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Abstract

Attribution of the malware to the developers writing the malware is an important factor in cybercrime in-
vestigative work. Clustering together not only malware of the same family, but also inter-family malware
relations together provides more information about the authors and aid further malware analysis work. In
this report, previous work which concluded attribution on compiled binaries can be done by a programmer
their style is questioned. Given insight on this matter, this report explores new clustering techniques for both
static and dynamically derived features from malware binaries. Both methods are complementary as they
provide very different types of data. In the static analysis, the data for the similarity comparison is derived
from disassembled binaries, while in dynamic analysis the choice was made to record system calls executed
by the malware during execution. We use a finer granularity than when comparing the data of the complete
binaries with each other, such that instead of differences, fine similarities among malware families can be
found. Evaluation of clusters is a difficult subject, because of its unsupervised nature and data quality related
causes. However, upon manual inspection of the generated clusters, the newly developed clustering methods
confirm previously discovered similarities but also find new connections among malware families.

iii





Preface

Ik wil Team High Tech Crime onderdeel van de Nederlandse Politie bedanken voor de initiele onderzoeksvraag
en het bieden van verdere ondersteuning tijdens deze Thesis.

Ik wil Sicco Verwer bedanken voor alle gesprekkken, ideeen en feedback.

Mijn Familie wil ik bedanken voor alle onvoorwaardelijke liefde en hulp, want zonder jullie was ik nooit zover
gekomen.

Verder wil ik Vincent bedanken voor alle pauze potjes 0AD, en Rizkhi voor haar constante aanmoediging.

Delft, Juni 2020

v





Contents

1 Introduction 1
1.1 Goal. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Research methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.7 Summary of results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.8 Structure of this report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Related work 7
2.1 Static analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Coding style . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 Binary similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Dynamic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.1 Distributions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Sequence alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.3 Graph matching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.4 Frequent patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.5 Current methods of API call sequence extraction systems and techniques . . . . . . . . . 11

2.3 Research gap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Static analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Dynamic analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.3 General . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 Theory 15
3.1 Malware. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Code obfuscation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.2 Data transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.1.3 Packing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.4 Runtime evasion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.5 Evasion detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.1 n-grams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.2 Cosine similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.3 t-SNE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.4 HDBSCAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2.5 Clustering evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Static analysis 25
4.1 Dataset Exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.1 Google Code Jam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.1.2 Malpedia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2 Feature extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.1 From source code to machine code . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2.2 Instruction n-grams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vii



viii Contents

4.3 Classifcation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.1 Results: classification - GCJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.3.2 Results: classifcation - Malpedia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3.3 Discussion: classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.4 Clustering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.4.1 Results: clustering - GCJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4.2 Results: clustering - Malpedia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4.3 Discussion: clustering - GCJ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4.4 Discussion: Clustering - Malpedia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.4.5 Limitations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Dynamic analysis 47
5.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Dataset generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.3 Dataset exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.4 Feature extraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.4.1 System call datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4.2 Word2Vec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4.3 Sequence alignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4.4 n-gram based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.4.5 Reduction of the sequence to a Markov chain . . . . . . . . . . . . . . . . . . . . . . . 60
5.4.6 Frequent sequential patterns and frequent item set based . . . . . . . . . . . . . . . . . 61

5.5 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.5.1 Filtering malware system calls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.5.2 Similarity analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.6.1 Full binary n-gram vector analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.6.2 Custom clustering based on frequent set finding. . . . . . . . . . . . . . . . . . . . . . 68

5.7 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.8 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.8.1 Dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.8.2 Technique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.9 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Conclusion and future work 73
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.4 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

A Google Code Jam Dataset - A possible issue 79

B Table comparison Friedex versions 81

C Table comparison TA505 comparison 83

D Dynamic analysis - cosine similarity - Malpedia dumped dataset 85

E Dynamic analysis - cosine similarity - Malpedia non dumped dataset 87

Bibliography 89



1
Introduction

The number of malware samples is still growing in 2019 in comparison to previous years. According to Anti-
Virus company Symantec their latest report of 2019 [70] they detected almost 250 million new malware vari-
ants in just 2018. McAfee [47] shows similar numbers with a count of about 150 million new malware found in
the first three quarters of 2018. These are the typical first lines of the introduction of any malware related sci-
entific research. However, the size of these numbers has not decreased in the past years, instead the numbers
have only grown. The only solution is to actually stop the production of malware, and the way to do that is by
catching the perpetrators developing the malware. As a step towards this we want to attribute the malware to
their respective authors.

Malware developers have a valid incentive to remain anonymous, since it is generally considered a crime
to develop malware and spread malware. Therefore, they take every measure to hide or remove any digital
fingerprints from their software. The development of malware can potentially take several years, for this
reason parts of a malware program like any software are likely to be reused in newer versions of even in other
programs. This can be done in the form of newer versions of the same malware, but can also occur between
malware that have similar goals. We want to identify these similarities in this thesis.

1.1. Goal
In this research we want to analyze these malware binaries with the goal of clustering similar malware sam-
ples in an automated way for forensic purposes. Two main research methods can be distinguished, the anal-
ysis on the binary can be done either statically or dynamically, as illustrated in Figure 1.1. With static analysis
the binary is not actually executed on a system, the binary is only decompiled such that the code can be in-
spected in a human readable format. With dynamic analysis the binary is executed on an actual system, so
the behavior of the program can just be observed and recorded. Both of these have their up and downsides
in terms of available features that can be extracted by the analyst, but also regarding the defences malware
developers put up.

Static analysis

Malware Binary

Dynamic analysis

Decompiling

Execution and monitoring

1. Feature extraction
2. Clustering
3. Cluster interpretation

Figure 1.1: Summary of the flow of information and goals of this thesis.

In both cases we want the full results of the analysis to be human interpretable, such that it can help to
assist in further analysis of a set of malware binaries. Being human interpretable in this case means we want
to be able to visualize the results graphically. All similarity relations should become visible within a single
figure for a set of malware samples.

1



2 1. Introduction

1.2. Similarity
Similarity can be defined in multiple ways, we will look specifically at similarities among compiled software
or binary programs.

The first definition is similarity based on the author’s style of writing program code. On a high level the
style can be expressed in terms of how a programmer structures their software. For instance some program-
mers may prefer larger functions, such as a large main function, while others are very diligent in splitting each
of their programmers functionality in smaller seperate functions. Other examples of a style preferences are
that one programmer may prefer to use for-loops over while-loops, or negate their if-statements to avoid deep
nesting of their code. The style of a programmer is also influenced by the skill level of the individual program-
mer. This similarity measure is independent on the functionality of the program, two programs that have very
different goals, can still be similar based on similarity in style. The question on whether programming style
actually remains after compilation in binary programs, we leave to a seperate section in subsection 2.1.1.

Similarity regarding functionality of binaries can only be found when two or more programs attempt to
(partially) do the same things, possibly in different manners. This form of similarity can be split into two sub-
types. First the similarity can be measured as the literal similarity, two or more pieces of program are then
said to be similar if the set of instructions a program consists of are the same, and the instructions appear in
the same order. The second form of similarity is more complex to identify, it is when two or more pieces of
software have the same input and same output, but use a different method of coming to the end result. Practi-
cally this means that the same goal is reached using a different set of instructions or with the same instruction
but in a different order, formally this behavior is called semantic similarity. It could be caused on purpose to
make two identical pieces of software from the same author look different, but could also be the result of
compiling the same source code using different compilers, compiler versions, or with different optimization
flags. An example of what happens when using different compiler flags is given in subsection 2.1.2.

All forms of similarities can be assessed on different granularities, we can assess the similarity on the level
of the full binary, however we can also assess it in on the basis of smaller pieces within a binary, such as
functions or even smaller on block level components such as by splitting a binary in loops, or the conditions
of an if statement. Examples of these similarities appear when an author re-uses parts of their own work in
different projects, or when the same external libraries are used among projects. By looking at similarity on a
finer granularity it is possible to identify the specific components on which binaries are similar. In addition,
it allows for clustering where a single sample belongs to multiple clusters as it shows similarities in multiple
different places within the binary.

Similarity

Functionality Style

SemanticLiteral

Figure 1.2: Taxonomy of similarity.
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1.3. Research methods
Two methods for data extraction from software can be distinguished. The first is static analysis, and the sec-
ond is dynamic analysis. Each method has its advantages and disadvantages, and result in different datasets.
In Table 1.1 an overview is given of the difference in challenges between dynamic an static analysis. Below we
will give a small introduction, however the analyses of malware is a topic that involves a lot of difficulties that
need to be taken into account while gathering data, therefore this subject received its own chapter provided
in chapter 3. Here we dive deeper in the problems revolving around analyzing malware encountered during
the writing of this Thesis.

Challenge Static analysis Dynamic analysis

Analysis duration Short Long
Code obfuscation x
Encryption x
Stalling x
Instrumentation detection x
Environment detection x

Table 1.1: Overview of difference in challenges between static and dynamic analysis.

Static analysis
Static analysis is generally easier to do in practice for large batches of binaries, because it is not restricted by
the execution time of the program or complex and uncertain environment conditions the program needs to
run in. Defences malware developers put in to make this process slower are the packing of malware (done
by packers), in which they encrypt large parts of their binary or they use obfuscation tools to make the actual
malware code analysis harder. Obfuscation changes a program in such a way that the input and output of the
program remain identical to the non-obfuscated version of the program, while the program is much harder
to understand from the code. A simple example of obfuscation is the insertion of dead code, the extra instruc-
tions do not affect the malware behavior but makes the malware its code longer so it is harder to determine
the programs actual behavior.

Dynamic analysis
Given the obstacles malware builders put into their software to make static analysis harder and the lack of
static information that remains after compilation we also explore author attribution dynamically. Just as in
static analysis a defence against dynamic analysis is obfuscating what the malware actually does, however in-
serting dead code example from above is much less useful now because this behavior will simply be skipped
during execution. Dynamic analysis is able to deal with packers and code obfuscation since the binary itself
will take care of this during execution. The downside is that there are other measures malware developers
use to make dynamic analysis harder. Instead, malware developers try stop their malware from being instru-
mented, examples of this are detecting whether the malware runs in a virtual machine, whether a debugger
is attached to the malware process, or by waiting during execution such that an automated analysis platform
may timeout the analysis before the actual malware execution even started.

Feature selection
The identifiable features we are interested in concentrate around detecting code style and similar code sam-
ples, because features such as ip addresses or strings in the binary code can easily be changed between sam-
ples and can be obfuscated by custom functions in the code. Code style of the author or behavioral charac-
teristics however, cannot easily be changed. The code style of an author entails things such as whether the
author favors C++ vectors over C-style arrays or how well an author handles file operations, such as whether
the author efficiently handles file handle for the same file or if he opens and closes a handle for each oper-
ation. Further behavioral characteristics have to largely remain the same if the goal between two programs
remains the same, certain libraries are used or parts of the code are re-used between projects. In practice
attribution based on binary code fragments has been applied on several well known malware samples. One
of these malwares is WannaCry, a cryptolocker malware, which has been found to to contain code fragments
previously seen in software created by the malware development by Lazarus Group.
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1.4. Research questions
In this research we would like attribute pieces of binary code to a specific author in an unsupervised manor
to make it extendable to to author attribution of malware binaries. The reason for choosing an unsupervised
technique is that with malware binaries labels identifying the author are either uncertain or do not exist al all.
The main research question is therefore:

Main research question

How can we automatically attribute authorship among recent malware binaries using either static or
dynamic analysis?

This main research question can be divided in the following 5 sub-questions. Sub-question 1, 2, and 3, will
be discussed in the chapter 4. While sub-question 4 and 5 will be discussed in chapter 5. For the evaluation of
the methods we try to use relatively recent malware samples, such that the results are actually relevent with
current malware technology. In addition, we use "high-profile" malware such that the

Sub-question 1

Is it possible to find similarities among malware binaries using an authors coding style information?

Sub-question 1: Previous research concluded that it was possible to learn a model of a programmer’s cod-
ing style after compilation in binaries. Based on the work from this literature we will assess if what was learned
actually captures coding style and not something else. Possibly debunking the viability of learning coding-
style from malware binaries, and therefore the infeasibility of clustering malware based on this feature.

Sub-question 2

What features that help attribute authorship can be extracted from recent malware binaries using
static analysis?

Sub-question 2: A feature is a property that helps describe a characteristic of an item to be modelled.
Applying this definition to our subject, we want to find a property that can efficiently be used to model a
single malware binary such that it can be compared to other malware binaries. Starting from the features
used previously we will evaluate how well they work for static binary similarity, and what has to be done to
improve the feature.

Sub-question 3

How can similarities among malware binaries be found using features statically derived from recent
malware binaries?

Sub-question 3: Finding the features alone is not enough to do the analysis. In addition to the feature a
(distance) metric to compare the statically extracted features from different malware with each other. Us-
ing the feature(s) found in sub-question 3 we will try to answer how to evaluate similarity among multiple
malware binaries on a as fine as possible granularity.
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Sub-question 4

What features that help attribute authorship can be extracted from recent malware binaries using
dynamic analysis?

Sub-question 4: This question is comparable with sub-question 2, although now the feature will now be
extracted dynamically. Data from malware can be extracted in a large scala of manors dynamically, we will
discuss these options, and argue why the chosen datatype is deemed best. Finally, we will discuss the method
of feature extraction from the data.

Sub-question 5

How can similarities among malware binaries be found using features dynamically derived from
recent malware binaries?

Sub-question 5: This is the dynamic analysis version of sub-question 3, just as with the static analysis we
like to get the similarities on a as small as possible granularity. We will use the dynamic features derived from
the malware as described in sub-question 4, and use non-conventional clustering method to find similarities
among samples of different malware families.

1.5. Scope
As with all research projects related to malware this research will only cover currently available malware.
An effort was made to use currently relevant malware such that the research could theoretically be used in
practice, instead of being just a proof of concept. However, new malware might use new obfuscation methods
which could result in that the proposed methods in this project no longer work on newer malware samples.

When similarities are found between malware we have to keep in mind that a developer did this on pur-
pose to shift the suspicion to another person or group. For instance by adding code fragments of other mal-
ware to their own malware. Whether attribution to a specific person, group or country is correct and not in
fact an attempt to put blame on someone else, is out of the scope of this research.

1.6. Contributions
This thesis will make several contributions to the field of binary analysis on malware. Starting from current
research on author attribution we evaluated how well these methods work on recent malware samples. In
addition, we provide multiple methods for malware clustering that is are dependent on complicated envi-
ronments.

• An overview of what makes attribution and similarity identification harder on malware binaries than
on non-malware software. During this research a lot of malware related things ought to be taken into
account before the data could be gathered and analysis of the malware samples could even take place.

• Evaluation of methods from previous literature for author attribution on recent malware binaries. Static
author attribution has mostly been on non-malware datasets.

• Clustering evaluation of inter malware family similarity on recent and high profile malware samples.
This is done using both statically available features and as well as dynamic features in the form of sys-
tem calls.

• An addition to the Cuckoo malware analysis system that is able to generate a dataset of system calls of
the full system tagged with process and thread id of malware samples. This dataset could be used for
clustering similar processes based on system calls.

• A system that works on the most recent version of the currently most used operating system and is
relatively easy to put into practice and is maintainable over time. Past studies could no longer be build
upon or even replicated since the required tools are no longer online or maintained.
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1.7. Summary of results
We analyzed the same dataset both using a static analysis technique and a dynamic analysis technique and
found that they can result in very different results for the same dataset. For static analysis we made the
choice to analyze malware on function level of instruction sequences. For dynamic analysis, after taking in
consideration evasion techniques, such as process injection, we made the decision to use Windows system
calls/library-calls as the source of information of a malware their behavior. By using a low granularity on
which similarities are calculated, we showed that we are able to more effectively find what parts are similar
and why they are similar, than when treating then a malware binary as one blob of data. We were able to find
several new connections between previously unconnected malware families using the developed technique.

1.8. Structure of this report
This report starts by summarizing current literature on author attribution and similarity analysis among mal-
ware binaries in chapter 2, from this past research the research gap for this new research is identified. Then
in chapter 3 we go over all relevant things to keep in mind while doing scientific research on malware. It
explains some of the measure malware developers take to avoid or hinder analysis and that could influence
the research results. Next the thesis can be split in two main parts, the first one is analysis done using static
program analysis and the second is analysis done using dynamic program analysis. In chapter 4 we start with
evaluating malware using static analysis. Where we use a novel method based on system call traces to try to
answer the main research question. After the static analysis we switch to dynamic analysis in chapter 5, where
sequences of system calls are used to cluster similar malware together. Finally, in chapter 6 the conclusion of
the entire Thesis will be summarized, and the answers to the research questions are formulated.
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Related work

This literature review has two main goals, the first is to identify the current state of the art regarding author
attribution or finding similarities between malware. The second goal is to identify features previously used for
other purposes than binary similarity such as anomaly detection, but could potentially be adapted to fit the
objective of finding similarities. Both goals are separately explored for static analysis and dynamic analysis.

2.1. Static analysis
We make a distinction between work that claims to capture code style and work that does binary similarity.
Author attribution based on code style is different from just finding similarities among binaries based on code
re-use, in the sense that we want to be able to attribute malware to an author independent of the program’s
functionality. This approach is comparable with study of stylometry for text in natural language.

2.1.1. Coding style
Before moving to source code, we can look at the study of writing style of natural text, also called stylometry,
which existed before computer source code even existed. With stylometry an author of a piece of text can be
attributed based on an author’s writing style instead of the contents of the text [51]. Examples of an author’s
style that can be extracted from their text are the choice of words which is influenced by an author’s vocab-
ulary, average length of sentences, or the use of punctuation. Computer program source code is still text,
but is structured very differently compared to natural text, since the goal of the text is different. The purpose
of the text is not to tell a story, but to compute something, or rather to provide a recipe for the processor to
computer something. Although source code is bound by some pre-defined structural properties and fixed
keywords most source code languages still allow for flexibility regarding the exact structure of a program. In
addition to structural choice, source code still consists of user defined words, such as variable names and
function names, the choice of which can be heavily influenced by the author’s taste, just as it is for natural
text. Because of these similarities with natural text, stylometry, has also been applied successfully in source
code for the purpose of author attribution [31].

Source code cannot be used directly on a computer’s processor unit (CPU). Before computation the source
code needs to be compiled to binary code. In Figure 2.1, we provide an example of the process of compiling
from (1) source code to (2) binary code (compiling), and making the binary code readable again using a pro-
cess called (3) disassembling to retrieve the instructions that are sent to the CPU. There are multiple tools
available to generate this disassembly, examples are IDA1, Ghidra2, or Radare23. Different disassembler may
produce different binary code for the same binary code. We will use Radare2 for disassembling during this
thesis, as it is open source and provides an Application Programming Interface (API) which helps to disas-
semble large datasets, by connecting it to the rest of application.

The compilation process, however removes many of the features that the stylometric author attribution of
source code relies on. Examples of these features that a compiler (potentially) removes are code comments,
variable and function naming style, usage of whitespace, but also code specific things such as that a while and

1https://www.hex-rays.com/products/ida/
2https://github.com/NationalSecurityAgency/ghidra
3https://rada.re/n/
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Compiling Disassembling

Figure 2.1: On the left we see that the source code is compiled to binary representation, after dissasmbling we are left with the output
on the right.

for loop produce the exact same binary code after compilation as demonstrated by Figure 2.2. The following
works explore the question on whether a compiler leaves enough (different) features unique to an author to
still attribute binary code to the writer of the source code.

int while_loop() {
int x = 0;
while (x < 10) {

x++;
}
return x;

}

int for_loop() {
int x;
for (x = 0; x < 10; x++) {

}
return x;

}

push rbp
mov rbp, rsp
cmp dword [var_4h], 9
jg 0x12cf
add dword [var_4h], 1
jmp 0x12c3
mov eax, dword [var_4h]
pop rbp
ret

push rbp
mov rbp, rsp
cmp dword [var_4h], 9
jg 0x12eb
add dword [var_4h], 1
jmp 0x12df
mov eax, dword [var_4h]
pop rbp
ret

Figure 2.2: Comparison of for and while loop after compilation use the GCC compiler. From the disassembled output after compilation
(starting with push rbp) can be seen that only the memory locations of the jump instruction (jg and jmp) are different between the two
functions.

In previous research discussed below, author attribution specifically has only been done statically, instead
of dynamically on malware binaries. This is probably the most logical solution if the source code is not ob-
fuscated, because of the scalability advantage of static analysis over dynamic analysis due to the speed of the
analysis. Since static analysis is generally quicker than dynamic analysis, because the program does not have
to be executed.

The first paper on the subject of attribution of binaries ever published was by Rosenblum et al. [62]. They
used several features in combination with an SVM classifier. The features they used were Graphlets, Control
flow Graphs, N-grams and idioms which are N-grams containing a wildcard. From their results it becomes
clear that N -grams based features were the most important feature. To focus the attribution on user-written
code they removed library functions after compilation. The highest reported accuracy for classification is
78% with 20 authors and 16 samples per author. They also attempted clustering using K-means, using up to
60 different authors with an undefined set of samples per author and achieved and Adjust Mutual Index value
of 0.4.

Caliskan et al. [22] attempted to improve on the Rosenblum by using besides N -grams of of the disas-
sembled code like Rosenblum, N -grams of the abstract syntax tree which was acquired by decompiling the
binaries using IDA hex-rays. On a dataset of 100 programmers, they reported an accuracy between 65% with
one training sample and 96% for 8 training samples on the GCJ dataset. Instead of SVM like Rosenblum, they
used Random Forrest for the classification.



2.2. Dynamic analysis 9

Meng et al. [48] went further by doing author attribution of binaries that were developed by multiple
authors, classifying for each block of code the author. They introduced four new features. The first is the
number of instruction prefixes used, the second are operand features which may show data access and data
type patterns. The third feature is the number of constant values. In addition to the instruction features,
control flow, dataflow and context features were used. For classification SVM on dataset sourced from github
was used.

2.1.2. Binary similarity
In this subsection we discuss works that uses functionality of the code to find the similarity, instead of simi-
larity based on the style of the code.

Diffing
When trying to solve the problem of author attribution as the similarity of binary code fragments, much
more research than on similarity as code style has been conducted. Some research has the focus of finding
small differences among binaries instead of finding small similarities among binaries. Examples of these are
BinDiff [33] which constructs graph isomorphisms by matching tuples of graph nodes between two graphs
greedily from one match to the other. First on call graphs and once these are found, on the CFGs. When no
match can be found the node in one of the graphs is considered a difference between the graphs. In order to
reduce the number of comparisons the sets of tuples are reduced, such as by only selecting nodes that have
matching in and out edges or similar function names.

BinHunt has the goal as BinDiff, as it searches for binary differences instead of similarities. It improves
on BinDiff by using symbolic execution and theorum proving.

Hashing
Hashing is used in similarity analysis to reduce the computational complexity of finding similarities among
all binary samples and for reducing the feature space. Instead of comparing all samples with each other
which requires O(N 2) time for N samples, the features of a binary samples are hashed. Hashing can reduce
the features space by causing hash collisions for features with different values. This is called locality sensitive
hashing Jing [35], in the form of min hashing to find semantic similarities. Jang et al. uses hashes to reduce
the feature space [32]. They experimented with this technique for reducing N -gram feature vectors to a hash
value.

Semantic analysis
The semantical equivalence is determined on the level of registers, meaning such equivelence checker is
able to check equivalence of two sequences of instructions even when the register values are different. In
addition, information that could help during a semantic analysis from sequences of instructions, includes
information such as argument types and memory addresses. This could for instance happen when using
different compiler versions or different compiler flags between two on two identical pieces of source code.
An example of this is illustrated in Figure 2.3, where a piece of code is compiled with different compilation
flags.

Another reason for wanting to find similarities on a semantic level is the use of code obfuscators. Jin
[35] used min hashing on the input and output behavior of basic blocks. The semantics are captured as
four components on a basic block. (1) The effect on the registers, the effect on memory, if the basic block
contains a function call, (3) the arguments of the function of b, and if the block contains a jump (3) the branch
condition of this jump. Lakhotia [44] does something similar except they added an additional step in order
to also make the literal register names generalized, leaving a symbolic representation of the blocks.

2.2. Dynamic analysis
There are various methods for identifying similarities with dynamic analysis, in the following sub-sections we
will focus on the methods in literature that use system calls in their method. This type of feature has already
been used in past literature for malware analysis tasks. They used distributions, sequence alignment, graph
matching and frequent patterns.

2.2.1. Distributions
We identified literature that directly computes the difference between two system call traces based on a dis-
tance metric, or a distance based on the distribution of (subsequences) of system call traces. From the system
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Figure 2.3: Comparison of a function from the GNU Coreutils4 SHA1 binary compiled with different flags, on the left compiled without
optimization, and on the right compiled with optimization flag -O3, which optimizes for execution time.

call traces a feature vector is generated, the full ordering in which the system calls appear is reduced to sub-
sets of system calls in the form of n-grams. These still capture some of the ordering in which the system calls
appeared, and have the advantage that they can be converted to finite feature vectors.

Canzanese [24] used n-gram based features from system call traces, and used it classify malware samples.
They found that n-grams with the length 3 in combination with the random forrest algorithm produced the
best results in terms of F1 score. Interestingly they did not use the full system call traces produced by the
malware, but only the first 1500 calls. They argue that most of the interesting malware characteristics happen
during these first system calls, such as host configuration modifications, communication with remote servers
and new process creation. More interesting, since we want to do malware attribution, is clustering. Apel [17]
had the goal to find relations among malware samples of polymorphic malware. They experimented with edit
distance, a measurement based on Kolmogorov complexity. The best method they found was the use n-gram
based vectors, they experimented with multiple sizes and found experimentally, just like [24] that 3-grams
gave the best clusters. For the distance metric between the vectors they used Manhatten distance.

2.2.2. Sequence alignment
Sequence alignment is a process that is used to find similar subsequences among two or more larger se-
quences. It is an important subject in the field of biology where it is used for aligning DNA/RNA sequences.
Sequences are aligned to maximize a score that is based on on the number of gaps in the aligned sequences,
and the number of mismatched and matched elements of the sequences. The pairwise similarity between
two traces of system calls is however quite expensive since all pairwise alignments have to be done for the
entire dataset. Comparing all traces with each other has therefore a time complexity of O(N 2) for the number
of sequences N .

There are two types of sequence alignment, global and local alignment. In global alignment the entire
sequence is aligned, with the possibility of gaps, while in local alignment the goal is to match parts of one
sequence to parts of the other sequence, it optimizes for local regions to have the highest possible similar-
ity. Famous algorithms, and still relevant algorithms are the Smith and Waterman algorithm [67], for local
alignment and the Needleman–Wunsch algorithm [52], for global alignment.

System calls have also been studied in various works regarding malware detection [37, 38, 72]. They all use
a popular modern DNA/RNA sequence alignment algorithms from biology and directly apply it to sequences
of system calls to find difference between regular and benign and malicious behavior. Research by Kirat and
Vigna [39] used alignment of system call sequences to search for evasive signatures in malware with their
system Malgene. Given two system call traces of a malware sample, one executed on a non-cloaked virtual
machine and one on a bare metal system. They align the traces to find the evasive point in the trace from the
virtual machine. To improve the system call alignment it uses the notion of critical system calls, these are calls
that are more important for the alignment than other system calls. Examples of these are system calls related
to file operations, register events or process/thread events. Another improvement is made by BinSim [50]
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which extends the sequence alignment for system calls, with Symbolic execution to find differences between
two binaries. The advantage of using symbolic execution is that it is possible to gather all possible paths of a
malware binary, however the disadvantage is that the system to acquire the data becomes very complex and
symbolic execution may not work for all malware.

2.2.3. Graph matching
Graphs can be constructed from subsequent system calls, depending on the amount off additional data in
addition to just the system call index numbers, they can be constructed as a Markov chain or as complete
functional graph which requires keeping track of the program state.

Park [57] used system calls to do malware family classification by comparing the maximum common sub-
graph. However, finding the maximum common subgraph between two graphs is a known NP-hard problem,
so this method evidently has scaling issues. Nikolopoulos [53] did unsupervised malware classification using
system call dependencies. They created Markov chains by grouping sequences of system calls to a specific
set of types. This is done by using several well known distance and similarity metrics using characteristics of
the Markov chain, such as the weights and in-out degrees for corresponding nodes to all families currently in
the corpus. If the distance is the closest between the sample and a certain family it is classified as this family,
and moves on to the classification.

2.2.4. Frequent patterns
Frequent patterns in system call traces are sub-sequences of system calls that appear more often among sim-
ilar malware samples than among non-similar malware. They can be used to mine correlations, associations
or features from a database consisting of sequences. The mined frequent item sets can be used as a feature
selection technique as done by Sami [64], use the patterns as feature directly as done by [76], or to create
features as shown by Qiao [60], who first mined frequent item sets, then sorted these by support to generate
n-gram vectors. From these n-gram vectors the distance between two sequences was computed. We ques-
tion whether n-grams were the right choice, since n-grams do not yield much information here since they
will maximally appear once for each sequence. In addition the number of features can be huge depending on
the number of unique frequent item sets.

Not targeted at malware specifically, but text clustering using frequent item sets has been explored in [78]
and [66]. However, these cluster whole documents, which may not be what we want since the granularity
of a whole document, or in our case malware sample is too big. It may be possible that similarities are only
visible on a finer granularity, such that a single malware sample may lie in multiple clusters, for instance if it
combines two parts from two different malware samples that only share code through this sample.

We can compare frequent pattern mining and local alignment, the difference is that in local sequence
alignment the subsequences are still in the order they appeared in. For malware traces this is not a logical
assumption, a function in one malware may be called in the beginning of the execution while in another
malware the function is called at the end of the execution. Frequent sequential set mining does not take this
global ordering of local alignments into account, instead patterns between traces can be matched indepen-
dent of their location in the system call trace.

2.2.5. Current methods of API call sequence extraction systems and techniques
A popular method for acquiring system calls from malware is done using a modified QEMU emulator. By in-
strumenting the virtual machine itself the whole system can be monitored instead of specifically injected bi-
naries which is the way Cuckoo does its instrumentation. Examples of systems built on QEMU are TEMU [77],
VMScope[34] and TTAnalyze[20]. Another approach for extracting system behavior is by using a hardware vir-
tualization extension as is done by the Ether analysis system [28]. Between each instruction executed in the
virtual machine the analysis platform causes and handles a debug exception as the instructions are trans-
ferred between the guest and the host system.

Another method used to help increase the amount of malware related information by countering anti
analysis techniques is done by tainting the execution [36, 50]. By doing this the malware related processes
can be traced through the system even when the malware uses techniques such as process injection. The
practical problem with this technique is however that it is technically challenging since the virtual machine
environment (QEMU) needs to be adapted to make this possible.
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2.3. Research gap
Given the above literature we will discuss identified problems currently not addressed in the literature, in
other words the research gap. We have divided this into three subsections, first we discuss the static analysis,
second dynamic analysis, and third we shortly discuss general observations applicable to both sub-fields.

2.3.1. Static analysis
Author attribution has been shown to work using mostly the same method for larger and larger datasets over
time. These datasets however mostly consist of non-malware software. Such that the author of the software
did not take effort to make static analysis harder.

Regarding code style similarity for finding the author of a program, previous work calculating code style
similarity over the full binary, however this method assumes most of the binary has been written by the same
author. In practice two reasons can be identified on why this is not the case. Firstly, as identified by the
previous work an author may use library functions, these were filtered out based on the name in their work.
However, when an author removes function names from the binary, as a malware developer is likely to do,
these functions can no longer be identified and therefore no longer filtered out. Secondly, an author may
copy and paste parts of code from other projects that are not theirs, these parts cannot be filtered out at all
and get wrongly attributed to the author of the rest of the code of the currently analyzed binary.

We should also make a distinction between the goal of finding similarities in a dataset where most of the
binaries are the same and finding similarities in a dataset of binaries where the samples are completely dif-
ferent and the goal is to find only similar parts. Finding samples in a dataset where the samples are mostly the
same is in practice used for finding a patched vulnerability between two versions of a program. In malware,
this method could be useful for detecting changes between malware versions. For malware analysts, this is
useful since they now only the new part of the malware needs to be analyzed again. For author attribution on
malware this method is however not that useful, and we are therefore more interested in finding similarities
between malware samples that are very different.

Looking further at previous work on at binary similarity as in semantic similarity, we see a large scala of
quite complex methods. Things such as symbolic execution are interesting solutions in theory, for malware
however, these methods are hard to put to practice. The reason for using these complex methods is to resolve
the problem of finding similarities among binary code even when different compilers are used. However, it is
questionable whether this is really an issue, certainly in the case of author attribution, where could be argued
that a single author is unlikely to use different compilers for different projects. The number of C++ compilers
for Windows is minimal, besides the default Windows Visual C++ compiler, there is only one real competitive
compiler called Clang. However, since Visual C++ is the default compiler, it is more likely to be used by most
projects.

2.3.2. Dynamic analysis
Regarding dynamic analysis we see that system call traces have been used in the past for malware similar-
ity analysis. However, previous research assumed the relevant malware trace on the system was known in
advance and all malware child malware processes start from this process. In practice this is not realistic, cer-
tainly not if the correct malware trace(s) need to be identified for all samples in large datasets. Although a
process (thread) cannot spawn out of nothing it is possible to hide which process actually initiated the start
of a new process by launching the new process under the parent of a different process. Since this is a common
technique among malware to hide its activity a lot of information regarding the malware would not be traced
or analyzed as malware process.

Secondly, all of the above dynamic analysis techniques for malware similarity compare full traces, instead
of partial system call sequences. A similarity match between two binaries will thus only be found when the
binaries are almost completely equal. The granularity of these analyses is thus quite high, which closes of the
opportunity of finding smaller similarities that would appear when two binaries are from the same author
but have different functionalities. We want to find similarities such as a few shared functions or the use of a
certain library in both applications.

Thirdly, all recent works focus on malware detection, classifying or clustering malware families and not
on inter-family similarities between malware from different malware families or authors. This is due to the
lack of good labels for both authors and similarities.

Fourthly a practical matter regarding dynamic analysis are the systems used for gathering the data. All the
systems used by the research discussed above to gather the data are no longer supported by their authors, and
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given their complexity are not easy to redevelop for individual research. Examples of these are Binsim [50]
which uses Bitblaze [68] a system not maintained since 2010. Other such systems are Anubis (website offline),
used in [28], and used in various highly cited papers such as [40, 41], or another platform called Ether [28]
which is also unmaintained since 2009. Even in the unlikely case these systems still work with newer host
systems, they will not work with newer guest systems. No scientific malware research that uses more recent
versions of Windows such as Windows 10 can be found to date. Some recent research still uses Windows XP for
their malware experiments [36], this questions how well these results represent the real world, since Windows
XP has been succeeded by numerous newer versions and already had only a world wide market share 5% in
Januari 20175. The version of the operating system is relevant since malware developers only target newer
operating system versions, since they expose certain vulnerabilities that are not available in older systems.
Another possible reason is that malware developers also know that analysis platforms generally run older
operating system versions and therefore evade these systems.

2.3.3. General
Another important point can be made regarding the datasets used. It is often unclear what the quality of the
acquired malware datasets is, although this has a lot of consequences for value of the results of the research.
Older malware is easier to analyze or find patterns in than newer more advanced malware variants. Another
influence is the level of skill a malware developer has, since a developer with more skill has better ability to
implement measures to make analysis of their code harder. These issues are more elaborately discussed in
section 3.1.

2.4. Summary
The two approaches, static and dynamic analysis are clearly separated in the related work. We started with
work that used coding style as a measure to find similar binary samples. All of which use supervised classi-
fication on statically acquired features. After this we continued looking at work that uses the functionality of
a program as its definition for similarity. For static analysis, we discussed works that used techniques such
as diffing, hashing and semantic analysis. Regarding dynamic analysis, the types of features are more dives,
however we put the focus on works that used system call sequences as their feature. Works that used n-gram
distributions, sequence alignment, graph matching and frequent patterns were discussed. Lastly, regarding
dynamic analysis, since the extraction of system mcalls is not a straightforward task, methods from past works
were researched. Finally, the research gap for both static and dynamic analysis is reviewed, which gave the
further direction for this Thesis.

5https://gs.statcounter.com/windows-version-market-share/

https://gs.statcounter.com/windows-version-market-share/
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Theory

In this chapter, the difficulties with analyzing or reverse engineering Malware will be explained, and the con-
sequences this has for the scientific value of the experiments. First, we will discuss techniques malware de-
velopers use to make the analysis more difficult or even near impossible. These are relevant to explain since
it can affect the final research results and therefore the conclusions.

In addition, we will discuss the fundamental metrics and algorithms used in this Thesis in section 3.2.

3.1. Malware
Conducting scientific research on malware is difficult because there are a lot of uncertainties with the dataset.
Questions such as:

• Which malware samples do we use? A large variety of samples can be found on the internet however
not all samples should be treated equally. Some malware may be made by more advanced or serious
developers as a means of living while others are just created to annoy a friend. These two certainly do
not fall into the same category, but how is this determined?

• What is the quality of the data acquired from the malware? There are some websites that collect and
index malware samples by their malware family, but often it is unclear or unknown who or what as-
signed the labels to the samples. Even the label names themselves are inconsistent among anti-virus
companies.

• Does the malware still work or is it broken since the required command and control server is no longer
online? If malware is dependent on some external server and fails to function without it the original
malware behavior can no longer be observed. We might not even see any malicious behavior anymore.

• When executing a malware sample, is the observed behavior the actual “real” malware behavior or did
the malware detect it was being analyzed and just showed dummy behavior? This could be caused
by certain preconditions the malware author set are not met. Examples of such conditions are that the
malware only runs at a specific time or the malware only runs if the locale of the infected PC is a specific
target locale. It could also be that the malware has detected it is being analyzed and therefore shows
some dummy behavior to fool the system.

All of these uncertainties follow from the fact that it is almost always unclear what malware is supposed to do
without deep analysis for each and every sample.

Besides, these uncertainties it is hard to generalize malware research to all possible malware. The issue
with malware is that samples can be very different from each other depending on the goal of the malware
and the author’s style or skill. From a research and analyst point of view, we would like to be able to analyze
all malware using some generic technique, however, this is unlikely to ever be possible since each developer
can create their own custom countermeasure, on top of this malware constantly evolves to adapt to new
analysis techniques. We can draw the analog biological viruses, a research subject that has been around for
much longer than computer viruses. These malware need to be analyzed separately because they can show
completely different behavior from other malware and have different properties.
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In general, most literature simply ignores this question and tries to prove that their method works by
testing it on datasets containing enormous amounts of malware, however often without specifying exactly
what samples they used especially for the larger datasets. In the extreme case it could very well be that a
dataset of 1000 samples each that appear to be unique given their file hash, all are in fact the same malware,
but packed differently.

In the following, three categories of malware evasion will be discussed, that were encountered during the
writing of this Thesis and that may provide a better understanding of the things to keep in mind while doing
research on malware.

3.1.1. Code obfuscation
Code obfuscation is used by malware developers to make it harder to understand for a malware analyst to
understand what is going on in the malware’s code. Obfuscation can manifest itself in many ways [16, 18],
and there are too many options to explain them all. However, in order to get a basic understanding we will
explain a couple of frequently used obfuscation techniques.

3.1.2. Data transformation
Binary code may contain strings of text, these are either for displaying when the software is executed, or to
refer to system library functions. To a software analyst the location of these strings inside the binary can
provide a good indication to what a part of the code does, even without really understanding the code itself.
Therefore, the software developer can obfuscate these by encrypting them inside the binary and only once
they are nescecary to display to the user decrypt them.

Dead code insertion
Dead code, is code inside a program that never actually gets executed. The insertion bloats the amount of
code an analyst has to analyze, and makes it therefore harder to find the actual malware code during static
analysis.

Another type of code insertion are opaque predicates. These are boolean functions for which the outcome
is known a-priori, however these functions can be made to look very complex, making it hard for the analyst
to determine it is opaque. A simple example of such an opaque function is given in Figure 3.1.

x2mod 2 == 0

x

True False

Figure 3.1: Example of an opaque predicate, independent of the input number the output will always result in Tr ue.

Virtualization
More advanced obfuscation techniques could wrap entire functions in a virtual interpreter. An example of
such obfuscation engine is Tigress [25] with its own custom bytecode, program counter, stack pointer, and
list of custom instructions. The virtual machine will then simply consist a loop that that runs over an array of
instructions. A simple example of what this would practically look like is given in Figure 3.2 and algorithm 1.

Control flow flattening
Control flow flattening, as the name suggests provides obfuscation to the flow or structure of the program.
On function level it works by first seperating the basic blocks of a function from each other, each block is then
placed as the case of a switch statement. This switch statement acts as a dispatcher and is called indefinitely
by the use of a surrounding loop. The blocks end with a reference to the switch case that contains the next
block [45]. The result of the obfuscation is that there will no longer be a direct link between the basic blocks,
since the switch statement always sits between them.
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int fun(int x) {
int z = 3;
int y = z + x;
return y;

}

int fun(int x) {
// int z = 3;
7: c7 45 f8 03 00 00 00 mov arg1,0x3

// int y = z + x;
e: 8b 55 f8 mov arg1,arg2

11: 8b 45 ec mov arg1,arg2
14: 01 d0 add arg1,arg2
16: 89 45 fc mov arg1,arg2

// return y;
c3 ret

}

Figure 3.2: On the left an example program in C, on the right the assembly of the same program (Stack operations have been removed
from the assembly)

Algorithm 1: Example of a function simulating a virtual machine for the function Figure 3.2. pc
represents the program counter, the program is stored in as an integer array.

pc ← 0;
while True do

instruction ← getInstruction(pc);
switch instruction.operator do

case MOV do
instruction.arg1 ← instruction.arg2;
pc ← pc + 4;
break;

end
case ADD do

instruction.arg1 ← instruction.arg1 + instruction.arg2;
pc ← pc + 4;
break;

end
case RET do

pc ← pc + 1;
break;

end
end

end



18 3. Theory

3.1.3. Packing
The second category is related to code obfuscation, however the binary is now obfuscated as a whole. As the
name suggests the malware is packaged within a layer of obscurity. The original binary is encrypted and is no
longer understandable as it looks like random data. Random data is of course not executable on the system,
therefore a small routine is added to the malware that is able to extract or unpack the encrypted malware data.
The malware analyst can try to reverse engineer this routine in order to extract the obfuscated malware data,
as the malware can only fully be analyzed when in an unpacked state. For some common packers, reverse
packers have been developed however if the developer of the malware has developed its own packer and the
packer is a one of a kind it may be easier to just let the malware unpack itself by executing the malware on a
sandboxed system. Once the malware has unpacked itself the memory of the unpacked malware executable
can be dumped. For analysis, we can then make a RAM memory dump to acquire the malware sample in its
unpacked state.

Acquiring the malware from memory is not a straightforward task. Unfortunately, even after the malware
binary is unpacked it may not lead to a single binary that is ready for analysis and explains the workings of
the malware. To avoid detection malware can use a technique called process injection. With this technique,
malware runs its code in the address space of another (benign) process. To get the malware from the RAM
dump, the dumped processes must be scanned for possible malicious injections and once the injected part
is found the injected malware needs to be extracted from the process.

3.1.4. Runtime evasion
Process injection
Besides being destination to unpack itself in, process injection is also good way to evade detection while run-
ning. Process injection is a technique in which one process injects a thread into another third-party process.
This is hard to detect since the parent thread and process of this new thread appear to be from the third-
party process and not from the process that injected the thread. Korczynski [42] reported in their research
that out of their tested malware the detected that 23.23% uses some form of process injection, therefore we
cannot ignore this problem. To detect the existence of the malware a previously completely benign system
process now needs to be scanned for malicious behavior. For malware analysis this makes the job extra hard
since there are many stealthy techniques to do this injection. There are multiple techniques malware makers
use to do process injection, on Windows these are possible without special permissions, while on Linux the
same can be done once certain security features are disabled. The simplest technique for process injection
is by DLL injection, this is done by first loading the DLL using VirtualAllocEx. Once the DLL is loaded
to memory we can simply create a new thread in the target process by letting the malicious process execute
CreateRemoteThread from the Windows API, to have another process execute the code contained in the
DLL. There are a however much more advanced techniques that are currently functional on the latest Win-
dows versions, examples of these are injection using the ALPC, Atom Bombing, or Stack Bombing [43]. If the
injection is not recognized, and we still want to be certain all malicious behavior is monitored, we need to
monitor the complete system, which greatly increases the amount of data to be analyzed.

System call monitoring evasion
One way of monitoring what a malware is doing or to detect malicious behavior is by monitoring a binaries
interaction with the operating system, these interactions are necessary to make any changes on the system,
such as file operations, register operations or process/thread creation. Developers of malware know this
interaction with operating system gives away information about the malware its behavior and they therefore
attempt to make these operations a stealth as possible. Malware can stop the ability of monitoring Windows
API calls by manually loading the Windows API DLL (ntdll.dll) and extracting the system call numbers
itself. After extraction the system call can be made by directly calling the system call index. It does this by
loading the number of the system call into the eax register of the processor and then execute the syscall
instruction (on 64-bit systems).

By doing this they circumvent at least three analysis techniques. The first is that during static analysis
of the binary specific imported system calls are no longer visible. Normally when a Windows program uses
library calls they are shown in the imported functions table in of the PE files header. However when using
above technique this is no longer necessary, and therefore this table can remain largely empty.

The second thing the malware developer circumvents is that it is no longer possible to easily hook these
library calls with custom ones. This could be desirable to for instance add code to functions that contain
instrumentation code.
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Thirdly doing system calls manually also stops the Windows event callbacks from triggering, therefore
tools such as the official Windows Process Monitor will be unable to detect any system calls executed by the
malware.

The fact that malware does this can be demonstrated by observing the difference in the count of unique
system calls between the statically imported table and the system calls made dynamically. By using the Mal-
pedia dataset of dumped malware binaries from subsection 4.1.2, and retrieving the imported functions table
using Lief [71]. We observe that only 104 samples out of the total 750 samples have an imported functions
table that actually contains functions.

System call obfuscation
In [49] propose an attack to make analysis using system calls harder. By replacing system calls dynamically
with semantically similar system calls, the same malware has a different system call trace while exercising the
same behavior. A simple example of this would be to insert a NtSetInformationFile that does not change
anything on the file call between a NtCreateFile and NtClose. However, such an attack is still to be exposed
in the wild.

Stalling
Evasion of analysis can also be done by delaying the execution of the malware by sleeping to let the timeout
in sandbox systems stop the analysis before the execution even started. Oyama studied a variety of sleep
behavior in malware [55], low level sleeps using an the NtDelayExecution is relatively easy to detect when
monitoring system calls, higher level sleep functions such as Sleep and SleepEx call this same lower level
function. However, he notes that sleep can also be achieved using stealthier techniques than calling these
specific sleep functions. For instance by using dummy instructions, which could be achieved by calling a
certain function a specific non-destructive function for a certain amount of times, causing the system to
virtually hang on these calls for the duration of the calls. This subject has not yet been researched.

Analysis detection
In order to follow the execution of a program, a debugger can be attached. However, a debugger can be
detected by the to be debugged application. In Windows there is even the system call IsDebuggerPresent
that returns whether a process is currently being debugged. Another method is to detect breakpoints by
monitoring the system time. A breakpoint will cause the program to pause, the debugged program can detect
this be checking execution time between parts of the program. If too much time has passed between two
points during execution it may have been paused with a breakpoint.

Another tool security researchers use for dynamic analysis are virtual machines such as Virtualbox or
Qemu. With these, the behavior of malware can be observed while no actual systems are threatened. An
additional benefit of virtual systems is that they can easily be reset to an uninfected state such that multiple
malware samples can be efficiently analyzed after each other. There are however ways for software to detect
is running on a Virtual machine. Firstly virtual machine software comes with so-called guest additions, this
software is installed on the guest and used make a functionality such a shared clipboard, file share, or adaptive
graphics to the window size of the guest on the host possible. This guest-software can be detected by malware
by scanning the existence of certain processes, files or register entries on the system. Secondly software could
probe the vendor label of the hardware such as the motherboard or ethernet adapter. Thirdly it is possible to
distinguish a real CPU from an emulated one [56]. This works by generating specific instruction sequences by
using a fuzzer (a tool that generates many different inputs versions based on an initial seed), that generates
different results specific for a certain emulation environment. This could for instance happen when there is
a bug within virtual machine that causes a certain instruction to fail.

3.1.5. Evasion detection
Packers can be relatively easily detected compared to other evasive techniques. By measuring the entropy of
a binary or piece of a binary we can get a good indication on whether the malware contains packed data. En-
tropy is a information theoretic measure for information or "surprise" or "uncertainty", expressed as number
between 0 and 1, with 0 being low uncertainty, and 1 being high uncertainty. A non-packed binary will not
contain a perfectly random set of bytes, but will show a pattern, with certain bytes occuring more often than
others. An entropy close to 1 indicates the binary is likely to be packed or encrypted. By splitting a binary in
chunks of bytes we can visualize the entropy pattern of the full binary to determine how likely it is the binary
is packed.
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To show the difference in entropy between a non-packed and a packed binary we plotted the entropy of
two binaries in Figure 3.3. The entropy is calculated in chunks of 256 bytes for both binaries. The packed
sample shows a very high average entropy of 7 bits per byte, in addition the entropy is very even over the full
binary. Based on these two factors we can conclude that the binary of Figure 3.3b is packed.

(a) Benign application, Microsoft Windows Notepad (b) Packed malware from Globeimposter malware family

Figure 3.3: Examples showing the difference in entropy pattern between a benign non-packed binary and a packed malware binary.

Detecting code obfuscations is harder than packer detection. A well studied de-obfuscation technique
is symbolic execution [65, 75] which analyzes which program inputs cause which parts of the software to
execute, Banescu et al. [19] showed that symbolic execution is effective against multiple code transformations
such as flattening, opaque predicates and virtualization. Salwan et al. [63] demonstrated this by simplifying
programs obfuscated with related to virtualization. Guinet et al. [30] developed the tool Arybo, which is able
to simplify mixed boolean expressions used to generate opaque predicates.

Putting symbolic execution in practice however is a challenge to attach it to malware. Besides this prac-
tical problem, symbolic execution is slow and expensive operation since there is the problem of "path ex-
plosion" [69]. Since systems using symbolic execution try to discover every possible execution path within a
binary, the number of unique paths grows significantly as the binary grows.

3.2. Metrics
In this section a summary of the workings of the data analysis techniques used in the rest of this Thesis is
given. We will go over n-grams and cosine similarity as they are used in both the static and dynamic analysis
chapters. The t-SNE algorithm is technique published in 2008 that can be used to visualize high dimensional
data, by reducing the data to a 2d or 3d map. In this thesis t-SNE is used to map the relative distances among
a set of malware samples to a 2d figure. HDBSCAN is a clustering algorithm that can be use to automatically
cluster the similar samples, it can be used unsupervised as it does not require the number of cluster apriori.

3.2.1. n-grams
n-grams can be used to vectorize sequence of elements. From n-grams vectors can be used to vectorize a
sequence, while capturing the sequential ordering of the elements. In addition the relative frequency of the
elements is captured by counting the number of occurances of an n-gram and normalzing it by the element
with maximal occurance count generated n-grams from a sequence.
For example from the sequence of elements ab → b → c → b → b the following n-grams can be created.

• 2-grams / bi-grams: (a,b), (b,b), (b,c), (b,b)

• 3-grams / tri-grams: (a,b,b), (b,b,c), (b,c,b), (c,b,b)

In vector form, accounting for all possible combinations elements in 2-gram form these would become:

2-grams: [(a, a), (b,b), (c,c), (a,b), (a,c), (b, a), (b,c), (c, a), (c,b)]

This will result in the vector: [0,2/4,0,1/4,0,0,1/4,0,0]

The n-gram pieces are generated using a sliding window, which moves a single element at a time. Even though
the sequences can be of different lengths the conversion to vector format allows to compare the similarity
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between the sequences once they are put into vectorized format. Depending on the length of the patterns
that need to be captured the size of the n-grams can be varied. Longer n-grams will however result in longer
vectors since the number of possible combinations grows as the the length of the n-gram increases. Which
can be formally explained as vn , where v is the number of unique elements (vocabulary) in the dataset and n
being the n-gram length.

3.2.2. Cosine similarity
Cosine similarity is a similarity measure between two vectors expressed as the angle between them as in
Equation 3.2.2. The similarity between two vectors is given as the angle between two vectors and taking the
cosine results in a number between 0 and 1, with an outcome of 1 meaning the vectors are the same. Cosine
similarity is a more logical choice for document similarity and comparing n-gram vectors, as it does not take
into account the magnitude of the vectors unlike non-L1 normed euclidean distance. This is important when
documents are not of the same length, since if a document is longer it likely increases the frequency of words
and therefore increases the distance between the two documents.

si mi l ar i t y =Cos(θ) = A ·B

‖A‖‖B‖ (3.1)

3.2.3. t-SNE
The t-SNE [46] (T-distributed Stochastic Neighbor Embedding) algorithm is a dimensionality reduction al-
gorithm that can be used for visualizing highly dimentional data. t-SNE does not retain the distances or the
density between the points, instead it keeps the probabilities. Since we use t-SNE to evaluate clustering it is
important to understand its parameters. The most important parameter is the perplexity, the most appropri-
ate value of this parameter depends on the density of the data. The denser the data the larger the required
perplexity. In order to verify how "real" the visually appearing clusters are, we will verify the t-SNE plots using
a clustering algorithm (HDBSCAN) that is run the original non-dimensional reducted data.

T-SNE can also be used to visualize pairwise similarity matrices directly by mapping them to 2d space.
Which is what we will use t-SNE for in this thesis. This way we can use any custom pairwise distance metric
instead of the default euclidean distance.

3.2.4. HDBSCAN
The HDBSCAN [23] algorithm is a clustering algorithm that uses hierarchical clustering on top of the DB-
SCAN algorithm. One of the main advantages of this algorithm over and algorithm such as k-means is that
it is not required to provide the number clusters beforehand. In summary it works by first creating a mini-
mum spanning tree from all datapoint using a custom metric. The metric is defined as mutual reachability
distance Equation 3.2.4, where a and b are datapoints. cor ek gives the distance to the core of the k nearest
neighbours of points a and b.

dmr each−k(a,b)=max{cor ek (a),cor ek (b),d(a,b)} (3.2)

After constructing the minimal spanning tree, the tree is then converted into a hierarchical tree where
each split represents the dividing line between two subclusters. In order to flatten the hierarchy into ac-
tual clusters, HDBSCAN requires the minimum cluster size parameter. At each split, the algorithm will test
whether one of the possible clusters at the split has fewer points than the minimum cluster size, at which
point the datapoint will be "removed" from the tree. If the split does not exceed the minimum number of
datapoint the points are classified as noise and do not belong to a cluster. Otherwise, if the split results in
two possible clusters that have more points than the minimum cluster size and the clusters persist. The last
step is then to actually extract the clusters from the filtered tree. To make the decision of extracting a cluster,
the algorithm uses the notion of stability of a cluster. The stability is the distance between the point in the
tree the datapoint was removed from the tree and the point in the tree when the point where it became its
own cluster. If the sum of all the stabilities of the child clusters is larger than the stability of the cluster, the
cluster stability is set to be the sum of the stabilities of the child clusters. Otherwise, when the stability of
the parent cluster is greater than the sum of its children, the cluster is then a finalized cluster, and all of the
clusters sub-clusters will not become clusters. Once the root is reached the algorithm is finished and the flat
clusters returned.
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3.2.5. Clustering evaluation
After developing a new distance measure, clustering technique, or new dataset, we would evaluate how well
the clustering works. If given a test set for which the labels are given, the performance can be directly eval-
uated by comparing the predicted clusters with the expected clusters. However, often this is not available,
therefore we will have to resolve to different methods.

The first method is visually inspecting the result, if the data is multi-dimensional it first has to be projected
to a 2d plane using a method such as t-SNE. Although simple this method makes it hard to compare results
of different algorithms.

Therefore, a number describing the quality desired. We will discuss three metrics, purity, the rand index,
and F1 measure.

Purity
Calculating purity consists of two steps, first the majority class for each cluster is determined, then the second
step is to count the occurance of this majority class for each cluster and divide by the total amount of samples.
Formally this method is described as in Equation 3.2.5, where M is the set of clusters, and D the set of classes,
N is the total amount of samples.

1

N

∑
m∈M

maxd∈D |m ∩d | (3.3)

The downside of purity is that having a cluster for every datapoint will generate a perfect score of 1, so
purity does not quantify the quality of the clusters against the number of clusters.

Rand index
The rand index (Equation 3.2.5) is simple accuracy, requiring four categories of samples, TP, stands for True
Positive which are the pairs of samples assigned to the same cluster, True Negative (TN) is assigned to a pair of
different samples assigned to different clusters. False Positive (FP) are pairs of different samples in the same
cluster, and lastly False Negative (FN) that are similar samples that are assigned to different clusters.

The pairs are calculate by:

Pai r s = N (N −1)

2
(3.4)

Rand Ind = T P +T N

T P +F N +T N +F P
(3.5)

F1 score
Lastly, we can use the F 1 score (Equation 3.2.5), this score penalizes false positives slightly more than the rand
index. The score is the harmonic mean of precision and recall. Precision (Equation 3.2.5) is the fraction of
sample pairs that are "correctly" clustered together among all pairs samples in a cluster, while recall (Equa-
tion 3.2.5) gives the fraction of "correctly" clustered pairs of samples among pairs of samples that should have
been clustered together in a cluster.

Pr eci si on = T P

T P +F P
(3.6) Recal l = T P

T P +F N
(3.7)

F 1 = 2 ·pr eci si on · r ecal l

pr eci si on + r ecal l
(3.8)
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3.3. Summary
In the first section, we discussed a broad range of countermeasures malware developers may take to hinder
the analysis of their malware. It is important to keep these in mind during malware research as they may
explain unexpected results, and provide a precaution for not blindly trusting results and drawing conclusions
too fast.

Although there has been research to circumvent anti-analysis techniques, these have not been tested on
malware, possibly given their current complex impractical state.

In the second section, we summarized the methods of some general methods used during this thesis. n-
grams and cosine are not the most difficult concepts, it is however important to be aware of the characteristics
of t-SNE regarding how to interpret the visualizations.





4
Static analysis

Static analysis is only viable on unpacked malware, (we will show this in subsection 4.4.2). Since for packed
malware, only the unpacking routine will be possible to disassemble, which is possibly not written by the
author and instead generated by an external tool. Therefore we can only use datasets of binaries that are
either not packed or unpacked/dumped from memory such that we are left with the unpacked state of the
applications. For verification purposes, the dataset also needs to contain some ground truth for each binary
of a possible author.

We will be doing static analysis using n-grams over instruction sequences of disassembled binaries. The
general idea is that a programmer’s programming style such as how they organize their functions remains
after compilation. The similarity will be assessed using two granularities, first by measuring the distance
between distributions of instruction sequences of full binaries, which are likely more focused on the style as
a whole. The second granularity is similarity on the level of blocks of code such as functions, which probably
capture similarities regarding code similarity.

We can only evaluate how well the metric estimates the similarity based on the label of the sample. This
means that even though samples from different authors may be very similar we are unable to determine if
the source code (style) of these samples is also similar. For classification, this means that a sample may be
misclassified, for clustering, this means that a sample may be placed in a cluster with another author.

Nevertheless, we will attempt some engineered clustering techniques, to attempt and cluster malware
samples based on function similarity. The evaluation will be done visually.

4.1. Dataset Exploration
For the following experiments, we will make use of two datasets, the first is a dataset from Googles program-
ming challenge, Google Code Jam. The second dataset is from Malpedia [59], a freely available curated Mal-
ware repository, that has an API from which all samples can be downloaded.

4.1.1. Google Code Jam
The first dataset a set scraped from Google Code Jam (GCJ) programming challenge1 which is an online an
algorithmic programming challenge. This dataset has also been used in all of the previous research on au-
thor attribution to evaluate the developed methods (subsection 2.1.1). The contest is held from 2009 to now
(2019), but we will only use the dataset from 2009 to 2017, since the submission website changed since 2018,
which made it harder to scrape. For this challenge a contestant has to submit a single source code file that is
expected to solve the algorithmic problem at hand. Because the choice of program language is open to the
contestant we filtered the scraped submissions on submission written in C, The GCJ source code was then
compiled using GCC version 9.1.0, without any optimization flags. Only authors that have a minimum of 10
submissions are selected for evaluation, which results in a total number of authors of 6724.

However, for the experiments below we only used a subset of the samples. To limit the effects of a specific
dataset, the average of multiple years is used and the subset within a year is randomized. Besides, because
we want to leverage that functionality of the code is the same the samples from an author are selected such
that for each author the samples to the same assignment are used.

1https://codingcompetitions.withgoogle.com/codejam
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4.1.2. Malpedia
The second dataset consists of a set sourced from Malpedia[59]2, this website contains a curated dataset of
malware samples with some samples labeled with possible authors of the malware. Since almost all malware
is packed, which hides almost all malware functionality and author information except for the unpacking
routine, we will use only the samples that have a memory dumped unpacked version available. The authors
of Malpedia noted that by using unpacked samples the size of the malware corpus greatly reduces since, du-
plicates caused by different packers or packer arguments do not cause duplicates in the database. Therefore,
we argue that although the same size of the database may be smaller it is a better approach than using tens
of thousands of samples which appear very similar after analysis, because they are factually the same after
unpacking.

Malpedia provides author labels for the malware samples in the database, however it is possible a sample
is tagged with mulitple authors. Given the messy nature of malware, there is uncertainty with the labeling.

Filtering the dataset on, just the samples that have a been published in an unpacked state on the website
leaves a dataset of 2591 PE executables, see Figure 4.1 for the distribution of the dataset. Some samples could
not be analyzed, Radare2 seems to fail to find any functions other than the main function for some binaries.
Another issue we faced was that Radare2 appears to get stuck on some binaries. Binaries that had these issues
were removed from the dataset.

Classification
For the classification we only use the samples that have a single author attached to them, which leaves us
with 82 authors. In addition, we require each author to have at least 3 unique malware families. With this last
condition a dataset of 50 authors, with in total 271 samples remains.

Figure 4.1: Histogram of Malpedia dataset, used for classification.

Clustering
Since clustering is used there are no real labels, therefore the quality of the clusters has to be determined
visually, Using the whole dataset would result in too many data points in a graphical figure to still analyze,
therefore we will take a subset of malware samples gathered from Malpedia. The used set is not a random set,
but instead a set of samples that according to expert sources have indications that there are links among these
malware families possible due to them having the same author. In the following, we will investigate whether
we are able to find these links using the developed method. These actors currently have several malware
binaries attributed to them, an overview is visible in table Table 4.1. After removing binaries from which less
than 5 functions could be extracted the dataset contains 150 samples. We will shortly discuss the expected
links between these malware families.

Dataset
Emotet is a modular malware, it began as banking trojan malware, it has however changed to be a method of
delivery for other malware [11]. It is dependent on a command and control server to download its modules,
therefore it is likely once the server is offline it will no longer function as intended. It is often seen together
with Trickbot, as Trickbot uses Emotet as a loader for its installation [5].

2https://malpedia.caad.fkie.fraunhofer.de

https://malpedia.caad.fkie.fraunhofer.de
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Actor Malware family #Dumped #Non-dumped

Mummy Spider Dyre 1 1
Mummy Spider Emotet (Geodo, Heodo) 10 8
TA505 (SectorJ04 Group) Andromut (Gelup) 1 0
TA505 (SectorJ04 Group) Flawedammy 1 2
TA505 (SectorJ04 Group) Flawedgrace 1 1
TA505 (SectorJ04 Group) Get2 (FRIENDSPEAK) 3 3
TA505 (SectorJ04 Group) Locky 24 24
TA505 (SectorJ04 Group) Clop 4 4
TA505 (SectorJ04 Group) SDBbot 1 0
TA505, Indrik Spider Dridex 38 50
Indrik Spider FriedEx (BitPaymer, DoppelPaymer, IEncrypt) 5 2
Wizard Spider Trickbot (Trickster, TheTrick, TrickLoader) 24 29
Pinchy Spider Gandcrab (GrandCrab) 15 14
Pinchy Spider REvil (Sodinokibi, Sodin) 14 0
Lunar Spider Vawtrak (Catch, grabnew, NeverQuest) 14 15
Lunar Spider IcedID (BokBot, IceID) 3 3
- Gozi (CRM, Gozi CRM, Papras, Snifula, Ursnif) 2 2
- GlobeImposter 4 4

Table 4.1: Table of malware samples plotted in Figure 4.13 with their assigned author sourced from the Malpedia [59] database. The same
dataset is used later on in the dynamic analysis.

The Trickbot family is used to steal credentials and personal information, in addition to being delivered
by other malware it can spreads through exploits over the network, or through phishing campaigns using
infected documents [5]. Trickbot is believed to be related to the older malware family Dyre (Not in this analy-
sis) [13].

The TA505 group has multiple different malware families on their name. They have also been known to
distribute Trickbot through spam campaigns [9]. Andromut and Get2 are both downloaders for other mal-
ware. SDBbot, and Flawedammy and Flawegrace malware that try to establish remote access. Locky and Clop
are both ransomeware malware. Globeimposter is also ransomware and has links to TA505 [8], however this
has not been recorded on Malpedia.

Dridex is a malware focussed on acquiring credentials. There is a connection between the Dridex and the
Friedex malware. Similarities have been found in the form of shared functions, similar PDB paths, and even
similar build timestamps [3]. These leads may point to the malware originating from the same author(s). In
addition, this malware has been dropped by Emotet in the past [12].

Friedex is ransomware malware, it encrypts the files on an infected system. Additionally, it can export
files and can threaten to leak them in order to increase the pressure of paying for the decryption key. Friedex
has been known to be dropped by Emotet.

The Gandcrab malware family was active for one and a half years starting in January 2018. It is a ransome-
ware malware variant, provided as a service to others to actually run the attack campaign [6]. Gandcrab has
been to shown to have similarities with Sodinokibi.

Sodinokibi, has reportedly [4] been the successor of the Gandcrab ransomware from Pinchy Spider. The
links were made based on the similar attack patterns, but also on code similarity [10]. The popularity of Sodi-
nokibi also started to rise directly after the Gandcrab authors reported to stopped developing Gandcrab [5].

Vawtrak The aim of Vawtrak is to steal credentials, additionally, it is able to set up a remote connection
through VNC and SOCKS servers. It is the predecessor of IceID malware [2]. Campaigns involving Vawtrak
have stopped since 2017. Vawtrak reportedly contains parts of the Gozi malware [7].

IcedID’s goal is to steal credentials by inspecting network traffic by setting up a proxy. The malware is
suspected to be developed by the same group as who developed Vawtrak, which stopped operating right
after IcedID was first seen [2].

Gozi’s source code of Gozi was leaked in 2010, [7]. Just like IcedID it’s goal was to steal credentials.

A summary of the connections are visualized in Figure 4.2.
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Figure 4.2: Summary of the expected connections among malware families based on individual research of Antivirus and cyber security
companies.

4.2. Feature extraction
4.2.1. From source code to machine code
A programmer uses a higher level language to write his programs than the processor of a computer is able to
interpret. Therefore, before a program can be executed by the central processor unit (CPU) it is required to
translate the program to a language the CPU understands, also known as compiling the source code.

A compiled program can be decomposed into 5 layers:

1. Byte: The lowest layer are the bytes consisting of eight bits valued zero or one.

2. Instruction: Multiple bytes form a opcode with its operands, which together form an instruction

3. AST Block: A block in the AST could be body of a loop or the branches of an if statement.

4. Functions: A program is composed of a collection of functions.

5. Program: A collection of one or more functions form a program.

The layers can be viewed as a directed graph of graphs, where the functions are the nodes and the calling
of a function creates an edge between the nodes. A program is a graph of graphs since, also called call graph,
each function can also be viewed as a directed graph. These inner graphs are also called Control Flow Graphs
(CFG). We will compare binaries on the function level since the tool we used for disassembling was not able
to reliable extract enough information on block level.

4.2.2. Instruction n-grams
We will extract features on the instruction level, by disassembling a binary using Radare23. Because the direct
output of Radare2 contains some garbage, we will first sanitize the output.

Using the sanitized output we will create n-grams from the instructions. n-grams can be used as a method
to create a probabilistic language model from sequences of symbols. We will use it to generate a distribution
of the appearances of sequences of instructions in a binary. n-grams are generated by taking a sliding window
of length n over the instructions and count the number of appearances of each sequence.

For example, we obtained the following raw disassembled output from Radare2:

lea rdx, [rax*4]
mov eax, dword [rdx + rax]
jmp 0x4781

This will first be sanitized such that memory locations are changed to a constant MEM, since they are likely
to only appear once. The sanitized output then looks like:

lea rdx, [rax*4]
mov eax, dword [rdx + rax]
jmp MEM

3https://rada.re/r/

https://rada.re/r/
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We recognize two variables regarding the type of n-gram on instruction level. (1) The number n of in-
struction in an n-gram and (2) the number of “words” in a gram which could lay between 1 and 3.

For example, this instruction sequence can be extracted to the following n-gram sequences:

• 1-gram with wordsize 2: ((lea rdx), ), ((mov eax), ), ((jmp MEM), )

• 2-gram with wordsize 1: ((lea, ), (move, )), ((mov, ), (jmp, ))

4.3. Classifcation
We first use classification of the author, because this was the research question of previous work instead of
clustering. In addition, this allows us to validate our implementation against previous work.

Figure 4.3, illustrates the classification pipeline. Since the dataset for each author only consists of up till
12 samples, we use stratified k-fold to split the training and test set into k-sets, meaning that the number of
training samples is k−1. This should reduce the effect a certain choice of training and testing samples has on
the final precision. Stratified k-fold compared to regular random k-fold makes sure that each fold contains
the same amount of samples for each class. This avoids the risk of a class not containing any training samples
in a fold.

For the classification algorithm we use random forrest, since this showed the best results in previous
work, in contrast to a classification using support vector machine (SVM). Regarding the hyperparameters for
random forrest we saw very little effect when experimenting with our dataset, therefore we chose to keep
them on the default given by the implementation we used (Scikit learn4).
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Figure 4.3: Flow of data during classification

Random forrest determines for each sample the probability it being a certain class. The class with highest
probability however is not always the correct class, as the sample of a different author may also be very similar.
However, the correct class is possibly the second or third most likely class. Therefore, we also try a relaxed
form of classification that will also evaluate a prediction as correct if the correct class lies within the r most
likely predictions.

4.3.1. Results: classification - GCJ
The results from classification using Random Forrest on the GCJ dataset are shown in Figure 4.4. In Figure 4.4a
the number of training samples per author are varied, there are n−1 training samples used and 1 test sample.
From the figure becomes clear that a higher number of training samples clearly results in a higher average
precision. From these results of Figure 4.4, we see that larger n-gram sizes overall provide higher precision.
The features combined label is a model trained on the largest 8 n-gram types, (3-gram 1-wordsize untill 4-
gram 4-wordsize). However, this combined feature does not perform much better than the largest 4-gram
alone.

We only report precision, as each class (author) contains and identical number of samples. Therefore, the
average precision and recall scores are identical.

4https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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(a) Varying the number of samples per author (b) Varying the number of unique authors

Figure 4.4: Classifcation results GCJ dataset

In Figure 4.5 the combined n-gram feature is used with a relaxation parameter. r = 4 means that the
prediction still counts as true positive if it lies within the 4 most likely predictions. We observe that an accu-
racy improvement of up to 1.4 times without relaxation can be achieved for the lower number of samples per
author.

Figure 4.5: GCJ with 100 authors, r is the relaxation paramater

4.3.2. Results: classifcation - Malpedia
The same methodology as for the GCJ dataset is applied to the Malpedia dataset. We have however much
less data than for the GCJ dataset. The number of samples is limited to 3 samples per author. Comparing the
results in Figure 4.6 with the results from the GCJ dataset. We see a comparable precision for only a single
and two training samples, the GCJ results however use 100 authors and the Malpedia set has only 50 authors,
so the Malpedia precision score is slightly worse than the GCJ score.

The dataset used for Figure 4.6 does not distinguish samples of the same family for an author, but a differ-
ent version. Therefore, the samples for a single author may be comparable in functionality and share a large
amount of n-gram sequences. To see how much this affects the precision the dataset was filtered such that
only a single sample of a malware family is present per author in the new dataset.

In Figure 4.7 the classification is done for a dataset that only contains a single sample per malware family.
The precision scores are lower than the scores obtained on a set without the filter. This may show that code
similarity, instead of code style has a high impact on classifying the correct author. The results are discussed
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more elaborately in subsection 4.3.3.

(a) Total of 50 authors, varying the number of samples per author (b) Varying the number of unique authors

Figure 4.6: Classifcation results Malpedia dataset

(a) 50 unique authors, Varying the number of samples per author (b) Varying the number of unique authors

Figure 4.7: Classifcation results Malpedia dataset, with only a single sample per family

4.3.3. Discussion: classification
Comparing the results from previous work on the classification of authors on the GCJ dataset with our own
results we can conclude that we can successfully reproduce the work from the literature as was described
in section 2.1. Even though we only used n-grams unlike previous research which used graph features or
disassembled code, the precision remains largely the same as in works that did use those extra features. This
confirms the hypothesis made from the literature that the n-grams add significantly to the information to
describe the separate samples.

As a side note, we found a possible issue with the GCJ dataset, that has not been identified by previous
literature, that could influence the conclusion of the results, this is further explained in the appendix.

However, using the same classification methods on the Malpedia dataset results lesser scores in terms of
precision. The results of the set for which the samples are not yet filtered, to remove samples from the same
family are up to about 40% for the precision score. Which is not too bad, however when the samples are
filtered, such that only a single sample per malware family remains the average precision drops below 20%.

There are two possible reasons for the worse results compared to the Google Code Jam results, the first is
that the author labels of the Malpedia dataset are simply wrong. Someone labeled these samples and possi-
bly mistakes could have been made here since the reasoning for why certain samples may belong to the same
author are manual work and reasons for assigning a certain malware to a certain author can be diverse and
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do not necessarily have to be visible within the malware’s code. Examples of these identifiers could be the
way malware is distributed, the countries the malware is most seen in, or even from the communication in
the case of crypto locker malware. A possible second explanation is that the code (style) is actually similar
among programs from different authors, which could mean the different author labels are actually the same
author, or that the authors share code among each other. In other words, there is not enough difference be-
tween the programs for the classifier to learn. A third option explaining the results between the GCJ, and the
between the two Malpedia sets is that what is learned by the random forest classification is not similarity in
the sense of code style but in the sense of code similarity caused by the functional similarity of the code. We
think this third option is the most likely cause, also given by the results from Appendix A. The GCJ samples are
similar because they are small programs quickly written by an author, an author may favor specific functions
written by him before to do common calculations, and copy these (boilerplate) functions among all their sub-
missions. The higher precision from the Malpedia dataset that is not filtered to contain only a single sample
per family per author, can be explained for the same reason. The same family could have only incremental
improvements, re-using large parts of the code from the previous version of the software. The code largely
remains the same.
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4.4. Clustering
We use two methods for the clustering, the first is to cluster full binaries, the formed clusters are then evalu-
ated by how close the clustered samples from the labeled binaries lay to each other. Since this method does
not yield practically useful results we also propose a second method that produces visibly more useful re-
sults. The second method is to cluster on a finer granularity than on full binary level, and cluster based on
the similarity of functions.

For both methods, just as for supervised classification we use n-grammed instructions as features to rep-
resent a binary sample. For the n-gram length we used bi-grams since from the classifications experiments
we could see that the length of the n-gram had a relatively small effect on the accuracy. Smaller n-grams are
however preferred because they result in a smaller feature vector than larger n-grams, because of the smaller
vocabulary. After creating n-gram feature vector from p unique instructions, resulting in feature vectors of
length pn . Using these vectors we for all samples S we can compute the cosine distance among all samples,
this results in a distance matrix D of size S ×S.

Clustering to determine the author of a binary
Since we can only evaluate whether binary code of the same author appears similar, metrics such as the
mutual information score are useless. Since they also take into account the ”mismatches“, which we cannot
evaluate on whether they are actual mismatches. Instead, we will compare how many of the samples of the
same author lie within a certain threshold of each other.

For all the samples S, we will extract the samples Se that lie within a certain threshold t of the currently
evaluated sample. Because in the distance matrix the diagonal shows the similarity of the sample itself, we
will remove this element from the evaluation. The performance of the clustering is then calculated by taking
the percentage of samples that lie within the threshold t , by calculating |Se |

S−1

Clustering similar functions
We also propose a second clustering strategy as depicted in Figure 4.9 to be used for clustering on a finer
granularity to find the similarity among authors. Since the distribution of instructions over an entire program
might be too dependent on the functionality the program implements.

A cluster is then first defined as a set of similar parts of code, from a larger program, among programs.
We can however not simply put all vectorized blocks of code and feed these to a clustering algorithm such as
K-means, or HDBScan see Figure 4.8. Large parts will not cluster at all, and the clusters we are looking for are
relatively small given the total amount of all points.

Figure 4.8: Sample illustrating that we cannot simple use a common clustering algorithm on the data, each data-point represents a block
of code, in total two authors with each 1 programs.

Instead, it would probably be better to do a comparison of distributions on a finer level, the function level,
such that it would still be possible to identify when a programmer copies a few functions between programs.
We will therefore first split each binary in b blocks Nb , then we first calculate the cosine similarity pairwise
between the blocks of two binaries, before comparing all binaries to each other. We then sort the blocks
based on their similarity score, and call the points with the highest similarity a match. Then for each of these
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matched points, we will look for functions that lie extremely close to each other, therefore, these points are
only a match if the similarity lies within a certain threshold. By counting the matching functions a distance
matrix Ds of size Nb a × Nb b can be computed. More formally the algorithm for comparing two malware
samples with each other is given in algorithm 2.

Disassembly

Malware binary 1

Radare2

Pairwise similarity

Functions

Threshold

Disassembly

Malware binary 2

Radare2

Pairwise similarity

Disassembly

Malware binary 3

Radare2

Pairwise similarity

Count matrix

HDBScan

Figure 4.9

The similarity between the two binaries will then be based on the number of matched functions. From
this, we can then create a new distance matrix with size S × S. Each element of this matrix has the count
of similar functions normalized by the total number of functions of a binary. The main limitation of these
distance matrices is the amount of memory it consumes for large numbers of samples.

Algorithm 2: Algorithm to find similarity between two binary samples, on fine granularity

Input : 2 vectors Ba and Bb of n-gram vectors with shape pn ×b
Output: Matching functions
Ds ← cosine-similarity(Ba , Bb)
D ′

s ← max(Ds )
Nsi mi l ar ← 0
foreach element in D ′

s do
if element >= threshold then

Nsi mi l ar ← Nsi mi l ar +1
end

end
return Nsi mi l ar
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4.4.1. Results: clustering - GCJ
To get an idea of the full binary similarity a sample heatmap is shown in Figure 4.10 from the n-gram vectors.
This show clear square block of high similarity among samples originating from the same author. Based on
this illustration alone we can be quite confident whether we are able to identify clusters of samples from the
same author.

Figure 4.10: Heatmap displaying 5 random authors from the GCJ dataset and 10 of their samples.

This hypothesis is tested using the clustering evaluation described previously, the results are displayed
in Figure 4.11. As expected the higher the threshold the less samples are classified as from the same author.
Also, we see that increasing the number of authors reduces the average percentage only slightly, by about 15
percent.

Figure 4.11: Percentage of samples of the same author within a subset of binary samples that is the result of the threshold value on the
x-axis. Number of unique authors used is 500.
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4.4.2. Results: clustering - Malpedia
We would like to verify whether the developed method is able to detect similarities between Malwares of
different families.

Full binary similarity
The first method to find the similarities among malware samples is to calculate similarity over the full bina-
ries. The results of this are shown in Figure 4.12. Although the malware samples within a family show clear
similarity the possible similarities among the sample disappear in the noise or get cancelled out because of
other parts in the binary.

Figure 4.12: Cosine similarity between n-gram vectorized binaries. Each element is the similarity score between two samples, 1 being
the highest similarity. The diagonal is not calculated.

Function similarity
Since directly calculating the cosine similarity of the full binary does not lead to desirable results, we will now
proceed to show the results from the method to find the finer granularities. The resulting similarity matrix
from this second method is shown in Figure 4.13. This heatmap shows the similarity among binaries on a
function level. We used a threshold of 0.9 as the minimum cosine similarity between two n-gram functions
vectors to be classified as similar.
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The heatmap of Figure 4.13 uses the finer granularity clustering as explained in section 4.4 to plot a ma-
trix Ms . We can use the heatmap directly to visually inspect the clustering results, however to automate the
clustering we can also use a clustering algorithm on the computed distance matrix. In order to inspect the
clustering results, we first need a way to visualize the clusters. We can do this by mapping the similarity ma-
trix to 2d space. In Figure 4.14a we first transformed the similarity matrix of Figure 4.13 to a distance matrix
by taking 1−Ms , then the distance matrix is transformed to 2d space using t-SNE [61]. We also experiment
with multi-dimensional scaling, but t-SNE better represented the clusters as visualized in the distance matrix
for this dataset.

Figure 4.13: Each element is the number of matching functions normalized by the total number of functions of a binary.

Now to do the actual clustering in Figure 4.14b we used the HDBScan algorithm to find clusters with a
minimum size of 5 elements in the original, non mapped data. The found clusters however mostly cluster just
the samples of the family together, probably because the density of these samples is greater than the density
of the samples from different families. Therefore, manual inspection of the similarity matrix is probably better
here. In total, we found 10 clusters, while 27 of the 134 samples did not belong to any cluster, these clusters
are color coded in the figure.

The first thing that can be noticed is that malware from the same family appears quite similar in terms of
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(a) Projection of the distance matrix of Figure 4.13 using t-SNE, samples are labeled by their name.

(b) Projection of the distance matrix of Figure 4.13 using t-SNE, colored clusters are formed using HDBSCAN.

Figure 4.14
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the number of shared functions. In a few cases the malware from the same family form sub-clusters within
a family, possibly because of incremental newer versions. Overall however the families are clearly visible as
they show up as square blocks in the heatmap. Gozi, IcedID, and Trickbot are however an exception on this.

Now what we are actually interested in is whether it is possible to find similarities among malware samples
from different families or different authors.

From left to right on the x-axis of Figure 4.13, we firstly see that Globeimposter has many similar functions
with Gandcrab. Besides, both of these malware families are ransomware malware, no links between these are
currently mentioned in any malware reports.

Secondly Friedex matches functions with Dridex, both of these malware are already labeled as being from
the same actor. They are linked as Friedex being an evolution of the Dridex malware5. It is interesting to still
see similarities given the difference in goals between the two malware. The goal of Dridex was to just extract
information from the infected host, while Friedex is ransomware malware.

Thirdly we see that the 2018 version of Gandcrab a ransomware malware has similarities with many of
actor TA505 their samples, while Clop and Locky are also ransomware, the other families assigned to TA505
are not.

Fourthly Clop shows similarities with Globeimposter, Gandcrab, all of these malware are of the type ran-
someware. However, they currently have a different author listed on Malpedia.

The diagram of Figure 4.15 shows a summary of the found similarities. The found similarities seem to
correlate with the malware type in some cases, although we also found some similarities among samples
that have a different purpose, and are currently tagged with different authors. Several Spider related groups
appear to show similarities with TA505, with the Globeimposter malware which is currently not attributed
could be attributed to the Pinchy spider group based on binary code similarity. We also see a possible wrongly
attributed file, because one Emotet sample appears to be Gandcrab.

Figure 4.15: Graph summarizing the found connections from the analysis of the Malpedia samples

Finally, given the labels we have we use three clustering evaluation metrics. We see that the precision is
higher than recall, the low recall means that some samples are individually scattered over the clusters. We see
this back in the figures, the precision is relatively high since the clusters consist mostly of samples from the
same family.

Purity index Rand index Precision Recall F1

0.93 0.78 0.84 0.33 0.41

Table 4.2

To support the hypothesis that the malware needs to be unpacked for this analysis to succeed. The same
analysis was executed on the same malware samples, however the difference is that now the non-memory

5https://www.us-cert.gov/ncas/alerts/aa19-339a
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dumped version of the malware is used. The results of Figure 4.16 are self-explanatory, no clusters are formed
by the malware samples and therefore no useful conclusions can be drawn.

Figure 4.16: Projection of the distance matrix of non-memory dumped malware samples, dimensions reduced to 2d using t-SNE,
colored clusters are formed using HDBSCAN. Even with a very low perplexity t-SNE forms a single large cluster.

4.4.3. Discussion: clustering - GCJ
Looking at the clustering results we first see that the GCJ clustering for finding similar authors We see that
the number of samples per author does not influence the percentage of samples from the same author that
lie close to each other. The difference between 10 and 2 samples are a maximal of 40% as it increases slightly
as the number of samples rises. Naturally, as the required threshold to be marked a similar increased the
percentage of clustered samples decreases.

4.4.4. Discussion: Clustering - Malpedia
In this subsection, we will discuss the results of the clustering methods on the Malpedia dataset. We first
compare the function level clustering method to the full binary clustering method, then we will discuss three
case studies with the goal of providing a better insight into how useful function level clustering. Finally, we
discuss possible mistakes the method makes and things to keep in mind when interpreting the clustering
results.

Comparing function similarity with full binary similarity
Regarding the clustering strategies for finding similarities among authors, we conclude that simply compar-
ing vectors extracted from full samples does not result in desirable results. For instance, it provides no clear
conclusion as some samples such as the Vawtrak malware appears to lie close to more than 50% of the other
samples. We argue that the function level similarity analysis provides a better view since when two samples
lie close to each other the families to which they belong also lie close to each other, which is not true for the
binary level comparison.

Case studies
In order to further assess how well the function level clustering works we will inspect some of the found sim-
ilarities deeper. We will not try to explain what the code of the selected binaries do, as this is out of the scope
of this Thesis. Instead, we will analyze the underlying data to explain the results. We will look at three cases,
first we will look at the found similarities between Gandcrab and Globeimposter, since this similarity is un-
expected from the given literature. Secondly, we will look at the similarity between Dridex and Friedex, this
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similarity was expected and we will look at how our found similarity aligns with the way the similarity was
determined by antivirus companies. Thirdly we will look at what causes the found similarity in function be-
tween the most the TA505 group’s malware.

These three cases will be discusses on possibly four points, depending on what shows interesting results:

1. Possible reasons for the lack of similarity among the same family.

2. On statistics of the functions, these include:

• Average function length, as in the amount of instructions per function.

• Percentage of functions matched6 between two binaries.

• How connected are the found similar functions to the rest of the call graph (mon-matched func-
tions) in the global call graph.

3. The second point we will look is how the matched functions connect with each other to put the func-
tions into a greater program perspective. A connection between two function is formed by one function
calling the other functions. When not only a set of functions matches between two binaries but also
the connections between these functions matches, it provides additional evidence for similarity of two
functions. See Figure 4.17 for an example.

• Connections between matched functions.

• Connections between the matched functions and the full call graph. This number gives an indi-
cation of how connected the sub-graph of matched functions is to the rest of the call graph.

4. The kind of visible n-gram patterns and the difference between the matched and non-matched set of
functions.

Before moving on with the three cases we will first provide the numbers for the full dataset, such that we
can put the numbers found for the separate cases into context. In addition, this provides us with insights into
the general characteristics of the method on this dataset. From Table 4.3 we see that the matched functions
are significantly longer, as they contain more instructions, than the functions for which no match was found.
We see that on average 35% of the functions could be matched to a function from another binary for binaries
that had matches. Interestingly we see that matched functions are on average longer than functions that are
not matched. Further, we see that we capture on average 22% of all edges in the full call graph. With captured
edges, we refer here to the edges that are present in both binaries, the other edges are on the next row which
are on average 23 edges. The matched functions together form a sub-graph in the two full call graphs that are
compared. We see that on average 322 edges connect these sub-graphs to the rest of the call graph.

µ σ

Matched function length µ 194.383675 598.115463
Matched function length σ 228.637651 562.246477
Non-matched function length µ 62.981182 27.699254
Non-matched function length σ 97.447121 75.005913
# Total functions per binary 496.689010 267.723818
# Matched functions per binary 173.095411 192.961112
# Edges full function graph 1513.477959 1314.559087
# Edges between matched functions 339.977355 685.735263
# Non-matching edges between matched functions 23.164251 61.229428
# Connecting edges to the rest of graph, incoming to matched graph 215.631080 337.683090
# Connecting edges to the rest of graph, outgoing to matched graph 118.289956 189.719698
# Connecting nodes to the rest of graph, incoming to matched graph 57.000632 61.715662
# Connecting nodes to the rest of graph, outgoing to matched graph 64.411560 80.356982

Table 4.3: Statistics of full dataset extracted from call graph properties.

6A match between two functions is defined as the cosine similarity of two functions being higher than the threshold.
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In Table 4.4 we explored the difference in n-grams patterns of the full dataset for the matched and non-
matched functions. If all functions are equally likely to match depending on the type of n-gram the difference
between the two sets should be close to zero. However, we see that the non-matched functions are more likely
to include arithmetic operations such as add mul or logical operators such as xor and and, while matched
functions have a greater tendency to include stack related instructions such as call and push. In addition
matched functions also appear to include the nop instruction more often, which is an instruction which does
nothing, but is used for timing purposes.

The difference from Table 4.4 represents the difference in the number of functions between the matched
functions and the non-matched functions. It is calculated comparing all binaries (excluding binaries from
the same family) to each other, which results in two sets of n-grams, of for the matched functions and one
for the not-matched function. For each set the number of functions that contain each n-gram is counted
for each n-gram. The counts of functions are normalized for each comparison by dividing it by the total
number of matched or non-matched samples. Then the normalized counts are subtracted from each other
by subtracting the normalized matched counts from the normalized non-matched counts.

Bi-gram Difference µ Difference σ Count

(’pop’, ’ret’) -4.739948e-02 0.262723 6272
(’add’, ’pop’) -4.596471e-02 0.075678 6258
(’add’, ’lodsd’) -3.518091e-02 0.066502 130
(’MEM’, ’add’) -3.099159e-02 0.131117 2486
(’call’, ’pop’) -3.004333e-02 0.180293 6260
(’xor’, ’xor’) -2.993098e-02 0.052340 6132
(’shld’, ’add’) -2.400837e-02 0.009714 378
(’add’, ’ja’) -2.324371e-02 0.101472 60
(’jbe’, ’lea’) -1.522993e-02 0.020822 6061
(’add’, ’MEM’) -1.463469e-02 0.091122 4669
. . . . . . . . . . . .
(’nop’, ’pop’) 3.846148e-01 0.100643 465
(’pop’, ’nop’) 3.957887e-01 0.098913 462
(’nop’, ’lea’) 4.019235e-01 0.349538 776
(’lea’, ’nop’) 4.088955e-01 0.347534 769
(’nop’, ’push’) 4.303842e-01 0.296709 648
(’nop’, ’call’) 4.330395e-01 0.182022 515
(’call’, ’nop’) 4.563656e-01 0.136124 475
(’push’, ’nop’) 4.708584e-01 0.302432 619
(’nop’, ’jmp’) 6.732655e-01 0.172260 465
(’jmp’, ’nop’) 6.760150e-01 0.166540 462

Table 4.4: Bi-grams are sorted on the mean difference, the top 10 rows shows the largest difference in mean where the non-matched
samples are more than the matched samples, while the bottom 10 rows show the larges difference in mean where the matched samples
are more than the non-matched samples (395 rows hidden). The table is filtered to only contain rows with at least a function count of
100 or higher.

Globeimposter and Gandcrab - Table 4.5 - The similarity between these two families is quite unexpected
since no sources could be found that mention a possible connection between these two malware families.
We will compare Globeimposter version 2017-07-07 and Gandcrab version 2018-06-30-v4. The versions of
Gandcrab before version 4.0, do not show similarities, it is not clear what the cause of this is other than that
the versions before 4.0 are completely different from the newer versions. This is a likely possibility since
the number of functions went from 80 before version 4 up to more than 230 with version 4, in addition the
average function length dropped from 100 to 60. Gandcrab and Globeimposter together share 180 functions,
for Globeimposter this is 50% of all its functions, while for Gandcrab it is even 78% of the functions. The sub-
graphs of matched functions are quite intertwined with other non-matched functions, the matched functions
do not appear to be clearly seperated modules based on the assumption all possible similar functions are
found. Firstly because there are more outgoing edges than incoming edges (106 incoming vs 147 outgoing for
Globeimposter and 28 incoming vs 151 for Gandcrab). Secondly, because between 40 and 50 percent of the
nodes from the matched graphs are connected with the the rest of the unmatched functions.
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win.globeimposter win.gandcrab

Matched function length µ 64.0778 66.5034
Matched function length σ 132.848 119.971
Non-matched function length µ 63.3594 66.0581
Non-matched function length σ 108.129 92.8941
# Total functions per binary 372 231
# Matched functions per binary 180 180
# Edges full function graph 1011 729
# Edges between matched functions 318 278
# Non-matching edges between matched functions 37 15
# Connecting edges to the rest of graph, incoming to matched graph 106 28
# Connecting edges to the rest of graph, outgoing to matched graph 147 151
# Connecting nodes to the rest of graph, incoming to matched graph 47 18
# Connecting nodes to the rest of graph, outgoing to matched graph 75 69

Table 4.5: Function statistics comparing Globeimposter to Gandcrab malware

In Figure 4.17 the global call graph is displayed for the similar for only the similar/matched functions. A
call graph shows the connections among functions formed by one function calling another function. From
this graph we see that 88 percent of all edges match between the two binaries, which gives a good indication
for how well the cosine similarity measure performs for matching similar functions.

Figure 4.17: Global function gall graph of matched functions between Globeimposter and Gandcrab, the red edges show the edges that
only appear in the Globeimposter malware and the blue edges show the edges only appearing in the Gandcrab malware. Black edges
show connections that appear in both Globeimposter and Gandcrab malware.

We will discuss some of the nodes with a lot of non-matching edges in order to get a better understand
of what kind of functions cause possible bad matches. Starting with the node/function 15 15 from the graph,
which looks interesting as it has a lot of unmatched incoming edges that are present in Gandcrab, but not
in Globeimposter. Function 15 turns out to be a small function, all it does is call a different function at a
certain address. Function 29 is interesting as it both has an outgoing matching edge as it has an outgoing
non-matching edge. Following the non-matching it leads to function 24, this function appears to be correctly
matched given the connection to a sub-cluster of three other nodes which all are matched and have matched
edges. Looking at the call instruction in function 29 that leads to 24, we see that for Gandcrab it is an un-
matched function, that is therefore not in the displayed graph. By manual inspecting the Gandcrab binary we
learn that this function is exactly the same as Globeimposter function 24. Apparently, almost the exact same
function (Figure 4.18), possibly because of its simplicity, appears multiple times in the binary.

Dridex and Friedex - Only half of the Dridex samples show similarities with Friedex, the versions of Dridex
appear to alternate between between two version, first being similar for one version and then the next version
not being similar, after which the next version is similar again. So based on the function similarity it appears
there were two categories of Dridex, that sometimes appear individually in the database, but also occasionaly
appear together under the same version in the database. These two versions of Dridex are not similar to each
other, as only 9 functions from the total of respectively 830 and 950 functions show high similarity with each
other. The binaries within the two categories however do show similarities among each other.
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Figure 4.18: Function Globeimposter appearing multiple times in Gandcrab, causing mismatches.

For the deeper comparison to Friedex we will use the Dridex version from 2017-12-14 v4.80. All of the
Friedex samples in the dataset match at least some functions of Dridex, the number of matches increases with
every new versions of Friedex the sample with the most matches is the sample from 2018, however the 2019
version shows less similarity with Dridex again. Taking a closer look at the difference between the different
Friedex versions we see clear indications of incremental versions, see Appendix B for the full comparison
table. The number of functions contained in Friedex increases significantly between 2017 and 2018, going
from 226 to 375 keeping the relative amount of matched functions to Dridex at about 60 percent, while the
2019 version drops to a total of 336 functions. The 2018 version of Friedex appears to add more functionality
from Dridex than the 2017 version, while the 2019 versions also adds a couple of more functions over the
2018 version, but also removes or changes quite a few functions that have been in Friedex since 2017. These
changes cause the drop in similarity seen between the 2018 and 2019 versions. Even though the amount of
matched functions grows for the 2018 malware, the found similarity appears to be of better quality, since the
amount of unmatched edges in the Dridex graph drops from 32% to only 21% in the 2018 call graph.

Figure 4.19: Merged call graphs for matched functions of Dridex comparison against Friedex - 2017

As can be seen in Figure 4.19, there are a lot more non-matching edges (30% of subgraph) in this graph
compared to the comparison of Gandcrab and Globeimposter from previous case. The matched functions
are on average (avg. 49, sd. 85) short compared to the average numbers of the full dataset. The amount of
matched functions relative to the total amount of functions for Friedex is 62%, which is more than the average
dataset. From which we could infer that although smaller function length result in about as many matches as
for longer function lengths, although the quality of the matches is less good.

TA505 - We will be comparing a single sample from each of TA505’s malware families. We are interested
to know whether all of TA505 share the same set of functions, or whether they share different set for every
pairwise comparison. Because we do only pairwise comparison we will take a single sample as baseline,
for which we compare the other functions. If we find a single set of samples using this baseline sample the
hypothesis that a single set of functions is shared among all families can be made likely. The results of the
analysis can be found in Appendix C, we used Locky from TA505 as the baseline to which other samples from
TA505 (Andromut. Clop, Flawedgrace and Flawedammy) are compared to. From this comparison we see
that out of the total of 112 matched functions counting for all binaries 30 functions from Locky are found
to be similar among all 4 comparisons. We see however a more clear similarity pattern between the pairs,
Andromut-Flawedammy, and Clop-Flawedammy.

Although not as confirmed as the other malwares being created by TA505, other malware analysis indi-
cated that the Globeimposter malware is also developed by TA505 [8]. We already confirmed this similarity
during the clustering analysis. Now we see that also the same functions match, one of the confirmed TA505’s
malware, namely Flawedammy.

Possible mistakes made by the function level method
We will discuss possible mistakes the function level clustering method makes. The first problem has to do
with the function size difference of matched functions vs non-matched functions, in general larger functions
appear to be more easily matched than simple functions. Also, the quality of the matches of the shorter
function appears to be worse based on the call graph data, as we see more edge mismatches with shorter
functions. A possible solution for this would be to add a weight to each found similar function, that increases
as the size of the found similar function grows.
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A second issue is that currently, during a pairwise binary comparison, a function from one binary only
matches to a single other function from the other binary we are comparing to. If the second binary contains
multiple functions that are very similar there is high likelihood of imprecise matches. This issue can also
be made less serious by using graph similarity, or by allowing a function to match to multiple functions. A
possible reason for the occurance of multiple of these simple similar functions in a single binary instance if a
function provides simple functionality such as only writing a string value to the register.

4.4.5. Limitations
Cosine similarity is not a computationally expensive operation, as it is a vector operation. Doing pairwise
similarity among all samples of a dataset still does not have to be as expensive as it can be executed using
a single matrix. However, we calculate the pairwise cosine similarity among all functions of two malware
samples, instead of just computing a single pairwise similarity among all samples. This raises the complexity
as we are now calculating a similarity matrix between each pair of malware samples. Therefore, the algorithm
may not be fast enough for very large datasets.

4.5. Summary
We showed that classification using a labeled dataset is not the best option for malware author attribution.
Instead of classification clustering is the more logical choice for malware. We showed that by engineering the
distance metric in a specific way, clusters of different but similar binaries can be made, such that malware
tagged as a different family can be clustered. Even though n-grams and cosine similarity are relatively sim-
ple, they appear to work decent enough to cluster malware together even when they are tagged as different
families as was assessed visually. Searching for similarities in bigger datasets, provides information that can
save a malware analyst time as similar functions do not have to be manually inspected again. In addition, it
provides a method to explore the bigger picture in the malware landscape from similarities among samples
that may first sight do not appear similar.

Lastly, we showed a deeper analysis to getter a better understanding of how the methods works, on the
limited Malpedia dataset of memory dumped malware samples. The analysis showed how after finding sim-
ilar functions we can discover the differences between versions of a specific malware family. We also showed
that, although unconfirmed in other sources, the Globeimposter malware shows similarities with TA505’s,
samples. In addition to this similarity, the other novel similarity found during this thesis between Globeim-
poster and Gandcrab, provides new insight into the connection between previously thought unrelated mal-
ware. Although the analysis showed interesting application it also exposed possible limitations of the method
however, at the same time the analysis showed that features extracted from the greater function call graph
could potentially further improve the similarity analysis.





5
Dynamic analysis

5.1. Theory
Data gathered acquired during the execution of a program is called dynamic analysis. With dynamic analysis,
the execution of the program is followed as it is run on the processor. In order to gather this information,
instrumentation needs to be added during the program execution. This can be done by attaching a debugger
such that execution can potentially be paused and program variables can be read. Other options to capture
the behavior of the software is by monitoring the program execution at the operating system level or even on
(virtual) processor level. We will however use system calls to characterize a malware its behavior.

Arbitrary user process

user32.dll/kernel32.dll

ntdll.dll

SSDT

ntoskrnl.exe

Library call (eg CreateFile())

NtCreateFile()

NtCreateFile()

User-space

Kernel-space

Systemcall 0x0055 (Windows 10 1903)

Figure 5.1: Windows architecture and telemetry placement

System calls are the lowest level calls made to the kernel and provide basic functionality such as file oper-
ations, register events, and threads starting and stopping. We will use these as a feature, because for malware
or any other program to exercise any useful behavior it has to interact with the system and use system calls

47



48 5. Dynamic analysis

to do so. It is not possible to build a useful application that does execute any system calls on the system,
malware cannot escape analysis based on system calls, contrary to some other forms of dynamic analysis.
Therefore, we argue it is the best feature to characterize a malware sample.

In addition, the analysis technique itself is completely stealth since system calls can be captured in kernel
space while most malware runs in userspace therefore the malware is unable to detect this type of analysis.
The benefits of dynamic analysis is that one does not have to worry about the encryption techniques on
the binary, only on what the malware actually does. If the malware does a decryption step this simply gets
recorded and can add information as characteristic of the malware.

Malware could however still attempt to obfuscate the actual behavior by inserting arbitrary dummy sys-
tem calls such that the actual useful system calls that show information about the activity of the program gets
lost in the noise. In addition, for the analysis to be successful it is required the malware actually executes, and
executes the real malware behavior. This could be hindered by essential but offline command and control
servers or the malware detecting it is being executed on a machine designed for analysis purposes.

Similarities among malware from the same family would mean that large parts of the behavior between
versions remain te same. The difference among samples is then that there might be additions or removals in
the trace, while the traces remain largely the same. The difference could then be visualized as a “diff” between
two traces. When the execution profile of two samples then largely overlap with some gaps and/or additions
it could be said that the malware are similar and as a result likely from the same author.

When malware is not from the same family similarities are likely much more subtle, and only small parts
such a single function are shared among programs. This requires a different kind of method than when the
similarities are broader. Given the system call trace of a sample, to find a similarity we now need to compare a
block of system call events of arbitrary unknown length to all the blocks of sequential system calls of all other
samples in the dataset. The problem can be illustrated in the following example, given three traces from two
different malware samples, in reality, a system call trace for a single thread can consist of ten-thousands of
calls:

a: [2, 3, 1, 2, 1, 2, 3, 4, 4, 5, 1, 2]
b: [8, 3, 2, 2, 3, 5, 1, 2, 3, 4, 4, 6, 1, 2, 5]
c: [1, 3, 5, 1, 8, 3, 1, 4, 6, 1, 2, 5, 8, 3, 2, 2, 1]

We want to find the patterns identified by color, as these are similar between these three samples. Two
characteristics of the similarities can be identified:

1. The patterns do not appear at the same index among traces, instead they can appear anywhere, or
even appear multiple times within the same trace. For example when the partial trace is the result of a
function call that is executed multiple times.

2. One trace can have matches with multiple other traces that do not show similarities with each other. It
turns out that malware sample b shows similarities with both sample a and c, however sample a and c
do not show similarities with each other.

We argue that these two characteristics are a likely assumption, as the datasets consist of system calls
per thread, without smaller subsections, such as functions, or block elements. Multiple functions can be
executed in the same thread, and therefore if we want to improve the chances of finding similarities we argue
it is better to find a method that is able to split the threads in sensible parts, and compare those instead. To
strengthen our argument here we did a full thread n-gram similarity in subsection 5.5.2

5.2. Dataset generation
Dynamic analysis requires more preparation work than static analysis where the dataset is simply the mal-
ware binaries themselves. In addition, a lot more things can go wrong because of external factors than during
static analysis. In dynamic analysis the data has to be gathered while the malware executes. A safe environ-
ment for the malware to run in needs to be set up such that the malware does not harm other systems and to
actually record the data generated by the malware specific tools for gathering this data are required.

Since data gathering can take a significant amount of time we first explored existing datasets containing
dynamic information. The existing datasets are however quite old (KDD [27] or NDD [74]) or do not contain
sufficient information [26], since this set does not contain process/thread three information and uses the
memory offset in the DLL instead of the full system call name. Therefore, the choice we made the choice to
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collect our own dataset which has the additional advantage of having full control over the quality and over
which parameters are collected.

For the secure malware execution environment, Cuckoo sandbox is used, this is an open-source frame-
work specifically designed for malware analysis. It provides an environment that runs several analyses on
the malware and provides a convenient way to submit large amounts of malware for analysis by managing a
virtual machine that is able to restore to a clean state after a malware is done executing. For the virtual ma-
chine environment, Virtualbox was used, although a bare metal solution would be better to avoid detection of
malware that do not want to execute on a virtual machine, a virtual machine cheaper, is easier to set up, and
simpler to maintain since it we can simply revert to a previous clean snapshot after each malware execution.
Considering this tradeoff the choice was made for a virtual machine setup.

In order to make the malware environment as up to date as possible, we use a currently recent version of
Windows 10. All malware samples are run on Windows 10 with build number 1903 released May 2019. For this
system, both the firewall and the malware scanner are disabled, such that the malware can run freely. Some
simple measures to attempt to cloak the fact that the machine is a virtual machine, are adjusting Virtualbox
parameters such as setting the system and motherboard vendor.

Although Cuckoo provides a couple of malware analysis tools it does not yet provide the exact data col-
lection tools required for this research. The closest tool it provides is a tool that injects into the process, there
are three problems with this tool. The first is that since it hooks directly into the binary it may be detected
by the malware. The second issue is that it does not capture the malware system calls of the whole system as
it has to inject into every binary to do this. The third problem is that it only captures a very limited amount
of system calls, since our experiments have shown that some malware binaries had under a 100 system calls,
this number is much too low to be a convincing representation of the real number of system calls.

We require a tool to record system-wide system calls that starts at the very beginning of the Windows
boot process. Unfortunately, such a tool also is not available freely online, and therefore this tool is has been
developed during this Thesis.

Data gathering tool requirements
The following formal requirements are setup to which the data collection tool needs to adhere.

• Capture all process IDs and parent process IDs, such that al full tree for all processes can be constructed
starting from initial windows process (PID 4).

• Log all system calls made on a thread basis, such that context switching does not has an influence on
the order of system calls for a process.

• Log process names, such that during the analysis it is known what program a PID corresponds to.

• The tool should be as stealth as possible to avoid the malware from being able to detect it is being
analyzed.

Logging system wide system calls
System calls can be recorded using multiple strategies. However, some methods do not provide enough data
or are countered by malware. Applications such as Microsofts Process Monitor do not capture enough data
and can be fooled by malware. An option to capture the system calls made a specific binary is by hooking
into the malware. However, this has two problems, if we want to capture system calls system-wide we have
to hook into each process, besides that there are a lot of processes running on Windows system, the hooking
into processes can cause instability, and it is also not possible to do this during the boot of the system. In
addition, as discussed in subsection 3.1.4 more advanced malware could detect the hook. Therefore, we
desire a technique that is more stealth and captures all system calls starting from the very first process on
boot.

Registering the system calls in kernel space makes it harder or even impossible to detect such applica-
tions. A common technique to do this is by replacing entries in the System Service Descriptor Table (SSDT)
with custom versions that contain logging capability. However, in recent Windows 64 bit versions the SSDT
table is protected by a security measure from Microsoft called Patchguard. This makes it no longer possible to
make changes to de SSDT, besides this problem in order to actually record all system calls, all definitions need
to be replaced by custom ones, this could be quite hard to do since the correct definitions needs first to be
found. Most of these functions are not documented officially and may even differ among Windows versions.
We therefore, chose to use a lesser well-known technique that works with recent versions of Windows 10.
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We will use a method for system call hooking that takes advantage of a hack in the eventlogmanager that
allows to hook into the process the moment a system call is made. We can then record additional data of
the process doing the system call. Besides the system call number the process id (PID) and parent process id
(PPID) are recorded for each system call. Such that the process hierarchy can be created in the form of a tree.
Unfortunately, windows does not keep track of the parent of a thread, therefore we are unable to hierarchically
order threads under a process.

The developed tool is implemented as a Windows Driver, logs are streamed to the Windows event log,
after the execution of a binary on the virtual machine this log file is sent to the host. Because the event logs
to are stored in a combination of binary and XML the file is extracted using another tool to CSV 5.2. The
exported CSVs can be several hundreds of Megabytes, therefore the individual CSVs are compressed using XZ
compression algorithm, to reduce the size to only a few Megabytes per trace.

The only downside of the tool is that it requires Windows to run in so-called Test-Mode because Windows
demands drivers to be certified by Microsoft, which this custom driver. For this research, this is not possi-
ble and therefore it requires to execute the analysis in Test-mode. Test-mode may be detected by malware
however there is not really likely since it is not a mode analysis platforms generally require. Also, a regular
non-analysis user might also use this mode, for instance on an older system where newer certificate drivers
are not available for.

Virtual Machine Parsing to CSV

Malware sample

EVTX
logfile

Cuckoo sandbox

Figure 5.2: Data collection pipeline for single malware sample

We can compare this data gathering method to the built-in method used in Cuckoo, to see how it com-
pares in its ability to capture executions traces of system calls. The lists of generated system calls are not
directly comparable since Cuckoo captures system calls on a user level, while the driver captures them on the
kernel level and not all system calls can be directly translated from user to kernel mode. However, to give an
indication of the difference in the number of system calls between the two instrumentation methods we will
compare the number captured system calls of some malware samples.

In Table 5.1 the system call counts are displayed of the initial malware process for four different malware
samples. On average the kernel drivers captures 24 times more system calls using the kernel driver than the
Cuckoo hook does.

Total Unique

Cuckoo 268 28
Driver 7721 90

(a) Emotet

Total Unique

Cuckoo 2072 54
Driver 60715 128

(b) Qbot

Total Unique

Cuckoo 6044 36
Driver 67373 82

(c) Ramnit

Total Unique

Cuckoo 992 41
Driver 27881 159

(d) Dridex

Table 5.1: Comparison of system call capture performance between Cuckoo and the new kernel driver
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5.3. Dataset exploration
Several datasets were collected, from Malpedia and the malware analysis platform Any.Run [1], this last
source was chosen because it contains samples for very recent malware. In addition, the platform also runs
the malware and generates a report from which can be validated the malware still works. From this platform,
we only use malware that is provided in Microsofts PE executable format, in other words regular “exe” files
and not malware embedded in Microsoft office documents or Powershell scripts. The datasets from Malpe-
dia are the same as were used for the static analysis, by using the same dataset we can compare the similarity
results found between the static and dynamic analysis. The downside of this dataset is that the samples are
older, therefore they may no longer show their original behavior when run on our analysis platform.

For each sample, a full trace of every system call by every process on the Windows machine is recorded
starting from the boot of the machine. Each system call is tagged with the executing process id (PID), Parent
Process Id (PPID), Thread Id (TID).

Besides this, every system call has a timestamp on Nanosecond precision, such that the order of the sys-
tem calls for each thread is preserved. Unfortunately, the attached PIDs are not unique, because after a pro-
cess or thread exits the ID can be reused for a new process or thread. Therefore, we retag duplicate IDs using
algorithm 3 by looping over all processes sequentially, once a PID is found that had a different PPID in the
past the new PID is uniquely retagged. This still leaves the possibility of a duplicate PID for the same PPID,
however, we choose to ignore this given the very small possibility for this to occur.

Algorithm 3: Repairs re-used process IDs in trace of system calls

Input : Sequence of PPIDs and PIDs of length l
Output: Repaired sequence of PPIDs and PIDS of length l , where re-used IDs are suffixed with their

re-use count
duplicate-pids ← {}
foreach row in input sequence do

if dupplicate-pids[pid] != row[ppid] then
duplicate-pids[pid].append(ppid)

end
if length(duplicate-pids[pid]) > 1 then

row[pid] ← pid*length(duplicate-pids[ppid])
else

if length(duplicate-pids[ppid]) > 1 then
row[pid] ← pid*length(duplicate-pids[ppid])

else
row[pid] ← pid

end
if length(duplicate-pids[ppid]) > 1 then

row[ppid] ← ppid*length(duplicate-pids[ppid])
else

row[ppid] ← ppid
end

end
end

Since the PPID and PID are known for each process, a full tree can be generated that has at its root the
first windows process. An example visualization of such a tree can be seen in Figure 5.4. In summary, the full
dataset and the problem statement can be visualized as in figure Figure 5.3. The red arrow shows the problem
of process injection, while the bold system calls give an indication of the similarity we desire to find.
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Malware run family 1

Process 2

Process 3 ...

Thread 1 [...,0x0018, 0x0055, 0x0008, 0x01c5, 0x0027...]

Thread 2 ...

Thread 3 ...

Malware run family 2 Process 2

Process 1 ...

Thread 1 ...

[...,0x016c, 0x0055, 0x0008, 0x01c5, 0x0017...]Thread 2

Thread 3 ...

Process 3 ...

Process 1

Figure 5.3: Dataset summery, red indicates malware process
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The allowed runtime of the malware is decided following the following reasoning. Firstly we have limited
analysis time, if the malware decides to stall, we will therefore not see any behavior for this malware. We ex-
pect each malware sample to finish within a minute, but also need some extra time to make sure the Windows
event logger writes the system calls to file, therefore total run time can be up to 2 minutes. The second rea-
son for keeping the analysis as short as possible is to limit the amount of data we need to process. Although
generally the more data the better, it can also become too much to analyze without a large scale server. To
give a general idea about the dataset size we are working with, an average system call trace of the full system
contains about 8 million system calls. These are generated by around 250 unique processes and 1700 threads,
depending on the malware this may be some more or less.

We can reduce the dataset size by only taking into account processes and threads that are started after the
malware is launched. This is possible since the malware is running in a closed environment. The anomaly de-
tection of injected threads is not the main research goal, we are only interested in a way of finding similarities
among malware.

In Figure 5.5 the captured system calls over time are plotted for the execution of an arbitrary malware
sample. Interestingly we see that there appears to be a clear maximum on the number of system calls per
second. We checked what could be the cause of this since the system does not appear to be slow. We verified
that the CPU is at least not the bottleneck since it is utilized less than 10 percent most of the time according
to the Windows task manager.

Figure 5.5: System calls over time of an analysis run of Gozi malware. (large time difference between start and finish in the graph is due
to the machine being restored from a snapshot)

5.4. Feature extraction
Given infinite computation time to find the similarities among all traces of all threads of all malware runs, we
would compare each piece of system call sequence of all possible lengths to all other system call sequences.
This process is in practice however unfeasible, given the large time complexity.

Therefore, we propose multiple possible methods that should still provide us with the similarities we are
looking for, but reduce the computation time significantly. The methods need to meet a few requirements:

• Fast enough to find similarities among large (hundreds) of unique malware samples within minutes.

• Is theoretically able to find similarities among malware families.

• Is theoretically able to find similarities within the whole system and not just the main malware process.

• Only requires system call traces of the full system as its source dataset.

To meet these requirements we propose a couple of methods that either reduce the dimensionality or or
can be used to find the similarities.

• Word2Vec (or in this case Syscall2Vec)

• Sequence alignment

• N -gram based features

• Frequent pattern mining

None of these methods however, provide the means to filter out the malware traces, that are injected into
another process. Therefore, if we do not filter the malicious threads out first, we may find similarities between
two completely benign threads. In an attempt to resolve this and filter the malware threads, we tried using a
technique called maximum weight matching. This technique is useful since the problem can be viewed as an
assignment problem.
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Given the traces of two of the same processes, one where the malware is active and has injected into the
process, and one where the malware is not active. The threads of two processes can be represented as two
disjoint sets, when we try to match the threads from one set to the threads of the other set, something that
looks like a bipartite graph is formed, since almost all threads from one set has an edge to a thread of the other
set. We say almost, because a property of a bipartite graph is that all nodes are connected, this is no true for
our case as the malware thread their nodes should not be connected to a thread node in the benign process,
since these only exist in the malicious process.

So we will try to find the threads in the right set of Figure 5.6b, that do not have a matching thread in
the benign process. Which edges are formed between the two sets is determined based on the amount of
similarity among the threads of the different sets.

First, the similarity is calculated between the threads of the different sets, this is illustrated in Figure 5.6a
for a single thread of the benign set of threads. In the words of maximum weight matching, this similarity is
the weight of the edges. After this weight is determined for all pairs of threads, maximum weight matching
finds the most optimal match for which the sum of the weights of the matched edges is as large as possible.
Some threads will not be matched since each thread is only allowed maximally one edge, these unmatched
threads classified as the injected malware threads.

Threads of process, while malware inactive Threads of process, while malware active

0.9

0.1

0.05

0.5

0.4

(a) Similarities for a single thread of the benign process, to all threads
of the process infected witht the maliciously injected thread.

Threads of process, while malware inactive Threads of process, while malware active

(b) Illustration of bipartite matching, each dot is a thread, the red dot
represents the malicious thread we are trying to find.)

Figure 5.6

The above method works well under the assumption that the new threads of a benign process are directly
caused by a malware injecting itself into that process. We can demonstrate this with a sample of Emotet
malware which is known to inject itself in the benign process explorer.exe already running on the system.
It injects two threads, we can visualize this by doing a cosine similarity on the bi-gram distribution of the
two runs. The cosine similarities are plotted in Figure 5.7a, on the y-axis the threads of explorer.exe from the
benign run are shown, and on the x-axis the threads of explorer.exe of the malicious Emotet run are shown.
These similarities can be used to find the most likely match of each of the threads from the malicious run
in the benign run. They injected threads will not match with any thread of the benign run and therefore we
can put a threshold on the most the set of most similar threads. We are then left with four possibly injected
threads as shown in Figure 5.7b. Maximum weighted matching identifies the two injected threads directly as
in this case being thread 2224 and 6968.

Unfortunately in practice, the previously made assumption appears too strong, since a malicious process
may cause the start of benign threads as a side effect of malicious behavior. When a malware process causes
this, we can no longer distinguish the malicious from the benign threads, since the injected process now has
benign threads that cannot be matched to any of the benign threads from a benign analysis run. Even when
the same binary is run twice on the malware analysis system, it does not produce the same system call data,
this is especially true for the Windows process svchost.exe which is responsable for 60% to 70% of all threads
during the analysis of a malware sample on the system. Svchost.exe however, is an essential application on
Windows systems as it manages process sharing of services. Possible explanations for this non-deterministic
behavior are the current system time, system resource availability, and probably most importantly internet
usage by various components of Windows 10.

Since we do not have a direct solution to the problem of extracting all malware traces of the whole system
with our dataset besides the maximum weight matching approach, experimented whether we could limit the
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(a) Cosine similarity (b) Thresholded cosine similarity on 0.85

Figure 5.7: Threads of explorer.exe from a benign and malicious run

number of processes we attempt to extract malware information from, based on information from previous
work. The limited process set is selected based on the work of .... this work uses a more advanced method
for detecting the process injection, which is possible since they are able to follow the malware activity using
taint. Their dataset consisted of 40 malware families, including the more infamous samples such as Dridex,
Emotet, and Ursnif. From their work, we use the reported results of most common target processes used
for injection. The most used process with 65% out of their samples used explorer.exe as a target for process
injection. On the second place is iexplore.exe but with only 30%, followed by connhost.exe, taskhost.exe and
dwm.exe svchost.exe is only used in 15% of the samples.

We will first assess how well we can extract the injected process from our dataset using an Emotet sample,
a benign sample and the maximum weight matching method. We use an Emotet sample since it uses all of
the above processes. We already explored explorer.exe successfully in Figure 5.7 which we will therefore use
in the next step.

5.4.1. System call datasets
In this subsection we will describe the characteristics of the malware datasets used for the dynamic analysis
based on the system call profile.

Dataset analyzed during static analysis
The same malware samples were used for the static analysis, by using this dataset we are able to compare
the results from the static analysis with the results from the dynamic analysis. We used both the memory
dumped samples and the packed samples. The memory dumped samples are the same as used in the static
analysis of the malware. In the next sections we will refer to these two datasets as Malpedia-a (107 samples)
(Figure 5.8) for the memory dumped set and Malpedia-b (Figure 5.9) for the non-memory dumped dataset.
Not all samples had a non-memory dumped version available, therefore some samples that appear in the
dumped analysis do not appear in the non-dumped analysis. The choice to keep these two datasets separate
even though they originate from the same malware, is made because the memory dumped and non-memory
dumped malware are different stages of the malware. We argue that malware from the same stage in execu-
tion is more likely to be similar to each other than malware traces from different stages.

Figure 5.8, Figure 5.9, and Figure 5.10 show some of the system call dataset characteristics for the different
sets. All but sub-figures d and f are self explenatory. Sub-figure d displays the number of samples that share
a single bi-gram. For example in Figure 5.8 a bi-gram with index 250 appears in about 45% of the samples of
that dataset. Sub-figure f shows how many of all the non-unique bi-grams of a sequence can be explained
from the top-10 bi-grams of that sample. This metric gives an indication of the number of repeated system
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Figure 5.8: Data distributions of static memory dumped set (Malpedia-a). (Two samples were removed from this plot as they had a very
large number of threads compared to the rest of the data (120) threads)

Figure 5.9: Data distributions of static non-memory dumped set Malpedia-b.
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call sequences in a sequence.

Dataset of currently popular samples
This dataset is sourced from any.run1, any.run provides a paid malware analysis service that features mal-
ware analysis reports similar to what Cuckoo provides. The samples were selected individually based on the
reported malware trends the tracker to be popular around January 2020. The reason for choosing this dataset
is that since the malware samples are very recent the command and control servers are still online. This
allows us to see what effect this has on the malware’s analysis results, the hypothesis is that these malware
samples show more activity than the older malware from the previous dataset.

Figure 5.10: Data distributions of Any.run dataset.

Comparing the datasets to each other we see that Figure 5.8 relatively contains fewer threads and pro-
cesses per sample than the samples of the other datasets. The number of unique bi-grams per sample lies
mostly below 1000 for all three datasets. All datasets appear to have a lot of repeated sequences for each sam-
ple. We investigated what kind of system calls these were and found these system calls to be mostly related to
memory operations, as can be seen from Figure 5.11.

5.4.2. Word2Vec
Word2Vec is an algorithm to create word embeddings, that capture the context a word appears in. Intuitively
it puts words that appear in the same context often (and thus close to each other in a piece of text), closer to
each other in a multidimensional vector space than words that do not often appear in the same context with
each other.

The same idea can be transferred to traces of system calls, however instead of words of natural language
the used words are system calls. We hypothesize that system calls such as NtCreateFile, NtWriteFile lie
closer to each other than to NtOpenThread. After training a Word2Vec model the similarity can be visualized
as in Figure 5.12. Note that system calls of the same category do not necessarily lie close to each other. For
instance, the opening and closing a thread are unlikely to directly follow each other directly.

Although Word2Vec appears to give desirable results for some datasets it does not provide consistent clus-
ters of system call categories across datasets of system call traces, as the training vocabulary grows the relation
between the different system calls becomes less clear. In addition, reducing the data to a few clusters of sys-

1https://any.run/
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Figure 5.11: Most common system calls in any.run dataset, other datasets show the same kind of pattern.

Figure 5.12: Sample scatter plot showing how the system calls relate to eachother acording to a word2vec model.
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tem call groups identified by word2vec does not necessarily result in the desired data reduction as smaller
patterns will evidently disappear. To compensate for this the patterns can be made longer.

5.4.3. Sequence alignment
Sequence alignment using for instance the famous Smith and Waterman algorithm which had its first ap-
plication in DNA sequence alignment. Has been used previously in literature subsection 2.2.2, however it is
not the best solution for our research question. Firstly, because sequence alignment is better at finding dif-
ferences than finding similarities. Secondly, we argue that a system call sequences are very different from a
DNA/RNA sequence. Something a biology targeted sequence alignment algorithm does not have to take into
account for instance is re-occurring patterns that appear an arbitrary amount of times. This could happen
when the same function is executed multiple times in a loop. In addition, system call sequences are much
more complex than DNA/RNA sequences, as the vocabulary of different system calls is much larger than DNA
bases which only consist of four unique elements. For these reasons, we will not use a sequence alignment
approach as a possible answer to our research question.

5.4.4. n-gram based
Since the system call data is sequential data they can be vectorized using n-grams. These vectors can be used
directly with cosine similarity to determine the similarity between two vectors and indirectly the malware
samples. Using n-grams can however result in large vectors, since there are a total of 1920 unique system
calls and the vector size grows exponentially with the size of the n-gram. For bigrams, the number of possible
features is 19202 = 368400 elements per vector and for trigrams a single vector can already contain 19203 =
7077888000 features.

Unfortunately n-gram vectors alone do not provide a solution for the issue of finding smaller similarities
than on thread level, therefore we are not really satisfied with such a solution.

5.4.5. Reduction of the sequence to a Markov chain
Another option to create features is by first transforming a thread to a Markov chain and then using the num-
ber of outgoing and incoming edges for each system call. This results in a feature vector of only 3840 elements
per thread.

The Markov chain can also be viewed as a graph, then we can do similarity calculation between graphs
from different malware samples based on the maximum common induced subgraph, which is a well-known
problem. If two graphs then have a larger common subgraph than a different pair of graphs they are more
similar than the latter. However, this problem is known to be NP-complete [21], and our graphs are too big to
process.

Besides, being a way to generate features the created Markov chain as illustrated in Figure 5.13 can also
provide a global overview of the activity of a thread.

Figure 5.13: Sample graph showing the system calls displayed as graph, arrows indicating call order.
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Like n-grams this works on thread level and therefore does not find similarities and does not provide a
way to find similarities on a smaller granularity.

5.4.6. Frequent sequential patterns and frequent item set based
To resolve the problem of finding similarities smaller than on full thread level, we propose to use mined
frequent patterns from the dataset. Extracting frequent patterns directly over the full dataset would not be
ideal, since the system calls produced by the malware are only a fraction of the total amount of logged system
calls. The patterns of background activity that appear in all datasets would then have the highest support, and
for our goal we are more interested in the patterns that still have high support but lower than the background
system calls.

We can identify two types of frequent patterns, the first is sequential frequent patterns, and the second are
frequent itemsets. The difference between the two is that in the latter the order of the elements is irrelevant
to the mined pattern. A frequent sequential pattern can be defined as a sequence Sa with the sequential
x1 → x2 → x3 → xk which also occur in another sequence Sb with sequential elements y1 → y2 → y3 → yk

such that Sa v Sb . The same holds for the frequent itemset, except that the order of the elements of Sa and Sb

is irrelevant. The number of times a pattern occurs in a dataset divided by the total number of found patterns
is defined as the support of a pattern.

A variety of algorithms to mine frequent patterns can be found in the literature. Not all algorithms will
however work given our dataset. A problem with algorithms famous algorithms such as PrefixSpan [58] or
Apriori [15] is that the extracted patterns database is too large and becomes worse when the sequences
are long [73]. Their example of large sequential patterns contains 20 distinct items resulting in 220−1 sub-
sequences. Compared to our dataset 20 distinct items is relatively little as our sequences contain on average
2000 items, with a standard deviation of over 7000 items and 1722 possible unique elements. In addition, they
are too slow and do not scale to large input databases as they rely on dynamic programming.

Therefore, an efficient algorithm that limits the amount of extracted patterns to only the most relevant
ones is necessary. Closed frequent patterns algorithms do this by only outputting patterns that are not in-
cluded in another (super-)pattern that has the same support. Or more formal, the pattern Sa is closed when
there is no other sequential pattern Sb , such that Sa v Sb , with the same support. This definition however
still allows for a lot of extracted patterns.

A maximal frequent pattern algorithm limits the amount of outputted frequent patterns even further than
an algorithm that finds closed frequent patterns, by making the previous condition more strict and not al-
low super patterns regardless of the amount of support. The VMSP algorithm by Fournier-Viger[73] extracts
these maximal frequent patterns and reduces the computational cost significantly by mining only maximal
sequential patterns. For frequent item sets FPClose [54] for mining closed itemsets, and FPMax [29] for min-
ing frequent maximal itemsets.

5.5. Method
We will evaluate two methods to find similar malware samples. The first is by taking cosine similarity over
full threads. This method is however not able to capture the finer granularity similarities, such as when two
or more threads are for the most part different from each other while only a small part matches. Therefore,
we propose a second method that uses mined frequent patterns, to split the threads into smaller interesting
sequences that can be used to find similarities among threads.

Both methods require that the malware specific patterns are extracted from the larger dataset of all system
calls logged on a system.

5.5.1. Filtering malware system calls
To filter the relevant malware threads we will first use the process tree, all threads that have as their ancestor
the initial malware thread are labeled as malware processes.

Since filtering all injected malware threads with the dataset appears to be too hard to be just an interme-
diate step in this research towards finding the similarities between the malware samples. We will only focus
on two targets that have been identified as popular choices for process injection in previous research. We will
filter injections on iexplore.exe and the processes spawned in or by explorer.exe since these can be filtered out
with either maximum weight matching or by extraction based on the parent process.
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5.5.2. Similarity analysis
n-gram analysis
The first method to find similarities is to directly convert the malicious threads to bi-gram vectors. The
method is analog to the method used during static analysis. The difference is that instead of instructions,
the sequences consist of system calls. After extracting bi-grams from all threads of a malware sample the
vectors from these threads are merged together, then cosine similarity is used to find the similarity among
the vectors of the different samples. The similarity can then be clustered using HDBScan and transformed
to 2d using T-SNE, such that the results can be visualized. The implementation makes use of sparse matrix
representation to keep the memory requirements with these large vectors within practical boundaries.

Custom clustering
The second method (Figure 5.14) that is supposed to find finer granularity similarities, involves a bit more
work just taking cosine similarity over n-grams derived from the system call sequences. The general idea
about this method is that allows clustering without satisfying triangle inequality, since the method does not
use a geometric distance such as the Euclidean distance. Triangle inequality says that for any triangle (in our
case each datapoint is a corner), the sum of the lengths of any two sides must be greater than or equal to the
length of the remaining side. For clustering, this means that given three points, two of these points can lie
very far from each other, while they both lie close to the third point.

For this method, we will leverage frequent pattern extraction in two passes to find similar patterns among
threads on a finer granularity than thread level. It is important to note that unlike research that is focused
on finding similarities among documents we are not after clustering the documents (or in our case threads).
Instead, we cluster patterns extracted from the documents, from the found clusters of frequent patterns, the
malware clusters can be inferred. The found clusters cannot easily be visualized since the similarities are not
given by a single similarity for the full system call pattern. This is a result of the second characteristic of the
similarities identified in section 5.1. Because of this, we cannot simply put samples that share some similarity
in the same cluster.

Given a database consisting of malware threads and their executed system calls, we will first extract fre-
quent sequential patterns from the system call patterns. These sequential patterns do not contain gaps,
and are exact matches of the system call sequences. The frequent sequential patterns provide an intelli-
gent method to break up the system call sequences in smaller subsequences. When a subsequence appears
more than one time it means two or more samples likely share similar behavior. Each found pattern is tagged
with the threads it was found in, which leaves us with a set of all frequent sequential patterns and the threads
they were found in. It is important to keep the amount of found patterns as low as possible for the next step,
since the next step is more computationally expensive for larger datasets. To keep the frequent patterns as
low as possible, the minimum size of the patterns needs to be as high as possible while still finding enough
interesting patterns.

Now the second step is clustering multiple frequent sequential patterns together in order to make the
found similarities more relevant. We can do this based on the threads the found frequent sequential patterns
origin from. Once again we want to be able to find partial matches, and we do not want to penalize sequential
patterns that do not match with other threads. In order to find these partial matches, we will do a second
pass of pattern extraction. Except this time the order of the patterns is irrelevant since we now find frequent
patterns of sets of threads. After extracting the patterns of threads we can translate the thread identifiers back
to their corresponding malware applications.

After this second step, the number of resulting patterns of malware samples sharing sequential patterns is
still quite large. In order to make the output more useful, the output can be pruned based on the support. In
other words, the number of found malware clusters will be limited by requiring a minimal number of frequent
sequential patterns that need to match between two or more malware samples. This will effectively filter the
patterns that are shared between almost all compared samples and do not provide specific information to
find similarities among specific malware.

In order to clarify the above steps provide an example of the workings of the method below. The colored
text gives an example of how sets move between the different steps of the algorithm. Given dataset consisting
of the following system call traces extracted from a total of five malware samples, as given in Table 5.2.

Only three of these malware samples resulted in shared patterns among threads, the resulting extracted
frequent sequential patterns are displayed in Table 5.3.

Using the sequence IDs as the input for frequent set extraction we find the frequent items sets of Table 5.4.
One found frequent item set now represents that at least two or more threads share multiple previously found
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Frequent sequential pattern mining

Frequent item set mining

Systemcall sequences

Sets malware frequently holding
the same sequential patterns

Sample ID sets for each sequence

Figure 5.14: Diagram explaining the frequent pattern extraction clustering method

Sequence ID Sequence Reference Sequences

1 Malware sample 1, thread 1 2, 3, 15, 20, 7, 8, 9, 10, 20
2 Malware sample 1, thread 2 3, 15, 9, 10, 1, 2, 7, 8, 13
3 Malware sample 2, thread 1 9, 10, 7, 8, 1, 2, 19
4 Malware sample 2, thread 2 3, 15, 12, 16, 5, 6
5 Malware sample 3, thread 1 3, 15, 11, 5, 6, 21, 11
6 Malware sample 4, thread 1 7, 8, 4, 5, 6, 4
7 Malware sample 5, thread 1 9, 5, 22, 9

Table 5.2: Extracted malware system call traces

Pattern ID Pattern Support Sequence ID

1 1, 2 2 2, 3
2 5, 6 3 4, 5, 6
3 7, 8 4 1, 2, 3, 6
4 9, 10 3 1, 2, 3
5 3, 15 4 1, 2, 4, 5

Table 5.3: Found sequential patterns
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sequential patterns. We can remove the patterns that have too few occurrences (support) or are too short to
be relevant, as the higher the support the more often these threads are seen to share sequential patterns
together. The resulting frequent item sets can be visualized as groups of sequences in Table 5.5.

Frequent Pattern Support

{6} 2
{4, 5} 2
{2, 3} 2
{2, 1, 3} 3
{2, 1} 3
{2} 4

Table 5.4: Frequent item sets

Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5

Sequence 1 x x x
Sequence 2 x x x x
Sequence 3 x x x
Sequence 4 x x
Sequence 5 x x
Sequence 6 x x

Table 5.5: Combinations of found patterns for the system call sequences, the colored boxes indicate the found frequent itemsets of se-
quences that share multiple frequent sequential patterns. (The columns refer to the first found sequential patterns and not the frequent
item sets.)

We can interpret the results from Table 5.5, as malware sample 1 and sample 2 sharing multiple patterns
and are therefore more similar to each other than the sequences of malware sample 3 and 4. In addition, mal-
ware sample 2 also shows similarities with malware sample 3. Although malware sample 4 shares a pattern
with both samples 1 and 2 and another pattern with sample 3, it does not have enough in common with a
single sequence to be labeled as similar. For malware sample 5 it was already shown during the first pattern
mining step that it does not yield similarities to the other samples.

5.6. Results
First, we will show the results from the full sample n-gram analysis on both Malpedia datasets. We will discuss
the results both qualitatively and quantitatively. After this, we will provide the results from the function level
clustering method on the same datasets.

5.6.1. Full binary n-gram vector analysis
Figure 5.15 shows the result from the dataset of memory dumped malware samples. This is the same dataset
as was used for the static malware analysis in chapter 4. We also use the non-memory dumped version of
these binaries, the results from the clustering of this dataset are displayed in Figure 5.16. In figure (b) for both
of these figures, the HDBScan algorithm is used to find clusters in the original non-projected cosine distance
matrix.

The clustering results will be analyzed by inspecting the source data, to find interesting characteristics of
what makes the clusters different from each other. Comparison can be done using both the used bi-grams for
the vectors as well as the individual system calls among clusters. Examples of these interesting characteristics
are system calls that appear only in one cluster, or when a certain type of system call such as file operations
does not exist in a cluster. Since the total number of grams is too large to analyze manually, we will filter the
data by removing the grams that are common to all clusters.



5.6. Results 65

(a) Projection labeled with malware family name. (Legend is different from Figure 5.16a)

(b) Clustered using HDBSCAN with minimal cluster size 5 samples.

Figure 5.15: n-gram cosine similarity for dumped Malpedia-a dataset, project to 2d using T-SNE.

Memory dumped Malpedia dataset

In Figure 5.15 we see the results from the memory dumped version of the same samples. These samples are
the exact same samples that were used for the static analysis. HDBScan finds five clusters, we will discuss
each of these clusters.
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Clusters 1 2 3 4 5

# Bigrams per cluster 348 488 546 511 324
# Bigrams reduced by common bigrams per cluster 260 409 467 476 115
# Bigrams unique to cluster 183 332 390 399 38
# Unigrams per cluster 73 111 117 113 69
# Unigrams reduced by common unigrams per cluster 23 61 67 63 19
# Unigrams unique to cluster 12 0 0 0 0

Table 5.6: n-gram statistics of the memory dumped Malpedia dataset per identified cluster.

In Table 5.6 the number of unqiue elements (bigrams and unigrams) for each of the clusters is displayed.
As can be seen from this table, the number system calls to compare becomes reasonable to inspect manually
for the unigrams with the common unigrams among all clusters removed. The full data that shows for each
cluster the unigrams reduced by the common ones is provided in Appendix D. Using this data and the third
party information that was previously given in subsection 4.1.2 we will now discuss each of the clusters from
Figure 5.15.

• Cluster 1 - Is a small cluster with 7 samples, containing 2 samples from Globeimposter, Gandcrab and
a single sample from Emotet, Clop and Dridex. Interestingly no file operations except file reading are
done by the samples within this cluster. Except from Emotet this cluster this cluster shows similarities
with what whas found during the static analysis. Compared to the other clusters this cluster has the
least amount of unique system calls.

• Cluster 2 - Samples Locky, Friedex, Icedid, Dridex, it is the only cluster making use of the file buffer
flushing api.

• Cluster 3 - The largest cluster cluster contains 34 samples, from Dridex, Vawtrack and some Gandcrab
samples. It is the only cluster using the NtFsControlFile system call, which can be used to query a
system’s device information. It is also the only cluster use the system call for writing a file and delays
execution with NtDelayExecution system call.

• Cluster 4 - Small cluster of only 5 samples in total. Two of Locky, two of Dridex, and a single Emotet
sample.

• Cluster 5 - Consists of Locky, Globeimposter, Gandcrab, Dridex, Trickbot. The first three are ransome-
ware malware, and the last two have been known to be both be distributed by the same malware.

• Noise - Not all samples are clustered, 14 samples are classified as noise. There is no clear pattern in the
noise, the included samples originate from multiple malware families.

In Table 5.7 are given the quantitative results, using the author labels provided by Malpedia. Especially
the F1 score is particularly low, since we also see low precision and recall.

Purity index Rand index Precision Recall F1

0.54 0.60 0.35 0.29 0.32

Table 5.7: Quantitative clustering evalution memory dumped malpedia (malpedia-a)

Non memory dumped Malpedia dataset (Malpedia-b)
In this subsection we will show the results of the non-memory dumped Malpedia dataset. Again using co-
sine similarity on bigram vectors from all the threads identified as originating from the malware, HDBScan
distinguishes seven clusters as can be see in Figure 5.16.

Below we list each of the seven clusters.

• Cluster 1 - Dridex Vawtrak and a Gandcrab sample. What is interesting is that this cluster is very sim-
ilar to cluster 3 found in the dumped malware dataset. This is the only cluster using the system call
NtQueryDebugFilterState, which is function used to detect whether the binary is currently being de-
bugged as an anti-analysis measure.
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(a) Projection labeled with malware family name.

(b) Clustered using HDBSCAN with minimal cluster size 5 samples.

Figure 5.16: n-gram cosine similarity for non-dumped Malpedia-b dataset, project to 2d using T-SNE.

• Cluster 2 - Locky with Gandcrab.

• Cluster 3 - Contains a relative large amount of different families including: Vawtrak, Locky, Clop,
Dridex, Gandcrab, Trickbot. These are the same samples and families as seen in cluster 5 of the clusters
from the dumped dataset.
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1 2 3 4 5 6 7

# Bigrams per cluster 375 1190 773 2859 1834 1318 1042
# Bigrams reduced by common bigrams per cluster 167 284 242 1144 887 431 430
# Bigrams unique to cluster 97 214 172 1074 817 361 360
# Unigrams per cluster 74 150 111 280 258 187 150
# Unigrams reduced by common unigrams per cluster 74 150 111 280 258 187 150
# Unigrams unique to cluster 1 5 2 16 7 9 4

Table 5.8: n-gram statistics of non memory dumped Malpedia-b dataset per identified cluster.

• Cluster 4 & 6 - Consists only of Trickbot samples.

• Cluster 5 - Dridex only, together with cluster 4, shares a relative large amount of unique system calls as
can be seen in Appendix E, compared to the other clusters.

• Cluster 7 - Emotet only.

• Noise - Contains more noise than the clustering of the dumped malware samples. Just like that cluster-
ing no clear pattern of samples appear in the noise. It are samples, that do not appear as often in the
dataset, such as Dyre, Gozi, but also samples that appear more often like, Vawtrak.

In Table 5.9 are given the quantitative results. The precision score is better than for the memory dumped
dataset, recall however is quite low.

Purity index Rand index Precision Recall F1

0.78 0.71 0.62 0.33 0.43

Table 5.9: Quantitative clustering evalution non-memory dumped Malpedia (malpedia-b)

Comparing the results of the datasets
We can compare the clusterings of both datasets. The figures from Figure 5.16 and Figure 5.15 cannot be
compared based on the absolute spatial locations of the points directly, since the t-SNE algorithm has a ran-
dom component. Instead, we compare the relative distance between the points and the formed clusters. The
datapoints from the dumped malpedia dataset in Figure 5.15 more scattered over the space than the points
of the non-dumped malpedia set Figure 5.16 and the dumped set forms less dense clusters. Even though
the samples in the two dataset originate, a sample can come from different stages of the malwares execution
and therefore be very different between the datasets. However, we appear to find two clusters that seem very
similar in cluster content between the two datasets.

Since we used the same dataset as for the static analysis we can compare the results between this the static
and dynamic method. As a reference we can use Figure 4.2 and Figure 4.15 from the static analysis chapter.
The clear similarity between Friedex and Dridex, which we expected based on the literature, and which was
also seen in the static analysis does not appear in this dynamic analysis. Instead of Friedex we see another
similarity in Figure 5.18 that clusters Dridex together with Emotet, which is not entirely unexpected since
Emotet has been used to distribute Dridex. As for the connections we saw with Locky in the static analysis we
say evaluate that we also see a connection with Gandcrab and maybe with Flawedammy, as Andromut failed
to execute dynamically.

5.6.2. Custom clustering based on frequent set finding
Now we will present the results for the custom clustering method for all datasets. First we will discuss the
results on the same dataset used in the static analysis of both the memory dumped samples and the non-
memory dumped samples.

The final results can be visualized using a graph in tree structure. The nodes in this tree represent the
frequent item sets, and the edges are formed between nodes based on whether a malware sample is contained
in sets of adjecent lengths (−1 or +1). The tree has as its root an empty set and as we walk down the tree each
level of the tree contains the frequent item sets increasing in length. In addition, we can show how strong
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the similarity connection is between samples within a set by the level of support the set has. The support of
a set decreases as the frequent set is further away from the root. A prerequisite for this visualization to work
is that the number of samples that are compared to each other need to be small enough such that the graph
does not become too big and therefore becomes infeasible to analyze. Therefore, the minimum support of
frequent itemset mining algorithm needs to be set at a sufficient high level.

Besides the raw support, each node in the graph is labeled with the fraction of the original support from
the individual samples that is left in the downstream node. It is calculated by taking the individual average
support of the samples contained in each cluster and dividing this by the support of the current cluster. The
colors are indicicative of this value, with red meaning a high fraction is left with gradual shift to blue meaning
the fraction is relatively low.

For each of the datasets we will first provide the full tree, however since these are too large to be readable,
the trees are pruned to a minimum level of support in order to keep the tree small enough to visually analyze.
This pruning is quite important since it can affect the interpretation of the final clusters.

We will also merge the different samples from the same family together as we tree will become unreadable
when we keep the malware samples separate. We argue this is better than taking a single random sample from
each family since we saw from previous analysis that depending on the version of the malware it may be more
or less similar to other malware.

Malpedia dataset
Figure 5.17 and Figure 5.18 show the results of the custom clustering for two Malpedia datasets. To keep the
trees condensed each node only contains an index that references a malware family in Table 5.10. For the
Malpedia-b Figure 5.17dataset the minimum support of the frequent item set mining was set at 600, so at
least 600 or more sequential patterns need to be shared among one or more malware samples.

Starting on the left, we see on level 2, two clusters containing Flawedammy (8), one containing Emotet (5)
and another with Flawedgrace (9). Seeing Flawedammy and Flawedgrace together is not unexpected given
their known common purpose. To see Emotet, however, is unexpected. Following these clusters to level 3, we
still see relatively high similarity with a fraction of 0.7, indicating the same functionality is shared among all
three samples.

To the right on the second level, we see that Locky (11) and Trickbot (14) share the largest amount of
sequences. Following the paths downstream from Locky (11), Trickbot (14) we see that it is joined by Dridex
(12) on level 3, with a relatively high fraction of 0.72 for level 3. Substituting any of the samples in this cluster
for another sample drops the support significantly.

Now where we see this method of similarity comparison shine is if we look at the similarity Emotet (5)
Gandcrab (6), Locky (11), Dridex (12), Trickbot (14), on level 5. Although the relative support is not particularly
high we do see that the absolute support with 830 is high. Adding any extra sample to the cluster such as
Globeimposter (0) or IcedId causes the support to drop significantly. This would not have been caught by
a conventional clustering algorithm as it would have either disappeared in smaller clusters, or the dataset
would appear as one large cluster.

Figure 5.17: Visualization of the found patterns for the non-dumped Malpedia-b set.

In Figure 5.18 the tree of the Malpedia-a malpedia dataset is displayed. This graph is harder to analyze
than the graph extracted from the non-memory dumped dataset, as the supports of the different clusters
lie much closer to each other. Some samples share almost exactly all of its patterns with another samples,
such as Friedex (2) and Lock (11), only missing two patterns from Friedex. Another example is Vawtrack (4)
with Dridex (12), missing only 3 patterns from Vawtrack. No clear clusters based on labeled authors can be
observed, however in general we see that the ransomeware apears to cluster together in this dataset. These
are Globeimposter (0), Friedex (2), Gandcrab (6), Clop (7), Locky (11).

Similarity between the two sets is not necessarily something we would expect since both parts of the
malware may be very different. The non-memory dumped version may only do the unpacking, and could be
broken after that stage because of a broken command and control server.
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Figure 5.18: Visualization of the found patterns for the dumped Malpedia-a set.

Index Author Malware

0 - Globeimposter
1 - Gozi
2 Indrik-spider Friedex
3 Lunar-spider Icedid
4 Lunar-spider Vawtrak
5 Mummy-spider, mealybug Emotet
6 Pinchy-spider Gandcrab
7 ta505 Clop
8 ta505 Flawedammy
9 ta505 Flawedgrace
10 ta505 Get2
11 ta505 Locky
12 ta505+indrik-spider Dridex
13 Wizard-spider Dyre
14 Wizard-spider Trickbot

Table 5.10: Index reference to malware name

Any.run dataset

Given the results of the Any.run dataset in Figure 5.19, we see only two clear patterns. This is the pattern,
Emotet, Ramnit, Dridex. Since most of these malware are much newer than the malware used in the previous
dataset, not as much is known about them yet.

Figure 5.19: Visualization of the found patterns for the any.run dataset. Pruned at a maximum of 900 support.

Index Author Malware

0 ta505+indrik-spider Dridex
1 Wizard-spider Dyre
2 Mummy-spider, mealybug Emotet
3 - Gozi
4 - Hawkeye
5 Lunar-spider Icedid
6 - Qbot
7 - Ramnit
8 Wizard-spider Trickbot

Table 5.11: Index reference to malware name
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5.7. Discussion and conclusion
The cosine similarity over n-gram vectors of the system call sequences show Comparing the difference in
system calls among clusters proofs that certain type of malwares are found, as not all behevior is present in
all clusters. The quality of the clusters could be improved, since the clusters are not as clean as we saw with
the static analysis. We argue that the granularity of n-gram vectors of the full system call sequences among
malware is too large. As can be seen from the dataset distribution of Figure 5.8,Figure 5.9, and Figure 5.10, a
large part of the data can be described by only a small set of possible n-grams, which consist for a majority
part of memory operations.

We used the same quantitative clustering evaluation metrics as for the static clustering. The results of the
dynamic analysis of the two datasets are comparable, and both score worse on all tests than the results from
the static datasets. We note again that the labels provided by Malpedia are not to be trusted blindly, as it is
even possible authors with different labels are actually the same author. In addition, globeimposter and gozi
malware do not have any author attached.

It is even harder to evaluate the results of the custom clustering algorithm for the dynamic similarity
analysis. In order to make the results visible of this unconventional cluster method, the tree structure was in-
troduced, however this method is not optimal as it results in a large amount of clusters and therefore becomes
harder to analyze.

We do not nescecarily see clusters based on author. From the memory dumped dataset from Malpedia,
the closes we see to similarity is based on functionality. The malware that shows similarity is the malware
from the ransomware type.

In order to further analyze the difference between the different clusters on systemcall level, the best we
can do is find the differences in sequential patterns between the different clusters. However, this results in
a long list of patterns of system calls from which still nothing can be concluded. Unlike the dataset used for
the static analysis this dynamic dataset is simply too limited to do deeper analysis on what type of matches
were found. Acquiring the dynamic dataset is much more difficult than acquiring data statically, since a
separate system for capturing data is necessary. Besides the data acquiring system, there is a dependence on
the malware actually working as the author of the malware intedended in to work on a regular system such
that data can be captured.

We argued the reasons for developing a new method over choosing one of the conventional methods for
finding differences between sequential data. We are still convinced system call sequences are a good source
of data for doing similarity analysis, but additional data besides the raw system calls is necessary. However,
we cannot really quantify how well the method works given the difficult dataset and all the possible problems
with dynamic analysis previously discussed in section 5.1.

5.8. Limitations
We will discuss the limitations on two fields. First we will discuss the limitations of the dataset that was
generated. Second we will discuss the limitations of technique used to analyze the malware system call traces.

5.8.1. Dataset
There are four limitations we found that have to do with our captured dataset.

The first is that the time of the capture analysis is currently limited to a maximum of 2 minutes. Giving the
malware more time to execute may produce more relevant malware data. The malware may continue to run
in the background to wait for instructions from a command and control server. Another possibility is that the
malware stalls on purpose to avoid being analyzed on high throughput malware analysis systems.

The second is that the smallest categorization of the data is on thread level. We do not have any infor-
mation about the code structure within a thread such basic block boundaries or even function boundaries.
This means we cannot easily cut the system call traces to smaller pieces as was possible using static analysis,
because we do not know where to cut them. We want to do this such that these individual pieces can be
attributed to different authors.

The third issue is that we do not have the process name of all processes. The process name is unfortu-
nately only logged if the thread creator reports to the PsSetCreateProcessNotifyRoutine windows functionality.
About a third of the process IDs present in the system call log do not appear in list of created processes. These
processes can therefore not be filtered on using their process name.

The fourth and fifth issue are not directly caused by this dataset, but by the problem that the malware
process activities can be scattered through the system traces. Since it has been identified that malware may
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use techniques that make following the full execution of the malware from the starting point of execution
is hard by injecting itself into other benign processes (subsection 3.1.4). Previous literature did not yet give
this issue any attention while searching for similarities among malware, since their goal was to identify the
malware family. They did not have to gather all malware behavior, the behavior of the main malware process
appeared to be enough. However, since our goal is to find similarities among all malware, including among
malware families, we want to gather as much information from the malware execution as possible.

All recorded system call traces were recorded on a system that does not have any applications installed be-
sides the default applications that come with Windows 10. Some malware might do process injection in non-
windows applications, to increase the detection surface of possible process injections. Therefore, it would be
good to prepare the test machine with other popular applications, to try and catch these injections.

5.8.2. Technique
Regarding the frequent itemset clustering technique, the solution may suffer from the problem of sample
length discrepancy. Malware samples that produce a higher number of different system call sequences are
more likely to appear in the final clustering analysis than samples with only a few frequent sequential system
call patterns. However, we argue it is not as big of a problem is it is for full document similarity comparison.
If a malware sample only has a few unique frequent sequential patterns and all of these samples match with
another sample, we cannot yet conclude these samples are likely from the same author. This is because unless
these patterns are very long they are likely not unique enough to characterize as work from a specific author.
This brings us to another limitation as to the longer the possible sequential patterns are the more expensive
the sequential pattern-finding becomes. In our research, we had to limit the maximal length of the patterns
to 5, since the current state of the art sequential pattern finding algorithms could not handle higher numbers
as the algorithms did not complete on our dataset of relatively long sequences.

As often the case with clustering it is hard to evaluate the quality of the results. There is no previous work
that does a similar analysis and there are no ground truth labels to validate the found similarities are the
similarities we are actually looking for. However, we are able to compare the results with the results that were
achieved from the static analysis though, because we used the same dataset for both analyses.

An issue in general with frequent pattern mining is that the output data is not necessarily smaller than
the input set [14]. Even when using maximal patterns the output is still too large to draw useful conclusions
from directly.

Regarding the visualization of the results, using the graph-based approach is not perfect since it requires
pruning to make the graph interpretable. The problem with pruning based on support is that it may seem
like the bottom nodes in the graph are reasonable clusters, while in fact, the pruning can cut off other clusters
that lie just below the set pruning threshold.

5.9. Summary
First, we explained the problem we are trying to solve and why we cannot do naive clustering or methods that
find differences instead of similarities in sequences. Then we proceeded to explain how the data gathering
took place, a solution on top of Cuckoo sandbox was built in order to gather system-wide system calls. Unfor-
tunately, the gathered data did not provide sufficient information to find all process injections as there is too
much arbitrary background noise in most processes to differentiate between benign threads and maliciously
injected threads. We discussed multiple options to extract useful features from the system call traces, we
decided on a custom approach that involving frequent pattern extraction. To represent the results we used
a custom graph representation to make it possible to visualize overlapping clusters the clustering method
makes possible.
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Conclusion and future work

6.1. Conclusion
In this thesis, we wanted to find an answer on how to attribute different malware to the same author. Accord-
ing to previous research on author attribution coding style should remain after compilation. We however,
have strong indications these past studies are flawed, because of dataset issues regarding copied source code
among an author their programs. Therefore, we argue that the conclusion that coding style survives compi-
lation is not justified. With coding style not surviving compilation, we therefore redefined similarity with the
goal of doing author attribution that focusses on the functionality of the binary programs instead of style.

Previous clustering and classification research regarding malware is concerned with whether malware
samples belong to the same family or classifying whether a binary sample is malicious or not. This research
took a different approach, we wanted to find out how to cluster malware from different malware families
together based on the author who wrote the malware. This required us to get a good understanding of the
difference between finding similarities and finding differences in malware. We approached the problem us-
ing both static and dynamic analysis techniques, both requiring different feature extraction techniques and
slightly different clustering methods. Evaluation of the results was done by looking at what is generally known
about the malware families and their authors, deeper inspection of some of the clusters through case studies,
and quantitative cluster evaluation metrics.

In this section, we will first discuss the answer to our sub-research questions. The answers together will
eventually form the answer to our main research question.

6.2. Research questions
The answers to the sub-questions and main research question are given below.

Sub-question 1

Is it possible to find similarities among malware binaries using an authors coding style information?

Answer 1: We argue that is not possible to find similarities in the form of code style, there is simply not
enough information about the coding style of the author left after compilation. Even if we assume variables
such as the compiler, library versions, and an authors style remains the same over time, different source code
with the same function can simply compile to the same machine code. Previous work declared it as possible
to learn an author their style using mostly n-gram vectors and random forest and SVM machine learning
algorithms. However, we claim that instead of learning the author their style, the author their use of certain
custom general functions copied among an author their different programs was learned. We supported this
claim by comparing the literal source code similarity on the dataset of the previous work, this resulted in high
similarity, too high to assert only the author their programming style is learned.
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Sub-question 2

What features that help attribute authorship can be extracted from recent malware binaries using
static analysis?

Answer 2: Malware samples are almost always packed to make static analysis harder, without unpacking
static analysis will not yield any useful results. Therefore, we can only answer this question given that the
malware is in an unpacked state acquired by manual or automatic memory dumps. Realizing that the pre-
vious work on malware attribution has not been measuring binary style but binary similarity. We see that
n-gram vectors from the assembly of decompiled binaries can be a good measure for finding similarities and
therefore cluster authorship.

Sub-question 3

How can similarities among malware binaries be found using features statically derived from recent
malware binaries?

Answer 3: The simplest method given the decision to use n-gram vectors from decompiled binaries is to
create a single vector from the full binary. We have shown that this does not result in a desirable result, since
we see no clear clusters, while we expected them to be there. We argue that this is because the granularity
of creating a single vector per binary is too large. Therefore, we proposed to split the binaries in smaller
parts, and compare these parts individually among binaries. The number of parts a malware sample can
be disassembled can however be quite large, this results in a lot of data points. Merging all these points
into a single large dataset and running an arbitrary clustering algorithm on it will not yield useful results.
This is because of the diversity of the data and the number of points, therefore there are no clear cluster
boundaries. Besides, the clusters that cover the similar instruction sets are relatively small and therefore if
they exist disappear in the noise of non-similar code. To solve this we proposed to do the clustering pairwise
and focus only on the points that lie very close to each other. By using a malware dataset of limited samples
that already have suspicions of code sharing, we visualized how well the method works in practice. The found
clusters can be explained from public reports of the clustered malware, which already provides some evidence
that the method works. In addition, a couple of case studies were done to further prove the usefulness of the
developed method.

Sub-question 4

What features that help attribute authorship can be extracted from recent malware binaries using
dynamic analysis?

Answer 4: We argue that system calls are a logical solution to find similarities among malware samples.
Firstly, because it provides enough unique information to a specific malware sample to find distinguishable
information to where malware samples show similarities. Secondly, since system calls can be gathered from
kernel space, malware that runs on userspace is unlikely to detect that it is being analyzed. Thirdly, system
calls can be captured system-wide and are not dependent on a hook into a specific process, in theory, this
should help capture all malware activity instead of just the initial malware process.

Sub-question 5

How can similarities among malware binaries be found using features dynamically derived from
recent malware binaries?
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Answer 5: We proposed two clustering methods for similarity analysis on malware using system calls,
the first attempted using n-grams for the clustering, which is a well-researched method used for natural text
clustering. We have assessed the made clusters both visually and quantitatively using the available author
labels. However, we argued this method is too coarse-grained, therefore we developed a second method
that has two advantages. Firstly it allows us to find the similarities on a finer-grained level, and secondly,
the method is able to cluster a single sample into multiple different clusters. The evaluation of this second
method is unfortunately slightly problematic, it showed that we are able to find similarities, some matched
the expectation, but others did not unfortunately, because of limitations with the dataset we were unable to
evaluate the quality of these similarities further.

Main research question

How can we automatically attribute authorship among recent malware binaries using either static or
dynamic analysis?

Answer main: The problem of finding similarities instead of finding differences among malware samples
is not a well-researched topic yet, as most research focussed on finding differences instead of similarities.
We engineered multiple methods to try and figure out the best method to find similarities among malware
samples, both statically and dynamically. For the static method, we were able to find some new probable sim-
ilarities and confirm some other interesting similarities. Regarding the dynamic technique for finding simi-
larities, we are less convinced of it being the best possible method. Dynamic analysis is more difficult than
static analysis, because of the additional data gathering system. Although the currently developed method in
combination with the used dataset could be improved, we are convinced the reasoning for choosing such a
method is valid.

All methods resulted in slightly different clusters for the "same"1 dataset, since we do not have a ground
truth value for which parts of each malware are copied between each other, the clusters cannot be evaluated
on precision.

6.3. Limitations
In the process of solving the problem of finding similarities among malware families, we have shown why a
naive solution does not work as well as we desired, and therefore proceeded to propose a newly engineered
solution for both static malware analysis and dynamic malware analysis. For both solutions we had to acquire
all data ourselves, given that doing this for malware is quite difficult, chapter 3 is dedicated to the difficulties
of doing malware analysis and what to take into account when doing data science on malware. For static anal-
ysis capturing data is easier than for dynamic analysis, because for dynamic analysis more practical problems
arose and it required a custom kernel driver to log the system calls of the operating system while a malware
sample executes.

This research proves that it is possible to do similarity clustering on smaller granularity than on full bi-
naries. We show that we can get the data to cluster for both the static and dynamic analysis that go beyond
clustering malware of the same family. Finding both known similarities, but also probable new similarities
among malware families. We used publicly available malware reports, case studies on groups of malware,
and quantitative clustering metrics for evaluation. However, evaluating clustering remains hard, evaluating
clustering in general is already difficult, and being a cybersecurity-related clusters makes it even harder.

Clustering is hard in general, because of its unsupervised nature. The data used for clustering does not
necessarily need to have a ground truth value which we can evaluate against, as is the case with the datasets
used in this thesis.

When clustering we have to deal with parameters such as the number of clusters and the problem of
what to do with outliers. The used clustering algorithm during this thesis (HDBSCAN) deals with both these
parameters, however even with this algorithm it is possible to come to different clusters by changing the
parameter of the minimum number of samples per cluster.

Data analysis in cybersecurity is a constantly changing field, because of technological progress. This
causes uncertainty with the dataset, since malware keeps evolving to use new techniques to actively counter

1dynamic or static versions
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analysis, some of these techniques we discussed in chapter 3. It remains difficult to determine if all malware
data is captured during the analysis. Another cause of uncertainty has to do with the source of the data, mal-
ware is not easy to gather as it has to be caught in the wild. The information about malware and malware
binaries available in cybersecurity repositories are gathered by companies and individual researchers with-
out academic review. Although measures are taken to increase the trust in the malware data repositories such
as by using a peer review system to add new information, incomplete or false information can still slip in.

In summary, a conclusion regarding the results of a clustering boils down to something that appears to
make sense when observed visually or on a case by case basis, however it remains difficult to express the
quality of the clustering quantitatively.

6.4. Future work
In this section we will list the possibilities with more work and better data, in addition we will list practical
improvements to some of the discussed techniques.

Improved data
We believe this research could benefit from better tagged data. Although the main source of data that was
used during this research (Malpedia) already lists some authors for Malware there are a couple of shortcom-
ings with these author tags. First, a single malware sample can be tagged with multiple author names if there
exists doubt on who the actual author is of the malware. The second issue is that both malware and author
names are not standardized, every anti-virus vendor or researcher can create their own names. This practice
causes a single malware sample to be tagged with multiple names and multiple author names, which makes
it hard to use the tags as ground truth for author attribution.

Ideally, a dataset for author attribution does not tag malware by arbitrarily named author tags. Instead,
malware samples should be tagged by the individual authors their real name, such that even when the com-
position of a group changes the group can be tracked. These author tags can be established through law
enforcement investigation.

Use of function context in function matching
Currently, no structural information outside of the function is used for finding function similarity. To improve
the quality of matching similar functions, the greater context in which a function appears could be used as a
heuristic. An example of such a feature is to weight the match by whether the found matching functions have
the same calling and returning functions, as was illustrated during the analysis in subsection 4.4.4.

Better post processing for frequent pattern clustering
The postprocessing after finding the patterns of malware samples that have mutual system call sequences
could be improved. Currently, we show the results as a graph, however this does not scale to larger datasets.
Additionally, such evaluation requires a manual inspection to interpret the results which makes automation
of the solution for large scale datasets an issue.

Improved system call tracing
The current system call tracing solution that is used for the dynamic analysis only keeps track of the process
and thread ID the system call appeared in. Although this makes the dataset very simple, it requires more
post processing work to make intelligent splits to lower the granularity in which similarities can be found.
This process could be simplified by keeping track the stack such that splits can be made based on the current
stackframe. Another option that would provide more information about the system call would be to log the
arguments made to each system call.

Improved tracing of process injection
A pure system call based approach turned out to be insufficient to find the malware threads among all other
threads that run on a system. Even though the analysis system is mostly deterministic, external influences
can cause non-deterministic behavior among analysis runs. Because of this, it is not possible to distill just the
malware threads from the system. Additional data is necessary such that the malware can be traced on the
system. If the arguments of each system call could be captured the flow of data between system calls could
potentially be followed and the inter-thread interaction exposed more easily. Another method to extract the
malware traces could be in the form of anomaly detection. This method does not require other additional
data, however for this approach are large amounts of benign data necessary.
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Syscall2Vec
Improve the Word2Vec/Syscall2Vec model, the model could probably be improved such that it provides a
better model. In this research, we experimented with it shortly, but it did not provide the desired results in
the limited available time. In case larger datasets will be used in the future, it may also become more relevant
to reduce the amount of data further, and therefore worth the additional effort. Although using Word2Vec
appears like an interesting application for system calls we have not found any work previous work that does
system call analysis and makes use of this or any other state of the art word embedding techniques.





A
Google Code Jam Dataset - A possible issue

It is curious that at least for the classification task the Google Code Jam (GCJ) dataset performs so much better
than the Malpedia dataset according to our results. Therefore we investigated what the cause of this behavior
could be.

The problem we identified has to do with the used GCJ dataset itself. Theoretically, this dataset is optimal
for the task, each programmer in this dataset solves the same programming problem, therefore, we avoid
learning the program behavior instead of the programmer’s style. However, a major issue with this dataset
not addressed in previous literature can be identified. Different programs from the same programmer have
a high likelihood of containing duplicate code. For instance, if a programmer wants to use some big-integer
implementation, but this is not available in the standard library they might copy and paste this implemen-
tation from another source into his submission file. This same snippet of code is then duplicated in each
submission again. The programmer can then be identified purely on the usage of this snippet instead of
his programming style. To confirm this behavior the literal similarity of the source code is analyzed using
SSDeep1

SSDeep works by creating a so-called fuzzy hash for an input and comparing this hash to other hashes to
generate a similarity score. A hash can efficiently be compared to another hash, much more efficient than
when a full file comparison has to be done. SSDeep is a popular tool to do this to compare binaries. The
computed hash is called fuzzy because a similarity match is independent of the location where it appears in
the two files. Besides the hash, SSDeep generates a score ranging from 0.0 (no match) to 1.0 (exact match).

Figure A.1: Heatmaps displaying SSDeep scores of 58 participants with each 20 submissions, the left figure shows the source code, right
figure the compiled version of the source.

As can be seen from this example, even though we are looking for literal similarities the source code al-
ready show very large similarity scores. Therefore, we can no longer distinguish between the coding style of a

1https://ssdeep-project.github.io/ssdeep/index.html
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programmer and simple code re-use.



B
Table comparison Friedex versions

Comparison table of different Friedex versions to Dridex, from which the function offsets are used.

Dridex friedex__2017-06-08 friedex__2018-01-26 friedex__2019-03-12
---------- --------------------- --------------------- ---------------------
0x10025fcb x x x
0x10027e93 x x x
0x10024bbd x
0x10028221 x x
0x100283ae x
0x1002826b x x
0x10001c00 x x
0x10020776 x x x
0x100287a3 x x
0x10025753 x x x
0x10026232 x x
0x10025abf x x
0x1002b860 x x
0x1002b8db x x
0x1002b302 x x x
0x1002b274 x x x
0x1002bc0e x x
0x10026035 x x
0x1002cc64 x x x
0x10025701 x x x
0x10025c38 x x x
0x1002ccf5 x x
0x10025cf8 x x x
0x10026544 x x x
0x10025e25 x x x
0x100274b8 x x x
0x10027257 x x x
0x10025e71 x x x
0x1002727c x x x
0x10026590 x x x
0x10026122 x x
0x10025927 x x x
0x10020764 x x x
0x10028725 x x x
0x10029e97 x
0x10028b67 x x
0x10025efd x x
0x10026324 x x x
0x10026e15 x x x
0x10028339 x x
0x10025649 x
0x1002870d x x x
0x1002d179 x x x
0x1002b1d7 x x x
0x1002b27e x
0x10020740 x x x
0x10026ac2 x x
0x10020752 x x x
0x1002758e x x x
0x10026763 x x x
0x10025deb x x x
0x10026e5b x x x
0x100275b5 x x x
0x100275c3 x x x
0x100273cb x x x
0x100267bc x x x
0x10025ebe x x x
0x10027a9c x x x
0x10025fdf x
0x1002e2ce x x
0x1002d193 x
0x1002d29e x
0x1002705a x x x
0x100268ff x x x
0x10026ad0 x x x
0x10026815 x x x
0x100272b2 x x x
0x10026002 x
0x100265dd x x
0x1002c374 x x
0x1002be2a x x
0x1002779d x x x
0x10026747 x x x
0x10027538 x x x

Dridex friedex__2017-06-08 friedex__2018-01-26 friedex__2019-03-12
---------- --------------------- --------------------- ---------------------
0x10026f59 x x x
0x10025f3a x x
0x10027908 x
0x10026495 x x x
0x10027719 x x x
0x1002695f x x x
0x1002bacc x x x
0x100279a8 x x x
0x100279d3 x x x
0x10024f17 x x
0x10026755 x x x
0x100272fe x x x
0x10026b21 x x
0x100163bd x x x
0x1002ca51 x
0x1002c673 x x
0x1002baa5 x x x
0x100147ac x x x
0x1002c575 x x
0x1002c5c5 x x
0x1002929b x x x
0x10026bfe x x x
0x1002c7e1 x x x
0x1002c7a0 x x
0x10026c8a x x x
0x10026e9d x x x
0x10015cc9 x x x
0x1002c33f x x
0x1002c7ef x x x
0x10027018 x x x
0x10026a63 x x x
0x10026a00 x x x
0x100279c5 x x
0x1002747c x x x
0x1002744d x x x
0x10026684 x x
0x1001b1ab x x x
0x1002b34f x x x
0x10026b03 x x x
0x100271ad x x x
0x10027122 x x x
0x10026949 x
0x10027650 x x x
0x1002bbc3 x x x
0x10029614 x x x
0x100259b0 x x x
0x100257b5 x x
0x10025860 x x
0x10025834 x x
0x100275ea x x x
0x10027a24 x x
0x10027a06 x x x
0x100280a4 x
0x10027de0 x x x
0x1002816c x x x
0x10029d9b x x x
0x100298a3 x x x
0x10029bf2 x x
0x10029b84 x x x
0x10029027 x x x
0x100286de x x x
0x100279e9 x x x
0x1002c7c0 x
0x1002cc7e x x x
0x1002d8eb x x
0x1003099a x x
0x100423f1 x x
0x10028f79 x x
0x10027b36 x
0x10028119 x
0x100281bc x
0x100282aa x
0x10028801 x
0x10026d8c x x
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Dridex friedex__2017-06-08 friedex__2018-01-26 friedex__2019-03-12
---------- --------------------- --------------------- ---------------------
0x1002ec6e x x
0x100258e4 x
0x10009485 x x
0x10029e1d x x
0x1000ab9d x x
0x1002b212 x x
0x1002bfff x
0x1002ba8b x
0x100258f5 x x
0x10027b22 x x
0x100274d0 x x
0x1002c746 x
0x1002c85a x x
0x1002ca84 x
0x10026739 x x
0x1002c715 x
0x100256e5 x
0x10027e7f x
0x10028260 x
0x10003a69 x x
0x1002d11b x
0x100256a3 x
0x10025676 x
0x1002b685 x
0x1002b768 x
0x1002c6e9 x x
0x1002cbaf x x
0x10025f89 x x
0x1002b8c6 x x
0x1002b91a x x
0x1002518e x
0x1002e33b x
0x10025412 x x
0x1002ff25 x x
0x1002fd19 x
0x1002ff4a x x
0x1000ae8b x x
0x1000aed9 x x
0x1002b9e8 x x
0x1002c3bd x
0x1002590e x x
0x10025ff1 x x
0x1002f4ef x x
0x1002b5ef x
0x1002e574 x
0x1002b823 x x
0x1002f721 x x
0x1002d247 x
0x10025737 x
0x1002b931 x
0x10030938 x
0x10030b4f x
0x100309e1 x x
0x10030c4e x
0x100283ed x x
0x100128e9 x x
0x10029f34 x x
0x1002cc05 x
0x1002b98c x x
0x10025b2a x
0x10013184 x x
0x1001312f x
0x1002ba44 x x

Dridex friedex__2017-06-08 friedex__2018-01-26 friedex__2019-03-12
---------- --------------------- --------------------- ---------------------
0x10014520 x
0x10014542 x
0x100292c2 x x
0x10028535 x x
0x1002ba16 x x
0x10026f9d x x
0x10030d59 x
0x10030b21 x
0x10030a61 x x
0x1002baf3 x x
0x100324c5 x
0x10032355 x
0x100323ba x
0x1001e95b x
0x10031c81 x
0x10031911 x
0x1001e9cf x
0x1001e98e x
0x1002549d x x
0x1002b411 x x
0x10030ab7 x x
0x10025528 x x
0x1002818d x
0x10028d00 x x
0x1002e484 x
0x100255d2 x x
0x1002a572 x
0x1002bd5d x
0x1002c7fd x x
0x1002e463 x x
0x1002e1fe x
0x1002e314 x x
0x1002f959 x
0x1002f8aa x
0x1002fa51 x x
0x1002fa2c x x
0x1002e425 x x
0x10029198 x x
0x10029227 x x
0x10030fd9 x x
0x10030fec x x
0x10031b67 x
0x1003237c x
0x10031c1a x
0x10031869 x
0x10031b95 x
0x10025165 x
0x1002aeeb x
0x100071ec x
0x10026d18 x
0x10025c2a x
0x10026ee1 x
0x100033f1 x
0x100038ca x
0x10003718 x
0x10007177 x
0x1002561a x
0x1002e3f4 x
0x1002650c x
0x1001689e x
0x1002865e x
0x1002f7a3 x



C
Table comparison TA505 comparison

Comparison of TA505 similarities found during static analysis, all four samples are compared to the Locky
malware family.

Locky Andromut Clop Flawedgrace Flawedammyy Globeimposter
---------- ---------- ------ ------------- ------------- ---------------
0x00402bc9 x
0x0040cd69 x x x
0x0040e7c0 x x x x x
0x0040e1b1 x x x
0x0040e7c9 x x x x x
0x0040db7d x x x x x
0x0040e3d5 x x x x x
0x0040ce4d x
0x0040e500 x x x
0x0040d5fd x
0x0040d7d0 x
0x0040de86 x
0x0040deed x x x x x
0x0040e383 x x x x x
0x0040e356 x x x
0x0040e3e8 x x x x x
0x004108e2 x x x
0x004110f6 x x x
0x0040f7a1 x x x x x
0x0040f7aa x x x x x
0x0040fd42 x
0x0040ea2c x x x x x
0x0040ea3b x x x x x
0x004104c0 x x x x
0x00410fc5 x x x
0x004111d0 x x x x x
0x0040e805 x x x
0x00410882 x x x x x
0x004108b2 x x x x x
0x004108cb x x x x x
0x00410790 x x x x x
0x00410899 x x x x x
0x0040ef1d x x x x x
0x0040f2ec x x x x x
0x004119c0 x x x x x
0x00411957 x x x x x
0x004115e0 x x x
0x0040f5b6 x x x
0x0040f960 x x x x x
0x0040f96c x x x x x
0x0040f325 x x x
0x0041074a x x x x x
0x004121d0 x x x x x
0x00410e61 x x x x
0x00411ff5 x x x x x
0x0041289e x
0x004110be x
0x004138e0 x x
0x00412b8c x x x

Andromut Clop Flawedgrace Flawedammyy Globeimposter
---------- ---------- ------ ------------- ------------- ---------------
0x0041495f x x x x x
0x00412da7 x
0x004127da x x
0x004110ab x
0x00412a87 x x
0x00412ada x
0x00413042 x x
0x004127a8 x x
0x004144ee x x x
0x00413d07 x x x x x
0x00414940 x x x
0x00414860 x x x x
0x0041434e x x x
0x0040cc35 x
0x0040ce58 x
0x004124e0 x
0x0041286b x x
0x00412975 x x
0x00412c10 x
0x004143d6 x x x x x
0x0040227b x
0x0040229b x
0x00402531 x x x
0x0040254f x
0x0040256f x x x
0x00402685 x
0x00402c05 x x
0x00402c20 x
0x0040a22f x x x
0x00411f90 x x x x x
0x00412835 x x
0x0040cd52 x x
0x0040ea16 x x
0x0040dde5 x x
0x0040ddf8 x x
0x0040de03 x x
0x0040e1f9 x x
0x0040e1ea x x
0x00411107 x x
0x0040ea00 x x
0x00411f53 x x
0x004120a5 x x x
0x00410aab x x
0x00413a80 x x
0x00413ab9 x x
0x00413acc x x
0x00411ec0 x x
0x00412380 x x x x
0x0040cb97 x
0x0040e7d2 x x
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D
Dynamic analysis - cosine similarity -

Malpedia dumped dataset

System calls 1 2 3 4 5
------------------------------------ --- --- --- --- ---
NtAlertThreadByThreadId x
NtContinue x x x x
NtCreateFile x x x x
NtDelayExecution x
NtDeviceIoControlFile x
NtFsControlFile x
NtGetMUIRegistryInfo x
NtNotifyChangeKey x x x x
NtOpenThreadToken x x x
NtQueryDebugFilterState x x
NtQueryDirectoryFileEx x x x x
NtQueryWnfStateData x x x
NtRaiseHardError x x x x
NtReadFile x x
NtReleaseWorkerFactoryWorker x
NtRequestWaitReplyPort x x x x
NtSetInformationFile x x x x
NtSetWnfProcessNotificationEvent x x x x
NtSubscribeWnfStateChange x x x
NtWaitForAlertByThreadId x x
NtWaitForSingleObject x
NtWorkerFactoryWorkerReady x
NtWriteFile x
NtAlpcConnectPort x x x
NtAlpcSendWaitReceivePort x x x
NtCallbackReturn x x
NtCompareObjects x
NtCreateMutant x x
NtCreateSemaphore x x
NtDuplicateToken x x x
NtEnumerateKey x x x
NtEnumerateValueKey x x x x
NtIsUILanguageComitted x x x
NtMapViewOfSectionEx x x x x
NtOpenMutant x x x
NtOpenProcess x x x x
NtOpenProcessTokenEx x x x
NtOpenSemaphore x x x
NtOpenThreadTokenEx x x x
NtQuerySection x x x x

System calls 1 2 3 4 5
------------------------------------ --- --- --- --- ---
NtQuerySecurityObject x x x x
NtQueryWnfStateNameInformation x x x x
NtReadVirtualMemory x x
NtSetInformationThread x x x
NtSetTimer2 x x
NtTraceEvent x x x
NtUnmapViewOfSectionEx x x x
NtUpdateWnfStateData x x x
NtUserBuildHwndList x x x
NtUserCallNoParam x x
NtUserCallOneParam x x x
NtUserCallTwoParam x x
NtUserCreateWindowEx x x x
NtUserFindExistingCursorIcon x x
NtUserGetAtomName x x x
NtUserGetClassInfoEx x x
NtUserGetClassName x x
NtUserGetDpiForCurrentProcess x x
NtUserGetGUIThreadInfo x x x
NtUserGetImeInfoEx x x
NtUserGetObjectInformation x x x
NtUserGetProcessUIContextInformation x x x
NtUserGetProp x x x
NtUserGetWindowCompositionAttribute x x x
NtUserIsNonClientDpiScalingEnabled x x x
NtUserIsTopLevelWindow x x x
NtUserMessageCall x x x
NtUserRegisterClassExWOW x x x
NtUserRegisterWindowMessage x x x
NtUserReleaseDC x x x
NtUserSetProcessDpiAwarenessContext x x x
NtUserSetWindowLongPtr x x x
NtUserSetWindowPos x x x
NtUserSystemParametersInfo x x x
NtUserUnregisterClass x x x
NtUserUpdateInputContext x x x
NtUserWin32PoolAllocationStats x x x
NtWaitForMultipleObjects32 x x x
NtWriteVirtualMemory x x
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E
Dynamic analysis - cosine similarity -

Malpedia non dumped dataset

System calls 1 2 3 4 5 6 7
------------------------------------ --- --- --- --- --- --- ---
NtClearEvent x x x x
NtDelayExecution x x x x
NtDeviceIoControlFile x x x
NtFsControlFile x x x
NtGetMUIRegistryInfo x x x
NtQueryDebugFilterState x
NtReadFile x x x x
NtReleaseWorkerFactoryWorker x x x x
NtSignalAndWaitForSingleObject x x x
NtWaitForAlertByThreadId x x x x x x
NtWaitForSingleObject x x x x
NtWorkerFactoryWorkerReady x x x x
NtWriteFile x x x
NtAccessCheckByType x x x x x
NtAlertThreadByThreadId x x x x x
NtAlpcAcceptConnectPort x x x x x
NtAlpcConnectPort x x x x x x
NtAlpcConnectPortEx x x x x x x
NtAlpcCreatePort x x x x x
NtAlpcCreateResourceReserve x x x
NtAlpcCreateSecurityContext x x x x
NtAlpcDeleteSecurityContext x x x
NtAlpcImpersonateClientOfPort x x x
NtAlpcQueryInformation x x x x x x
NtAlpcQueryInformationMessage x x x
NtAlpcSendWaitReceivePort x x x x x x
NtAlpcSetInformation x x x x x
NtCallbackReturn x x x x x x
NtCancelIoFile x
NtCancelTimer2 x x x x x
NtCancelWaitCompletionPacket x x x
NtCompareObjects x x x x x
NtCreateKey x x x x x x
NtCreateMutant x x x x x x
NtCreateSemaphore x x x x x x
NtCreateThreadEx x x x x x x
NtCreateTimer x x x x x
NtCreateUserProcess x x x x x
NtDuplicateToken x x x x x x
NtEnumerateKey x x x x x x
NtEnumerateValueKey x x x x x x
NtFlushBuffersFile x
NtGdiBitBlt x x x x
NtGdiCreateBitmap x x x x x
NtGdiCreateDIBitmapInternal x x x x
NtGdiExtGetObjectW x x x x
NtGdiSetDIBitsToDeviceInternal x x x x
NtGetCompleteWnfStateSubscription x x x
NtGetNlsSectionPtr x
NtIsUILanguageComitted x x x x x x
NtLockVirtualMemory x
NtMapViewOfSectionEx x x x x x x
NtNotifyChangeMultipleKeys x x
NtOpenMutant x x x x x x
NtOpenProcess x x x x x x
NtOpenProcessTokenEx x x x x x
NtOpenSemaphore x x x x x x
NtOpenThread x x x x x
NtOpenThreadTokenEx x x x x x
NtOpenTimer x
NtQueryDirectoryFile x x x
NtQueryEvent x x x x x
NtQueryFullAttributesFile x x x x
NtQuerySection x x x x x x
NtQuerySecurityObject x x x x x x
NtQueueApcThread x x x
NtReadVirtualMemory x x x x x x
NtResumeThread x x x x x x
NtSetInformationObject x x x x x
NtSetInformationThread x x x x x x
NtSetInformationToken x x
NtSetTimerEx x x x x x
NtSetValueKey x x x x x

System calls 1 2 3 4 5 6 7
------------------------------------ --- --- --- --- --- --- ---
NtSuspendThread x x x x
NtTraceEvent x x x
NtUnlockVirtualMemory x x
NtUnmapViewOfSectionEx x x x x x x
NtUnsubscribeWnfStateChange x x x
NtUserBuildHwndList x x x x x
NtUserCallHwndLock x x
NtUserCallNoParam x x x x x x
NtUserCallOneParam x x x x x x
NtUserCreateEmptyCursorObject x x x x
NtUserCreateWindowEx x x x x x
NtUserFindExistingCursorIcon x x x x x x
NtUserGetAtomName x x x x x
NtUserGetClassInfoEx x x x x x
NtUserGetGUIThreadInfo x x x x x x
NtUserGetKeyboardLayout x x x x x x
NtUserGetObjectInformation x x x x x x
NtUserGetProcessUIContextInformation x x x x x x
NtUserMessageCall x x x x x
NtUserRegisterClassExWOW x x x x x x
NtUserRegisterWindowMessage x x x x x x
NtUserReleaseDC x x x x x x
NtUserSetCursorIconData x x x x
NtUserSetWindowLongPtr x x x x x
NtUserSystemParametersInfo x x x x x x
NtUserWin32PoolAllocationStats x x x x x x
NtWaitForMultipleObjects32 x x x x x
NtWriteVirtualMemory x x x x x
NtUserCallHwnd x x
NtUserCallHwndParamLock x
NtUserCallHwndParamLockSafe x x
NtUserCallTwoParam x x x x x
NtUserGetCursor x
NtUserThunkedMenuItemInfo x x x x
NtUserWindowFromPoint x x x
NtAddAtomEx x x
NtAdjustPrivilegesToken x x
NtAllocateLocallyUniqueId x
NtAlpcCreatePortSection x x
NtAlpcCreateSectionView x x
NtAlpcDeletePortSection x x
NtAlpcDeleteSectionView x x
NtCancelIoFileEx x
NtCreateNamedPipeFile x
NtCreatePrivateNamespace x
NtFlushProcessWriteBuffers x
NtGdiAnyLinkedFonts x x
NtGdiCreateCompatibleBitmap x x
NtGdiCreateCompatibleDC x x
NtGdiCreateRectRgn x x
NtGdiCreateRoundRectRgn x
NtGdiCreateSolidBrush x x
NtGdiDeleteObjectApp x x
NtGdiDoPalette x x x
NtGdiDrawStream x x
NtGdiExtTextOutW x x
NtGdiFlush x x
NtGdiFontIsLinked x x
NtGdiGetCharABCWidthsW x x x
NtGdiGetDCDword x x
NtGdiGetDCObject x x
NtGdiGetDCforBitmap x x
NtGdiGetDIBitsInternal x x x
NtGdiGetDeviceCaps x x
NtGdiGetEntry x x
NtGdiGetFontData x x x
NtGdiGetGlyphIndicesW x x x
NtGdiGetOutlineTextMetricsInternalW x x x
NtGdiGetRandomRgn x x
NtGdiGetRealizationInfo x x
NtGdiGetTextExtentExW x x
NtGdiGetTextFaceW x x
NtGdiGetTextMetricsW x x
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88 E. Dynamic analysis - cosine similarity - Malpedia non dumped dataset

System calls 1 2 3 4 5 6 7
------------------------------------ --- --- --- --- --- --- ---
NtGdiGetWidthTable x x x
NtGdiHfontCreate x x x
NtGdiIntersectClipRect x x x
NtGdiPatBlt x x
NtGdiPolyPatBlt x x
NtGdiPolyTextOutW x x
NtGdiQueryFontAssocInfo x x
NtGdiRestoreDC x x
NtGdiSaveDC x x
NtGdiSelectBitmap x x
NtGdiSetLayout x x
NtGdiStretchDIBitsInternal x x x
NtGetContextThread x
NtGetWriteWatch x
NtImpersonateAnonymousToken x
NtQueryDefaultLocale x x
NtReleaseMutant x x
NtReleaseSemaphore x x
NtRemoveIoCompletion x
NtResetWriteWatch x
NtTerminateProcess x x
NtTerminateThread x x
NtUpdateWnfStateData x x
NtUserAssociateInputContext x x
NtUserBeginPaint x x
NtUserCalcMenuBar x x x
NtUserCallHwndParam x x
NtUserConsoleControl x x
NtUserCreateInputContext x
NtUserDestroyWindow x
NtUserDispatchMessage x x
NtUserDrawIconEx x x
NtUserEnableChildWindowDpiMessage x x
NtUserEnableScrollBar x x
NtUserEndPaint x x
NtUserGetAncestor x x
NtUserGetCaretBlinkTime x x
NtUserGetClassName x x x x
NtUserGetDC x x
NtUserGetDCEx x x
NtUserGetDpiForCurrentProcess x x
NtUserGetDpiForMonitor x x
NtUserGetIconInfo x x x
NtUserGetIconSize x x
NtUserGetImeInfoEx x x x x
NtUserGetKeyboardLayoutList x x
NtUserGetMessage x x x
NtUserGetProcessWindowStation x x
NtUserGetProp x x x x
NtUserGetScrollBarInfo x x
NtUserGetSystemMenu x x
NtUserGetThreadDesktop x x
NtUserGetThreadState x x
NtUserGetTitleBarInfo x x
NtUserGetWindowBand x
NtUserGetWindowCompositionAttribute x x x x

System calls 1 2 3 4 5 6 7
------------------------------------ --- --- --- --- --- --- ---
NtUserGetWindowDC x x
NtUserInternalGetWindowText x x
NtUserIsChildWindowDpiMessageEnabled x x x
NtUserIsNonClientDpiScalingEnabled x x x x
NtUserIsTopLevelWindow x x x x
NtUserMsgWaitForMultipleObjectsEx x x
NtUserPeekMessage x x x
NtUserPostMessage x x x
NtUserPostThreadMessage x
NtUserQueryInputContext x x x
NtUserQueryWindow x x
NtUserRemoveProp x x
NtUserSBGetParms x x
NtUserSelectPalette x x
NtUserSetLayeredWindowAttributes x x
NtUserSetProcessDpiAwarenessContext x x
NtUserSetProp x x
NtUserSetScrollInfo x x
NtUserSetWindowCompositionAttribute x x x
NtUserSetWindowFNID x x
NtUserSetWindowLong x x x
NtUserSetWindowPos x x x x
NtUserSetWindowsHookEx x x x
NtUserShowWindow x x
NtUserUnhookWindowsHookEx x x
NtUserUnregisterClass x x x x
NtUserUpdateInputContext x x x x
NtWaitForMultipleObjects x x
NtYieldExecution x
NtGdiExcludeClipRect x x
NtGdiExtSelectClipRgn x
NtGdiRectVisible x
NtPowerInformation x x
NtQueryInformationAtom x x
NtSetSecurityObject x x
NtUserCallHwndLockSafe x x
NtUserChangeWindowMessageFilterEx x x
NtUserGetKeyState x
NtUserKillTimer x
NtUserNotifyIMEStatus x
NtUserSetActiveWindow x
NtUserSetImeOwnerWindow x
NtUserSetTimer x x x
NtUserSetWinEventHook x x
NtGdiOpenDCW x
NtLockFile x
NtUnlockFile x
NtUserBuildHimcList x
NtUserFindWindowEx x
NtUserGetRequiredCursorSizes x
NtUserInheritWindowMonitor x
NtUserMoveWindow x
NtUserUnhookWinEvent x
NtCancelSynchronousIoFile x
NtGdiCreateDIBSection x
NtUserGetClipboardData x
NtUserMenuItemFromPoint x
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