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Abstract 

 
 

Complex networks describe a wide range of systems and structures in the world. 
Any real network can be modeled as graph, expressed by an adjacency matrix or list. 
In many complex networks, when a graph of a certain type grows in size, its 
properties are expected to change. Each complex network presents specific 
topological features which characterize its individual properties and are influenced 
by the dynamics of processes executed on the network. The analysis of complex 
networks therefore relies on the use of measurements capable of expressing the most 
relevant topological features. Therefore, understanding and analyzing the properties 
of different sized graphs is a challenging topic in the research field. 
 

The objective of the thesis is to understand the evolving properties of growing 
networks. Therefore it focuses on comparison of topological metrics with different 
number of nodes and links. Growing graphs will be approached by two different 
schemes: preferential link attachment and random link attachment. Several common 
types of graph models are involved in the thesis. And we also consider different 
real-world network examples. 
 

With the analysis and comparison of numerical simulation results, we want to 
understand the changing tendency of topological metrics for evolving networks. In 
final, the thesis reveals different crucial factors affecting the evolving properties of 
growing network and concludes evolving properties based on both empirical and 
analytical results. 
 
 
Key words: complex network, growth, topological metrics, preferential attachment, 
random attachment, topological characteristics, evolution process 
 
 
 
 
 
 
 
 

 4



Acknowledgement 

 
 
This project was carried out at the Network Architectures and Services Group of 

Faculty of Electrical Engineering, Mathematics and Computer Science, Delft 
University of Technology, the Netherlands during the period from December 2008 to 
October 2009. 
  

First of all, I would like to acknowledge my supervisor, Prof. dr. ir. P. F. A. Van 
Mieghem. His pioneering research work provides the necessary basis for the thesis. 
 

I would like to appreciate my mentor, ir J. M. Hernández, for his patient 
guidance and academic support. 
 

Finally, I would like to thank my family for their love and support through my 
life. 

 

 5



List of Contents  

 
1. Introduction.....................................................................................................................12 

1.1. Background .....................................................................................................................12 
1.2. Motivation.......................................................................................................................13 
1.3. Thesis outline ..................................................................................................................14 

2. Graph Theory Review .....................................................................................................15 
2.1. Network and graph theory...............................................................................................15 
2.2. Topological measures......................................................................................................16 

2.2.1. Node degree ....................................................................................................16 
2.2.2. Average node degree .......................................................................................16 
2.2.3. Probability distribution of node degree...........................................................17 
2.2.4. Hopcount .........................................................................................................17 
2.2.5. Diameter..........................................................................................................17 
2.2.6. Clustering coefficient ......................................................................................17 
2.2.7. Giant component .............................................................................................17 
2.2.8. Assortativity coefficient ..................................................................................18 
2.2.9. Centrality measurements .................................................................................19 

3. Models and Construction ................................................................................................21 
3.1. Network models ..............................................................................................................21 

3.1.1. Random graph of Erdős-Rényi........................................................................21 
3.1.2. Scale-free graph of Barabási-Albert................................................................22 
3.1.3. Small world model of Watts and Strogatz .......................................................24 
3.1.4. Regular lattice graph .......................................................................................24 
3.1.5. Special graph models: ring graph and line graph ............................................26 

3.2. Data sets of real networks ...............................................................................................26 
3.3. Graph evolution process..................................................................................................29 

3.3.1. Growth procedure............................................................................................29 
3.3.2. Link attachment schemes ................................................................................30 

3.4. Experiment setup.............................................................................................................31 
4. Evolving Properties of Growing Graph Models .............................................................33 

4.1. Classification and model settings....................................................................................33 
4.2. Scale-free graph of Barabási-Albert................................................................................36 

4.2.1. Node degree ....................................................................................................37 
4.2.2. Average hopcount............................................................................................38 
4.2.3. Clustering coefficient ......................................................................................39 
4.2.4. Assortativity coefficient ..................................................................................40 
4.2.5. Betweenness centrality....................................................................................41 

4.3. Random graph of Erdős-Rényi........................................................................................43 
4.3.1. Node degree ....................................................................................................43 

 6



4.3.2. Average hopcount............................................................................................45 
4.3.3. Clustering coefficient ......................................................................................46 
4.3.4. Assortativity coefficient ..................................................................................47 
4.3.5. Betweenness centrality....................................................................................48 

4.4. Regular lattice graph .......................................................................................................49 
4.4.1. Node degree ....................................................................................................49 
4.4.2. Average hopcount............................................................................................50 
4.4.3. Clustering coefficient ......................................................................................51 
4.4.4. Assortativity coefficient ..................................................................................52 
4.4.5. Betweenness centrality....................................................................................53 

4.5. Small world model of Watts and Strogatz.......................................................................54 
4.5.1. Node degree ....................................................................................................55 
4.5.2. Average hopcount............................................................................................55 
4.5.3. Clustering coefficient ......................................................................................56 
4.5.4. Assortativity coefficient ..................................................................................57 
4.5.5. Betweenness centrality....................................................................................58 

4.6. Special models: line graph and ring graph ......................................................................59 
4.6.1. Node degree ....................................................................................................59 
4.6.2. Average hopcount............................................................................................60 
4.6.3. Clustering coefficient ......................................................................................61 
4.6.4. Assortativity coefficient ..................................................................................61 
4.6.5. Betweenness centrality....................................................................................62 

5. Evolving Properties of Growing Real Networks.............................................................64 
5.1. Classification and model settings....................................................................................64 
5.2. Social-biological network: LesMis .................................................................................66 
5.3. Technological network: ElectrC_s208 ............................................................................68 
5.4. Linguistic network: WordAdj..........................................................................................70 

6. Conclusion and Future Work...........................................................................................73 
6.1. Conclusion ......................................................................................................................73 
6.2. Future work .....................................................................................................................76 

 

 7



List of Figures 

 
Figure 1.1 an example of complex network: Arpanet 

Figure 3.1.1 A random graph of Erdős-Rényi contains 130 nodes and 215 links 

Figure 3.1.2 A scale-free graph of Barabási-Albert contains 130 nodes and 215 links 

Figure 3.1.3 A small world model of Watts and Strogatz with 64 nodes, k = 2 and 

rewiring probability p = 0.1 

Figure 3.1.4 A two-dimensional regular lattice graph with 10*10 nodes 

Figure 3.1.5 An example of a two-nearest-node ring graph with 16 nodes and an 

example of line graph with 5 nodes 

Figure 4.1 Legend in different figures 

Figure 4.2.1 (a) Left: Evolving node degree, in scale free graph (b) Right: Evolving 

node distribution, in scale free graph 

Figure 4.2.2 Evolving hopcount in scale free graph 

Figure 4.2.3 Evolving hopcount in scale free graph 

Figure 4.2.4 Evolving assortativity coefficient in scale free graph 

Figure 4.2.5 (a)Left: Evolving node betweenness in scale free graph, (b)Right: 

Evolving link betweeness, in scale free graph 

Figure 4.2.5 (c) Evolving node betweenness distribution in scale free graph 

Figure 4.3.1 (a) Left: Evolving node degree, in random graph (b) Right: Evolving 

node distribution, in random graph 

Figure 4.3.2 Evolving hopcount in random graph 

Figure 4.3.3 Evolving clustering coefficient in random graph 

Figure 4.3.4 Evolving assortativity coefficient in random graph 

Figure 4.3.5 (a) Left: Evolving node betweenness in random graph, (b)Right: 

Evolving link betweeness, in random graph 

Figure 4.4.1 (a) Left: Evolving node degree, in lattice graph (b) Right: Evolving node 

 8



distribution, in lattice graph 

Figure 4.4.2 Evolving hopcount in lattice graph 

Figure 4.4.3 Evolving clustering coefficient in lattice graph 

Figure 4.4.4 Evolving assortativity coefficient in lattice graph 

Figure 4.4.5 (a) Left: Evolving node betweenness in lattice graph, (b)Right: Evolving 

link betweeness, in lattice graph 

Figure 4.4.5 (c) Evolving node betweenness distribution in lattice graph 

Figure 4.5.1 (a) Left: Evolving node degree, in small world model (b) Right: Evolving 

node distribution, in small world model 

Figure 4.5.2 Evolving hopcount in small world model 

Figure 4.5.3 Evolving assortativity coefficient in small world model 

Figure 4.5.4 Evolving assortativity coefficient in small world model 

Figure 4.5.5 (a) Left: Evolving node betweenness in small world model, (b)Right: 

Evolving link betweeness, in small world model 

Figure 4.5.5 (c) Evolving node betweenness distribution in small world model 

Figure 4.6.1 (a) Left: Evolving node degree, in line graph (b) Right: Evolving node 

distribution, in line graph 

Figure 4.6.1 (c) Left: Evolving node degree, in ring graph (d) Right: Evolving node 

distribution, in ring graph 

Figure 4.6.2 (a) Left: Evolving hopcount in line graph (b) Right: Evolving hopcount 

in ring graph 

Figure 4.6.3 (a) Left: Evolving clustering coefficient in line graph (b) Right: Evolving 

clustering coefficient in ring graph 

Figure 4.6.4 (a) Left: Evolving assortativity coefficient in line graph (b) Right: 

Evolving assortativity coefficient in ring graph 

Figure 4.6.5 (a) Left: Evolving node betweenness in line graph (b) Right: Evolving 

node betweenness in ring graph 

Figure 4.6.5 (c) Left: Evolving link betweenness in line graph (d) Right: Evolving 

link betweenness in ring graph 

Figure 4.6.5 (e) Left: Evolving node betweenness distribution in line graph (f) Right: 

 9



Evolving node betweenness distribution in ring graph 

Figure 5.2 (a) Left: Evolving node degree, in LesMis network (b) Right: Evolving 

node distribution, in LesMis network 

Figure 5.2 (c) Left: Evolving average hopcount, in LesMis network (d) Right: 

Evolving clustering coefficient, in LesMis network 

Figure 5.2 (e) Left: Evolving assortativity coefficient, in LesMis network (f) Right: 

Evolving node betweenness, in LesMis network 

Figure 5.2 (g) Left: Evolving node degree distribution, in LesMis network (h) Right: 

Evolving link betweenness, in LesMis network 

Figure 5.3 (a) Left: Evolving node degree, in ElectrC_s208 network (b) Right: 

Evolving node distribution, in ElectrC_s208 network 

Figure 5.3 (c) Left: Evolving average hopcount, in ElectrC_s208 network (d) Right: 

Evolving clustering coefficient, in ElectrC_s208 network 

Figure 5.3 (e) Left: Evolving assortativity coefficient, in ElectrC_s208 network (f) 

Right: Evolving node betweenness, in ElectrC_s208 network 

Figure 5.3 (g) Left: Evolving node degree distribution, in ElectrC_s208 network (h) 

Right: Evolving link betweenness, in ElectrC_s208 network 

Figure 5.4 (a) Left: Evolving node degree, in WordAdj network (b) Right: Evolving 

node distribution, in WordAdj network 

Figure 5.4 (c) Left: Evolving average hopcount, in WordAdj network (d) Right: 

Evolving clustering coefficient, in WordAdj network 

Figure 5.4 (e) Left: Evolving assortativity coefficient, in WordAdj network (f) Right: 

Evolving node betweenness, in WordAdj network 

Figure 5.4 (g) Left: Evolving node degree distribution, in WordAdj network (h) Right: 

Evolving link betweenness, in WordAdj network 
 
 
 
 
 
 

 10



 

 11



1 
1. Introduction 

 

1.1. Background 

 
Many real systems and structures in our lives can be regarded as different types 

of complex networks. Nowadays our society relies on large networks more strongly 
than ever. People increasingly use wired and wireless networks to communicate with 
others in their daily lives. One’s personal relationship with other people in society 
constitutes a social network. In other research areas such as neuroscience, a neural 
network describes a population of physically interconnected neuron or a group of 
disparate neurons. Figure 1.1 shows the distribution map of ARPANET which is a 
pioneered wide-area computer networking in 1980s. 

 

 
Figure 1.1 an example of complex network: ARPANET 

 
Because of large size and the complexity of their interactions, the difficulty in 

representing a network partially lies in their topology and topological properties. 
Fortunately, graph theory has been well established and developed in the last several 
decades. A network is modeled as a graph described by an adjacency matrix or list. 
The advantages are their generality and flexibility for representing virtually or natural 
networks, including those undergoing dynamical change of topology [1]. The analysis 
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of complex networks therefore relies on the use of measurements capable of 
expressing the most relevant topological features. It helps us to research into 
topological features of a network by different types of topological measures. It gives 
us insight of networks and helps us to analyze the properties of them.  
 

On the other hand, researchers are able to collect and process large data 
collection of networks since the computing ability increases dramatically in the last 
few years.   

 
Therefore, contemporary complex network research consists of not only graph 

theory but statistical analysis as well. Regarding the converging development, lots of 
new measures and concepts have been put forward recently [2]. The research of the 
complex networks focus on not only the topological properties of stationary data sets 
of graphs but also their dynamical evolution. 
 
 

1.2. Motivation 

 
A network can be either stationary or dynamic. When a dynamic network of a 

certain class grows in size, its topological properties may even change [3]. We are 
interested in exploring how the properties change with the growth of graph and 
whether those changing tendencies are related to their types or other parameters.  
 

In this thesis, we focus on dynamic evolution of network topology. This project 
presents a survey of different topological measures such as hopcount, clustering 
coefficient, degree distribution, assortativity coefficient and betweenness centrality. 
The statistical simulation results are derived from the simulation result of both graph 
models and data sets of real networks. 
 

Thus, the objective of the present thesis is to better understand the evolving 
properties of dynamic networks when networks are growing in size during the 
evolution process. With the empirical data result from simulation, we analyze and 
compare the properties of metrics with different number of vertices and edges. The 
procedure of graph growth will be approached by growing graph with two different 
schemes: preferential link attachment and random link attachment. We repeat every 
evolution process for large number of cycles in each simulation to eliminate the 
influence of stochastic error. We also analyze the simulation results with the help of 
graph theory. We hope that it gives us insight on how topological metrics evolve with 
the number of vertices and edges. 
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1.3. Thesis outline  

The first chapter addresses the background and the motivation of this thesis. The 
second chapter reviews the fundamentals of graph theory first. Then several 
topological metrics expressing the evolving properties of growing graph in the 
statistical simulation are proposed. The third chapter first introduces four typical types 
of graph models and two other special types. After that, we also briefly introduce the 
data sets of real networks used in the simulation. The last part of the chapter states the 
details on the construction of the models in the project. 
 

The fourth chapter contains the statistical simulation result of six graph models. 
Analysis of evolving properties of graph is presented for each simulation. The fifth 
chapter shows the simulation results from the data sets of some real networks. The 
final chapter makes a conclusion and finally proposes the future work related to the 
thesis. 
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2  
2. Graph Theory Review 

 

2.1. Network and graph theory 

 
In this section, we introduce fundamentals of graph theory. A network can be 

represented as a graph. A graph, G is usually defined as a set of edges E connected by 
a set of vertices V. The number of edges and the number of vertices in the network are 
denoted by N and L similarly. The notation of a graph therefore is denoted by G(N,L). 
The numbers of N and L are usually assumed to be finite. A full mesh graph consists 
of N nodes where every node connects every other node directly and the total number 
of links is L = N(N-1)/2 which increases quadratically with the size of graph N. 
 

If a link connects node i and j, those two nodes are called adjacent or 
neighboring nodes of graph G. A graph is connected if there exists at least one path 
between any pair of nodes in the graph and otherwise it is a disconnected graph. 
 

The topological structure of a graph of N nodes can be represented by an 
adjacency matrix denoted by A. Adjacency matrix A is an N*N real matrix. Each 
element aij of A is either one or zero depending on whether there exists a link between 
node i and j or not. Element aij is one if there is a link between node i and j, else aij = 0. 
The adjacency matrix A describes the interconnection pattern of a graph. Weights may 
be assigned to links in a graph which is called weighted graph. Links may also be 
given a direction and the graph can be directed. More than one link between a certain 
pair of nodes forms parallel links. There is no way of showing parallel links by the 
adjacency matrix A. When one link connects to the same node with its both ends, we 
have a self loop aii = 0. 
 

In addition to adjacency matrix, adjacency list is an alternative representation 
which is similar to related data structure to represent a graph. In an adjacency list, the 
links sequences for each node are stored by representing the corresponding pair of 
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nodes. Adjacency list is high efficient in sparse graph, since it just contain links which 
really exist between pairs of nodes. 
 

A simple graph is unweighted, undirected and any self loop or parallel link is 
prohibited. In this thesis, we restrict all the graphs to simple graphs unless they are 
stated otherwise and we also assume that all the graphs generated are connected. 
Therefore, the adjacency matrix of a simple graph is a diagonal matrix and elements 
on its main diagonal aii are equal to zero. 
 
 

2.2. Topological measures 

 
There are a large number of different topological metrics to characterize 

topological properties of a graph [4]. Some of the metrics are correlated to others to 
some extent, which means redundancy may lie between some metrics [5]. 

 
In this section, several key metrics are introduced. We use them to investigate 

and analyze the evolution of graph of different sizes and types in this thesis. 
 

2.2.1. Node degree 

The information of node degree is one of the most important characteristics of a 
graph. The degree of node i is the number of its direct neighboring nodes in the graph:  

1

N

i
j

d
=

= ija∑         (2.1) 

It is obvious that node degree obeys the basic law below since each link builds 
up a connection between two nodes. 

1

2
N

j
j

d
=

=∑ L         (2.2) 

 

2.2.2. Average node degree 
The average node degree of a graph evaluates the number of neighboring nodes a 

node has on average. It is defined as 
 

1

1[ ] N
ii

LE D d
N N=

= ∑ 2
=     (2.3) 

 
Especially, for a connected graph, the average node degree is lower bounded by 
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2-2/N when the graph contains no cycles and upper bounded by N-1 when the graph is 
full mesh.  

 
 

2.2.3. Probability distribution of node degree 
The probability distribution of node degree denoted by Pr[D=k] is the probability 

distribution function of node degree over the entire graph. It expresses the fraction of 
nodes in a graph with degree k Different types of graph are usually featured by 
different probability distribution of node degree which is a crucial metric in graph 
theory.  
 

2.2.4. Hopcount 
The shortest path is the shortest one among all existing paths between a pair of 

nodes. The hopcount between a pair of nodes denoted by Hij and equals the number of 
hops in the shortest path which connects node i and j. The average hopcount of a 
graph denoted by E[H] and equals the average value of the hopcount of all shortest 
paths.  
 

2.2.5. Diameter  
Diameter is the maximum value among all shortest paths between all the pairs of 

nodes in the graph. 
 

2.2.6. Clustering coefficient 
The clustering coefficient cG(i) is defined as the ratio of the number of links y 

connecting the di neighbors of node i over the total potential di (di-1)/2 links. 

G
2( )=

( 1i i

yc i
d d )−

      (2.4) 

 
The clustering coefficient characterizes the density of connections of node i. 

Another definition is the ratio between the number of triangles that includes node i 
and the number of triangles that would include node i if all neighboring nodes of i 
connect each other. It evaluates how nodes interconnect in the graph and expresses 
strength of local robustness. The average clustering coefficient CG is the average 
value of clustering coefficients of all nodes in the graph. We use average clustering 
coefficient CG in this thesis.  
 

2.2.7. Giant component 
A graph may be dismantled into isolated components or nodes if the link density 
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is too low. The largest connected cluster is called giant component in a disconnected 
graph. In a full connected graph, the giant component contains all the nodes through 
the whole graph. In this thesis all the graphs are connected unless stated otherwise. 
 

2.2.8. Assortativity coefficient 
Nodes have different types in some graphs. Correlations between nodes are 

found in the mixing pattern in many types of networks. For instance, in social 
networks, nodes with high degree tend to link high degree nodes as well. This 
phenomenon is called assortative mixing or assortativity. While in technological and 
biological networks, high degree nodes tend to connect low degree nodes, which show 
disassortative mixing, or dissortativity. 
 

Unfortunately, the node degree distribution doesn’t provide any details of the 
interconnection pattern between nodes in the graph. Assortativity coefficient r 
provides information whether a node attach to other nodes that are with similar type 
or not. There are several different ways to define and normalize the coefficient. In this 
thesis, we use the definition given by Newman [6]. The assortativity coefficient r is 
essentially the Pearson correlation coefficient between pairs of nodes.  

 
Consider thea graph G(N,L) with degree distribution Pr[D=k], where Pr[D=k] is 

the probability that a randomly chosen node in the graph has degree k. 
Now if a node is reached by following a randomly chosen link in the graph, the 

degree of this chosen node is not distributed according to Pr[D=k]. The reason is that 
more links ends at a node of high degree. As a result, the degree distribution for the 
node at the end of a randomly chosen link is in proportion to kPr[D=k] instead of 
Pr[D=k]. In this thesis, we define the remaining degree—the number of links leaving 
the node other than the one we arrived along. This number is one less than the total 
degree and hence is distributed in proportion to (k + 1)Pr[D=k+1].Thus, we define 
Pr[Q = k] as the remaining degree distribution, 

( 1) Pr[ 1Pr[ ]
Pr[ ]

j

k D kQ k
j D j

]+ = +
= =

=∑
          (2.5) 

 
We define Pr[Qx = k, Qy = j] as the joint probability distribution of the remaining 

degrees of the two nodes x and y at either end of that randomly chosen link. 
 
The assortativity coefficient is normalized to lie between -1 and 1 by dividing it 

by its variance  
2 2( Pr[ ]) ( Pr[ ])q x xk k

k Q k k Q kσ = = −∑ ∑ 2=     (2.6) 

 
Then the assortativity coefficient r is defined as 

 18



2

1 (Pr[ ] Pr[ ]Pr[ ])x y x y
jkq

r jk Q  = k, Q  = j Q k Q j
σ

= − =∑ =        (2.7) 

 
If r is positive, it indicates a correlation between nodes of similar degree. If r is 

negative, it indicates correlation between nodes of different degree. Especially, when r 
= 1, the graph is said to have perfect assortative mixing patterns, while r = -1 the 
graph is totally disassortative. If r = 0, the graph is neither assortative nor 
disassortative. Assortative networks are known to percolate more easily while 
disassortative ones are more robust against node attack. 
 

2.2.9. Centrality measurements 
A node or a link plays an important role in a graph if a large number of shortest 

paths pass through it. The betweenness centrality of a node or a link is a measure to 
quantify its importance of a node or a link and defined as   

( , , )
( , )ij

i v jB
i j

σ
σ

=∑            (2.8) 

whereσ(i,j) is the number of shortest path between node i and j, and σ(i,v,j) is the 
number of shortest paths connecting node i and j through node v or link v.  

 
In the simulation of our work, betweenness just refers to numerator of BBu defined 

above. We denote node betweenness as BnB  and denote link betweenness as BBl. The 
betweenness centrality estimates the potential traffic load on a selected node or link in 
a graph [7]. The average node betweenness and the link betweenness are denoted by 
E[BnB ] and E[BBl] respectively in this thesis. 

 

There exists a relation between average link betweenness E[BBl] and average 

hopcount E[H]. If Hij denotes the number of hops in the shortest path from node i to 

node k, the total number of hops in all shortest path in G(N,L) is  

which is equal to 
1 1

N N
iki k i

H
= = +∑ ∑

1

L
ll

B
=∑ . Taking the expectation of them both gives the equation 

below: 

2( )[ ] [ ] [ ]
N

lE B E H E
L

= ≥ H       (2.9) 

with equality only for the full mesh graph [14].  
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3  
3. Models and Construction 

 

3.1. Network models 

Many types of graph models are established in graph theory to model complex 
networks. Each type of graph model has its specific features. In this section, four most 
typical types of graph models are proposed. They are, random graph of Erdős-Rényi, 
the scale-free graph of Barabási-Albert, small world model of Watts and Strogatz and 
regular lattice graph. Besides those famous models above, two special graph models: 
ring graph and line graph are also introduced. We simulate and analysis these six 
types of models to explore the evolving properties of graph models in this thesis. 
 

3.1.1. Random graph of Erdős-Rényi  
 
The random graph model of Erdős-Rényi developed by Erdős and Rényi in the 

late 1940s separately is the first studied model of complex network [8]. Even today, it 
is still one of the most common models in the research of complex networks.  

 
There are two most frequently occurring models. The first class of random 

graphs denoted by Gr(N,L) with N nodes and L links can be generated by starting with 
N disconnected nodes and zero links. Then the network is constructed by adding L 
links which are chosen randomly and independently from the total N(N-1)/2 potential 
links.  

An alternative way to define the random graph model, denoted by Gp(N), is to 
assume that any pair of nodes in the graph is connected with the probability p. Then 
the number of links in a random graph is not determinate but with the expectation E[L] 
= pN(N-1)/2.  The average node degree of the graph is E[D] = (N-1) p.  
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Figure 3.1.1 A random graph of Erdős-Rényi contains 130 nodes and 215 links 

 
The distribution of the degree D of an arbitrary node in the random graph is 

shown to be a binomial distribution: 
 

11
Pr[ ] (1 )k NN

D k p p
k

k− −−⎛ ⎞
= = −⎜ ⎟

⎝ ⎠
         (3.1) 

 
For large N and Np = z,the binomial distribution resembles the Poisson 

distribution with parameter z, see for the function details in section 4.3.1. 
 

A random graph may be either connected or disconnected. A disconnected 
random graph consists of isolated clusters since the link density p is too low to form a 
connected graph. One notable aspect in random graph is that there exists a critical 
probability pc at which the graph is almost connected. For large N, the critical 
threshold is pc ~ logN/N above which a giant cluster emerges which almost covers the 
entire graph.  
 
 

3.1.2. Scale-free graph of Barabási-Albert 
The degree distribution Pr[D=k] of scale-free graph decays as a power-law for 

large k , Pr[D=k] ~ k –γ, where γ is the scaling exponent and is different for different 
types of graphs. Since Pr[D=k] is free of its characteristic scale for large N, graph 
with such degree distribution is called scale-free graph. An interesting feature in scale 
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free graph model is that small number of nodes is connected with a large number of 
nodes. Those nodes with significant node degree in the scale-free graph are called 
hubs through which a routine between two nodes usually passes. Therefore the 
average hopcount is relatively low in general. 

 
Figure 3.1.2 A scale-free graph of Barabási-Albert contains 130 nodes and 215 links 

 
The Barabási–Albert model is a famous algorithm for generating scale-free 

networks by using growth and preferential attachment mechanism [9]. The model 
starts with a set of m0 nodes. Each time one new node accompanied with m links is 
added to the present graph. Every new node links m different nodes in present graph 
to construct m new pairs of links. 

 
The selection of m nodes in present graph obeys the linear preferential 

attachment rule, which means the probability of the new node i linking with an 
existing node j is proportional to the node degree of j,  
 

j

ss

d
P

d
=
∑

        (3.2) 

where dj is the degree of node i, ss
d∑ is the total degree in the network.  

Obviously, the higher the node degree, the higher the probability is with which 
that node attach new nodes during the graph evolution with preferential attachment. 
This feature makes scale free network vulnerable to attack due to its inhomogeneous 
connectivity distribution [10]. 
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3.1.3. Small world model of Watts and Strogatz 
In a small world graph model, most nodes can be reached from other nodes using 

only a small number of links. Many real networks such as social network and 
telecommunication network exhibit the small world property. The famous six degrees 
of separation, discovered by Stanley Milgram [11] indicated the concept that everyone 
in the world is connected to everyone else by only six separations of acquaintances. 
 

Watts and Strogatz model is the most popular model to construct on a ring 
random graph with small world property [12]. It starts with a lattice graph and each 
node connects to its k nearest neighbors. In addition, each link is also randomly 
rewired with probability p. The rewiring process adds p N k / 2 long-rang links to the 
graph object.  
 

When p = 1, the graph is a regular ring lattice graph with lots of triangles and 
large distance. When p = 0, the graph becomes a total random graph, with small 
distance and few triangles. For a more normal case 0 < p < 1, the generated graph lies 
in an intermediate status with both short distance and lots of triangles between those 
two extreme status above. The degree distribution of the Watts and Strogatz model are 
also influenced by the change of p.  

For an intermediate value of p, the graph is a small world model which is highly 
clustered like regular lattice graph while it has small path length like a random graph. 

 
Figure 3.1.3 A small world model of Watts and Strogatz with 64 nodes, k = 2 and 

rewiring probability p = 0.1 
 
 

3.1.4. Regular lattice graph 
The regular lattice graph is a graph with N nodes on the regular grid structure. 

Only adjacent nodes are linked directly. Every node has equivalent distance to its 
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neighboring nodes.  
 

 
Figure 3.1.4 A two-dimensional regular lattice graph with 10*10 nodes 

 
If a two-dimensional lattice graph lies on a rectangular grid of size mn, the 

number of nodes in this lattice graph is N=mn. It is easy to verify the average degree: 
 

[ ] 4 2 m nE D
mn
+

= −         (3.3) 

 
And the expected value of the hopcount is  
 

[ ]
3

m nE H +
=              (3.4) 

 
In this thesis, we restrict regular lattice graph to two-dimensional full mesh 

lattice graph on a square grid of size n2. The number of nodes in the graph is N = n2 
and the number of links in full mesh graph is L=2n (n-1). For a dense lattice graph 
with p = 1, the expected mean degree is  

 
E[D] = 4 - 2(n+n)/(n*n) = 4 – 4/n        (3.5) 

 
and the expected hopcount is  
 

E[H] = (n+n)/3 = 2n/3                 (3.6) 
 

The hopcount increases polynomial with respect to the growth of graph size N.  
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3.1.5. Special graph models: ring graph and line graph 
 

Besides the four typical types of graph models introduced in the previous 
sections, two special graph models, the ring graph and the line graph are also studied 
in this thesis to expand the scope of the graph models. 

 
 

 

Figure 3.1.5 An example of a two-nearest-node ring graph with 16 nodes and an 
example of line graph with 5 nodes 

 
 

 Ring graph 
 

Ring graph can be regarded as one extreme state in construction of a small world 
graph of Watts and Strogatz with the link rewiring probability, p =0. A ring graph is 
called k-nearest ring graph in which each node is restricted to connect its nearest 
neighboring nodes in both direction. The topological pattern looks like a ring. It’s 
easy to know that the number of links is equal to the number of nodes and the degree 
of each node is always two in a two-nearest ring graph. 
 

 Line graph 
 

Line graph is the other special model. It can be regarded as a graph in which a 
single link is cut off from a two-nearest ring graph. Therefore the number of links is 
one less than the number of nodes in a line graph. 
 

3.2. Data sets of real networks 

 
Besides different types of graph models introduced in section 3.1, we also use 

different public available sources of real networks in simulation. The type of the real 
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network has a wide range including social-biological networks, technological 
networks and Linguisticic networks. Short description of each real network is given in 
this section. 

 
All the real networks have been preprocessed. We remove their parallel links, 

self loops, ignoring link weights, and ignore the directedness. One important 
consideration is that the number of nodes includes the disconnected components. In 
most cases the size of the largest connected component spans over the 90% of the 
nodes, but that is not always the case.  
 
 

 America football network 
 
This is the network of American football games between Division IA colleges 

during regular season fall 2000, as compiled by M. Girvan and M. Newman. Nodes 
represent different football teams in the association and links represent games 
between them in a season. In this network, there are 115 nodes and 613 links. 
 

 ARPANET80 network 
 

ARPANET is the short form of Advanced Research Projects Agency Network 
which pioneered wide-area computer networking and very much laid the foundations 
of the Internet, developing both the technical and social infrastructure of 
internetworking. ARPANET grew rapidly from construction of its first node in 1969. 
The ARPANET80 network plots the locations of the nodes on a base map of the 
outline of the United States in October 1980, around the middle of ARPANET's life. 
That network shows 71 nodes in the network and 86 connections between them. The 
nodes were the equivalent of today's routers. The most striking feature of this network 
is the large concentration of sites in California and the Northeast of the US, with a 
scattering of nodes in the interior. ARPANET had a few nodes outside of the 
continental USA. There was a node in Hawaii and two in Europe. Figure 1.1 in the 
first chapter is the distribution map of ARPANET in 1980s. 
 

 C. elegans neural network 
 

Caenorhabditis elegans is a free-living, transparent roundworm with around 
1 mm in length, living in temperate soil environments. Research into the molecular 
and developmental biology of C. elegans was begun in 1974 and it has since been 
used extensively as a model organism. Celegansneural network is a biological 
network representing the neural network of C. Elegans with 297 nodes and 2148 links. 
That is pretty famous and commonly used real network example in network research. 
 
 

 Electronic Circuits Networks 
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Three variants with different size of Electronic Circuits networks are selected 

from ISCAS89 Sequential Benchmark Circuits. The three variants of networks are 
denoted by ElectrC_s208 with 122 nodes and 189 links, ElectrC_s420 with 252 nodes 
and 399 links and ElectrC_s838 with 512 nodes and 819 links respectively. Each node 
represents a logical operation implemented physically. Links between them relate 
their inputs or outputs. 
 

 Gnutella networks 
 

Gnutella is a file sharing network. In recent years, it becomes one of the most 
popular file sharing networks on the Internet. A Gnutella crawler is a software 
program used to gather statistic information on the Gnutella file sharing network, such 
as the number of users, the market share of different clients and the geographical 
distribution of the user base. Four different crawls networks are available and denoted 
by Gnutella1 with 737 nodes and 803 links, Gnutella2 with 1568 nodes and 1906 
links, Gnutella3 with 435 nodes and 459 links and Gnutella4 with 653 nodes and 738 
links. 
 

 Les Miserables network 
 
Les Miserables network is a social network consisting of 77 co-appearance 

network of characters in the novel Les Miserables. The social network is composed of 
77 nodes and 254 links 
 

 Word adjacency network 
 
The word adjacency network is an adjacency network of common adjectives and 

nouns in the novel David Copperfield by Charles Dickens. The network contains 112 
nodes and 425 links. 
 

 Western Europe Railway networks 
 

The networks consist of railway infrastructure at two different level of one 
Western-European country. In the first data set the nodes in the network are service 
points such as railway stations and the links are the rails connecting them. There are 
697 nodes and 785 links in 10 components among which the largest connected 
component contains 689 nodes. The other data set is the zoomed in level of the 
previous one. This level data contains 8730 nodes and 11350 links in 4 components. 
In our simulation, only the network of the first level is simulated. 
 

 Western Europe Power Grid 
 

The networks include power-grid infrastructure at three different levels of one 
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city-area in Western Europe. The largest network has 9168 nodes and 10147 links in 
35 components. The second one includes 3690 nodes and 4206 links in 20 
components. The third network contains 756 nodes and 786 links in 33 components. 
The largest component contains 296 nodes while the second largest component has 96 
nodes. In our simulation, only the third network is simulated. 
 
 

3.3. Graph evolution process 

The evolution process of a growing graph is composed of two basic components: 
growth procedure and link attachment scheme. In this section, we introduce details of 
them used in the project. 

 

3.3.1. Growth procedure 
 
The objective of the thesis is to research and analyze the changing tendency of 

properties when different types of dynamic graphs grow in size continuously. The 
evolution process in the simulation consists of two basic components: growth and 
attachment. 
 

A graph grows in size when new nodes are attached to the original graph. New 
links are inserted to connect new nodes and some existing nodes each time new node 
is generated. Since all the initial graphs are connected simple graphs, in each step of 
the construction during the evolution, the construction guarantees that the graph at 
any intermediate state is connected. In the simulation, we start with the initial graph G 
(N, L) and set the target graph G' (N', L'), where N'> N, and L'>L. Nodes and links 
will be recursively added to the initial graph G in a certain fashion to increase the size 
of the graph. When N matches N', and L matches L', the simulation stops.  

 
We repeat this evolution process with two different link attachment schemes for 

a large number of times in simulation. Let ΔN = N’- N and ΔL = L’- L be the 
number of new nodes and links attached to graph during the growth respectively. We 
define N/N to be the increase ratio of graph size. Since L’, L, N and N’ can be 
arbitrary values, the number of links m = 

Δ
ΔL/ΔN each time attached to a node newly 

generated may be a non-integer. We develop a mechanism to solve the problem during 
the evolution process in the simulation. First we calculate the great common divisor 
of L and N, denoted by gcd (Δ Δ ΔL,ΔN). Then the whole evolution process of a 
graph is divided into gcd( L, N) sub-procedures. Let bΔ Δ n be the remainder when L 
dividingΔN, and denote N /gcd(

Δ
Δ ΔL,ΔN) - bn as an. In each sub-procedure, there are 

in total bn + an nodes newly attached to graph G and the first bn nodes of them are 
generated with bl links which are attached to bl existing nodes and the rest an nodes 
connects to al existing nodes with al links which is one link less as an offset. The 
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weighted mean value (al * an + bl * bn) / (an + bn) is equal to ΔN /gcd( L, N). Δ Δ
 

The sequence of newly added nodes with al or bl links can be distributed 
randomly instead of in a fixed order. But both of the mechanisms introduce some 
perturbation to the evolution process. In the thesis, we choose the fixed order 
mentioned above. In this growth scheme, at least one link should be generated when a 
new node is attached to the previous graph in the growth process. And therefore graph 
at any intermediate state is guaranteed to be connected.  
 

During the growth procedure from initial graph G to target graph G’, there are 
total (ΔN+1) states including initial state, target state andΔN-1 intermediate states. 
In each state, the intermediate graph is denoted by G’’ (N’’, L’’). We calculate and 
record the topological metrics of G’’ (N’’, L’’) in each state during the evolution in the 
simulation. We repeat the evolution process for hundreds of times at the same settings 
so that enough information is collected to evaluate general evolving properties of a 
growing graph and eliminate stochastic error. 
 
 

3.3.2. Link attachment schemes 
 

The other crucial component in the evolution process is the link attachment 
scheme. When a new node is generated during the evolution process, it is a key issue 
for that newly generated node to follow a certain rule to be attached to existing nodes 
in the present graph [13]. In this project, we propose two common link attachment 
schemes in the evolution process. They are preferential link attachment and random 
link attachment. 
 

 Preferential link attachment 
 

Preferential attachment means that a new node i is connected with an existing 
node j by inserting a new link a preferential attachment scheme. That preferential 
attachment rule can be related to any criteria. In our simulation, the probability of the 
new link attachment between node i and j is proportional to the degree of node j.  

Pr[ 1] j
ij

nn

d
a

d
= =

∑
       (3.7) 

 
In general, node j with higher node degree in present graph has higher 

probability to link new generated node i, and vice versa, which displays ‘the rich get 
richer’ principle. Preferential attachment is also the attachment scheme to construct 
scale-free graph of Barabási-Albert, which possesses a power law degree distribution.  
 

Let n(u) ~ e-bu denote the total number of nodes in graph at time u. The 
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preferential attachment establishes an exponential growth of a graph since it satisfies 

the condition ( ) ( )dn u bn u
du

= . It is proved that the exponential growth of a graph results 

in power-law node degree distribution in the target graph [14]. 
 
 

 Random link attachment 
 
In the project, we also use random attachment as an alternative link attachment 

scheme. A new node i is connected randomly instead of preferentially to some of the 
existing nodes in a growing graph. In other words, a new node links a node from all 
nodes available with equal probability.  

1Pr[ 1]
''ija

N
= =       (3.8) 

 
where N’’ refers to the total number of nodes in graph G’’ (N’’, L’’) before node are 
attached. 
 

As is discussed before, when a new node is attached during the growth procedure, 
more than one link may be attached to a newly generated node. It depends on 
parameter setting. Within process of link attachment to one newly generated node, the 
former links connecting node does not influence the probability value in equation (3.7) 
until the intermediate state ends. Links are attached to the existing nodes with the 
same probability within one interim graph state. This regulation applies in both 
preferential and random attachment.  
 
 

3.4. Experiment setup 

 
During the graduation work, a C++ program was implemented to construct the 

experiment platform. In addition, the programming includes the Boost Graph Library 
which is a specific library appling in graph theory [15]. Codes are prepared for each 
type of graph model separately. In the simulation, we first set the essential parameter 
values including the number of nodes and links in the initial and the target graph 
object. Other parameters also need to be set depending on the type of initial graph. 
When the graph grows with size N, the evolution starts. In each interim state, value of 
each topological metric is recorded. Growth procedure of graph with each parameter 
setting is repeated for at least several hundreds of times to collect unbiased 
information.  

 
After that, Matlab is used to process the original data result derived from the 

simulation. We plot the value of each measure in each state G’’(N’’,L’’). Since 
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simulation is repeated for hundreds of cycles, we calculate the average value and its 
standard deviation. As the graph grows in size, curve is formed by evolving value in 
each state.  
 

The topological measures we selected to investigate their properties in the 
simulation are average clustering coefficient CG, average hopcount E[H], average 
assortativity coefficient r, average node degree E[D], average node betweenness E[Bn] 
and average link betweenness E[Bl]. In addition, node degree probability distribution 
Pr[D=k] and betweenness distribution are plotted in five states to give an insight of its 
evolving tendency. The five states consist of the initial and target state and three 
interim states by equivalent interpolation.   
 

The model construction and algorithm constructed above is able to model graphs 
with different sizes. In theory, the number of nodes N and links L in initial graph 
object G(N,L) can be quite large. In reality, due to the processing and memory 
capacity of devices, trade-offs are made between scale of simulated graphs and 
operation time. Based on the empirical results in simulation, we restrict both N and L 
to the scale of several hundreds. Therefore, the project focuses on graph of that scale.  
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4  
4. Evolving Properties of Growing 

Graph Models 
 

A large number of different graph models are established to model real networks 
in graph theory. Each type of model has its own characteristic topology and properties. 
In this chapter, we study into the evolving properties of growing graph models.  
 

4.1. Classification and model settings 

In our project, six types of graph models are applied to research evolving 
properties of graph models. The six different types contain four popular types of 
graph models and two special graph models. They are: 

 
 Scale-free graph of Barabási-Albert 

 Random graph of Erdős-Rényi  

 Two-dimensional lattice graph 

 Small world model of Watts and Strogatz 

 Special graph models: ring graph and line graph 
 

Five topological measures are calculated throughout the entire period of 
simulation. They are listed below: 
 

 Average node degree: E[D] 

 Average hopcount: E[H] 

 Clustering coefficient of graph: CG 

 Assortativity coefficient: r 
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 Average node betweenness E[Bn] and average link Betweenness E[Bl] 
 
In addition, node degree probability distribution Pr[D=k] and node betweenness 

distribution in five states during the growth procedure are also given to offer more 
details of corresponding topological measures.. 
 

Two link attachment schemes introduced in Chapter 3 apply to the growth 
procedure: 

 
 Preferential link attachment  

 Random link attachment 
 

The size of the graphs is restricted to the scale of hundreds of nodes because of 
the processing condition mentioned in chapter 3. We set the same number of nodes in 
initial and target states in all the models. Since the number of nodes in 
two-dimensional lattice graph is a square of an integer, set N = 225 in initial graph 
G(N,L) and N’ = 400 in target graphs G’(N’,L’) respectively. As is introduced in 
Chapter 3, the construction and topology of graph varies with different types and 
parameter settings. It is not possible to guarantee that in the different graphs the 
number of L is kept equal. Instead, we try to keep the number of links between 
different graph models as close as possible to each other by adjusting related 
parameters in each model.  

 
In the two-dimensional lattice graph, L is only dependent on N, since we assume 

that the rewiring probability is equal to one.  

2( )L N N= −     (4.1) 

The number of nodes N is equal to 225, square of 15. Therefore, the number of 
links in initial lattice graph is equal to 420.  
 

In Small world model of Watts and Strogatz, L is related to N and the k nearest 
neigbhors, given by 

2
N kL ×

=           (4.2) 

 
We assume construction of small world model lies between random graph and 

four-nearest-neighbor (k = 4) ring graph. Therefore, there are 450 links in initial graph 
of small world model. The link rewiring probability p is independent of L and is set to 
0.09. 
 

There are k links attached to a new node when a scale-free graph of 
Barabási-Albert is constructed. L in such scale-free graph results from N and the value 
k.  
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L kN      (4.3) 
There are 446 links in a scale-free graph with 225 nodes if two links are added 

each time a new node generated. So we set k to two in the simulation. 
 

The situation in random graph of Erdős-Rényi is different from those. Since link 
connection probability is used to define the random graphs model, denoted by Gp(N). 
The average number of links L Gp(N) is: 

  
( 1[ ]

2
N NE L p )−

=       (4.4) 

We set the link connection probability p to 0.017. Therefore E[L] = 428.40 and 
E[D] = Np = 3.82.  
 

Last, regarding two special graph models, line graph and ring graph, there is no 
parameter available to adjust. Therefore L is fixed to 224 in line graph and 225 in ring 
graph. 
 

Thus, L in four initial graph models ranges from 420 to 450. Node and link 
number settings are listed and divided by model types in Table 4.1.  
 
Type of graph L L’ 

(LPN =1) 
L’ 

(LPN =2) 
L’ 

(LPN =4) 
Lattice 420 595 770 1120 
Scale-free 446 621 796 1146 
Small world 450 625 800 1150 
Random 428 603 778 1128 
Line graph 224 399 574 924 
Ring graph 225 400 575 925 

Table 4.1 Node and link number settings of graph models in simulation 
 

Each time a new node is generated during the evolution process, we denote LPN 
as the number of links connecting the newly generated node with some existing nodes 
in the present graph. LPN plays a key role in the evolution process and influences the 
evolving performance of a dynamic graph.  

 
We set LPN to different values and carry out simulations using two link 

attachment schemes to calculate topological measures of graph models. When LPN = 
1, it is a special case that only one link connects a new node with present graph once a 
new node generated. For a more general case, LPN is an arbitrary integer and even a 
non-integer.  

 
In this chapter, we set LPN to 1, 2 and 4 to analyze changing tendencies of those 

measures respectively. We also try studying the influence of LPN on the topological 
features of graph models. The target number of link L’’ with different LPN settings in 

 35



each type of graph models is listed in Table 4.1. 
 
With combinations of different parameter settings, the total number of 

simulations becomes large and there are several possible criterions to classify the 
simulation results. We analyze the simulation result of five topological measures in 
each graph. The results lie in a space of three-dimension: different types of graph 
models, different attachment schemes and different ratio LPN.  
 

Therefore, we first classify the simulation results by model types. Then the 
simulation results within each typical model are further divided into two groups 
according to link attachment schemes. With in each group, we present the variation 
tendency of five topological measures under the condition of different LPN settings 
during the graph growth procedure.  
 

Below we explain the legend of curves in different colors in figures in this 
chapter and chapter 5. Curves in red, green and blue in upper figure refer to the 
condition: LPN = 1, 2 and 4 respectively, in the evolution by preferential link 
attachment. Curves in cyan, magenta and yellow in lower figure refer to the condition: 
LPN = 1, 2 and 4 respectively in the evolution by random link attachment. An 
exception is the degree distribution and node betweenness distribution figures. In 
those figures, blue curves indicate initial distributions and red curves indicate target 
distributions. 

 
Figure 4.1 Legend in different figures 

 

4.2. Scale-free graph of Barabási-Albert 

 
In this section, we study the evolving properties of scale-free graphs of 

Barabási-Albert. During the construction of the scale-free graph of Barabási-Albert, 
each new node is attached to two existing nodes in the present graph. The initial 
scale-free graph G(N,L) grows from 225 nodes and 446 links to 400 nodes and the 
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corresponding number of links in target graph at different LPN listed in Table 4.1. In 
the simulation, each graph grows by both link attachment schemes. 
 

4.2.1. Node degree 
 

Figure 4.2.1 displays the changing tendency of average node degree E[D] in 
evolving graph object. Since E[D] = 2L / N, E[D] is independent of attachment 
scheme chosen in simulation. The blue curve in upper sub-figure of figure 4.2.1(a) is 
equal to the yellow curve in the lower sub-figure and so are the others. The changing 
tendency of E[D] by the preferential attachment is exactly the same as that growing 
by random attachment with the same LPN setting. Once the attachment scheme is 
given, changing tendency of E[D] is influenced by the LPN setting. LPN is constant 
during each growth procedure from G(N,L) to G’(N’,L’). N’ (and L’) in target graph 
G’(N’,L’) is composed of N (and L) in initial graph G(N,L) component and the 
number of new node (and new link) added during the growth procedure. Therefore, 
E[D] of graph at any intermediate regime is an interpolation changing with growing 
size.  

 
2( ) ( )[ ] 2L L L LPN NE D
N N N N

+ Δ + ×Δ
= =

+ Δ + Δ
     (4.5) 

 
In the simulation, initial scale free models start with 225 nodes and 446 links. We 

compare the simulation results in the condition of preferential attachment. The 
average node degree is 446*2 / 225 = 3.96 and all the three curves in upper figure of 
Figure 4.2.1(a) start at 3.96.  

 
In the case of LPN = 1, the red curve declines to 3.11 monotonously. In the case 

of LPN = 2, the green curve steadies around 3.98. In the case of LPN = 4, the blue 
curve increases to 5.73 with higher absolute changing range than that in case of LPN 
= 1. The simulation results obey equation (4.5).  
 

 
Figure 4.2.1 (a) Left: Evolving node degree, in scale free graph (b) Right: Evolving 

node distribution, in scale free graph 
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When the graph grows with a large increase, L (and N) in initial graph G(N,L) is 

no longer a dominant component in the calculation of the average node degree by 
equation (4.5). Then E[D] approaches the value double LPN as more nodes are added 
to present graph object during the evolution. 
 

Figure 4.2.1 (b) plots changing tendency of degree distribution Pr[D=k] from 
initial state to target state. We first focus on the special case of LPN = 2 by 
preferential attachment. Simulation results show a feature that the probability 
distributions of target graph and all the intermediate graphs overlap with the initial 
one. In chapter 3, we define that every new node attached to two present nodes to 
construct a scale free graph in our project. The evolution process in this condition can 
be regarded as an extension of the construction of scale-free graph. The behavior in 
simulation result at LPN = 2 by preferential attachment demonstrates that the 
probability distribution of node degree in the scale-free graph is independent of its 
size.  

The blue curve in Figure 4.2.1 shows Pr[D=2] peaks at 0.49. Nodes of two 
degree dominate in initial graph. We define every new node connects two present 
nodes under the construction of graph model. But new added nodes also change the 
connectivity of their adjacent node. The initial distribution follows a power-law tail 
for large k. 

 
On the other hand, in the case of LPN = 2 by random attachment, Pr[D=k] is no 

longer distributed like a power law as N increases continuously. The random 
attachment scheme violates the initial distribution. 

  
At a given LPN, LPN-connected nodes continuously added to graph object 

throughout the evolution. Therefore Pr[D=k] increases rapidly at k = LPN and LPN 
connected nodes tend to dominate in the graph as N increases. 
 

4.2.2. Average hopcount  
 

Curve of average hopcount E[H] starts around 3.5. In Figure 4.2.2, E[H] 
increases monotonously at LPN = 1 and 2 by both attachment schemes. On the other 
hand, at LPN = 4, E[H] decays slightly by preferential attachment while E[H] almost 
doesn’t change by random attachment. In both attachment schemes, curve at higher 
LPN lies lower than those at lower LPN. High value of LPN increases the link the 
density, and therefore high LPN affects hopcount positively. Whether LPN is high 
enough to decreases E[H] in a graph depends on the types of attachment and internal 
topological pattern of a graph. 

 
At the same LPN, the E[H] curve by preferential attachment is lower than that by 

random attachment. New generated nodes are more likely to attach highly connected 
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nodes in scale free graph if other condition remains the same. We know such nodes 
with high connectivity are called hubs which constitute the backbone of the graph 
structure. It usually builds up a path between two less connected nodes to save the 
length of hopcount. Regarding random attachment, since new nodes attached to 
existing nodes with equal probability, the average hopcount is higher in graph 
growing with same LPN.  

 

 
Figure 4.2.2 Evolving hopcount in scale free graph 

 
 

4.2.3. Clustering coefficient 
 

In figure 4.2.3, we observe that the average clustering coefficient CG in the initial 
graph is low. We attach two links to new generated node in the construction of scale 
free graph. It makes the link density low, which results in low average clustering 
coefficient in initial graph. Low CG reveals that neighboring nodes are seldom 
interconnected in graph object.  

 
All the curves of clustering coefficient descend with growth of size N. It 

indicates evolution process with both attachment schemes deteriorate the performance 
of CG. Only if a new node connects, present nodes which are already interlinked with 
others in the graph object, the newly introduced node increases CG. Otherwise CG 

decays as the graph grows. Since the number of nodes in graph is much larger than 
the maximum value of LPN in the evolution process, the previous situation seldom 
happens. Therefore, the evolving CG decreases as N increases. 

 
Lastly, we observe that the green curve decreases with least magnitude since we 

have illustrated that the growth procedure with LPN =2 and preferential attachment is 
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extension of construction of scale free graph defined in this thesis. The evolving 
properties of CG influenced least by the evolution process at LPN = 2 by preferential 
attachment. 

 
 

Figure 4.2.3 Evolving hopcount in scale free graph 
 

 

4.2.4. Assortativity coefficient 
 

The assortavity coefficient of initial scale free graph is around -0.15, which 
shows the initial scale free graph is disassortative. 

 
A feature of scale free graph is that small number of nodes with high degree 

connects a large number of nodes of low degree nodes. That feature makes the scale 
free graph disasssortative mixing. 
 

By preferential attachment, new nodes tend to connect to existing nodes with 
high degree. In Figure 4.2.4, character of disassortative mixing in graph is weakened 
slightly. All the target graphs are still disassortative. 

 
By contrast, when the graph grows by random link attachment, disassortativity 

gets more weakened with increasing N and ends around -0.05. Random link 
attachment between newly generated nodes and existing nodes confuses the 
interconnection pattern in the initial graph. Therefore it weakens the disassortative 
mixing character more heavily. 
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Figure 4.2.4 Evolving assortativity coefficient in scale free graph 

 
 

4.2.5. Betweenness centrality  
 

In this section, we discuss the evolving properties of node betweenness and link 
betweenness centrality in scale free graph object.  

 
In chapter 2, we claim betweenness in simulation is defined as the total number 

of shortest paths instead of ratio. We first present the general performance of evolving 
betweenness and then discuss the distribution of node betweenness as we deal with 
node degree in section 4.2.1.  
 

Figure 4.2.5(a) and (b) exhibit the general performance of evolving betweenness 
by calculating the average betweenness of node and link. 
 

The average betweenness generally stays at low level throughout the entire 
evolution compared to the situation of other types of graph. The curves of node 
betweenness BBn start around 250 and link betweenness BlB  start round 200. In all 
simulations, both BBn and BlB  increases linearly. Since the number of nodes increases as 
well, we can not conclude that the evolving betweenness increases before the results 
of different size graphs are normalized in a proper way.   

 
Therefore, in this section we also plot the node betweenness distribution to 

analyze how betweeness centrality evolves. Since the evolving property of node 
betweenness is quite similar to that of link betweeness not only by definition but also 
from the simulation result, we only analyze the distribution of node betweenness 
further. We calculate the node betweenness value of each node in graph in five states 
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during the whole evolution period. And then we sort those betweenness values in 
ascending order. The average value of node betweenness distribution in blue curve in 
Figure 4.2.5(c) is equal to the value of the starting point plotted in Figure 4.2.5(a) and 
(b). Obviously, Figure 4.2.5(c) contains more information. 
 

 
Figure 4.2.5 (a)Left: Evolving node betweenness in scale free graph, (b)Right: 

Evolving link betweeness, in scale free graph 
 

 
 

Figure 4.2.5 (c) Evolving node betweenness distribution in scale free graph 
 

Figure 4.2.5 (c) shows that betweenness value of most nodes is low. By contrast, 
we observe that the tail of curve ascends sharply in each figure. It exhibits the 
phenomenon that a small number of nodes have high BBn in scale free graph. 
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Considering the topology of scale free graph, those nodes are highly connected and 
regarded as hubs through which large number of lower connected nodes create 
shortest path.  

 
Then we deduce that most of nodes in the scale free model are of low degree in 

Figure 4.2.1(b) and of low betweenness in Figure 4.2.5(c). 
 

Here we compare the evolving tendency of betweenness distribution at influence 
of different link attachment schemes. By preferential evolution, the maximum values 
of the curves are higher than those by random evolution. For instance, the maximum 
value of BBn in target graph of in upper-middle subfigure of Figure 4.2.5(c) is around 
1800 while in lower-middle subfigure the maximum is only around 13000. We find 
that the preferential attachment enhances the importance of highly connected nodes in 
the field of traffic load during the evolution process.  
 
 

4.3. Random graph of Erdős-Rényi  

 
In this section, we investigate and analyze evolving properties of Erdős-Rényi 

random graphs. 
 
We implement class Gp(N) to define the random graph by setting the number of 

nodes N and link connection probability p. We set p to 0.017 so that the expectation of 
number of links E[L] in the initial graph is equal to 428. The link connection 
probability p we set is just a little bit larger than the critical threshold pc above which 
a giant cluster emerges which almost covers the entire graph. It can not guarantee 
every generated random graph is fully connected. In addition, we check full 
connectivity of initial random graphs once it is generated. Graph is regenerated if the 
initial graph is not full connected.  
 
 

4.3.1. Node degree 
 
Since the average node degree is independent of graph types and is only related 

to L and N, the evolving properties of average node degree in random graph is similar 
to that in scale free graph discussed in section 4.2.  

 
In addition, the average node degree in random graph can be rewritten in terms 

of link connection probability p. 
2[ ] ( 1)LE D N p
N

= = −     (4.6) 

 43



 
In this section, we mainly analyze the degree distribution E[D]. 
 
The distribution of the degree D of an arbitrary node in the random graph Gp(N) 

follows a binomial distribution. Let the binomial distribution denoted by SN. 
 

11
Pr[ ] (1 )k N k
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N
D k p p

k
− −−⎛ ⎞

= = − =⎜ ⎟
⎝ ⎠

S          (4.7) 

 
For large N, 
 
i) if p*N is a constant, say z, then SN tends to be a Poisson distribution peaked at 

z and decaying exponentially. 
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      (4.8) 

ii) if p is a constant and independent of N, then the central limit theorem states 
that: 
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      (4.9) 

 
tends to be a Gaussian distribution for large N. 
 
In summary, the limit distribution of SN depends on how p varies with increasing 

N. 
 
In Figure 4.3.1(b), degree distribution Pr[D=k] in the initial random graph is 

plotted in blue curve. We know the distribution follows a binomial distribution. All six 
curves of Pr[D=k] largely vary in the evolution process. In target state, none of them 
present a binomial distribution any more.  

 
In the condition of the same LPN, the tail of curve with the preferential evolution 

drops more rapidly than that in random evolution. Preferential evolution consists of 
growth and preferential link attachment. They are also two basic ingredients in the 
construction of scale free graph. The target graph has compound features of both 
random graph and scale free graph. Regarding degree distribution, we observe all the 
three curves in red look like power-law tails in upper sub-figure in Figure 4.3.1(b). 
 

The difference between preferential and random evolution is different link 
attachment schemes during the growth procedure. The random evolution also includes 
the ingredient of growth. Therefore, the random evolution is believed to present some 
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properties of scale free graph partially. We find in the lower sub-figure, the degree 
distribution in target graph is neither a binomial nor a Poisson distribution. The three 
curves in red all have low tails which lie higher than those with preferential evolution 
in the upper sub-graph. 
 

 
 

Figure 4.3.1 (a) Left: Evolving node degree, in random graph (b) Right: Evolving 
node distribution, in random graph 

 
 

4.3.2. Average hopcount 
 

Average hopcount E[H] in the classical random graph is expected to be larger 
than that in scale free graph due to different topological interconnections. There is no 
such node with high connectivity in random graph. Instead, every node links other 
nodes with equal link connection probability in random graph. Once the initial graph 
grows by preferential link attachment, newly generated nodes prefer to link high 
connected nodes in the graph object after the evolution begins. It alters the original 
degree distribution and creates some shortcuts in the graph as soon as graph evolution 
begins.  

 
By definition, each node is connected to E[D] nodes on average in random graph. 

After h hops, E[D]h can be reached. And all nodes are reached when E[D]h N, 
which implies that the average hopcount E[H] in random graph is approximately: 

log( )[ ]
log( [ ])

NE H
E D

      (4.10) 

 
Hofstad, Hooghiemstra and Van Mieghem [16], Hooghiemstra and Van Mieghem 

[17] provide a better approximation which is beyond the scope of the thesis. Thus, we 
use (4.10) for its simplicity and get the average hopcount E[H] = 4.05 by calculation. 
The growth of average hopcount is expected to be logarithmic in N in random graph. 
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Based on the simulation result, the curve of average hopcount E[H] in random 
graph with 225 nodes and 428 links starts at 4.09 , which is very close to the analytic 
result 4.05 according to approximation equation (4.10). E[H] in random graph is 
higher than that in scale free graph with 225 nodes and 446 links. For LPN = 1 and 2, 
E[H] increases with a high magnitude in random evolution than that in preferential 
ones. The reason has been stated in section 4.2. For LPN = 4 by preferential 
attachment, E[H] decreases at high decreasing rate at the beginning. Then the 
absolute value of derivative of it decays as N increases. 

 
In contrast to the evolving behavior in random graph, there are some highly 

connected nodes in the scale free graph and its E[H] is lower because of the 
difference in topological pattern. We find no such phenomenon occurs in Figure 4.2.2.  
 

 
Figure 4.3.2 Evolving hopcount in random graph 

 
 

4.3.3. Clustering coefficient 
 
If we consider a node and its adjacent neighbors in a random graph, the 

probability that two of these adjacent neighbors are connected is equal to the 
probability that two randomly selected nodes are connected. As a consequence, the 
average clustering coefficient is  

CG_rand  = [ ]E D p
N

      (4.11) 

 
From the empirical results in Figure 4.3.3, the average clustering coefficient 

approaches zero during the whole evolution. 
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On one hand, the connection probability set in random graph model is 0.017 in 
order to keep similar number of links in different graph types. As a result, the link 
density is low. On the other hand, we find the average clustering coefficient CG is 
much lower than that in scale free graph in section 4.2.3. The difference lies in the 
topological interconnection between random and scale free graph.  

 
The evolving properties of CG in random graph are simple. When initial random 

graph grows by either link attachment, almost no neighboring nodes are 
interconnected in graph object. The local correlation is very weak in random graph 
and during its evolution process as well. 
 

 
 

Figure 4.3.3 Evolving clustering coefficient in random graph 
 
 

4.3.4. Assortativity coefficient 
 

A random graph is neither assortative nor disassortative according to the 
definition of assortativity coefficient. Links connect pair of nodes randomly in 
random graph. Thus, the assortativity coefficient r is a random variable with an 
expectation of 0.   
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Figure 4.3.4 Evolving assortativity coefficient in random graph 

 
In Figure 4.3.4, evolving assortativity coefficient decreases from 0 and then r 

gets negative. From section 4.2.4, we know the evolving assortativity coefficient 
remains around -0.15 in scale free graph during the whole evolution process. In the 
upper subfigure of Figure 4.3.4, after declining from zero, assortativity coefficient 
finally is stabilized around -0.17. We deduce that the graph object tends to possess 
partial original attribute of scale free graph as initial random graph grows by 
preferential attachment. By comparison, r decreases as well but only reaches -0.14 at 
the end of evolution process by random attachment.  
 

4.3.5. Betweenness centrality  
 

The average value of betweenness in Figure 4.3.5(a) and (b) is low and the 
situation is similar to that in figure 4.2.5(a) and (b).   
 

 
Figure 4.3.5 (a) Left: Evolving node betweenness in random graph, (b)Right: 

Evolving link betweeness, in random graph 
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Figure 4.3.5 (c) Evolving node betweenness distribution in random graph 

 
 

The distribution of node betweenness differs a lot although their average 
performance seems to be alike. Betweenness distrbution of scale free graph is unlike 
those in Figure 4.3.5(c) where most nodes are of low betweenness. In Figure 4.3.5(c), 
the sorted distribution increases gradually and the maximum value is lower. During 
the evolution from initial random graph, no such nodes like hubs exist. Nodes 
contribute to sustain the traffic load in random graph. 
 

4.4. Regular lattice graph 

 
The regular lattice graph model is a graph with 225 nodes on the regular grid 

structure. We assume that links are interlinked with the probability of 1. In other 
words, node connects all its four nearest nodes available in lattice graph.  
 

The initial lattice graph generated is of 225 nodes and 420 links with determinate 
topology at the beginning of evolution process. 
 

4.4.1. Node degree 
 

The topology of a lattice graph is fixed once the number of nodes is provided. 
Due to this character, it’s possible for us to investigate deeply into its details. From 
equation (3.5), we get the expression of average node degree in lattice graph E[D] = 4 
– 4/n where n*n = N. In addition to E[D], the degree distribution Pr[D=k] is also 
deterministic in lattice graph. There are only three degree values in lattice graph. In 
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our lattice graph model, four nodes on the corner of lattice grid are of degree two. 52 
nodes on the boundary of graph except the corner have 3 links. The rest 169 nodes 
connecting all four nearest nodes constitute most of nodes and dominate in the lattice 
graph. There is not any node with high degree in the lattice graph due to its topology.  

 
In Figure 4.4.1(b), the curve of degree distribution in target graph is similar to 

each other in the condition of the same LPN setting.  
 

We first discuss the situation when the first link is built up in the evolution 
process. In preferential evolution, each four-degree node have probability of 4/(420*2) 
= 0.0048 to each time a new links added, while each three-degree and two-degree 
node has probability of 0.0036 and 0.0024 respectively in initial lattice graph.  

 
The first generated link has more than 0.048*169 = 81.2% to attach an existing 

three-degree node. On the other hand, each node has equivalent probability equal to 
0.044 in initial state with random link attachment. The first link also has high 
probability of more than 75.1% to attach an existing four-degree node.  

 
Limited number of links added to graph will not influence the dominance 

situation of four-degree node since the size of graph is relative large. Each 
perturbation changes the graph topology little so that probability of four-degree node 
decreases rapidly until nodes of three degree no longer dominate in the graph.  
 

 
Figure 4.4.1 (a) Left: Evolving node degree, in lattice graph (b) Right: Evolving node 

distribution, in lattice graph 
 
 

4.4.2. Average hopcount  
 

Equation (3.6) gives the expression of average hopcount E[H] = 2n/3 in lattice 
graph. It implies that the growth of E[H] in square lattice graph is proportional to 
increasing N. The average hopcount E[H] of initial graph is equal to 10 by using 
equation (3.6). Average hopcount is high in lattice graph since each node only 
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connects its nearest node in each direction. There is not any other link established 
between nodes. One extreme case is the hopcount between two nodes on diagonal 
corners equals 28. 

  
As a result, lots of shortcuts are created to connect widely separated parts of 

lattice graph when new nodes and links are added to graph at LPN = 2 or 4. In Figure 
4.4.2 we find derivative of average hopcount curve is high at the beginning of 
evolution. The first several shortcuts decrease E[H] sufficiently at the beginning of 
the evolution process. As the graph continues to grows, E[H] drop down and the 
shortcut-effect introduced by new added links is gradually weakened. 

 
For LPN = 1, new node fails to create any short cut between present nodes in the 

graph. New node first passes through its exclusive neighboring node to connect the 
graph. The curve of average hopcount increases slightly with fluctuation of small 
magnitude during both types of evolution. Particularly, the value of average hopcount 
by random attachment always lies a little higher than that with the same graph size N 
during preferential evolution.  
 

Preferential attachment scheme makes new generated node more likely to 
connect high degree nodes in the graph but this effect is not obvious for initial lattice 
graph with large size. The reason has been state in section 4.4.1. 
 

 
Figure 4.4.2 Evolving hopcount in lattice graph 

 
 

4.4.3. Clustering coefficient 
 

Because of the characteristic topological pattern in lattice graph, the clustering 
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coefficient of each node is zero in initial graph. In the condition of LPN = 1, the 
average clustering coefficient remains zero during such evolution.  
 

 
Figure 4.4.3 Evolving clustering coefficient in lattice graph 

 
For LPN = 2 and 4, the number of nodes is relatively large even compared with 

the highest LPN we set in the simulation. It seldom happens that a new added node 
connect two or more than two nodes happen to be adjacent. The evolving CG of graph 
positively approach zero during the whole evolution process. This behavior is similar 
to that in random graph discussed in section 4.3.4. The simulation result displayed in 
Figure 4.4.3 also demonstrates our analytical results. 
 

4.4.4. Assortativity coefficient  
 

Most nodes connect their neighboring nodes with the same degree in lattice 
graph. Lattice graph is obvious highly assortative. The assortativity coefficient r is 
equal to 0.61 in initial lattice graph. The number of nodes with four degree covers 
more than 75% of total nodes in initial graph. For LPN = 4 by both evolving 
attachment, the evolving average value decreases least at given growing size N.  

 
The topological structure in ordered pattern is impaired gradually during the 

evolution and therefore the assortative mixing property deteriorates as nodes added 
continuously to graph and then disappears. As more nodes added to graph, r finally 
become negative. 

 
We conclude that the attribute of assortativity in lattice graph alters when graph 

grows by either attachment scheme. 
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Figure 4.4.4 Evolving assortativity coefficient in lattice graph 

 
 
 

4.4.5. Betweenness centrality  
 

Figure 4.4.5(c) shows a feature that the sorted node betweenness distribution (in 
blue curve) increases almost linearly. The reason is that nodes located in the central 
part of the initial lattice graph play the most important role in traffic load due to the 
topology of lattice graph. Its importance is weakened linearly as the location of nodes 
moves towards in all directions. 
 

 

 
Figure 4.4.5 (a) Left: Evolving node betweenness in lattice graph, (b)Right: Evolving 

link betweeness, in lattice graph 
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Figure 4.4.5 (c) Evolving node betweenness distribution in lattice graph 

 
As we discuss above, the evolution built up lots of shortcuts in the graph if newly 

generated nodes connect more than one existing nodes during the evolution.  For 
LPN = 2 and 4, we observe that the curves of average betweenness decrease 
dramatically as soon as evolution starts and then the curves keep steady as N 
continues to increase.  
 

For LPN = 1, curves of the average betweenness increase. New nodes are 
attached to graph object with one link only. In upper left subfigure of figure 4.4.5(c) 
and lower left subfigure of figure 4.4.5(c), the flat part of red curve representing the 
betweenness distribution of target graph is introduced by the new added nodes during 
the evolution process. It covers approximately 170 nodes and the number is closed to 
the number of nodes added during the evolution. The new introduced nodes do not 
contribute much to betweenness centrality since they just have one link to attach the 
graph object. 
 
 

4.5. Small world model of Watts and Strogatz 

 
In this section, we discuss the evolving properties in small world model of Watts 

and Strogatz. 
 

We assume construction of small world model lies between random graph and 
four-nearest node ring graph. The link rewiring probability p is set to 0.09. There are 
450 links and 225 nodes in initial graph of small world model. 
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4.5.1. Node degree 
 
Degree distributions Pr[D=k] of all targets graphs plotted in Figure 4.5.1(b) 

resemble those in initial lattice graph in Figure 4.4.1(b). With low link rewiring 
probability p = 0.09 in the simulation, the evolution of Pr[D=k] reserves mostly the 
evolving property of degree distribution in lattice graph. We set k-nearest neighbor 
number to 4 in ring graph in the construction of small world model. Therefore, more 
than 70% nodes are 4 connected in initial small world model.  

 
As nodes are added to the graph object, the dominance situation of four-degree 

node is gradually weakened. In target state, Pr[D=k] peak at k = LPN since a large 
number of k connected nodes added to graph throughout the evolution process. 
 

 
Figure 4.5.1 (a) Left: Evolving node degree, in small world model (b) Right: Evolving 

node distribution, in small world model 
 
 

4.5.2. Average hopcount 
 

The hopcount in initial small world model is plotted in Figure 4.5.2. The small 
world model lies in an intermediate regime between random graph and ring graph. 
With link rewiring probability 0.09, the average hopcount E[H] is equal to 6.47 in 
initial small world model. It is lower than E[H] in lattice graph at given graph size. In 
chapter 3, we explain that there is a change in the scaling of the average hopcount 
E[H] as the fraction p increases. The rewiring process introduces pkN / 2 long-range 
links in the graph. 

 
Limited long-rang links are introduced to graph due to p = 0.09. For LPN = 2 and 

4, E[H] descend with high decreasing rate at the beginning of evolution process. New 
links added still create some shortcuts during the evolution process. Since more and 
more shortcuts added as graph continues to grow, decreasing ratio of E[H] declines. 
This feature is similar to that in lattice graph discussed in section 4.4.2. 
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Figure 4.5.2 Evolving hopcount in small world model 

 

 

4.5.3. Clustering coefficient 
 

The proposal for constructing small world models is to create a type of graph 
with both high cluster as in lattice ring graph and low average hopcount as in random 
graph. In simulation, CG is equal to 0.90 on average in initial small world graph. 
 

 
Figure 4.5.3 Evolving clustering coefficient in small world model 

 
The initial model remains highly clustered because of the low rewiring 
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probability p. The evolving tendency resembles that in lattice graph in section 4.4.3. 
The high clustered property deteriorates as graph grows. The cause of decreasing CG 

is the same as that in previous models. Newly generated nodes are unlikely connected 
to nodes already interlinked in present graph object. As a consequence, CG decreases 
throughout the entire evolution process. 
 
 

4.5.4. Assortativity coefficient  
 
The small world model of Watts and Strogatz is a random graph model with 

small world characteristics and an abundance of short loops. Therefore, there is no 
correlation between node degrees in small world model as in random graph. 

 
In the simulation, the assortativity coefficient r is equal to -0.025 in initial small 

world model. Figure 4.5.4 shows that r begins to decrease and the graph becomes 
disassortative when small world model start to grow. The descending trend from zero 
resembles the evolving properties of r in random graph in Figure 4.3.4. 

 
Further, we observe curves at LPN = 4 decrease least. For LPN = 1 and 2, r falls 

rapidly first and then tends to be stable gradually after 100 nodes added. From the 
simulation results, there is no obvious difference in evolving r between two link 
attachment schemes. 

 

 
Figure 4.5.4 Evolving assortativity coefficient in small world model 
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4.5.5. Betweenness centrality 
 
The average betweenness of initial small world model lies higher than those in 

random and scale free graph but much lower than that in lattice graph. In Figure 4.5.5 
(a), curves at LPN = 4 keep stable as N increases. This indicates that the average 
betweenness falls down relatively. In Figure 4.5.5 (b), the curves of distribution also 
conform to the situation. At LPN = 4, maximum node betweenness of target 
distribution (in red curve) is even lower than the maximum value of initial distribution. 
It means less number of shortest paths pass across the node of the highest 
betweenness in the target graph. From the simulation result, the sorted distribution in 
target graph increases with lower increase ratio. We know shortest path between 
widely separated nodes largely relies on limited long range links in small world model. 
As we discuss in section 4.5.2, during the evolution process, new links create 
shortcuts and they relieve traffic load on nodes lying on the end of long range links in 
initial graphs.  
 

 
Figure 4.5.5 (a) Left: Evolving node betweenness in small world model, (b)Right: 

Evolving link betweeness, in small world model 

 
Figure 4.5.5 (c) Evolving node betweenness distribution in small world model 

 58



4.6. Special models: line graph and ring graph 

 
After investigating the simulation results of four types of graph models, in this 

section we try to explore the evolving properties of two simple but special models: 
line graph and ring graph. 

 
Both these two models are generated with deterministic topology so that the 

number of links can not be adjusted to approach those in typical models closely. Due 
to particular topology in these two models, some interesting features in some 
topological measures are revealed. We briefly discuss both types of graphs together in 
this section.  
 

4.6.1. Node degree 
 
There is one more link in the ring graph than that of the line graph at a given 

number of nodes during the evolution. As a consequence, the evolving tendencies of 
average node degree between two types of graphs are almost the same.  

 
Since the number of link and node in the graph object at any state are much 

larger than one, difference in the number of link hardly generates any discrepancy of 
degree distributions by either link attachment. Particularly in the simulation of ring 
graph, the average node degree stays at 2 at LPN = 1.   
 

 
 

Figure 4.6.1 (a) Left: Evolving node degree, in line graph (b) Right: Evolving node 
distribution, in line graph 
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Figure 4.6.1 (c) Left: Evolving node degree, in ring graph (d) Right: Evolving node 

distribution, in ring graph. 
 

 
 

4.6.2. Average hopcount 
 

Regarding hopcount, the behavior resembles that in lattice graph in figure. It is 
obvious that the average hopcount in line graph is higher than that in ring graph. 
When LPN is larger than one, shortcuts built up between in the previous graph. With 
larger LPN, more shortcuts created each time a new node generated and therefore the 
curves fall suddenly at the beginning. For LPN = 4 in upper subfigure in Figure 
4.6.2(a), after the first nodes with four links attached to the line graph, the average 
hopcount drops from 75.33 to 43.58. These four links almost decrease the average 
hopcount by 42%. After the second set of four links attached, the average hopcount 
falls to 27.7. After first several steps of growth, the curve falls gently and finally is 
stabilized. 

 

 
Figure 4.6.2 (a) Left: Evolving hopcount in line graph (b) Right: Evolving hopcount 

in ring graph 
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4.6.3. Clustering coefficient 
 
The clustering coefficients in both types of graphs are near to zero during the 

evolution. It is the same reason as for lattice graph discussed in section 4.4.3.  
 
The probability of connecting two adjacent nodes is quite low during the 

evolution with either attachment scheme. 
 

 
Figure 4.6.3 (a) Left: Evolving clustering coefficient in line graph (b) Right: Evolving 

clustering coefficient in ring graph 
 
 

4.6.4. Assortativity coefficient 
 

The value of assortativity coefficient in initial ring graph is undefined since both 
numerator and denominator are equal to zero. Each node in ring graph defined in this 
chapter connects its two nearest neighbors. As a result, the variance in the 
denominator is zero and the difference in the numerator is also zero. 

 
For convenience, we remark it as zero though the initial ring graph is not neutral 

mixing. But the undefined situation doesn’t occur in the simulation of line graph.  
 
The assortativity coefficient r of line graph is equal to -0.0045 which indicates 

the line graph slightly disassortative. 
 
The initial line graph contains 224 links and 225 nodes. Only two nodes at the 

end of the line connect their neighbors of different degree. The rest 222 pairs of nodes 
are with the same degree. The little discrepancy in topology results in large difference 
in values of assortativity coefficient.  
 

Most nodes in the initial line graph and all nodes in the initial ring graph are of 
two degree. The evolving property of assortativity coefficient largely depends on 
value of LPN.  For LPN = 2, the evolving assortativity coefficients decrease from 
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near -0.045 in line graph and undefined point in ring graph to -0.2. For LPN = 4, the 
coefficient is always positive and it becomes negative for LPN = 1. 

 

 
Figure 4.6.4 (a) Left: Evolving assortativity coefficient in line graph (b) Right: 

Evolving assortativity coefficient in ring graph 
 

 
 

4.6.5. Betweenness centrality  
 

The character of average betweenness is similar to that in the simulation of 
lattice graph with the same cause. 
 

We focus on the distribution of node betweenness between two models. In the 
initial line graph, we observe that the sorted distribution increases approximately 
linearly and bends at the end of its tail.  In initial ring graph, the curve is a parallel 
line since each node in the ring graph lies in the same status. For LPN more than one, 
the evolving node betweenness distributions tend to be a regular distribution as in the 
typical models.  
 

For the special case of LPN = 1, since new nodes almost do not share the 
capacity of traffic load in the graph, most newly added nodes have low node 
betweenness. In the simulation of line graph, the rest part of the curve still keeps 
linear increasing with distortion.   
 

In the simulation of ring graph, the curve is discontinuous at a certain number N’’ 
in the node sequence, where N’’ is approximately equal to the number of nodes added 
to the graph from the beginning of evolution. 
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Figure 4.6.5 (a) Left: Evolving node betweenness in line graph (b) Right: Evolving 

node betweenness in ring graph 
 

 
Figure 4.6.5 (c) Left: Evolving link betweenness in line graph (d) Right: Evolving 

link betweenness in ring graph 
 
 

 
 
Figure 4.6.5 (e) Left: Evolving node betweenness distribution in line graph (f) Right: 

Evolving node betweenness distribution in ring graph 
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5  
5. Evolving Properties of Growing 

Real Networks 
 

5.1. Classification and model settings 

 
In addition to the six graph models discussed in chapter 4, we simulate fifteen 

different data sets of real networks. The types of the real networks cover a wide range 
among social networks, biological networks, technological networks and Linguistic 
networks. The details of them have been introduced in chapter 3.  

 
In this chapter, we present the simulation result of them and investigate their 

evolving properties. Due to the condition addressed in chapter 3, the number of nodes 
of fifteen selected real networks is constricted to the scope of several hundreds. The 
number of links is less than several thousands since none of the real networks have a 
significant link density. 

 
Large increase ratio of the graph size results in loss of characteristics of the 

initial graph. The increase ratio of the number of links and nodes are both set to 20% 
in the growth procedure. In other words, we select link density as criterion and fix it 
during the entire procedure.  
 

In table 5.1(a), details of number of links and nodes in both initial and target 
graphs of all the fifteen networks are given. The differenceΔN and L are rounded 
to integers and are listed in the table 5.1(b). The quotient LPN which is the number of 
links added each time a new node is generated during the growth procedure. The 
value of LPN is approximately equal to the link density.   

Δ

 
In chapter 4, we show that the value of LPN influences the evolving properties of 

growing graphs and we classify the simulation results by LPN. For real networks, we 
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also divide data sets of them into two groups by LPN. 
 

We observe that values of LPN range between 1 and 2 in two-thirds of real 
networks. The values of LPN are larger than 2 in the rest one-third of total real 
networks.  

 
name of file L N L' N' 

ARPANET80 86 71 103 85 
LesMis 254 77 305 92 
WordAdj 425 112 510 134 
American_football 613 115 736 138 
ElectrC_s208 189 122 227 146 
Florida 2075 128 2490 154 
DigitalMaterial 269 187 323 224 
ElectrC_s420 399 252 479 302 
celegansneural 2148 297 2578 356 
Gnutella3 459 435 551 522 
ElectrC_s838 819 512 983 614 
Gnutella4 738 653 886 784 
W_EU_railway_infrastructure_level2 785 697 942 836 
Gnutella1 803 737 964 884 
W_EU_power_grid_level3 786 756 943 907 

Table 5.1 (a) the number of links and nodes in initial and target graphs 
 
name of file ΔL = L’-L ΔN = N’-N LPN 

ARPANET80 17 14 1.21 
LesMis 51 15 3.4 
WordAdj 85 22 3.86 
American_football 123 23 5.35 
ElectrC_s208 38 24 1.58 
Florida 415 26 15.96 
DigitalMaterial 54 37 1.46 
ElectrC_s420 80 50 1.6 
celegansneural 430 59 7.29 
Gnutella3 92 87 1.06 
ElectrC_s838 164 102 1.61 
Gnutella4 148 131 1.13 
W_EU_railway_infrastructure_level2 157 139 1.13 
Gnutella1 161 147 1.10 
W_EU_power_grid_level3 157 151 1.04 

Table 5.1 (b) the difference of links and nodes in initial and target graphs 
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Each network has its characteristic properties and topology. Brief introduction of 
each graph has been listed in chapter 3. In this chapter, we classify them into three 
types. They are:  

 
 Technological network 

 Social-biological network 

 Linguistic network 
 

We choose one real network in each type to discuss in this chapter. Each selected 
network is presented by simulation results and we analyze the evolving properties 
during the evolution. We also have to deduce their topology by derived result since 
not much information of topology in each real network is provided.  
 
 

5.2. Social-biological network: LesMis  

 
Les Miserables network is a social network containing 77 co-appearance network 

of characters in the novel Les Miserables. 
 
LesMis network grows from 77 nodes and 254 links to 92 nodes and 305 links 

Each new node is generated with 3.4 links on average during the evolution. In the 
simulation, we add either 3 or 4 links each time a new node added. The growth 
mechanism has been introduced in chapter 3. The average node degree holds around 
6.6 during the evolution. The degree distribution in initial graph in Figure 5.2.1 shows 
that one-degree nodes occupy 22% of total nodes in the initial graph. Further, more 
than half of the nodes in initial graph have less than five adjacent nodes while some 
nodes have moderate degree. Several nodes have quite large degree more than 20. 
These characters who know other persons in the novel are usually supposed to be 
leading characters. During the evolution, Pr[k=3] and Pr[k=4] increase evidently 
because LPN = 3.4. Several high connected nodes tend to link more nodes during the 
preferential evolution and their node degree increase to around 40 in target graph. 
Such situation doesn’t occur in random evolution. The initial average hopcount is only 
2.65. In that novel, private relation between any two characters can be established by 
no more than two intermediate characters on average. It is natural for social network 
to own the small world properties and short average hopcount. The average hopcount 
holds around 2.65 in the evolution by preferential attachment and rises to 2.7 by the 
other attachment. High degree nodes work as hubs in the graph and relieve the 
increase in hopcount when nodes added.  
 

The average clustering coefficient starts at 0.34 which is high in comparison to 
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other graphs in simulation, partially because of its link density. During the evolution 
process, the coefficient descends evenly to less than 0.18. The initial graph is 
disassortative and its assortativity coefficient r is -0.17. r increases towards zero 
during the evolution process. In particular, by random link attachment, that trend is 
apparent. The evolving behavior of assortativity coefficient r resembles that in scale 
free graph in Figure 4.2.4. Regarding the average betweenness, we find the latter part 
of the node betweenness curve ascends with steep slope. About ten key nodes in the 
graph always sustain large number of shortest path. It demonstrates the existence of 
hubs in the topological structure of LesMis network. 

 
In conclusion, some evolving properties in LesMis network also exist in scale 

free graph and small world model from the simulation result. 
 

 
Figure 5.2 (a) Left: Evolving node degree, in LesMis network (b) Right: Evolving 

node distribution, in LesMis network 
 

 
Figure 5.2 (c) Left: Evolving average hopcount, in LesMis network (d) Right: 

Evolving clustering coefficient, in LesMis network 
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Figure 5.2 (e) Left: Evolving assortativity coefficient, in LesMis network (f) Right: 

Evolving node betweenness, in LesMis network 
 

 
Figure 5.2 (g) Left: Evolving node degree distribution, in LesMis network (h) Right: 

Evolving link betweenness, in LesMis network 
 
 

5.3. Technological network: ElectrC_s208 

 
The circuit network ElectrC_s208 with link density 3.1 is composed of 122 

nodes and 189 links. Each new node added to graph accompanied with 1.58 links 
during the evolution.  
 

The degree distribution looks like binomial as in random graph and it differs 
from that in social network. The degree distribution becomes smoother as the size of 
the graph increases. Pr[k=3] falls down gradually. In compensation, probability values 
of other degree increase slightly. From simulation result, no obvious difference is 
observed between two attachment strategies. 
 

A significant feature in the circuit network is that the average hopcount falls 
down when nodes and links added to graph. We deduce that nodes only interlinked to 
nodes nearby in the network. The backbone topological structure in this network may 
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resemble those in lattice. On the other hand, the average hopcount is not as high as 
that in line graph or ring graph.  
 

The assortativity coefficient r starts around 0 so that the circuit network is 
initially neutral. Then r gets negative as graph continues to grow. The evolving 
tendency is also found in random graph and small world model.  
 

From the simulation result of sorted node betweenness distribution, the latter part 
of the curve representing initial sorted distribution distributed approximately linearly.  
In chapter 4, we find out the properties that sorted distribution of node betweenness is 
distributed linearly in lattice graph. In three intermediate states and target state, the 
maximum value of node betweenness almost keeps the same during the evolution 
process. Since the size of graph increases, it means the importance of those nodes of 
high betweenness value is relatively weakened. 
 

We find similar properties between the circuit network ElectrC_s208 and the 
lattice graph.  

 
Figure 5.3 (a) Left: Evolving node degree, in ElectrC_s208 network (b) Right: 

Evolving node distribution, in ElectrC_s208 network 
 

 
Figure 5.3 (c) Left: Evolving average hopcount, in ElectrC_s208 network (d) Right: 

Evolving clustering coefficient, in ElectrC_s208 network 
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Figure 5.3 (e) Left: Evolving assortativity coefficient, in ElectrC_s208 network (f) 

Right: Evolving node betweenness, in ElectrC_s208 network 
 

 
Figure 5.3 (g) Left: Evolving node degree distribution, in ElectrC_s208 network (h) 

Right: Evolving link betweenness, in ElectrC_s208 network 
 

 
 

5.4. Linguistic network: WordAdj 

 
The word adjacency network grows from 122 nodes to 146 nodes. Each time 

3.86 links on average are added to newly attached node during the evolution process.  
 

The degree distribution is similar to the degree distribution of LesMis network. 
In Figure 5.4(b), most nodes have low degree. Some nodes have moderate degree and 
several nodes have high degree. As graph grows, Pr[k=4] increases and it becomes to 
be highest after evolution. And the high node degree gets higher probability after 
evolution.  The average hopcount is also low and increases with small magnitude. 
The average clustering coefficient is initially 0.28, It decreases once the evolution 
begins and finally reaches 0.09. Regarding the assortativity coefficient, it is -0.13 in 
initial Linguistic network and then increases when evolution begins. Particularly, in 
preferential evolution, it only rises to -0.13 while in random evolution, the coefficient 
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descends with apparent trend. The average betweenness of the Linguistic networks 
increases. 
 

The Linguistic network WordAdj owns some similar properties to those in social 
network we discussed.  
 

 
Figure 5.4 (a) Left: Evolving node degree, in WordAdj network (b) Right: Evolving 

node distribution, in WordAdj network 
 

 
Figure 5.4 (c) Left: Evolving average hopcount, in WordAdj network (d) Right: 

Evolving clustering coefficient, in WordAdj network 
 

 
Figure 5.4 (e) Left: Evolving assortativity coefficient, in WordAdj network (f) Right: 

Evolving node betweenness, in WordAdj network 
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Figure 5.4 (g) Left: Evolving node degree distribution, in WordAdj network (h) Right: 
Evolving link betweenness, in WordAdj network 
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6 
6. Conclusion and Future Work 
 

6.1. Conclusion 

 
In this thesis, we have implemented both statistical simulation and analytic 

method based on graph theory to study evolving properties of growing networks. We 
here have established six types of graph models and introduce fifteen data sets of real 
networks. Each growth procedure in the simulation is combined with two different 
link attachments. The number of links accompanied with a newly generated node, 
denoted by LPN, is set at different values in each simulation. We run a large number 
of simulations on both graph models and real networks. Simulation results of five 
topological measures were derived at the end of each simulation. 
 

Based on empirical and analytic results, we conclude that the way properties of 
growing networks evolve is related to different aspects among which several crucial 
factors have remarkable influence. LPN = 1 is an irregular condition only for the 
purpose of analysis in thesis since each new node attached to present graph by a 
single link.We discuss the evolving properties conditioned on LPN larger than one.  

 
Below we present the conclusions for the different topological metrics. 
 

 Node degree. 
 
The average node degree is directly related to the present number of links and 

nodes in a graph object. It is independent of the attachment scheme and the graph type. 
The evolving properties of E[D] is influenced by the LPN setting during the 
evolution . Therefore, E[D] is for the intermediate regime given by the closed formula 
(4.5) is an interpolation changing with growing size N. 

 
Regarding the degree distribution, every graph has its characteristic distribution 

in initial states. Obviously, Pr[D=LPN] increases for the reason that LPN-connected 
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nodes are added to graph object continuously throughout the evolution process. 
During the simulation, a graph grows from 225 nodes to 400 nodes and its ratio 
increases 77.78% during the simulation. In most cases, nodes with LPN degree 
dominate in the target graph. We have explained that the growth procedure by a 
preferential link attachment is equivalent to the construction of scale free graph. The 
tail distributions of some target graph after preferential evolution decays more rapidly 
than that after random evolution. We deduce that the degree distributions in other 
types of target graphs obtain partial attributes in scale free graph by preferential 
evolution. 

 
 

 Average hopcount 
 
The evolving properties of average hopcount are mainly related to their graph 

types. We classify the six graph types into two classes.  
 
In the first class, the average hopcount is polynomial with respect to N in such 

type of initial graphs. Lattice graph, line graph and ring graph are attributed to this 
class. The topological patterns of those initial graphs are totally changed during the 
evolution process. Graphs in the first class have high E[H]value. For LPN greater 
than one, the E[H] drops rapidly at the beginning of the evolution process since 
shortcuts are established in the graph. As N increases, the shortcut-effect introduced 
by newly added links is gradually weakened. E[H]declines and finally is almost 
stabilized by approaching a certain value.  

 
In the second class, the average hopcount is relatively low. E[H]is logarithm in N 

in the initial random graph. E[H] in scale free graph is even lower than that in random 
graph. Small world model has small characteristic path length like random graph. 
During the evolution, the changing tendencies of E[H] in those graphs are relatively 
moderate and largely depend on LPN. A large enough LPN is still able to further 
decrease E[H]. 

 
For both classes, we observe that different link attachment schemes do not 

apparently influence the changing tendency of E[H].   
 
 

 Clustering coefficient  
 

The clustering coefficient in lattice graph, line graph and ring graph are all zero 
due to its topology. The clustering coefficient in random graph approaches zero since 
the connection probability p is small in real cases. We mainly discuss the following 
two types. In scale free graph, CG is still small but is larger than that in random graph 
of the same size. The value of CG in small world model is high since the link rewiring 
probability is usually set to a small value. 
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Only if a new node connects LPN present nodes which are already interlinked 

with others in the graph object, the process increases CG. Otherwise CG decays as 
graph grows. LPN is usually much smaller than N in the evolution process. Therefore, 
the evolving CG in scale free and small world model decrease as N increases during 
the evolution process. 

 
 

 Assortativity coefficient  
 
The assortativity coefficient is influenced by compound factors which seem to be 

complex. Therefore we conclude the evolving assortativity coefficient by the 
observations of the empirical results.  

 
In general, we find that the graph deviates from the original way it is mixed in 

initial states after evolution process by either attachment scheme. For neural graphs 
with r =0, the graphs such as small world model and random graph tend to be 
disassortative since continuous LPN-connected nodes break the original mixing way. 
And assortative mixing property in lattice graph also deteriorates once the evolution 
process begins. The feature of hubs makes it disassortative in scale free graph. The 
evolution process also weakens the feature of interconnection and its property 
deteriorates.   

 
 

 Betweenness centrality  
 
The node and link betweenness are highly correlated to each other. A direct 

relation between E[Bl] and E[H] is given by equation (2.9). 
 
We also divide the graph into groups. As for ring graph, line graph, lattice graph 

and small world model, shortcuts established by newly added links largely decrease 
the variance of the betweenness distribution during the evolution process. More nodes 
tend to sustain some amount of traffic load. By contrast, the importance of nodes 
which have high betweenness in initial state is relatively weakened after evolution.  

 
For the scale free graph, the situation is opposite. And for random graph, the 

situation lies between those two situations above.   
 
 
 

In summary, the parameter LPN together with the number of nodes N and links L 
affects the properties evolved in a growing graph directly. A large value of LPN  

Regarding graph models, the evolving properties of them vary from type to type. 
The scheme of link attachment leads to some discrepancies in properties as well.  
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Regarding real networks, we conclude that evolving properties of real networks 

are partially combined with known attributes in some typical graph models. Therefore 
the evolving properties and a real network itself [18] can be partially described by 
combination of known attributes of related graph models. In research of different 
types of real networks, we make use of this method to deduce the topological 
structure of real network. Further, we analyze their evolving properties by derived 
properties of particular graph models. We find that a real network can not be only 
modeled by a pure type of graph model. In addition, some evolving properties of real 
network still fail to be explained by combination of known attributes in different 
models base on simulation results. 
 
 

6.2. Future work 

 
We select limited graph models and topological measures in this thesis. More 

graph models topological measures may be added in the future work. 
 
In the project, we set link density low when we construct graph models. Thus, in 

some condition, some topological measurement results such as clustering coefficient 
are no satisfied. We may modify some settings such as LPN to establish more proper 
models 
 

Regarding the growth process, we build up a mechanism in chapter 3 to deal 
with the situation when LPN is not integer. That mechanism introduces some 
perturbation into the simulation. We should try to find a better method to minimize the 
perturbation in simulation.  
 

Due to the processing capacity of device, we restrict the graph size N to less than 
a thousand. In reality, many networks have much larger size. We can expand the size 
of graph in the simulation and discover a more efficient algorithm.  
 

A real network may be partially assumed as a combination of different types of 
graphs. But there are still some evolving properties that can not be explained. We 
should explore the unknown part and try to describe a real network by a better 
expression. 
 

 76



Bibliography 
 
[1] Reka Albert and Albert-Laszlo Barabasi, “Statistical Mechanics of Complex 

Networks”, Reviews of Modern Physics, Volume 74, p.47-94, January 2002 

[2] L.da F.Costa, F.A. Rodrigues, G. Travieso and P. R. Villas Boas, 

“Characterization of Complex Networks: A Survey of Measurements”, Advanced 

in Physics, Volume 556, Issue 1, p. 167 – 242, January 2007 ,  

[3] P. Van Mieghem, H. Wang, C. Doerr, J. Martin Hernandez, D. Hutchison, and M. 

Karaliopoulos, “A Framework for Network Robustness”, Internal report 

[4] Sergei Maslov, Kim Sneppen and Alexei Zaliznyak, “Detection of Topological 

Patterns in Complex Networks: Correlation Profile of the Internet”, Physica A, 

Volume 333, p. 529-540, 2004 

[5] A. Jamakovic, S. Uhlig, and I. Theisler, “On the Relationships between 

Topological Metrics in Real-world Networks”, Proc. of the 4th European 

Conference on Complex Systems (ECCS’07), Dresden, Germany, October 2007 

[6] M.E.J. Newman “Assortative Mixing in Networks”, Physical Review Letter 89, 

p.208701, 2002 

[7] Priya Mahadevan, Dmitri Krioukov, Marina Fomenkov, Bradley Huffaker, 

Xenofontas Dimitropoulos, kc claffy and Amin Vahdat “The Internet AS-Level 

Topology: Three Data Sources and One Definitive Metric”, ACM SIGCOMM 

Computer Communication Review (CCR), v.36, n.1, p.17-26, 2006 

[8] P. Erdos and A. Renyi, “On the Evolution of Random Graphs”, Publication of the 

Mathematical Institute of the Hungarian Academy of Sciences, 5: 17-61, 1960 

[9] R. Albert and A.-L. Barabási, “Emergence of Scaling in Random Networks”,   

Science, Vol. 286, 509, 1999 

[10]  Reka Albert, Hawoong Jeong, Albert-Laszlo Barabasi, “Error and Attack 

Tolerance of Complex Networks”, Nature, Vol. 406, 27 July 2000 

[11]  S. Milgram, “The Small World Problem”, Psychology Today, 1, 61, 1967 

[12]  Duncan J. Watts and Steven H. Strogatz, “Collective Dynamics of ‘Small-World’ 

 77



Networks”, Nature Vol 393, 4 June 1998 

[13]  Alina Beygelzimer, Geoffrey Grinstein, Ralph Linsker and Irina Rish, 
“Improving Network Robustness by Edge Modification”, Physica A, Volume 333, 

p. 529-540, 2005 

[14]  P. Van Mieghem, “Performance Analysis of Communications Networks and 

Systems”, Cambridge University Press, 2006 

[15]  Jeremy G. Siek, Lie-Quan Lee and Andrew Lumsdaine, “Boost Graph Library: 

The User Guide and Reference Manual”, Addison-Wesley Professional, 2001 

[16]  R. Van der Hofstad, G. Hooghiemstra and P. Van Mieghem, 2005, “Distances in 

Random Graphs with Finite Variance Degrees”, Random Structures and 

Algorithms, Vol. 27, No. 1, p. 76-123, August, 2005 

[17]  G. Hooghiemstra, and P. Van Mieghem, “On the Mean Distance in Scale Free 

Graphs”, Methodology and Computing in Applied Probability (MCAP), Vol. 7, p. 

285-306, 2005 

[18]  R. Hekmat, “Ad-hoc Networks: Fundamental Properties and Network 

Topologies”, Springer, October 2006. 

 78


	1.1. Background
	1.2. Motivation
	1.3. Thesis outline 
	2.1. Network and graph theory
	2.2. Topological measures
	2.2.1. Node degree
	2.2.2. Average node degree
	2.2.3. Probability distribution of node degree
	2.2.4. Hopcount
	2.2.5. Diameter 
	2.2.6. Clustering coefficient
	2.2.7. Giant component
	2.2.8. Assortativity coefficient
	2.2.9. Centrality measurements

	3.1. Network models
	3.1.1. Random graph of Erdős-Rényi 
	3.1.2. Scale-free graph of Barabási-Albert
	3.1.3. Small world model of Watts and Strogatz
	3.1.4. Regular lattice graph
	3.1.5. Special graph models: ring graph and line graph

	3.2. Data sets of real networks
	3.3. Graph evolution process
	3.3.1. Growth procedure
	3.3.2. Link attachment schemes

	3.4. Experiment setup
	4.1. Classification and model settings
	4.2. Scale-free graph of Barabási-Albert
	4.2.1. Node degree
	4.2.2. Average hopcount 
	4.2.3. Clustering coefficient
	4.2.4. Assortativity coefficient
	4.2.5. Betweenness centrality 

	4.3. Random graph of Erdős-Rényi 
	4.3.1. Node degree
	4.3.2. Average hopcount
	4.3.3. Clustering coefficient
	4.3.4. Assortativity coefficient
	4.3.5. Betweenness centrality 

	4.4. Regular lattice graph
	4.4.1. Node degree
	4.4.2. Average hopcount 
	4.4.3. Clustering coefficient
	4.4.4. Assortativity coefficient 
	4.4.5. Betweenness centrality 

	4.5. Small world model of Watts and Strogatz
	4.5.1. Node degree
	4.5.2. Average hopcount
	4.5.3. Clustering coefficient
	4.5.4. Assortativity coefficient 
	4.5.5. Betweenness centrality

	4.6. Special models: line graph and ring graph
	4.6.1. Node degree
	4.6.2. Average hopcount
	4.6.3. Clustering coefficient
	4.6.4. Assortativity coefficient
	4.6.5. Betweenness centrality 

	5.1. Classification and model settings
	5.2. Social-biological network: LesMis 
	5.3. Technological network: ElectrC_s208
	5.4. Linguistic network: WordAdj
	6.1. Conclusion
	6.2. Future work

