost and schedule preference penalty [16].
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2.4.2.1 Fuel Cost

Truck platooning saves only on fuel cost since it reduces overall air drag for the platoon.
Since the platoon’s leading truck has no savings, to simplify the problem, a mechanism
to balance the savings is assumed to be applied, such that all vehicles taking the leading
position sequentially. We assume all trucks in the platoon has the same average air
drag reduction factor ϕ during the platooning trip. Let ϕl be described as a function
of the amount of trucks Nl on the same link l ∈ E(G), which is given by

ϕl = ϕo −
ϕo
Nl

(2.8)

where ϕo is the air reduction factor for all tailing trucks, which is assumed to be constant
and equal for all trucks during the platooning. ϕl is the average air reduction factor on
the link l.

To model the fuel cost on link l = (ti, si, tj, sj), let Ll be the distance between

physical nodes si and sj and Tl = tj − ti. The fuel cost f̃k,l on certain link l for truck
k is given by (2.9)

f̃k,l(ϕl) =

wfξ

κ

(
µkEkVkTl + 0.5

cd,kρAk(1− ϕl)
1000εk$k

L3
l

T 2
l

+
Mkg(sin θl + cr,k cos θl)

1000εk$k

Ll

)
(2.9)

where physical constants are

wf Price of oil
ξ Fuel-to-mass ratio
κ Heating value of the fuel
ρ Density of air
g Gravitational constant

and vehicle-dependent (·)k or link-dependent (·)l parameters

θl Road gradient
Ek Engine speed
Ll Distance between the physical nodes
Tl Engine working time spent on the link
µk Engine friction factor
Vk Engine displacement
cd,k Coefficient of aerodynamic drag
Ak Front area of the truck
cr,k The coefficient of rolling resistance
Mk Total vehicle weight
εk Drive train efficiency
$k An efficiency parameter for the engine

The only unknown parameter in 2.9 is ϕl, for a given link l and truck k, and therefore
(2.9) may be rewritten as

f̃k,l(ϕl) = Ck,l,f1ϕl + Ck,l,f2 (2.10)
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where

Ck,l,f1 =− 0.5
ξ

κ

cd,kρAkL
3
l

1000εk$kT 2
l

(2.11)

Ck,l,f2 =
ξ

κ

(
µkEkVkTl + 0.5

cd,kρAk
1000εk$k

L3
l

T 2
l

+
Mkg(sin θl + cr,k cos θl)

1000εk$k

Ll

)
(2.12)

Notably, in the case that for l = (ti, si, tj, sj), where si = sj, the above equation
indicates that the vehicle is waiting at certain physical node. We assume the vehicle is
shutdown and there is no fuel cost. Subsequently, we define W(G) as a set of all links
l, for which Ll = 0, Tl = 0. Consequently,

f̃k,l(ϕl) = 0 ∀l ∈ W(G) (2.13)

Substituting (2.8) into (2.10), and since there is no fuel cost if there is no truck,

f̃k,l(ϕl) = f̌k,l(Nl) =

{ ak,l
Nl

+ bk,l Nl ≥ 1

0 Nl = 0
(2.14)

where Nl is the amount of trucks traversing on l. In (2.14), we convert the a function

from ϕl to the cost,f̃k,l(ϕl), to a function from Nl to the cost, f̌k,l(Nl).

ak,l = ϕoCk,l,f1 (2.15)

bk,l = Ck,l,f2 − ϕoCk,l,f1 (2.16)

An example of the function f̃k,l(Nl) is shown in Figure 2.4. Let us denote ηl(·) : A → R,
for every link l,

Nl = ηl(ac, a−c) (2.17)

Consequently, fk,l(ac, a−c) is given by

fk,l(ac, a−c) =

{ ak,l
ηl(ac,a−c)

+ bk,l ηl(ac, a−c) ≥ 1

0 ηl(ac, a−c) = 0
(2.18)

(2.17) is for now the place holder for the method to get the amount of trucks from both
the own fleet and other fleets. (2.18) is the cost function of truck k traversing on link
l affected by both ac and a−c.

2.4.2.2 Travel Time Cost and Schedule Preference Penalty

The real-world stake-holder of freight transportation concerns other cost as well as the
fuel. The process of forming platoons may increase time-related costs, including travel
time cost and schedule preference penalty. With these two pieces in the cost function,
the model is more representative. The first piece is the travel time cost including wages
for drivers. It is assumed that every unit of time has equal costs, thus the travel time
cost of truck k is given by,

g̃k(xk) = wt,kt
T
k xk (2.19)
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Figure 2.5: Example travel time cost (left) and schedule preference penalty (right)

where wt,k is a weight for travel time cost for truck k. tk ∈ RLk is a selection vector
which selects decision variables that present the links that present the travelling time
of the truck k. Let tk,i be the ith element in tk, which corresponding to link l and
truck,

tk,i =

{
0 l = (tn, dk, tm, dk)
1 Otherwise

(2.20)
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where dk ∈ S is the geographical destination of truck k. An example of travel time
cost is given in Figure 2.5. In other respects, the schedule preference penalty represents
the preferred arrival time of the truck owner. The industry of freight transportation
prefers to eliminate the uncertainty in the arrival time. It is given for truck k by

h̃k(xk) = max{wk,l(tTk xk + tEDk − tPAk ),−wk,e(tTk xk + tEDk − tPAk )} (2.21)

where, for truck k,

wk,l Positive weight for later than schedule preference penalty
wk,e Positive weight for earlier than schedule preference penalty
tEDk Earliest departure time
tPAk Preferred arrival time

(2.22)

The weights for early and late arrival may vary since the stake-holder may value them
differently. An example of schedule preference example is also given in Figure 2.5.
The cost function Fc : A → R is a function of A, therefore (2.19) and (2.21) requires
reformulation. Based on (2.4), a selection matrix Sk of the proper size that

xk = Skac (2.23)

where xk is the decision vector for truck k and ac is the decision vector of fleet c, defined
in (2.3) and (2.4). To convert (2.19) into a function of ac, we substitute (2.23) into
(2.19)

g̃k(xk) = gk(ac) = wt,kt
T
kSkac (2.24)

and likewise for (2.21)

h̃k(xk) = hk(ac) = max{wk,l(tTkSkac + tEDk − tPAk ),−wk,e(tTkSkac + tEDk − tPAk )} (2.25)

2.4.2.3 Overview

The goal of Section 2.4.2 is to formulate Fc : A → R, we now combine the content in
the above-mentioned subsections. The cost function of a truck is given by summing up
all pieces on all links, the cost function of an individual truck is given by

fk(ac, a−c) =
∑

l∈E(Gk)

fk,l(ac, a−c) + gk(ac) + hk(ac) (2.26)

Consequently, the cost for the fleet is given by summing the cost of all related trucks

Fc(ac, a−c) =
∑
k∈Kc

 ∑
l∈E(Gk)

fk,l(ac, a−c) + gk(ac) + hk(ac)

 (2.27)

where

ac The planning of fleet c defined in (2.4)

a−c The planning of all other fleets other than c defined in (2.5)

fk,l(·) Fuel cost of truck k on link l defined in (2.18)

gk(·) Time cost of truck k defined in (2.24)

hk(·) Preference penalty of truck k defined in (2.25)
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The proposed method is to iteratively compute the best-response function Bc(a−c),
which is

Bc(a−c) = arg min
ac

Fc(ac, a−c) (2.28)

The goal is to find an optimal ac with fixed a−c to minimize the cost of the fleet
c. However, both fk,l(·) and hk(·) are not continuous and thus not differentiable. In
terms of linearity, fk,l(·) is not linear while gk(· · · ) and hk(· · · ) possess favorable linear
forms. The problem lacks a structure, preventing it from being readily solved by any
off-the-shelf solvers.

In comparison with previous studies, the influence of other fleets are taken into
consideration in the formulation. In addition, we also consider the decision variables
involve velocity, routes and schedule. Cost consists of fuel, time and schedule preference,
which are not taken into consideration in the previous truck platooning coordination
studies. In the following chapters, we discuss various methods to reformulate and
efficiently solve the subproblem.
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Centralized Method for
Best-response Subproblem 3
In this chapter, the subproblem of finding the best response of a fleet is explained
and reformulated. There are two sets of constraints which are applied to the original
problem. The first one is an equality constraint set, guaranteeing a feasible path for
the truck. The other constraint is based on the binary feature defined for decision
variables. The non-linearity and discontinuity in the cost function are challenges, which
are handled with relaxation methods. An overview of the relaxed problem is given at
the end of this chapter.

3.1 Original Problem

Each fleet attempts to minimize its own cost as described in (2.27) while limited by
two sets of constraints. The first set of constraints guarantees that the solution is
a feasible path in G and the truck obeys the latest arrival demand. The constraint
is formulated based on the multi-commodity network flow problem [27]. The flow
conservation constrains are written as∑

(ti,si):l=(ti,si,t,s)∈E(Gk)

xk,l −
∑

(tj ,sj):l=(t,s,tj ,sj)∈E(Gk)

xk,l = dk(t,s) (3.1)

where

dk(t,s) =

 −1 (t, s) = (tEDk , ok)
1 (t, s) = (tLAk , dk)
0 otherwise

and xk,l is the binary decision variable as described in (2.1),

xk,l =

{
1 Truck k traverses through link l
0 Otherwise

We convert the formulation into a matrix form to simplify the notation,

Ak =
[
eT(t1,s1), · · · , e

T
(ti,si)

]T
, ∀(t, s) ∈ Gk (3.2)

where e(t,s) is a vector of length Lk, which is the number of links in Gk. It is selected
in a way that

eT(t,s)xk =
∑

(ti,si):l=(ti,si,t,s)∈E(Gk)

xk,l −
∑

(tj ,sj):l=(t,s,tj ,sj)∈E(Gk)

xk,l (3.3)

Meanwhile, let bk be a vector of an appropriate size, where

bk = [dk(ti,si), · · · , d
k
(ti,si)

]T , ∀(t, s) ∈ Gk (3.4)
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In this way, (3.1) is rewritten as

AkSkac = bk ∀k ∈ Kc (3.5)

where Sk is a selection matrix that satisfy (2.23). By assigning (tEDk , dk) as the spatio-
temporal destination, the path is guaranteed to terminate at the node before a certain
time period. The other constraint is simply followed the definition of binary decision
variable xk,l, which is defined in (2.1). Combining the above-mentioned constraints,
the best-response subproblem, denoted as P , is given in

min
ac

Fc(ac, a−c) =
∑
k∈Kc

 ∑
l∈E(G)

fk,l(ac, a−c) + gk(ac) + hk(ac)


subject to AkSkac = bk ∀k ∈ Kc

ac ∈ [0, 1]Lc

(P)

where a−c is considered as constant

ac = [xT1 ,x
T
2 , · · · ,xTKc

]T ∀k ∈ Kc

as in the (2.4). Lc =
∑

k∈Kc
Lk, which is the sum of all links in all Gk.

3.2 Reformulation to Preserve Standard MILP Structure

The cost function in P lacks structure as fk,l is discontinuous though the remaining
part is linear. In this section, we now discuss the details on applying relaxations to
preserve the linear form of the problem.

3.2.1 LP Relaxation on the Schedule Preference Penalty

hk(ac) falls into a typical form for LP relaxation. As in (2.21),

hk(ac) = max{wk,l(tTkSkac + tEDk − tPAk ),−wk,e(tTkSkac + tEDk − tPAk )}

which is the schedule preference penalty of truck k. An auxiliary parameter pk ∈ R is
introduced as in

wk,l(t
T
kSkac + tEDk − tPAk ) ≤ pk (3.6)

−wk,e(tTkSkac + tEDk − tPAk ) ≤ pk (3.7)

3.2.2 Piece-wise Fitting and Relaxation for the Fuel Cost Function

The major challenge in reformulating the problem is that the fuel cost function is
discontinuous between Nl = 0 and Nl = 1, as previously shown in (2.14), which we
restate here

f̌k,l(Nl) =

{ ak,l
Nl

+ bk,l Nl ≥ 1

0 Nl = 0
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where ak,l and bk,l are the constants depending on the truck and the link as described in
(2.15) and (2.16). Since Nl is a non-negative integer by definition, a piece-wise fitting is
proposed as in Figure 2.4 without affecting the objective value on all positive Nl feasible
points. The function is fitted with several linear segments, The jth linear segments of
total J pieces is denoted as (αk,l,jNl + βk,l,j) for truck k on link l, in which

αk,l,j =
ak,l
j + 1

− ak,l
j

(3.8)

βk,l,j =
ak,l
j

+ bk,l − j(
ak,l
j + 1

− ak,l
j

) (3.9)

where j = 1, 2, · · · , J . The piece-wise fitting function is then with (2.17) substituted
in,

f̂k,l(ac, a−c) = max{αk,l,jηl(ac, a−c) + βk,l,j} j = 1, 2, · · · , J (3.10)

ηl(ac, a−c), first introduced in (2.17), is a linear function given by

ηl(ac, a−c) =
∑
k∈Kc

xk,l +Nl,−c (3.11)

where Nl,−c is treated as a constant based on a−c. (3.10) is convex but makes a major
change in the cost of ηl(ac, a−c) = 0. A new formulation is then proposed to eliminate
this effect. Substituting (3.11) into (3.10),

f̂k,l(ac, a−c) = max{αk,l,j(
∑

k′∈Kc\k

xk′,l + xk,l) +Nl,−c) + βk,l,j} j = 1, 2, · · · , J (3.12)

Taking advantage of the binary nature of xk,l, we have

xk,lf̂k,l(ac, a−c) =

{
f̂k,l(ac, a−c) xk,l = 1

0 xk,l = 0
(3.13)

An auxiliary uk,l is introduced for the relaxation of the fuel cost as in

xk,lf̂k,l(ac, a−c) ≤ uk,l (3.14)

Applying point-wise maximum method,

αk,l,jx
2
k,l + αk,l,jxk,l

∑
k′∈Kc\k

xk′,l + (αk,l,jN−c,l + βk,l,j)xk,l ≤ uk,l (3.15)

where j = 1, · · · , J . Again, since xk,l is binary, x2k,l = xk,l. Let us apply another
auxiliary variable vk,l to replace bilinear terms xk,l

∑
k′∈Kc\k xk′,l. The constraints are

reformulated as

(αk,l,j + αk,l,jN−c,l + βk,l,j)xk,l + αk,l,jvk,l ≤ uk,l j = 1, · · · , J (3.16)

with

vk,l ≤ (Kc − 1)xk,l (3.17)

vk,l ≤
∑

k′∈Kc\k

xk′,l (3.18)
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(3.17) guarantees that no platooning effect on links where the truck does not traverse,
while (3.18) limits the platooning effects. Kc is the number of trucks in the fleet, so
that Kc− 1 is sufficiently large. With the method, the fuel cost is relaxed into a linear
form with auxiliary variables.

3.2.3 Overview of the Problem Relaxation

In Section 3.2, we apply several relaxation methods on the constraints of P to preserve
linearity. We now combine the original problem P with the constraints (3.6), (3.7),
(3.15), (3.17) and (3.18) to arrive at a relaxed problem formulation, as given in R

min
ac

∑
k∈Kc

 ∑
l∈E(Gk)

uk,l + gk(ac) + pk


subject to (3.6), (3.7), (3.15), (3.17), (3.18)

(R)

The feasible solutions of R are at integer points, making the piece wise fitting equal
to the original objective values at all feasible points. Relaxation methods introduce
three types of auxiliary variables, which only serving as place holders without changing
feasible objective values. R is guaranteed to have the same optimum objective value
as P . It also matches the form of a standard MILP problem. The non-linearity in the
cost function fk,l(·) and hk(·) are replaced by relaxations. We have taken advantage
of the binary feature of the decision variables to linearize the quadratic and bilinear
terms. On the other hand, the integer value constraints make the problem generally
hard to solve. A few examples in the following section show the increasing trend in
time complexity for solving the problem formulation R.

3.3 Numerical Examples

In this simulation, we focus on the time complexity of the formulation R with a cen-
tralized solver. The formulation in R does not change the objective value in feasible
regions, thus the result is optimal, and therefore the expected result. However, a MILP
problem is generally NP-hard to solve, which may result in an infeasible running time
of the algorithm. The simulation focus on the scalability of the algorithm in different
scenarios.

3.3.1 Simulation Set-up

There are two main goals in this simulation, including testing the time complexity
increment when first, scaling up the graph size and then, enlarging the number of
trucks in the fleet. To simulate the highway network, we assume there are a set of
nodes on a plane, which represent the set of nodes in G. The nodes are connected
by horizontal and vertical unweighted links as in Figure 3.1 to represent a connected
transportation network. The graph is also known as the Hanan grid, which is adapted
for similar simulations in previous studies [17, 22]. The number of nodes used in the
simulations are 9, 16, 36 and 100 to represent the enlargement of the graph size. The
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size of the fleet increases from 5 to 50 at a step size of 5. The assignments for trucks

   

   

   

    

    

       

        

      

         

            

            

            

            

           

                    

                    

                    

                    

                    

                    

                    

                    

                     

Figure 3.1: Test Hanan grids used in the example, 9-node, 16-node,36-node and 100-node

are randomly chosen from the graph. The latest arrival time is chosen in a way that
feasible paths exist. The preferred arrival time is also randomly selected during the
time window in a way that it is possible to satisfy. There are two speed options, high
and low. A truck may choose to spend one time interval or two on traveling through
one link. All links are assumed to be the same, and all weights are the same for each
truck. In the setup, we consider the solo operation of a fleet, which implies that all
N−c,l = 0. Other constant settings are shown in the Table 3.1. Numerical examples
computations are performed using CVX solver [28, 29]. Simulation on each fleet size
setting has been repeated for 50 times.

Truck parameters

Fleet size Kc
Range Step size
[0, 50] 5

Time cost weight wk,t 5
Preference penalty weight - late wk,l 5
Preference penalty weight - early wk,e 5

Piece-wise linear fitting parameters

Speed High Low

Segment 1 constants
α -1.617 -1.47
β 33.957 30.87

Segment 2 constants
α 0 0
β 30.723 27.93

Table 3.1: Parameters setting for the simulation

3.3.2 Result and Discussion

The results about the time complexity in the small- and medium-size graph are shown
in Figure 3.3, where the plots indicate time vs fleet size. In the subgraph Figure 3.3 (a)
and (b) for the 9 and 16 nodes, although the fleet sizes increases, the elapsed time is
relatively short. It is noted that in a medium-size problem with 36 nodes as shown in
Figure 3.3 (c), the time consuming for solving the problem is generally acceptable. In
Figure 3.3 (d), we enlarge the regions of 0-800s to show that the time complexity does
not increase exponentially in this range in a majority of cases. However, depending on
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the feature of the demand from trucks, extreme cases may occur, leading to infeasible
computation time. In a large scale problem with 100 nodes in the graph, the extreme

Figure 3.2: 100-node graph time complexity simulation result with centralized solver for
varying number of trucks

cases take unacceptable amount of time to compute, thus the simulation terminates
before raising the fleet size to 20. As shown in Figure 3.2 (a), there are extreme
cases that cost infeasible amount of time. The subplot is then enlarged as shown in
Figure 3.2 (b), suggesting that the time complexity may vary significantly with the
fleet size increasing. Three histograms of fleet size 5 to 15 are given in Figure 3.2 (c)
- (e), in which the y axis represent the amount of cases that falls into certain ranges
of elapsed time. In all three scenarios, the majority of cases finish in a relatively short
time, while there are about 10% cases that are infeasible. The result also suggests that
the time complexity is affected by the features of the demand, as well as the problem
size. In fact, in a real-world problem, the graph and fleet numbers are likely to be fixed.
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Figure 3.3: Time complexity simulation result with centralized solver for varying number of
trucks

25



A representative demand set may reveal a more practical time complexity challenge in
truck platooning coordination. The demand issues are addressed in the simulation in
Chapter 5.

To deal with the limitation in centralized exact solution methods, the decentralized
approach is introduced in the truck platooning problem. The decentralized approach
has advantages in reducing communication requirements, sharing computation burden
and flexibility, and scalability [30]. With the sustained development of autonomous
vehicle technologies, vehicles can perform local computation and communicate with
other entities. The vehicles are interconnected, and they may cooperate to achieve a
desired global objective. In the next chapter, we will propose a method to decompose
the problem to each truck instead of approximating the result in a centralized node.
The large scale problem may be decomposed into a series of subproblem which are
associated to each truck which may achieve a feasible time complexity.
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Decentralized Method for
Best-response Subproblem 4
With the observations from the numerical examples in Chapter 3, we introduce a de-
centralized method for solving the problem, targeting a more feasible time complexity.
For easier denotations and showing the mathematical structure of the optimization
problem, we reformulate the R. The problem is then clearly a separable problem with
a series of coupled linear inequality constraints. The details and insights of such an
algorithm are discussed. Last but not least, we perform numerical tests to show the
time complexity, suboptimal level, and savings for the algorithm.

4.1 Decentralized Form Reformulation

For an easier denotation, we convert R into a matrix form with its linear nature, which
is given by

min
ac

∑
k∈Kc

 ∑
l∈E(Gk)

uk,l + gk(ac) + pk

 (R)

subject to AkSkac = bk ∀k ∈ Kc (4.1)

ac ∈ [0, 1]Lc ∀k ∈ Kc (4.2)

wk,l(t
T
kSkac + tEDk − tPAk ) ≤ pk ∀k ∈ Kc (4.3)

−wk,e(tTkSkac + tEDk − tPAk ) ≤ pk ∀k ∈ Kc (4.4)

(αk,l,j + αk,l,jN−c,l+βk,l,j)xk,l + αk,l,jvk,l ≤ uk,l ∀j,∀k ∈ Kc, l ∈ E(Gk) (4.5)

vk,l ≤ (Kc − 1)xk,l ∀k ∈ Kc, l ∈ E(Gk) (4.6)

vk,l ≤
∑

k′∈Kc\k

xk′,l ∀k ∈ Kc, l ∈ E(Gk) (4.7)

where constraints (4.1) to (4.7) are based on (3.6), (3.7), (3.15), (3.17) and (3.18). By
reformulating the subproblem into a matrix form, the formulation is compact. On the
other hand, by placing the constants and parameters with physical significance within a
matrix, we may temporally focus only on the mathematical structure. We will introduce
the details of the reformulation in the rest part of this section. Let zk ∈ ZLk ×R(2Lk+1)

be a vector for each truck,
zk = [xTk , pk,u

T
k ,v

T
k ]T (4.8)

where

uk = [uk,1, · · · , uk,l]T ∀l ∈ E(Gk) (4.9)

vk = [vk,1, · · · , vk,l]T ∀l ∈ E(Gk) (4.10)
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here uk is the vector for all fuel cost of truck k. vk represents the product of the decision
variable xk,l and the number of platoon partners. It indicates the level of platooning
benefits for truck k and thus equals to 0 because xk,l = 0 when the truck k is not
present on the link l. zk is considered as the extended decision vector of each truck.

For each truck k we may have a cost vector ck based on the cost function in R,

cTk zk = gk(ac) + pk +
∑

l∈E(Gk)

uk,l = wt,kt
T
k xk + pk + 1TLk

uk (4.11)

where ck,
ck = [wt,kt

T
k , 1,1

T
Lk
,0TLk

]T (4.12)

Likewise, we may reformulate the equality constraint from (4.1),

Ākzk = b̄k (4.13)

where

Āk = [Ak,0Lk×(2Lk+1)] (4.14)

b̄k = [bTk ,0
T
(2Lk+1)]

T (4.15)

which indicates the flow conservation constraints, ensuring the xk representing a fea-
sible path. For the inequality constraints (3.6), (3.7), (3.15) and (3.17), they may be
rewritten as

wk,lt
T
k −1 0TLk

0TLk

−wk,etTk −1 0TLk
0TLk

Ck,x 0JLk
Ck,u Ck,v

(Kc − 1)ILk×Lk
0Lk

0Lk
−ILk×Lk

−ILk×Lk
0Lk

0Lk
0Lk

ILk×Lk
0Lk

0Lk
0Lk


︸ ︷︷ ︸

Hk


xk
pk
uk
vk


︸ ︷︷ ︸

zk

≤


−wk,l(tEDk − tPAk )
wk,e(t

ED
k − tPAk )
0JLk

0Lk

0Lk

1Lk


︸ ︷︷ ︸

dk

(4.16)

where [C]i denote the ith row of martix C,

[Ck,x]J(l−1)+lxk = (αk,l,j + αk,l,jN−c,l + βk,l,j)xk,l (4.17)

[Ck,v]J(l−1)+lvk = αk,l,jvk,l (4.18)

[Ck,u]J(l−1)+luk = −uk,l (4.19)

Meanwhile, the last two rows in the matrix on the left side in (4.16) constraint the
binary variable xk,l into the range of [0, 1]. The complex formulation in (4.16) may be
simplified as

Hkzk ≤ dk (4.20)

The matrix Hk and dk represents the feasible half space defined by inequality con-
straints The remaining constraints (3.18) may be written as∑

k∈Kc

Dkzk ≤ 0Lc (4.21)
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where Dk ∈ R(3Lk+1)×Lc satisfies and Lc =
∑

k∈Kc
Lk∑

k∈Kc

[Dk]lzk = vk,l −
∑

k′∈Kc\k

xk′,l (4.22)

Notably, (4.20) and (4.13) are local for a truck, let Zk be a set

Zk = {zk ∈ ZLk × R2Lk+1|Hkzk ≤ dk, Ākzk = b̄k} (4.23)

To summarize, R is reformulated as,

min
z1,··· ,zKc

∑
k∈Kc

cTk zk (Rd)

subject to
∑
k∈Kc

Dkzk ≤ 0Lc (Rd.1)

zk ∈ Zk ∀k ∈ Kc (Rd.2)

Rd is a MILP problem with coupled inequality constraints among trucks. It worth
mentioning that constraint (Rd.1) is connected to every truck. But the rest of con-
straints are local. To decompose the problem, we adopt the decentralized method with
minor modification in the notations, which is proposed in [31].

4.2 Decentralized Dual Subgradient Method

In this section, we introduce the algorithm, which is a variant dual subgradient method
based on [31]. To provide more insights in this method and analysing the applicability
in the problem of this thesis, we will analysis some key parts of the algorithm.

4.2.1 Dual Decomposition

It is common to look at a nondifferentiable optimization problem in its dual domain
to obtain a favorable properties including a differentiable dual function or simpler
nondifferentiable terms. The dual problem of Rd is formulated as

min
z1,··· ,zKc ,λ

∑
k∈Kc

cTk zk + λT (
∑
k∈Kc

Dkzk)

subject to λ ≥ 0Lc

zk ∈ Zk ∀k ∈ Kc

(D)

where λ ∈ RLc is the Lagrange multiplier for the coupled inequality constraints. No-
tably, the formulation in (D) is not a typical dual formulation as we keep the local
constant sets Zk within the constraints. The reason is straight forward that if we let

L(z1, · · · , zk,λ) =
∑
k∈Kc

cTk zk + λT (
∑
k∈Kc

Dkzk) (4.24)
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The Lagrangian L is decomposable as given in

L(z1, · · · , zk,λ) =
∑
k∈Kc

Lk(zk,λ) =
∑
k∈Kc

(cTk + λTDk)zk (4.25)

That is for a given λ, solving for zk is a smaller subproblem as in

zk(λ) ∈ arg min
zk∈Zk

(cTk + λTDk)zk (4.26)

λ is then the global variable that should be exchanged in the communication network.
The method, also know as projected dual subgradient method, is to literately solving
the following sub-problems,

zk,i+1 = arg min
zk∈Zk

(cTk + (λTi Dk)zk (4.27)

λi+1 =

[
λi + α(i)(

∑
k∈Kc

Dkzk,i)

]
+

(4.28)

with an abuse of notation, we denote zk,i,λi as the value of corresponding zk,λ at the
ith iteration. [·]+ is the projection to non-negative orthant. α(i) is the step size at
iteration i. With a centralized fusion center for λ update, the problem is separated
into smaller problems for each truck.

However, the dual decomposition method does not guarantee a feasible solution
because of the discrete variables. Counter examples are given in the Appendix of [31].
As a matter of fact, the method provide an optimal solution of a relaxed problem

min
z1,··· ,zKc

∑
k∈Kc

cTk zk

subject to
∑
k∈Kc

Dkzk ≤ 0Lc

zk ∈ conv(Zk) ∀k ∈ Kc

(RLP )

where conv(Zk) is the convex hull of the local set Zk. To offer a more detailed insights
on the duality gap between Rd and D, a theorem from [32] is proposed as

Theorem 4.2.1. (Bound on Duality Gap, Theorem 2.3 in [32]).There exists an
z̄k ∈ Zk such that Dkz̄k ≤ Dkzk,∀zk ∈ conv(Zk), then

J∗Rd
− J∗D ≤ Kc max

k∈Kc

γk, γk = max
zk∈Zk

cTk zk − min
zk∈Zk

cTk zk (4.29)

The Theorem 4.2.1 suggests the existence of a feasible solution within the bound given
in (4.29). However there is no algorithmic way to produce the solution. To address the
issues for possible infeasible solutions, a method is proposed by tightening the primal
problem to ensure feasibility for the dual decomposition solutions [32]. We present the
related parts in the next section.
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4.2.2 Primal Problem Modification

The method proposed is based on tightening the feasible region limited by (4.21) with
an appropriate contraction. The contraction is to tighten the inequality constraints to
guarantee the feasibility, though may increase suboptimal level. The tighten version of
the relaxed problem RLP is given by

min
z1,··· ,zKc

∑
k∈Kc

cTk zk

subject to
∑
k∈Kc

Dkzk ≤ −ρ

zk ∈ conv(Zk) ∀k ∈ Kc

(RLP,ρ)

in which the non-negative ρ ∈ RLc is the tightening vector. Consequently, the dual
problem of RLP,ρ is given by

max
λ≥0

λTρ +
∑
k∈Kc

min
zk∈Zk

(cTk + λTDk)zk (Dρ)

Notably, the contraction problem does not affect the subproblem as in the (4.29). Let
ρ̃ be a proper selection of ρ

[ρ̃]j = Kc

{
max
zk∈Zk

[Dk]jzk − min
zk∈Zk

[Dk]jzk

}
(4.30)

where [·]j is the jth row of the corresponding matrix. Let R̃LP,ρ and D̃ρ be the primal-
dual pairs where ρ = ρ̃.

The contraction method with ρ̃ is different from the original formulation in [32],
in which they assume that the length of ρ is considerably smaller than the amount
of agents. In general, this assumption does not hold in truck platooning problem as
in formulation Rd, as Lc ≥ Kc. We may assume that for a optimal solution set
z̃∗LP = [z̃∗1,LP ; · · · ; z̃∗Kc,LP

] of RLP,ρ, a subset Kc,1 ⊆ Kc exists such that

z̃∗k,LP = zk(λ̃
∗
) ∀k ∈ Kc,1 (4.31)

where λ̃
∗

is an optimal solution of Dρ and zk(λ̃
∗
) is the corresponding solutions given

by (4.26). The subset Kc,1 contains the trucks which have the same optimal plan with
or without the contraction method implemented. By dividing the trucks into two sets,
we have the following derivations,∑

k∈Kc

Dkzk(λ̃
∗
) =

∑
k∈Kc,1

Dkzk(λ̃
∗
) +

∑
k∈Kc\Kc,1

Dkzk(λ̃
∗
)

=
∑
k∈Kc,1

Dkz̃
∗
k,LP +

∑
k∈Kc\Kc,1

Dkzk(λ̃
∗
)

=
∑
k∈Kc

Dkz̃
∗
k,LP +

∑
k∈Kc\Kc,1

(
Dkzk(λ̃

∗
)−Dkz̃

∗
k,LP

) (4.32)
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Notably, if z̃∗LP is unique, we have∑
k∈Kc

Dkz̃
∗
k,LP ≤ −ρ̃ (4.33)

Otherwise, if RLP,ρ has multiple optima, when solving the problem in a decentralized
set-up, there is no guarantees that all trucks get the same optima solution as they work
independently at this step, which possibly failing the inequality in (4.33). On the other

hand, based on (4.26), the zk(λ̃
∗
) is determined by λ̃

∗
. If λ̃

∗
is not unique, this may

results in a uncertainty in selection of λ̃
∗

of each truck, resulting a failure in (??). To
sum up, the following assumption is proposed

Assumption 4.2.1. (Uniqueness, Assumption 2.4 in [32]). R̃LP,ρ and D̃ρ have

unique solutions z̃∗LP and λ̃
∗
.

With Assumption 4.2.1, we have (4.33) held and∑
k∈Kc,2

(
[Dk]jzk(λ̃

∗
)− [Dk]j z̃

∗
k,LP

)
≤ Kc max

k∈Kc

{
max
zk∈Zk

[Dk]jzk − min
zk∈conv(Zk)

[Dk]jzk

}
(4.34)

This is straight forward to see that there are at most Kc trucks in Kc\Kc,1. It is clear
that based on (4.22), [Dk]jzk is nothing but either vk,l or −xk,l. The linearity of [Dk]jzk
guarantees that minzk∈conv(Zk)[Dk]jzk = minzk∈Zk

[Dk]jzk since the binary elements will
be on the extreme edges, which for truck platooning is either -1 or 0. This supports
that (4.30) is a reasonable choice. Following (4.32),∑

k∈Kc

Dkz̃
∗
k,LP +

∑
k∈Kc\Kc,1

(
Dkzk(λ̃

∗
)−Dkz̃

∗
k,LP

)
≤ −ρ̃ + ρ̃ = 0Lc (4.35)

To summarize, the following theorem is given.

Theorem 4.2.2. (Feasibility guarantees, Theorem 3.1 in [32]) If Assumption 4.2.1

is satisfied, z∗(λ̃
∗
) = [z∗1(λ̃

∗
); · · · ; z∗Kc

(λ̃
∗
)] is feasible for Rd.

However, it worth mentioning that in truck platooning problem, the chosen of ρ̃ is
unnecessarily large, compromising on the suboptimal level. We may build a tighter ρo
based on (4.22),

ρo = 2(Kc − 1) · 1Lc (4.36)

Even with ρo, the tightening is strict and assuming the worst case. A method has been
proposed to combine the dual subgradient method to the adaptive tighten primal prob-
lem with improvement in the suboptimal level and asymptotic convergence guarantees
[31]. We modified the algorithm to meet the properties of our problem.

4.2.3 Decentralized Truck Platooning Coordination Algorithm

The proposed decentralized truck platooning algorithm is given as Algorithm 1. Instead
of fixing the value of ρ, the algorithm is adaptive in contracting the primal problem
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Algorithm 1 Decentralized Truck Platooning Coordination

1: i = 0 {% Round of iteration}
2: λ(i) = 0
3: s̄(i) = −∞, k = 1, · · · ,Kc

4: s(i) = +∞, i = 1, · · · ,Kc

5: repeat
6: for k = 1 to Kc do
7: zk(i+ 1)← arg minzk∈Ẑk

{(cTk + λTDk)zk}
8: end for
9: s̄k(i+ 1)← max{s̄k(i),Dkzk(i+ 1)}, k = 1, · · · ,Kc

10: sk(i+ 1)← min{sk(i),Dkzk(i+ 1)}, k = 1, · · · ,Kc

11: ρk(i+ 1) = s̄k(i+ 1)− sk(i+ 1), k = 1, · · · ,Kc

12: ρ(i+ 1) = Kc max{ρ1(i+ 1), · · · ,ρKc
(i+ 1)}

13: α(i) = a/
√

(i+ 1), a > 0
14: λ(i+ 1) = [λ(i) + α(i)(

∑m
i=1Dkzk + ρ(i+ 1))]+

15: i← i+ 1
16: until some stopping criterion is met.

to achieve a better suboptimal level. There are two main parts of preparing procedure
before the implementation of the algorithm. To satisfy the Assumption 4.2.1, a per-
turbation in the cost vector ck may be required. However, since in the real world, the
fuel on each link is likely to be unique leading to unique solutions, the step may not be
necessary.

One of the critical assumption in previous works is that in step 7, the feasible set
must be bounded [31]. Since the objective function is modified as (cTk + λTDk)zk,
proper upper bounds for uk,l and lower bounds for vk,l should be assigned. The extra
bounds are given by

vk,l ≥ 0, uk,l ≤ αk,l,1 + βk,l,1 (4.37)

which is nothing but the physical limitation. vk,l is a place holder for xk,l
∑

k′∈Kc\k xk′,l,
ensuring the positive semidefinite nature. uk,l is the place holder for the fuel cost,
limited by the physical nature. The fuel cost is at most when the truck transverses
through the link alone. Likewise, we formulate the (4.37) as

[0TLk
, 0,1TLk

,−1TLk
]︸ ︷︷ ︸

Mk


xk
pk
uk
vk


︸ ︷︷ ︸

zk

≤


0TLk

0
αk,1 + βk,1

0TLk


︸ ︷︷ ︸

nk

(4.38)

The extra constraints given by (4.38) is also linear and local, thus for a simple notation
in the algorithm, we define

Ẑk = Zk ∩ {zk ∈ ZLk × R2Lk+1|Mkzk ≤ nk} (4.39)

The algorithm is a variant of dual sub-gradient method for the tighten primal prob-
lem. After initialization, the algorithm locally compute a subproblem in step 7, which
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is a variant of (4.27). The following steps from 9 to 12 is an adaptive step for finding
a minimum ρ for a better suboptimal level. The difference is quite significant as in
[32] the contraction is fixed. Since taking values from finite sets, the sequence of ρ(i)
converges to some ρ̄. In a similar manner, with ρ = ρ̄, the contraction is still sufficient
to ensure feasibility. We recommend the reader to refer to [31] for the proof. With the
latest update on the ρ, the centralized node perform an update on λ in step 14, which
origins form (4.28). α(i) is a nonsummable diminishing step size with a positive scalar
a [33]. Since the algorithm is based on a decentralized set-up, there may not be a clear
stop criterion unless for information is sent to the centralized node. It is also practical
to set upper bounds for iterations.

To summarize the flow of the Algorithm 1, at iteration i, each truck updates locally
the tentative solution zk(λ(i−1)) and sent the value of Dkzk(λ(i−1)) to the centralized
node. Based on the latest updates from trucks, a centralized node updates ρ(i), leading
to an ascent to λ(i). It is noted that the process does not require synchronization [31],
though we build up the algorithm in a synchronous setup for a comparable result with
centralized result.

4.3 Numerical Examples

A comparison simulation illustrates the improvement in time complexity with the de-
centralized method in this section. The simulation also addresses the compromise in
optimality as a result of decomposing the problem. A simple decentralized method is
applied as the benchmark for the Algorithm 1, which is opportunistic platooning on
each truck’s solo optimal plan.

The simulation is performed on the same set-up as introduced in Section 3.3.1 but
only for the medium-sized 36-node Hanan graph. At each iteration of Algorithm 1, step
6-8 is considered parallel. Thus only the worst case is considered. Assuming all trucks
send the result to the centralized node after the slowest agent finished the computation,
a centralized node performed the computation from step 9-14. The time complexity of
iteration i is the sum of the worst agent’s local computation time and the centralized
computation, assuming zero communication latency.

4.3.1 Results and Discussions

The result of time complexity improvement is given in Figure 4.1, showing the duration
of the solving process based on the assumptions given in the previous paragraph and
the centralized solver running time. The centralized solver elapsed time is significantly
influenced by the demand of trucks, with relatively longer cases and possibly infeasible
in a large scale problem, as shown in Figure 4.1 (a). By contrast, the decentralized
algorithm shows better consistency in solving problems with different demands and
sizes as in Figure 4.1 (b). The result of decentralized method is enlarged to highlight
the range from 30s to 90s as in Figure 4.1 (c). Although Algorithm 1 takes more time
in small problems, it shows the advantage of solving a large scale problem. Given the
size of the graph, the problem is broken down into smaller problems with almost the
same size problems, which are not significantly affected by the number of trucks since
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they are conducted on connected vehicles in parallel. The time increment is mainly the
result of centralized node computation, which is not significant. The time complexity
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Figure 4.1: Time complexity comparison between centralized solution and decentralized so-
lution

performance is promising even in the real-world size problem, as the fleet size increment
contributes to the advantages in the decentralized method. Likely, Algorithm 1 is still
outperforming the centralized solver in terms of time, even with communication latency.

On the other hand, the improvement is the result of a compromise in optimality. The
result is given in Figure 4.2, showing the performance in benefiting the stake-holders
compared to the centralized solution and forming platoons without coordination be-
forehand. The graph in Figure 4.2 (a) is the relative gap between the optimal cost given
by the centralized method and suboptimal objective value from Algorithm 1. On aver-
age, the relative gap to the optimum is kept below 1%, with no significant increment
with more trucks in the fleet. To reveal the benefits of employing the decentralized
algorithm, a comparison with opportunistic platooning, which are all trucks operate
without coordination beforehand, and form platoons once encountered during the trip.
This comparison is to rule out the benefits received through the inherent overlap. Gen-
erally, Algorithm 1 reduces the cost by about 0.2% on average, as shown in Figure 4.2
(b). Although the reduction is insignificant, the lowest subplot indicates the algorithm
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Figure 4.2: Sub-optimal level and benefits of the decentralized solution

realizes about 20% of the potential as shown in Figure 4.2 (c).
With the result so far, we learn that the implementation of Algorithm 1 is likely to

benefit the shake holders of the fleet as it has significant improvement in time complex-
ity. We are interested in the performance of the best-response search with a feasible
way of solving the subproblem of best-response search. However, the absolute and
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relative objective value reduction depends on the demand, including the truck assign-
ment distribution among the geographical graph and the period. In the next chapter,
we introduce the generation of an analogous demand set from real-world information
to indicate the real improvement in objective values and the effects of best-response
searching.
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Simulation and Discussion 5
The previous chapter analysis the performance of the decentralized algorithm for the
best-response subproblem. In this chapter, we will build a representative test case
to test the best response search method with the subproblems solved by Algorithm
1. Real shake holders are unwilling to share information of interest. Thus a privacy-
preserving way of information exchange is required for our best-response search. The
privacy-preserving way of information exchanged is introduced in the first section of
the chapter to show more insights into the real implementation challenges. Since this
thesis is one of the first work to build such a test case, we offer detailed reasoning
while generating the dataset. In the last section, we present the results and offer our
suggestions on the implementations and future work.

5.1 Privacy-preserving Communication Exchange

For the fleet c, the information of interests is the combination of all other fleets’ plans,
which is indicated by a−c. More specifically, the number of trucks Nl on all links, which
is defined in (2.17) are the critical information . Then a−c may be formulated as

a−c =
∑

k∈K\Kc

x̄k (5.1)

where x̄k, defined in (2.2), is the decision vector of a truck without the refining process,
which is introduced in Section 2.3. Let yc ∈ RL be the information vector exchanged
among fleets in a best response search set-up

yc =
∑
k∈Kc

x̄k (5.2)

Consequently,

a−c =
∑
c′∈C\c

yc′ (5.3)

Let ȳ be the element-wise average of all yc, then

a−c = Cȳ − yc (5.4)

where ȳ = 1
C

∑
c∈C yc. Assuming C, the number of all fleets, is known to all, the only

information to exchange is ȳ.
Estimating the average value among all agents without revealing the information of

its own is a crucial topic in many applications. The algorithm for solving such problem
is well developed in a series of studies [34, 35]. The details of such algorithm is not the
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focus of this study. In the previous work, the algorithm is based on a connected and
possibly varying graph, thus it is possible to modify it for a decentralized set-up [34].
We address the algorithm as a function denoted by (ȳ) = Privacy Averaging(yc,y−c).

By denoting the Algorithm 1 as

(z1, · · · , zk) = Decentral TPC([c1, · · · , ck], [Z1, · · · ,Zk], [D1, · · · ,Dk])

we introduce the routine for the multi-fleet coordination in the Algorithm 2, where
c1, · · · , ck are cost vectors given in (4.11), Z1, · · · ,Zk are defined in (4.23) and
[D1, · · · ,Dk] are given in (4.22). It is noted that the change in y−c only affects
the local set of a truck Zk. The process is packaged as a subfunction named
(Zk) = Build Zk(y−c), in which we substituting the element from y−c to corresponding
N−c,l, as defined in (3.11). At step 8, Rc,k serves as a linear transformation matrix to

Algorithm 2 Multi-fleet Best Response Search Routine

1: i = 0 {% rounds of iteration}
2: ȳi = 0 {% initialization}
3: y−c,i = 0,∀c ∈ C
4: repeat
5: for c = 1 to C do
6: y−c,i = Cȳi − yc,i
7: (Zk,i)← Build Zk(y−c,i),∀k ∈ Kc
8: (z1,i, · · · , zk,i) = Decentral TPC([c1, · · · , ck], [Z1,i, · · · ,Zk,i], [D1, · · · ,Dk])
9: yc,i =

∑
k∈Kc

Rc,kzk,i
10: ȳi = Privacy Averaging(yc,i,y−c,i)
11: end for
12: until some stopping criterion is met.

convert all Zk to the yc. This routine operates under strict assumption on the synchro-
nization of all fleets. The privacy-preserving feature relies on iterations to converge,
indicating a possibly considerable latency. This issue is not yet addressed in this thesis
but assuming the time complexity of the averaging process can be ignored for the best-
response search. We recommend the reader to find more insights about the elapsed
time of such algorithm in the previous work [34].

5.2 Simulation Set-up

5.2.1 Demand and Geographical Map

As shown in the simulation in Chapter 3 and Chapter 4, the time complexity on the
graph varies significantly with randomly generated demand input. To reveal a more
representative time complexity in real-world scenarios, we introduce our settings in this
section.

The geographical map is constructed with a simplified Dutch road network, as shown
in Figure 5.1. There are 67 nodes in the graph, representing main cities or intersections
on the highway. The edge of the graph is assigned with a distance at 5km discrete
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Figure 5.1: Dutch road network with node labeled with corresponding physical locations

Supermarket Chains Distribution Centers

A Delfgauw, Metern, Zaandam, Zwolle
B Raalte, Eursing, Breda, Woerden, Veghel
C Waalwijk, Heerenveen

Table 5.1: Distribution centers of three supermarket chains in the Netherlands

scales. The demand for freight transportation is considered private information. Thus
there is no available public demand set. We then collect the distribution of three major
supermarket chains in the Netherlands to represent the demand distribution. It is
assumed that with more dense stores in certain areas, there is more demand. We then
assume, on average, each store needs one truck. The stores are gathered to nearby
nodes on the map for a simplified demand distribution, and the distribution is shown
in Figure 5.2. The demanding stores are considered geographical destinations, while we
assume the distribution centers of each supermarket chain as the geographical origins.
The details of each supermarket’s demands are shown in Table 5.1. We assume that
destinations are served by the closest distribution centers of its own company.
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Figure 5.2: Supermarket distributions among cites in the Netherlands [2, 3, 4]

5.2.2 Parameters Assumptions and Settings

It is reasonable that supermarket chains avoid peak hours to eliminate the influence of
traffic. We consider the operation hours are limited within 10:00 - 15:00 to represent the
non-peak hour operation features. The bounds are assigned to be the earliest departure
time and latest arrival time. However, the preference is generally challenging to assume,
as it may vary based on the owners’ interest. Though slightly reducing the complexity,
we set the weights of the preference to zeros.

To properly convert objective values into a proper monetary cost, in this section, we
offer the motivation on our selection of the cost. A more detailed table with reference
source is given in Table 5.2. The longest distance from the distribution center to stores

Parameter Description Value Unit Source

wf Price of oil 0.002123 ¤/g [36]
θl Road gradient 0 Assumption in [16]
Mk Total vehicle weight 20000 kg [16]
ξ Fuel-to-mass ratio 1 [37]
κ Heating value of the fuel 44 kJ/g [37]
ρ Density of air 1.2041 kg/m3 [37]
g Gravitational constant 9.81 m/s2 [37]
φ0 Air reduction factor 0.32 [37]
Ek Engine speed 33 rev/s [37]
µk Engine friction factor 0.2 kJ/rev/L [37]
Vk Engine displacement 5 L [37]
cd,k Aerodynamic drag coefficient 0.7 [37]
Ak Front area of the truck 3.912 m2 [37]
cr,k Rolling resistance coefficient 0.01 [37]
εk Drive train efficiency 0.4 [37]
$k An efficiency parameter for the engine 0.9 [38]
wt,k Time cost for operation 1.40775 ¤/7.5 min [16]
we,k Weight for early arrival penalty 0 ¤/7.5 min Assumption in this thesis
wl,k Weight for late arrival penalty 0 ¤/7.5 min Assumption in this thesis

Table 5.2: Parameters settings for Dutch supermarket chains simulation
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is 170km. Considering the real-world limitations and simpler graph modeling, we offer
two-speed options for trucks, 40 km/h, and 80 km/h. Thus, all assignments are finished
in a reasonable period. Without losing generality, we assign the fuel cost in 5km step
for each truck with the same expectation value with random perturbation, guaranteeing
the Assumption 4.2.1 being followed. With the selection of the speed, we divide the
operation hours into 40 intervals, which identically represent 7.5 min.

Another factor about the complexity is the number of segments, J , which is intro-
duced in (3.8) and (3.9. It is to set to 2 with the second segment set horizontal, which is
realized by setting αk,l,2 = 0 to prevent negative fuel cost. It is also a reasonable choice
as in the real world, long platoons may jam the highway traffic. 2-vehicle platoons are
feasible scenarios as the overall length of the platoon is acceptable [39]. In our model,
there is no limitation for the partner amount, but by setting J = 2, there are no extra
benefits in forming platoons with more than two vehicles. In terms of fuel savings,
the simulation result has the same behavior as if the longer platoons are broken into
multiple 2-vehicle platoons.

In the aspect of time cost, the cost of time is remarkably more expensive than
the fuel, the trucks that are assigned with the same origin-destination pairs will be
travelling together on the fastest path. Since the trucks will operate in platoons along
the way, we may consider them as one virtual truck with higher unit cost in both time
and fuel. The trucks with the same assignments may be considered as one single truck
with every cost weights multiplied by the real amount of trucks, which remarkably scale
down the size of the problem.

Given the limited number of fleets in this demand set, the upper bounds for best-
response search iteration is set to 3, which does not influence the cost value as shown
in the latter section.

5.3 Results and Conclusion

The main goal of this simulation is to study the performance of the proposed method
in the real-world featured demand set. The time complexity of the best-response search
with Algorithm 1 is compared with the independent centralized optimization of each
company. The effect on the cost, especially the performance of best-response search, is
also revealed in this simulation.

5.3.1 Simulation Results and Discussions

With refining and pruning methods, the size of the problem is reduced in the truck
platooning application, enabling the centralized solver to efficiently process this nu-
merical example. The elapsed time comparison between employing centralized method
without best-response search and the proposed approach in this thesis is given in Fig-
ure 5.3. The results still suggests that the proposed approach is not sensitive to the size
of the fleet, as all three companies spend about the same computational time despite
the variation in the fleet size and demand. In cases of Company A and B, in which
there are larger logistical demand, it is revealed that the best-response search is more
computationally cheap in terms of time if assuming ideal communication latency and
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Figure 5.3: Elapsed time comparison between independent centralized optimization and the
proposed decentralized best-response search

cost. On the other hand, Company C spent more time in best-response search that
solving the optimization problem independently.

The other critical result is the cost reduction, which is listed in Table 5.3. The

Company A Company B Company C

Centralized optimization within single fleet 11.944 10.123 8.710
Best-response search with Algorithm 1 11.944 10.123 8.710

Table 5.3: Cost comparison between two approaches (unit: 1000 Euros)

messages delivered from this result are both positive and negative in the best-response
search method with Algorithm 1. First of all, the cost is the same, meaning the Al-
gorithm 1 delivers the optimal result. For Company A and B, even with more rounds
of iterations, the overall elapsed time is reduced without compromising the optimality.
However, the results also reveals that in this demand set, network structure and param-
eter setting, the multi-fleet truck platooning is not beneficial. In the case for Company
C, more computational cost are spent for no return in operation cost.

The reason of this result may be closely related to the feature of the demand set.
As mentioned in the last section, the dominating time cost leads to a strict limitation
on the detouring and eliminates the opportunity to reduce velocity for more platooning
chances. Unlike the Hanan grid, real-world highway is less likely to find an equal-length
alternative path. The very limited platooning coordination chances makes it easier for
Algorithm 1 to reach optimality but eliminate the benefit potential in cooperation with
other fleets.
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Conclusions and Future Work 6
6.1 Conclusions and Suggestions

In this thesis, we proposed a distributed framework for multi-fleet truck platooning
coordination. The interactions among non-cooperative agents are modeled as a finite
game that employs a collaborative best-response search for equilibrium. The search
routines are broken down into an optimization problem, which we refer to as the best-
response subproblem. The best-response subproblem is converted into a MILP and we
propose a decentralized algorithm to achieve a solution with feasible time complexity. A
more detailed review on goals of the thesis and the reflection on corresponding chapters
is given in Table 6.1.

Now we give a brief summary about the contribution of this thesis. We also intro-
duce a privacy-preserving average consensus method for information exchange among
fleets, removing one of the practical barriers for the stake holders. In the aspect of
cooperative truck platooning, we involve different aspects of cost in the objective func-
tion while introducing decision parameters including routines, schedule and speed. The
assumption on the trucks’ type is removed allowing users to configure the parameters
of each truck. On the other hand, although we preserve the standard MILP form of the
problem with relaxation skills, the off-the-shelf solver meets infeasible cases in terms of
solving time. The limitation in computation of the exact solution method is addressed
in this thesis and improved by decentralized optimization methods.In addition, we em-
ploy a real-world featured demand set for the simulation, in contrast to a randomly
generated demand in the previous works.

Based on the result, for cooperative truck platooning coordination, we suggest that
the decentralized algorithm for solving the MILP problem to be further studied in
a real-time scenario. Since Algorithm 1 can be readily modified as an asynchronous
distributed algorithm, it is likely that the algorithm may be repeated in a more frequent
manner without causing a significant load in the inter-vehicle communication network
as it only requires local information exchange. In the aspect of multi-fleet operation,
the problem is a variant of the congestion game, which requiring further studies on
the existence of pure strategic equilibrium and search method. It is also important to
perform a potential research on the multi-fleet truck platooning coordination with real
world demand data and weights setting. If the potential is considerably better than
pure opportunistic platooning among fleets, a more detailed study on an asynchronous
framework for privacy-preserved multi-fleet coordination is supposed to be launched.
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Goals of this thesis Review on the corresponding chapters

A framework for solving truck
platooning coordination as a
non-cooperative coordination
problem for self-interested fleets.

In Chapter 2, we model the interaction among
fleets as a non-cooperative finite game and pro-
pose the best-response search algorithm. The
equilibrium searching problem is broken down
into subproblems, which are optimization prob-
lems of cooperative truck platooning coordina-
tion.

A mathematical model for co-
operative truck platooning, in
which cost functions consist of
different cost other than simply
fuel cost and while routes, speed,
types of trucks and schedule for
trucks are decision variables to
optimize.

In Chapter 2, a spatiotemporal road network
model is introduced and the plans of trucks are
presented by vectors with binary elements.The
vector is known as the decision vector, together
with the spatiotemporal network, which may
present routes and speed choices of the truck.
Based on the network model and the decision
vector, we formulate the cost function of a fleet,
which contains fuel cost, time cost and sched-
ule preference penalty. In Chapter 3, the sub-
problem is reformulated with relaxations into a
standard MILP form. The performance with a
off-the self solver is also given in this chapter.

A decentralized algorithm for
solving the multi-fleet truck pla-
tooning coordination problem.

A decentralized method for solving the best-
response subproblem, which is in MILP form is
given in Chapter 4. We introduce the principle
of the algorithm and test it with a medium size
problem to compare with a centralized solver.

A simulation with real-world fea-
tured demand input to test the
performance of the decentralized
algorithm.

In Chapter 5, we introduced the way we gener-
ated the demand set based on the dutch highway
network and the distribution of three supermar-
ket chains. The simulation is performed to test
the time complexity and cost reduction. The
results suggest that in this specific setting, the
propsed approach may bring computation time
reduction if the fleet size is relatively large, while
the best-response search does not deliver extra
benefits.

Table 6.1: Review on the goals and corresponding chapters

6.2 Future Work

The work of this thesis may still be improved in three aspects. One of the significant
efforts in this thesis is to build a representative model, in which the cost function
contains the concerned parts of real shake-holders. Nevertheless, in a problem with
considerable speed options, we may have to build the spatiotemporal with short time
intervals or short unit distance. The micro-scale movements of trucks for forming
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platoons, which can be ignored on a larger scale, may bring extra costs. The inefficient
process of forming platoons is not yet modeled, and maybe the further studied for a
more accurate model.

Secondly, the convergence of the best-response search is not yet studied in the
area of game theory. Although the truck platooning coordination game is based on a
congestion game, the finite pure strategy profile prevents easy proof of the equilibrium.
Related works in game theory are still ongoing. However, on the other hand, the
negotiation process among non-cooperative players is noted by many researchers. In a
scenario like a supermarket chain gaming, the process may be repeated, which brings
the opportunity of a protocol pursuing a lower cost, even no equilibrium exists. Building
a privacy-preserving protocol is likely of the interest of the real stake-holders.

In the aspect of the algorithm itself, the strict assumption on synchronous oper-
ations is less favorable for real users. Mostly, solving the subproblem and reaching
consensus are two distributed processes, which both may operate in an asynchronous
set-up. However, there remains a problem with the influence on each other if they work
simultaneously. Ideally, if the convergence is guaranteed, the algorithm may be fully
distributed and taking more advantages on the connected vehicle’s technologies.
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