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A B S T R A C T

Unexpected disruptions occur in the railways on a daily basis, which are typically handled
manually by experienced traffic controllers with the support of predefined contingency plans.
When several disruptions occur simultaneously, it is rather hard for traffic controllers to make
rescheduling decisions, because (1) the predefined contingency plans corresponding to these
disruptions may conflict with each other and (2) no predefined contingency plan considering the
combined effects of multiple disruptions is available. This paper proposes a Mixed Integer Linear
Programming (MILP) model to reschedule the timetable in case of multiple disruptions that
occur at different geographic locations but have overlapping periods and are pairwise connected
by at least one train line. The dispatching measures of retiming, reordering, cancelling, adding
stops and flexible short-turning are formulated in the MILP model that also considers the
rolling stock circulations at terminal stations and platform capacity. We develop two approaches
for rescheduling the timetable in a dynamic environment: the sequential approach and the
combined approach. In the sequential approach, a single-disruption rescheduling model is
applied to handle each new disruption with the last solution as reference. In the combined
approach, the multiple-disruption rescheduling model is applied every time an extra disruption
occurs by considering all ongoing disruptions. A rolling-horizon solution method to the multiple-
disruption model has been developed to handle long multiple connected disruptions in a more
efficient way. The sequential and combined approaches have been tested on real-life instances
on a subnetwork of the Dutch railways with 38 stations and 10 train lines operating half-hourly
in each direction. In a few cases, the sequential approach did not find feasible solutions, while
the combined approach obtained the solutions for all considered cases. Besides, the combined
approach was able to find solutions with less cancelled train services and/or train delays than
the sequential approach. For long disruptions, the proposed rolling-horizon method was able to
generate high-quality rescheduling solutions in an acceptable time.

1. Introduction

Railways play a significant role in passenger transportation. For example, there are approximately 1.1 million trips by train
every day in the Netherlands (ProRail, 2017). Thus, reliable train services are important. However, railway operations are often
disturbed by unexpected events like extreme weather, accidents and infrastructure failures, which are getting worse in recent years.
On the Dutch railways, the number of unplanned disruptions occurring each year was 1846 in 2011 and increased to 4085 in
2017 (RijdendeTreinen, 2018). Such disruptions usually last for a few hours, causing considerable negative impact on passengers
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and imposing much extra workload on personnel. In practice, disruptions are still handled manually by traffic controllers who make
dispatching decisions (e.g. cancelling, delaying and short-turning) with pre-designed contingency plans as guidelines, while each
contingency plan corresponds to one disruption at a specific location. When disruptions occur simultaneously at different locations,
the contingency plans corresponding to them may conflict with each other. Under these circumstances, traffic controllers have
to adjust the timetable based on their own experiences without any guidelines, which leads to time-consuming and suboptimal
solutions (Ghaemi et al., 2017b). Therefore, it is necessary to develop a more efficient way of handling multiple disruptions, which
has not been dealt with in the literature so far.

In this paper, we are concerned with unplanned disruptions that cause complete track blockages between stations for hours.
ur focus is on rescheduling the timetable in case of multiple complete track blockages where each is connected to another by at

east one train line. In these cases, train services should be adapted to multiple time–space disruption windows that are located
n different locations and may start/end at different time instants. The main challenge is that the service adjustments towards one
isruption window may influence the one towards another disruption window, and vice versa.

To solve this challenge, we put forward a multiple-disruption rescheduling model based on the single-disruption rescheduling
odel of Zhu and Goverde (2019). The single-disruption rescheduling model applies delaying, reordering, cancelling, flexible short-

urning and flexible stopping, and considers station capacity as well as trains turning at terminal stations. Short-turning means that
train ends its operation at a station before the blocked tracks and the corresponding rolling stock turns to operate another train in

he opposite direction. Flexible short-turning means that for each train a full choice of short-turn station candidates is given, and the
odel decides the optimal station and time of short-turning the train. Flexible stopping means that for each train the scheduled stops

an be skipped and extra stops can be added. Except skipping stops, the other characteristics are all kept in the multiple-disruption
escheduling model that aims to minimize service cancellations and deviations from the planned timetable.

To deal with multiple connected disruptions in a dynamic environment, two approaches are proposed, which are a sequential
pproach based on a single-disruption rescheduling model, and a combined approach based on a multiple-disruption rescheduling
odel.

The contributions of this paper are summarized as follows:

• We develop a multiple-disruption timetable rescheduling model for multiple complete track blockages that are pairwise
connected by at least one train line.

• We propose two approaches, the sequential approach and the combined approach, to deal with multiple connected disruptions
in a dynamic environment.

• We propose a new rolling horizon solution method to generate high-quality solutions for long multiple connected disruptions
in an acceptable time.

• The sequential and combined approaches are tested on real-life instances on a subnetwork of the Dutch railways.
• It is shown that the combined approach is able to handle more kinds of multiple disruption scenarios and generate better

solutions than the sequential approach.

The remainder of this paper is organized as follows. Section 2 gives a literature review on timetable rescheduling models for
ailway disruptions. Section 3 introduces the sequential approach and the combined approach, and the differences between the
wo rescheduling models used in these approaches, the single-disruption model and the multiple-disruption model. Section 4 gives
he detailed mathematical formulation of the multiple-disruption model. In Section 6, a case study is carried out to explore the
erformance of the sequential or combined approach. Finally, Section 7 concludes the paper.

. Literature review

A typical consequence of a disruption is that the tracks between two stations are partially or completely blocked. In case of
artial blockages, some trains can still use the remainder track as in Zhan et al. (2016) where a partial blockage is considered in
double-track railway line. In case of complete blockages, the consequence becomes more serious that no trains can run through

he blocked area at all during the disruption period. This problem has been dealt with more widely in the literature compared
o partial blockages, see Meng and Zhou (2011), Narayanaswami and Rangaraj (2013), Zhan et al. (2015), Ghaemi et al. (2017a,
018) and Zhu and Goverde (2019). There are also models focusing on both partial and complete blockages, including Cadarso et al.
2013), Louwerse and Huisman (2014), Veelenturf et al. (2015) and Binder et al. (2017).

Different dispatching measures are used to reschedule the timetable during disruptions. Meng and Zhou (2011) allow retiming
rains, while Narayanaswami and Rangaraj (2013) allow both retiming and reordering trains. In both papers, the considered
isruption durations are at most 1 h. For longer disruptions that last for a few hours, cancelling trains is necessary, because it
elps to reduce train delays that may propagate to the network beyond the disrupted area. Zhan et al. (2015, 2016) use retiming,
eordering and cancelling trains focusing on Chinese railways where seat reservations are needed. Under this circumstance, short-
urning trains is not applied in their models, which however is a common strategy used in the systems without seat reservations,
.g., metro systems and some European railway systems. The models allowing short-turning trains include Louwerse and Huisman
2014), Veelenturf et al. (2015), Ghaemi et al. (2017a, 2018) and Zhu and Goverde (2019). In general, the last stop of a train before
he blocked tracks is fixed as the station where the train can short-turn, as in Louwerse and Huisman (2014) and Veelenturf et al.
2015). However, a train may be completely cancelled rather than short-turned, if the short-turn station lacks capacity. To reduce
he possibility of a train being completely cancelled, Ghaemi et al. (2017a, 2018) allow a train to short-turn at either of the last two
2

tations before the blocked tracks, while Zhu and Goverde (2019) introduce more flexibility by allowing a train to short-turn at one
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of all possible short-turn stations that are before the blocked tracks. Another way of reducing cancelled trains is rerouting trains. The
trains that originally plan to run through the blocked tracks can be rerouted through another corridors to reach the destinations,
while part/all of the intermediate stations in the planned paths may change. This strategy is applied in both Veelenturf et al. (2015)
and Binder et al. (2017). When passengers are taken into account, particular strategies are used to mitigate the negative impact on
passengers, such as adding additional trains, adding extra stops and skipping stops. Both Cadarso et al. (2013) and Binder et al.
(2017) allow adding additional trains. Veelenturf et al. (2017) allow adding stops, while Zhu and Goverde (2019) allow both adding
stops and skipping stops.

Most papers assume that the disruption duration is known at the beginning of the disruption and will not change over time.
owever in practice, a disruption could either end earlier or extend than expected (Zilko et al., 2016). A few papers deal with
ncertain disruptions. Zhan et al. (2016) propose a rolling horizon framework where the timetable is rescheduled gradually with
enewed disruption durations taken into account. Meng and Zhou (2011) propose a stochastic programming model that takes the
ncertainty of the disruption duration into account. The model reschedules the timetable dynamically by a rolling horizon approach.

In the real world, multiple disruptions occur on a daily basis, while how to deal with them is rarely considered in the
xisting literature. Veelenturf et al. (2015) proposed a model said to be applicable to multiple track blockages, but no results
ere given. Van Aken et al. (2017) designed alternative timetables for handling multiple planned disruptions (i.e. infrastructure
aintenance possessions). They focus on periodic timetables for full-day possessions, and as such do not consider the transitions

etween the original timetable and the rescheduled timetable, and vice versa. For shorter disruptions, such transitions have to be
aken into account. According to Ghaemi et al. (2017b), a disruption consists of three phases: the transition phase from the planned
imetable to the disruption timetable, the stable phase where the disruption timetable is implemented, and the recovery phase from
he disruption timetable to the planned timetable. Veelenturf et al. (2015) and Zhu and Goverde (2019) consider all phases of one
ingle disruption.

This paper proposes a Mixed Integer Linear Programming (MILP) model to reschedule the timetable in case of multiple disruptions
hat are pairwise connected by at least one train line. The multiple-disruption rescheduling model considers all phases of each
isruption that causes complete track blockage for hours. Retiming, reordering, cancelling, adding stops and flexible short-turning
re all formulated into the model that also takes into account rolling stock circulations and station capacity. Two approaches
re developed to deal with multiple disruptions in a dynamic environment. A sequential approach applies a single-disruption
escheduling model to handle each new disruption with the previous rescheduled timetable as the reference. A combined approach
pplies a multiple-disruption rescheduling model to handle each new disruption considering the combined effects of all ongoing
isruptions.

. Problem description

In this paper, multiple connected disruptions are defined as two or more disruptions that

• have overlapping periods,
• occur at different geographic locations,
• may start/end at different time instants, and
• are pairwise connected by at least one train line.

Two disruptions having overlapping periods means that a disruption occurs when another disruption is ongoing. To be more specific,
suppose a disruption 𝑖 starts at time 𝑡𝑖start and will end at 𝑡𝑖end (𝑡𝑖start < 𝑡𝑖end), and another disruption 𝑗 starts at time 𝑡𝑗start and will end
at 𝑡𝑗end (𝑡𝑗start < 𝑡𝑗end). Then, the durations of these two disruptions are overlapping, if 𝑡𝑖start ≤ 𝑡𝑗start < 𝑡𝑖end or 𝑡𝑗start ≤ 𝑡𝑖start < 𝑡𝑗end. It is
ossible that the disruption periods of two disruptions are not overlapping, but a train is influenced by a first disruption, and then
ater will be affected by a second disruption that started after the other disruption already ended. In this situation, during the first
isruption it is unknown that there will be a second disruption occurring later. Therefore, these two disruptions can only be seen
s two separate disruptions, and they can still be handled by either the sequential approach or the combined approach proposed in
his paper. We require overlapping periods as one of the criteria to define multiple connected disruptions of which the combined
ffects can be actually taken into account during timetable rescheduling.

Fig. 1 illustrates different kinds of multiple disruptions.
In each case of Fig. 1, three train lines are operated in a triangle network where the stops served by each train line are indicated

y circles. In case a, the first disruption occurs between 8:00 and 9:45 and affects train line 1, while the second disruption occurs
etween 8:20 and 10:15 at a different location and affects both train line 1 and train line 2. These two disruptions occur at different
ocations, have overlapping period, and are connected by train line 1, which are thus regarded as multiple connected disruptions. If
he second disruption occurs between 16:00 and 17:45 as in case b, then these two disruptions are separate disruptions, since they
o not have overlapping period. If the second disruption occurs at a different location as in case c, although these two disruptions
ave an overlapping period, they are not regarded as multiple connected disruptions, because they are not connected by any train
ine. Compared to case a, cases b and c are more easily handled using the method of Zhu and Goverde (2019), because there are
o/few interactions among the timetable adjustments towards each disruption.

In this paper, our focus is on handling multiple connected disruptions. To this end, two approaches are proposed. One is
he sequential approach that uses the single-disruption rescheduling model to solve each disruption sequentially. Another is the
ombined approach that applies the multiple-disruption model to handle each extra disruption with all ongoing disruptions taken
nto account. The introductions to these two approaches are given as follows.
3
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Fig. 1. Examples of multiple disruptions.

3.1. The sequential approach

The schematic layout of the sequential approach is shown in Fig. 2, where the single-disruption rescheduling model is applied
every time a new disruption emerges. This can be considered as the straightforward extension to multiple disruptions that traffic
controllers would apply to keep the complexity manageable for manual decision making. As this model can deal with one disruption
at a time only, it uses the previous solution as reference when handling the disruption that starts later. This means that (1) the train
services that are previously decided to be cancelled will remain cancelled; (2) the train departures/arrivals that are previously
decided to be delayed can no longer occur before those time instants, as early departures/arrivals are not allowed; and (3) the
short-turnings of the trains that do not run through the new track blockage will remain.

3.2. The combined approach

The schematic layout of the combined approach is shown in Fig. 3. Here, the single-disruption rescheduling model is applied
for the 1st disruption only and the multiple-disruption rescheduling model is applied every time an extra disruption emerges. When
handling later disruptions, the multiple-disruption rescheduling model makes service adjustments by taking all ongoing disruptions
into account and respecting the train arrivals and departures that have already been realized according to the previous rescheduled
timetable.

In this paper, the sequential approach is based on the single-disruption rescheduling model of Zhu and Goverde (2019) by
removing the measure of skipping stops and replacing the objective with the one of the multiple-disruption model that is introduced
in Section 4.

3.3. Differences between the single-disruption model and the multiple-disruption model

Compared to the single-disruption rescheduling model, the multiple-disruption rescheduling model additionally considers the
interactions among the dispatching decisions towards different disruptions. These interactions mainly occur among short-turning
decisions. Recall that short-turning means that a train ends its operation at a station before the blocked tracks and the corresponding
rolling stock turns to be used by another train in the opposite direction. With the following example, we explain the differences
between the single-disruption model and the multiple-disruption model.

In Fig. 4, four blue trains, tr1, tr3, tr5, and tr7, operate from station A to station I; and four yellow trains, tr2, tr4, tr6, and tr8, operate
from station I to station A. Between stations F and G, a disruption occurs for a certain period, which is illustrated by a grey rectangle.
4
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Fig. 2. Dealing with multiple connected disruptions by the sequential approach.

Fig. 3. Dealing with multiple connected disruptions by the combined approach.

Due to the disruption, two blue trains, tr1 and tr3, are short-turned at station F to take over the operations of two yellow trains, tr4
and tr6, from station F to station A; while these yellow trains are short-turned at station G to take over the operations of these blue
trains from station G to station I.

Suppose a little bit later another disruption occurs between stations C and D as Fig. 5 shows. Then more short-turnings will
happen even to the same train, and some short-turnings are interdependent. For example, train tr3 is now short-turned at both
stations C and F. Moreover, the short-turning between trains tr and tr at station D enables the short-turning between trains tr
5
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Fig. 4. Example of single-disruption rescheduling solution. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

Fig. 5. Example of multiple-disruption rescheduling solution. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)

and tr6 at station F, which in turn enables the short-turning between trains tr6 and tr7 at station D. This indicates that during such
multiple connected disruptions, a train might be short-turned at a station at each side of each disrupted section, and the short-turning
at one station may affect the short-turning at another station. These are not considered in the single-disruption model, but should
be formulated in the multiple-disruption model.

4. The multiple-disruption rescheduling model

4.1. Definitions

The multiple-disruption rescheduling model is based on an event-activity network formulation. Train departures (arrivals) are
formulated as departure (arrival) events, which are contained in the set 𝐸de (𝐸ar). Each event 𝑒 ∈ 𝐸de ∪ 𝐸ar is associated with the
original scheduled time 𝑜𝑒, station 𝑠𝑡𝑒, train line 𝑡𝑙𝑒, train number 𝑡𝑟𝑒, and operation direction 𝑑𝑟𝑒. A train line indicates the origin,
the destination, all intermediate stops between the origin and the destination, and the operation frequency (e.g. every 30 min).

Directed arcs between events are called activities. Running activities (𝑒, 𝑒′) ∈ 𝐴run describe train running between adjacent stations:

𝐴run =
{(

𝑒, 𝑒′
)

∈ 𝐸de × 𝐸ar ∶ 𝑡𝑟𝑒 = 𝑡𝑟𝑒′ , and 𝑡𝑟𝑒 goes directly from station 𝑠𝑡𝑒 to 𝑠𝑡𝑒′
}

.

Dwell (pass-through) activities (𝑒, 𝑒′) ∈ 𝐴dwell (𝐴pass) describe trains dwelling at (passing through) stations:

𝐴dwell =
{(

𝑒, 𝑒′
)

∈ 𝐸ar × 𝐸de ∶ 𝑡𝑟𝑒 = 𝑡𝑟𝑒′ , 𝑠𝑡𝑒 = 𝑠𝑡𝑒′ , and 𝑜𝑒 < 𝑜𝑒′
}

,

𝐴pass =
{(

𝑒, 𝑒′
)

∈ 𝐸ar × 𝐸de ∶ 𝑡𝑟𝑒 = 𝑡𝑟𝑒′ , 𝑠𝑡𝑒 = 𝑠𝑡𝑒′ , and 𝑜𝑒 = 𝑜𝑒′
}

.

Short-turn activities (𝑒, 𝑒′) ∈ 𝐴turn describe trains turning at stations before blocked tracks to operate the trains in the opposite
directions from the same train line:

𝐴 =
{

𝑎 =
(

𝑒, 𝑒′
)

∈ 𝐸turn × 𝐸turn ∶ 𝑡𝑙 = 𝑡𝑙 , 𝑡𝑟 ≠ 𝑡𝑟 , 𝑑𝑟 ≠ 𝑑𝑟 , 𝑠𝑡 = 𝑠𝑡 , and 𝑜 +𝐷 − 𝑜 ≥ 𝐿
}

,

6
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in which the arrival (departure) events are defined by the set 𝐸turn
ar (𝐸turn

de ), 𝐷 is the maximum delay allowed to an event, and 𝐿𝑎
represents the minimum duration required for a short-turn activity 𝑎. We allow a short-turn activity 𝑎 to be created from an arrival
event 𝑒 to a departure event 𝑒′ that was originally planned to occur earlier than 𝑒 considering that the rescheduled time of 𝑒′ may
e later than the rescheduled time of 𝑒 so that the short-turning between them could be possible.

We also use the original OD turn activities 𝐴odturn to describe trains turning at the destinations to the opposite trains from the
ame train line, and headway activities 𝐴head to describe the headways of following or crossing trains. Zhu and Goverde (2019)
lready describe the sets 𝐴odturn, 𝐴head, and the constraints or decision variables corresponding to them (i.e. the constraints or
ecision variables about OD turns and reordering trains), which are used also in the multiple-disruption model exactly the same.
ence, for details we refer to Zhu and Goverde (2019). For the multiple-disruption model, we introduce constraints of cancelling,
elaying, flexible short-turning trains and station capacity, as well as the decision variables used in these constraints. Recall that
lexible short-turning means that each train is given a full choice of short-turning station candidates, and the model decides the
ptimal station and time of short-turning the train. In particular, a train may short-turn a station earlier if the capacity of a later
hort-turning station is insufficient.

We will use the following decision variables:

𝑥𝑒 : continuous variable deciding the rescheduled time of event 𝑒,
𝑑𝑒 : continuous variable deciding the delay of event 𝑒,
𝑐𝑒 : binary variable with value 1 indicating that 𝑒 is cancelled, and 0 otherwise,
𝑦𝑒 : binary variable with value 1 indicating that station 𝑠𝑡𝑒 is a short-turn station of train 𝑡𝑟𝑒, and 0 otherwise,
𝑚𝑎 : binary variable with value 1 indicating that a short-turn activity 𝑎 ∈ 𝐴turn is selected, and 0 otherwise.
𝑢𝑒,𝑖 : binary variable with value 1 indicating that train 𝑡𝑟𝑒 occupies the 𝑖th platform of station 𝑠𝑡𝑒, 𝑒 ∈ 𝐸ar , and 0 otherwise.
𝑣𝑒,𝑗 : binary variable with value 1 indicating that train 𝑡𝑟𝑒 occupies the 𝑗th pass-through track of station 𝑠𝑡𝑒, 𝑒 ∈ 𝐸ar , and 0

otherwise.

For the notation of parameters and sets we refer to Appendix A.

4.2. Objective

The objective is minimizing train service cancellations and deviations from the planned timetable,

minimize
∑

𝑒∈𝐸ar

𝑤𝑐𝑒 +
∑

𝑒∈𝐸ar∪𝐸de

𝑑𝑒, (1)

where 𝐸ar (𝐸de) is the set of arrival (departure) events, and 𝑤 is a fixed penalty for each cancelled service. A service refers to a train
run between two adjacent stations. This objective aims to minimize the impact of the disruption to the rest of the network.

4.3. Constraints

4.3.1. Cancelling and delaying trains
For each train departure or arrival event 𝑒, the rescheduled time 𝑥𝑒 is relevant to the delaying decision 𝑑𝑒 and the cancelling

decision 𝑐𝑒 as follows:

𝑀1𝑐𝑒 ≤ 𝑥𝑒 − 𝑜𝑒 ≤ 𝑀1, 𝑒 ∈ 𝐸ar ∪ 𝐸de, (2)

𝑥𝑒 − 𝑜𝑒 = 𝑑𝑒 +𝑀1𝑐𝑒, 𝑒 ∈ 𝐸ar ∪ 𝐸de, (3)

𝑑𝑒 ≥ 0, 𝑒 ∈ 𝐸ar ∪ 𝐸de, (4)

𝑑𝑒 ≤ 𝐷, 𝑒 ∈
(

𝐸ar ∪ 𝐸de
)

∖𝐸NMdelay . (5)

Constraint (2) states that the rescheduled time of a cancelled event 𝑒 (i.e. 𝑐𝑒 = 1) is the original scheduled time 𝑜𝑒 plus 𝑀1 that is set
to 1440 min here. Constraint (3) states that the rescheduled time of an non-cancelled event is the original scheduled time plus the
delayed time. Constraints (4) and (5) require that the delay of an event is non-negative, and should be no larger than 𝐷 minutes if
the event does not belong to 𝐸NMdelay. The set 𝐸NMdelay contains all events that are not imposed with the upper delay limit. These
events correspond to the trains that have already started from the origins before a disruption starts. These trains can no longer be
cancelled and short-turning them could also be impossible due to rolling stock or station capacity shortage, and thus they have to
dwell at the last possible stations before the blocked tracks until the disruption ends.

4.3.2. Avoiding trains entering any disrupted section
Suppose the current emerging disruption is the 𝑛th disruption (𝑛 ≥ 2), then trains are forbidden to enter the blocked tracks due

to any disruption 𝑖 (1 ≤ 𝑖 ≤ 𝑛) during the corresponding disruption period that starts at time 𝑡𝑖start and ends at time 𝑡𝑖end:

𝑥𝑒 ≥ 𝑡𝑖end(1 − 𝑐𝑒), 𝑒 ∈ 𝐸de, 𝑠𝑡𝑒 = 𝑠𝑡𝑖,𝑡𝑟𝑒en , 𝑡𝑖start ≤ 𝑜𝑒 < 𝑡𝑖end, 1 ≤ 𝑖 ≤ 𝑛, (6)

where 𝑠𝑡𝑖,𝑑𝑟𝑒en represents the entry station of the 𝑖th disrupted section in direction 𝑑𝑟𝑒 that is either upstream or downstream. For
instance in Fig. 5, for the downstream blue train tr : the entry station of the 1st disrupted section (i.e. section F–G) is F and the
7
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Fig. 6. Example of short-turning options under one single disruption.

entry station of the 2nd disrupted section (i.e. section C–D) is C, while for the upstream yellow train tr4: the entry station of the
1st disrupted section is G and the entry station of the 2nd disrupted section is D. It is assumed that the duration of a disruption is
known at the beginning of the disruption and will not change over time.

4.3.3. Operation consistency for trains without short-turning possibilities
For each train, the operation consistency of the two events that constitute the same running activity is always kept (i.e. both

events are cancelled/kept simultaneously):

𝑐𝑒′ − 𝑐𝑒 = 0, (𝑒, 𝑒′) ∈ 𝐴run, (7)

and the operation consistency of the two events that constitute the same dwell/pass-through activity is always kept if neither of
them is relevant to any short-turn activity (i.e. no short-turning possibility):

𝑐𝑒 − 𝑐𝑒′ = 0, (𝑒, 𝑒′) ∈ 𝐴station, 𝑒 ∈ 𝐸ar∖𝐸turn
ar , 𝑒′ ∈ 𝐸de∖𝐸turn

de , (8)

where the set of station activities 𝐴station = 𝐴dwell ∪𝐴pass. Recall that 𝐸turn
ar (𝐸turn

de ) is the set of arrival (departure) events that are the
tails (heads) of short-turn activities. The tail (head) of an activity 𝑎 is the event that 𝑎 starts from (points to).

4.3.4. Breaking operation consistency for trains with short-turning possibilities
If a train is short-turned at a station, the operation consistency of its arrival and departure events at the station must be broken.

For example in Fig. 6 where section E–F is completely blocked and five possible short-turn activities (grey arcs) are created between
trains tr1 and tr2. If possible the short-turn activity at station D is selected, then for train tr1 the arrival event 𝑒1 must be kept while
the departure event 𝑒′1 must be cancelled, and for train tr2 the arrival event 𝑒2 must be cancelled while the departure event 𝑒′2 must
be kept. In this case, 𝑒1 ∈ 𝐸turn

ar , 𝑒′1 ∈ 𝐸de∖𝐸turn
de , and 𝑒2 ∈ 𝐸ar∖𝐸turn

ar , 𝑒′2 ∈ 𝐸turn
de . To decide whether to break the operation consistency

of such two events 𝑒 and 𝑒′ that form a station activity and only one of them has a short-turning possibility, the following constraints
are established:

𝑐𝑒 ≤ 𝑐𝑒′ , (𝑒, 𝑒′) ∈ 𝐴station, 𝑒 ∈ 𝐸turn
ar , 𝑒′ ∈ 𝐸de∖𝐸turn

de , (9)

𝑐𝑒′ ≤ 𝑐𝑒 + 𝑦𝑒, (𝑒, 𝑒′) ∈ 𝐴station, 𝑒 ∈ 𝐸turn
ar , 𝑒′ ∈ 𝐸de∖𝐸turn

de , (10)

𝑐𝑒′ ≥ 𝑦𝑒, (𝑒, 𝑒′) ∈ 𝐴station, 𝑒 ∈ 𝐸turn
ar , 𝑒′ ∈ 𝐸de∖𝐸turn

de , (11)

𝑐𝑒′ ≤ 𝑐𝑒, (𝑒, 𝑒′) ∈ 𝐴station, 𝑒 ∈ 𝐸ar∖𝐸turn
ar , 𝑒′ ∈ 𝐸turn

de , (12)

𝑐𝑒 ≤ 𝑐𝑒′ + 𝑦𝑒′ , (𝑒, 𝑒′) ∈ 𝐴station, 𝑒 ∈ 𝐸ar∖𝐸turn
ar , 𝑒′ ∈ 𝐸turn

de , (13)

𝑐𝑒 ≥ 𝑦𝑒′ , (𝑒, 𝑒′) ∈ 𝐴station, 𝑒 ∈ 𝐸ar∖𝐸turn
ar , 𝑒′ ∈ 𝐸turn

de , (14)

where 𝑦𝑒 is a binary decision variable with value 1 indicating that station 𝑠𝑡𝑒 is chosen as the short-turn station of train 𝑡𝑟𝑒, and
0 otherwise. If station 𝑠𝑡𝑒 is not chosen as the short-turn station of arriving train 𝑡𝑟𝑒 (i.e. 𝑦𝑒 = 0), then constraints (9) and (10)
ensure that the operation consistency of events 𝑒 and 𝑒′ are kept; otherwise, constraint (11) requires event 𝑒′ that does not have a
short-turning possibility to be cancelled. Constraints (12)–(14) are similar but consider the different case where the departure event
𝑒′ has a short-turning possibility while the arrival event 𝑒 does not.

A train could be affected by two or more disruptions such as train tr2 shown in Fig. 7 where another section B–C is also disrupted.
In this case, more short-turning activities are created due to the extra disruption, and in particular events 𝑒 and 𝑒′ both have
8
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Fig. 7. Example of short-turning options under two connected disruptions.

short-turning possibilities, 𝑒2 ∈ 𝐸turn
ar , 𝑒′2 ∈ 𝐸turn

de , but at most one of them will make it. To decide whether to break the operation
consistency of such two events 𝑒 and 𝑒′ that form a station activity and both of them have short-turning possibilities, the following
constraints are established:

𝑐𝑒 − 𝑐𝑒′ = 𝑦𝑒′ − 𝑦𝑒, (𝑒, 𝑒′) ∈ 𝐴station, 𝑒 ∈ 𝐸turn
ar , 𝑒′ ∈ 𝐸turn

de , (15)

𝑦𝑒 + 𝑦𝑒′ ≤ 1, (𝑒, 𝑒′) ∈ 𝐴station, 𝑒 ∈ 𝐸turn
ar , 𝑒′ ∈ 𝐸turn

de , (16)

𝑐𝑒′ ≥ 𝑦𝑒, (𝑒, 𝑒′) ∈ 𝐴station, 𝑒 ∈ 𝐸turn
ar , 𝑒′ ∈ 𝐸turn

de , (17)

𝑐𝑒 ≤ 1 − 𝑦𝑒, (𝑒, 𝑒′) ∈ 𝐴station, 𝑒 ∈ 𝐸turn
ar , 𝑒′ ∈ 𝐸turn

de , (18)

𝑐𝑒 ≥ 𝑦𝑒′ , (𝑒, 𝑒′) ∈ 𝐴station, 𝑒 ∈ 𝐸turn
ar , 𝑒′ ∈ 𝐸turn

de , (19)

𝑐𝑒′ ≤ 1 − 𝑦𝑒′ , (𝑒, 𝑒′) ∈ 𝐴station, 𝑒 ∈ 𝐸turn
ar , 𝑒′ ∈ 𝐸turn

de , . (20)

Constraint (15) ensures that if 𝑦𝑒 and 𝑦𝑒′ are both equal to 0, then the operation consistency of events 𝑒 and 𝑒′ must be kept.
Constraint (16) requires that at most one of 𝑦𝑒 and 𝑦𝑒′ can be 1. Constraints (17) and (18) ensure that if 𝑦𝑒 = 1 and 𝑦𝑒′ = 0, then
event 𝑒′ must be cancelled, whereas event 𝑒 must be kept due to the short-turning. Constraints (19) and (20) ensure that if 𝑦𝑒 = 0
and 𝑦𝑒′ = 1, then event 𝑒 must be cancelled, whereas event 𝑒′ must be kept due to the short-turning.

4.3.5. Limiting the short-turning stations for each train
At each side of the 𝑖th disrupted section, at least one short-turn station is chosen for a train if its operation in the disrupted

section is cancelled:
∑

𝑒∶𝑡𝑟𝑒=𝑡𝑟
𝑦𝑒 ≥ 𝑐𝑒′ , 𝑡𝑟 ∈ 𝑇𝑅𝑖

turn, 𝑒 ∈ 𝐸𝑖,turn
ar , 𝑒′ ∈ 𝐸de, 𝑡𝑟𝑒′ = 𝑡𝑟, 𝑠𝑡𝑒′ = 𝑠𝑡𝑖,𝑑𝑟𝑒′en , 1 ≤ 𝑖 ≤ 𝑛, (21)

∑

𝑒′∶𝑡𝑟𝑒′=𝑡𝑟
𝑦𝑒′ ≥ 𝑐𝑒, 𝑡𝑟 ∈ 𝑇𝑅𝑖

turn, 𝑒
′ ∈ 𝐸𝑖,turn

de , 𝑒 ∈ 𝐸ar , 𝑡𝑟𝑒 = 𝑡𝑟, 𝑠𝑡𝑒 = 𝑠𝑡𝑖,𝑑𝑟𝑒ex , 1 ≤ 𝑖 ≤ 𝑛, (22)

where 𝐸𝑖,turn
ar ⊂ 𝐸turn

ar (𝐸𝑖,turn
de ⊂ 𝐸turn

de ) is the set of arrival (departure) events relevant to the short-turn activities corresponding to
the 𝑖th disruption, 𝑇𝑅𝑖

turn is the set of trains corresponding to the events in 𝐸𝑖,turn
ar ∪ 𝐸𝑖,turn

de , and 𝑠𝑡𝑖,𝑑𝑟𝑒′en (𝑠𝑡𝑖,𝑑𝑟𝑒ex ) represents the entry
(exit) station of the 𝑖th disrupted section in direction 𝑑𝑟𝑒′ (𝑑𝑟𝑒). In (21) and (22), we use ‘‘≥’’ instead of ‘‘=’’ because the short-turn
activities relevant to one train could correspond to different disruptions. In other words, it is possible that an event 𝑒 ∈ 𝐸𝑖,turn

ar ∩𝐸𝑗,turn
ar

(or 𝑒′ ∈ 𝐸𝑖,turn
de ∩ 𝐸𝑗,turn

de ), while 𝑖 ≠ 𝑗, 1 ≤ 𝑖, 𝑗 ≤ 𝑛. For example in Fig. 7, the short-turn activity from train tr2 to train tr1 at station F
corresponds to the first disruption and also corresponds to the second disruption as an early short-turning. In this case, the arrival
event of train tr2 at station F must belong to both 𝐸1,turn

ar and 𝐸2,turn
ar , and the departure event of train tr1 at station F must belong

to both 𝐸1,turn
de and 𝐸2,turn

de .
At one side of all disrupted sections, the number of short-turn stations chosen for a train cannot be larger than the number of

its departure (arrival) events that originally occur at the entry (exit) stations of these disrupted sections but were cancelled.
∑

𝑒∶𝑡𝑟𝑒=𝑡𝑟
𝑦𝑒 ≤

∑

𝑒′
𝑐𝑒′ , 𝑡𝑟 ∈ 𝑇𝑅turn, 𝑒 ∈ 𝐸turn

ar , 𝑒′ ∈ 𝐸de, 𝑡𝑟𝑒′ = 𝑡𝑟, 𝑠𝑡𝑒′ ∈ 𝑆𝑇 𝑑𝑟𝑒′
en , 1 ≤ 𝑖 ≤ 𝑛, (23)

∑

𝑒′∶𝑡𝑟𝑒′=𝑡𝑟
𝑦𝑒′ ≤

∑

𝑒
𝑐𝑒, 𝑡𝑟 ∈ 𝑇𝑅turn, 𝑒

′ ∈ 𝐸turn
de , 𝑒 ∈ 𝐸ar , 𝑡𝑟𝑒 = 𝑡𝑟, 𝑠𝑡𝑒 ∈ 𝑆𝑇 𝑑𝑟𝑒

ex , 1 ≤ 𝑖 ≤ 𝑛, (24)
9
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where 𝑆𝑇 𝑑𝑟𝑒′
en =

⋃𝑛
𝑖=1 𝑠𝑡

𝑖,𝑑𝑟𝑒′
en and 𝑆𝑇 𝑑𝑟𝑒

ex =
⋃𝑛

𝑖=1 𝑠𝑡
𝑖,𝑑𝑟𝑒
ex . Constraint (23) ensures that at one side of all disrupted sections, the number

of short-turn stations chosen for train 𝑡𝑟 is not larger than the number of its departure events that originally occurred at the entry
stations of the disrupted sections but were cancelled. Constraint (24) ensures that at the other end of all disrupted sections, the
number of short-turn stations chosen for train 𝑡𝑟 is not larger than the number of its arrival events that originally occurred at the
exit stations of these disrupted sections but were cancelled.

4.3.6. Selecting short-turn activities
For each train, at most one short-turn activity will be selected at a short-turn station. This is formulated by

∑

𝑎∈𝐴turn ,
𝑡𝑎𝑖𝑙(𝑎)=𝑒

𝑚𝑎 = 𝑐𝑒′ − 𝑐𝑒,
(

𝑒, 𝑒′
)

∈ 𝐴station, 𝑒 ∈ 𝐸turn
ar , 𝑒′ ∈ 𝐸de∖𝐸turn

de , (25)

∑

𝑎∈𝐴turn ,
ℎ𝑒𝑎𝑑(𝑎)=𝑒′

𝑚𝑎 = 𝑐𝑒 − 𝑐𝑒′ ,
(

𝑒, 𝑒′
)

∈ 𝐴station, 𝑒 ∈ 𝐸ar∖𝐸turn
ar , 𝑒′ ∈ 𝐸turn

de , (26)

∑

𝑎∈𝐴turn ,
𝑡𝑎𝑖𝑙(𝑎)=𝑒

𝑚𝑎 = 𝑐𝑒′ − 𝑐𝑒 + 𝑦𝑒′ ,
(

𝑒, 𝑒′
)

∈ 𝐴station, 𝑒 ∈ 𝐸turn
ar , 𝑒′ ∈ 𝐸turn

de , (27)

∑

𝑎∈𝐴turn ,
ℎ𝑒𝑎𝑑(𝑎)=𝑒′

𝑚𝑎 = 𝑐𝑒 − 𝑐𝑒′ + 𝑦𝑒,
(

𝑒, 𝑒′
)

∈ 𝐴station, 𝑒 ∈ 𝐸turn
ar , 𝑒′ ∈ 𝐸turn

de . (28)

where 𝑚𝑎 is a binary decision with value 1 indicating that the short-turn activity 𝑎 is selected. Constraints (25) and (26) are for the
cases where a train is affected by one disruption only, while constraints (27) and (28) are for the cases where a train is affected by
two or more disruptions. In (27), it may happen that 𝑐𝑒′ = 0 and 𝑐𝑒 = 1, which makes 𝑐𝑒′ −𝑐𝑒 = −1 while the left term of this equality
must be non-negative. Considering this, 𝑦𝑒′ is added to the right side, of which the value must be 1 in this case due to constraints
(15) and (17). A similar reasoning is applied for adding 𝑦𝑒 to the right side of (28).

If a short-turn activity is selected, the minimum short-turn duration must be respected, which is formulated by

𝑀1𝑐𝑒 + 2𝐷(1 − 𝑚𝑎) + 𝑥𝑒′ − 𝑥𝑒 ≥ 𝑚𝑎𝐿𝑎, 𝑎 = (𝑒, 𝑒′) ∈ 𝐴turn, (29)

where 𝐴turn is the set of all possible short-turn activities, and 𝐿𝑎 represents the minimum duration required for short-turn activity
𝑎. If a short-turn activity 𝑎 ∈ 𝐴turn is not selected (i.e. 𝑚𝑎 = 0) while event 𝑒 is not cancelled (i.e. 𝑐𝑒 = 0), 2𝐷 is added to 𝑥𝑒′ to make
constraint (29) still feasible, as 𝑥𝑒′ could be smaller than 𝑥𝑒. In this case, 2𝐷 is sufficient enough to make (29) feasible according to
the definition of a short-turn activity given in Section 4.1.

4.3.7. Respecting realized train services
Recall that the current emerging disruption is the 𝑛th disruption (𝑛 ≥ 2) starting at time 𝑡𝑛start . Then, each departure or arrival

vent 𝑒 that has occurred before 𝑡𝑛start must be respected:

𝑐𝑒 = 0, 𝑒 ∈ 𝐸ar ∪ 𝐸de, 𝑟𝑒 < 𝑡𝑛start , 𝑛 ≥ 2, (30)

𝑥𝑒 − 𝑟𝑒 = 0, 𝑒 ∈ 𝐸ar ∪ 𝐸de, 𝑟𝑒 < 𝑡𝑛start , 𝑛 ≥ 2, (31)

where 𝑟𝑒 is a known value that refers to the previous rescheduled time of event 𝑒. Besides, each departure or arrival event 𝑒 of
hich the previous rescheduled time 𝑟𝑒 was after 𝑡𝑛start cannot be rescheduled to before 𝑡𝑛start in the current rescheduling procedure:

𝑥𝑒 ≥ 𝑡𝑛start , 𝑒 ∈ 𝐸ar ∪ 𝐸de, 𝑟𝑒 ≥ 𝑡𝑛start , 𝑛 ≥ 2. (32)

.3.8. Handling the recovery phase
The train departures that are originally planned to occur up to 𝑅 s after the maximum disruption ending time cannot be cancelled

nd should run as scheduled:

𝑐𝑒 = 0, 𝑒 ∈ 𝐸de, 𝑜𝑒 ≥ max
{

𝑡1end,… , 𝑡𝑛end
}

+ 𝑅, 𝑛 ≥ 2, (33)

𝑥𝑒 − 𝑜𝑒 = 0, 𝑒 ∈ 𝐸de, 𝑜𝑒 ≥ max
{

𝑡1end,… , 𝑡𝑛end
}

+ 𝑅, 𝑛 ≥ 2, (34)

here 𝑅 is the required recovery time length.
Also the train arrivals, of which the corresponding departures from the same running activities are originally planned to occur

p to 𝑅 s after the maximum disruption ending time, cannot be cancelled and should run as scheduled:

𝑐𝑒′ = 0, (𝑒, 𝑒′) ∈ 𝐴run, 𝑜𝑒 ≥ max
{

𝑡1end,… , 𝑡𝑛end
}

+ 𝑅, 𝑛 ≥ 2, (35)

𝑥𝑒′ − 𝑜𝑒′ = 0, (𝑒, 𝑒′) ∈ 𝐴run, 𝑜𝑒 ≥ max
{

𝑡1end,… , 𝑡𝑛end
}

+ 𝑅, 𝑛 ≥ 2, (36)

ote that an arrival event, which was originally planned to occur after max
{

𝑡1end,… , 𝑡𝑛end
}

+ 𝑅, may also be unable to run as
planned, because its corresponding departure event from the same running activity could be originally planned to occur before

{ 1 𝑛 }
10

max 𝑡end,… , 𝑡end + 𝑅 and then would possibly be cancelled.
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4.3.9. Station capacity
Each arriving train must be assigned with a track to stop at or pass through a station, and the track has to be a platform track

f the train stops at the station. These are formulated by

𝑁𝑝
𝑠𝑡𝑒

∑

𝑖=1
𝑢𝑒,𝑖 +

𝑁 𝑡ℎ
𝑠𝑡𝑒

∑

𝑗=1
𝑣𝑒,𝑗 = 1 − 𝑐𝑒, 𝑒 ∈ 𝐸ar , (37)

𝑁𝑝
𝑠𝑡𝑒

∑

𝑖=1
𝑢𝑒,𝑖 ≥ 1 − 𝑠𝑎 − 𝑐𝑒 − 𝑐𝑒′ 𝑒 ∈ 𝐸ar , 𝑎 = (𝑒, 𝑒′) ∈ 𝐴station, (38)

𝑁𝑝
𝑠𝑡𝑒

∑

𝑖=1
𝑢𝑒,𝑖 ≥

∑

𝑎∈𝐴turn ,
𝑡𝑎𝑖𝑙(𝑎)=𝑒

𝑚𝑎 𝑒 ∈ 𝐸turn
ar , (39)

𝑁𝑝
𝑠𝑡𝑒

∑

𝑖=1
𝑢𝑒,𝑖 = 1 − 𝑐𝑒, 𝑒 ∈ 𝐸odturn

ar , (40)

here 𝑢𝑒,𝑖 (𝑣𝑒,𝑗) is a binary variable with value 1 indicating that train 𝑡𝑟𝑒 occupies the 𝑖th (𝑗th) platform (pass-through) track at
tation 𝑠𝑡𝑒 and 0 otherwise, 𝑁𝑝

𝑠𝑡𝑒
(𝑁 𝑡ℎ

𝑠𝑡𝑒
) represents the number of platform (pass-through) tracks at station 𝑠𝑡𝑒, and 𝑠𝑎 is a binary

ariable to realize adding stops. A station activity 𝑎 = (𝑒, 𝑒′) ∈ 𝐴station corresponds to a true stop (either a kept scheduled stop or
an added stop), if and only if 𝑠𝑎 = 0, 𝑐𝑒 = 0 and 𝑐𝑒′ = 0. For the constraints of determining 𝑠𝑎 we refer to Zhu and Goverde (2019).

onstraint (37) requires one station track to be assigned to an arriving train 𝑡𝑟𝑒 if event 𝑒 is not cancelled. A platform track must be
ssigned to an arriving train 𝑡𝑟𝑒 if (1) it stops at the station ((37) and (38)); (2) it short-turns at the station ((37) and (39)); or (3) it
eaches the destination ((37) and (40)). 𝐸odturn

ar is the set of arrival events that occur at the destinations and thus the corresponding
olling stock turns to operate the trains in the opposite directions. For the details of 𝐸odturn

ar we refer to Zhu and Goverde (2019).
If two trains occupy the same track of a station, there must be a minimum time interval to be respected between their occupations.

n other words, the arrival of a train has to be a certain time later than the departure of another train that uses the same station
rack earlier. This is formulated by

𝑥𝑒′ − 𝑥𝑒′′ ≥ ℎ𝑒,𝑒′ +𝑀2(𝑞𝑒,𝑒′ − 𝑐𝑒 − 𝑐𝑒′ − 𝑐𝑒′′ + 𝑢𝑒,𝑖 + 𝑢𝑒′ ,𝑖 − 3), 𝑒, 𝑒′ ∈ 𝐸ar , 𝑠𝑡𝑒′ = 𝑠𝑡𝑒, (𝑒, 𝑒′′) ∈ 𝐴station, (41)

𝑥𝑒′ − 𝑥𝑒′′ ≥ ℎ𝑒,𝑒′ +𝑀2(𝑞𝑒,𝑒′ − 𝑐𝑒 − 𝑐𝑒′ − (1 − 𝑚𝑎) + 𝑢𝑒,𝑖 + 𝑢𝑒′ ,𝑖 − 3), 𝑒, 𝑒′ ∈ 𝐸ar , 𝑠𝑡𝑒′ = 𝑠𝑡𝑒, 𝑎 = (𝑒, 𝑒′′) ∈ 𝐴turn ∪ 𝐴odturn, (42)

𝑥𝑒′ − 𝑥𝑒′′ ≥ ℎ𝑒,𝑒′ +𝑀2(𝑞𝑒,𝑒′ − 𝑐𝑒 − 𝑐𝑒′ − 𝑐𝑒′′ + 𝑣𝑒,𝑗 + 𝑣𝑒′ ,𝑗 − 3), 𝑒, 𝑒′ ∈ 𝐸ar , 𝑠𝑡𝑒′ = 𝑠𝑡𝑒, (𝑒, 𝑒′′) ∈ 𝐴station, (43)

𝑥𝑒′ − 𝑥𝑒′′ ≥ ℎ𝑒,𝑒′ +𝑀2(𝑞𝑒,𝑒′ − 𝑐𝑒 − 𝑐𝑒′ − (1 − 𝑚𝑎) + 𝑣𝑒,𝑗 + 𝑣𝑒′ ,𝑗 − 3), 𝑒, 𝑒′ ∈ 𝐸ar , 𝑠𝑡𝑒′ = 𝑠𝑡𝑒, 𝑎 = (𝑒, 𝑒′′) ∈ 𝐴turn ∪ 𝐴odturn, (44)

here 𝑀2 is a large positive number set to twice of 𝑀1, ℎ𝑒,𝑒′ is a given parameter representing the minimum time interval required
etween the occurring times of 𝑒 and 𝑒′ if corresponding to trains occupying the same station track, and 𝑞𝑒,𝑒′ is a binary variable
ith value 1 indicating that event 𝑒 occurs before event 𝑒′ and 0 otherwise. For the constraints of determining 𝑞𝑒,𝑒′ we refer to Zhu
nd Goverde (2019), as well as the set 𝐴odturn that contains all OD turn activities. Constraint (41) means that if arrival event 𝑒 occurs
efore arrival event 𝑒′ (i.e. 𝑞𝑒,𝑒′ = 1), events 𝑒, 𝑒′ and 𝑒′′ are all not cancelled (i.e. 𝑐𝑒 = 0, 𝑐𝑒′ = 0 and 𝑐𝑒′′ = 0) and both events 𝑒 and 𝑒′

ccupy the same platform track (i.e. 𝑢𝑒,𝑖 = 1, and 𝑢𝑒′ ,𝑖 = 1), then event 𝑒′ must occur at least ℎ𝑒,𝑒′ later than the departure event 𝑒′′
n the station activity corresponding to 𝑒. Constraint (42) means that if arrival event 𝑒 occurs before arrival event 𝑒′ (i.e. 𝑞𝑒,𝑒′ = 1),
vents 𝑒 and 𝑒′ are both not cancelled (i.e. 𝑐𝑒 = 0 and 𝑐𝑒′ = 0), the short-turn (OD turn) activity 𝑎 relevant to 𝑒 is selected (i.e. 𝑚𝑎 = 1),
nd both events 𝑒 and 𝑒′ occupy the same platform track (i.e. 𝑢𝑒,𝑖 = 1 and 𝑢𝑒′ ,𝑖 = 1), then event 𝑒′ must occur at least ℎ𝑒,𝑒′ later than
he departure event 𝑒′′ in the short-turn (OD turn) activity corresponding to 𝑒. Constraint (43) ((44)) is similar to (41) ((42)), but
onsiders a pass-through track.

. Rolling horizon solution method

The multiple-disruption rescheduling model can be solved to optimality or near-optimality, if the disruption durations are not
ong (e.g. 2-hour disruptions). However in some disruption scenarios, a solver may not find high-quality solutions in an acceptable
ime if the disruption durations become rather long (e.g. 6-hour disruptions). Therefore, we propose a rolling-horizon solution
ethod to the multiple-disruption model, which considers the periodic pattern of the rescheduled train services in the second phase

f a disruption to speed up the computation.
A disruption consists of three phases: the 1st phase from the planned timetable transiting to the disruption timetable, the

nd phase where the disruption timetable is in use, and the 3rd phase from the disruption timetable recovering to the planned
imetable (Ghaemi et al., 2017b). A periodic short-turning/cancelling pattern exists among the rescheduled train services in the 2nd
hase, due to the periodicity of the planned timetable (Zhu and Goverde, 2019). That means, for example, if a train is short-turned
t station A then another train that serves the same train line in a later period will be short-turned at the same station as well.
aking such a periodic pattern into account is helpful to release the computational burden by first obtaining the pattern considering
relatively short time horizon and then applying this pattern to the following train services gradually over time. How often the
11

attern will repeat varies with train lines. It is observed that for the train lines that are only affected by one disruption the length of
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Fig. 8. Illustration of the periodic pattern of train services. (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

the period is equal to the cycle time of the planned timetable, while for the train lines that are affected by at least two disruptions
the period of the disruption solution may take longer than the planned cycle time and varies with disruption scenarios. An example
is given in Fig. 8, where (a) shows that a train line is planned to operate between station A and station F periodically, (b) shows
that the rescheduled train services due to one disruption have a periodic pattern and the length of the period is the same as the
planned cycle time, and (c) shows that the rescheduled train services due to two disruptions also have a periodic pattern but the
length of the period could be much longer than the planned cycle time. Note that the length of the period may be further increased
by increasing the short-turning durations to reflect the possible lower passenger demand. The dotted (dashed) lines in Fig. 8(b)
and (c) represent the original train services that are delayed (cancelled) in the rescheduled timetable, and the red arcs refer to the
short-turning activities. In Fig. 8(b) and (c), train services are delayed to respect the minimum short-turning durations, and all train
services that were originally planned to operate in the disrupted sections are cancelled. Also in Fig. 8(c), some train services from
station C to station E are cancelled (the thick dashed lines), because they can only be kept if delayed by one planned cycle time to
be operated by the rolling stock of the previous short-turned train, but another train service belonging to the same train line will
already operate at that time.

The rolling-horizon method divides the time horizon, from the starting time of a new connected disruption until the latest ending
time among all connected disruptions, into successive stages. For the train lines that are only affected by one disruption, the periodic
pattern is computed at stage 1, which is applied to the corresponding train services in the following stages. For the train lines that
are affected by at least two disruptions, no periodic pattern will be computed at stage 1, because as explained before the length of
the corresponding period varies with disruption scenarios and thus determining the pattern with an assumed length may affect the
solution quality. Therefore, the train services corresponding to these train lines are rescheduled at each stage from scratch.

An illustration of the rolling-horizon method is given in Fig. 9, while the details are given in Algorithm 1. The notation used
in the algorithm is listed in Appendix B. Algorithm 1 needs the following inputs: the set of ongoing disruptions 𝐷𝐼𝑆 = {1,… , 𝑛},
the starting (ending) time 𝑡𝑖start (𝑡𝑖end) of the 𝑖th disruption, the set 𝑇𝐿𝑖

dis,1 containing the train lines that are only affected by the 𝑖th
disruption, the set 𝑆𝑇 𝑡𝑙 containing the planned stopping and passage stations of train line 𝑡𝑙 ∈ 𝑇𝐿𝑖

dis,1, the length of a disruption
ℎ𝑟 considered at a stage, the maximum allowed delay per event 𝐷, and the determined rescheduled time 𝑟1𝑒 of each event 𝑒 ∈ 𝐸
when dealing with the first disruption only. All ongoing disruptions in 𝐷𝐼𝑆 are sorted in ascending order according to their starting
times, and the 𝑛th disruption is the emerging disruption. The setting of ℎ𝑟 affects the solution quality as well as the computation
time. The value of ℎ𝑟 is set to at least bigger than 𝐷. A larger ℎ𝑟 may lead to a better solution but meanwhile could cost longer
computation time. The influence of ℎ on a solution is investigated in Section 6.3.
12
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Algorithm 1: A rolling-horizon solution method to the multiple-disruption timetable rescheduling model

Input: 𝐷𝐼𝑆 = {1,⋯ , 𝑛} ,
{(

𝑡𝑖start , 𝑡
𝑖
end, 𝑇𝐿

𝑖
dis,1

)}

𝑖∈𝐷𝐼𝑆
,
{

𝑆𝑇 𝑡𝑙
}

𝑡𝑙∈𝑇𝐿𝑖
dis,1

, ℎ𝑟, 𝐷,
{

𝑟1𝑒
}

𝑒∈𝐸

Output: The rescheduled timetable for 𝑛 connected disruptions
1 𝑘 = 1 ; // Stage 1
2 𝐷𝐼𝑆𝑘 =

{

1,⋯ , 𝑛𝑘
}

, 𝑛𝑘 = 𝑛;
3 𝑡𝑘start = 𝑡𝑛𝑘start , 𝑖 ∈ 𝐷𝐼𝑆𝑘;
4 𝑡𝑖,𝑘end = min

{

𝑡𝑘start + ℎ𝑟, 𝑡𝑖end
}

, 𝑖 ∈ 𝐷𝐼𝑆𝑘;
5 Solve the multiple-disruption model considering the 𝑖th disruption with duration

[

𝑡𝑘start , 𝑡
𝑖,𝑘
end

]

, 𝑖 ∈ 𝐷𝐼𝑆𝑘 to obtain
the set of the cancelled events 𝐸𝑘

cancel. When solving the model, in constraints (30)-(32) 𝑡𝑛start is set to 𝑡𝑘start and 𝑟𝑒 is
set to the previous rescheduled time 𝑟1𝑒 determined for event 𝑒 when handling the first disruption only, and in
constraints (33)-(36) the maximum considered disruption ending time is max

{

𝑡1,𝑘end,⋯ , 𝑡𝑛𝑘 ,𝑘end

}

;

6 𝐸ar
cancel = ∅, 𝐸ar

keep = ∅; // Extract the periodic pattern (lines 6--20)
7 for 𝑖 = 1 ∶ 𝑛𝑘 do
8 foreach 𝑡𝑙 ∈ 𝑇𝐿𝑖

dis,1 do
9 Define 𝐸𝑡𝑙,𝑖

ar =
{

𝑒 ||
|

𝑒 ∈ 𝐸ar , 𝑡𝑙𝑒 = 𝑡𝑙, 𝑡𝑘start ≤ 𝑜𝑒 ≤ 𝑡𝑖,𝑘end, 𝑡
𝑖,𝑘
end < 𝑡𝑖end

}

;
10 foreach 𝑠𝑡 ∈ 𝑆𝑇 𝑡𝑙 do
11 Define 𝐸𝑠𝑡,𝑡𝑙,𝑖

ar =
{

𝑒 |
|

𝑒 ∈ 𝐸𝑡𝑙,𝑖
ar , 𝑠𝑡𝑒 = 𝑠𝑡

}

;
12 Find 𝑒′ = argmin

{

𝑜𝑒′ ∶ 𝑒′ ∈ 𝐸𝑠𝑡,𝑡𝑙,𝑖
ar

}

;
13 if 𝑒′ ∈ 𝐸𝑘

cancel then
14 𝐸ar

cancel = 𝐸ar
cancel

⋃

𝑒′;

15 else
16 Find 𝑒′′ = argmin

{

𝑜𝑒′′ ∶ 𝑒′′ ∈ 𝐸𝑠𝑡,𝑡𝑙,𝑖
ar ∖𝑒′

}

;
17 if 𝑒′′ ∈ 𝐸𝑘

cancel then
18 𝐸ar

cancel = 𝐸ar
cancel

⋃

𝑒′′;

19 else
20 𝐸ar

keep = 𝐸ar
keep

⋃

𝑒′′;

21 Remove the 𝑖th disruption from 𝐷𝐼𝑆𝑘 if 𝑡𝑖,𝑘end = 𝑡𝑖end, 𝑖 ∈ 𝐷𝐼𝑆𝑘, and then update the number of the remainder
disruptions as 𝑛𝑘+1 and define 𝐷𝐼𝑆𝑘+1 =

{

1,⋯ , 𝑛𝑘+1
}

;
22 while 𝑛𝑘+1 ≥ 1 do
23 𝑘 = 𝑘 + 1 ; // Stage 2 and onwards
24 𝑡𝑘start = 𝑡𝑗,𝑘−1end −𝐷, 𝑖 ∈ 𝐷𝐼𝑆𝑘, 𝑗 corresponds to the sequence of the current 𝑖th disruption at the previous stage;
25 𝑡𝑖,𝑘end = min

{

𝑡𝑘start + ℎ𝑟, 𝑡𝑖end
}

, 𝑖 ∈ 𝐷𝐼𝑆𝑘;
26 for 𝑖 = 1 ∶ 𝑛𝑘 do // Determine the events that will follow the pattern (lines

26--30)
27 foreach 𝑡𝑙 ∈ 𝑇𝐿𝑖

dis,1 do
28 Define 𝐸𝑡𝑙,𝑖,𝑘

f ix =
{

𝑒 ||
|

𝑒 ∈ 𝐸ar , 𝑡𝑙𝑒 = 𝑡𝑙, 𝑡𝑘start ≤ 𝑜𝑒 ≤ 𝑡𝑖,𝑘end −𝐷
}

;

29 Define 𝐸𝑡𝑙,𝑖,𝑘
cancel =

{

𝑒 ||
|

𝑒 ∈ 𝐸𝑡𝑙,𝑖,𝑘
f ix , 𝑒′ ∈ 𝐸ar

cancel, 𝑡𝑙𝑒 = 𝑡𝑙𝑒′ , 𝑠𝑡𝑒 = 𝑠𝑡𝑒′ , 𝑑𝑟𝑒 = 𝑑𝑟𝑒′ ,
}

;

30 Define 𝐸𝑡𝑙,𝑖,𝑘
keep =

{

𝑒 ||
|

𝑒 ∈ 𝐸𝑡𝑙,𝑖,𝑘
f ix , 𝑒′ ∈ 𝐸ar

keep, 𝑡𝑙𝑒 = 𝑡𝑙𝑒′ , 𝑠𝑡𝑒 = 𝑠𝑡𝑒′ , 𝑑𝑟𝑒 = 𝑑𝑟𝑒′ ,
}

;

31 Add constraints
{

𝑐𝑒 = 1, 𝑒 ∈
⋃

𝑖∈𝐷𝐼𝑆𝑘 𝐸𝑡𝑙,𝑖,𝑘
cancel

}

to the multiple-disruption model; // Apply the pattern
32 Add constraints

{

𝑐𝑒 = 0, 𝑒 ∈
⋃

𝑖∈𝐷𝐼𝑆𝑘 𝐸𝑡𝑙,𝑖,𝑘
keep

}

to the multiple-disruption model; // Apply the pattern
33 Solve the multiple-disruption model considering the 𝑖th disruption with duration

[

𝑡𝑘start , 𝑡
𝑖,𝑘
end

]

, 𝑖 ∈ 𝐷𝐼𝑆𝑘. When
solving the model, in constraints (30)-(32) 𝑡𝑛start is set to 𝑡𝑘start and 𝑟𝑒 is set to the rescheduled time determined
at the previous stage for event 𝑒, and in constraints (33)-(36) the maximum considered disruption ending
time is max

{

𝑡1,𝑘end,⋯ , 𝑡𝑛𝑘 ,𝑘end

}

;

34 Remove the 𝑖th disruption from 𝐷𝐼𝑆𝑘 if 𝑡𝑖,𝑘end = 𝑡𝑖end, 𝑖 ∈ 𝐷𝐼𝑆𝑘, and then update the number of the remainder
disruptions as 𝑛𝑘+1 and define 𝐷𝐼𝑆𝑘+1 =

{

1,⋯ , 𝑛𝑘+1
}

;
35 Return the rescheduled timetable obtained at final stage 𝑘; // Terminate
13
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Fig. 9. Illustration of the rolling-horizon solution method with two connected disruptions: the method is called when the 2nd disruption occurs.

Algorithm 1 is called every time a new connected disruption occurs. The algorithm starts in stage 1 by defining the set of
ongoing disruptions at the current stage as 𝐷𝐼𝑆1 where the number of ongoing disruptions 𝑛1 is set to the value 𝑛 (lines 1–2). For
each disruption 𝑖 ∈ 𝐷𝐼𝑆1, the starting time 𝑡1start considered at stage 1 is set to equal to the starting time of the emerging disruption
(line 3), while the ending time 𝑡𝑖,1end considered at stage 1 is set to the minimal value among 𝑡1start +ℎ𝑟 and 𝑡𝑖end, where in the latter case
𝑡1start +ℎ𝑟 is larger than the ending time of the disruption 𝑡𝑖end (line 4). The multiple-disruption model is solved considering that each
disruption 𝑖 lasts from 𝑡1start to 𝑡𝑖,1end to obtain the set 𝐸1

cancel containing all cancelled events at stage 1 (line 5). Note that at stage 1
(and at each following stage), the rescheduling solution is computed until the normal schedule has been recovered. Based on 𝐸1

cancel,
the periodic pattern of the rescheduled train services is obtained into two sets, 𝐸ar

cancel and 𝐸ar
keep, which include the representative

arrival event 𝑒 at each stopping/passage station 𝑠𝑡 ∈ 𝑆𝑇 𝑡𝑙 of train line 𝑡𝑙 ∈ 𝑇𝐿𝑖
dis,1, of which the determined cancellation decision

𝑐𝑒 should be followed by the same kind of event in the following periods (lines 6–20). Recall that any arrival and departure events
that constitute the same running activity are cancelled or kept simultaneously due to constraint (7), which is why only 𝐸ar

cancel and
𝐸ar
keep are defined.

Before Algorithm 1 proceeds to the next stage 𝑘+1, the disruption of which the total duration has been considered completely in
the current stage will be excluded from the ongoing disruptions of which the number is then updated as 𝑛𝑘+1 (line 21). If there is at
least one disruption remaining (line 22), then the algorithm will proceed to the next stage (line 23). For each disruption 𝑖 ∈ 𝐷𝐼𝑆𝑘

at the current stage, the considered starting time 𝑡𝑘start is set to its previous considered ending time minus the maximum allowed
delay per event 𝐷 (line 24). Recall that the previous considered ending time 𝑡𝑗,𝑘−1end is the previous considered starting time 𝑡𝑘−1start plus
ℎ𝑟 (see line 4) while ℎ𝑟 is set larger than 𝐷. In that sense, 𝑡𝑘start = 𝑡𝑗,𝑘−1end −𝐷 is equivalent to 𝑡𝑘start = 𝑡𝑘−1start + ℎ𝑟 −𝐷, in which ℎ𝑟 −𝐷 is
always positive. Note that a disruption of which the previous considered duration is smaller than ℎ𝑟 has already been removed from
the ongoing disruptions before proceeding to the current stage (see line 21), and is not considered at the current stage, nor any
following stages. Setting the considered starting time at the current stage as in line 24 avoids unnecessary train delays/cancellations
due to the recovery phase at the previous stage. This is explained in Fig. 10 where case (a) is the example of setting the starting time
of a disruption considered at stage 𝑘 to its ending time considered at stage 𝑘− 1, and case (b) is the example of setting the starting
time of a disruption considered at stage 𝑘 to its ending time considered at stage 𝑘 − 1 minus 𝐷. As the train departures/arrivals to
be rescheduled at the current stage cannot occur before the start time of this stage (the ones outside the blue shadow), two train
services (the thick lines) are delayed longer in case (a) than in case (b).

The ending time of a disruption considered at the current stage is set in the same way as introduced before (line 25). Recall that
only the periodic pattern of the train lines that are affected by one disruption is computed. Thus for each disruption 𝑖, we iterate
over the train line 𝑡𝑙 ∈ 𝑇𝐿𝑖

dis,1 that is only affected by the 𝑖th disruption to define the set 𝐸𝑡𝑙,𝑖,𝑘
f ix , which includes the events that should

follow the determined periodic pattern of train line 𝑡𝑙 at the current stage 𝑘. The set 𝐸𝑡𝑙,𝑖,𝑘
cancel ⊆ 𝐸𝑡𝑙,𝑖,𝑘

f ix (𝐸𝑡𝑙,𝑖,𝑘
keep ⊆ 𝐸𝑡𝑙,𝑖,𝑘

f ix ) that includes
the events that should be cancelled (kept) at the current stage 𝑘 is defined according to 𝐸ar

cancel (𝐸ar
keep) (lines 26–30). 𝐸𝑡𝑙,𝑖,𝑘

f ix does not
contain the events that were originally planned to occur during the recovery phase of a disruption, in which the periodic pattern
may not be applicable. A recovery phase may start at 𝐷 minutes before the disruption ending time due to constraints (5) and (6), in
which a train can be delayed to the end of a disruption rather than short-turned at a station before the blocked tracks like the similar
trains in the previous periods (as Fig. 10 shows). The constraints that demand the events in ⋃

𝑖∈𝐷𝐼𝑆𝑘 𝐸𝑡𝑙,𝑖,𝑘
cancel (⋃𝑖∈𝐷𝐼𝑆𝑘 𝐸𝑡𝑙,𝑖,𝑘

keep ) to be
cancelled (kept) are added to the multiple-disruption model, which is then solved considering that each disruption 𝑖 lasts from 𝑡𝑘start
to 𝑡𝑖,𝑘end (lines 31–33). Next, the disruption of which the total duration has been completely considered at the current stage will be
excluded (line 34). If there is at least one disruption remaining, the algorithm proceeds to the next stage. Otherwise, the algorithm
14

terminates by returning the rescheduled timetable obtained at the final stage (line 35).
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Fig. 10. Two examples of setting the starting time of a disruption considered at a stage (case (b) is used by the rolling-horizon approach). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 1
Train lines in the considered network.

Train line Terminals in the considered network

IC800 Maastricht (Mt)
IC1900 Venlo (Vl)
IC3500 Heerlen (Hrl)
SPR6400 Eindhoven (Ehv) and Wt
SPR6800 Roermond (Rm)
SPR6900 Sittard (Std) and Hrl
SPR9600 Ehv and Dn
SPR32000 –
IC32100 Mt and Hrl
SPR32200 Rm

6. Case study

We tested the model on a subnetwork of the Dutch railways. There are 38 stations located in this network with 10 train lines
operating half-hourly in each direction. The train lines operating in the network are shown in Fig. 11. We distinguish between
intercity (IC) and local (called sprinter (SPR) in Dutch) train lines. In the model, trains turning at the terminals to operate the
opposite operations (i.e. OD turnings) are taken into account. Table 1 lists the terminals of the train lines that are located in the
considered network, while the terminals outside the considered network are neglected. The model was developed in MATLAB on a
desktop with Intel Xeon CPU E5-1620 v3 at 3.50 GHz and 16 GB RAM. The solver GUROBI release 7.0.1 was used either to solve
the model directly or called by the rolling-horizon method to solve the model gradually over time.

The schematic track layout of the considered network is shown in Fig. 12 where stations Tg, Rv and Sm are located on single-track
railway lines while the others are located on double-track railway lines. Due to the infrastructure layouts, some stations do not allow
short-turning trains that operate in a specific direction or even both directions. In Fig. 12, the stations that prohibit short-turning
trains to both sides are coloured in full grey, the stations that allow short-turning trains to both sides are coloured in full green,
and the stations that allow (prohibit) short-turning trains to one side are coloured in half green (grey).

We set the minimum duration required for short-turning or OD turning to 300 s, the minimum duration required for each
headway to 180 s, and the penalty of cancelling a service to 100 min. Recall that a service refers to a train run between two adjacent
stations. The maximum delay allowed for a train departure or arrival event 𝑒 ∈ 𝐸ar ∪𝐸de∖𝐸NMdelay is set to 25 min. This is because
we use a periodic planned timetable that has a cycle time of 30 min. Under this circumstance, delaying a train arrival/departure by
30 min might be unnecessary since at that time there will be a same kind of train departure/arrival originally scheduled. We allow
extra stops to be added, considering that a train may dwell at a station where it originally passes through to wait for the platform
capacity to be released in a downstream station where it will be short-turned. The minimum dwell time of an extra stop is set to
30 s. The required recovery duration 𝑅 is set to 2 h in this paper. Note that 𝑅 is the maximum recovery duration allowed, which
means that disruptions could take a shorter time than 𝑅 to be completely recovered.
15
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Fig. 11. The train lines operating in the considered network.

Fig. 12. The schematic track layout in the considered network. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
16
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Table 2
Characteristics of scenarios 1–32.

Scenario First Second Scenario First Second
disruption disruption disruption disruption

1 Bk - Lut Rm - Wt 17 Hze - Gp Bk - Lut
2 Bk - Lut Wt - Mz 18 Hze - Gp Lut - Std
3 Bk - Lut Gp - Ehv 19 Hze - Gp Mt - Bde
4 Bk - Lut Hze - Gp 20 Hze - Gp Srn -Ec
5 Lut - Std Rm - Wt 21 Rm - Wt Bk - Lut
6 Lut - Std Wt - Mz 22 Rm - Wt Lut - Std
7 Lut - Std Gp - Ehv 23 Rm - Wt Mt - Bde
8 Lut - Std Hze - Gp 24 Rm - Wt Srn -Ec
9 Mt - Bde Rm - Wt 25 Wt - Mz Bk - Lut
10 Mt - Bde Wt - Mz 26 Wt - Mz Lut - Std
11 Mt - Bde Gp - Ehv 27 Wt - Mz Mt - Bde
12 Mt - Bde Hze - Gp 28 Wt - Mz Srn -Ec
13 Srn -Ec Rm - Wt 29 Gp - Ehv Bk - Lut
14 Srn -Ec Wt - Mz 30 Gp - Ehv Lut - Std
15 Srn -Ec Gp - Ehv 31 Gp - Ehv Mt - Bde
16 Srn -Ec Hze - Gp 32 Gp - Ehv Srn -Ec

In the following, Section 6.1 explores the performance of the sequential and combined approaches on two connected disruptions
ccurring in different locations. Each of the two disruptions is considered to last for 2 h approximately, and their durations are almost
ully overlapped. Section 6.2 investigates whether and how the length of the overlapping duration would affect the performance
f the sequential and combined approaches. Section 6.3 analyzes the performance of the proposed rolling-horizon solution method
hen dealing with two connected disruptions with longer durations.

.1. Multiple connected disruptions occurring in different sections

We establish 32 scenarios where each has two complete blockages occurring in different sections as shown in Table 2. For each
cenario, we consider that the first disruption starts at 8:06 and ends at 10:06, while the second disruption starts at 8:12 and ends
t 10:16. Both disruptions are connected by at least one train line. Considering the real-time requirement for computation, we set
00 s as the upper time limit to get a solution from either the sequential approach or the combined approach by a solver. Table 3
hows the results of handling scenarios 1–32 by both sequential and combined approaches.

In Table 3, the objective value, the number of cancelled services, the total train delay, the computation time, and the optimality
ap are indicated for each solution obtained by either approach for each scenario. Recall that a service refers to a train run between
wo adjacent stations. For each solution, the optimality gap is the difference between the current best integer objective (i.e. the
pper bound) and the current lower objective bound of the solution divided by the upper bound. We use ‘‘↓’’ to highlight the cases

where smaller values were obtained in the objectives, the numbers of cancelled services, and the total train delays by the combined
approach (compared to the sequential approach), while using ‘‘↑’’ to highlight the cases where larger values were obtained. In terms
f objective values, the combined approach generated the solutions that were at least as good as the sequential approach. In 20
f 32 scenarios, the combined approach generated better solutions that resulted in less cancelled services and/or less train delays.
or example in scenarios 1 and 5, the combined approach reduced both cancelled services and train delays. In some scenarios, it
ancelled less services at the expense of introducing more train delays (e.g. scenarios 3); while in one scenario (i.e. scenario 4), it
esulted in less train delays at the expense of cancelling more services.

Under the computation time limit of 300 s, the combined approach found optimal solutions for 30 of 32 scenarios, and high-
uality solutions with an optimality gap of less than 0.60% for the other two scenarios. Scenarios 1 and 5 are the hardest to solve,
hich are the two cases resulting in less cancelled services and less train delays at the same time. This is due to the wider search

paces in both scenarios, helping to find better solutions but costing more computation times. The size of the search space is relevant
o the location of each disruption. Compared to the combined approach, the sequential approach took less times to compute optimal
olutions, which however cannot find feasible solutions for scenarios 13 and 24 where the disrupted sections are the same though
he sequence of the occurrence is the other way around. In both scenarios, some services that were required to be cancelled when
andling the first disruption cannot be cancelled when handling the second disruption, due to the starting times and locations of
oth disruptions. This is in conflict with that the sequential approach relies on the previous cancellation decisions, and thus leads
o infeasible solutions.

Using scenario 5 as an example, we show the time–distance diagrams of rescheduling solutions obtained by the sequential and
ombined approaches. The 1st rescheduled timetable corresponding to the 1st disruption obtained by the sequential or combined
pproach is the same, which is shown in Fig. 13. The solid lines represent the rescheduled services, the dotted (dashed) lines
epresent the original scheduled services that are delayed (cancelled) in the rescheduled timetable, and the red triangles indicate
xtra stops. Due to the infrastructure layout, station Lut prohibits short-turning the trains coming from station Bk, which is why
hese trains short-turn earlier at station Bk. As station Bk has two tracks only, a minimum headway has to be respected between
he arrival of a train and the departure of another train that previously arrives at station Bk from the same direction. Thus, three
17

rains from SPR6800 (in dark blue) have to be delayed at station Bde to respect the minimum headway between their arrivals and
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Table 3
Results of scenarios 1–32 with 1st disruption in [8:06,10:06] and 2nd disruption in [8:12,10:16].

Scenario Sequential (solver) Combined (solver)

Obj # Cancelled Total train Time Gap Obj # Cancelled Total train Time Gap
[min] services delay [min] [s] [%] [min] services delay [min] [s] [%]

1 6,286 50 1286 39 0.00 5,621 ↓ 44↓ 1221↓ 300 0.56
2 6,802 52 1602 37 0.00 6,260 ↓ 52↓ 1060↓ 166 0.00
3 13,003 120 1003 24 0.00 12,850 ↓ 114↓ 1450↑ 223 0.00
4 11,930 104 1530 17 0.00 11,843 ↓ 108↑ 1043↓ 139 0.00
5 6,568 54 1168 30 0.00 6,121 ↓ 50↓ 1121↓ 300 0.25
6 7,035 56 1435 32 0.00 6,916 ↓ 56↓ 1316↓ 125 0.00
7 13,357 124 957 24 0.00 13,290 ↓ 116↓ 1690↑ 58 0.00
8 12,274 108 1474 22 0.00 12,274 ↓ 108↓ 1474↓ 55 0.00
9 6,618 58 818 18 0.00 6,618 ↓ 58↓ 818↓ 25 0.00
10 7,670 68 870 28 0.00 7,571 ↓ 66↓ 971↑ 50 0.00
11 14,485 138 685 23 0.00 14,403 ↓ 130↓ 1403↑ 50 0.00
12 13,410 116 1810 27 0.00 13,410 ↓ 116↓ 1810↓ 85 0.00
13 Infeasible – – – – 13,705 ↓ 78↓ 5905↓ 183 0.00
14 11,507 80 3507 52 0.00 11,093 ↓ 80↓ 3093↓ 166 0.00
15 18,044 150 3044 31 0.00 17,676 ↓ 142↓ 3476↑ 95 0.00
16 16,955 134 3555 26 0.00 16,679 ↓ 134↓ 3279↓ 170 0.00
17 11,572 90 2572 30 0.00 11,572 ↓ 90↓ 2572↓ 55 0.00
18 12,372 98 2572 28 0.00 12,372 ↓ 98↓ 2572↓ 80 0.00
19 13,138 104 2738 20 0.00 13,138 ↓ 104↓ 2738↓ 50 0.00
20 15,345 114 3845 19 0.00 15,334 ↓ 114↓ 3934↓ 70 0.00
21 5,220 42 1020 13 0.00 5,214 ↓ 42↓ 1014↓ 125 0.00
22 6,014 50 1014 13 0.00 6,008 ↓ 50↓ 1008↓ 91 0.00
23 6,788 56 1188 11 0.00 6,774 ↓ 56↓ 1174↓ 40 0.00
24 Infeasible – – – – 12,769 ↓ 68↓ 5969↓ 160 0.00
25 6,075 52 875 17 0.00 6,075 ↓ 52↓ 875↓ 69 0.00
26 6,875 60 875 20 0.00 6,875 ↓ 60↓ 875↓ 71 0.00
27 7,655 66 1055 11 0.00 7,641 ↓ 66↓ 1041↓ 83 0.00
28 10,010 78 2210 7 0.00 9,999 ↓ 78↓ 2199↓ 76 0.00
29 12,968 116 1368 19 0.00 12,968 ↓ 116↓ 1368↓ 53 0.00
30 13,768 124 1368 16 0.00 13,768 ↓ 124↓ 1368↓ 38 0.00
31 14,548 130 1548 11 0.00 14,534 ↓ 130↓ 1534↓ 45 0.00
32 16,748 140 2748 19 0.00 16,737 ↓ 140↓ 2737↓ 37 0.00

the departures of previous arriving trains from IC800 (in orange) at station Bk. The similar reasoning is applied for the extra stops
and delays happening to three trains from IC800 (in orange) at station Bde.

The 2nd rescheduled timetable obtained by the sequential approach is shown in Fig. 14. Compared to Fig. 13, there are more
rain services from IC800 (in orange) cancelled between stations Std and Rm in Fig. 14. This is because trains from IC800 (in orange)
ave to be short-turned at station Rm due to the emerging disruption (disrupted section Rm-Wt), which however may be inoperable
ue to their short-turnings at station Std. An earlier short-turning is observed at station Sm between trains from IC800 (in orange).
his is because if this short-turning occurs at station Rm instead, although there would be four services cancelled less, the resulting
rain delays are more than the penalty on cancelling four services. At the top of the disrupted section Rm-Wt, four trains from IC3500
in pink) additionally dwell at station Mz. This is because station Wt has four tracks while only two of them are alongside platforms.
hus, each of these four trains from IC3500 (in pink) has to wait at station Mz to ensure the headway between its arrival and the
eparture of a short-turned train from SPR6400 (in light blue) at station Wt where a train from IC800 (in orange) is still occupying
nother platform at that time. At station Wt, the departures of four upstream trains from IC800 (in orange) are delayed more than
ecessary. This is because in the sequential approach, the delaying decisions made for the previous disruption are kept. Hence, the
djusted arrival and departure times from the previous step are now the reference timetable, while early arrivals/departures are
ot allowed, which now is with respect to this timetable.

The 2nd rescheduled timetable obtained by the combined approach is shown in Fig. 15 where different short-turning patterns of
rains from IC800 (in orange) are observed. For example in Fig. 15 trains from IC800 (thick solid lines in orange) were short-turned
t station Rm around 10:10 instead of at station Srn around 10:15 as in the sequential approach (Fig. 14) in which four more services
ere cancelled (thick dashed lines in orange). With the combined approach (Fig. 15), four upstream trains from IC800 between Wt
nd Ehv (thick solid lines in orange) were less delayed than when using the sequential approach (Fig. 14).

From these results it is concluded that the combined approach is able to handle more kinds of multiple-disruption scenarios and
ind better solutions than the sequential approach in some cases. This is because the combined approach does not rely on previously
aken decisions, thus having a wider search space that helps to find a better solution but also costs longer computation time.

.2. Multiple connected disruptions with different overlapping durations

Section 6.1 considers two disruptions that last for around 2 h, respectively, and the overlapping duration is 1 h and 54 min (almost
18

ully overlapping). To explore whether the length of the overlapping duration affects the performance of the combined approach
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Fig. 13. The 1st rescheduled timetable obtained by the sequential/combined approach for scenario 5: from Eindhoven (Ehv) to Maastricht (Mt). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 14. The 2nd rescheduled timetable obtained by the sequential approach for scenario 5: from Eindhoven (Ehv) to Maastricht (Mt). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

and the corresponding computation time, this sections considers two disruptions that have the same durations as in Section 6.1 but
are overlapping to different extents. Several instances differing in the overlapping durations are established as shown in Table 4,
in which instance * represents the duration setting used in Section 6.1. In Table 4, the fourth column indicates the total durations
of the first and the second disruptions. The first disruption lasts for 2 h and the second disruption last for 2 h and 4 min, which in
total is 4 h and 4 min (02:00 + 02:04).

From Table 3 we know that compared to the sequential approach, the combined approach performed much better in scenario 1 ,
slightly better in scenario 6, and the same in scenario 9 when considering overlapping duration instance *. Hence, we take scenarios
1, 6 and 9 as examples to test whether the performance of the combined approach would be different when considering different
overlapping duration instances in the same scenario. We implemented instances a–f in these scenarios, and displayed the results in
19
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Fig. 15. The 2nd rescheduled timetable obtained by the combined approach for scenario 5: from Eindhoven (Ehv) to Maastricht (Mt). (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this article.)

Table 4
Two disruptions with different lengths of overlapping durations.

Instance First disruption Second disruption Total disruption duration Overlapping duration
period period (in HH:MM format) (in HH:MM format)

* [8:06,10:06] [8:12,10:16] 02:00 + 02:04 01:54
a [8:06,10:06] [8:32,10:36] 02:00 + 02:04 01:34
b [8:06,10:06] [8:52,10:56] 02:00 + 02:04 01:14
c [8:06,10:06] [9:12,11:16] 02:00 + 02:04 00:54
d [8:06,10:06] [9:32,11:36] 02:00 + 02:04 00:34
e [8:06,10:06] [9:52,11:56] 02:00 + 02:04 00:14
f [8:06,10:06] [10:12,12:16] 02:00 + 02:04 00:00

Table 5. The result of implementing instance * on each of these scenarios has already been shown in Table 3, which is also displayed
in Table 5.

Table 5 indicates that the performance of the combined approach can change with the overlapping duration between disruptions,
and that the change is scenario dependent. Recall that a scenario is different from another scenario in terms of the disrupted sections
(see Table 2). In scenario 1 (scenario 6), the combined approach performed the best in terms of the objective under instance *
(instance a) in which disruptions were time overlapping to a large extent. In these scenarios longer overlapping duration means
more interactions between disruptions, and therefore more interdependent decisions relevant to multiple disruptions need to be
decided. These interdependent decisions do not exist in the sequential approach that is unable to consider the combined effects of
multiple disruptions. Thus with the increase of interdependent decisions, the solution space of the combined approach becomes larger
so that it is more likely to generate a better solution than the sequential approach but meanwhile requires longer computation time.
For example either in scenario 1 or scenario 6, the longest computation time happened in the instance where the largest objective
decrease was obtained by the combined approach. When considering a much shorter or even zero overlapping duration (instance e
or f), the computation times of the combined approach were shorter, and there were few or no differences between the performances
of the combined and the sequential approaches in scenarios 1 and 6. Compared to scenario 1 or 6, scenario 9 showed less objective
decrease from the combined approach in most instances. The performance of the combined approach in scenario 9 was not relevant
to the length of the overlapping disruption duration as in scenario 1 or 6. This is because in scenario 1 or 6 the number of trains that
were less delayed or of which less services were cancelled due to the combined approach increased with the overlapping duration,
whereas in scenario 9 only one train was delayed less due to the combined approach, which occurred in specific instances depending
on the starting/ending times of the disruptions but not on the length of the overlapping duration.

6.3. Multiple connected disruptions with longer (overlapping) durations

In Sections 6.1 and 6.2, the duration considered for each disruption is 2 h approximately. For two connected disruptions with such
durations, the combined approach outperforms the sequential approach in terms of solution quality by up to 300 s computation. For
20
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Table 5
Results of considering the duration instances of Table 4.

Instance Sequential (solver) Combined (solver)

Obj Gap Time Obj Gap Time Obj
[min] [%] [s] [min] [%] [s] decrease

Scenario 1

* 6286 0.00 39 5621↓ 0.56 300 665
a 5172 0.00 10 5038↓ 0.00 30 134
b 5102 0.00 9 5015↓ 0.00 14 87
c 5778 0.00 40 5518↓ 0.00 45 260
d 5312 0.00 12 5265↓ 0.00 18 47
e 5242 0.00 12 5242↓ 0.00 11 0
f 5350 0.00 15 5350↓ 0.00 16 0

Scenario 6

* 7035 0.00 32 6916↓ 0.00 125 119
a 7987 0.00 67 7675↓ 0.00 165 312
b 6974 0.00 40 6902↓ 0.00 50 72
c 7021 0.00 45 6934↓ 0.00 60 87
d 7658 0.00 40 7452↓ 0.00 50 206
e 6671 0.00 42 6670↓ 0.00 38 1
f 6680 0.00 28 6680↓ 0.00 28 0

Scenario 9

* 6618 0.00 18 6618↓ 0.00 25 0
a 6931 0.00 22 6872↓ 0.00 141 59
b 6530 0.00 10 6530↓ 0.00 11 0
c 6770 0.00 35 6721↓ 0.00 40 49
d 6947 0.00 71 6888↓ 0.00 50 59
e 6530 0.00 11 6529↓ 0.00 11 1
f 6778 0.00 25 6730↓ 0.00 30 48

Table 6
Two connected disruptions with longer (overlapping) durations.

Case First disruption Second disruption Total disruption duration Overlapping duration
period period (in HH:MM format) (in HH:MM format)

* [8:06,10:06] [8:12,10:16] 02:00 + 02:04 01:54
I [8:06,10:26] [8:12,10:36] 02:20 + 02:24 02:14
II [8:06,10:46] [8:12,10:56] 02:40 + 02:44 02:34
III [8:06,11:06] [8:12,11:16] 03:00 + 03:04 02:54
IV [8:06,11:26] [8:12,11:36] 03:20 + 03:24 03:14
V [8:06,11:46] [8:12,11:56] 03:40 + 03:44 03:34
VI [8:06,12:06] [8:12,12:16] 04:00 + 04:04 03:54
VII [8:06,12:26] [8:12,12:36] 04:20 + 04:24 04:14
VIII [8:06,12:46] [8:12,12:56] 04:40 + 04:44 04:34
IX [8:06,13:06] [8:12,13:16] 05:00 + 05:04 04:54
X [8:06,13:26] [8:12,13:36] 05:20 + 05:24 05:14
XI [8:06,13:56] [8:12,13:56] 05:40 + 05:44 05:34
XII [8:06,14:06] [8:12,14:16] 06:00 + 06:04 05:54

longer disruptions, whether this still holds should be investigated. This is for the consideration that the combined approach needs
longer computation time than the sequential approach and thus may generate sub-optimal solutions under the required time limit,
which then could be worse than the solutions obtained by the sequential approach. This section tests both approaches on longer
disruptions using 300 s as the computation time limit still. Particularly in the combined approach, the multiple-disruption model is
solved by the rolling-horizon approach proposed in Section 5, as well as an optimization solver for comparison.

According to Table 3, scenario 1 is chosen as an example, because it is the most difficult scenario to be solved by the combined
pproach. Twelve cases of disruption durations are considered for this scenario, which are shown in Table 6.

The results of applying the sequential/combined approach to deal with duration cases I–XII in scenario 1 are indicated in Table 7.
hese results are obtained by the optimization solver GUROBI. We use O-gap to indicate the percentage difference between the
btained solution and the optimal solution. If no optimal solution was obtained by the solver up to 24 h computation, we calculated
-gap and L-gap to represent the percentage difference between the obtained solution and the best found upper bound, and the
ercentage difference between the obtained solution and the best found lower bound, respectively. The sequential approach found
ptimal solutions within 300 s for most cases, except case XII (the longest disruption case) for which it took 572 s to find the optimal
olution. Although the combined approach computed sub-optimal solutions within 300 s, these solutions were still better than the
ptimal solutions by the sequential approach. By up to 24 h computation, the combined approach obtained optimal solutions for
ases I–III, and near-optimal solutions for cases IV–XII.

The proposed rolling-horizon solution method was also applied for the combined approach to solve cases I–XII in scenario 1. The
omputation time at each stage of the rolling-horizon method is restricted to 300 s. The results under different settings of ℎ𝑟 are

shown in Table 8. Recall that ℎ𝑟 represents the length of a disruption considered at each stage (except the final stage). By comparing
Table 8 with Table 7, we found that the solutions obtained by the rolling-horizon method under whichever setting of ℎ were better
21
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Table 7
Results of scenario 1 by using a solver.

Case Sequential (solver) Combined (solver) Combined (solver up to 24 h)

Obj O-gap Time Obj O-gap U-gap L-gap Time Optimal Upper Lower L-gap
[min] [%] [s] [min] [%] [%] [%] [s] bound bound [%]

I 7,787 0.00 21 7,084 ↓ 2.67 300 6895 0.00
II 8,456 0.00 48 7,653 ↓ 1.74 300 7520 0.00
III 10,096 0.00 300 8,765 ↓ 4.48 300 8372 0.00
IV 11,663 0.00 300 10,027 ↓ 3.42 3.55 300 9,684 9,671 0.13
V 12,229 0.00 300 11,111 ↓ 7.61 8.16 300 10,266 10,204 0.61
VI 13,196 0.00 300 11,982 ↓ 7.26 7.65 300 11,112 11,065 0.43
VII 14,578 0.00 300 12,635 ↓ 2.12 2.94 300 12,368 12,263 0.85
VIII 15,115 0.00 300 13,671 ↓ 5.60 6.48 300 12,905 12,785 0.93
IX 16,036 0.00 300 15,654 ↓ 12.04 12.79 300 13,769 13,652 0.85
X 17,417 0.00 300 16,505 ↓ 8.86 10.10 300 15,043 14,838 1.36
XI 17,954 0.00 300 16,362 ↓ 4.58 5.65 300 15,612 15,438 1.11
XII 21,338 11.50 300 17,537 ↓ 6.44 7.79 300 16,407 16,170 1.44

(18,875 0.00 572)

Table 8
Results of scenario 1 by using the rolling-horizon solution method for the combined approach (up to 300 sec computation at each stage).

Case ℎ𝑟 = 1 h ℎ𝑟 = 1.5 h ℎ𝑟 = 2 h

Obj O-gap U-gap L-gap Obj O-gap U-gap L-gap Obj O-gap U-gap L-gap
[min] [%] [%] [%] [min] [%] [%] [%] [min] [%] [%] [%]

I 6,991 1.37 6,895 0.00 6,895 0.00
II 7,595 0.99 7,520 0.00 7,520 0.00
III 8,498 1.48 8,372 0.00 8,372 0.00
IV 9,810 1.28 1.42 9,684 0.00 0.13 9,684 0.00 0.13
V 10,415 1.43 2.03 10,289 0.22 0.83 10,289 0.22 0.83
VI 11,318 1.82 2.24 11,191 0.71 1.13 11,191 0.71 1.13
VII 12,630 2.08 2.91 12,452 0.68 1.52 12,504 1.10 1.93
VIII 13,235 2.49 3.40 13,041 1.04 1.96 13,109 1.56 2.47
IX 14,318 2.61 3.44 13,961 1.38 2.21 14,011 1.73 2.56
X 15,450 2.63 3.96 15,235 1.26 2.61 15,272 1.50 2.84
XI 16,055 2.76 3.84 15,861 1.57 2.67 15,861 1.57 2.67
XII 16,957 3.24 4.64 16,712 1.83 3.24 16,781 2.23 3.64

than the ones obtained by the solver up to 300 s computation. When increasing ℎ𝑟 from 1 h to 1.5 h, optimal solutions were found
or cases I–III, and solutions with improved U-gaps and L-gaps were obtained for cases IV–XII. When increasing ℎ𝑟 from 1.5 h to 2 h
urther, the solutions obtained for cases I–VI were the same, but the solutions found for cases VII–XII mostly became worse (U-gaps
nd L-gaps both increased). This is due to the computation limit of 300 s required at a stage of the rolling-horizon method. When
𝑟 was set to 1 h or 1.5 h, an optimal solution was always obtained at each stage within the required time limit. When ℎ𝑟 was set
o 2 h, sub-optimal solutions were obtained at specific stages due to the time limit, which affected the overall solution optimality.

Fig. 16 shows the stage computation times of cases I–XII under different settings of ℎ𝑟. Each circle indicates the computation
time at a specific stage that is distinguished by colour. The circles on the same vertical line correspond to the same case. Because
the disruption durations are different among cases, the number of stages needed at a case can be different from one to another
case although both cases were under the same setting of ℎ𝑟. When ℎ𝑟 = 1 h, the stage computation times were mostly below 25 s
with 7 exceptions that ranged from 35 s to 210 s and all corresponded to the final stages of the relevant cases. When ℎ𝑟 = 1.5 h,
tage computation times increased due to longer disruption durations considered, and the most time-consuming stages took 225 s,
hich were the first stages in all cases. A stage computation time is very sensitive to the starting and ending times of disruptions

onsidered at the stage, which is why it varied with stages although under the same setting of ℎ𝑟. When ℎ𝑟 increased to 2 h, most
tage computation times reached the limit of 300 s, and in some cases only the circles that indicated the final stage computation
imes are visible, because the ones that represented the previous stages were overlapping due to the same computation times. The
otal computation time of the rolling-horizon method is the sum of the computation times required at all stages. Table 9 shows the
inimum, average and maximum total computation times across cases under the same setting of ℎ𝑟 in scenario 1. These values all

increase with the growth of ℎ𝑟. For example when ℎ𝑟 = 1 h the maximum total computation time was below 300 s, while when
𝑟 = 2 h the minimum total computation time was over 300 s Although the total computation times were mostly (all) longer than
00 s when setting ℎ𝑟 to 1.5 h (2 h), the corresponding stage computation times were all below 300 s as shown in Fig. 16. Therefore
n practice, a rescheduling solution can be rapidly obtained at a stage and immediately delivered to traffic controllers, and then
pdated gradually over time for the following stages. Although we assume that the disruption durations will not change over time,
ith minor changes the proposed rolling-horizon method can be used to deal with the dynamic variations regarding the disruption
urations.

In scenario 1, the combined approach performs much better than the sequential approach, and thus the sub-optimal solutions
22

y the combined approach can still be better than the optimal solutions by the sequential approach. For the scenarios where
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l

Fig. 16. Stage computation times [sec] under different settings of ℎ𝑟 in the rolling-horizon method. (For interpretation of the references to colour in this figure
egend, the reader is referred to the web version of this article.)

Table 9
The minimum, average and maximum total computation times [sec] of the rolling-horizon method
for the combined approach across cases in scenario 1.
ℎ𝑟 Min Avg Max

1 h 47 124 260
1.5 h 245 355 490
2 h 315 609 900

Table 10
Results of scenario 6.
Case Sequential (solver) Combined (solver) Combined (rolling-horizon)

Obj O-gap Time Obj O-gap Time Obj O-gap Max stage
[min] [%] [s] [min] [%] [s] [min] [%] time [s]

I 8,569 0.00 162 8,462 ↓ 0.00 93 8,462 ↓ 0.00 170
II 9,588 0.00 188 9,366 ↓ 0.00 100 9,366 ↓ 0.00 170
III 10,568 0.00 145 10,425 ↓ 0.00 69 10,425 ↓ 0.00 170
IV 12,165 0.00 282 12,064 ↓ 0.64 300 11,987 ↓ 0.00 170
V 13,185 0.00 241 12,967 ↓ 0.59 300 12,904 ↓ 0.10 170
VI 14,204 0.00 300 14,305 ↑ 2.49 300 13,965 ↓ 0.11 170
VII 15,785 0.00 300 18,314 ↑ 15.25 300 15,580 ↓ 0.38 170
VIII 16,804 0.00 300 16,764 ↓ 2.09 300 16,451 ↓ 0.22 170
IX 17,888 0.58 300 17,564 ↓ 0.52 300 17,539 ↓ 0.38 170
X 19,825 2.24 300 19,755 ↓ 3.59 300 19,063 ↓ 0.09 170
XI 20,490 0.43 300 23,552 ↑ 15.34 300 19,980 ↓ 0.21 170
XII 21,451 0.15 300 21,205 ↓ 0.99 300 21,039 ↓ 0.21 170

the combined approach performs at least as good as the sequential approach, it is able to generate solutions below the required
computation time limit. According to Table 3, scenarios 6 and 9 are chosen as two more example instances, and the corresponding
results are shown in Tables 10 and 11, respectively. In these two scenarios, we set ℎ𝑟 to 2 h, under which optimal solutions were
always obtained at stage level under the required time limit in all cases.

Table 10 shows that for scenario 6, the combined approach found better solutions than the sequential approach in all cases
when using the rolling-horizon solution method, which however was not achieved when using a solver. The optimality gaps of the
solutions by the rolling-horizon method were all below 0.40%. Table 11 shows that for scenario 9, the combined approach found
the solutions that were at least as good as the ones obtained by the sequential approach in all cases when using either a solver
or the rolling-horizon method. In both scenarios, the maximum stage computation time of the rolling-horizon method was below
the required time limit of 300 s These results indicate that the computational complexity of the combined approach is scenario
dependent, and that the proposed rolling-horizon method is able to generate high-quality solutions in an acceptable time.

From these results we conclude that the proposed rolling-horizon method is helpful to solve longer multiple connected disruptions
by high-quality rescheduling solutions in an acceptable time. The value of ℎ𝑟 used in the rolling-horizon method affects the overall
solution optimality due to the time limit of 300 s required for a stage computation. In different scenarios the appropriate setting
of ℎ𝑟 can be different, but under whichever setting of ℎ𝑟 (1 h, 1.5 h, or 2 h), the rolling-horizon solution method performs well
regarding the solution quality.
23
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Table 11
Results of scenario 9.
Case Sequential (solver) Combined (solver) Combined (rolling-horizon)

Obj O-gap Time Obj O-gap Time Obj O-gap Max stage
[min] [%] [s] [min] [%] [s] [min] [%] time [s]

I 8,090 0.00 15 8,090 ↓ 0.00 93 8,090 ↓ 0.00 45
II 9,170 0.00 21 9,170 ↓ 0.00 100 9,170 ↓ 0.00 45
III 10,089 0.00 45 10,089 ↓ 0.00 69 10,089 ↓ 0.00 45
IV 11,561 0.00 73 11,561 ↓ 0.00 300 11,561 ↓ 0.00 45
V 12,641 0.00 105 12,641 ↓ 0.00 300 12,641 ↓ 0.00 45
VI 13,560 0.00 231 13,560 ↓ 0.00 260 13,560 ↓ 0.00 45
VII 15,032 0.00 300 15,032 ↓ 0.00 300 15,032 ↓ 0.00 45
VIII 16,112 0.00 300 16,112 ↓ 0.00 300 16,112 ↓ 0.00 45
IX 17,031 0.00 300 17,031 ↓ 0.00 300 17,031 ↓ 0.00 45
X 18,503 0.00 300 18,503 ↓ 0.00 300 18,503 ↓ 0.00 45
XI 19,583 0.00 300 19,583 ↓ 0.00 300 19,583 ↓ 0.00 90
XII 20,518 0.08 300 20,506 ↓ 0.02 300 20,502 ↓ 0.00 45

Table 12
Notation.

Symbol Description

𝑜𝑒 The original scheduled time of event 𝑒
𝑡𝑙𝑒 The corresponding train line of event 𝑒
𝑡𝑟𝑒 The corresponding train of event 𝑒
𝑠𝑡𝑒 The corresponding station of event 𝑒
𝑑𝑟𝑒 The operation direction of event 𝑒
𝑤 Cancellation penalty
𝑛 The 𝑛th disruption that currently emerges
𝑟𝑒 The previous rescheduled time of event 𝑒

𝑟1𝑒 The determined rescheduled time of event 𝑒 when handling the first disruption only

𝑡𝑖start The start time of the 𝑖th disruption, 1 ≤ 𝑖 ≤ 𝑛

𝑡𝑖end The end time of the 𝑖th disruption, 1 ≤ 𝑖 ≤ 𝑛

𝑠𝑡𝑖,𝑑𝑟en The entry station of the 𝑖th disrupted section in direction 𝑑𝑟𝑒 ∈ {𝑢𝑝, 𝑑𝑜𝑤𝑛}

𝑠𝑡𝑖,𝑑𝑟ex The exit station of the 𝑖th disrupted section in direction 𝑑𝑟𝑒 ∈ {𝑢𝑝, 𝑑𝑜𝑤𝑛}

𝑡𝑎𝑖𝑙(𝑎) The tail of activity 𝑎: which is the event 𝑎 that starts from
ℎ𝑒𝑎𝑑(𝑎) The head of activity 𝑎: which is the event 𝑎 that points to
𝑅 The maximal recovery duration after the disruption end time
𝐷 The maximum allowed delay per event
𝐿𝑎 The minimum duration of an activity 𝑎
𝑀1 A positive large number that is set to 1440
𝑀2 A positive large number that is set to twice of 𝑀1: 𝑀2 = 2𝑀1
ℎ𝑒,𝑒′ A minimum interval between the occurring times of events 𝑒 and 𝑒′ if corresponding to

trains occupying the same station track
𝐴run Set of running activities
𝐴dwell Set of dwell activities
𝐴pass Set of pass-through activities
𝐴station Set of station activities: 𝐴station = 𝐴dwell ∪ 𝐴pass
𝐴turn Set of short-turn activities
𝐴𝑖

turn Set of short-turn activities for the 𝑖th disruption: 𝐴𝑖
turn ⊂ 𝐴turn

𝐴odturn Set of OD turn activities
𝐸ar Set of arrival events
𝐸de Set of departure events
𝐸NMdelay Set of events that do not have upper limit on their delays

𝐸 turn
ar The subset of 𝐸ar , which includes all tails of activities in 𝐴turn: 𝐸 turn

ar =
⋃

𝑎∈𝐴turn
𝑡𝑎𝑖𝑙 (𝑎)

𝐸𝑖,turn
ar The subset of 𝐸 turn

ar , which includes all tails of activities in 𝐴𝑖
turn: 𝐸𝑖,turn

ar ⊂ 𝐸 turn
ar

𝐸odturn
ar The subset of 𝐸ar , which includes all tails of activities in 𝐴odturn: 𝐸odturn

ar =
⋃

𝑎∈𝐴odturn
𝑡𝑎𝑖𝑙 (𝑎)

𝐸 turn
de The subset of 𝐸de, which includes all heads of activities in 𝐴turn: 𝐸 turn

de =
⋃

𝑎∈𝐴turn
ℎ𝑒𝑎𝑑 (𝑎)

𝐸𝑖,turn
de The subset of 𝐸 turn

de , which includes all heads of activities in 𝐴𝑖
turn: 𝐸

𝑖,turn
de ⊂ 𝐸 turn

de

𝑆𝑇 𝑑𝑟𝑒
en Set of entry stations of all disrupted sections in direction 𝑑𝑟𝑒 ∈ {𝑢𝑝, 𝑑𝑜𝑤𝑛}

𝑆𝑇 𝑑𝑟𝑒
ex Set of exit stations of all disrupted sections in direction 𝑑𝑟𝑒 ∈ {𝑢𝑝, 𝑑𝑜𝑤𝑛}

𝑇𝑅turn Set of trains that correspond to the events contained in 𝐸 turn
ar ∪ 𝐸 turn

de

𝑇𝑅𝑖
turn Set of trains that correspond to the events contained in 𝐸𝑖,turn

ar ∪ 𝐸𝑖,turn
de
24
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Table 13
Notation used in the rolling-horizon method (Algorithm 1).

Symbol Description

𝑡𝑘start The considered starting time of a disruption at stage 𝑘

𝑡𝑖,𝑘end The considered ending time of the 𝑖th disruption at stage 𝑘

ℎ𝑟 The duration of a disruption considered at a stage (except the final stage)
𝑛𝑘 The number of ongoing disruptions at stage 𝑘
𝐷𝐼𝑆𝑘 The list of ongoing disruptions at stage 𝑘

𝑇𝐿𝑖
dis,1 The set of train lines that is only affected by the 𝑖th disruption

𝑆𝑇 𝑡𝑙 The set of planned stopping and passage stations of train line 𝑡𝑙

𝐸𝑘
cancel The set of events that are cancelled at stage 𝑘

𝐸ar
cancel The set of cancelled arrival events

𝐸ar
keep The set of kept arrival events

𝐸𝑡𝑙,𝑖
ar The set of arrival events from train line 𝑡𝑙 that is affected by the 𝑖th disruption

𝐸𝑠𝑡,𝑡𝑙,𝑖
ar The set of arrival events occurring at station 𝑠𝑡 and belonging to train line 𝑡𝑙 that is affected by the 𝑖th disruption

𝐸𝑡𝑙,𝑖,𝑘
f ix The set of events that should follow the determined periodic pattern of train line 𝑡𝑙 at stage 𝑘 ≥ 2

𝐸𝑡𝑙,𝑖,𝑘
cancel The set of events from train line 𝑡𝑙, which should be cancelled at stage 𝑘 ≥ 2

𝐸𝑡𝑙,𝑖,𝑘
keep The set of events from train line 𝑡𝑙, which should be kept at stage 𝑘 ≥ 2

7. Conclusions and future research

To deal with multiple connected disruptions that occur unexpectedly, this paper proposed two approaches, the sequential
pproach and the combined approach. The sequential approach is based on the single-disruption rescheduling model proposed
y Zhu and Goverde (2019), which solves disruptions one by one with the previous rescheduling decisions as reference. The
ombined approach is based on the multiple-disruption rescheduling model developed in this paper, which reschedules all train
ervices together each time an extra disruption occurs. Both approaches were applied to a subnetwork of the Dutch railways with
8 stations and 10 train lines operating half-hourly in each direction. Numerous experiments revealed that the combined approach
esulted in less cancelled train services and/or train delays than the sequential approach. The outperformance of the combined
pproach may change with the overlapping duration between disruptions, and the change is relevant to the disruption locations.
o deal with long multiple connected disruptions in a more efficient way, we proposed a new rolling-horizon method that is able
o generate high-quality rescheduling solutions in an acceptable time. The case study applied both approaches to deal with two
onnected disruptions. In future work, we will test larger railway networks where three or more connected disruptions are more
ikely to happen. This may need the technique of decomposing the large-scale network into several coordinated local rescheduling
ones to release the potential computational burden considering that the network scale and the number of disruptions both increase.
n addition, it is important to take into account the uncertainty of disruption durations, for which both the technique of stochastic
rogramming and a rolling-horizon method need to be employed. This is better to be explored from single-disruption cases first and
hen extended to multiple-disruption cases due to its complexity.
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