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Abstract

Stringent control demands from the high-tech mechatronics industry have warranted the need
to explore potentially advantageous non-linear controllers. Variable Fractional Order (VFO)
calculus provides one such avenue to build non-linear PID-like controllers. VFO calculus is
the generalization of integer order differentiation and integration, where, in addition to the
possibility of orders being real or even complex, the orders can vary as a function of a variable
like time, temperature, etc. However, in this nascent field of VFO control, the focus has mainly
been on controller tuning by time domain optimization of the performance for certain specific
trajectories or cost functions. On the other hand, Frequency domain tools allow for analysis
and tuning of controllers for performance over a wide range of exogenous inputs. For smooth
adoption into industry, it is important to develop a frequency domain framework for working
with VFO control. Describing function (DF) analysis is a method to obtain an approximate
Frequency Response Function (FRF)-like function for non-linear systems. In this thesis, DF
analysis is used for developing VFO PID controllers in the frequency domain from an industry
compatibility point of view and the closed loop performance of these controllers in controlling
a precision positioning stage is examined.
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Notations

0D
α
T Fractional Order (FO) operator of order α computed over

the interval 0 to T (T > 0)
0D

α(t)
T Variable Fractional Order (VFO) operator, where the varying order α is a function of time,

computed over the interval 0 to T (T > 0)
(α
k
) Binomial coefficient, i.e., α choose k

∣ ⋅ ∣ Magnitude of the ⋅ complex number
∠⋅ Phase of the ⋅ complex number
Z+ Set of all positive Integers
N Set of all Natural numbers
R Set of all Real numbers
R+/N Set of all positive Real numbers minus the set of all Natural numbers
L Laplace transform operator
⌊⋅⌋ the floor operator, i.e., rounds off ⋅ to the next integer smaller than ⋅
⌈⋅⌉ the ceil operator, i.e., rounds off ⋅ to the next integer larger than ⋅
∥ ⋅ ∥∞ L-Infinity Norm
∥ ⋅ ∥2 L-2 Norm
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Chapter 1

Introduction

In this introductory chapter, the motivation for this thesis is presented, followed by an outline
of this report.

1-1 Motivation

The high-tech mechatronics industry is constantly pushing for greater precision in motion
control and faster production speeds for a range of applications [1–3] like lithography wafer
scanners, atomic force microscopes (AFM)s, robotic manipulators, etc. These requirements
of higher bandwidths and highly accurate reference tracking (in micro and even nanometres)
warrant improvements in motion control techniques. Despite the advancements in feedback
control theory, PID control, one of the earliest control techniques, still remains the preferred
feedback controller in industry. This can be attributed to the intuitive underlying theory,
simple structure, ease of analog as well as digital implementations, and years of research and
practice giving rise to tried-and-tested rule-of-thumb tuning methods. Moreover, since PID
controllers can be tuned using loop shaping techniques, they are compatible with frequency
domain requirements and tools popular in industry.

But, PID controllers, being linear, are constrained by the fundamental limitations of linear
feedback control1 and this puts limitations on the achievable performance. Bode’s gain phase
relation and the sensitivity integrals (waterbed effect) [4, 5] give rise to inevitable trade-
offs in controller tuning for performance objectives like low frequency reference tracking and
disturbance rejection, and high frequency noise attenuation while maintaining stability and
robustness margins.

Fractional Order (FO) calculus, which is the generalization of integer order differentiation
and integration to arbitrary (non-integer) orders, i.e., rational, irrational or even complex
orders, is as of late finding applications in modelling and control. Controllers built using FO
calculus operators like Commande Robuste d’Ordre Non Entier (CRONE) [6] and PIλDµ [7]

1A brief account on the limitations of linear feedback control can be found in A-3-1 and A-3-2.
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2 Introduction

are compatible with the PID framework, frequency domain tuning and provide greater tuning
flexibility as compared to integer order controllers in tackling the above mentioned trade-offs.
Despite these advantages, FO controllers are still linear and again the fundamental limitations
limit the achievable performance.

Non-linear controllers, free from these fundamental limitations, are able to outperform linear
controllers in several scenarios. However, most of them have complex tuning rules and esoteric
literature, hindering their smooth adoption into industry. This motivates the development of
non-linear controllers while remaining compatible with the widely-understood PID literature
and frequency domain tools, to comply with industry standards. Quite a few non-linear
controllers like SPAN filter [8], reset controllers built using Clegg integrator, Constant Gain
Lead in phase (CGLP) element, first and second order reset elements [9–12], variable structure
PID control [13], etc. fit this bill. The technique that enables analysis and tuning of these
controllers in the frequency domain, is the Describing Function (DF) Analysis [14], which is
a method to obtain an approximate Frequency Response Function (FRF)-like function for
non-linear systems.

VFO calculus, introduced in 1998 by Lorenzo and Hartley [15], is the extension of the FO
calculus, where the orders of derivative and integral operators are not only fractional but are
also allowed to vary. VFO calculus is lately finding applications in modelling and control. It
has been used to model viscous-viscoelastic damping in [16] and to model the bone remodelling
process in a tumorous environment in [17]. As a natural extension of FO PID controllers,
VFO PID controllers built using VFO calculus operators are being explored. A VFO PI
controller where the order of the integrator switches based on the sign of the error is presented
in [18]. The orders that the VFO integrator switches between and the controller gains Kp,
Ki and are obtained by minimizing an Integral of Time-weighted Squared Error (ITSE) cost
function. [19] explores a VFO PID (PIλ(t)Dµ(t)) controller where the orders of the VFO
operators vary depending on the optimization objective chosen by a user or a higher level
decision algorithm. Using particle swarm optimization to obtain the parameters of the VFO
Proportional-Integral-Derivative (PID) controller for a Integral of Absolute Error (IAE) type
objective function, has been proposed in [20]. But, much of the work that currently exists
in VFO control, is focused on time domain controller tuning for optimized performance for
specific trajectories or cost functions. On the other hand, frequency domain tools allow for
analysis and tuning of controllers for performance over a wide range of exogenous inputs. For
the smooth adoption into industry, it is important to develop a frequency domain framework
for working with VFO control. To the best of our knowledge, no literature on VFO control in
the frequency domain could be found and it is this gap that this research attempts to bridge.
The goal of this thesis can thereby be stated as :

To use DF analysis for developing VFO PID controllers in the frequency domain
from an industry compatibility point of view and examining their closed loop
performance in a precision positioning application.

1-2 Outline

The flow of this thesis report is as follows. In chapters 2 and 3, a brief treatment on VFO
calculus and DF analysis has been provided respectively. This is followed by defining the scope

N. N. Nagda Master of Science Thesis



1-2 Outline 3

of this research and laying down the objectives in chapter 4. Chapter 5 introduces the proposed
VFO PID controller, followed by presenting its describing function analysis and frequency
domain tuning guidelines. The closed loop performance of the developed controllers is tested
on a precision positioning stage and the corresponding results are presented and discussed
in Chapter 6. Chapter 7 puts forth the conclusions of this thesis and recommendations for
future work.

Master of Science Thesis N. N. Nagda
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Chapter 2

Variable Fractional Order (VFO)
Calculus and Control

In this chapter, a brief introduction to Fractional Order (FO) calculus is given, building
upto Variable Fractional Order (VFO) calculus. Post that, the relevant VFO definitions,
implementation techniques and applications to control are presented.

2-1 Fractional Order (FO) calculus

Fractional calculus is the extension of integer order calculus that allows the orders to take
rational, irrational or even complex values. An interesting characteristic of FO operators is
their long memory of the input signal. Such memory, which is usually associated with integer
order integrals, is not only possessed by FO integrals but derivatives as well. To illustrate this
property, the Grünwald-Letnikov (GL)1 definition of FO operators is presented here. Based
on the generalization of the backward difference formula, the GL definition of the αth order
fractional derivative (Dα) of a function f(t) in the interval [0, T ], computed at T , is given as:

0D
α
T f(t) = lim

h→0

1
hα

n

∑
k=0

(−1)k(α
k
)f(T − kh) (2-1)

where,

• h is the sampling time step and n = ⌊T /h⌋ is the number of samples in the interval
[0, T ].

• (α
k
) is the binomial coefficient, i.e., α choose k. (α

k
) = Γ(α+1)

Γ(k+1)Γ(α−k+1)

1Quite a few definitions exist for FO operators, but the most popular in literature being Riemann-Liouville
(RL) and Grünwald-Letnikov (GL) definitions. A detailed treatment can be found in [6] and [21].
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6 Variable Fractional Order (VFO) Calculus and Control

• Γ is Euler’s Gamma function, which is the extension of the factorial function to accom-
modate real and complex numbers.

• α > 0 implies fractional derivatives and α < 0 implies fractional integrals.

It can be seen from Equation (2-1), that the computation of the fractional operator uses all
the samples of the function being differentiated (over the interval under consideration), i.e.,
essentially it is not a local concept and demonstrates long memory characteristics. This is
in contrast to the nth integer order derivative that uses past values of function only upto
the f(T − nh) sample. This memory makes FO derivatives suitable for modelling certain
phenomenon like anomalous diffusion, financial evolution, etc [22] and interesting for control
applications [6, 7].

Furthermore, the Laplace transform of an αth order fractional operator (for zero initial con-
ditions) [21] is given as :

L (Dαf(t)) = sαL (f(t)) (2-2)

and the corresponding FRF is

∣(jω)α∣ = wα ∠(jω)α = απ
2

(2-3)

Fig. 2-1 shows the frequency response of FO operators for different values of α.
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(b) Ideal frequency response of fractional derivatives.

Figure 2-1: Ideal frequency response of fractional operators (sα) for different values of α.

Such an FRF makes FO operators compatible with loop shaping techniques and the fact
that α can take non-integer values empowers them with greater tunability as compared to
integer order calculus operators. For further reading on FO calculus and control, the reader
is referred to [6] and [21].
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2-2 VFO calculus 7

2-2 Variable Fractional Order (VFO) calculus

When the order of a FO operator varies as a function of the independent variable of integra-
tion/differentiation (eg. time) or some other variable like temperature, velocity, etc., it gives
rise to a Variable Fractional Order (VFO) operator. This idea of extending FO calculus to
accommodate varying orders was first proposed in 1998 by Lorenzo and Hartley [15]. This
continuous order varying ability of VFO differential equations provides greater freedom in
modelling certain dynamical systems as compared to using varying coefficients in constant
integer order differential equations or piece-wise modelling. For example, the dynamics of a
mass-spring-damper system can be modelled using an integer order differential equation as

mD2
t x(t) + cD1

t x(t) + kx(t) = F (t)

where m is the mass of the system, c is the damping coefficient, k is the stiffness and Dn
t is the

nth integer order time derivative operator. However, when the damping is viscous-viscoelastic,
i.e., the damping force varies from pure viscous friction (cD1

t x(t)) to pure viscoelastic friction
(cD

1
2
t x(t)) depending on the velocity, the damping force can be described by a VFO derivative

as described in [16]. The previously presented equation of motion then becomes:

mD2
t x(t) + cD

α(ẋ(t))
t x(t) + kx(t) = F (t)

where D
α(ẋ(t))
t is the VFO derivative operator, where the order of differentiation varies with

ẋ(t) = D1
t x(t) and can take non-integer values.

Other applications of VFO modelling include experimental study of an analogue realization of
a temperature dependent VFO differentiator and integrator as presented in [23]. An applica-
tion of VFO derivatives to model the bone remodeling process in a tumorous environment [17]
led to simplification of the structure and compacter models as compared to the previously
used integer order differential equations.

2-3 Definitions of VFO operators

VFO operator definitions are obtained by modifying the FO operator definitions to accom-
modate the varying nature of the order. The seminal paper by Lorenzo and Hartley [15]
formally provided three definitions of VFO operators based on the Riemann-Liouville (RL)
FO definition along with their equivalent parallel switching schemes, and introduced a metric
for characterizing the memory of these operators.

Just like FO operators, VFO operators make use of the values of the input signal over the entire
interval [0,T] over which they are being computed and hence have a memory of the input.
This memory is termed as m1. The second type of memory corresponds to a memory of the
history of the varying order of the operator. This is called m2. Depending on the definition,
VFO operators possess m2 memory of varying degree. The order of a VFO operator, can
vary continuously in value. However, for implementation as a switching system, this can be
approximated by allowing the order to switch between a finite number of discrete values.
Based on this notion, equivalent switching schemes have been developed for VFO definitions.

Master of Science Thesis N. N. Nagda



8 Variable Fractional Order (VFO) Calculus and Control

The corresponding VFO definitions based on the Grünwald-Letnikov (GL) and Caputo FO
definitions have been presented in [24]. Furthermore, in the GL framework, 3 more definitions
have been developed along with the corresponding serial switching schemes for all the 6 defi-
nitions by Sierociuk et al. [25–29]. No standard naming scheme exists for the VFO definitions
and in this thesis, the nomenclature followed in the papers by Sierociuk et al. is used. In
the following subsections, only two definitions that are used in this thesis are presented along
with their equivalent parallel switching schemes.

2-3-1 Type A

Modifying the FO GL definition (Equation (2-1)) such that the coefficients of all the function
samples, f(T − kh), are computed using α(T ), i.e., the current value of α at the time when
the VFO operator is being computed, the type A definition of VFO operators is obtained as
:

A

0 D
α(t)
T f(t) = lim

h→0

1
hα(T )

n

∑
k=0

(−1)k(α(T )
k

)f(T − kh) (2-4)

A VFO operator, thus defined, at any given point in time T when the operator is computed,
behaves as if it had been operating with the current value of the order, α(T ), from the very
beginning of the interval and incorporates no memory of the past values of α. Thus it has no
m2 memory.

Equivalent Switching Scheme

The equivalent switching structure for type A VFO definition is presented in Fig. 2-2. Con-
sider a VFO operator with a time varying order that switches between n constant FOs, αj
where j ∈ {1,2, ..n}. The switching instances are given by tj such that the order αj is active
in the time interval ∆tj = [tj−1, tj) and t0 = 0 < t1 < t2... < tn. Depending on the current time
T , the switches Sj , take positions a or b as follows:

Sj =
⎧⎪⎪⎨⎪⎪⎩

b for T ∈ ∆tj
a otherwise

(2-5)

As can be seen from Fig. 2-2, the input f(t) is being continuously fed into each of the
individual FO operators (Dαj ) and as per the switching mechanism, the output y at time
instance T will simply be the output of the FO operator corresponding to the order active at
time T . Formally stating:

y(T ) = A0 D
α(t)
T f(t) = 0D

αj

T f(t) where {j ∣ T ∈ ∆tj}

N. N. Nagda Master of Science Thesis



2-3 Definitions of VFO operators 9

Figure 2-2: Equivalent switching scheme for type A VFO operator definition, where f(t) is the
input signal, y(t) is the output, 0D

αj

t are FO operators and switches Sj are governed by the
switching law (2-5). This particular combination of switch positions occurs when t ∈ ∆t2. Figure
adapted from [15].

2-3-2 Type B

Modifying Equation (2-1), such that the the coefficients of the function samples, f(T − kh),
are computed using α(T − kh), i.e., the coefficient of a past sample is computed using the
corresponding value of α active at the time instance of that sample, the type B definition of
VFO operators is obtained as :

B

0 D
α(t)
T f(t) = lim

h→0

n

∑
k=0

(−1)k
hα(T−kh)

(α(T − kh)
k

)f(T − kh) (2-6)

A VFO operator, thus defined, unlike type A VFO definition, uses the past values of α for
computation and hence possesses memory of the order history. However, memory of the oldest
orders becomes weaker as the interval [0, T ] becomes longer.

Equivalent Switching Scheme

The equivalent switching structure for type B VFO definition is presented in Fig. 2-3. Again,
consider a VFO operator with a time varying order that switches between n constant FOs, αj
where j ∈ {1,2, ..n}. The switching instances are given by tj such that the order αj is active
in the time interval ∆tj = [tj−1, tj) and t0 = 0 < t1 < t2... < tn. The switches are governed by
the law in Equation 2-5.

As can be seen from Fig. 2-3, each FO operator 0D
αj

t receives f(t) as the input when t ∈ ∆tj
and 0 otherwise. The input received by 0D

αj

t can be written in terms of two delayed step
functions (U(t)) as

f(t)(U(t − tj−1) −U(t − tj))
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10 Variable Fractional Order (VFO) Calculus and Control

Figure 2-3: Equivalent switching scheme for type B VFO operator definition, where f(t) is the
input signal, y(t) is the output, 0D

αj

t are FO operators and switches Sj are governed by the
switching law (2-5). This particular combination of switch positions occurs when t ∈ ∆t2. Figure
adapted from [15].

And the output y of the VFO operator, at any instance T, is the sum of the outputs of all
individual FO operators at that instance. This can be formally stated as :

y(T ) = B0 D
α(t)
T f(t)

=
n

∑
j=1

0D
αj

T [f(t)(U(t − tj−1) −U(t − tj))]

To sum it up, in type A definition, all the FO operators constantly receive the VFO operator
input and the switching scheme governs which FO operator’s output contributes to the VFO
operator output while the other operators contribute 0. In type B definition, the switching
governs which FO operator receives the VFO operator input while the other operators receive
0, and the VFO operator output is the sum of the outputs of all FO operators.

2-4 Implementation techniques

In this thesis, the VFO operators are implemented using the equivalent parallel switching
schemes introduced in [15] and demonstrated here in Fig. 2-2 and 2-3. This choice is made
due to their intuitiveness and simplicity as compared to other techniques. To put this into
perspective, the other implementation methods found in literature are presented here :

• Discrete time implementation using the GL VFO definitions. This can be
done using the Matlab toolbox developed by Sierociuk et al. [30]. As the VFO operator
makes use of all the past samples of its input, the number of samples to be stored and
the computations required to calculate the VFO operator will go on increasing as the
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2-5 Applications to control 11

duration of the experiment increases. It is ideal if samples from the entire duration
of the experiment can be stored and used, but in the cases when this is not possible
due to finite storage and computation power, older data needs to be discarded. The
toolbox tackles this issue by limiting the number of past samples to be stored and used
for computing the VFO operator, to a finite user-defined variable. To what extent,
this truncation affects the output has not been fully analysed. Another problem with
this implementation is that, the Γ(k + 1) present in the denominator of the operator
definition blows to infinity for a comparitively small finite value , eg. k= 171 in Matlab,
hence the samples beyond this in the past essentially have zero weights, which is as
good as truncation2.

• Discrete time implementation using the RL and Caputo VFO definitions can
be achieved by approximating derivatives in the definitions with finite differences and
integrals with trapezoidal numerical integration [31].

• Analog circuits based on the equivalent series switching schemes of the GL VFO
definitions, as presented in the work by Sierociuk et al. [25–29].

• VFO operator representation by fuzzy logic and polynomial interpolation
between FO operators [31]. This method implements VFO operators with orders
varying between [−1,1] by first considering a finite number of FO operators with or-
ders in [−1,1] approximated using Oustaloup approximation [32] and discretized using
Tustin’s method. The VFO operator is then represented as an interpolation between
these FO operators, using fuzzy logic. By changing the fuzzy inference engines, different
m2 characteristics of the VFO operator can be obtained.

2-5 Applications to control

In this section, a few applications of VFO calculus in control are described to present the
state of the art and more importantly, to emphasize on the fact that current work primarily
focuses on time-domain tuning.

• In [19], the idea of VFO Proportional-Integral-Derivative (PID), i.e., PIλ(t)Dµ(t), where
the fractional orders of the operators vary depending on the optimization objective
chosen has been presented. The 3 controller gains (Kp, Ki and Kd) are obtained by
Ziegler Nichols method and then the λ(t) and µ(t) are obtained by Integral of Absolute
Error (IAE) or Integral of Time-weighted Absolute Error (ITAE) optimization, either
of which may be chosen by the user or higher level decision algorithm. In the numerical
simulations of closed loop step responses of a 2nd order plant controlled by the VFO
PID, the switching instances of the optimization objective function, and there by the
order switching instances, have been chosen arbitrarily and a comparison has been made
between implementations of the VFO PID based on the type A and type B definitions.

• [18] presents a VFO PI controller for a 2nd order plant, where the order of the integral
switches based on the sign of the error. Type A, B, D and E definitions are considered

2A workaround has been suggested in [31].
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12 Variable Fractional Order (VFO) Calculus and Control

for implementing the VFO integrator. The orders α1 and α2, that the VFO integrator
switches between and the controller gainsKp, Ki are obtained by minimizing an Integral
of Time-weighted Squared Error (ITSE) cost function using the fmincon function from
Matlab. Numerical simulations are performed using the toolbox by Sierociuk et al.
[30]. For the with and without actuator saturation cases, a comparative study of the
performance of an integer order PI, a FO PI and VFO PI controllers is made based on
rise time, settling time, overshoot, peak time and the minimal cost achieved for ITSE
objective function.

• [33] approaches the problem of growing calculation tail and stability of the closed loop
with a VFO PID controller by initially allowing the order of I-action and D-action (λ
and µ respectively) to be fractional and vary as a function of tracking error, controller
output or both and then pushing λ to −1 and µ to 1, i.e., making the VFO PID a
standard integer order PID, after a certain number of samples. The authors propose
obtaining the gains of the PID controller using IAE or Integral of Squared Error (ISE)
optimization.

• [20] proposes the Using particle swarm optimization to obtain the parameters of the
VFO PID for a IAE type objective function. Numerical simulations have been provided
comparing the performance of Integer Order PID, FO PID and Type A and type B
definition based VFO PID for 3 different systems. VFO controllers were found to be
beneficial for plants with time varying coefficients.

N. N. Nagda Master of Science Thesis



Chapter 3

Describing Function Analysis

This chapter provides the necessary background on describing function analysis that will be
used for analysis and tuning of the proposed VFO controllers. Firstly, the basic idea behind
describing function analysis is introduced in section 3-1, followed by discussing Sinusoidal
Input Describing Function (SIDF) in section 3-2 and lastly explaining Higher Order Sinusoidal
Input Describing Function (HOSIDF) in section 3-3.

3-1 Introduction

Frequency domain tools like Bode and Nyquist plots play a crucial role in loop shaping since
they provide useful visual information about the closed loop stability and performance of
linear systems over the entire range of frequencies. These tools make use of the Frequency
Response Function (FRF) of the system which gives the input-output relation of the system
as a function of the input frequency. The usual method adopted for working with non-linear
systems, is to linearize the system about an operating point and then study the FRF of
this linearization. However, there exists another way of analysing non-linear systems in an
FRF-like fashion, called the Describing Function (DF) analysis [14]. The underlying idea is
to approximate the periodic output of a non-linear system (for a sinusoidal input), by only
the first harmonic content in the output and then use this information to obtain an FRF-like
function which gives the gain and phase characteristics of the non-linear system as a function
of input frequency and amplitude. DF is denoted by N(A,ω). A block representation of this
idea can be seen in Figure 3-1.

The basic version DF method requires the non-linear system to satisfy the following conditions
[14]:

• There must be only one non-linear element in the system. If there are more than
one, then either they they must be lumped together or only the primary non-linearity
must be considered.
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14 Describing Function Analysis

Figure 3-1: Block diagram representation of a non-linear element on the left and the corre-
sponding DF approximation on the right, where A sin(ωt) is the input to the non-linearity and
M sin(ωt + φ) is the first harmonic content in the output f(t). Figure adapted from [14].

• The non-linear element must be time invariant. Just like the FRF, DF method
can be applied only to time invariant non-linearities.

• The linear element in series with the non-linear element must have low pass
filtering characteristics. Only then can the higher order harmonics be neglected.
This is the filtering hypothesis.

As newer methods of DF analysis were developed namely Two Sinusoidal Input Describing
Function (TSIDF), Dual Input Describing Function (DIDF), Random Input Describing Func-
tion (RIDF) [34] and Higher Order Sinusoidal Input Describing Function (HOSIDF) [35], the
basic version of DF described here, came to be known as Sinusoidal Input Describing Func-
tion (SIDF).

3-2 Sinusoidal Input Describing Function (SIDF)

The SIDF is essentially a Fourier series approximation of the non-linear system output where
only the first harmonic information is retiained. The Fourier series approximation, fFS(t) of
a periodic function of time, f(t) periodic with time period T and frequency ω is given by

fFS(t) =
a0
2
+

∞

∑
n=1

[an cos(nωt) + bn sin(nωt)]

an =
2
T
∫

T

0
f(t) cos(nωt)dt

bn =
2
T
∫

T

0
f(t) sin(nωt)dt

If only the first harmonic is considered, the following is obtained :

f1h(t) =a1 cos(ωt) + b1 sin(ωt)

=
√
a2

1 + b21 sin(ωt + tan−1 (a1
b1

))

=M sin(ωt + φ)

For a sinusoidal input of amplitude A and frequency ω, the SIDF of the non-linear system is
defined as the the complex ratio of the first harmonic component in the output f(t), to the
input sinusoid.
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N(A,ω) = M sin(ωt + φ)
A sin(ωt) = Mej(ωt+φ)

Aejωt
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Phasor representation

= b1 + ja1
A

The real and imaginary parts of SIDF are thus given by:

Re(N(A,ω)) = 2
TA
∫

T

0
f(t) sin(ωt)dt

Im(N(A,ω)) = 2
TA
∫

T

0
f(t) cos(ωt)dt

(3-1)

Some additional pointers about SIDF analysis :

• Besides approximating the input output relationship1 for the non-linear system in fre-
quency domain, SIDF is used for limit cycle analysis.

• When the non-linearity is single valued, i.e., the output has only one value for a given
input (unlike hysterisis) then the SIDF is independent of the frequency.

• When the non-linearity is odd, the SIDF is real, since the coefficient of the cosine term
(a1) will be zero.

SIDF analysis has been used in analysis and tuning of non-linear controllers like reset con-
trollers [9–12], variable structure PID control [13], etc.

3-3 Higher Order Sinusoidal Input Describing Function (HOSIDF)

As seen in the previous section, SIDF gives the gain and phase relation between a sinusoid
input and the first harmonic content in the corresponding periodic response of a non-linear
system. However, for precision applications where the specifications are stringent, the higher
harmonic content in the output of the non-linearity cannot be neglected as it would deteriorate
performance. Also, when the output contains discontinuities, jumps, etc., it is not well-
approximated by a single sinusoid and higher harmonics information must also be taken into
account. HOSIDF is the extension of the SIDF technique, such that it takes higher harmonic
content information into account as well. The nth order HOSIDFs, denoted by Hn(A,ω),
relate the magnitude and phase of the nth harmonic content in the output to the magnitude
and phase of a sinusoidal input [35], [36]. An important notion introduced in the HOSIDF
literature is that of a virtual harmonics generator, which is a block which takes in a sinusoidal
input, and generates higher harmonics as shown in Fig. 3-2.

Now, as per the HOSIDF technique, a non-linear system with sinusoidal excitation (Fig. 3-3)
can be approximated by a block consisting of a virtual harmonics generator, SIDF (N(A,ω))
and n HOSIDFs (Hn(A,ω)) as shown in Fig. 3-4.

1Since the superposition principle does not hold for non-linear systems and since SIDF is an approximation
in the first place, the SIDF is not as effective as FRF is for linear systems.

Master of Science Thesis N. N. Nagda



16 Describing Function Analysis

Figure 3-2: Virtual Harmonics Generator. Figure adapted from [35].

Figure 3-3: A non-linear element with a sinusoidal excitation A sin(ωt) and output f(t).

If we take the nth harmonic content from the Fourier series approximation of f(t), we get

fnh(t) =an cos(nωt) + bn sin(nωt)

=
√
a2
n + b2n sin(nωt + tan−1 (an

bn
))

=Mn sin(nωt + φn)

Hn(A,ω) can then be obtained as the the complex ratio of the nth harmonic component in
the output f(t) to the nth harmonic of the input sinusoid.

Hn(A,ω) =
Mn sin(nωt + φn)

A sin(nωt) = Mne
j(nωt+φn)

Aejnωt
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Phasor representation

= bn + jan
A

Thus we obtain Hn(A,ω) in terms of the the Fourier coefficients of the nth harmonic in
the non-linear element output. There are 2 methods to obtain the HOSIDFs numerically,
namely IQ (in-phase/quadrature-phase) demodulation and Fast Fourier Transform (FFT)-
based. These methods are discussed in detail in [35] along with the applications of these
methods for obtaining HOSIDFs for backlash and a mechanical system with friction. The
use of HOSIDF analysis in the field of reset control design can be found in the work by
’Mechatronic System Design’ group at the PME department of TU Delft [37–39].
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Figure 3-4: The HOSIDF approximation of the non-linear element (Fig. 3-3), where N(A,ω) is
the SIDF and Hn(A,ω) is the nth order HOSIDF. Figure adapted from [35].
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Chapter 4

Research Objectives

Now that the necessary background needed for understanding the development of the VFO
PID controller is established, this chapter defines the scope of this research and lays down
the objectives to be achieved.

4-1 Scope

• Definitions: A VFO operator can be realised in different ways depending on the defi-
nition used. Although, many definitions exist for VFO operators, given the limited time
frame of this thesis, only 2 definitions are explored. Type A and type B definitions have
been chosen since they provide contrasting order memory characteristics, i.e., type A
does not possess m2 memory while type B does.

• Implementation: Moreover the choice to implement the VFO operators using their
equivalent parallel switching schemes Fig. 2-2, 2-3 has been made since they are intuitive
to understand, simpler to implement and easier to derive describing functions for.

• Order signal (α(t)): The order signal is defined as a switching signal, switching
between only 2 orders α1 and α2, based on a switching law. The reason for switching
between only two orders is that the chosen switching law, presented in the next chapter,
allows for switching between two orders only. Since this is a preliminary study, the scope
is limited to α1, α2 ∈ {-1,0,1} only, i.e., P, I or D operators only. This gives rise to 6
order combinations {D-I, P-I, D-P, I-D, I-P, P-D} each for type A and type B VFO
operators, to be investigated.

4-2 Objectives

1. Obtain the SIDFs for the 6 cases of type A VFO operator. These SIDFs are obtained
from the SIDF of the Variable Structure PID controller [13].
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20 Research Objectives

2. Building up on this work, derive the HOSIDFs for these 6 cases and the SIDF and
HOSIDFs for the 6 cases of type B VFO operator.

3. Analyse the SIDFs to shortlist the order combinations to be further used to build the
VFO controllers.

4. Tune the VFO controllers using loop shaping guidelines.

5. Implement the controllers on a precision positioning stage and examine the closed loop
performance.
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Chapter 5

Frequency Analysis and Tuning of
VFO Controller

This chapter delineates the process of building Variable Fractional Order (VFO) PID con-
trollers. Firstly, the structure of the proposed VFO controller is explained, followed by the
derivation and analysis of the describing functions for the required VFO operators. Lastly,
the frequency domain tuning guidelines for the VFO PID controllers are presented.

5-1 Proposed VFO controller

The proposed VFO controller comprises of a VFO operator (Dα(t)) in series with a linear
filter as depicted in Fig. 5-1.

Figure 5-1: Block diagram of the proposed VFO controller, where e is the tracking error, û is
the VFO operator output and u is the generated control input.

As mentioned in Section 4-1, the scope of this thesis is limited to the type A and type B VFO
operators only. These operators are implemented as switching systems using their respective
equivalent parallel switching schemes (Fig. 2-2 and 2-3 respectively). Further narrowing the
scope of investigation, the order signal α(t) is designed such that it switches between only two
discrete values, α1 and α2, based on a switching law. Such a type A VFO operator, denoted
as ADα1−α2 , is shown in Fig. 5-2.
In Fig. 5-2, Dα1 and Dα2 are two FO operators, and as a modification to the type A
switching scheme in Fig. 2-2, gains K1 and K2 for these FO operators have been additionally
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22 Frequency Analysis and Tuning of VFO Controller

Figure 5-2: Type A VFO operator (ADα1−α2).

incorporated. Both these operators are constantly receiving the input e. When the switches
S take position 1, the VFO operator has order α1 and the output û is simply the output of
K1D

α1 while K2D
α2 contributes 0 and vice versa for when S takes position 2. Similarly, the

type B VFO operator (BDα1−α2) is implemented as shown in Fig. 5-3.

Figure 5-3: Type B VFO operator (BDα1−α2).

Here, when S takes position 1, only K1D
α1 receives the input while K2D

α2 receives 0 and
vice versa for when S takes position 2. The output û, at any instance, is the sum of outputs
of the individual FO operators.

The switches S in these switching schemes are governed by the following switching law :

S =
⎧⎪⎪⎨⎪⎪⎩

1 for sgn(eė) > 0
2 for sgn(eė) ≤ 0

(5-1)

where e is the tracking error1, i.e., reference signal minus the measured output and ė is the
derivative of the tracking error. When the error is increasing in magnitude, i.e., sgn(eė) > 0
the order of VFO operator is α1 while when the error is non-increasing, i.e., sgn(eė) ≤ 0, the
order is α2. Such a switching law has also been used in a paper on Variable structure PID
control [13], where it is used for switching between two PID controllers.

As specified in the scope (Section 4-1), the orders are chosen such that α1, α2 ∈ {−1,0,1},
i.e., the operators in either branch of these switching schemes can be I, P or D blocks only.
Henceforth, in the notations used for these operators, the superscript to the left denotes the
type of definition and the superscript to the right denotes the orders α1 − α2. For example,
ADP−I , represents a type A VFO operator with order switching between α1 = 0 and α2 = −1.

1The terminology is with reference to a negative feedback control loop (Fig.A-1).
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5-2 Type A VFO operator SIDF 23

Next, the Sinusoidal Input Describing Function (SIDF) and Higher Order Sinusoidal Input
Describing Function (HOSIDF) for these VFO operators are derived.

5-2 Type A VFO operator SIDF

Instead of obtaining an individual SIDF for each of the 6 cases, the SIDF for a switching
system as depicted in Fig. 5-4 is obtained. This is a type A switching scheme, but instead
of switching between just two operators, it switches between two distinct PID controllers
with gains Kpj ,Kij ,Kdj with j ∈ 1,2 and the switches S governed by the switching law in
Equation (5-1). The idea is to obtain the required SIDFs of the 6 combinations by setting
the appropriate PID gains to 0 in the SIDF derived for this system. This system is called a
variable structure PID controller and the SIDF for it has been derived in [13]. The derivation
is being presented here to elucidate the steps involved, so it will help the reader to follow
along as this thesis builds up on this work to derive the HOSIDFs for type A and the SIDF
and HOSIDFs for type B operators.

Figure 5-4: Type A switching scheme, switching between two PID controllers instead of just
two FO operators. This scheme is known as Variable structure PID controller [13].

For an input e = Asin(ωt), the real and imaginary parts of the SIDF for this system are given
as :

Re(ANPID−PID(A,ω)) = 2
TA
∫

T

0
û(t) sin(ωt)dt

Im(ANPID−PID(A,ω)) = 2
TA
∫

T

0
û(t) cos(ωt)dt

(5-2)
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Over one time period T of the input sinusoid, the switching signal behaves as :

eė =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

> 0 in [0, T4 ]
≤ 0 in [T4 ,

T
2 ]

> 0 in [T2 ,
3T
4 ]

≤ 0 in [3T
4 , T ]

(5-3)

And owing to the corresponding switching, the output û is :

û =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Kp1A sin(ωt)+

I

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
1
ω
Ki1A[1 − cos(ωt)]+

D

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
ωKd1A cos(ωt) for t ∈ [0, T4 ]

Kp2A sin(ωt) + 1
ωKi2A[1 − cos(ωt)] + ωKd2A cos(ωt) for t ∈ [T4 ,

T
2 ]

Kp1A sin(ωt) + 1
ωKi1A[1 − cos(ωt)] + ωKd1A cos(ωt) for t ∈ [T2 ,

3T
4 ]

Kp2A sin(ωt) + 1
ωKi2A[1 − cos(ωt)] + ωKd2A cos(ωt) for t ∈ [3T

4 , T ]

(5-4)

Where the overbrace notations denote the outputs of P, I and D operators of either controllers.
Solving Equation (5-2) for the û from Equation (5-4), we get

ANPID−PID(ω) =
⎡⎢⎢⎢⎢⎣

⎛
⎝
Kp1 +Kp2

2
⎞
⎠
+ −1
ω

⎛
⎝
Ki1 −Ki2

π

⎞
⎠
+ ω

⎛
⎝
Kd1 −Kd2

π

⎞
⎠

⎤⎥⎥⎥⎥⎦

+ j
⎡⎢⎢⎢⎢⎣

⎛
⎝
Kp1 −Kp2

π

⎞
⎠
+ −1
ω

⎛
⎝
Ki1 +Ki2

2
⎞
⎠
+ ω

⎛
⎝
Kd1 +Kd2

2
⎞
⎠

⎤⎥⎥⎥⎥⎦

(5-5)

It is observed that this SIDF is independent of the amplitude of the applied sinusoid, and only
a function of its frequency. From Equation (5-5), we can obtain, for example, the ANP−D

SIDF by plugging in Kp1 =K1 and Kd2 =K2 and all the other gains to 0, giving us:

ANP−D =
⎡⎢⎢⎢⎢⎣

K1
2
− ωK2

π

⎤⎥⎥⎥⎥⎦
+ j

⎡⎢⎢⎢⎢⎣

K1
π

+ ωK2
2

⎤⎥⎥⎥⎥⎦

5-3 Type A VFO operator HOSIDFs

Just like the SIDF, the HOSIDFs are derived for the more general type A PID switching
scheme (Fig. 5-4). For an input e = Asin(ωt), the real and imaginary parts of the nth order
HOSIDF are obtained as :

Re(AHPID−PID
n (A,ω)) = 2

TA
∫

T

0
û(t) sin(nωt)dt

Im(AHPID−PID
n (A,ω)) = 2

TA
∫

T

0
û(t) cos(nωt)dt

(5-6)
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Solving Equation (5-6) using û from Equation (5-4), we get :

AHPID−PID
n (ω) =

⎡⎢⎢⎢⎢⎣

−2(Ki1 −Ki2) sin (nπ2 )
πω(n2 − 1)

⎛
⎝

cos (nπ) + n sin (nπ
2
)
⎞
⎠

+ 4
(Ki1 −Ki2)

nπω
cos (nπ

2
) sin (n3π

4
) sin (nπ

4
)

+
2ω(Kd1 −Kd2) sin (nπ2 )

π(n2 − 1)
⎛
⎝

cos (nπ) + n sin (nπ
2
)
⎞
⎠

⎤⎥⎥⎥⎥⎦

+j
⎡⎢⎢⎢⎢⎣

−2(Kp1 −Kp2) sin (nπ2 )
π(n2 − 1)

⎛
⎝
n cos (nπ) + sin (nπ

2
)
⎞
⎠

⎤⎥⎥⎥⎥⎦

(5-7)

Just like the SIDF, the HOSIDFs are also independent of the input amplitude. Note that,
sin (nπ2 ) is 0 when n is an even integer and sin (nπ4 ) is 0 for n ∈ {4,8,12, ..}. The implication
is that for order combinations P-D and D-P, all the even order HOSIDFs are 0, while the ones
involving the I operator, only have alternate even order HOSIDFs as 0. Also note that, this
analytical equation for the HOSIDFs cannot be used to obtain the SIDF by plugging in n = 1
because of the (n2 − 1) term in the denominator.

5-4 Type B VFO operator SIDF

Similar to the type A operator, a general SIDF for the type B switching scheme that switches
between 2 PID controllers as shown in Fig. 5-5 is derived. Over one time period of the input
e = A sin(ωt), the switching signal eė behaves as Equation (5-3). The corresponding output
û of the switching scheme is obtained as :

Figure 5-5: Type B switching scheme, switching between two PID controllers instead of just two
FO operators.
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û =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
Kp1A sin(ωt)+

I

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
1
ω
Ki1A[1 − cos(ωt)]+

D

³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
ωKd1A cos(ωt) for t ∈ [0, T4 ]

Kp2A sin(ωt) + 1
ωA[Ki1 −Ki2 cos(ωt)] + ωKd2A cos(ωt) for t ∈ [T4 ,

T
2 ]

Kp1A sin(ωt) + 1
ωA[ −Ki1 cos(ωt) +Ki2] + ωKd1A cos(ωt) for t ∈ [T2 ,

3T
4 ]

Kp2A sin(ωt) + 1
ωKi2A[1 − cos(ωt)] + ωKd2A cos(ωt) for t ∈ [3T

4 , T ]

(5-8)

The output is same as that of the type A PID switching scheme in terms of the proportional
and derivative parts but differs for integral part. This is because the integrator is a memory
element and hence continues to contribute its integrated sum to û even when it is receiving 0
input.

In Equation(5-8), a critical assumption has been made for theD part in û. In typeA switching
scheme, the D operators receive a sinusoidal input (A sin(ωt)) without any discontinuities and
hence the derivative is given by ωKdA cos(ωt). However, as can be seen from Fig. 5-6, the
input going into the branches of type B switching scheme has discontinuities, leading to
the theoretical derivative operator to be infinity at those instances and being ωKdA cos(ωt),
immediately at the next instance. Considering the fact that for an actual implementation, the
D operator would have an accompanying high frequency pole, and hence have a finite value
at the discontinuities, with the transient dying away quickly to give ωKdA cos(ωt) at steady
state, we have approximated the output of the D operator as ωKdA cos(ωt), neglecting the
spikes.

Figure 5-6: For an input e = A sin( 2πt
T

) to the type B switching scheme, this figure depicts the
input received by the operators in branch 2 of the scheme. It can be seen that the signal has
discontinuities at T

4 and 3T
4 . Similarly, the input to branch 1 also has discontinuities at the same

instances.

Solving Equation (5-2) for the û from Equation (5-8), we get
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BNPID−PID(ω) =
⎡⎢⎢⎢⎢⎣

⎛
⎝
Kp1 +Kp2

2
⎞
⎠
+ 1
ω

⎛
⎝
Ki1 −Ki2

π

⎞
⎠
+ ω

⎛
⎝
Kd1 −Kd2

π

⎞
⎠

⎤⎥⎥⎥⎥⎦

+ j
⎡⎢⎢⎢⎢⎣

⎛
⎝
Kp1 −Kp2

π

⎞
⎠
+ −1
ω

⎛
⎝
Ki1 +Ki2

2
⎞
⎠
+ ω

⎛
⎝
Kd1 +Kd2

2
⎞
⎠

⎤⎥⎥⎥⎥⎦

(5-9)

As a consequence of the similarity in the outputs of the two switching schemes, the type B
SIDF is the same as type A and differs only for the term with integral gains in the real part
of the SIDF. Hence, the SIDFs for the P-D and D-P operators for both the switching schemes
are the same.

5-5 Type B VFO operator HOSIDFs

The nth order HOSIDF for the type B PID-PID switching scheme is obtained by solving
Equation (5-6) for the û from Equation (5-8).

BHPID−PID
n (ω) =

⎡⎢⎢⎢⎢⎣

−2(Ki1 −Ki2) sin (nπ2 )
πω(n2 − 1)

⎛
⎝

cos (nπ) + n sin (nπ
2
)
⎞
⎠

+ 2
(Ki1 −Ki2)

nπω
sin2 (nπ

2
)

+
2ω(Kd1 −Kd2) sin (nπ2 )

π(n2 − 1)
⎛
⎝

cos (nπ) + n sin (nπ
2
)
⎞
⎠

⎤⎥⎥⎥⎥⎦

+j
⎡⎢⎢⎢⎢⎣

−2(Kp1 −Kp2) sin (nπ2 )
π(n2 − 1)

⎛
⎝
n cos (nπ) + sin (nπ

2
)
⎞
⎠

⎤⎥⎥⎥⎥⎦

(5-10)

As all the terms in Equation (5-10) have sin (nπ2 ), the even order HOSIDFs are 0 for all 6
type B VFO operators.

5-6 VFO operator selection

Next step is to analyse the SIDFs of the VFO operators and short-list the order combinations
which are useful from a control perspective. Since the goal is to build a VFO controller
in the PID-loop shaping framework, the short-listing is done by comparing the SIDF based
frequency response of the VFO operators with the frequency response of the corresponding
linear filters in a PID controller. Here a series form of PID controller [40] is considered and
given as :

CPID =K
⎛
⎝

1 + ωi
s

⎞
⎠

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
P-I

( s
wd

+ 1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

P-D

1
( s
wt
+ 1)

1
( s
ωf

+ 1)
(5-11)
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where K is the overall gain, ωi is the corner frequency of the P-I filter where the integrator
action rolls off, ωd is the corner frequency in the theoretical P-D filter where the derivative
action starts and ωt is its taming frequency and ωf is the frequency of the loss pass filter2.
The P-I part is employed to increase controller gain at frequencies below the closed loop
bandwidth but the integrator brings in a 90° phase lag which requires ωi to be placed at least
a decade before the bandwidth to allow the phase to recover. The P-D part along with the
1/( s

wt
+ 1), i.e., band limited derivative action is employed in the frequency range [ωd,ωt] to

achieve the desired phase at the bandwidth. In the following subsections, the VFO operators
will be analysed to see if they have more advantageous frequency responses as compared to
their linear counterparts.

5-6-1 Type A and B P-I and I-P operators

These operators are compared with a linear P-I filter, with ωi = 2π rad/s. The gains K1
and K2 of the VFO operators are tuned so that their frequency response magnitude matches
that of the linear P-I filter. To illustrate how the gains affect the frequency response of the
operators, 3 sets of gains for an A P-I operator, as given in Table 5-1, are considered and the
corresponding frequency responses are shown in Fig. 5-7. From cases 1 and 2, it can be seen
that, by adjusting the ratio of K1 and K2 the corner frequency can be moved. Then in case
3, the ratio is kept same as in case 2, while increasing both gains by the same factor, and
it can be seen that the overall magnitude of the frequency response can be adjusted while
keeping the same corner frequency. This method of tuning the gains is applicable for the
other operators as well.

K1 K2
Case 1 1 1
Case 2 1 2π
Case 3 10 20π

Table 5-1: Three sets of gains for a type A P-I operator to illustrate their effect on its frequency
response as shown in Fig. 5-7.

The tuned gains for A and B P-I and I-P operators are presented in Table 5-2 and the
corresponding frequency responses of the VFO operators and the linear P-I filter are shown
in Fig. 5-8.

K1 K2
A P-I 1.687 10.6
A I-P 10.6 1.687
B P-I 1.687 10.6
B I-P 10.6 1.687

Table 5-2: Gains of Type A and B P-I and I-P operators to have the same frequency response
magnitude as a linear P-I filter with ωi = 2π rad/s.

The frequency response magnitude of A P-I and I-P operators exactly matches that of the
linear P-I filter at all frequencies, while that of B P-I and I-P operators matches the linear P-I

2Refer appendix A for a brief account on loop shaping terminology.
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Figure 5-7: Frequency response of the type A P-I operator for three different cases of gains K1,
K2 given in Table 5-1.

except in [ωi

10 ,10ωi]. Considering the phase, it can be seen that A P-I provides a phase lead
of 32.5° at all frequencies as compared to the linear filter. This phase advantage, especially
above 10ωi can prove to be beneficial, since if A P-I operator were to replace a linear P-I
filter in the PID controller, then the linear P-D filter will have to provide lesser phase lead
at the bandwidth to get the same phase margin. Similar phase advantage is seen for B P-I,
which even though starts off at −122.5° at low frequencies, rises quickly within 2 decades
around ωi to provide a phase of 32.5°, beyond 10ωi. Due to the steep rise in phase, not
only is it able to give a slightly higher phase lead as compared to A P-I in a brief frequency
range from [2ωi,10ωi] but due to its flatness of phase in that region, it can potentially also
provide robustness against plant gain variations. Meanwhile, both A I-P and B I-P have a
phase lag as compared to the linear P-I at frequencies above 10ωi and hence do not appear
advantageous.

5-6-2 Type A and type B P-D and D-P operators

Similar to the P-I case, the gains of these VFO operators are tuned so as to match the fre-
quency response magnitude with that of a linear theoretical P-D filter (i.e., without a taming
pole) with ωd = 2π rad/s. The tuned gains are presented in Table 5-3 and the corresponding
frequency responses of the VFO operators and the linear P-D filter are shown in Fig. 5-9.

K1 K2
A P-D 1.687 0.269
A D-P 0.269 1.687
B P-D 1.687 0.269
B D-P 0.269 1.687

Table 5-3: Gains of type A and B P-D and D-P operators to have the same frequency response
magnitude as a theoretical linear P-D filter with ωd = 2π rad/s.
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Figure 5-8: Frequency Responses of Linear P-I filter and Type A and Type B P-I and I-P VFO
operators.

As pointed out previously, it can be seen from Fig. 5-9 that the frequency responses for type
A P-D and D-P operators are same as B P-D and D-P operators respectively since their
SIDFs are the same. Both P-D operators provide phase lead of 32.5° as compared to the
linear P-D at all frequencies. In the PID controller, wider the [ωd,ωt] band to achieve the
desired phase margin, higher becomes the controller gain at higher frequencies (deteriorated
noise attenuation) and lower at lower frequencies (deteriorated reference tracking.) If a type
A or B P-D operator were to replace the P-D part in the PID controller, then owing to their
phase lead, the [ωd,ωt] band can be narrower and hence prove advantageous. A and B D-P
operators don’t seem lucrative due to their phase lag of 32.5° at all frequencies as compared
to linear P-D.

5-6-3 Type A and B D-I and I-D operators

The gains of these VFO operators are tuned so as to match their frequency response magnitude
with that of a linear theoretical I-D filter given as:

CI−D = (1 + ωd
s

)( s

ωd
+ 1)

For ωd = 2π rad/s, the tuned gains are presented in Table 5-4 and the corresponding frequency
responses of the VFO operators and the linear I-D filter are shown in Fig. 5-10.

Outside the [0.2ωd,5ωd] frequency range, the magnitudes of all the 4 operators exactly match
that of the linear I-D filter. In that range, type A operators’ magnitude still remains close
to that of the linear filter but that of the type B operators deviates quite a lot and goes to
0 at ωd. If a VFO I-D or D-I operator were to replace this linear I-D filter, then it would
prove advantageous if it had higher phase after ωd than the linear filter. The only operator
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Figure 5-9: Frequency Responses of Linear P-D filter and type A and type B P-D and D-P VFO
operators.

K1 K2
A I-D 10.6 0.269
A D-I 0.269 10.6
B I-D 10.6 0.269
B D-I 0.269 10.6

Table 5-4: Gains of type A and B P-D and D-P operators to have the same frequency response
magnitude as a theoretical linear P-D filter with ωd = 2π rad/s.

that appears advantageous in this sense is the B I-D operator, but its magnitude is quite low
around ωd. Moreover, since an I-D filter is not commonly used in the PID control framework,
the D-I and I-D operators are being left out of the scope of this research.

This selection process has resulted in the selection of A P-I (ADP−I), B P-I (BDP−I), A P-D
(ADP−D) and B P-D (BDP−D) VFO operators for building the VFO controllers.

5-7 VFO controller tuning

Now, the method to tune the VFO controllers is presented. The process is two-fold, firstly
constituting of tuning the gains K1 and K2 of the VFO operators and secondly choosing
the corresponding linear filter and tuning its parameters. The VFO controllers are built by
replacing the linear filters in the PID controller (Equation (5-11)) with the corresponding
VFO operators. The VFO controller using A or B P-I operators is shown in Fig. 5-11 and
using P-D operators is shown in Fig. 5-12.

As the aim is to implement the controllers for a precision positioning stage, which can be
modelled as a mass-spring damper system, the tuning guidelines are presented for controlling
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Figure 5-10: Frequency Responses of Linear I-D filter and type A and type B I-D and D-I VFO
operators.

Figure 5-11: Block diagram of a VFO controller using type A P-I or type B P-I operator denoted
as ACP−I or BCP−I respectively.

such a system with the bandwidth beyond the resonance frequency where the system phase is
−180°. For such an application, the PID controller with a rule of thumb set of parameters [40]
gives a phase margin of 42°. For fair comparison of the closed loop performance of the VFO
controllers and this rule of thumb PID controller, the VFO controllers are tuned for the same
bandwidth and phase margin as this PID controller.

5-7-1 Rule of thumb PID controller

For controlling a plant G for a bandwidth of ωc rad/s , as a rule of thumb, the PID controller
parameters are given as [40]3 :

ωi =
ωc
10
, ωd =

ωc
3
, ωt = 3ωc, ωf = 10ωc

and the gain K is given by

K = 1
3∣G(jωc)∣

where ∣G(jωc)∣ is the magnitude of plant gain at ωc.
3A brief on rule of thumb PID controller can be found in Appendix section A-2.
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Figure 5-12: Block diagram of a VFO controller using type A P-D or type B P-D operator
denoted as ACP−D or BCP−D respectively.

5-7-2 VFO controllers using type A P-I operator (ACP−I) and type B P-I operator
(BCP−I)

For these controllers, the frequency response to be shaped is given by :

A/BCP−I(ω) =K (A/BNP−I(ω))( jω
wd

+ 1) 1
( jω
wt
+ 1)

1
( jω
ωf

+ 1)
(5-12)

• The gainsK1 and K2 of the VFO P-I operators are tuned such that the corner frequency
in their frequency response is same as that in a linear P-I filter. This is done by setting

K1 = 1 K2 = ωi =
ωc
10

• The low pass filter (LPF) has the corner frequency at ωf = 10ωc, same as that for the
linear PID case. Note that this brings in a phase lag of 5° at ωc.

• Next, the [ωd,ωt] band of the linear band limited derivative action is tuned. In the linear
PID controller, a band of [ωc

3 ,3ωc] provides a phase margin of 42°. But since the VFO
P-I operators with gains tuned in the previous step, provide a phase of about 32° at ωc,
the derivative action has to provide less phase and [ωd,ωt] band can be narrower. The
band is parametrized as [ωc

a ,aωc] and solved for a to get the phase of 42° at ωc.

• Finally the bandwidth is set by the adjusting the overall gain K so that the frequency
response gain magnitude of these VFO controllers at ωc becomes equal to 1/∣G(jωc)∣.

• While deriving the describing functions, it is assumed that the ė required for the switch-
ing signal is computed using an ideal derivative operator, i.e. having a phase lead of 90°
at all frequencies. However for practical implementation, the derivative filter is made
proper with a pole at 10ωc. Placing the pole at a frequency lower than this, would start
bringing in the phase lag even before ωc, and thereby changing the switching instances
for the frequencies of interest, as compared to the instances in the case of an ideal
derivative operator. Placing it at 10ωc just brings in a phase lag of 5° at ωc. Also, it is
not placed any higher so as to bring in the low pass filtering as soon as possible.

5-7-3 VFO controllers using type A P-D operator (ACP−D) and type B P-D
operator (BCP−D)

For these controllers, the frequency response to be shaped is given by :

A/BCP−D(ω) =K
⎛
⎝

1 + ωi
jω

⎞
⎠
(A/BNP−D(ω)) 1

( jω
wt
+ 1)

1
( jω
ωf

+ 1)
(5-13)
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34 Frequency Analysis and Tuning of VFO Controller

• The linear P-I part in these VFO controllers has the same corner frequency as the P-I
filter in the PID controller, i.e., at ωi = ωc

10 thereby allowing the phase to recover from
90° phase lag to just 5° phase lag at ωc.

• The low pass filter (LPF) has the corner frequency at ωf = 10ωc, same as that for the
linear PID case which brings in a phase lag of 5° at ωc.

• Next, the gains K1 and K2, and ωt are iteratively tuned by parametrizing them in terms
of ’a’ such that :

K1 =
ωc
a

K2 = 1 ωt = aωc

Starting from a = 3, reduce a till the obtained phase at ωc is 42°.

• Finally the bandwidth is set by the adjusting the overall gain K so that the frequency
response gain magnitude of these VFO controllers at ωc becomes equal to 1/∣G(jωc)∣.

• For practical implementation, the D operator in the VFO operator is made proper with
a high frequency pole at 100ωc.

• Again the derivative operator required to compute ė for the switching signal has an
accompanying pole at 10ωc, just like in the P-I case.

A plot comparing the controller frequency response of a linear PID controller with that of the
VFO controllers is presented in Fig. 5-13.

M
a
g
n
it
u
d
e
 [
d
B

]

Bode Diagram

Frequency [Hz]

P
h
a
s
e
 [
d
e
g
]

Figure 5-13: Frequency response of linear PID and the VFO controllers, where ωc is the desired
closed loop bandwidth and ∣G(jωc)∣ is the magnitude of the plant gain ωc.

As can be seen from Fig. 5-13, all controllers have a magnitude of 1/∣G(jωc)∣ at ωc and hence
in combination with the plant, will be able to achieve the open loop crossover frequency at ωc.
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Also, all the controllers have a phase of 42° at ωc, thereby meeting phase margin requirement.
Since all the VFO controllers have gain higher than that of PID below ωc and lower than
that of PID above ωc, these controllers can potentially outperform linear PID in reference
tracking, disturbance rejection and noise attenuation. The closed loop performance of these
controllers shall be analysed in the next chapter by performing experiments on a precision
positioning stage.
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Chapter 6

Experimental Results

Tuning the 4 VFO controllers using the guidelines from the previous chapter, their closed
loop performance in controlling a precision positioning stage is now analysed. Firstly, the
setup used for the experiments is described and the corresponding model is identified. This
is followed by presenting and discussing the experimental results.

6-1 Experiment setup and identification

The experiments are carried out on a planar, 3 DOF precision positioning ’Spider’ stage as
shown in Fig. 6-1. The system consists of 3 identical masses (M), individually actuated by
dedicated voice coil actuators (C). The masses are attached to the base plate by means of
leaf flexures (F) which provide stiffness. Mercury M2000 linear encoders (E) positioned below
the masses, measure their position with a resolution of 100 nm. These individual masses are
attached to the central stage ’S’ by means of leaf flexures, thus making it a MIMO system.
However for the experiments, only the sub-assembly 1 (highlighted in green) is controlled, thus
reducing it to a SISO system. The controllers are programmed in Labview and implemented
on the National Instruments cRIO FPGA for deterministic real time control. The analog
output module NI 9264 is used to send the generated control signal to the linear power
amplifier which actuates the voice coil. The linear encoder is read via the NI 9401 digital
input/output module.

The actuator has a software implemented saturation of 30000 counts to prevent damage to
the setup. To avoid introducing this saturation non-linearity, experiments are performed by
adjusting the input signal amplitudes such that the actuator saturation is not hit. A possible
source of implementation artefacts in the experiments is quantization. The input signal
generated by the controller is typecast to a 16 bit integer, owing to the 16 bit resolution of
the NI 9264 module. The setup is placed on a vibration isolation table. In the unactuated
state, the encoder measurement fluctuates between ±3 counts (i.e., ±300nm).

The overall plant G, comprising of the NI 9264 module, amplifier, actuator, actuated sub-
assembly 1, encoder and NI 9401 module, is identified. The input to this plant is applied in
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integer counts (1 count = 0.3mV) and the output is also measured in integer counts (1 count =
100nm). The frequency response of the plant, measured from 0.1Hz to 500Hz using a chirp
signal is shown in Fig. 6-2. The fourth order model identified using this FRF data is also
plotted in the same figure and presented in Equation (6-1). The identified model is similar
to a collocated double mass-spring-damper system.

G(s) = 8.37e3s2 + 1.63e4s + 5.92e7
s4 + 4.64s3 + 1.44e4s2 + 3.31e4s + 5.14e7

(6-1)

Figure 6-1: Planar, 3 DOF precision positioning ’Spider’ Stage, of which only sub-assembly 1
(highlighted in green) is used for the experiments. S is the central stage, M is the actuated mass,
C is the voice coil actuator, E is the linear encoder and F are leaf flexures.

For this plant, the PID and VFO PID controllers are tuned as per the guidelines in Section 5-7
for a bandwidth of ωc = 2π 150 rad/s. The tuned parameter values are presented in Table 6-1.
The operators within the VFO operators and the corresponding linear filters are all discretized
for a sampling frequency of 10 KHz using Tustin’s method. The closed loop, as depicted in
Fig. B-1 has 3 exogenous inputs, namely the tracking reference r, input disturbance du
and measurement noise nm, the performance of the closed loop to which will be analysed
in reference tracking, disturbance rejection and noise attenuation experiments respectively.
Additionally the step response characteristics are also examined.

Numerical simulations are performed to determine the closed loop stability of the VFO con-
trollers, as a mathematical proof could not be derived. Experiments are performed for ACP−I ,
BCP−I and ACP−D controllers as steady state was reached in their simulations, but BCP−D
simulations showed instability and hence is not considered for the experiments. A possible
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Figure 6-2: Measured frequency response of the plant G from 0.1Hz to 500Hz and the frequency
response of the identified fourth order model.

K a
ACP−I 122.8558 1.4455
BCP−I 143.4747 1.3664
ACP−D 0.1884 1.4455
BCP−D 0.1884 1.4455

Table 6-1: Tuned parameters of the VFO controllers. (Other parameter values are not presented
since they can be obtained using a and ωc.)

cause for the instability of BCP−D is the transient spikes introduced in its output by its
derivative operator (D) at every switching instance.

6-2 Higher order open loop frequency responses

The VFO controllers have been tuned to get the desired open loop shape by treating the SIDF
based frequency response of the VFO operators as their true frequency response, neglecting
the HOSIDF information. From the open loop frequency responses, shown in Fig. 6-4, it
can be seen that, as compared to the magnitude of the open loop for the PID controller,
the magnitude of the open loop for VFO controllers is higher before the bandwidth and
lower beyond the bandwidth. In the linear loop shaping framework, this loop shape for the
VFO controllers would translate to better reference tracking, disturbance rejection and noise
attenuation characteristics than PID.

The primary assumption in using only the VFO operator SIDF for loop shaping is that the
first harmonic content in the VFO operator output is dominant as compared to the higher
harmonic content. Although it seems trivial that these higher harmonics will affect the closed
loop performance, no concrete method to predict the extent of their effect or incorporate
higher order information in controller tuning could be found in literature. In the field of reset
control, where a similar SIDF based loop shaping method is used for developing controllers
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Figure 6-3: Feedback control loop, where C is the controller, G is the plant, r is the tracking
reference, du is the input disturbance, nm is the measurement noise, e is the tracking error, u is
the generated control input, ua is the actual input going to the plant and y is the plant output.

using the reset elements, attempts have been made to incorporate the HOSIDF information
in controller design [37,38]. These works have looked at the higher order open loop frequency
responses to observe relations to the closed loop performance and in this thesis, the same will
be done for the VFO controllers.

Considering the open loop in the HOSIDF framework (Section 3-3), a sinusoidal inputA sin(ωt)
entering the VFO operator, is approximated as passing through a virtual harmonics generator
which generates higher harmonic signals having the same amplitude A. The generated nth

harmonic signal gets a gain and phase as per the nth order HOSIDF (Hn(ω)) of the VFO
operator, with the 1st harmonic getting them as per the SIDF (N(ω)). The base frequency
signal along with these higher harmonics then pass ahead through the linear filter (LF ) and
the plant (G) and further get a gain and phase depending on their frequency. The open loop
output y is the sum of all these signals and can be formally stated as in Equation (6-2).

y = ∣(G(jω)LF (jω)N(ω))∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

|(open loop)|

A sin (ωt +∠(G(jω)LF (jω)N(ω))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

∠(open loop)

)

+
∞

∑
n=2

∣(G(jnω)LF (jnω)Hn(ω))∣
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∣(nth higher order open loop)|

A sin (nωt +∠(G(jnω)LF (jnω)Hn(ω))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
∠(nth higher order open loop)

)
(6-2)

The open loop and the higher order open loop frequency responses for the ACP−I , BCP−I
and ACP−D controllers are presented in Fig. 6-5, 6-6 and 6-7 respectively. While reading
these plots, it is important to understand that although Equation (6-2) shows that the nth
higher order open loop gives the gain and phase for the signal with frequency nω, it is actually
plotted for the input base frequency ω that caused the generation of nω.

For all the 3 controllers, the nth higher order open loop shows the resonance peak at a
frequency fr/n where fr ≈ 14Hz is the resonance frequency of the plant. Lower the magnitude
of the higher order open loop frequency response at a frequency, lower is the magnitude of
the higher harmonic content in the open loop output. From Fig. 6-5, it can be seen that
for ACP−I controller, the 2nd order open loop actually has slightly higher gain than the open
loop until about 9Hz, beyond which the base frequency component will be dominant in the
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Figure 6-4: Open loop frequency response for the linear PID and VFO controllers.
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Figure 6-5: Open loop and higher order open loop frequency responses for ACP−I controller for
orders 1 to 7, where 1st denotes the open loop. 4th order is not presented since it is 0, as the
alternate even order HOSIDFs for the A P-I operator are 0.
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Figure 6-6: Open loop and higher order open loop frequency responses for BCP−I controller for
orders 1 to 9, where 1st denotes the open loop. Even orders are not presented since they are 0,
as the even order HOSIDFs for the B P-I operator are 0.
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Figure 6-7: Open loop and higher order open loop for ACP−D controller showing the higher
order open loop frequency response for orders 1 to 7. All the even order HOSIDFS for the A P-D
operator are 0.
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open loop output. For BCP−I and ACP−D controllers, the higher order open loop frequency
responses have less magnitude than that of the open loop except for the resonance peaks
which come close to open loop magnitude, with the peak of the 3rd order even exceeding the
open loop magnitude at that frequency. For these 2 controllers, if the plant is a critically
damped or overdamped mass-spring-damper system, then there would not be peaks in the
higher order open loop frequency responses and hence there would be no frequency range for
which the higher order harmonics are greater in magnitude than the first harmonic in the
open loop output.

The purpose of performing the experiments is two-fold. Firstly to verify if the VFO controllers
offer better reference tracking, disturbance rejection and noise attenuation as compared to
the PID controller, that the open loop shape suggests. Secondly connections between the
higher order open loop frequency responses and the closed loop performance are to be drawn
by observing the results. Certainly, these objectives can be fulfilled using simulation results
alone, but experimental results will additionally serve as a proof of concept for sparking
interest in industry. Simulations have been performed to validate the experimental results,
and having done so, only the experimental results are discussed in this chapter.

6-3 Noise attenuation

Before checking the control performance to injected artificial noise, the performance for r =
nm = du = 0 and only the presence of inherent measurement noise in the system (±3 counts)
is looked into. ∥∥∞ and ∥∥2 norms are taken once steady state has been reached in the
experiment. The corresponding values are shown in Table 6-2. For having the same number
of samples for the ∥∥2 norm, this experiment is carried out for the same duration for all the
controllers.

∥e∥∞ ∥e∥2 ∥u∥∞ ∥u∥2
PID 1 20.9 201 3.14e3
ACP−I 1 61 243 10.47e3
BCP−I 1 54.8 247 9.8e3
ACP−D 22 701.1 2225 68.68e3

Table 6-2: Performance of the controllers in the presence of only inherent system noise of ±3
counts and r = nm = du = 0. 1 count of e is 100nm and 1 count of u is 0.3mV.

Both ACP−I and BCP−I controllers are able to maintain the tracking error within ±1 count
like the PID controller. However, it must be noted from ∥e∥2 norm, that the PID controller
is able to keep e at 0 for more samples than these 2 controllers. Similarly, even though the
max control input is comparable to that of PID, the ∥u∥2 norm reflects the higher demand for
control action over the course of the experiment. The ACP−D controller struggles to keep the
output at 0, with error going as high as 22 counts, while also commanding very high control
inputs.

Now white measurement noise with different amplitudes ranging from 5 to 50 counts is applied
and the corresponding values of ∥e∥∞ are presented in Table 6-3. It can be seen that, despite
lower open loop gain as compared to PID beyond the bandwidth, the VFO controllers are
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∥nm∥∞ = 5 ∥nm∥∞ = 10 ∥nm∥∞ = 30 ∥nm∥∞ = 50
PID 3 7 23 34
ACP−I 6 14 43 54
BCP−I 8 15 45 72
ACP−D 258 - - -

Table 6-3: ∥e∥∞ (1 count = 100nm) for the different controllers in the presence of white mea-
surement noise nm of different amplitudes.

Tr( sec) Ts( sec) Overshoot (%) ∥u∥∞
PID 9.7321e-4 192e-4 43 19.7e3
ACP−I 12e-4 570e-4 50 20.9e3
BCP−I 11e-4 166e-4 52 22.2e3
ACP−D 88e-4 - - 5.1e3

Table 6-4: Step response characteristics for a reference step of 100 counts (10 µm), and 1 count
of the control input is 0.3mV.

unable to attenuate noise, especially with ACP−D controller drastically amplifying it. Exper-
iments for noise amplitudes higher than 5 counts, could not be carried out for ACP−D since
actuator saturation is hit.

6-4 Step response

For a reference step of amplitude 100 counts (10 µm), Fig. 6-8 shows the closed loop step
response for different controllers and Table 6-4 shows the corresponding performance metrics.
Rise time (Tr) is the time taken for the output to go from 10 percent to 90 percent of its
steady state value and the settling time (Ts) is the time taken by the output to reach and
stay within 2 percent of steady state value.
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Figure 6-8: Step responses of the VFO controllers for a reference step of 100 counts (10 µm).

Despite having the same phase margin as the linear PID controller, ACP−I and BCP−I con-
trollers have greater overshoots and the output for ACP−I even settles slowly than that for
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PID. But on the bright side, the settling time for BCP−I is lower than that for PID. For
ACP−D controller, owing to the inherent system noise, the error fluctuates between about
±20 counts even after steady state has been reached and hence it does not satisfy the settling
time criteria. Also the output shows undershoot behaviour before reaching the commanded
value.

6-5 Reference tracking

The reference tracking abilities of the controllers are tested for 10 sinusoidal references with
frequencies ranging from 0.1Hz upto the bandwidth of 150Hz. For sinusoidal references in
linear feedback loops, one can look at the bode plots of closed loop Sensitivity (S(jω)) and
Control Sensitivity (CS(jω)) to get a measure of the consequent tracking error e and control
input u respectively. However, unlike the linear case where for sinusoidal inputs, the resultant
signals in the loop are all sinusoids of the same frequency, in case of feedback loops with non-
linear controllers, there may be higher harmonic signals as well. To capture this information,
the Mechatronic System Design group at the PME departement of TU Delft, has developed
two metrics on the lines of (S(jω)) and (CS(jω)) to quantify the closed loop reference
tracking performance of non-linear controllers, namely pseudo-Sensitivity gain (∣S∂(ω)∣) and
pseudo-Control Sensitivity gain(∣CS∂(ω)|). For reference r = Ar sin(ωt), these metrics are
defined as :

∣S∂(ω)∣ =
∥e∥∞
Ar

(6-3)

∣CS∂(ω)∣ =
∥u∥∞
Ar

(6-4)

where the ∥e∥∞ and ∥u∥∞ norms are computed once steady state is reached in the experiments.
The ∥e∥∞ in the definition of ∣S∂(ω)∣ captures the maximum error that can occur at steady
state, which is critical information in precision applications. The ∣S∂(ω)∣ and ∣CS∂(ω)∣ plots
obtained experimentally are shown in Fig. 6-9 and 6-10 respectively.

The tracking performance of the ACP−I controller is poorer than that of the PID controller
uptil 10Hz beyond which it becomes and stays better than PID uptil about 75Hz. This
performance improvement comes around the same frequency at which the 2nd higher order
open loop magnitude diminishes as compared to the open loop magnitude. BCP−I controller
performs better than PID from 0.2Hz all the way upto 50Hz. The better performance of
BCP−I as compared to ACP−I at frequencies below 10 Hz can be attributed to low higher
order loop magnitudes. The apparent poor performance of BCP−I below 0.2Hz as compared to
PID, can be attributed to the role of quantization and system noise which becomes noticeable
at those low values of e and then plotting in dB magnifying the really small difference. A
proposition that can explain the poor performance of ACP−I above 75Hz and BCP−I above
50Hz is that the tracking performance of these VFO controllers goes poorer beyond ωc/n
where n is the most dominant higher order, which is 2 for ACP−I and 3 for BCP−I . Despite
having the same open loop shape as ACP−I and higher order open loop magnitudes lower
than the open loop magnitude like BCP−I , tracking performance of the ACP−D controller is
poorer than that of PID over the entire considered frequency range. A possible reason that
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Figure 6-9: Closed loop pseudo-Sensitivity gain ∣S∂(ω)∣ obtained from reference tracking exper-
iments.
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Figure 6-10: Closed loop pseudo-Control Sensitivity gain ∣CS∂(ω)∣ obtained from reference
tracking experiments.
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6-6 Disturbance rejection 47

can explain this poor performance is that ACP−D controller is more susceptible to noise (as
seen in Table 6-2) originating from the inherent system noise or quantization of the input.

Fig. 6-10 shows that the control action demanded by VFO controllers for tracking a given
reference is more than that required by PID. Similar to the improvement in tracking perfor-
mance, a reduction in the control action required by ACP−I is seen beyond 10Hz.

6-6 Disturbance rejection

Next, the disturbance rejection experiments for 10 disturbance signals ud with frequencies
ranging from 0.1Hz upto the bandwidth of 150Hz are performed. Similar to the ∣S∂(ω)∣
metric for reference tracking, we define a measure of maximum tracking error for an input
disturbance signal ud = Ad sin(ωt) as :

∣PS∂(ω)∣ =
∥e∥∞
Ad

(6-5)

where the ∥e∥∞ norm is computed once steady state is reached in the experiments. The
pseudo-Process Sensitivity ∣PS∂(ω)∣ plot obtained experimentally is shown in Fig. 6-11.
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Figure 6-11: Closed loop pseudo-Process Sensitivity gain ∣PS∂(ω)∣ obtained from disturbance
rejection experiments.

Fig. 6-11 shows that the trend in the disturbance rejection performance of these controllers
is quite similar to their reference tracking performance. BCP−I performs better than PID at
frequencies from 0.5Hz upto about 50Hz. The ACP−I performance improves after 10Hz and
becomes and stays better than PID and BCP−I uptil 75 Hz. The disturbance rejection of
ACP−D is the poorest amongst these controllers. In terms of demanded control action, it was
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again observed that ua required by VFO controllers is higher than that required by PID. The
possible explanations for these characteristics of the VFO controllers are the same as those
presented for explaining their reference tracking behaviour.

6-7 Discussion

Simulations showed that BCP−D controller is unstable. The VFO controllers show poor step
responses as compared to the PID controller, despite being tuned for the same phase margin
and bandwidth as PID, with the only silver lining being the lower settling time for BCP−I
controller. Despite lower open loop gain beyond bandwidth as compared to PID, the VFO
controllers are unable to attenuate noise. As suggested by the open loop shape, ACP−I and
BCP−I controllers are able to provide better reference tracking and disturbance rejection
performance than PID, but only in certain frequency bands and neither controller could be
decisively deemed better than the other. It can be concluded that, only using the open loop
shape to predict the closed loop performance of VFO controllers is inaccurate. The relatively
non-trivial higher harmonics in the VFO output, which reflect in the higher order open loop
magnitudes, reduce the efficacy of the purely SIDF based loop shaping.
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Chapter 7

Conclusion and Recommendations

Stringent control demands from the high-tech industry have warranted the need to explore
potentially advantageous non-linear controllers. VFO calculus provides one such avenue to
build non-linear PID-like controllers. However, in the nascent field of VFO control, the focus
has mainly been on tuning the controllers by time domain optimization of the performance
for certain specific trajectories and cost functions and no work in the frequency domain can
be found in literature. Frequency domain tools allow for analysis and tuning of controllers for
performance over a wide range of exogenous inputs. For the smooth adoption into industry,
it is important to develop a frequency domain framework for working with VFO control. This
gap led us to establishing the goal of the thesis as follows :

To use DF analysis for developing VFO PID controllers in the frequency domain
from an industry compatibility point of view and examining their closed loop
performance in a precision positioning application.

The primary idea was to build VFO PID controllers by replacing linear filters in a rule of
thumb PID controller with suitable VFO operators having an advantageous frequency re-
sponse obtained using their describing function. To this end, the choices of VFO operator
definitions, their implementation technique and the order switching law were made for sim-
plicity in implementation of the operators and derivation of their describing functions. This
brings us to the first contribution of the thesis, which is the analytical derivation of the de-
scribing functions, i.e., SIDF and HOSIDFs, of the VFO operators considered in the scope
of this thesis. Second contribution is the development of frequency domain tuning guidelines
to shape the open loop for these controllers. However, only the SIDF has been used in the
loop shaping process and the HOSIDF information has been neglected, based on the critical
assumption that the first harmonic content is dominant in the VFO operator output. The
obtained open loop shapes suggested an improvement in closed loop performance as compared
to the base PID controller. Third contribution is the experimental testing of the developed
VFO controllers on a precision position stage to verify the proposed improvement in closed
loop performance. Although the results were not in favour of the VFO controllers, the results
helped decisively conclude that the open loop shape alone is not an accurate indicator of
the closed loop performance in case of such non-linear controllers. Furthermore, on the lines
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of work done for reset control systems, a preliminary analysis of the higher order open loop
shapes obtained using the derived HOSIDFs was made. It was identified that the relatively
non-trivial higher harmonics in the VFO output reduce the efficacy of the purely SIDF based
loop shaping. This work can serve as a starting point for research into incorporating higher
order information in the VFO controller tuning process.

To conclude, although the developed VFO controllers did not outperform the linear PID
controller, the true objective of this thesis has been fulfilled, i.e., a preliminary framework for
analysing and tuning VFO PID controllers in the frequency domain has been built. However,
this work is only the first step and a lot is yet to be explored, for which there are a few
recommendations as follows :

• Firstly and most importantly, a method needs to be developed to incorporate HOSIDF
information into controller tuning and analysis.

• The closed loop stability of these VFO controllers is yet to be proven. Investigating
multiple Lyapunov functions method or other techniques used in proving stability of
switched systems can be a good starting point.

• In this thesis, only the VFO order signal α(t), switching between 2 orders α1, α2 ∈
{−1,0,1} has been explored. This framework can be extended to fractional orders to
capture the true essence of a VFO controller.

• In our work, only positive values have been investigated for the VFO operator gains,
K1 and K2. However, negative gains can also be looked into, since some combinations
of positive and negative gains were found to yield advantageous SIDFs.

• The current switching law can be tweaked by introducing a deadband around the switch-
ing surface or by using hysteresis switching, and the corresponding effects on the closed
loop performance can be studied. Also, other complicated switching laws can be ex-
plored, that could allow switching between more than 2 orders.

• The linear filters in our VFO controllers have been obtained from a conventional PID
controller. Other linear filters can be explored. Moreover, parts of the linear filter
can be placed before or after the VFO operator to minimize the effect of higher order
harmonics on closed loop performance, as explored for reset controllers in [39].

• On the implementation side, the effect of frequency of the pole used to make the the-
oretical derivative operators proper can be studied. Effect of different discretization
methods and sampling frequencies can also be studied.
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Appendix A

Basics and limitations of linear
feedback theory

In this chapter, a short recap of loop shaping, PID control and more importantly the funda-
mental limitations of linear feedback control and the corresponding trade-offs is presented.

A-1 Basics of loop shaping

In this Section, some basic nomenclature and definitions, common in feedback control and
loop shaping, are presented. For a detailed study, the reader is referred to [41]. Consider a
Single Input Single Output (SISO) negative feedback loop as shown in Figure A-1, with a
plant G being controlled by a controller C, with reference signal r1, tracking error e, control
command u, input (or load) disturbance du, plant output x, output disturbance dy, actual
output y, measurement no ise nm and measured output ym.

Here the open loop transfer function is defined as L(s) = C(s)G(s). Closed loop transfer
functions, namely, Complementary Sensitivity T (s) , Sensitivity S(s), controller sensitivity
C(s)S(s) and plant sensitivity G(s)S(s) are given as:

T (s) = Y (s)
R(s) = − U(s)

Du(s)
= − Y (s)

Nm(s) = L(s)
1 +L(s)

S(s) = Y (s)
Dy(s)

= E(s)
R(s) = Ym(s)

Nm(s) = 1
1 +L(s)

C(s)S(s) = U(s)
R(s) = − U(s)

Nm(s) = − U(s)
Dy(s)

= C(s)
1 +L(s)

G(s)S(s) = Y (s)
Du(s)

= G(s)
1 +L(s)

(A-1)

1Lowercase letters like r(t) represent the time domain signal while the corresponding uppercase letter, R(s)
represents the Laplace transform of the signal.
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Figure A-1: A generic SISO negative feedback loop with reference signal r, tracking error e,
controller C, control command u, input(or load) disturbance du, plant to be controlled G, plant
output x, output disturbance dy, actual output y, measurement noise nm and measured output
ym.

Additionally, it can be seen that

T (s) + S(s) = 1 (A-2)

The Laplace transform of the actual output is given as:

Y (s) = T (s)R(s) + S(s)Dy(s) + S(s)G(s)Du(s) − T (s)Nm(s) (A-3)

The Laplace transform of the actual error, ea = r − y, is given as:

Ea(s) = S(s)R(s) − S(s)Dy(s) − S(s)G(s)Du(s) + T (s)Nm(s) (A-4)

The objectives of feedback control include achieving good reference tracking and disturbance
rejection upto the bandwidth frequency, attenuating high frequency noise above the band-
width and/or making the closed loop robust to model uncertainties, gain variations or time
delays.

From Equation (A-4), we can see that, to achieve low error due to reference and disturbance
signals, we require low S(jω)2, thereby requiring high loop gain L(jω) at frequencies below
bandwidth. Also, to have low error due to measurement noise which exists at higher frequen-
cies, we require low T (jω), and thereby requiring low L(jω) at those frequencies. Additional
constraints are placed on the magnitude and phase of the loop gain, owing to requirements of
stability and robustness margins like Gain, Phase and Modulus margins. Loop shaping is the
technique of synthesizing the controller using frequency domain tools like Bode and Nyquist
to obtain the required shape of L(jω) thereby obtaining the desired closed loop characteris-
tics. An ideally desired shape of L(jω) is shown in Figure A-2.

2The Frequency Response Function (FRF) corresponding to a transfer function is obtained by substituting
the Laplace variable s with jω. In the absence of a model, FRF may be obtained by frequency experiment
data.
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Figure A-2: Bode Plot of ideally desired loop gain in different frequency bands.(Cyan lines
represent the asymptotic magnitude and phase lines, while blue lines represent the actual ones.
Image courtesy [42].)

Some definitions in loop shaping:

• Crossover frequency ωc is the frequency where the loop gain crosses the 0 dB mag-
nitude. This is also one of the definitions of the closed loop bandwidth.

• Gain Margin (GM) is the factor by which the loop gain magnitude can be multiplied
before instability occurs (i.e., loop gain becomes −1).

• Phase Margin (PM) is the amount of additional phase lag that can be accommodated
at ωc before instability occurs (i.e., phase of loop gain at ωc becomes −180 deg).

• Modulus Margin (MM) is the minimal distance between the critical point −1 and
the Nyquist plot of L(s). This is also the maximal peak of the Sensitivity function
S(jω) over the entire frequency range.

A-2 PID tuning : rule of thumb

An integer order PID controller in the series form:

CPID =Kp
⎛
⎝

1 + ωi
s

⎞
⎠
⎛
⎝

s
wd

+ 1
s
wt
+ 1

⎞
⎠

(A-5)
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where Kp is the proportional gain, ωi is the frequency where the integrator action ends, ωd is
the frequency where the derivative action starts and ωt is the frequency where the derivative
action is tamed. The Bode plot of such a Proportional-Integral-Derivative (PID) controller
is shown in Figure A-3.

Figure A-3: Bode Plot of a generic CPID controller as in Equation (A-5). (Image courtesy [40]).

The proportional action is used to control the cross over frequency. Integral action is used to
remove steady state error and increase the loop gain at lower frequencies. Derivative action
is used to get phase lead at the crossover frequency.

For mass based second order systems like mass, mass- spring and mass-spring-damper systems,
tuning guidelines for a rule of thumb PID controller [40] are given as follows:

• To achieve unity gain at the crossover frequency, the gain of the controller, Kp must
cancel the gain of the plant at ωc (∣G∣ωc). Also, Kp must cancel the additional gain
introduced by the derivative action depending on the ratio of ωc and ωd as will be
discussed ahead.
Kp = ωd/ωc

∣G∣ωc
= 0.33
∣G∣ωc

• The derivative action should start at a frequency one third of ωc so that phase starts
increasing well before ωc and a substantial phase margin can be achieved. ωd = 0.33ωc.

• The derivative action should be terminated at a frequency beyond ωc so as not to amplify
noise at higher frequencies, this is done at three times of ωc. ωt = 3ωc. It must be noted
that keeping ωt and ωd geometrically symmetric about ωc helps achieve maximum phase
lead exactly at ωc and not before or after it.
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• The integrator action, starting from very low frequencies should stop at a frequency one
third of ωd so that the π/2 rad phase lag caused by the integrator can be fully recovered
before ωc. Thus ωi = 0.33ωd ≈ 0.1ωc.

This rule of thumb PID controller when applied to mass based second order plants can
achieve a phase margin of about 45 deg and bound the maximum peaks of Sensitivity and
Complementary Sensitivity to under 3dB.

A-3 Limitations and trade-offs in linear control

Achievable performance by using linear feedback control has fundamental limitations [4,5,43].

A-3-1 Bode’s gain phase relationship

For a stable minimum phase system(i.e., all the poles and zeros in the left half plane) G(s), a
unique relation exists between the magnitude ∣ ⋅ ∣ and phase∠ of its FRF G(jω). Bode’s gain
phase relation states that at a frequency ω0,

∠G(jω0) =
1
π
∫

∞

0

d log ∣G(jω)∣
d log(ω) log

RRRRRRRRRRR

ω + ω0
ω − ω0

RRRRRRRRRRR
d log(ω)

= π
2 ∫

∞

0
f(ω)d log ∣G(jω)∣

d log(ω) d log(ω) (A-6)

where the weighting kernel f(ω) is given as,

f(ω) = 2
π2 log

RRRRRRRRRRR

ω + ω0
ω − ω0

RRRRRRRRRRR
= 2
π2 log

RRRRRRRRRRR

ω
ω0
+ 1

ω
ω0
− 1

RRRRRRRRRRR

f(ω) practically dies out beyond a decade above and below the frequency of interest ω0. Thus
for a slope that remains constant over this interval, (A-6) can be approximated to:

∠G(jω0) =
π

2
d log ∣G(jω)∣
d log(ω) = π

2
n

where for eg. n = −1 for a slope of −20dB/dec in the Bode plot and n = +2 for a slope of
+40dB/dec.

To understand trade-off arising from Bode’s gain phase relation, let us consider a PID con-
troller as given in Equation (A-5) and designed3 for a crossover frequency ωc of 100 Hz. From
Figure A-4a, it can be seen that such a controller provides a phase of around 50 deg at ωc.
Suppose an additional D-action is employed, i.e., a PID2 controller, to achieve higher phase
at ωc, then this is accompanied by an inevitable additional magnitude slope of +20 dB/dec,

3The corresponding gains for the controller can be obtained using rule of thumb guidelines presented in
Section A-2
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thereby amplifying the noise at higher frequencies and reducing gain magnitude at lower fre-
quencies, i.e., deteriorating reference tracking and disturbance rejection, as compared to the
PID. This can be seen in Figure A-4a.

PID = 1
3∣G∣ωc

⎛
⎝

1 + ωc
10s

⎞
⎠
⎛
⎝

3s
ωc
+ 1

s
3ωc

+ 1
⎞
⎠

PID2 = 1
9∣G∣ωc

⎛
⎝

1 + ωc
10s

⎞
⎠
⎛
⎝

3s
ωc
+ 1

s
3ωc

+ 1
⎞
⎠

2

While on the other hand, to achieve higher loop gain at lower frequencies, if an additional
integral action is employed, i.e., a PI2D controller, then this comes with extra phase lag,
leading to a slight reduction in phase at ωc (Figure A-4b) which deteriorates transient response
in terms of increased overshoot and settling times.

PI2D = 1
3∣G∣ωc

⎛
⎝

1 + ωc
10s

⎞
⎠

2
⎛
⎝

3s
ωc
+ 1

s
3ωC

+ 1
⎞
⎠
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(b) Bode plot of P ID and P I2D controllers

Figure A-4: Bode plots comparing PID2, PI2D and PID controllers to demonstrate Bode
gain phase relationship

A-3-2 Waterbed effect

Bode’s Sensitivity integral is given by

∫
∞

0
ln ∣S(jω)∣dω = π∑

k

Re(pk) −
π

2
lim
s→∞

sL(s)

where pk are the right half plane poles of L(s). In the absence of right half plane poles and
when the relative degree of L(s) ≥ 2, then this integral simplifies to

∫
∞

0
ln ∣S(jω)∣dω = 0
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This integral translates to a push-pop effect, i.e., if we reduce the magnitude of S(jω) at some
frequency then it increases at other frequencies. To understand the trade-off let us consider
a pure mass system G = 1

0.5s2 . Consider two different PID controllers C1 and C2 designed for
a ωc of 2π100 rad/s.

C1 =
1

3∣G∣ωc

⎛
⎝

1 + ωc
10s

⎞
⎠
⎛
⎝

3s
ωc
+ 1

s
3ωC

+ 1
⎞
⎠

C2 =
1

8∣G∣ωc

⎛
⎝

1 + ωc
10s

⎞
⎠
⎛
⎝

8s
ωc
+ 1

s
8ωC

+ 1
⎞
⎠

Controller C2 is designed such that it achieves higher PM and flatter phase around ωc thus
making the closed loop more robust to gain variations as compared to C1. The corresponding
open loop transfer functions are L1(s), L2(s) and the corresponding Bode plots are given in
Fig. A-5a and the sensitivity functions are S1(s), S2(s). Though C2 pushes the maximum
peak of S2(s) to lower than that of S1(s), the magnitude of S2(s) over the entire range of low
frequencies becomes more than that of S1(s) (Fig. A-5b), thereby adversely affecting reference
tracking and disturbance rejection. This is the classic performance robustness trade-off.
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(a) Bode plot of open loop transfer functions L1(s) and
L2(s).
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(b) Bode plot of Sensitivity transfer functions S1(s) and
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Figure A-5: Bode plots comparing the loop transfer functions and Sensitivity functions for two
different controllers to demonstrate waterbed effect.
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