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Although indentation of elastic bodies by self-affine rough indenters has been studied extensively, little
attention has so far been devoted to plasticity. This is mostly because modeling plasticity as well as
contact with a self-affine rough surface is computationally quite challenging. Here, we succeed in
achieving this goal by using Green's function dislocation dynamics, which allows to describe the self-
affine rough surface using wavelengths spanning from 5nm to 100 um. The aim of this work is to
gain understanding in how plastic deformation affects the contact area, contact pressure and hardness,
gap profile and subsurface stresses, while the roughness of the indenter is changed. Plastic deformation
is found to be more pronounced for indenters with larger root-mean-square height and/or Hurst
exponent, and to be size dependent. The latter means that it is not possible to scale observables, as
typically done in elastic contact problems. Also, at a given indentation depth (interference) the contact
area is smaller than for the corresponding elastic contact problem, but gap closure is more pronounced.
Contact hardness is found to be much larger than what reported by classical plasticity studies. Primarily,
this is caused by limited dislocation availability, for which the stiffness of the deforming crystal is in
between that of a linear elastic and an elastic-perfectly plastic material. When calculating hardness and
nominal contact pressure, including very small wavelength in the description of the surface is not
necessary, because below a given wavelength the subsurface stresses become invariant to a further
decrease in true contact area. This is true for both elastic and plastic materials. Considering small
wavelengths is instead required to capture accurately roughening and contact stress distribution.
© 2018 Acta Materialia Inc. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-
ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

modeling of rough surface contacts. In virtue of advances in nu-
merical techniques it is now possible to model the self-affinity of

Contact between surfaces under moderate load involves only a
fraction of the surface asperities, given that most surfaces, even
when visually flat, have a self-affine fractal character [1—9]. The
change in contact area and local stress distribution when the sur-
faces are pressed into contact determines phenomena such as
friction, wear, adhesion, fretting and contact fatigue. However,
experimentally, it is very challenging to measure local changes in
contact area, especially when the surfaces are non transparent, as in
the case of metals, which is the material of interest in this study.

Recently, much effort has been devoted to the numerical
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surfaces incorporating a wide range of length scales. These
modeling techniques include the biconjugate-gradient stabilized
method [10], the boundary-element approach [11—14], the fast-
Fourier-transform based boundary-value methods (FFT-BVM)
[15,16] and Green's function molecular dynamics (GFMD) [17—20].
Studies using these methods have so far mostly focused on
describing contact between bodies that behave elastically. How-
ever, the assumption that bodies behave elastically during contact
is only valid as long as the stress in the body is mostly hydrostatic,
i.e. when the bodies are nearly in full contact, or when the root-
mean-square (rms) height of the rough surface or its Hurst expo-
nent are very small. All these conditions are not met by metal
surfaces, which require extremely high loads to reach full closure,
have rms height ranging from 0.3 um to 2.5 um [8] and have Hurst
exponent ranging from 0.3 to 0.9 [2,6—9], depending on the fin-
ishing. Rough metal bodies are therefore expected to deform
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plastically under rather moderate load. The main objective of this
work is to study the plastic response of metal crystals indented by a
self-affine rigid surface and investigate how their behavior differs
from that of elastically deforming bodies. To this end we will use a
modeling technique, Green's function dislocation dynamics, which
accurately captures deformation of the rough surface, as well as
dislocation plasticity in a two-dimensional framework [21].

While there is a broad literature dealing with elastic deforma-
tion of rough surfaces, much less work has been devoted to plastic
deformation (see Ghaednia et al. [22] for a recent review). The first
elasto-plastic contact model was proposed by Chang, Etsion and
Bogy [23] and was based on the conservation of volume of the
plastically deforming asperities. At a critical interference value, the
material would switch from the fully elastic to the fully plastic
regime. The model, although improved by Zhao et al. [24] to include
an intermediate elasto-plastic regime, has the drawback that ig-
nores interaction between asperities. The interaction is naturally
captured in the work of Gao et al. [25,26], who studied elasto-
plastic contact between sinusoidal surfaces and surfaces with a
Weierstrass profile. These studies showed that the pressure to
cause complete contact between surfaces can reach a value 5.8
times larger than the yield strength of the bulk material oy, thus
larger than the hardness of an isolated asperity modeled by clas-
sical plasticity (about 3ay). This is in consistence with the findings
of Pei et al. [27] who modeled indentation of a flat body, deforming
according to J, plasticity, indented by a self-affine fractal rigid
surface. They argued that it is the interaction between asperities
that brings the mean contact pressure py, above the single asperity
hardness. Both the work of Gao et al. [25] and of Pei et al. [27] were
based on classical plasticity and therefore ignored size effects,
which are found to play an important role at the micro-scale
[28—33]. Due to size-dependent plasticity, metals are found to be
harder to indent for decreasing size of the indenter and of the
indentation depth [34—36]. One can therefore expect that size-
dependent plasticity would also affect the response of rough
metal surfaces upon contact, especially when interference is small.
Discrete dislocation dynamics simulations can well capture size
effects and will enable us in this work to assess their influence on
the contact response of rough surfaces. Also, the simulations pro-
vide the subsurface stress fields, which are of great importance in
determining the critical locations where dislocation-driven failure
mechanisms can occur.

Discrete dislocation plasticity simulations of contact were
already performed for very simple surfaces: indentation or
shearing by isolated indenters in two- [37—40] and three-
dimensions [41,42], periodic arrays of flat indenters [43,44] and
flattening of sinusoidal surfaces [39,45—47]. These simulations
confirm that for these very simple geometries the plastic response
is size dependent. Dislocation dynamics simulations of contact are
computationally rather expensive even in two dimensions, there-
fore the contact problem between self-affine surfaces, which
require a fine discretization to capture a broad range of wavelength,
was not attempted so far. However, Yin et al. [48] presented
dislocation dynamics simulations for an indenter made of Hertzian
asperities of different size, to simulate the effect of multiscale
roughness and showed that rougher asperities induce more plas-
ticity than smooth ones, and that subsurface stresses and disloca-
tion densities strongly increase with interference. Recently, we
presented a new version of two-dimensional discrete dislocation
plasticity based on the formulation of Van der Giessen and Nee-
dleman [49] that uses Green's function molecular dynamics to
compute the image fields, and by that provides a significant gain in
computational speed [21]. Thanks to this method we can now
model indentation with a self-affine rough indenter of a crystal
deforming by dislocation plasticity to gain a better understanding

of the effect of roughness parameters such as rms height, Hurst
exponent, and short wavelength cut-off, by keeping track of the
evolution of the contact area, of the tractions and subsurface
stresses.

The remainder of the paper starts with the formulation of the
problem in section 2. Then the GFDD methodology is briefly pre-
sented in 2.1, more details can be found in Ref. [21]. The way in
which the surfaces are generated is given in section 2.2. The pa-
rameters chosen for the GFDD simulations are listed in section 2.3.
In section 3.1, the loading rate is determined at which the GFDD
simulations can be considered quasi-static. In section 3.2 the size
dependence of self-affine plastic indentation is demonstrated. The
effect of rms height and Hurst exponent on the contact pressure
and area are presented in section 3.3. The effect of short wavelength
cut-off on the contact deformation of elastic and plastic crystals is
shown in section 3.4. The area—load dependency for the elasto-
plastic crystal is presented in section 3.5.

2. Formulation of the problem

The schematic representation of the metal crystal indented by a
rigid rough surface is shown in Fig. 1.

Indentation is performed by specifying the displacement rate of
the rigid indenter u,. The top surface of the crystal is taken to be
frictionless at the points of contact, ox; (Xc, zc) = 0, and traction-
free elsewhere, ox; (Xnc, Znc) = 0zz (Xnc, Znc) = 0. The subscripts
‘c’ and ‘nc’ stand for ‘points in contact’ and ‘points not in contact’,
respectively.

The bottom of the unit cell, z= 0 is fixed: ux(x, 0) = u,(x, 0) =
0.

Following [49] the crystal is initially dislocation free, and con-
tains a given density of slip planes, dislocation sources, and ob-
stacles. When the stress in the body is sufficiently high, dislocation
dipoles are nucleated from the sources and glide on the slip planes,
by that reducing the stress in the body. Each dislocation source
nucleates a dipole when subjected to a resolved shear stress
exceeding its critical strength, 7y, for a given amount of time, tnyc.
Each dislocation source can emit multiple dipoles. The velocity
with which dislocations glide is controlled by the Peach-Koehler
force acting on them. Dislocations are stopped by the obstacles,
but released when the resolved shear stress on them exceeds the
critical strength associated to the obstacle, 7.

WMW
P SA

S S ow X

PANAYE AN

% Frank-Read source . Dislocation
@ Obstacle

Fig. 1. Schematic representation of the metal crystal indented by a rough surface.



S.P. Venugopalan, L. Nicola / Acta Materialia 165 (2019) 709—721 711

2.1. Solution through Green's function dislocation dynamics

The solution at each time step of the simulation is obtained by
the superposition of two linear elastic solutions: The elastic
analytical fields for dislocations in a homogeneous infinite solid,
and the solution to the complementary elastic boundary-value
problem, which corrects for the boundary conditions [49]. The
latter is obtained through Green's function molecular dynamics
(GFMD) [20]. The methodology is illustrated in Fig. 2 for the
indentation of a single crystal by a rigid indenter with self-affine
surface topography. The elastic dislocation fields are represented
by the superscript (9), the fields solving the complementary
boundary-value problem by the superscript (").

GFMD is a boundary-value method to study the elastic response
of a body subjected to contact loading [20,21,50]. In GFMD, only the
surface of the deformable body is modeled explicitly and dis-
cretized using nx equi-spaced grid points. The rough surface is
assumed to obey the small slope approximation. The interfacial
interaction adopted here is the simplest possible: in normal di-
rection a hard-wall constraint is imposed to avoid inter-
penetration, and in tangential direction the contact is assumed to
be frictionless. This is achieved by letting the contact points oscil-
late laterally to equilibrium without any constraint. It is possible to
use more sophisticated interfacial interactions, for instance
traction—separation laws that allow for the coupling between
normal and tangential separation [51], but in this work we have
chosen to focus on plasticity instead of on the interfacial behavior.

The unknown surface displacement fields u(q) = (ti1(q), u3(q))
for each mode with wavenumber q are calculated in Fourier space
using damped dynamics. The advantage of damping the system in
Fourier space is that the different modes describing the surface are
uncoupled. The static solution is found using damped dynamics,
while the body fields are calculated from the surface fields using
closed-form analytical solutions [21].

2.2. Generation of the rough surface

The periodic self-affine surface topography for an indenter with
Gaussian height distribution is generated with the power spectral

UL

Vil F

density method [18]. The self-affine surfaces are constructed by
generating the Fourier coefficients of the height profile as:

h(q) = ho Ac(q)/Cu(q) = ho

seq
q 2

where hy is a real-valued constant which can be adjusted to obtain
the aspired rms slope of the surface, A (q) is a Gaussian random
variable with random phase such that (Ag(q)) = 0, Gy(q) is the
surface height spectrum corresponding to a wave number ¢q, and H
is the Hurst exponent. The real and imaginary parts of the Gaussian
random variable A (q) = #2{A¢(q)} +i7{Ac(q)} are found from a
real-valued Gaussian sequence G[n] of finite length nx as:

%{AG(Q)} = % > "G cos qn,
n=0

l nx

> G[n] sin gn. (2)

J{Ac(q)} S onx =

The power-law scaling for the surface height spectrum applies
between cut-offs at long and short wave numbers qg < g < gs, where
qo = 2m/A; and gs = 2w/ As are the wavenumbers corresponding to
the long and short wavelengths 4, and s (see Fig. 3). The rms height
h and rms gradient g of the surface are

i = LS fh)?
q

1 (3)
52 _ 1 2\ i ()2
g= Eq:q h(a@)|*.

For different realizations of the rough surface, all parameters,
including the cut-off values, are kept fixed except the Gaussian
random variable Ag(q) whose phase is randomly varied.

Before starting the simulation the surfaces so generated are
shifted such that the lowest point touches the substrate at zero
interfacial pressure.
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Fig. 2. (a) Schematic representation of the dislocated crystal indented by a rigid rough body. The bottom of the crystal is fixed while the indenter is pressed into contact by applying
a constantly increasing displacement which gives rise to interfacial tractions, F. The solution is obtained by superposing (b) the elastic fields of the dislocations in an infinite medium
and (c) the solution to the elastic boundary-value problem which corrects for the boundary conditions.
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log C(q)
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Fig. 3. Power spectral density with Gaussian distribution generated numerically for a
given realization.

2.3. Choice of parameters

In this section the default parameters used in the simulations
are listed.

The height of the crystal is chosen to be z;; = 10 um, which is
sufficiently large that dislocations do not interact with the bottom
of the crystal and sufficiently small to guarantee that plastic
deformation occurs at small interference.

The elastic constants are taken to represent aluminum: the
Young's modulus is E = 70 GPa and Poissons ratio » = 0.33. The
dislocations can glide on three sets of parallel slip planes, orien-
tated at: 0°, 60° and 120° with the bottom surface. The discrete
slip planes are spaced at 100b where b = 0.25 nm is the length of
Burger's vector. The Frank-Read sources and obstacles are randomly
distributed in the crystal with a density p,,c = 40 um~2 and pgps =
40 um~2. The average source spacing Lave = \/1/pnuc = 158 nm.
The strength of the sources follows a Gaussian distribution with
mean strength 7pyc = 50 MPa and standard deviation of 10 MPa.
The critical time for nucleation is th,c = 10 ns. The strength of the
obstacles is taken to be 7,,; = 150 MPa. Dislocations of opposite
sign in the same slip plane annihilate when the distance between
them is below Lynn = 6b. The time step required to properly capture
the dislocation interactions is found to be At =2.5 ns.

In GFMD, the center-of-mass mode is critically damped or
slightly under-damped for quick convergence. The damping factor
is

b (an'es) ()

where 7 = 0.25 is the dimensionless time step used for the damped
dynamics. The number of iterations to reach convergence scales as

njp o \/ (w) (anxnx). (5)

The values for the thermodynamic, fractal and continuum (TFC)
discretizations, unless otherwise stated, are & = 271, & = 5121
and e = 321, The fractal discretization, & = As/A;, defines the
number of wavelengths used to describe the surface. Here, the long
wavelength cut-off is kept constant, i.e. ; = 10 um and the short
wavelength cut-off varied to assess the effect of small features on
the plastic response of the crystal. The thermodynamic discretiza-
tion is defined as et = A;/Lx, where Ly is the width of the periodic
unit cell. In the limiting case of ¢t— 0, which corresponds to the

thermodynamic limit, the surface is no longer periodic since
Ly — co. Finally, the continuum discretization is defined as ;. = ag/
As where qag is the spacing between the grid points that discretize
the surface of the substrate. In the limiting case of ¢ —0, the grid
spacing ag— 0 and hence the surface has a continuum represen-
tation, therefore the solution must converge to the continuum
mechanics solution.

3. Results and discussion
3.1. Loading rate

Firstly, we determine for which loading rate the simulations can
be considered quasi-static. To this end, the crystal is indented at
different loading rates to a depth of 0.01 um. The indenter is then
held at constant depth until t = 125 x u'g/uz ns, where u'g =4x
10° um/s is the reference loading rate. Fig. 4 shows the change in
nominal contact pressure p, = F/Lx, where F is the total contact
force. It can be seen that, upon loading, the response of the sub-
strate is stiffer for higher loading rates. This is caused by the fact
that the generation of dislocations is controlled by the nucleation
time tnyc. If the loading is fast compared with the rate of dislocation
nucleation, Lyyc/tnuc, dislocations do not have the time to nucleate,
glide, and relax the pressure as much as needed. This is why for the
faster loading rate used here, fl? =4 x 10° um/s, the loading curve
is close to the elastic limit. Only when the indenter is kept fixed at
final indentation depth, the dislocations have the time to be
nucleated also in the crystals that were subjected to fast loading,
leading to a decrease of the contact pressure. A loading rate of 112 =
4 x 103 um/s is chosen for all our simulations since it results in a
negligible relaxation of the contact pressure at constant loading.

3.2. Size effect

To assess the occurrence of plasticity size effects in self-affine
indentation we scale both the size of the crystal and the rough
surface topography equally in x— and z— direction, while keeping
the realization of the rough surface unaltered. The scaling ensures
that the elastic response of all crystals is identical, such that dif-
ferences in the plastic response are highlighted. The smallest
crystal has width Ly = 10 um and height z;, =5 pm. It is indented
by a rough surface with rms height h = 0.05 um. The dimensions of
the other two crystals are scaled up by two and four, so is the rms
roughness height of the indenter. All crystals are indented to the
same strain, u;/zm = 0.002.

As expected, the curves representing nominal contact pressure
versus strain are found to be indistinguishable for all elastic crys-
tals, as can be seen in Fig. 5a. On the contrary, a size effect is

6007 \ } — — )
- : 1=4x10" um/s -
I i =4x10* um/s |
R ! —— =4x10’ um/s ]
= | ———— =4x10° um/s ]
200
[ , ]
0 / FTIRTR T T N TRN REN N SRR RN R R R 1

0 25 50 75 100 125

u
t x—5 (ns)
u

z

Fig. 4. Nominal contact pressure upon indentation to a depth of 0.01 um and subse-
quent relaxation.
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observed for the plastically deforming crystals. The thinner crystals,
indented by a surface with smaller rms height, have a stiffer
response upon indentation. Also, the contact area they form is
larger and closer to the elastic limit (Fig. 5b). The relative contact
area in Fig. 5b is defined as a, = A/Ag, where A is the real contact
area and Ay is the apparent contact area. The kink in the curves
Fig. 5a indicates that a new cluster of asperities has come into
contact.

It is important to note here, that for a given displacement of the
indenter, the contact area is smaller for plastic crystals compared to
their elastic counterparts. Since the occurrence of plastic defor-
mation reduces the interfacial force, a larger interference is
required to reach the same contact area that would be reached
elastically. These findings are in contradiction with the early elasto-
plastic models [23,24], where contact area was expected to increase
with plasticity. This is because those models are based on the
incorrect assumption that the plastic contact area is given by the
geometric intersection between crystal and indenter.

The normal traction t, profiles at final strain are shown in Fig. 6.
As expected, the elastic profiles overlap again, while the traction
profiles become closer to the elastic solution for smaller rms height.
The high peaks that characterize the profile for larger rms height
are a consequence of the serrated nature of plastically deforming
surfaces: the exit of dislocations leads to crystallographic steps at
the surface which become more pronounced when several dislo-
cations leave the body from the same slip plane [47]. The difference
between contact pressure profiles for elastically and plastically
deformed surfaces is rather pronounced: plasticity does not only
lead to a smaller nominal contact pressure and true contact area,
but to a very different distribution of the contact stresses. Locally
the surface stresses are an order of magnitude larger than what
predicted by earlier clasical plasticity study (the nucleation
strength on which the tractions are magnified is of the same order
as the yield strength). Consequently, also the subsurface stresses
are much affected by plasticity, as shown in Fig. 7, where the stress
distribution in crystals of different size are compared. Here, one can
see that the size dependence is caused by dislocation source star-
vation in the smaller crystals: the reduced contact area is the same
as in larger crystals, but the actual contact area is smaller. Therefore,
the contact pressure gives rise to a smaller region affected by high
stresses, where dislocations can nucleate. Because of limited source
availability, the crystal with smaller dimensions exhibits less

z,=5 um, £=0.05 um
z =10 um, A=0.1 um

————— 2 =20um, #=0.2um
0.6 . —

0.45

elastic (all)

0.3

pn/TnuC

0.15

0 T I | T .

(=)

0.5 1 N 1.5
(u/z,)x 10

(a)

[\

z =5 um, ﬁf0.0S wm
z =10 um, A=0.1 pm
z =20 um, h=0.2 um

n
S o
(-

EN_IOO - elastic (all) E
-150F .
200F 1 1 E

0.105 0.110 0.115 0.120

x/L,

Fig. 6. Normal traction t; profiles at strain u,/zym = 0.002 for crystals with scaled di-
mensions, indented by a rough surface with scaled rms height.

plasticity.

An important implication of the size-dependent response just
demonstrated is that—for plastically deforming bodies—it is not
possible to scale observables such as the contact pressure, the
contact area, and the gap, with crystal size or rms height of the
indenter, as typically done for elastic contact problems [20,52].

3.3. Effect of rms height and Hurst exponent

Here, differently from the previous section, we keep the crystal
size constant and we search for the rms height that causes appre-
ciable plasticity. At the same indentation depth a small rms height
is expected to induce a more hydrostatic stress state in the sub-
surface, while a deviatoric stress component is needed to induce
plasticity. Here, however, we focus on comparing cases that are
identical from an elastic viewpoint.

Fig. 8a displays the nominal contact pressure, normalized on
Thucg, as a function of indentation depth u,, normalized on rms
height h. The normalization allows for the overlapping of the elastic
curves. Again, the plastic response cannot be scaled, and one can
observe that the larger the rms height the larger the reduction in
mean contact pressure assisted by plasticity. Although elastically at
a given u,/h the reduced pressure is the same for all cases consid-
ered, the subsurface stresses induced by different rms height differ:

z,=5um, £=0.05 um
z, =10 um, A=0.1 um
z, =20 um, £=0.2 um

—T—

8 . —

1
(u/z,)x 10°

(b)

Fig. 5. (a) Nominal contact pressure and (b) relative contact area as a function of strain for crystals with scaled height indented by a rough profile with scaled rms height.
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Fig. 7. Stress and dislocation distribution in two crystals with (a) zm, =5 um, h = 0.05 gm and (b) zym = 20 um, h = 0.2 um at strain u,/zy = 0.002. The rms height of the indenter
is also scaled with zp, and magnified by a factor of 10 in z— direction for better visualization.

they scale in z-direction. For a rms height of 1um the plastic
response is mostly pronounced because there are more dislocation
sources in the deeper stressed regions, as confirmed by the dislo-
cation density plots in Fig. 8b.

We select h = 0.1 um for all simulations in the subsequent
sections, since a lower value of rms height - as generally chosen in
the literature of elastic contacts [16,20,53,54]- is unrealistic for
metals and induces a mostly hydrostatic stress state at rather
moderate loads. A larger value of rms height violates the assump-
tion of small-slope approximation on which the GFMD model is
based, already at small indentation depth. It is however note-
worthy, that metal contacts with rms height larger than what
selected here are common, and they will have an even larger plastic
contribution than what presented in this work.

Next, we analyze the effect of varying Hurst exponent of the
indenting surface on the plastic response of the crystals, while all
other surface parameters are kept constant. Experimentally
measured values of the Hurst exponent for metals fall in the range
of H= 0.3 to H = 0.9 depending on the material and its finishing
[2,6-9].

The change in nominal contact pressure, relative contact area
and dislocation density for indentation with surfaces with three
different Hurst exponents H = 0.3, 0.5, 0.8 are presented in Fig. 9.

10" — — — — 3
10°F 3
1es | 1
S10'H h=0.1pm 3
¥ $h=0.01 um 1
7=0.001 um ]
————— elastic (all) 1
10°F 4
. Ll Ll Ll L1 ]
0 0.1 0.2 _03 0.4 0

u. /h

(a)

It can be seen that for the elastic crystals, the resistance to inden-
tation is larger for increasing values of the Hurst exponent since for
a given indentation depth the smoother indenter profiles form a
larger contact area with the crystal. However, for plastically
deforming crystals, the contact pressure curves corresponding to
different Hurst exponents tend to converge at large indentation
depth such that plasticity acts as a grand equalizer, consistently to
what Pei et al. [27] had observed. This implies that the contribution
of plasticity increases with the Hurst exponent (see for confirma-
tion Fig. 9c). This is to be expected, considering that the larger
contact area induced by the indenters with larger H (see Fig. 9b) is
related to a broader subsurface stressed region and therefore a
greater availability of active dislocation sources.

The shear bands that form during plastic flow can be seen for
H=0.3 and H = 0.8 in Fig. 10a and b. One can see that the crystal
indented by the surface with H = 0.3 has more, but smaller, areas of
contact than the other crystal. The shear bands that form are
therefore more but shorter, since they form later and they intersect,
obstructing each others propagation. The crystal indented by the
surface with larger Hurst exponent has a very long shear band that
extends deep in the material. Notice, that these shear bands could
not be captured by classical plasticity. The capability of capturing
the subsurface stress distribution is very important, since it can

E=l um
h=0.1 um

7=0.01 um

7=0.001 um
20 ‘ —
1.5F .
£ of -
< osk .
0.0F "
_ 05 115
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(b)

Fig. 8. (_a) Normalized nominal contact pressure for different rms heights. All elastic curves overlap. Also, the curve corresponding to the plastic response of the crystal with rms
height h = 0.001 um overlaps with the elastic curve, but will deviate at larger indentation depth. (b) Dislocation density pg in the crystal is plotted for different rms heights.
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Fig. 9. (a) Nominal contact pressure (b) relative contact area, and (c) dislocation density during indentation with a rigid rough surface with various Hurst exponents.

signal initiation of failure in the material, for instance the initiation
of cracks.

In all subsequent simulations, we choose a Hurst exponent H =
0.8 as observed on most metallic surfaces [2,6].

3.4. The short wavelength cut-off

In this section we investigate the effect of including fine

0.1 &

surface J

indenter

MR ' ST T TR |

15

z (um)

(a)

roughness features on the plastic contact response, by comparing
simulations in which the indenter is described using various fractal
discretizations e = As/A;. The fractal discretization is varied by
keeping the long wavelength cut-off constant and equal to 10 um
and changing the short wavelength cut-off. The largest fractal
discretization & = 1 corresponds to a sinusoidal indenter and the
smallest fractal discretization & = 5121 to wavelengths down to
As = 19.5 nm.

] FEET P
=}

10
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(b)

Fig. 10. Deformed surface profile (top); stress and dislocation distribution (bottom) for (a) H= 0.3 and (b) H = 0.8.
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Fig. 11 shows the deformed surface after indentation to u, =
0.05 um for elastic and plastic crystals. Surface profiles for
As = 19.5 nm and As = 156 nm are compared and contrasted with
those obtained by indenting with a sinusoidal surface. For the si-
nusoidal indentation, the contact occurs elastically over a single
large patch whereas for the self-affine indenter, the contact is
formed by several smaller patches. As a result, the real contact area
for s = 156 nm is found to be at least an order of magnitude
smaller than that of sinusoidal indentation.

With plasticity, there is a pronounced material pile up in the
zones surrounding the contact. This results in the surface con-
forming more to the indenter and hence into a significantly smaller
interfacial separation. This is relevant for problems concerning the
leakage of seals, where the gap between surfaces controls perco-
lation of the fluid [55,56].

Despite interfacial separation is smaller for plasticity than for
elasticity, the contact area is smaller for the plastic case, given that,
at a given indentation depth, the contact pressure is reduced by
plasticity. Fig. 12 shows the relative contact area at final indentation
depth afi for different fractal discretizations. It is seen that the

I indenter
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’é plastic
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=
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(c)

Fig. 11. Deformed surface profile at an indentation depth of 0.05 um for (a) sinusoidal
indenter and fractal indenters with (b) A = 156 nm and (c) As = 19.5 nm.

contact area decreases with fractal discretization for both elastic
and plastic crystals with approximately the same rate. Smaller
fractal discretization is characterized by asperities with smaller
length scales that form contact over several smaller patches. In the
case of sinusoidal indentation, the difference between elastic and
plastic contact area is less. This is due to the fact that when the
surface deforms plastically, dislocations exit the free surface leaving
crystallographic displacement steps. This gives rise to small pro-
trusions that make additional contact with the indenter (see
Fig. 11).

The increase of contact pressure with loading is shown in
Fig. 13a for various values of fractal discretization. A sudden in-
crease in pressure is observed every time a new cluster of asperities
comes into contact. For the two larger discretizations, the nominal
contact pressure curves are very close, although not overlapping,
neither for the elastic nor for the plastic simulations.

The results for final nominal contact pressure, normalized on
source strength, are reported in Fig. 13 b for various values of the
fractal discretization, i.e. various A, for elastic and plastic simula-
tions. The results lead to three main observations: (1) the data
obtained with dislocation dynamics is just shifted with respect to
the data obtained with elastic simulations, with plastic values being
approximately 85% (for the dislocation parameters chosen in this
work) smaller than the elastic values; (2) Below a threshold
wavelength, As = 156 nm (for the roughness parameters used in
these simulations), the nominal contact pressure is unaffected by a
further reduction of the short wavelength cut-off. Therefore, if one
is interested in nominal contact pressure, it is not worth using a
discretization smaller than this threshold value, irrespectively of
whether the simulations include or not plasticity; (3) Despite true
contact area always decreases with decreasing fractal discretization
(see Fig. 12) nominal contact pressure does not. This means that
below a given threshold for As the mean contact pressure, which
can be interpreted as hardness of the contact, would increase rather
significantly, only because the real contact area decreases. As we
will see in more detail shortly, this increase in hardness does not
really reflect the physics of the problem.

Notice that we have distinguished three different domains in
Fig. 13b, indicated with A, B, and C. Zone A represents the large
wavelength zone, including as upper limit the sinusoidal wave. In
this region the contact occurs at a single protrusion of the indenter,
which becomes thinner while decreasing lambda and therefore
indents the crystal meeting less resistance. There is only a contin-
uous single contact area. In zone B, an additional decrease in
wavelength is accompanied by roughening of the protruding peak
which makes contact with the crystal through a couple of closely
spaced contact patches, who interact elastically and effectively act
as a super-contact with end-to-end distance larger than the true
contact area, which always decreases with As. This gives an increase
in the resistance to indentation and therefore of contact pressure.

—— T
——a—— elastic
——&—— plastic

sinusoidal l

E A

_.
<
0
T

sl

10'3 L 11111111] Ll IR

Fig. 12. Contact area at final indentation depth for different fractal discretizations.
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Fig. 13. (a) Evolution of contact pressure with indentation depth and (b) contact pressure at final indentation depth, for elastic and plastically deformed crystals and various values

of the fractal discretization.

In zone C, decreasing wavelength further, corresponds to additional
fragmentation of the already very small and closely spaced contact
patches. This fragmentation decreases the true contact area further,
but does not affect the stressed region in the subsurface, and does
therefore not change the nominal contact pressure. This is
demonstrated in Fig. 14 for A; = 156 nm and 19.5 nm. It can be seen
that, although the true contact areas are different, in virtue of the
elastic interactions, the subsurface stresses are comparable. This
implies that (1) measuring or calculating true contact area below a
critical threshold wavelength is not useful to determine the me-
chanical response (even elastic response) of the contact and (2) the
quantity that is important to determine the mean contact pressure
(or contact hardness) is not the true contact area, but the effective
contact area, indicated in Fig. 14 as AB, which is invariant below the
threshold value A = 156 nm.

We choose therefore the threshold value As = 156 nm to present
the change of mean contact pressure py, = F/A for different source
densities in Fig. 15a. Here F is the interfacial force and A is the true
contact area. The mean contact pressure depends rather mildly on
the range of source densities chosen, and even for the largest source
density considered here it is significantly larger, 35 7pyc, than what
found in simulations based on classical plasticity theory [27,57],
where pm, =6 gy. Here gy is the yield strength on tension, which for
the material parameters used in our simulations, is 60 MPa, thus of
the same order as the nucleation strength, 7pyc = 50 MPa. The
reason for the difference between the prediction in mean contact
pressure of Green's function dislocation dynamics and the classical
plasticity simulations [27,57] is twofold: the most important is that
while in classical plasticity, plastic deformation occurs at any
location where the yield strength is exceeded, in dislocation dy-
namics plasticity is limited by the availability of dislocation sour-
ces; also, the fractal discretization considered in this work,
although cut off, is smaller than that considered in Refs. [27,57]. The
hardness increases as finer roughness is added to the indenter as
seen in Fig. 15b, where the mean contact pressure at u, = 20 nm,
which we will call hardness o}, in the following, is presented as a
function of the short wavelength cut-off for p,, = 40 /um?. The
increase in hardness is mainly due to the decrease in contact area
with the decrease in As (see Fig. 12). Since the decrease in true
contact area below As < 156 nm was shown to not affect the sub-
surface stress distribution, the contact hardness should be cut off
below this threshold, and the constant value aﬁff used, as indicated
in Fig. 15b.

The results of this section lead us to the following conclusions
that hold for both elasticity and plasticity: If one is interested in real
contact area, contact traction distribution, or gap geometry, the
surface must be described with great accuracy, including the
shortest wavelength observed in the self-affine surface under
study. This corresponds to a fractal discretization of the surface of
the order of 103 /um(As =10 nm). If one is instead investigating the
nominal contact pressure, mean contact pressure, or residual stress
distribution inside the substrate, the fractal discretization of the
surface can be an order less, i.e., 10%/um, value at which the results
converge.

3.5. Area-load dependency

A quantity that has attracted much attention in the contact
mechanics community is the proportionality coefficient «, defined
as k = ar/p*, where p* is the reduced pressure expressed as p* =
Pn/E*g. So far, the study of k has been mostly limited to self-affine
indentation of elastic bodies. It was shown that « in elastic bodies
follows a power law with respect to fractal discretization, i.e.,
Koce(f)'67 [20]. Pei et. al. [27] performed simulations of rough surface
contact using J, plasticity with isotropic hardening and found a
larger value for « for plasticity than for elasticity. Here we are
interested to see how « found for elastic simulations compares to
that found by our dislocation dynamics simulations for various
values of the fractal discretization, namely 20481 <¢ <1, and
whether our findings are in line with those of Pei et. al. [27]. Notice
that the simulations in this work are two-dimensional, but it was
shown that the difference in « between 2D and 3D simulations is
only about 10% [58]. Here we can unfortunately not compare
directly our «k with that of Pei et. al. [27], because k depends on
various factors that are different in our simulations: Pei et al. [27]
consider a softer material, a larger rms roughness, a significantly
larger indentation depth, and they do not report the value of fractal
discretization.

We present the evolution of relative contact area a; with respect
to the reduced pressure p* in Fig. 16. The results are separated in
two figures, one which includes the initial non-linear response and
the other for the linear response at larger load. In Fig. 16b the curves
for the plastically deforming crystals stop when the load reaches its
maximum value, i.e. an additional increase in displacement will not
lead to an increase in nominal contact pressure. Notice that, in
accordance with the findings of Pei et. al. [27], the values of the
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Fig. 15. (a) Mean contact pressure as a function of strain u;/zy, for different values of source densities p,. (b) Asperity hardness ¢}, calculated at 0.2 % strain is plotted as a function

of As.

slope « are found to be larger for plastic than elastic crystals. Thus,
for a given pressure, the contact area is larger if the crystal deforms
plastically. Be reminded that for a given indentation depth, the
opposite holds true: the contact area is larger if the bodies deform
elastically (see Fig. 12).

The dependency of the contact area fraction to the reduced
pressure is found to be non-linear at the beginning of indentation
(p* <0.0002) because the reduced pressure p* = é’i—“_ is here
normalized, as usual, by the gradient of the indenter g wﬁereas itis
the gradient of the deformed surface g. during indentation the

quantity that determines the change of contact area with load.
Therefore in the following we will use the actual gradient of the
surface g, calculated as:

. N\ 2
1 nx Zl+1 _ 4
o2 _ - S S _ )
8 = ; ( g > ’ (1 60’“:) ’ (6)

where Zi is the location of the i grid point and the number of
contacting points is calculated as nc = 3% (1 - 00, ), where 9,5 is
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Fig. 16. Contact area vs. reduced pressure for (a) p* <0.0002 and (b) p* >0.0002.

the Kronecker delta and t, is the normal traction at the ith grid
point. It can be seen from Fig. 17a that g/g. is large at small loading,
causing the initial non-linear dependency. Also, the difference be-
tween g and g, is larger for plastically deforming surfaces.'

In Fig. 17b one can see that using g, instead of g results in a linear
dependency of contact area on reduced pressure and all curves
almost overlap leading to a universal value of k. = 1.67+10%. It is
noteworthy that this overlap does not indicate that there is no
difference between elasticity and plasticity in terms of load-area
dependency, just that this difference is now reflected in the
actual gradient of the contact (see Fig. 17a).

In Fig. 18 the results for x and k. are compiled for one of the
realizations (a given set of sources and obstacle distribution). It can
be seen that the difference in « for the plastic and elastic crystals is
lower with smaller fractal discretization. This is because the smaller
the contact area the more plasticity is source limited. Here, we have
also indicated a curve for k¢, which differs from « only below the
threshold ¢ = 641, since, as previously demonstrated, the effec-
tive contact area which determines the stress state in the body does

i eff eff
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4. Concluding remarks

We modeled indentation of a metal single crystal by means of a
self-affine rigid surface using Green's function dislocation dy-
namics (GFDD). The method provides an accurate description of
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Fig. 17. (a) Evolution of local gradient with respect to contact area for indentation of an elastic and plastic crystal using an indenter with A = 156 nm. (b) Contact area vs. reduced

pressure p; for different values of As.

! The difference in local and overall gradient for elastic contacts is significant only
for linear contacts, while for surface contacts it is negligible [58,59].
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plasticity by accounting for the collective glide of discrete disloca-
tions as well as a detailed description of the self-affine roughness.
Indentation is performed with a loading rate of ti; = 4 x 103 um/s,
which is found to be slow enough to ensure that the simulations are
quasi-static. The simulations keep track of the changing contact
area, the roughening of the metal surface, the pressure distribution,
and of sub-surface plastic deformation. The results of the simula-
tions lead us to the following observations and conclusions:

- By comparing the contact response of crystals with scaled di-
mensions indented by self-affine rough surfaces with similarly
scaled topography, it is found that, although the elastic behavior
is identical, the plastic response is not. Plasticity brings in a size
effect, for which larger systems (thicker crystals indented
deeper by surfaces with larger dimensions) deform plastically
more than smaller systems, for which dislocation nucleation is
source limited. This entails that the scaling of observables
typically performed for elastic contact problems is not appro-
priate for plastically deforming crystals.

At a given indentation depth a body that deforms plastically

forms a smaller contact area with the indenter than one that

deforms elastically. However, if the comparison is made at the
same nominal contact pressure, the opposite holds true.

Plastic deformation induces material pile-up. As a consequence,

although at a given interference the contact area is smaller than

that of a corresponding elastic crystal, the surface is more con-
forming to the indenter, for which the gap closure is larger. This
is of relevance in problems related to leakage.

- The rms height is an important length in contact problems
involving plasticity: the larger it is, the stronger the effect of
plasticity. This is not only true at constant indentation depth,
because a larger rms height induces a larger deviatoric stress
component in the subsurface, and therefore earlier plasticity,
but also at constant u/rms-height although the elastic reduced
contact pressure is the same.

- Although for elastic crystals the resistance to indentation in-
creases with Hurst exponent, plasticity is marginally affected by
H. At rather small interference the pressure—displacement
curves for various H become indistinguishable. This entails
that plasticity is more effective when the Hurst exponent is
large.
Indentation to an interference of 50 nm for various values of the
fractal discretization has indicated that, although the actual
contact area decreases with decreasing fractal discretization, the
nominal contact pressure is constant below a threshold value for
As. We have shown that below that value, due to elastic inter-
action, the fragmented contact area acts as a continuous effec-
tive contact, whose length does not change with further
decreasing true contact area and which causes a constant sub-
surface stress distribution. We conclude that if one is interested
in either nominal or mean contact pressure at a given inden-
tation, for either elastic or plastic contacts, it is not worthwhile
to describe the surface with wavelengths below the threshold.
In fact considering As below the threshold is not only useless but
deleterious: since true contact area decreases the hardness
blows up, despite the subsurface stresses are invariant. On the
contrary, when one is interested in real contact area, contact
traction distribution, or gap geometry, the surface must be
described with great accuracy, including the shortest wave-
length present in the self-affine surface under study.

- The mean contact pressure (or contact hardness) at 20 nm is
found to be significantly larger than in previous plasticity
studies, up to 40 gy, for the threshold value A = 156 nm. The
contact stiffness found with dislocation dynamics simulations is

in between the elastic stiffness and the stiffness found by clas-
sical plasticity.
- The proportionality coefficient k = a;/p* strongly depends on

fractal discretization. However, we find that k¢fT /k¢fT —2.4 for

our choice of continuum and thermodynamic discretizations
ec=32"land g =271

It is finally to be noted that the results presented in this work are
based on a two-dimensional representation of the contact problem
and cannot capture the dislocation structures that could form in
three-dimensions. It is therefore not possible to estimate the effect
of dislocation double cross-slip, which might be promoted by the
large stresses acting in the contact regions and is observed in
simulations of indentation modeled by three-dimensional dislo-
cation dynamics [60]. Other limitations are that the model only
considers small deformations and studies the behavior of a pure
single crystal.
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