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A B S T R A C T

Pressures at the ice-structure interface during model-scale ice-structure interaction are often measured with
tactile sensors. Resulting datasets usually include large volume of data along with some measurement error and
noise; therefore, it is inherently hard to extract the hidden fluctuating pressures in the system. Identifying the
deterministic pressure fluctuation in ice-induced vibrations is essential to understand this complex phenomenon
better. In this paper, we discuss the use of two different multivariate analysis techniques to decompose an
ensemble of measured pressure data into spatiotemporal modes that gives insights into pressure distributions in
ice-induced vibrations. In particular, we use proper-orthogonal decomposition (POD) and inexact robust prin-
cipal component analysis (IRPCA) in conjunction with measurements of intermittent crushing at different ice
speeds. Both decompositions show that most of the energy is captured in a ten-dimensional space; however, the
corresponding eigenvalues are different between the decompositions. While POD-based modes have low energy
contributions at the first subspace dimensions, IRPCA-based modes have larger energy contributions. This result
is consistent with the reconstruction of the time history of the pressure sum using first three empirical modes,
where POD and IRPCA-based modes yield similar accuracy at the same subspace dimension. Although both
methods successfully illustrate the dominant pressure modes that are active in the system, IRPCA method is
found to be more effective than POD in terms of differentiating the contribution of each mode because of its
ability to better separate low-rank and sparse components (measurement error and/or noise) in the dataset.

1. Introduction

Ice-induced vibrations (IIV) can be described as resulting motions of
vertically sided offshore structures interacting with moving ice. Of
particular interest, offshore structures in the Arctic and Subarctic re-
gions may interact with the ice (i.e. level ice, deformed ice etc.) which
might result in severe vibrations. This type of interaction may decrease
the operational time significantly and may give fatigue related damages
to the structures.

IIV first reported in the work of Blenkarn (1970) where full-scale
observations of different structures in Cook Inlet, Alaska have been
made. Later, many efforts have been made to understand such complex
interactions through laboratory model tests (i.e. Barker et al., 2005;
Kärnä et al., 2003, 2003b; Määttänen et al., 2012; Nord et al., 2015;
Sodhi, 2001; Wells et al., 2011) and field campaigns (i.e. Bjerkås et al.,
2013; Frederking et al., 1986; Määttänen, 1975).

Since the late 1990s, pressure sensors were implemented in the
experimental setups to address the shape of pressure distribution at the

ice-structure interface. Soon later, tactile sensors became the most
commonly used instrument to measure the pressure distribution
(Määttänen et al., 2011; Sodhi, 2001) and high-pressure zones (HPZ)
(O’Rourke et al., 2016a, 2016b; Wells et al., 2011). The latter used the
tactile sensor to address the influence of HPZs on the ice adjacent to
indenter, and further how the HPZ influence the structural response. In
addition to the use of pressure sensors, studies related to the ice fracture
and contact shape were carried out through the use of plexiglass
(Gagnon, 1994) and lexan plates (Joensuu and Riska, 1988). See
Jordaan (2001) for a review of how the ice undergoes macroscopic
changes during ice-structure interaction.

Tactile sensors are capable of displaying the pressure variation
frame by frame and it allows observing the pressure change during a
cycle of load build-up and ice failure. Global forces derived from the
sensor can also be compared to the global forces measured by other
means of instrumentation. Correlation coefficients between local forces
measured by the tactile sensors were further used to describe the
characteristics of the interaction during crushing at various ice speeds
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(Sodhi, 2001). Sodhi and Haehnel (2003) showed that at low indenta-
tion speeds on a flexible structure, local pressures on the structure si-
multaneously increase to a uniform pressure distribution due to ductile
(creep) deformation. As the indentation speed increased, cycles of saw-
tooth force and displacement occur. During each cycle, the advancing
ice sheet forces the structure to deflect and ductile deformation of the
ice occurs until the terminal failure. At this point, the structure sways
back due to release of strain energy and the relative speed between ice
and structure increases causing a brittle type of failure with non-si-
multaneous contact. This mode of interaction is called intermittent
crushing.

On a multi-degree of freedom structure, Nord et al. (2015) used
Kalman type filtering techniques to show how the global response of the
structure effected the pressure at the ice-structure interface during in-
termittent crushing. They showed that the superstructure oscillations
caused the cyclic loading of the ice edge prior to the terminal failure,
where high-frequency oscillations were superimposed to the saw-tooth.

Tactile sensors used in the laboratory experiments and field studies
contain large amounts of information, which characteristically makes it
difficult to analyze frame by frame. In addition, analyzing large datasets
easily becomes time-consuming and comes at large computational
costs. Therefore, reduced-order modeling (ROM) of such large datasets
becomes essential where it can be used to unburden the redundant
computations. Successful low-dimensional representation of high-di-
mensional data also enhance our understanding of complex dynamical
systems where it helps to discover hidden fluctuating phenomena
within the system.

Recent findings related to the pressure variations in the ice structure
interface illustrate that there might be systematic structure hidden in
the fluctuations that may enhance our understanding of ice-structure
interactions (Määttänen et al., 2011; Wells et al., 2011). However,
without extracting the dynamic modes and capturing the underlying
physical mechanism with fewer degrees of freedom, we cannot find the
coherent features in the dataset hence we are obliged to use all the data.
Therefore, the goal of this study is to answer the scientific question:
“Are there coherent pressure distributions exist at the ice-structure in-
terface? Moreover, can we effectively identify these distributions? In
addition, if such distributions exist, what would be the relationship
between these dynamic modes and the motion of the structure?” To
answer these questions, we use a statistical method called proper or-
thogonal decomposition (POD) and inexact robust principal component
analysis (IRPCA) which is strongly related to the POD.

POD is a mathematical matrix decomposition method, which is best
known to analyze complex flow phenomenon (Berkooz et al., 1993;
Epps and Techet, 2010 and many more). It has been shown that it can
successfully find the coherent structures hidden in the system using
significantly fewer degrees of freedom and has been extensively used to
find the most energetic contributions of the decomposed modes in the
system with a least-squares sense. Therefore, it is an effective method
not only for compressing the data but also with additional capabilities
to summarize them. The method is closely related to singular value
decomposition (SVD) (Epps and Techet, 2010), and it is also known as
principal component analysis (PCA) and Karhunen-Loève decomposi-
tion in different research areas such as image processing and pattern
recognition.

The most important characteristic of the POD method is that it fits
the best ellipsoid to a given data in least squares sense (in 2L -norm) and
finds the optimal orthonormal bases that describe the data best.
However, the method is not without limits. For example, if there are
measurement errors embedded in the data, or if large noise fluctuations
exist in the data, this method will inherently square the error in the
analysis due to least-square fitting that may cause misleading results. It
has been recently proposed by Candes et al. (2011) that instead of using

2L -norm for data fitting, one can use 1L -norm that promotes sparsity.
Since the proposed new method also provides a certain level of ro-
bustness, it is called robust-principal component analysis (RPCA). The

main idea of the RPCA method is that it allows separating the low-rank
data and sparse components where sparse components represent the
possible measurement errors and/or noise embedded in the system, and
low-rank data represents the new data that has been separated from the
sparse components. Later, Lin et al. (2013) further developed this
method with a new proposed algorithm (so-called inexact robust prin-
cipal component or IRPCA) using augmented Lagrange multipliers that
solves the RPCA method much faster.

The approach used in this work resembles to the approach that has
generally been used in the experimental fluid mechanics community
(Berkooz et al., 1993; Epps and Techet, 2010) where POD has been used
to analyze particle image velocimetry (PIV) data. However, in the
present study, we not only apply traditional POD method to a three-
dimensional pressure dataset, we also apply IRPCA algorithm as an
advanced treatment to the POD problem. As a result, we reveal the
organized patterns within the pressure data during intermittent
crushing, which we name as pressure modes throughout the paper.

2. Proper-orthogonal decomposition

As briefly described above, POD is a mathematical matrix decom-
position method that helps to characterize the coherent structures in a
dataset. It has been used in almost all engineering fields where it is
widely used for modal analysis, modal order reduction and character-
ization of both linear and non-linear systems (Berkooz et al., 1993;
Feeny and Kappagantu, 1998; Gedikli et al., 2017; Gedikli and Dahl,
2017; Kerschen et al., 2005; Ma et al., 2001). Although POD is a linear
approach, it is also applied to the nonlinear problems since it does not
violate the physical laws of linearization methods as shown in Berkooz
et al. (1993). However, it should be remembered that if the system is
strongly nonlinear, even small changes in the initial conditions might
affect the resulting dynamical behavior and the stability of the system.
Therefore, the treatment proposed here is merely the first step taken
analyzing these large datasets related to ice-induced vibrations and
obtaining a ROM representation.

2.1. POD formulation

Let D be m× n zero mean data matrix, where m represents snap-
shots and n represents position state variables. In POD, we are looking
for base functions pn(t) and χn(x), which describe the original data
matrix best in least squares sense.

The data matrix can be written as:

∑=
=

∞

D p χx t t x( , ) ( ) ( )
n

n n
1 (1)

where D(x, t)∈ℝm×n, and χn(x) represents the orthonormal basis
functions (modes) and pn(t) represents corresponding time coordinates.
A detailed derivation of this method can be found in many studies (i.e.
Berkooz et al., 1993; Cruz et al., 2005).

Geometrically, a scalar field sampled in time can be imagined as a
cloud of points in a n-dimensional space, where n is the number of
spatial sampling points. In this space, POD fits the best ellipsoid to this
cloud of points in the least squares sense where the directions of semi-
principal axes give proper orthogonal modes (POM) and the squared
magnitudes of the semi-principal axes correspond to the variance of the
projection points on the subspace span by the corresponding axes and
represent proper orthogonal values (POV). Therefore, POD provides
energy optimal reduction in dimension.

In the current analyses, the dataset has a three-dimensional struc-
ture where pressure fluctuates in a two-dimensional space over time as
sketched in Fig. 1. The evolution of the process is simple. When an ice
sheet interacts with the structure, it forms pressures at the ice-structure
interface, which depend on ice failure, ice properties, structural prop-
erties, and the relative speed between ice and the structure. Since there

E.D. Gedikli, et al. Cold Regions Science and Technology 160 (2019) 150–162

151



are many coupled parameters that might affect the interaction, this
process is not fully understood. Of particular interest, pressure zones
may fluctuate in ice drift direction, may move up and down (in the
thickness of the ice) and may vary across the circumference of the
structure with varying amplitudes during the ice-structure interaction.
Therefore, it is a valid assumption that pressure varies not only in the yz
phase as shown in the schematic of the ice-structure interaction in
Fig. 1, but it may also vary in the ice drift direction (in xy phase).

Suppose that pressure variation has the form of d=[y,z] in a two-
dimensional space. So, fluctuating pressure components of the snap-
shots can be written as one data matrix as; D=[d1d2⋯dN]. In other
words, each snapshot of pressure fluctuations has been reorganized and
arranged into two-dimensional M×N data matrix where M’s size is
equal to the size of y× z, and N’s size is equal to number of snapshots.

Since, in traditional POD analysis the eigenvalue of the auto-cov-
ariance matrix is solved, the auto-covariance matrix can be calculated
as:

=A D DT (2)

Where superscript T represents transpose.
Next, one can solve the eigenvalue problem of A as:

= = …AV V Nλ i, 1, 2, ,i i i (3)

where V represents the eigenvector matrix, and λ represents the cor-
responding eigenvalues. Then, eigenvalues and corresponding eigen-
vectors are sorted in descending order. This step is very important be-
cause, it allows sorting the modes where most dominant (coherent)
structures will be in the first subspace dimensions.

Then, projecting the eigenvectors onto the data matrix and nor-
malizing them to unit magnitude gives the corresponding proper or-
thogonal modes (POMs). By reshaping the two-dimensional POM ma-
trix back to the three-dimensional matrix, one can illustrate the
coherent structures that are active in the system. Mathematically, any
ith POD mode of χi may be found calculating the following equation:

=
∑

∑
= …=

=

χ
d

d
N

V

V
i, 1, 2, ,n

n
i

n
N

i n

n
N

i n

1 .

1 . (4)

where Vi, n represents the nth eigenvector corresponding to ith eigen-
value. Then, one can also compute the basis function of pn(t) in Eq. (1)
by projecting the pressure field onto the POMs (see Eq. (5)). This basis
function is also known as proper orthogonal coordinates (POCs).
Forming a POM matrix of ϕ=[χ1,χ2,χ3, … ,χN], one can calculate the
POCs as:

=p ϕ dn
T

n (5)

Original data can be reconstructed using any first N POMs:

=d ϕpnn (6)

One can also reconstruct the data using first r POMs (with rank r
approximation where r < N) with certain level accuracy which may be
decided based on the level of energy in the system using Eq. (8).

=d ϕprr (7)

Eigenvalues of the auto-covariance matrix are generally referred as
energies corresponding to the POMs in fluid mechanics since it is re-
lated to fluid's kinetic energy (Chatterjee, 2000). Although, it is not
attempted to relate the fluid characteristics to the pressure character-
istics in this study, it is assumed that distributed pressure variations due
to solid-structure interaction resemble to flow variations in fluid me-
chanics.

The quality of the reconstruction (mode energy) can theoretically be
found using the eigenvalues in POD, or singular values in SVD (note
that square of the singular values in SVD is mathematically equal to
eigenvalues obtained from POD as shown in Chatterjee (2000)):

=
∑

∑

=

=

E
λ

λ
[%]r

n
r

n

n
N

n

1

1 (8)

where E represents mode energy and r represents the rank of the system
(number of modes used in the reconstruction). Solution to this equation
gives the cumulative energy of modes up to mode number r. Alternative
to the energy fraction, the eigenvalues can be sorted logarithmically
where the difference between each mode can easily be seen on a
logarithmic plot. Another way of comparing the quality of the re-
construction is the root-mean-square-error (RMSE) analysis where one
can find the error between any desired rank and the original signal.
Ideally, if the RMSE error with high probability close to the theoretical
solution from the eigenvalues, that would be an ideal error bound. In
this study, all three methods are used to illustrate how the energies
associated with the pressure modes vary in different subspaces.

3. Robust principal component analysis (RPCA)

In the previous section, it is mentioned that, POD produces POMs
using the auto-covariance matrix of the data where it fits the best el-
lipsoid to the clouds of points in the least squares sense ( 2L -norm).
However, suppose data contains large outliers, then POD will result a
large bias, which will shift the true fit to compensate the outliers in the
system. However, Candes et al. (2011) showed that finding an 1L -norm
minimization solution to this data effectively rejects these outliers and
increases the robustness of the best data fit. This is significant, because
if the data is corrupted, or has large noise embedded in it, then POD
algorithm will potentially square the error and give misleading results.
In that sense, 1L -norm minimization promotes sparsity as illustrated in

Fig. 1. Left image: Schematic of the ice-structure interaction (isometric view). Right image: Front view of the ice-structure interaction setup with varying pressure
field as snapshot. Ice sheet is frozen and structure is moving in the x-direction (as in Test-4300) with ice speed of U.
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compressive sensing applications (Candes and Wakin, 2008).
Let use D again as the original data matrix. Candes et al. (2011)

suggests that the original data matrix can be decomposed into two
components as low-rank (L) and sparse (S) through the use of tractable
convex optimization. In other words, the data matrix can be written as:

= +D L S (9)

Then, the problem becomes a convex optimization problem as fol-
lows:

+∗L Sλ Eqmin ‖ ‖ ‖ ‖ , subject to . (9)
L S,

1 (10)

where ‖L‖∗ represents the nuclear norm of the low-rank (L) matrix, or
in other words sum of the singular values of the L matrix,
‖S‖1represents the 1L -norm of S and λ is regularizing parameter. In this
study, λ is fixed to =λ m1/ , where m has the same size of the auto-
covariance matrix in Eq. (2) (Wright et al., 2009).

Later, Lin et al. (2013) have further improved this method and
proposed an algorithm using Inexact-Augmented Lagrange Multipliers
(IRPCA), which solves the convergence problem much faster with much
higher precision. Although the details of this method is beyond the
scope of this study, IRPCA algorithm proposed by Lin et al. (2013) is
also used in this study as an advanced treatment to POD. After separ-
ating the data into low-rank and sparse components, the low-rank
component is further analyzed using traditional POD following the
steps in Section 2 and new pressure modes are obtained. To be con-
sistent, the resulting mode shapes are also called POMs (or pressure
modes) since this method can be thought as an advanced filtering
technique rather than a complete new method. The significance of this
particular method is that a perfect separation is always guaranteed as
proved by Candes et al. (2011). In that sense, being able to separate the
large data matrix into low-rank and sparse components does not only
help to eliminate the large noise and experimental error in the system,
but also enhance our understanding of complex ice-structure interac-
tions.

4. Experiments

In the present study, experimental data obtained from the deci-
phering ice-induced vibration (DIIV) test campaign is used. The DIIV
campaign was initiated by the Norwegian University of Science and
Technology (NTNU) in the beginning of 2011 to understand the com-
plex ice-induced vibrations through model-scale tests. The tests were
conducted at the Hamburg ship model basin (HSVA) ice-tank facility in
Hamburg, Germany. In the experiments, ice and structural parameters
were systematically investigated in a well-defined test setup as de-
scribed in Määttänen et al. (2012). The experimental set up is shown in
Fig. 2, where the natural frequencies could be varied by changing
stiffness and/or mass. The tactile sensor was installed to the 220-mm-
diameter indenter and protected by a 0.5 mm thick aluminum film. This
sensor had 52 columns and 44 rows of sensels, so that in total 2288
sensels measured pressures during ice-structure interaction.

4.1. Relevant data

From the DIIV campaign, Test 4300 is chosen for this study. The
reason of it is that it is the only test in the campaign where the ice speed
is investigated in a systematic manner (ice speed is varied stepwise).
Table 1 shows the experimental test parameters and tested ice speeds
with respect to their specific time range for Test 4300. Natural fre-
quency values of 12.2Hz and 16.1Hz in Table 1 represent the first and
second mode frequencies of the structure.

Fig. 3 illustrates the specific time characteristics of the Test 4300
where the top image (Fig. 3a) represents the time history of the sum of
the force; center image (Fig. 3b) represents the corresponding fre-
quency variation of the strain gauge response and the bottom image

(Fig. 3c) represents the ice speed range over time where ice speed is
increased in steps. As one can see, sum of all the measured forces due to
ice-structure interaction varies around 10kN between 30 and 320s with
different frequencies.

Of particular interest, ice speeds of 20,30,40,50,60,70 mm s−1 are
analyzed, where all of these ice speeds represent intermittent crushing
and exhibit a dominant response frequency much less than the first
natural frequency (first red line in Fig. 3b). It should also be noted that
as the ice speed increases, the ice-structure interaction occurs faster and
therefore both the resulting frequency and randomness in the data in-
creases. More details on the force and response characteristics of this
particular test can be found in Nord et al. (2015).

5. Results

In the analysis, zero-mean pressure responses are obtained using a
Butterworth high-pass filter with 1 Hz cut-off frequency. The cut-off
frequency is chosen based on the visual inspection of the frequency
response so that it is sufficient to cancel the zero frequencies, but retain
the dominant frequency of the ice force. However, it should be re-
membered that zero-mean pressure response presented here could
simply be obtained by removing the centered moving average from the
original data as well, which yields similar results in the current ex-
periments (not shown). Therefore, in this analysis technique, zero-mean
response is attributed to the dynamic pressure variations and mean
component is attributed to the static pressure on the structure.

In ice-structure interaction, ice can behave ductile and brittle de-
pending on the relative indentation speed between ice and structure;
therefore, the load build-up and unloading phase become different
during intermittent crushing. During load build-up, the relative speed
between the indenter and ice is close to zero, the contact area and
pressure grow as a result of the ductile deformation of the ice. Upon ice
fracture, the relative speed between ice and structure increases with
orders of magnitude, and causes brittle ice failure hence a sharp load
drop.

In this work, seven different time series of intermittent crushing are
analyzed between the ice speeds of 20 and 70 mm s−1. However, only
the results at 30 and 60 mm s−1 are presented here for clarity and rest of
them are tabulated in Table 2. In addition, an extra time series of in-
termittent crushing is analyzed from IVOS (Ice-induced Vibrations of
Offshore Structures) Phase 2 test campaign for comparison because the
new time series has a much higher sampling rate with the value of
300Hz and longer time history of 75s than the tests in DIIV test cam-
paign. Detailed information regarding relevant analysis is presented at
the end of the Results section of this paper but readers are encouraged
to read Ziemer and Hinse (2017) for detailed information about IVOS
test campaign.

5.1. Pressure modes of intermittent crushing at ice speed of 30 mm s−1

Fig. 4 illustrates the original and high-pass filtered time histories of
the pressure sums on the structure. As one can clearly see, the applied
filter successfully removes the mean to zero value to identify the dy-
namic variations. As a result of this filtering process, the resulting time
history is not get affected by the filtering and both responses demon-
strate a clear saw-tooth type of response within the time range selected.

Fig. 5 shows the mode shape characteristics (pressure modes) and
their relative contributions due to ice structure interaction at the ice
speed of 30 mm s−1 using POD (Fig. 5a) and IRPCA (Fig. 5b) methods.
Left images in Fig. 5 illustrate the eigenvalues of the first 10 subspaces
whereas center and right images illustrate the corresponding POMs of
the first six subspaces. The distribution of the eigenvalues shows that
the first eigenvalue is significantly larger than the second and the
second eigenvalue is larger than the third and so on. Since, POD sorts
the modes based on their energies in the descending order, it means
that POM in the first subspace represents the most dominant mode;
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POM in the second subspace dimension represents the second most
dominant mode and so on.

Both multivariate analysis approaches reveal that the pressure dis-
tribution has a line shape on the structure in the first subspace di-
mension as expected. This pressure mode represents the most dominant
distribution and representative of the ductile load build-up on the
structure. As the subspace dimension increases, the contribution of the
higher order modes decreases. The second POM shows that there is one
high-pressure zone displayed in yellow and one line of pressure dis-
played in blue colour, which resembles to a standing wave type of re-
sponse (the peaks of the oscillation does not change spatially). If one
reconstructs the pressure using only the second POM, one can clearly
see that the colour of the pressure zones (blue and yellow) switches in
time, which illustrates the dynamic variation of the second POM. The
yellow pressure zone is almost symmetric across the circumference of
the structure in the second POM, whereas the blue pressure zone is not,
which is believed to result in sideway motions of the structure for the
reasons that will become apparent later. Higher order modes (higher

Fig. 2. Experimental setup showing the sensor locations (left sketch), the test structure (center and top-right images) during ice-structure interaction along with the
tactile sensor installation on the indenter (right bottom image).

Table 1
(a) Experimental test matrix. (b) ice speed with respect to a specific time range
for comparison.

(a) Test-4300

fn (Hz) 12.2 and 16.1
Diameter (mm) 220
Ice speed (mm s−1) 10− 320, Spacing=10 & 20
Analyzed ice speed (mm s−1) 20− 70, Spacing= 10
Sampling frequency (Hz) 100
Ice thickness (mm) 60
Ice temperature (°C) −1.7
Ice salinity (ppt) 3.2

(b) Ice-speed vs Time (s)

Speed (mm s−1) 20 30 40 50 60 70
Time (s) 65–80 85–100 105–115 120–130 135–145 147–157

Fig. 3. (a) Time history of the force, (b) frequency variation with respect to
time, and (c) ice speed range for Test 4300 (from Nord et al. (2015)).
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than second pressure mode) illustrate different type of responses (tra-
velling, standing and complex); however, because their individual
contributions are low, their effect on the structure is negligible (see
Table 2).

Another important observation is that, POMs of POD and IRPCA
resemble to each other; however, there is a significant difference in the
corresponding eigenvalues. In POD, eigenvalues of the higher order
modes are close one another which results low energy contributions at
low subspace dimensions. This solution also contradicts the normalized
root-mean-squared-error (NRMSE) analysis of the rank-3 approxima-
tions as shown in Fig. 6. However, in IRPCA, eigenvalues are better
separated from one another, which yields larger energy contributions at
low subspace dimensions.

Fig. 6 shows the original and reconstructed time signals using first
three POMs obtained from IRPCA algorithm (see Table 2 for POD).
NRMSE is computed between the original and reconstructed signals,
where the resulting solution is also normalized with the maximum
variation in amplitude in the original data. As a result, one can see that
rank-3 approximation of the sum of the pressure at ice speed of 30 mm
s−1 results in good accuracy with the NRMSE value of 0.039 (3.9%
error). This result is important because it validates how well the re-
duced order model can represent the original data where rank-3 ap-
proximation to the problem not only captures the dominant frequency
of ice failure, but also the higher frequency components that are caused
by superstructure oscillations as described in Nord et al. (2015).

One can also see the relationship between the pressure modes and
the structural responses by comparing their frequencies. Left three
images in Fig. 7 illustrate the frequencies of the first three pressure
modes and right image represents the structural frequencies in ice-drift
(right-top) and sideway (right-bottom) directions. Fig. 7 clearly shows
that first POC frequency is equal to the structural frequency in the ice-
drift direction. This is in agreement with our explanation to the pro-
blem where first pressure mode represents the most dominant mode.
More interestingly, second and third POC frequencies are equal to the
structural vibrations in the sideways direction, which means that some
combination of second and third modes are representative of the
pressure distribution in that direction. Since second pressure mode has
more energy than the third pressure mode, it can be related to the
pressure zone in the circumference of the structure, which causes
sideways vibrations.

In addition, second and higher-pressure modes also capture the
pressure variations in the structural depth/ ice thickness direction
(shown as z-direction in Fig. 1). The motion in ice thickness direction is
also observed when playing the video of the tactile sensor pressures
frame by frame. Higher modes (higher than third pressure mode)
contain dominant frequencies that coincide with the cross-flow re-
sponse frequencies (not shown), but the slow decay of the eigenvalues
and also the resulting mode shapes suggest that they are linear com-
binations of first three POMs.

5.2. Pressure modes of intermittent crushing at ice speed of 60 mm s−1

Fig. 8 illustrates the original and high-pass filtered time histories of
the pressure sums on the structure at the ice speed of 60 mm s−1. Si-
milar to previous case, the applied filter successfully removes the mean
to zero value to identify the dynamic variations at this ice speed and the
resulting shape resembles to a saw-tooth type of response. It is observed
that intermittent crushing at this ice speed occurs with an apparent
dominant force frequency and resulting response frequency is lower
than the natural frequency (see Fig. 3).

Fig. 9 illustrates the pressure modes and their relative contributions
due to ice structure interaction at the ice speed of 60 mm s−1 using POD
(Fig. 9a) and IRPCA (Fig. 9b) methods. Left images in Fig. 9 show the
logarithmic plot of the eigenvalues of the first ten-subspace dimensions,
and center and right images represent the corresponding pressure
modes of the first six-subspace dimensions. The distribution of the ei-
genvalues in Fig. 9a shows that the relative contribution of the first two
pressure modes are significantly larger than the higher subspace di-
mensions and there is no significant difference in the relative con-
tribution of the higher order modes which results low energy con-
tributions of the first subspace dimensions. This condition is similar to
the observations from the ice speed of 30 mm s−1. However, when the
IRPCA method is applied (Fig. 9b), it is once again observed that the
eigenvalues are better separated and resulting modes shapes are not
affected from this analysis.

Similarly, both multivariate analysis approaches reveal that the
pressure distribution has a line shape on the structure in the first sub-
space dimension as expected. This pressure mode represents the most
dominant pressure distribution and representative of the load build-up
on the structure. Large second eigenvalue suggests that second pressure
mode also contributes to the dynamic process significantly where the
resulting pressure mode resembles to a travelling wave type of response
(maximum and minimum pressure values travel spatially). Higher order
modes (higher than second pressure mode) illustrate different type of
responses (travelling and/or complex); however, because their con-
tribution is low, their effect on the structure is negligible (see Table 2).

Fig. 10 shows the original and reconstructed signals using first three
POMs obtained from IRPCA algorithm (see Table 2 for POD). As a re-
sult, one can see that rank-3 approximation of the sum of the pressure at
ice speed of 60 mm s−1 results very good accuracy with the NRMSE
value of 0.087 (8.7% error).

Table 2
NRMSE of the rank-3 approximation and modal energies for low-rank approx-
imations of the matrices L and A for IRPCA and POD, respectively.

Ice speed [mm s−1] 20 30 40 50 60 70

=λ m1/ 0.021 0.021 0.021 0.021 0.021 0.021
NRMSE [%] POD (r=3) 2.7 3.3 3.9 4.4 6.9 6.6
NRMSE [%] IRPCA (r=3) 3.4 3.9 5.3 5.5 8.8 10.5

POD E [%] of A
Rank 1 34 22 14 11 11 8
Rank 2 44 31 25 20 19 15
Rank 3 49 38 34 28 25 22
Rank 10 72 66 64 58 52 48
Rank 20 86 81 76 77 72 68
Rank 50 96 94 95 93 90 89

IRPCA E [%] of L
Rank 1 49 31 23 18 23 19
Rank 2 59 43 37 33 38 34
Rank 3 66 53 50 44 47 47
Rank 10 88 84 85 80 82 81
Rank 20 97 95 98 96 96 95
Rank 50 99.9 99.9 99.9 99.9 99.9 99.9

Fig. 4. Time-history plots of sum of tactile sensor pressures at ice speed of 30
mm s−1, original response (blue, top) and high-pass filtered response (red,
bottom). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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One can also compare the frequencies of the decomposed modes
with the structural frequencies to illustrate the relationship between the
pressure modes and the structure. As a result, dominant frequencies of
the first two POCs (Figs. 11a-b) coincide mostly with the frequency of
structural response in the ice-drift direction (Fig. 11d) and the third
POC (Fig. 11c) has a dominant frequency coincides with the structural
response in the sideway direction (Fig. 11e). This is different from the
ones that has been observed in the previous section. There, the fre-
quency of the first pressure mode is equal to the frequency in the ice
drift direction and the frequency of the second and third modes are
equal to the structural frequency in the sideways direction. However, at
this flow speed it is observed that first and second pressure modes co-
incide with the frequency in the ice drift direction which means that
some combination of these modes better represent the most dominant
pressure mode that is active in this direction of the motion. This is a
significant finding because it clearly illustrates the nonlinear nature of

the coupled in-line (ice drift) and cross-flow (sideways) motions. In this
case, the effect of higher order modes also seems insignificant in
comparison with the first two modes. Distribution of the eigenvalues
(slow decay) and the corresponding mode shapes also support this
phenomenological analysis.

It should be noted that, this decomposition and error analysis are
performed for only the ice speeds between 20 and 70 mm s−1. The
reason of is that at the lower ice speeds the process is more periodic and
clear than the interactions at higher speeds, at which continuous brittle
crushing governs the interaction. It is therefore easier to connect the
decomposed modes to structural vibrations. However, it is expected
that the error between the reconstruction and the original signal will
increase as the method is applied to higher drift speeds due to the in-
crease in the randomness of the process. In fact, NRMSE of the rank-3
approximation in IRPCA increases from 3.4% to 10.5% gradually as the
ice speed increased from 20 to 70 mm s−1, as shown in Table 2. One

Fig. 5. Top image (a): Logarithmic plot of eigenvalues (left image) and corresponding six pressure modes (center and right images) at 30 mm s−1 ice speed using POD.
Bottom image (b): Logarithmic plot of eigenvalues (left image) and corresponding six pressure modes (center and right images) at 30 mm s−1 ice speed using IRPCA.
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reason for this is that as the ice speed increases, the number of time
increments during load build-up becomes smaller whereas number of
time increments during failure becomes larger. This happens because
the dominant force frequency increases with increasing ice speed. It is
questionable whether the tactile sensor response is fast enough to
capture the higher frequencies inherent in the brittle failure, which may
explain the increased reconstruction error with ice speed. In the ana-
lysis λ regulating parameter is kept constant using =λ m1/ where m
is equal to the size of the auto-covariance matrix as suggested by Wright
et al. (2009).

Another important characteristic of these reduced order models is
that the choice of rank of a reduced-order representation of the data
depends on the desired accuracy determined by the user of the method.
Table 2 illustrates the NRMSE of rank-3 approximation using POD and
IRPCA algorithms where r represents the rank of the system and the
modal energy for different ranks according to Eq. (8).

5.3. Pressure modes of intermittent crushing at ice speed of 5 mm s−1 from
Test−22120 phase II in IVOS

An extra time series of intermittent crushing is analyzed from IVOS
(Ice-induced Vibrations of Offshore Structures) Phase 2 test campaign
for comparison where the sampling rate is 300Hz and time length is

around 75s (the sampling rate was around 100Hz in DIIV test campaign
where the time length of individual ice speed was varying between
10− 15s).

In the tests, the test cylinder is mounted to the main carriage and
moves through the resting ice sheet to get insight into dynamic ice-
structure interaction. Tested cylinder has a diameter of 200 mm where
the model is equipped with tactile sensors and a 6-component scale
measures the global loads. Similar to the analysis followed for DIIV
experiments; first, zero-mean response is obtained and then POD and
IRPCA of the resulting data are computed. Table 3 shows the relevant
test matrix and modal energies for different ranks according to Eq. (8).
However, readers are encouraged to read Ziemer and Hinse (2017) for
more detailed information regarding the IVOS test campaign.

Fig. 12 illustrates the zero-mean original data and rank-3 approx-
imation of the pressure sums on the structure at the ice speed of 5 mm
s−1 when IRPCA method is used. NRMSE of the rank-3 approximation is
calculated using both POD and IRPCA methods and found as 4%, 7% ,
respectively.

Fig. 13 shows the pressure modes and their relative contributions
due to ice structure interaction at the ice speed of 5 mm s−1 using POD
(Fig. 13a) and IRPCA (Fig. 13b) methods. Left images in Fig. 13 illus-
trate the eigenvalues of the first 10 subspaces whereas center and right
images illustrate the corresponding POMs of the first six subspaces. The

Fig. 6. Example time history of the sum of pressures for the original data (red)
and rank-3 approximation (blue) at 30 mm s−1 ice speed obtained using IRPCA
algorithm. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 7. Spectral densities of POD coefficients for the first three pressure modes (left) and spectral densities of strains due to ice action in the ice-drift direction (upper
right) and sideways direction (lower right) at ice speed of 30 mm s−1.

Fig. 8. Time-history plots of sum of tactile sensor pressures at ice speed of 60
mm s−1, original response (blue, top) and high-pass filtered response (red,
bottom). (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)
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distribution of the eigenvalues shows that the first two eigenvalues are
significantly larger than higher order modes when regular POD method
is used (Fig. 13a) and contribution of the higher modes become more
apparent when IRPCA method is used (Fig. 13b) which results having
higher energy contributions at low subspace dimensions. This analysis
shows that the pressure distribution still has a dominant line shape in
the first subspace dimension with small contributions from the second
mode and supports the idea that it is representative of the ductile load
build-up on the structure. As the subspace dimension increases, the
contribution of higher order modes decreases. The second POM re-
semble to standing wave type of response that is active in the system,
which illustrates the dynamic variation of the second POM. This result
is consistent with the previous findings regarding the intermittent
crushing in the DIIV test campaign where the most dominant mode
resembles to line shape and second mode resembles to standing wave
type response. Similarly, since the contribution of the higher order

modes are very small, therefore negligible and do not have a specific
physical meaning. However, one key difference between IVOS tests and
the DIIV tests is that ice speed is lower in IVOS tests and kept constant
during the test whereas it is increased stepwise in DIIV.

6. Discussion

Significant observations may be made from the use of these multi-
variate analyses in IIVs. It is showed that both methods (POD and
IRPCA) can successfully identify the underlying fluctuating phenomena
in ice-induced vibrations in intermittent crushing regime. However, as
the ice speed is increased the quality of the reconstruction decreases
due to the randomness in the phenomenon.

Fig. 9. Top image (a): Logarithmic plot of eigenvalues (left image) and corresponding six pressure modes (center and right images) at 60 mm s−1 ice speed using POD.
Bottom image (b): Logarithmic plot of eigenvalues (left image) and corresponding six pressure modes (center and right images) at 60 mm s−1 ice speed using IRPCA.
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6.1. On the significance of the methods

Consider the traditional POD method first. It is shown that resulting
eigenvalues in the POD analysis decay slowly after certain points,
which suggests that there might be a lot of randomness, noise and/or
corrupted data present and these prevent to form a good reduced-order
model. For that reason, in order to evaluate the accuracy of these
methods, NRMSE and theoretical minimal error analysis are used. The
NRMSE percentage is computed between two signals (original and
rank-3 approximated signals), and in theoretical error analysis eigen-
values are used as in Eq. (8). If the results of these two methods yield
similar accuracy, this would be called an ideal error bound. However,
this is not the case for the current dataset. For example, at 20 mm s−1,
the eigenvalue distribution suggests that the reconstruction of the ori-
ginal data using rank-3 approximation is possible with 49% accuracy if
traditional POD analysis is used. However, if the signal reconstruction is
considered and the NRMSE of rank-3 approximation is evaluated, it is
found that original data is actually represented with 96% accuracy. In
other words, distribution of the eigenvalues suggest that one need first
50 modes to get close to 96% accuracy, which in fact, it is only needed
first three modes. Similar cases are observed at different ice speeds as
well. The reason of this significant difference lies in the fundamental
assumptions of POD: 1) linearity and 2) larger eigenvalues represent

coherent structures. Although these assumptions generally believed to
be true, sometimes it can be quite misleading and miss obvious facts. In
fact, Kutz (2013) emphasizes this problem and illustrates that if the
data includes large noise or outliers, it affects the results significantly
where the decomposed modes are highly perturbed from their ideal
states.

If we have large outliers in a data matrix, then POD will result a
large bias, which will shift the true fit to compensate the outliers in the
system. However, Candes and Wakin (2008) and Candes et al. (2011)
showed that finding an 1L -norm minimization solution to this data ef-
fectively rejects these outliers and robustifies the best data fit. This is

Fig. 10. Example time history of the sum of pressures for the original data (red)
and rank-3 approximation (blue) at 60 mm s−1 ice speed obtained using IRPCA
algorithm. (For interpretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 11. Spectral densities of POD coefficients for the first three pressure modes (left) and spectral densities of strains due to ice action in the ice-drift direction (upper
right) and sideways direction (lower right) at ice speed of 60 mm s−1.

Table 3
(a) Test matrix, (b) modal energies for low-rank approximations of the matrices
L and A for IRPCA and POD, respectively.

(a) Test-22,120 (b) POD E[%] of
A

IRPCA E[%] of L

fn (Hz) 5.7 Rank 1 23 38
Diameter (mm) 200 Rank 2 41 65
Analyzed ice speed (mm s−1) 5 Rank 3 48 73
Sampling frequency (Hz) 300 Rank 10 65 89
Ice thickness (mm) 81 Rank 20 76 95

Rank 50 90 99.9

Fig. 12. Example time history of the sum of pressures for the zero-mean ori-
ginal data (red) and rank-3 approximation (blue) at 5 mm s−1 ice speed ob-
tained using IRPCA algorithm. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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significant, because if the data is corrupted, or has large noise em-
bedded in it, then POD algorithm will potentially square the error and
give misleading results. In that sense, 1L -norm minimization promotes
sparsity as illustrated in compressive sensing applications (see Candes
and Wakin, 2008). For these reasons, in addition to traditional POD
method, the IRPCA algorithm proposed by Lin et al. (2013) is also used
to obtain the pressure modes. In this method, possible noise and/or
corrupted data are separated from the original data and then POD is
applied to the remaining low-rank data matrix. By using this method,
the quality of the reconstruction from eigenvalues increases sig-
nificantly as expected and this advanced treatment has minimal impact
on the signal reconstruction of rank-3 approximation. In other words,
the gap between the NRMSE and theoretical error analysis is decreased
significantly. Another important point here is that, the regulating
parameter λ is chosen to be constant for all the ice speeds to be

consistent with the previous studies as suggested by Wright et al.
(2009). However, Kutz (2013) also suggests that this parameter can be
tuned to best separate the low-rank matrices from sparse components
for better results. In fact, different λ values are tried in this study to see
the effect of λ on the results, and it is observed that as λ is decreased to
a certain point, the eigenvalues at lower subspace dimensions get larger
but it makes the reconstruction of the data worse and vice versa. Al-
though it is not shown, this suggests that an optimum λ value can be
found that minimizes the probabilistic error between the error obtained
from signal reconstruction and error obtained from the theoretical ap-
proach.

6.2. On the pressure modes

The methods used in this study demonstrate that it is effective to use

Fig. 13. Top image (a): Logarithmic plot of eigenvalues (left image) and corresponding six pressure modes (center and right images) at 5 mm s−1 ice speed using
POD. Bottom image (b): Logarithmic plot of eigenvalues (left image) and corresponding six pressure modes (center and right images) at 5 mm s−1 ice speed using
IRPCA.
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the subspaces of the spatially and temporally decomposed data to better
understand ice-structure interactions. The methodology extracts the
most important features necessary to reconstruct the original data with
a tolerable accuracy. For ice-structure interaction on this structure, it is
obvious that the first POM contributes in the same direction as the ice
drift and has a shape similar to what is usually observed during the load
build-up phase (Sodhi, 2001). Pressures that cause sideways motion of
the structures are always observed in the second or third subspaces.

Sideway motions and their relationship to the pressure variations
are compared using the frequency of the individual POCs and the fre-
quency of the sideway motions. It is found that depending on the ice
speed, frequency of the sideways motion coincides with the frequency
of different POCs. This feature itself illustrates the complexity of the
motion as a canonical problem. Without such a decomposition, it is
difficult to distinguish between closely separated frequencies and un-
derstand their relationship to the structural motions. In particular, in
the examples used in this study the sideway stiffness of the structure is
lower than in the ice-drift direction, hence the frequency of the side-
ways motion in both cases are lower than in the ice-drift direction. In
addition, Figs. 7 and 11 show that the magnitude of sideways motion is
around three to four orders of magnitude lower than that in ice-drift
direction. Therefore, with classical frame by frame inspection, it is
difficult to distinguish the sideways motion from the ice-drift directed
motion, especially when their dominant frequencies are close. Any
change in ice parameters may lead to other subsets of POMs that can be
used to better model ice-structure interactions. This is very important
because sideways motion of the structure also occur in full-scale (Nord
et al., 2016), therefore the effect of pressure modes on the sideway
motion need to be further investigated to understand this complex
phenomenon better.

Although good results are achieved for intermittent crushing, the
error increases with the ice speed. The physical explanation of that is
twofold. At higher ice speeds, brittle failure of ice over small regions
during continuous crushing increases which leads loss of coherence in
pressure modes. When the tactile sensor measures frames at a frequency
of 100 Hz, only 2− 3 frames of pressure are recorded during brittle
failure, which makes it difficult to extract coherent structures from the
data. Because of this limitation in the sensor, continuous brittle
crushing and frequency lock-in are intentionally left out of the analysis.

7. Conclusion

In conclusion, this study illustrates the complex nature of ice-in-
duced vibrations. The purpose of this study is to illustrate the sys-
tematic pressure distributions hidden in ice-induced vibrations to have
a better understanding of the phenomenon. Being able to clearly
identify pressure modes that are active in the ice-structure interaction is
of utmost importance to the development of the reduced-order models
capable of predicting ice-induced vibrations in offshore structures. For
that purpose, authors apply POD and IRPCA methods to the selected
datasets to examine the pressure activities. Active pressure modes in the
system are compared along with their contributions using NRMSE and
theoretical error analysis. Physical meaning of the pressure modes are
interpreted for the selected ice speeds.

As a result of the analyses, it is found that first pressure mode il-
lustrates the ductile pressure variation on the structure which is the
most dominant mode and inherently varies in the direction of ice drift.
It is also showed that some combination of first three pressure modes
represent the oscillations in the sideways direction of the structure. It is
hypothesized that higher order modes are contaminated with some
added noise due to complex ice-structure interaction.

In addition to obtaining the pressure modes, it is also shown that the
coordinate system employed using IRPCA for reduced order modeling is
more efficient and robust than POD, and can greatly reduce the amount
of data that needs to be stored that faithfully represents the original
dataset. For example, as Table 2 shows, regardless of the ice speed

analyzed, one can reconstruct the original data using first 50 subspaces
without losing any information.

It is important to note that, the intention of this work is not to favor
one method over another. It is also only applied to several ice speeds in
the intermittent crushing type of failure hence cannot be generalized.
However, if one needs to characterize the pressure modes for all the ice
speeds and different type of failure modes, a more detailed extensive
study is needed. In fact, it is known that other multivariate analysis
methods such as smooth-orthogonal decomposition (Chelidze and
Zhou, 2006; Gedikli et al., 2017; Gedikli et al., 2018a, 2018b), or dy-
namic mode decomposition (Tu, 2013) demonstrated to work better in
highly nonlinear systems. However, POD and IRPCA methods are used
in this work for clarity as a first step analyzing ice-induced vibration
dataset using multivariate analysis.
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