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Abstract: The operation of water distribution systems is based on reliable knowledge about the steady
state of the system. This involves sensors to measure flow, facilitating a comprehensive overview
of the system’s performance. Given the costs associated with sensor installation and operation, it
is important to be strategic with sensor allocation. Recently developed Gaussian Processes with
topological kernels can efficiently model mass and energy conservative flows and provide uncertainty
bounds. Our work proposes a novel method of state estimation and a greedy search algorithm for
water flow meter placement based on the uncertainty bounds provided by a Gaussian Process.

Keywords: sensor placement; flowrate estimation; Gaussian processes; uncertainty

1. Introduction

The main challenge of planning a monitoring scheme for a water distribution system
(WDS) is striking a balance between maximizing the observability and the cost. Most
attempts to tackle this challenge use computationally expensive optimization processes
that can be prohibitive for large networks [1]. Approaches based on graph theory provide
a remedy; however, they do not account for physical laws that govern the system [2].

Recent advancements in geometric deep learning enable the incorporation of network
topology and physical laws into the model [3]. This includes novel Gaussian Processes
with topological kernels that can efficiently model mass and energy conservative flows. By
including connectivity information into the kernel, Gaussian Processes (GPs) can interpolate
flows in a network based on mass-conservation principles. Consequently, the variance
of the GP can serve as an indicator of uncertainty. Our work proposes a greedy search
algorithm for water flow meters based on the uncertainty of the estimated flowrates.

2. Materials and Methods
2.1. Problem Statement

We define a directed graph G = (V, E) that describes a water distribution system.
The set of nodes V corresponds to the junction, reservoirs, and tanks, while the set of
edges E represents the pipes. The direction of the edges is chosen arbitrarily. The matrix
B1 ∈ R|V|×|E| denotes the incidence between edges and nodes of the graph [4]. We addi-
tionally define a set of loops C in the network and assign an arbitrary orientation. Similarly,
B2 ∈ R|E|×|C| is an incidence between the cells and incidental edges.

We assume noisy demands on the nodes q ∈ R|Nc | and flowrate sensors, where Nc is
the number of consumption nodes, and a set of k sensor edges, i.e., water flow meters. The
desired output is the vector of flowrates on the pipes f ∈ R|E|−k along with the uncertainty
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bounds. The negative sign of the vector value means that the true direction of the flow is
the opposite to the one selected. We are additionally interested in finding the set S of k best
sensor locations out of set E.

2.2. Flowrate Estimation with Gaussian Processes

Let X be a set of pipes. A flowrate vector can be modeled with a multi-dimensional
Gaussian process f ∼ GP(µ, k), with mean vector µ = µ(x) and covariance matrix
K = R|E|×|E|. We assume that the prior mean µ is zero. The resulting function on the edges
f (x) is assumed to follow a multivariate Gaussian distribution where each dimension in it
corresponds to a pipe.

For a given set of sensor locations and sensor measurements (xi, yi), we define the
model yi = f (xi) + ϵi, where f ∼ GP(0, k) and noise ϵi ∼ N

(
0, σ2). The posterior of f ,

given the observations at xi, is another GP. Its conditional mean and covariance at the rest
of the pipes (.) are as follows:

µ|y(.) = K.x

(
Kxx + σ2 I

)−1
y (1)

K(., .′)|y = k(., .′)− K.x

(
Kxx + σ2 I

)−1
Kx.′ (2)

The result of the posterior is a multi-variate distribution of flowrates, conditioned by
known flowrates at sensor locations. The predicted flowrates can be extracted as the mean
of the Gaussian flowrates.

2.2.1. Mass-Conservative Covariance

The mass conservation principle states that all incoming water flows are equal to
the outflow.

B1 f = q (3)

Recent works introduce a kernel that describes the relationship between the values
defined on the edges of the graph. In fact, if the covariance is selected as LH

down= e−BT
1 B1 , the

sampled f will be mass conservative [3].
To ensure energy conservation, the sampled flowrates are transformed using the

Hazen–Williams relation into headlosses h. As the relation is non-linear, the distribution of
h is no longer Gaussian. Energy conservation can be assured by projecting h with a linear
operator LH

up = eB2BT
2 [5].

h′ = LH
uph (4)

The resulting h′ are energy conservative, meaning that the sum of energy losses within
a closed loop with respect to their orientations are equal to 0.

2.2.2. Virtual Edges

To incorporate the demand on the nodes into the estimation, we propose to extend
the graph G with |V| virtual nodes paired with each real node. As a result, q on the
corresponding nodes act as sensory input on pipes to GP.

2.3. Sensor Placement

The sensor placement strategy is based on the greedy selection of the GP dimension
with the highest variance. The algorithm iteratively updates the set of sensors S and
evaluates µ|y and K|y, applying Equations (1) and (2). The latter estimates the uncertainty
of the prediction. This strategy is akin to the Bayesian optimization procedure [6].

2.4. Evaluation

Algorithm 1 is evaluated based on 3 benchmark networks: Zhi-Jiang [7], area C of
L-Town [8], and Net-3 [9]. The initial set S of sensors is selected as the flowrates on virtual
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edges (i.e., demands and reservoir outflows), k = 10. For Net-3, we additionally visualize
the location of the sensors. The accuracy of the state estimation is evaluated with the R2 of
flowrates on unknown pipes against the ones obtained via EPANET [9].

Algorithm 1. Sensor Placement Strategy

Input: Covariance K, k, x ⊂ E, S
for j = 1 to k:
Update K according (1) and (2)

h(x)← HazenWilliams( f (x))
h′(x)← LH

uph(x)
f (x)← HazenWilliams−1(h(x))

Sargmax
x = Var( f (x))

S← S ∪ S′

end

3. Results

Figure 1a visualizes the dynamics of errors of the estimated flowrates against the
number of flow meters installed in the network. The estimation accuracy increases with the
number of sensors. For ZJ and L-Town, the largest gain is visible with the first suggestion
as the accuracy reaches 0.99 in R2. However, further suggestions are less informative. In
the example of Net-3, the accuracy gradually increases with the number of flowrate sensors
and reaches 0.97.
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Figure 1. Results of a sensor placement algorithm. (a) Ten selected sensor locations on the example of
Net-3. (b) Accuracy of the flowrate estimation.

4. Discussion

For ZJ and L-Town, the sensor placement algorithm prioritizes the allocation of sensors
on the pipes that are located next to the reservoir. Assuming the demands are known with
some noise factor, these pipes are the most influential for estimating water flow in the
pipes. Figure 1b shows that the algorithm prioritizes the pipes that act as bottlenecks and
influence the rest of the network.

The difference in the accuracy between the networks requires further investigation.
Currently, the algorithm shows the preliminary results on simple networks and re-

quires further investigation. Further work can include pressure sensor placement and can
combine multiple Gaussians to incorporate energy conservation more thoroughly.

5. Conclusions

This work introduces a novel method of estimation of flowrates and uncertainty
bounds based on GP. We additionally propose a greedy water flow sensor placement
algorithm that systematically prioritizes pipes in the water network with the highest
uncertainty of estimated flowrates. This approach is similar to the exploration objective
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based on the acquisition function of Bayesian optimization. For simple networks, this
allows for interpolating the flowrates with assumed demands and a single flowrate
sensor with high accuracy. Finally, by omitting the need to run expensive hydraulic
simulations, we provide a fast sensor-placement technique that is both geometrically
and physically informed.
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