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Abstract
SAGE is an unsupervised sequence learning
pipeline that generates alert-driven attack graphs
(AGs) without the need for prior expert knowledge
about existing vulnerabilities and network topol-
ogy. Using a suffix-based probabilistic determin-
istic finite automaton (S-PDFA), it accentuates in-
frequent high-severity alerts without discarding fre-
quent low-severity alerts. It also captures the con-
text of the alerts with identical signatures and it is
an interpretable model. In order to deal with infre-
quent data, SAGE utilises sink states which are not
merged during the S-PDFA learning process. How-
ever, this could result in unnecessarily larger AGs.
In this study, we have looked at the AGs resulting
from merging sink states with other sinks and the
core of the S-PDFA after the main merging process.
Data from Collegiate Penetration Testing Competi-
tions has been used to compare AGs based on the
four metrics: size, complexity, interpretability and
completeness. We have shown that the resulting
graphs are, on average, slightly smaller, with about
the same complexity and the same completeness,
but with worse interpretability due to losses of con-
text of attack episodes, which cannot be compen-
sated by the slightly smaller size of the AGs.
Index Terms: SAGE, Attack Graphs, Sink States,
Infrequent Data, Context, S-PDFA, FlexFringe

1 Introduction
Security analysts in security operations centres (SOCs) have
to manually analyse massive volumes of alerts to learn about
attackers’ behaviour [1,2]. Every day, they receive thousands
or even millions of alerts generated by an Intrusion Detec-
tion System (IDS) [3]. This process is labour-intensive, highly
monotonous and stressful, leading to ‘threat alert fatigue’ [4].

As one of the solutions, attack graphs (AGs) are used to
visualise the strategies used by attackers when penetrating a
network [1]. However, AG generation in general (Topological
Vulnerability Analysis or TVA [5]) highly relies on the net-
work topology, expert knowledge and published vulnerability
reports, which ‘are always one step behind attackers’ [6, p.
1]. As a result, even though they are more intuitive, AGs are
static and hypothetical: they show what might happen on the
network but not what actually happens [1].

To address the aforementioned problems, a tool called
SAGE (IntruSion alert-driven Attack Graph Extractor [2, 7,
8]) has been developed. It generates AGs directly from in-
trusion alerts and does not rely on prior expert knowledge,
network topology and system vulnerabilities. The generated
AGs aim to show what has actually happened on the network,
providing a visual summary of what an IDS observes over
time. Under the hood, SAGE uses a suffix-based probabilis-
tic deterministic finite automaton, or S-PDFA (learned using
FlexFringe [9]) to discover patterns in these intrusion alerts
and convert them into interpretable AGs. It is the first tool
that uses automaton learning to generate AGs from intrusion
data [6].

While SAGE has managed to compress more than 300,000
alerts into less 100 AGs [7], it is difficult to evaluate the qual-
ity of SAGE as an unsupervised model, as there is no quan-
titative metric and no ground truth. Nevertheless, different
modelling assumptions can be tested and those that result in
the most useful and intuitive AGs for a security analyst can be
selected. In this paper, we investigate what kind of AGs are
generated as a result of merging sink states with other sinks
and the S-PDFA core. Sinks are states that occur too infre-
quently to be learned from and are not used in the learning
process [2, 6, 9]. We investigate how and why merging sinks
affects the size, complexity, interpretability and completeness
of the resulting AGs and compare them to the baseline AGs.

The following hypothesis is proposed. The resulting model
will produce AGs with, on average, fewer states and lower
complexity. On the other hand, unreliability of performing
statistical tests on infrequent data traces [9] might negatively
affect interpretability, making it more difficult to draw con-
clusions from the resulting AGs. Finally, completeness might
also be negatively affected by merging sinks.

This paper is structured as follows. Section 2 explains
AGs, SAGE and S-PDFA. Next, section 3 introduces the
problem, presents the hypothesis and the used methodology.
Section 4 describes the experimental setup and section 5 anal-
yses the results. Finally, section 6 presents the conclusions
and future work, and section 7 discusses the reproducibility
of the methods and the ethical aspects of the research.

2 Related Work
Nadeem et al. have introduced the concept of alert-driven at-
tack graphs and have developed SAGE, which generates AGs
directly from intrusion alerts [2, 7, 8]. Importantly, it does
not discard infrequent high-severity alerts, which is the prob-
lem of frequency analysis and most machine learning based
attacker strategy identification approaches, while summaris-
ing frequently-occurring low-severity alerts that lead to high-
severity ones. Furthermore, SAGE captures different contexts
for alerts with the same signature, e.g. network scans at the
start and in the middle of an attack are likely to show different
attacker behaviour due to gained experience. Finally, both the
SAGE model and the AGs are interpretable: the graphs are
concise, give relevant insights into strategic differences and
allow for fingerprinting paths (taken by only one attacker)
and ranking attackers based on the uniqueness and severity
of their actions (see Figure 1 for an example of an AG).

The SAGE pipeline can be summarised into the following
three steps [1, 2, 7]:

1. Intrusion alerts are organised into sequences that
represent an attacker strategy. Noise in the dataset
is cleaned and alerts are aggregated into attack episodes,
starting from a continuous increase and ending with a
continuous decrease in alert frequency, reaching a global
minimum. Alerts in an episode are likely to belong to
the same attacker action. Time-sorted episode sequences
for each attacker-victim pair are partitioned into episode
subsequences, starting with a low- and ending with a
high-severity episode (a likely attack attempt).



Figure 1: Attack graph for Data Exfiltration|microsoft-ds
objective on the victim 10.0.0.221 (CPTC-2017) [8]. Edge colours
show different team affiliation.

2. Based on the generated episode subsequences, an S-
PDFA is learned using FlexFringe [9]. Input traces are
reversed, i.e. high-severity episodes that are chronolog-
ically in the future are closer to the root of the S-PDFA.
To summarise the attack paths based on behavioural
similarity, FlexFringe uses the evidence-driven red-blue
state-merging framework: blue states (merge candi-
dates) are merged with red states (identified parts of the
S-PDFA, the core) if they are similar enough (identical
futures and similar pasts), starting from the root. The
Alergia evaluation function [10] checks if a merge is
consistent. Infrequent blue sinks are ignored when test-
ing merge candidates, but they can still be merged during
determinization, i.e. recursively merging the children of
the merged states that have a transition with the same
symbol. States of the S-PDFA can be seen as milestones
achieved by the attackers. Every episode subsequence
is replayed though the learned model, getting assigned
a state identifier, after which it becomes a state subse-
quence (here medium- and high-severity sinks are used).

3. The generated state sequences are converted into
AGs on a per-victim, per-objective basis. All attackers
who have achieved an objective (attack stage, or mcat,
and the most targeted service, or mserv) are shown in
one graph, while each successful attempt to achieve an
objective is a separate path in the graph. Different paths
leading to the same objective have different objective
variants (salmon hexagon states, see Figure 1).

3 Methodology
This section describes the methodology used in this work.
Subsection 3.1 defines the problem statement, and subsection
3.2 presents the hypothesis of the experiment results. Next,
subsection 3.3 introduces the chosen metrics for comparison
of AGs generated by the original and modified (i.e. with
merging sinks) SAGE and explains the reasons behind them.
Finally, subsection 3.4 explains the experimental workflow of
the research.

3.1 Problem
In the S-PDFA learning process, two states are merged if the
algorithm cannot find enough evidence to conclude that they

are different [2]. Infrequent states, called sinks (occur less
than sinkcount parameter, currently set to 5), are ignored in
the merging process, as performing statistical tests on them
is not reliable [9]. The Alergia evaluation function used by
SAGE will not find enough evidence for an inconsistency in
merging these infrequent states. The resulting merges could
be arbitrary and could degrade the model quality and the in-
sights that security analysts might get from the graphs.

On the other hand, it has been claimed that including
medium- and high-severity sinks in the post-processing could
lead to AGs having different objective variants for similar at-
tack paths, which in turn leads to unnecessarily larger graphs
[2]. Furthermore, there may exist some conditions for merg-
ing sinks which will result in a better model quality. It is thus
still an open problem what to do with these infrequent states.
This research analyses what exactly happens when sinks are
merged both with other sinks as well as the main core of the
S-PDFA after the main merging process, and what the conse-
quences are for the resulting AGs.

3.2 Hypothesis
The analysis of the final S-PDFA before merging sinks shows
that blue and white sink states constitute the largest percent-
age from all states (see Table 1). After a merge, the count of
sinks might become high enough for them to be become non-
sinks, resulting in a larger core of the S-PDFA. On the other
hand, only the medium- and high-severity sinks are included
in the AGs. Allowing to merge sinks will result in no sinks
for SAGE to be salvaged in the post-processing, thus the state
count could decrease because of this (see Table 2).

Considering the above, the following hypothesis is pro-
posed: merging sinks with other sinks and the SPDFA core
will increase the core of the final S-PDFA, while will result
in smaller, less complex, but less interpretable and less com-
plete AGs. The loss of medium- and high-severity sinks in the
post-processing and the inability of Alergia to prevent merg-
ing these states will result in a lot of merges and, on aver-
age, fewer nodes in the AGs. Since the complexity of an AG
is directly proportional to the number of nodes, it will also
decrease, on average. Finally, due to arbitrary merges, inter-
pretability and completeness are expected to become worse,
meaning that security analysts will struggle more to draw
conclusions from the resulting AGs, and some important data
could be lost.

Table 1: Statistics on the resulting S-PDFA, original SAGE (ob-
tained from FlexFringe output files and the script stats-ff.sh).

CPTC-2017 CPTC-2018

Red states (core) 67 (3%) 56 (3%)
Blue states (sinks) 459 (21%) 241 (13%)
White states (sinks) 1676 (76%) 1533 (84%)
Total sink states (blue + white) 2135 (97%) 1774 (97%)
Total states (red + blue + white) 2202 1830

3.3 Chosen Metrics
This subsection defines the four metrics used for comparing
AGs: size, complexity, interpretability and completeness.



Table 2: Statistics on the AGs, original SAGE (computed with the
script stats-nodes-ags.sh). Root nodes are included in unique nodes.

CPTC-2017 CPTC-2018

Total number of nodes 1853 1288
Number of unique nodes 329 247
Total number of sink nodes 356 (19%) 250 (19%)
Number of unique sink nodes 136 (41%) 104 (42%)

Size
The chosen metric for the size of a graph is the number of
nodes in it, due to its intuitiveness. For a security analyst,
it makes a difference whether a graph has 10 or 30 nodes.
Furthermore, it has been used in the original SAGE paper [2].

The reason that the number of edges is not included is that
it does not affect the size of a graph. Rather, it makes a graph
look denser and could make a graph more complex. Hence, it
is more useful to include it in the complexity metric.

Complexity
To measure complexity of an AG, the approach proposed by
De Alvarenga et al. [11] for process mining has been cho-
sen. The authors defined the boundaries for the number of
nodes in a graph, below which a graph is considered not
complex and above which the graph is considered complex
(vmin and vmax, respectively). Next, they defined simplicity
as Simplicity(AG) = |V |

|E| , with |V | is the number of nodes
and |E| is the number of edges in a graph. Simplicity quanti-
fies how simple the graph is. If |V | is within the boundaries,
its simplicity s is compared to the threshold ts to limit the
number of edges (to allow graphs with more nodes to have
more edges). Simplicity has also been used to measure the
complexity of AGs in the original SAGE paper [2].

The classification of an AG into complex or non-complex
can thus be summarised with the following function:

IsComplex(AG) =


No, if |V | < vmin

Y es, if |V | > vmax

No, if s ≥ ts
Y es, if s < ts

where ts = A+B · |V | is the threshold to be estimated. The
values vmin = 15 and vmax = 30 are used as in [11].

The threshold ts is estimated using a linear regression line
[11]. Suppose the original and the modified SAGE are com-
pared on one dataset. The AGs generated by both versions
are used to avoid bias. From these AGs, those that have
fewer than vmin = 15 or more than vmax = 30 nodes are
picked, and their simplicity s is computed. The regression
line y = A+Bx is computed in the following way [12]:
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where x = |V |, y = s and n is the number of AGs with
|V | < vmin or |V | > vmax. For each AG, ts = A+B · |V |.

Interpretability
‘An interpretation is the mapping of an abstract concept (e.g.
a predicted class) into a domain that the human can make
sense of.’ [13, p. 2]. In case of SAGE and AGs, it is interest-
ing to see which conclusions a security analyst can draw by
looking at the generated AGs, whether it is easy to draw them
and whether the AGs are intuitive enough to understand.

Since interpretability is by definition the mapping of some-
thing abstract to something that a human can understand, a
qualitative analysis of AGs would be more appropriate. Us-
ing a numerical metric will produce another number that has
to be interpreted, destroying the entire idea of interpretability.
It can also happen that a metric suggests that graphs are inter-
pretable, while in reality they are difficult to analyse. Further-
more, security analysts mostly analyse AGs qualitatively, not
quantitatively. It is therefore more important to look at the
graphs from their perspective, rather than rely on a number.

Completeness
Completeness shows how much information is present in a
certain dataset [14]. For AGs, the present attack paths and
(high-) severity nodes could be investigated. For an abso-
lute comparison, the episodes could be taken as ground truth,
since SAGE creates them from the input alerts (whose cor-
rectness does not depend on SAGE). However, SAGE dis-
cards the episode subsequences of length smaller than three.
Furthermore, it excludes from the AGs the state subsequences
that have not reached any objective. Hence, the AGs gen-
erated by the baseline SAGE already miss some paths and
(high-severity) episodes, which is however not part of the
modelling assumptions of this research. For this reason, this
study focuses on a relative comparison of the completeness
of the modified SAGE with respect to the baseline SAGE.

3.4 Method

Figure 2 presents the experimental workflow of the research.
First, a literature study has been conducted to get familiar
with the background information and metrics for comparing
AGs. The chosen metrics and other useful utilities have been
implemented in the form of Bash scripts and can be found
in the GitHub repository1. In the main README.md, a de-
scription is given for each script, its usage as well as an ex-
ample use case. Moreover, each script is extensively docu-
mented and nuances are mentioned. Experiments have been
executed on two datasets on the baseline and modified ver-
sions of SAGE (see section 4). Next, AGs have been analysed
both quantitatively and qualitatively. Finally, S-PDFA merges
have been analysed to investigate the reasons for the results
of merging sinks with other sinks and the S-PDFA core.

Figure 2: Experimental workflow.

1https://github.com/jzelenjak/research-project

https://github.com/jzelenjak/research-project


4 Experimental Setup
As in the original SAGE paper [2], the Collegiate Penetration
Testing Competition dataset from 2017 and 2018 has been
used (CPTC-2017 and CPTC-2018, respectively [15], sum-
marised in Table 3). This is to ensure that the results obtained
from running SAGE are in line with the results obtained in
the original paper. On the other hand, running experiments
on another dataset might result in differences that are related
to the dataset and not the modelling assumptions.

Table 3: Experimental dataset summary (before filtering) [2].

Dataset/Properties CPTC-2017 CPTC-2018

# alerts 43,611 330,270
# teams 9 6
Duration (hrs) 11 9
Attacker hosts known? No Yes
Victim hosts known? No Yes

SAGE2 has been run with the default parameters and the
default spdfa–config.ini file. The version including the fixes
from five pull requests submitted during the research has
been used. For the modified version of SAGE, the fol-
lowing two parameters have been added in the config file:
mergesinks=1, mergesinkscore=1. The first parameter
allows merging sinks with other sinks after the main merg-
ing process, while the second parameter allows merging sinks
with the red core after the main merging process, as explained
in the main.cpp file in the FlexFringe repository.3. The exper-
iments have been executed on the processor 12th Gen Intel(R)
Core(TM) i7-12800HX with 16 CPU cores, on Arch Linux.

5 Results and Discussion
This section presents the results of the performed experi-
ments. Subsection 5.1 starts with the general statistics that
are not related to the chosen metrics. Then, the results for
each of the four metrics are presented in subsections 5.2, 5.3,
5.4 and 5.5, respectively. Next, the insights from the analysis
of S-PDFA merges are discussed in subsection 5.6. Finally,
subsection 5.7 briefly discusses the bugs discovered during
the research process.

5.1 General Statistics
Table 4 shows the general statistics computed after running
SAGE before and after merging sinks. Both versions resulted
in the same number of AGs for both datasets. In addition,
all the generated AGs are the same when comes to their root
nodes (i.e. the generated AG filenames were the same, ex-
cluding the experiment name part). Furthermore, more than
a half of the graphs are the same for both datasets when it
comes to the nodes and edges present (excluding the node ID
as it is likely to be different for both versions). This means
that merging sinks does not miss any victim-objective pair
that were present before merging sinks, and the majority of
the graphs are not affected (at least, on the used datasets).

2https://github.com/tudelft-cda-lab/SAGE
3https://github.com/tudelft-cda-lab/FlexFringe

Table 4: General statistics before and after merging sinks (generated
using scripts comp-ag-dirs.sh, diff-ags.sh and stats-nodes-ags.sh).

CPTC-2017 CPTC-2018

Original Modified Original Modified

Num. AGs 105 105 75 75
Different AGs 47 21
Same AGs 58 54
Total num. nodes 1853 1695 1288 1238
Num. unique nodes 329 223 247 203
Total num. sinks 356 (19.2%) 0 (0%) 250 (19.4%) 0 (0%)
Num. unique sinks 136 (41.3%) 0 (0%) 104 (42.1%) 0 (0%)
Num AGs with sinks 82 0 56 0
Num. start nodes 301 300 203 201
Num. obj. variants 150 128 99 82

Table 4 also shows that merging sinks indeed results in less
nodes in total and less unique nodes, even though this de-
crease is not that substantial. The number of starting nodes
is almost the same, and the number of objective variants has
slightly decreased. The latter is likely due to the fact that in-
frequent high-severity sinks that were objective variants have
been merged with non-sink objective variants.

The computed statistics on the final S-PDFA (see Table
5) show that the core of the resulting S-PDFA has indeed
increased, which confirms the hypothesis. More interest-
ingly, the states added to the red core are all sinks. We
have discovered that when sinks are extended (i.e. coloured
red and added to the core instead of being merged), they
are still considered as sinks, even if their count becomes at
least sinkcount. This is also the difference between setting
mergesinks=1 and mergesinkscore=0. In the latter case,
other blue sinks (merge candidates) are only allowed to be
merged with these red sinks but not with the red non-sinks
that were part of the core when the main merging process has
ended, which is however allowed with mergesinkscore=1.

Table 5: Statistics on the resulting S-PDFA, original and modified
SAGE (from FlexFringe output files and the script stats-ff.sh).

CPTC-2017 CPTC-2018

Original Modified Original Modified

Red states (core) 67 (3%) 148 (100%) 56 (3%) 161 (100%)
Blue states (sinks) 459 (21%) 0 (0%) 241 (13%) 0 (0%)
White states (sinks) 1676 (76%) 0 (0%) 1533 (84%) 0 (0%)
Sink states 2135 (97%) 81 (55%) 1774 (97%) 105 (65%)
Total states 2202 148 1830 161

Finally, we have calculated the side-by-side statistics of the
resulting AGs, as well as the average node and edge counts of
all the AGs (using the script stats-ags-comp.sh). For each cor-
responding pair of AGs, the number of nodes and edges, sim-
plicity, whether the AG is complex and the number of found
objective variants are shown, as well as the difference in the
node and edge count, simplicity, complexity and the number
of found objective variants between the graphs. Full result-
ing statistics, sorted by the difference in the node count, can
be found in the GitHub repository. The following two sub-
sections present the most interesting statistics for the corre-
sponding metrics.

https://github.com/tudelft-cda-lab/SAGE
https://github.com/tudelft-cda-lab/FlexFringe


5.2 Results for Size
Table 6 shows that the AGs generated after merging sinks
have on average fewer nodes, which confirms the proposed
hypothesis. The maximum node count has also decreased.
Moreover, there are no increases in the node count. This is
because AGs are created from state subsequences, which can-
not increase but can decrease if multiple traces have common
states. Given that episode traces are now replayed only us-
ing the core of the S-PDFA and not the sinks (whose count is
very large), it is a reasonable result. Furthermore, only four
AGs in CPTC-2017 have a decrease in 10 or more nodes,
while in CPTC-2018 only three AGs have a decrease in 5
nodes or more. Finally, for both datasets, more than a half
of the AGs have the same node count before and after merg-
ing sinks. Therefore, merging sinks does not affect the node
count a lot.

Table 6: AG comparison on size (from stats-ags-comp.sh).

CPTC-2017 CPTC-2018

Original Modified Original Modified

Average num. nodes 17.65 16.14 17.17 16.51
Max. num. nodes 48 39 34 30
Min. num. nodes 3 3 3 3
AGs with increase 0 0
AGs with decrease 47 21
AGs with same count 58 54
Highest decrease -15 -7
Highest increase N/A N/A

5.3 Results for Complexity
The complexity of the AGs has not been affected much (see
Table 7). For the vast majority of the AGs, the complexity has
not changed. This is because the highest decrease in the num-
ber of edges in the corresponding AGs is 3 and 2 for CPTC-
2017 and CPTC-2018, respectively, while the decreases in the
node count have not been substantial (see subsection 5.2). As
a result, the classification function for complexity gives sim-
ilar results, which could differ when the decrease in the node
count crosses vmin or vmax boundaries (making the graph not
complex) or if the decrease in simplicity s crosses the thresh-
old ts (e.g., when the edge count stays the same and the node
count decreases, the simplicity will also decrease, potentially
making the graph complex).

Table 7: AG comparison on complexity (from stats-ags-comp.sh).

CPTC-2017 CPTC-2018

Original Modified Original Modified

Complex 38 40 30 29
Non-complex 67 65 45 46
Complex ⇒ Not complex 4 2
Not complex ⇒ Complex 6 1
Same complexity 95 72

5.4 Results for Interpretability
A substantial part of the AGs are the same in terms of the
nodes and edges present. Hence, the interpretability of these

AGs is more or less the same, unless graphviz decides to ren-
der these graphs differently, which is however not part of the
modelling assumptions. From the perspective of node count,
AGs are more compact, which should make them easier to
analyse from the size perspective.

However, this comes at a cost. As has been mentioned
above, SAGE tries to differentiate between the same states in
different parts of an attack path (or in different attacks). This
is called the context of a node - a different state ID is assigned
when the episodes appear in sequences with different futures
and pasts, which highlights a different context [2]. A secu-
rity analyst can clearly see that these episodes correspond to
different attacker behaviour.

Figure 3 shows a merge which resulted in less states
but in worsened interpretability. In the left AG (be-
fore merging sinks), there are two occurrences of a
sequence Info Discovery ⇒ Account Manipulation
⇒ Brute Force Credentials, in different attacks (Info
Discovery should actually be split into three separate nodes,
but since SAGE removes ID from low-severity (sink) nodes,
they become the same node in the AG, see Figure 4). In
the right AG (after merging sinks), there is only one oc-
currence of this sequence and the separation is not present
any more. While the paths are still correct and there
is no loss in data, i.e. by following the timestamps a
security analyst can still detect two paths, the contex-
tual (behavioural) difference is lost. For instance, the se-
quence with solid black edges is preceded by Network
DoS|ssdp|ID:65) and succeeded by Surfing|http, while
the sequence with dashed black edges is preceded by
Arbitrary Code Execution|ssdp|ID:396 and followed
by Data Exfiltration|http|ID:375. An analyst might
think that after Network DoS|ssdp an attacker can reach
Data Exfiltration|http, whereas it is not the case, as
it is a completely different attack. Similarly, Brute Force
Credentials|unknown|ID:324 has been merged with
Brute Force Credentials|unknown|ID:8, even though
their pasts and futures are different.

5.5 Results for Completeness

The total number of incoming edges to all objective variants
of an AG is the same for both versions of SAGE. This means
that SAGE does not lose any attack paths when merging sinks
that were present before. Moreover, while FlexFringe merges
do result in less states, there is no loss in data. The difference
in edges is always equal to the difference in the number of
objective variants, meaning that only the edges from an ob-
jective variant to the root node are missing and not the edges
from the actual attack paths. This is reasonable, as AGs are
created by replaying episode sequences passed to FlexFringe,
which are the same for both versions of SAGE. Thus, the
completeness of SAGE is not affected by merging sinks.

5.6 Analysis of S-PDFA Merges

To further investigate the issue with the context, we have
looked into the merges of S-PDFA (mostly using CPTC-
2017).



(a) Before merging sinks (b) After merging sinks

Figure 3: AG Data Delivery|http on 10.0.0.71: an example of a loss of context (no IDs for oval nodes and excluding low-sev. sinks).

(a) Before merging sinks

(b) After merging sinks

Figure 4: AG Data Delivery|http on 10.0.0.71: an example of a
loss of context (with IDs for oval nodes and all sinks).

Problem
We have executed FlexFringe on the traces generated by
SAGE, with debug=1, which generates files with the S-PDFA
before each refinement (merge or extension). Since the au-
tomaton is implemented using Union-Find, the number of
nodes always stays the same, but node representatives change.
However, the resulting graphs and the number of files are too
large to be analysed (see Table 8).

Solution
To address this issue, we have created a script get-merges.sh,
which performs a ‘smart’ diff between each consecutive
pair of the S-PDFA files. Extensions (adding a blue (sink)
node to the red core) are skipped, since they are not inter-
esting and large. For each merge, the graphs ‘before’ and
‘after’ are created and only the affected nodes are selected
(i.e. have changed their representatives, count or degree). For
each such node, all incoming edges with their endpoints are
also included for some context. Other visual enhancements
are also added to facilitate the analysis (see Figure 5). Fi-
nally, all merges are combined into one PDF file and a log
file with all the information is saved (see GitHub repository).

Analysis and Results
The created script massively reduces the workload of
analysing merges (see Table 8) and the generated logs allow
quickly finding interesting merges (e.g. by using grep on the
node ID from an AG). Still, the number of merges is large to
thoroughly analyse. We can, however, see a very important
observation from the tree merges shown in Figures 5a, 5b and
5c, which correspond to the AG in Figure 4. We can see how
three different subtrees with sinks have been merged with the
same core states (with the children of the merged red states
whose red representatives are shown in the figures), which
resulted in the context loss described above. Before, SAGE
used these sinks, which resulted in a separate sequence in an
AG. Now that sinks have been merged, SAGE replays these
attack traces on the same core states. Hence, the assumption
that Alergia will not find enough evidence to prevent a merge,
which should not occur due to the different context, was cor-
rect. Red core states could get more outgoing transitions that
come from sinks (see Figure 5a), making subsequent merges
even more likely to happen.



(a) Merge iteration 325 (left: before, right: after).

(b) Merge iteration 707 (left: before, right: after)).

(c) Merge iteration 733 (top: before, bottom: after).

Figure 5: S-PDFA merges corresponding to the AG above (gener-
ated by get-merges.sh). Yellow edges and nodes were initially
merged, brown ones have been merged during the determinization.
Solid nodes and edges belong to the subtree of the merged red node,
dotted ones belong to the subtree of the merged blue node.

Table 8: Statistics on the merges and extensions in the main merging
process and after with mergesinks=1 and mergesinkscore set to
0 and 1 (from get-merges.sh and FlexFringe files).

CPTC-2017 CPTC-2018

mergesinkscore 1 0 1 0

# nodes in S-PDFA 2684 2013
# nodes in get merges.sh (avg) 10.15 9.80 10.62 10.52
# refinements (total) 924 1150 682 766
# extensions (total) 141 186 158 192
# merges (total) 783 964 524 574
% merges with determinization 65% 55% 68% 64%
# refinements (main) 141 98
# extensions (main) 63 54
# merges (main) 78 44

Since the states 8, 42 and 43 are part of the red core,
these merges occur because mergesinkscore=1. In con-
trast, with mergesinkscore=0 (and mergesinks=1) such
merges are not allowed, so the context should be better pre-
served. Appendix A presents the same AG when setting
mergesinkscore=0. It could be that this setting is an im-
provement over our value, but it has to be investigated further.
Table 8 also shows that our parameter value results in fewer
extensions, fewer merges and a higher percentage of merges
with additional merges in determinization. This makes sense,
as core states are bigger subtrees due to their count, so more
states get merged in the determinization. The core states also
give more possibilities for merges in every iteration.

Conclusions From the Analysis of S-PDFA Merges
Considering the results above and after further investigating
the states of AGs with our scripts, we can draw the following
conclusions. For an AG node mcat|mserv:

1. All non-sink nodes remain non-sinks
2. If there is at least one non-sink node, all sink nodes will

be merged with this non-sink node (or non-sink nodes,
if there are multiple non-sink nodes)

3. If there are no non-sink nodes, one of the sinks becomes
a non-sink and the remaining sinks are merged with it

The ‘loss of context’ problem occurs when there are mul-
tiple mcat|mserv nodes in an AG and at least one of them is
a sink. If this is not the case, sinks just become non-sinks,
possibly with another ID, and the AG is the same.

5.7 Discovered Bugs
It is rather tricky to verify the correctness of an unsupervised
sequence learning tool like SAGE and detect bugs due to the
lack of reliable ‘test oracles’ and since it is not always known
what the correct results should be [16]. While performing
this research, we have discovered five bugs in SAGE, which
were indeed rather difficult to find. Below, we briefly present
them in a chronological order, as well as propose tests to de-
tect such problems in the future. More detailed descriptions
and the proposed fixes can be found in the corresponding pull
requests in the SAGE repository.

Bug 1: Non-determinism in the Most Frequent Service
Description: The method most frequent was implemented
using Python sets, which are however non-deterministic. As a



result, in case of a tie, the most targeted service for an episode
was arbitrarily chosen, leading to anomalies in the resulting
AGs and non-determinism.
Proposed tests: The file with the episode traces passed to
FlexFringe always has to be the same, no matter what the
FlexFringe parameters are. Hence, performing a diff on the
files with traces after consecutive runs for the same dataset
should report that the files are the same.

Bug 2: Duplicate AGs and Attack Paths
Description: Due to some IPs being substrings of other IPs,
many duplicate AGs and attack paths were generated as a re-
sult of wrong string comparison.
Proposed tests: As proposed by Senne Van den Broeck, at-
tack paths might be assigned unique IDs, so that no two attack
paths can have the same ID in different .dot files with the cor-
rect implementation. In addition, questioning attitude should
be used when two AGs appear identical.

Bug 3: Capitalisation in Most Frequent Service
Description: The method most frequent assigned ‘Un-
known’ if a service could not be derived from the IANA map-
ping, while ‘unknown’ was used in other places. Due to Win-
dows files and directories being case-insensitive (while being
case-sensitive on Linux), AG files with different capitalisa-
tion were overwriting each other, leading to a different num-
ber of AGs on Windows and Linux.
Proposed tests: Primarily, manual analysis: AGs with differ-
ent capitalisations were abnormal. In addition, it is important
to be consistent in the used naming.

Bug 4: Other Duplicate AGs and Attack Paths
Description: Due to some objectives being substrings of
each other (e.g. DATA EXFILTRATION|http and DATA
EXFILTRATION|http-alt), some duplicate attacks were
generated as a result of wrong string comparison.
Proposed tests: Same as for bug 2, as these are similar bugs.

Bug 5: Missing Sinks in AGs
Description: After creating the get-merges.sh script and
analysing the S-PDFA merges, we have noticed that some
states that were sinks in the S-PDFA were solid in the AGs.
It turned out that when replaying the episode sequences,
traverse method of SAGE was missing some transitions to
sinks and sinks that were at the end of a trace.
Proposed tests: FlexFringe output files can be taken as the
ground truth in this case, and it can be checked that dotted
states in the AGs are indeed sinks in the finalsinks.json
file, and that solid states in the AGs are non-sinks in the
final.json file (see Appendix B for an example test case).

6 Conclusions and Future Work
The motivation behind the topic of this research is to test a
particular modelling assumption of SAGE and evaluate the
resulting AGs. Here we investigate what happens to the AGs
after allowing sink states to be merged with other sink states
and the core of the S-PDFA model after the main merging
process, and how the size, complexity, interpretability and
completeness of the AGs are affected. To conclude, we have
demonstrated that merging sink states with other sinks and the

core results in, on average, slightly smaller AGs with roughly
the same complexity, worsened interpretability due to the loss
of context of attack episodes and the same completeness as
before merging sinks. Since interpretable AGs are of higher
importance for a security analyst, we conclude that it is better
not to merge sinks with the red core of the S-PDFA and other
sinks, at least not without additional modelling assumptions.

We have developed the get-merges.sh script that could
be used by other researchers for analysis of FlexFringe’s S-
PDFA merges. We have shown that the script massively re-
duces the workload (from more than 2000 nodes of the S-
PDFA to, on average, approximately 10 nodes for a ‘before’,
or equivalently ‘after’, fragment of the S-PDFA). The param-
eterized visual enhancements as well as extensive logs can
facilitate the analysis by allowing quickly pinpointing inter-
esting merges based on the mcat|mserv or a state ID in an
AG (e.g. using the Unix grep command) and finding the cor-
responding S-PDFA merge on the indicated page in the PDF
file. The tool can be further improved, extended and used for
other use cases of FlexFringe, not just limited to SAGE.

As a future work, other modelling assumptions could be
tested for merging sink states. First, it could be the case that
only allowing merging sinks with other sinks and not with the
core (i.e. setting mergesinkscore=0 and mergesinks=1)
would lead to fewer issues with context, as suggested in sec-
tion 5.6. Furthermore, we have not found any attempts to
tweak the sinkcount parameter, so its influence on the AGs
could be investigated further. Other studies could try eval-
uation functions other than Alergia (FlexFringe allows im-
plementing any evaluation function which implements the
defined interface), or incorporating victim or attacker infor-
mation into the data traces passed by SAGE to FlexFringe
in order to mitigate the issue with the context. In addition,
the influence of ‘markovian’ property (both with and without
merging sinks) on the AGs and the context of episodes can
be investigated (see Appendix C for an example of the result-
ing AG with markovian=2). Moreover, merging sinks does
not need to happen in FlexFringe. They could be merged in
SAGE during post-processing based on some criteria.

We have also noticed that not discarding state IDs from
low-severity nodes and including low-severity sinks in the
post-processing might lead to more interpretable AGs. Fig-
ures 3 and 4 suggest that such graphs, although slightly larger,
might give more insights to a security analyst due to more in-
terpretable paths. We think that a parameter could be added
to SAGE that allows getting such ‘full’ version of AGs for
further investigation.

Finally, this research is about the modelling assumptions of
SAGE and not its correctness. We therefore assume the cor-
rectness of SAGE when performing our experiments. Even
though during this research five bugs have been found in the
code of SAGE (see subsection 5.7), further work might be
needed to further investigate the correctness of SAGE. Its lim-
itations such as no support for partial paths and a requirement
for sequential learning (no support for parallelized attacks)
could also be addressed. SAGE could also be tested on dif-
ferent datasets (potentially on the datasets with more ground
truth available) to further analyse its performance in terms of
accuracy, completeness and the resulting AGs.



7 Responsible Research
This section discusses the reproducibility of the obtained re-
sults (subsection 7.1) and the ethical aspects of the research
(subsection 7.2).

7.1 Reproducibility

Reproducibility of research implies that independent (peer-)
researchers are able to get the same or at least similar exper-
iment results as the original paper [17]. It also allows as-
sessing whether the results of the research are objective and
reliable. It is therefore of crucial importance to consider re-
producibility when designing any research.

All the code and data used for this research are open-
source: SAGE, FlexFringe and created scripts can be cloned
and executed by anyone who wants to verify the obtained re-
sults. Furthermore, both FlexFringe and SAGE are determin-
istic algorithms. As a consequence, the same results can be
obtained after multiple consecutive runs of SAGE. Finally,
the used Bash scripts have been extensively documented and
the main README.md provides assistance in deciding which
script to use in which case.

7.2 Ethical aspects

When performing any kind of research, it is important to ad-
here to ethical norms in research [18]. Namely, they promote
the goals of research, such as knowledge transfer and truth,
and the values crucial to collaborative work, such as trust and
fairness. Furthermore, they usually promote other moral and
social values, for instance, human rights, respecting the law
and safety.

One ethical issue to be considered is the correctness of
SAGE. While manually analysing intrusion alerts is a very
labour-intensive process, it is still based on the incoming
alerts. They might be false if an IDS is faulty, but they are still
present. On the other hand, SAGE compresses all these alerts
into a smaller visual representation to facilitate the work of
security analysts. However, if SAGE wrongly summarises
(some of) the alerts, then security analysts might draw incor-
rect conclusions, which might result in serious consequences,
depending on the nature of the security operations centre.
Nevertheless, this ethical implication is outside the scope of
this research, as this paper focuses on the modelling assump-
tions of SAGE and not its correctness.
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A An Example of an Attack Graph With
mergesinkscore=0

As discussed in subsection 5.6, not allowing the merges of
sinks with the core of the S-PDFA might better preserve
the context. Due to their high count, the red core states
are likely to appear in more AG, potentially leading to the
loss of context when sinks are also present in the AG and
mergesinkscore=1. Figure 6 shows the same AG as in Fig-
ure 3 generated by SAGE when setting mergesinkscore=0
and mergesinks=1. The merge of the sink subtree with the
core non-sink subtree described in subsections 5.4 and 5.6
does not occur, and these sequences are correctly separated,
resulting in a more interpretable AG.

B An Example Test Case for Sinks in the AGs
With the following pipelines, we can verify that all dotted
states in the AGs are indeed sinks in FlexFringe output files.
First, we get all unique sinks in CPTC-2017 (analogously for
CPTC-2018) from the AGs. Then, using jq, we take all
sink states from orig-2017.txt.ff.finalsinks.json
file generated by FlexFringe (the name might be different),
and extract their IDs. Finally, we take the intersection be-
tween the sink IDs found in the AGs and the sink IDs found in
the FlexFringe output file (comm -12 ...) and count them
(... | wc -l). The result is equal to the number of unique
sink IDs found in the AGs, which means that all states defined
as sinks in the AGs are also sinks in the FlexFringe file with
the sinks.

# All found sinks in 2017 are indeed sinks
$ sinks_orig_2017=$(find orig-2017AGs/ -type f

-name ’*.dot’ | xargs gvpr ’N [ index($.style,
"dotted") != -1 ] { print(gsub(gsub($.name,
"\r"), "\n", " | ")); }’ | sort -u)

$ all_sinks_2017=$(jq ’.nodes[] |
select(.issink==1) | .id’
orig-2017.txt.ff.finalsinks.json | sort)

$ echo -e "$sinks_orig_2017" | wc -l
136

$ comm -12 <(echo -e "$sinks_orig_2017" | sed
’s/ˆ.*ID: \([0-9-]\+\)$/\1/’ | sort) <(echo -e
"$all_sinks_2017") | wc -l

136

# All found sinks in 2018 are indeed sinks
$ sinks_orig_2018=$(find orig-2018AGs/ -type f

-name ’*.dot’ | xargs gvpr ’N [ index($.style,
"dotted") != -1 ] { print(gsub(gsub($.name,
"\r"), "\n", " | ")); }’ | sort -u)

$ all_sinks_2018=$(jq ’.nodes[] |
select(.issink==1) | .id’
orig-2018.txt.ff.finalsinks.json | sort)

$ echo -e "$sinks_orig_2018" | wc -l
104
$ comm -12 <(echo -e "$sinks_orig_2018" | sed

’s/ˆ.*ID: \([0-9-]\+\)$/\1/’ | sort) <(echo -e
"$all_sinks_2018") | wc -l

104

Similarly, we can verify that all non-sinks with IDs are
indeed non-sinks (using orig-2017.txt.ff.final.json
file, potentially with a different name).

# All non-sinks with IDs in 2017 are indeed
non-sinks

$ non_sinks_with_ids_orig_2017=$(find
orig-2017AGs/ -type f -name ’*.dot’ | xargs
gvpr ’N [ index($.style, "dotted") == -1 ] {
print(gsub(gsub($.name, "\r"), "\n", " | "));
}’ | sort -u | grep ’ID: ’)

$ echo -e "$non_sinks_with_ids_orig_2017" | wc -l
28
$ all_non_sinks_orig_2017=$(jq ’.nodes[] |

select(.issink==0) | .id’
orig-2017.txt.ff.final.json | sort)

$ comm -12 <(echo -e
"$non_sinks_with_ids_orig_2017" | sed
’s/ˆ.*ID: \([0-9-]\+\)$/\1/’ | sort -u) <(echo
-e "$all_non_sinks_orig_2017") | wc -l

28

# All non-sinks with IDs in 2018 are indeed
non-sinks

$ non_sinks_with_ids_orig_2018=$(find
orig-2018AGs/ -type f -name ’*.dot’ | xargs
gvpr ’N [ index($.style, "dotted") == -1 ] {
print(gsub(gsub($.name, "\r"), "\n", " | "));
}’ | sort -u | grep ’ID: ’)

$ echo -e "$non_sinks_with_ids_orig_2018" | wc -l
16
$ all_non_sinks_orig_2018=$(jq ’.nodes[] |

select(.issink==0) | .id’
orig-2018.txt.ff.final.json | sort)

$ comm -12 <(echo -e
"$non_sinks_with_ids_orig_2018" | sed
’s/ˆ.*ID: \([0-9-]\+\)$/\1/’ | sort -u) <(echo
-e "$all_non_sinks_orig_2018") | wc -l

16
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(a) Before merging sinks with other sinks. (b) After merging sinks with other sinks.

Figure 6: AG Data Delivery|http on 10.0.0.71: an example of less loss of context with mergesinkscore=0.

C An Example of an Attack Graph With
markovian=2

The markovian property of FlexFringe ensures that the in-
coming edges have the same label [9]. Setting markovian=1
(the value used by SAGE) checks one edge above, setting
markovian=2 checks two edges above, etc. It is possible
that this property could help preserve the context when merg-
ing sinks. Figure 7 shows the same graph as in Figure 3
generated by SAGE with markovian=2, mergesinks=1 and
mergesinkscore=1. It can be seen that the context is better
preserved than in the graph in Figure 3.

(a) Before merging sinks

(b) After merging sinks

Figure 7: AG Data Delivery|http on 10.0.0.71: an example of
less loss of context when setting markovian=2, mergesinks=1 and
mergesinkscore=1.
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